xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGObjCMac.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides Objective-C code generation targeting the Apple runtime.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCleanup.h"
15 #include "CGObjCRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/LangOptions.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/ConstantInitBuilder.h"
30 #include "llvm/ADT/CachedHashString.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/SetVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/ADT/UniqueVector.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/Support/ScopedPrinter.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cstdio>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 
48 namespace {
49 
50 // FIXME: We should find a nicer way to make the labels for metadata, string
51 // concatenation is lame.
52 
53 class ObjCCommonTypesHelper {
54 protected:
55   llvm::LLVMContext &VMContext;
56 
57 private:
58   // The types of these functions don't really matter because we
59   // should always bitcast before calling them.
60 
61   /// id objc_msgSend (id, SEL, ...)
62   ///
63   /// The default messenger, used for sends whose ABI is unchanged from
64   /// the all-integer/pointer case.
65   llvm::FunctionCallee getMessageSendFn() const {
66     // Add the non-lazy-bind attribute, since objc_msgSend is likely to
67     // be called a lot.
68     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
69     return CGM.CreateRuntimeFunction(
70         llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend",
71         llvm::AttributeList::get(CGM.getLLVMContext(),
72                                  llvm::AttributeList::FunctionIndex,
73                                  llvm::Attribute::NonLazyBind));
74   }
75 
76   /// void objc_msgSend_stret (id, SEL, ...)
77   ///
78   /// The messenger used when the return value is an aggregate returned
79   /// by indirect reference in the first argument, and therefore the
80   /// self and selector parameters are shifted over by one.
81   llvm::FunctionCallee getMessageSendStretFn() const {
82     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
83     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy,
84                                                              params, true),
85                                      "objc_msgSend_stret");
86   }
87 
88   /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
89   ///
90   /// The messenger used when the return value is returned on the x87
91   /// floating-point stack; without a special entrypoint, the nil case
92   /// would be unbalanced.
93   llvm::FunctionCallee getMessageSendFpretFn() const {
94     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
95     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy,
96                                                              params, true),
97                                      "objc_msgSend_fpret");
98   }
99 
100   /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...)
101   ///
102   /// The messenger used when the return value is returned in two values on the
103   /// x87 floating point stack; without a special entrypoint, the nil case
104   /// would be unbalanced. Only used on 64-bit X86.
105   llvm::FunctionCallee getMessageSendFp2retFn() const {
106     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
107     llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext);
108     llvm::Type *resultType =
109         llvm::StructType::get(longDoubleType, longDoubleType);
110 
111     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType,
112                                                              params, true),
113                                      "objc_msgSend_fp2ret");
114   }
115 
116   /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
117   ///
118   /// The messenger used for super calls, which have different dispatch
119   /// semantics.  The class passed is the superclass of the current
120   /// class.
121   llvm::FunctionCallee getMessageSendSuperFn() const {
122     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
123     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
124                                                              params, true),
125                                      "objc_msgSendSuper");
126   }
127 
128   /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
129   ///
130   /// A slightly different messenger used for super calls.  The class
131   /// passed is the current class.
132   llvm::FunctionCallee getMessageSendSuperFn2() const {
133     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
134     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
135                                                              params, true),
136                                      "objc_msgSendSuper2");
137   }
138 
139   /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super,
140   ///                              SEL op, ...)
141   ///
142   /// The messenger used for super calls which return an aggregate indirectly.
143   llvm::FunctionCallee getMessageSendSuperStretFn() const {
144     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
145     return CGM.CreateRuntimeFunction(
146       llvm::FunctionType::get(CGM.VoidTy, params, true),
147       "objc_msgSendSuper_stret");
148   }
149 
150   /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
151   ///                               SEL op, ...)
152   ///
153   /// objc_msgSendSuper_stret with the super2 semantics.
154   llvm::FunctionCallee getMessageSendSuperStretFn2() const {
155     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
156     return CGM.CreateRuntimeFunction(
157       llvm::FunctionType::get(CGM.VoidTy, params, true),
158       "objc_msgSendSuper2_stret");
159   }
160 
161   llvm::FunctionCallee getMessageSendSuperFpretFn() const {
162     // There is no objc_msgSendSuper_fpret? How can that work?
163     return getMessageSendSuperFn();
164   }
165 
166   llvm::FunctionCallee getMessageSendSuperFpretFn2() const {
167     // There is no objc_msgSendSuper_fpret? How can that work?
168     return getMessageSendSuperFn2();
169   }
170 
171 protected:
172   CodeGen::CodeGenModule &CGM;
173 
174 public:
175   llvm::IntegerType *ShortTy, *IntTy, *LongTy;
176   llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy;
177   llvm::Type *IvarOffsetVarTy;
178 
179   /// ObjectPtrTy - LLVM type for object handles (typeof(id))
180   llvm::PointerType *ObjectPtrTy;
181 
182   /// PtrObjectPtrTy - LLVM type for id *
183   llvm::PointerType *PtrObjectPtrTy;
184 
185   /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
186   llvm::PointerType *SelectorPtrTy;
187 
188 private:
189   /// ProtocolPtrTy - LLVM type for external protocol handles
190   /// (typeof(Protocol))
191   llvm::Type *ExternalProtocolPtrTy;
192 
193 public:
194   llvm::Type *getExternalProtocolPtrTy() {
195     if (!ExternalProtocolPtrTy) {
196       // FIXME: It would be nice to unify this with the opaque type, so that the
197       // IR comes out a bit cleaner.
198       CodeGen::CodeGenTypes &Types = CGM.getTypes();
199       ASTContext &Ctx = CGM.getContext();
200       llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType());
201       ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T);
202     }
203 
204     return ExternalProtocolPtrTy;
205   }
206 
207   // SuperCTy - clang type for struct objc_super.
208   QualType SuperCTy;
209   // SuperPtrCTy - clang type for struct objc_super *.
210   QualType SuperPtrCTy;
211 
212   /// SuperTy - LLVM type for struct objc_super.
213   llvm::StructType *SuperTy;
214   /// SuperPtrTy - LLVM type for struct objc_super *.
215   llvm::PointerType *SuperPtrTy;
216 
217   /// PropertyTy - LLVM type for struct objc_property (struct _prop_t
218   /// in GCC parlance).
219   llvm::StructType *PropertyTy;
220 
221   /// PropertyListTy - LLVM type for struct objc_property_list
222   /// (_prop_list_t in GCC parlance).
223   llvm::StructType *PropertyListTy;
224   /// PropertyListPtrTy - LLVM type for struct objc_property_list*.
225   llvm::PointerType *PropertyListPtrTy;
226 
227   // MethodTy - LLVM type for struct objc_method.
228   llvm::StructType *MethodTy;
229 
230   /// CacheTy - LLVM type for struct objc_cache.
231   llvm::Type *CacheTy;
232   /// CachePtrTy - LLVM type for struct objc_cache *.
233   llvm::PointerType *CachePtrTy;
234 
235   llvm::FunctionCallee getGetPropertyFn() {
236     CodeGen::CodeGenTypes &Types = CGM.getTypes();
237     ASTContext &Ctx = CGM.getContext();
238     // id objc_getProperty (id, SEL, ptrdiff_t, bool)
239     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
240     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
241     CanQualType Params[] = {
242         IdType, SelType,
243         Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy};
244     llvm::FunctionType *FTy =
245         Types.GetFunctionType(
246           Types.arrangeBuiltinFunctionDeclaration(IdType, Params));
247     return CGM.CreateRuntimeFunction(FTy, "objc_getProperty");
248   }
249 
250   llvm::FunctionCallee getSetPropertyFn() {
251     CodeGen::CodeGenTypes &Types = CGM.getTypes();
252     ASTContext &Ctx = CGM.getContext();
253     // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
254     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
255     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
256     CanQualType Params[] = {
257         IdType,
258         SelType,
259         Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(),
260         IdType,
261         Ctx.BoolTy,
262         Ctx.BoolTy};
263     llvm::FunctionType *FTy =
264         Types.GetFunctionType(
265           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
266     return CGM.CreateRuntimeFunction(FTy, "objc_setProperty");
267   }
268 
269   llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) {
270     CodeGen::CodeGenTypes &Types = CGM.getTypes();
271     ASTContext &Ctx = CGM.getContext();
272     // void objc_setProperty_atomic(id self, SEL _cmd,
273     //                              id newValue, ptrdiff_t offset);
274     // void objc_setProperty_nonatomic(id self, SEL _cmd,
275     //                                 id newValue, ptrdiff_t offset);
276     // void objc_setProperty_atomic_copy(id self, SEL _cmd,
277     //                                   id newValue, ptrdiff_t offset);
278     // void objc_setProperty_nonatomic_copy(id self, SEL _cmd,
279     //                                      id newValue, ptrdiff_t offset);
280 
281     SmallVector<CanQualType,4> Params;
282     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
283     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
284     Params.push_back(IdType);
285     Params.push_back(SelType);
286     Params.push_back(IdType);
287     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
288     llvm::FunctionType *FTy =
289         Types.GetFunctionType(
290           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
291     const char *name;
292     if (atomic && copy)
293       name = "objc_setProperty_atomic_copy";
294     else if (atomic && !copy)
295       name = "objc_setProperty_atomic";
296     else if (!atomic && copy)
297       name = "objc_setProperty_nonatomic_copy";
298     else
299       name = "objc_setProperty_nonatomic";
300 
301     return CGM.CreateRuntimeFunction(FTy, name);
302   }
303 
304   llvm::FunctionCallee getCopyStructFn() {
305     CodeGen::CodeGenTypes &Types = CGM.getTypes();
306     ASTContext &Ctx = CGM.getContext();
307     // void objc_copyStruct (void *, const void *, size_t, bool, bool)
308     SmallVector<CanQualType,5> Params;
309     Params.push_back(Ctx.VoidPtrTy);
310     Params.push_back(Ctx.VoidPtrTy);
311     Params.push_back(Ctx.getSizeType());
312     Params.push_back(Ctx.BoolTy);
313     Params.push_back(Ctx.BoolTy);
314     llvm::FunctionType *FTy =
315         Types.GetFunctionType(
316           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
317     return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct");
318   }
319 
320   /// This routine declares and returns address of:
321   /// void objc_copyCppObjectAtomic(
322   ///         void *dest, const void *src,
323   ///         void (*copyHelper) (void *dest, const void *source));
324   llvm::FunctionCallee getCppAtomicObjectFunction() {
325     CodeGen::CodeGenTypes &Types = CGM.getTypes();
326     ASTContext &Ctx = CGM.getContext();
327     /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper);
328     SmallVector<CanQualType,3> Params;
329     Params.push_back(Ctx.VoidPtrTy);
330     Params.push_back(Ctx.VoidPtrTy);
331     Params.push_back(Ctx.VoidPtrTy);
332     llvm::FunctionType *FTy =
333         Types.GetFunctionType(
334           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
335     return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic");
336   }
337 
338   llvm::FunctionCallee getEnumerationMutationFn() {
339     CodeGen::CodeGenTypes &Types = CGM.getTypes();
340     ASTContext &Ctx = CGM.getContext();
341     // void objc_enumerationMutation (id)
342     SmallVector<CanQualType,1> Params;
343     Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType()));
344     llvm::FunctionType *FTy =
345         Types.GetFunctionType(
346           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
347     return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation");
348   }
349 
350   llvm::FunctionCallee getLookUpClassFn() {
351     CodeGen::CodeGenTypes &Types = CGM.getTypes();
352     ASTContext &Ctx = CGM.getContext();
353     // Class objc_lookUpClass (const char *)
354     SmallVector<CanQualType,1> Params;
355     Params.push_back(
356       Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst())));
357     llvm::FunctionType *FTy =
358         Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration(
359                                 Ctx.getCanonicalType(Ctx.getObjCClassType()),
360                                 Params));
361     return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass");
362   }
363 
364   /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
365   llvm::FunctionCallee getGcReadWeakFn() {
366     // id objc_read_weak (id *)
367     llvm::Type *args[] = { ObjectPtrTy->getPointerTo() };
368     llvm::FunctionType *FTy =
369       llvm::FunctionType::get(ObjectPtrTy, args, false);
370     return CGM.CreateRuntimeFunction(FTy, "objc_read_weak");
371   }
372 
373   /// GcAssignWeakFn -- LLVM objc_assign_weak function.
374   llvm::FunctionCallee getGcAssignWeakFn() {
375     // id objc_assign_weak (id, id *)
376     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
377     llvm::FunctionType *FTy =
378       llvm::FunctionType::get(ObjectPtrTy, args, false);
379     return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak");
380   }
381 
382   /// GcAssignGlobalFn -- LLVM objc_assign_global function.
383   llvm::FunctionCallee getGcAssignGlobalFn() {
384     // id objc_assign_global(id, id *)
385     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
386     llvm::FunctionType *FTy =
387       llvm::FunctionType::get(ObjectPtrTy, args, false);
388     return CGM.CreateRuntimeFunction(FTy, "objc_assign_global");
389   }
390 
391   /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function.
392   llvm::FunctionCallee getGcAssignThreadLocalFn() {
393     // id objc_assign_threadlocal(id src, id * dest)
394     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
395     llvm::FunctionType *FTy =
396       llvm::FunctionType::get(ObjectPtrTy, args, false);
397     return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal");
398   }
399 
400   /// GcAssignIvarFn -- LLVM objc_assign_ivar function.
401   llvm::FunctionCallee getGcAssignIvarFn() {
402     // id objc_assign_ivar(id, id *, ptrdiff_t)
403     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(),
404                            CGM.PtrDiffTy };
405     llvm::FunctionType *FTy =
406       llvm::FunctionType::get(ObjectPtrTy, args, false);
407     return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar");
408   }
409 
410   /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
411   llvm::FunctionCallee GcMemmoveCollectableFn() {
412     // void *objc_memmove_collectable(void *dst, const void *src, size_t size)
413     llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy };
414     llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false);
415     return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable");
416   }
417 
418   /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
419   llvm::FunctionCallee getGcAssignStrongCastFn() {
420     // id objc_assign_strongCast(id, id *)
421     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
422     llvm::FunctionType *FTy =
423       llvm::FunctionType::get(ObjectPtrTy, args, false);
424     return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast");
425   }
426 
427   /// ExceptionThrowFn - LLVM objc_exception_throw function.
428   llvm::FunctionCallee getExceptionThrowFn() {
429     // void objc_exception_throw(id)
430     llvm::Type *args[] = { ObjectPtrTy };
431     llvm::FunctionType *FTy =
432       llvm::FunctionType::get(CGM.VoidTy, args, false);
433     return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw");
434   }
435 
436   /// ExceptionRethrowFn - LLVM objc_exception_rethrow function.
437   llvm::FunctionCallee getExceptionRethrowFn() {
438     // void objc_exception_rethrow(void)
439     llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false);
440     return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow");
441   }
442 
443   /// SyncEnterFn - LLVM object_sync_enter function.
444   llvm::FunctionCallee getSyncEnterFn() {
445     // int objc_sync_enter (id)
446     llvm::Type *args[] = { ObjectPtrTy };
447     llvm::FunctionType *FTy =
448       llvm::FunctionType::get(CGM.IntTy, args, false);
449     return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter");
450   }
451 
452   /// SyncExitFn - LLVM object_sync_exit function.
453   llvm::FunctionCallee getSyncExitFn() {
454     // int objc_sync_exit (id)
455     llvm::Type *args[] = { ObjectPtrTy };
456     llvm::FunctionType *FTy =
457       llvm::FunctionType::get(CGM.IntTy, args, false);
458     return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit");
459   }
460 
461   llvm::FunctionCallee getSendFn(bool IsSuper) const {
462     return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
463   }
464 
465   llvm::FunctionCallee getSendFn2(bool IsSuper) const {
466     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
467   }
468 
469   llvm::FunctionCallee getSendStretFn(bool IsSuper) const {
470     return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
471   }
472 
473   llvm::FunctionCallee getSendStretFn2(bool IsSuper) const {
474     return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
475   }
476 
477   llvm::FunctionCallee getSendFpretFn(bool IsSuper) const {
478     return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
479   }
480 
481   llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const {
482     return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
483   }
484 
485   llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const {
486     return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn();
487   }
488 
489   llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const {
490     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn();
491   }
492 
493   ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
494 };
495 
496 /// ObjCTypesHelper - Helper class that encapsulates lazy
497 /// construction of varies types used during ObjC generation.
498 class ObjCTypesHelper : public ObjCCommonTypesHelper {
499 public:
500   /// SymtabTy - LLVM type for struct objc_symtab.
501   llvm::StructType *SymtabTy;
502   /// SymtabPtrTy - LLVM type for struct objc_symtab *.
503   llvm::PointerType *SymtabPtrTy;
504   /// ModuleTy - LLVM type for struct objc_module.
505   llvm::StructType *ModuleTy;
506 
507   /// ProtocolTy - LLVM type for struct objc_protocol.
508   llvm::StructType *ProtocolTy;
509   /// ProtocolPtrTy - LLVM type for struct objc_protocol *.
510   llvm::PointerType *ProtocolPtrTy;
511   /// ProtocolExtensionTy - LLVM type for struct
512   /// objc_protocol_extension.
513   llvm::StructType *ProtocolExtensionTy;
514   /// ProtocolExtensionTy - LLVM type for struct
515   /// objc_protocol_extension *.
516   llvm::PointerType *ProtocolExtensionPtrTy;
517   /// MethodDescriptionTy - LLVM type for struct
518   /// objc_method_description.
519   llvm::StructType *MethodDescriptionTy;
520   /// MethodDescriptionListTy - LLVM type for struct
521   /// objc_method_description_list.
522   llvm::StructType *MethodDescriptionListTy;
523   /// MethodDescriptionListPtrTy - LLVM type for struct
524   /// objc_method_description_list *.
525   llvm::PointerType *MethodDescriptionListPtrTy;
526   /// ProtocolListTy - LLVM type for struct objc_property_list.
527   llvm::StructType *ProtocolListTy;
528   /// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
529   llvm::PointerType *ProtocolListPtrTy;
530   /// CategoryTy - LLVM type for struct objc_category.
531   llvm::StructType *CategoryTy;
532   /// ClassTy - LLVM type for struct objc_class.
533   llvm::StructType *ClassTy;
534   /// ClassPtrTy - LLVM type for struct objc_class *.
535   llvm::PointerType *ClassPtrTy;
536   /// ClassExtensionTy - LLVM type for struct objc_class_ext.
537   llvm::StructType *ClassExtensionTy;
538   /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
539   llvm::PointerType *ClassExtensionPtrTy;
540   // IvarTy - LLVM type for struct objc_ivar.
541   llvm::StructType *IvarTy;
542   /// IvarListTy - LLVM type for struct objc_ivar_list.
543   llvm::StructType *IvarListTy;
544   /// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
545   llvm::PointerType *IvarListPtrTy;
546   /// MethodListTy - LLVM type for struct objc_method_list.
547   llvm::StructType *MethodListTy;
548   /// MethodListPtrTy - LLVM type for struct objc_method_list *.
549   llvm::PointerType *MethodListPtrTy;
550 
551   /// ExceptionDataTy - LLVM type for struct _objc_exception_data.
552   llvm::StructType *ExceptionDataTy;
553 
554   /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
555   llvm::FunctionCallee getExceptionTryEnterFn() {
556     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
557     return CGM.CreateRuntimeFunction(
558       llvm::FunctionType::get(CGM.VoidTy, params, false),
559       "objc_exception_try_enter");
560   }
561 
562   /// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
563   llvm::FunctionCallee getExceptionTryExitFn() {
564     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
565     return CGM.CreateRuntimeFunction(
566       llvm::FunctionType::get(CGM.VoidTy, params, false),
567       "objc_exception_try_exit");
568   }
569 
570   /// ExceptionExtractFn - LLVM objc_exception_extract function.
571   llvm::FunctionCallee getExceptionExtractFn() {
572     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
573     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
574                                                              params, false),
575                                      "objc_exception_extract");
576   }
577 
578   /// ExceptionMatchFn - LLVM objc_exception_match function.
579   llvm::FunctionCallee getExceptionMatchFn() {
580     llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy };
581     return CGM.CreateRuntimeFunction(
582       llvm::FunctionType::get(CGM.Int32Ty, params, false),
583       "objc_exception_match");
584   }
585 
586   /// SetJmpFn - LLVM _setjmp function.
587   llvm::FunctionCallee getSetJmpFn() {
588     // This is specifically the prototype for x86.
589     llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() };
590     return CGM.CreateRuntimeFunction(
591         llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp",
592         llvm::AttributeList::get(CGM.getLLVMContext(),
593                                  llvm::AttributeList::FunctionIndex,
594                                  llvm::Attribute::NonLazyBind));
595   }
596 
597 public:
598   ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
599 };
600 
601 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
602 /// modern abi
603 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
604 public:
605   // MethodListnfABITy - LLVM for struct _method_list_t
606   llvm::StructType *MethodListnfABITy;
607 
608   // MethodListnfABIPtrTy - LLVM for struct _method_list_t*
609   llvm::PointerType *MethodListnfABIPtrTy;
610 
611   // ProtocolnfABITy = LLVM for struct _protocol_t
612   llvm::StructType *ProtocolnfABITy;
613 
614   // ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
615   llvm::PointerType *ProtocolnfABIPtrTy;
616 
617   // ProtocolListnfABITy - LLVM for struct _objc_protocol_list
618   llvm::StructType *ProtocolListnfABITy;
619 
620   // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
621   llvm::PointerType *ProtocolListnfABIPtrTy;
622 
623   // ClassnfABITy - LLVM for struct _class_t
624   llvm::StructType *ClassnfABITy;
625 
626   // ClassnfABIPtrTy - LLVM for struct _class_t*
627   llvm::PointerType *ClassnfABIPtrTy;
628 
629   // IvarnfABITy - LLVM for struct _ivar_t
630   llvm::StructType *IvarnfABITy;
631 
632   // IvarListnfABITy - LLVM for struct _ivar_list_t
633   llvm::StructType *IvarListnfABITy;
634 
635   // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
636   llvm::PointerType *IvarListnfABIPtrTy;
637 
638   // ClassRonfABITy - LLVM for struct _class_ro_t
639   llvm::StructType *ClassRonfABITy;
640 
641   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
642   llvm::PointerType *ImpnfABITy;
643 
644   // CategorynfABITy - LLVM for struct _category_t
645   llvm::StructType *CategorynfABITy;
646 
647   // New types for nonfragile abi messaging.
648 
649   // MessageRefTy - LLVM for:
650   // struct _message_ref_t {
651   //   IMP messenger;
652   //   SEL name;
653   // };
654   llvm::StructType *MessageRefTy;
655   // MessageRefCTy - clang type for struct _message_ref_t
656   QualType MessageRefCTy;
657 
658   // MessageRefPtrTy - LLVM for struct _message_ref_t*
659   llvm::Type *MessageRefPtrTy;
660   // MessageRefCPtrTy - clang type for struct _message_ref_t*
661   QualType MessageRefCPtrTy;
662 
663   // SuperMessageRefTy - LLVM for:
664   // struct _super_message_ref_t {
665   //   SUPER_IMP messenger;
666   //   SEL name;
667   // };
668   llvm::StructType *SuperMessageRefTy;
669 
670   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
671   llvm::PointerType *SuperMessageRefPtrTy;
672 
673   llvm::FunctionCallee getMessageSendFixupFn() {
674     // id objc_msgSend_fixup(id, struct message_ref_t*, ...)
675     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
676     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
677                                                              params, true),
678                                      "objc_msgSend_fixup");
679   }
680 
681   llvm::FunctionCallee getMessageSendFpretFixupFn() {
682     // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
683     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
684     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
685                                                              params, true),
686                                      "objc_msgSend_fpret_fixup");
687   }
688 
689   llvm::FunctionCallee getMessageSendStretFixupFn() {
690     // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
691     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
692     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
693                                                              params, true),
694                                      "objc_msgSend_stret_fixup");
695   }
696 
697   llvm::FunctionCallee getMessageSendSuper2FixupFn() {
698     // id objc_msgSendSuper2_fixup (struct objc_super *,
699     //                              struct _super_message_ref_t*, ...)
700     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
701     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
702                                                               params, true),
703                                       "objc_msgSendSuper2_fixup");
704   }
705 
706   llvm::FunctionCallee getMessageSendSuper2StretFixupFn() {
707     // id objc_msgSendSuper2_stret_fixup(struct objc_super *,
708     //                                   struct _super_message_ref_t*, ...)
709     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
710     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
711                                                               params, true),
712                                       "objc_msgSendSuper2_stret_fixup");
713   }
714 
715   llvm::FunctionCallee getObjCEndCatchFn() {
716     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false),
717                                      "objc_end_catch");
718   }
719 
720   llvm::FunctionCallee getObjCBeginCatchFn() {
721     llvm::Type *params[] = { Int8PtrTy };
722     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy,
723                                                              params, false),
724                                      "objc_begin_catch");
725   }
726 
727   /// Class objc_loadClassref (void *)
728   ///
729   /// Loads from a classref. For Objective-C stub classes, this invokes the
730   /// initialization callback stored inside the stub. For all other classes
731   /// this simply dereferences the pointer.
732   llvm::FunctionCallee getLoadClassrefFn() const {
733     // Add the non-lazy-bind attribute, since objc_loadClassref is likely to
734     // be called a lot.
735     //
736     // Also it is safe to make it readnone, since we never load or store the
737     // classref except by calling this function.
738     llvm::Type *params[] = { Int8PtrPtrTy };
739     llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
740         llvm::FunctionType::get(ClassnfABIPtrTy, params, false),
741         "objc_loadClassref",
742         llvm::AttributeList::get(CGM.getLLVMContext(),
743                                  llvm::AttributeList::FunctionIndex,
744                                  {llvm::Attribute::NonLazyBind,
745                                   llvm::Attribute::ReadNone,
746                                   llvm::Attribute::NoUnwind}));
747     if (!CGM.getTriple().isOSBinFormatCOFF())
748       cast<llvm::Function>(F.getCallee())->setLinkage(
749         llvm::Function::ExternalWeakLinkage);
750 
751     return F;
752   }
753 
754   llvm::StructType *EHTypeTy;
755   llvm::Type *EHTypePtrTy;
756 
757   ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
758 };
759 
760 enum class ObjCLabelType {
761   ClassName,
762   MethodVarName,
763   MethodVarType,
764   PropertyName,
765 };
766 
767 class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
768 public:
769   class SKIP_SCAN {
770   public:
771     unsigned skip;
772     unsigned scan;
773     SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
774       : skip(_skip), scan(_scan) {}
775   };
776 
777   /// opcode for captured block variables layout 'instructions'.
778   /// In the following descriptions, 'I' is the value of the immediate field.
779   /// (field following the opcode).
780   ///
781   enum BLOCK_LAYOUT_OPCODE {
782     /// An operator which affects how the following layout should be
783     /// interpreted.
784     ///   I == 0: Halt interpretation and treat everything else as
785     ///           a non-pointer.  Note that this instruction is equal
786     ///           to '\0'.
787     ///   I != 0: Currently unused.
788     BLOCK_LAYOUT_OPERATOR            = 0,
789 
790     /// The next I+1 bytes do not contain a value of object pointer type.
791     /// Note that this can leave the stream unaligned, meaning that
792     /// subsequent word-size instructions do not begin at a multiple of
793     /// the pointer size.
794     BLOCK_LAYOUT_NON_OBJECT_BYTES    = 1,
795 
796     /// The next I+1 words do not contain a value of object pointer type.
797     /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for
798     /// when the required skip quantity is a multiple of the pointer size.
799     BLOCK_LAYOUT_NON_OBJECT_WORDS    = 2,
800 
801     /// The next I+1 words are __strong pointers to Objective-C
802     /// objects or blocks.
803     BLOCK_LAYOUT_STRONG              = 3,
804 
805     /// The next I+1 words are pointers to __block variables.
806     BLOCK_LAYOUT_BYREF               = 4,
807 
808     /// The next I+1 words are __weak pointers to Objective-C
809     /// objects or blocks.
810     BLOCK_LAYOUT_WEAK                = 5,
811 
812     /// The next I+1 words are __unsafe_unretained pointers to
813     /// Objective-C objects or blocks.
814     BLOCK_LAYOUT_UNRETAINED          = 6
815 
816     /// The next I+1 words are block or object pointers with some
817     /// as-yet-unspecified ownership semantics.  If we add more
818     /// flavors of ownership semantics, values will be taken from
819     /// this range.
820     ///
821     /// This is included so that older tools can at least continue
822     /// processing the layout past such things.
823     //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10,
824 
825     /// All other opcodes are reserved.  Halt interpretation and
826     /// treat everything else as opaque.
827   };
828 
829   class RUN_SKIP {
830   public:
831     enum BLOCK_LAYOUT_OPCODE opcode;
832     CharUnits block_var_bytepos;
833     CharUnits block_var_size;
834     RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR,
835              CharUnits BytePos = CharUnits::Zero(),
836              CharUnits Size = CharUnits::Zero())
837     : opcode(Opcode), block_var_bytepos(BytePos),  block_var_size(Size) {}
838 
839     // Allow sorting based on byte pos.
840     bool operator<(const RUN_SKIP &b) const {
841       return block_var_bytepos < b.block_var_bytepos;
842     }
843   };
844 
845 protected:
846   llvm::LLVMContext &VMContext;
847   // FIXME! May not be needing this after all.
848   unsigned ObjCABI;
849 
850   // arc/mrr layout of captured block literal variables.
851   SmallVector<RUN_SKIP, 16> RunSkipBlockVars;
852 
853   /// LazySymbols - Symbols to generate a lazy reference for. See
854   /// DefinedSymbols and FinishModule().
855   llvm::SetVector<IdentifierInfo*> LazySymbols;
856 
857   /// DefinedSymbols - External symbols which are defined by this
858   /// module. The symbols in this list and LazySymbols are used to add
859   /// special linker symbols which ensure that Objective-C modules are
860   /// linked properly.
861   llvm::SetVector<IdentifierInfo*> DefinedSymbols;
862 
863   /// ClassNames - uniqued class names.
864   llvm::StringMap<llvm::GlobalVariable*> ClassNames;
865 
866   /// MethodVarNames - uniqued method variable names.
867   llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
868 
869   /// DefinedCategoryNames - list of category names in form Class_Category.
870   llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames;
871 
872   /// MethodVarTypes - uniqued method type signatures. We have to use
873   /// a StringMap here because have no other unique reference.
874   llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
875 
876   /// MethodDefinitions - map of methods which have been defined in
877   /// this translation unit.
878   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
879 
880   /// DirectMethodDefinitions - map of direct methods which have been defined in
881   /// this translation unit.
882   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions;
883 
884   /// PropertyNames - uniqued method variable names.
885   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
886 
887   /// ClassReferences - uniqued class references.
888   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
889 
890   /// SelectorReferences - uniqued selector references.
891   llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
892 
893   /// Protocols - Protocols for which an objc_protocol structure has
894   /// been emitted. Forward declarations are handled by creating an
895   /// empty structure whose initializer is filled in when/if defined.
896   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
897 
898   /// DefinedProtocols - Protocols which have actually been
899   /// defined. We should not need this, see FIXME in GenerateProtocol.
900   llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
901 
902   /// DefinedClasses - List of defined classes.
903   SmallVector<llvm::GlobalValue*, 16> DefinedClasses;
904 
905   /// ImplementedClasses - List of @implemented classes.
906   SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses;
907 
908   /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
909   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses;
910 
911   /// DefinedCategories - List of defined categories.
912   SmallVector<llvm::GlobalValue*, 16> DefinedCategories;
913 
914   /// DefinedStubCategories - List of defined categories on class stubs.
915   SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories;
916 
917   /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
918   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories;
919 
920   /// Cached reference to the class for constant strings. This value has type
921   /// int * but is actually an Obj-C class pointer.
922   llvm::WeakTrackingVH ConstantStringClassRef;
923 
924   /// The LLVM type corresponding to NSConstantString.
925   llvm::StructType *NSConstantStringType = nullptr;
926 
927   llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap;
928 
929   /// GetMethodVarName - Return a unique constant for the given
930   /// selector's name. The return value has type char *.
931   llvm::Constant *GetMethodVarName(Selector Sel);
932   llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
933 
934   /// GetMethodVarType - Return a unique constant for the given
935   /// method's type encoding string. The return value has type char *.
936 
937   // FIXME: This is a horrible name.
938   llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D,
939                                    bool Extended = false);
940   llvm::Constant *GetMethodVarType(const FieldDecl *D);
941 
942   /// GetPropertyName - Return a unique constant for the given
943   /// name. The return value has type char *.
944   llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
945 
946   // FIXME: This can be dropped once string functions are unified.
947   llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
948                                         const Decl *Container);
949 
950   /// GetClassName - Return a unique constant for the given selector's
951   /// runtime name (which may change via use of objc_runtime_name attribute on
952   /// class or protocol definition. The return value has type char *.
953   llvm::Constant *GetClassName(StringRef RuntimeName);
954 
955   llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD);
956 
957   /// BuildIvarLayout - Builds ivar layout bitmap for the class
958   /// implementation for the __strong or __weak case.
959   ///
960   /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there
961   ///   are any weak ivars defined directly in the class.  Meaningless unless
962   ///   building a weak layout.  Does not guarantee that the layout will
963   ///   actually have any entries, because the ivar might be under-aligned.
964   llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
965                                   CharUnits beginOffset,
966                                   CharUnits endOffset,
967                                   bool forStrongLayout,
968                                   bool hasMRCWeakIvars);
969 
970   llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI,
971                                         CharUnits beginOffset,
972                                         CharUnits endOffset) {
973     return BuildIvarLayout(OI, beginOffset, endOffset, true, false);
974   }
975 
976   llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI,
977                                       CharUnits beginOffset,
978                                       CharUnits endOffset,
979                                       bool hasMRCWeakIvars) {
980     return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars);
981   }
982 
983   Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout);
984 
985   void UpdateRunSkipBlockVars(bool IsByref,
986                               Qualifiers::ObjCLifetime LifeTime,
987                               CharUnits FieldOffset,
988                               CharUnits FieldSize);
989 
990   void BuildRCBlockVarRecordLayout(const RecordType *RT,
991                                    CharUnits BytePos, bool &HasUnion,
992                                    bool ByrefLayout=false);
993 
994   void BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
995                            const RecordDecl *RD,
996                            ArrayRef<const FieldDecl*> RecFields,
997                            CharUnits BytePos, bool &HasUnion,
998                            bool ByrefLayout);
999 
1000   uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout);
1001 
1002   llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout);
1003 
1004   /// GetIvarLayoutName - Returns a unique constant for the given
1005   /// ivar layout bitmap.
1006   llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
1007                                     const ObjCCommonTypesHelper &ObjCTypes);
1008 
1009   /// EmitPropertyList - Emit the given property list. The return
1010   /// value has type PropertyListPtrTy.
1011   llvm::Constant *EmitPropertyList(Twine Name,
1012                                    const Decl *Container,
1013                                    const ObjCContainerDecl *OCD,
1014                                    const ObjCCommonTypesHelper &ObjCTypes,
1015                                    bool IsClassProperty);
1016 
1017   /// EmitProtocolMethodTypes - Generate the array of extended method type
1018   /// strings. The return value has type Int8PtrPtrTy.
1019   llvm::Constant *EmitProtocolMethodTypes(Twine Name,
1020                                           ArrayRef<llvm::Constant*> MethodTypes,
1021                                        const ObjCCommonTypesHelper &ObjCTypes);
1022 
1023   /// GetProtocolRef - Return a reference to the internal protocol
1024   /// description, creating an empty one if it has not been
1025   /// defined. The return value has type ProtocolPtrTy.
1026   llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
1027 
1028   /// Return a reference to the given Class using runtime calls rather than
1029   /// by a symbol reference.
1030   llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF,
1031                                       const ObjCInterfaceDecl *ID,
1032                                       ObjCCommonTypesHelper &ObjCTypes);
1033 
1034   std::string GetSectionName(StringRef Section, StringRef MachOAttributes);
1035 
1036 public:
1037   /// CreateMetadataVar - Create a global variable with internal
1038   /// linkage for use by the Objective-C runtime.
1039   ///
1040   /// This is a convenience wrapper which not only creates the
1041   /// variable, but also sets the section and alignment and adds the
1042   /// global to the "llvm.used" list.
1043   ///
1044   /// \param Name - The variable name.
1045   /// \param Init - The variable initializer; this is also used to
1046   ///   define the type of the variable.
1047   /// \param Section - The section the variable should go into, or empty.
1048   /// \param Align - The alignment for the variable, or 0.
1049   /// \param AddToUsed - Whether the variable should be added to
1050   ///   "llvm.used".
1051   llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1052                                           ConstantStructBuilder &Init,
1053                                           StringRef Section, CharUnits Align,
1054                                           bool AddToUsed);
1055   llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1056                                           llvm::Constant *Init,
1057                                           StringRef Section, CharUnits Align,
1058                                           bool AddToUsed);
1059 
1060   llvm::GlobalVariable *CreateCStringLiteral(StringRef Name,
1061                                              ObjCLabelType LabelType,
1062                                              bool ForceNonFragileABI = false,
1063                                              bool NullTerminate = true);
1064 
1065 protected:
1066   CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1067                                   ReturnValueSlot Return,
1068                                   QualType ResultType,
1069                                   Selector Sel,
1070                                   llvm::Value *Arg0,
1071                                   QualType Arg0Ty,
1072                                   bool IsSuper,
1073                                   const CallArgList &CallArgs,
1074                                   const ObjCMethodDecl *OMD,
1075                                   const ObjCInterfaceDecl *ClassReceiver,
1076                                   const ObjCCommonTypesHelper &ObjCTypes);
1077 
1078   /// EmitImageInfo - Emit the image info marker used to encode some module
1079   /// level information.
1080   void EmitImageInfo();
1081 
1082 public:
1083   CGObjCCommonMac(CodeGen::CodeGenModule &cgm)
1084       : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {}
1085 
1086   bool isNonFragileABI() const {
1087     return ObjCABI == 2;
1088   }
1089 
1090   ConstantAddress GenerateConstantString(const StringLiteral *SL) override;
1091   ConstantAddress GenerateConstantNSString(const StringLiteral *SL);
1092 
1093   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
1094                                  const ObjCContainerDecl *CD=nullptr) override;
1095 
1096   llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD,
1097                                        const ObjCContainerDecl *CD);
1098 
1099   void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
1100                                     const ObjCMethodDecl *OMD,
1101                                     const ObjCContainerDecl *CD) override;
1102 
1103   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
1104 
1105   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1106   /// object for the given declaration, emitting it if needed. These
1107   /// forward references will be filled in with empty bodies if no
1108   /// definition is seen. The return value has type ProtocolPtrTy.
1109   virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
1110 
1111   virtual llvm::Constant *getNSConstantStringClassRef() = 0;
1112 
1113   llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
1114                                      const CGBlockInfo &blockInfo) override;
1115   llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
1116                                      const CGBlockInfo &blockInfo) override;
1117   std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM,
1118                                   const CGBlockInfo &blockInfo) override;
1119 
1120   llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
1121                                    QualType T) override;
1122 
1123 private:
1124   void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo);
1125 };
1126 
1127 namespace {
1128 
1129 enum class MethodListType {
1130   CategoryInstanceMethods,
1131   CategoryClassMethods,
1132   InstanceMethods,
1133   ClassMethods,
1134   ProtocolInstanceMethods,
1135   ProtocolClassMethods,
1136   OptionalProtocolInstanceMethods,
1137   OptionalProtocolClassMethods,
1138 };
1139 
1140 /// A convenience class for splitting the methods of a protocol into
1141 /// the four interesting groups.
1142 class ProtocolMethodLists {
1143 public:
1144   enum Kind {
1145     RequiredInstanceMethods,
1146     RequiredClassMethods,
1147     OptionalInstanceMethods,
1148     OptionalClassMethods
1149   };
1150   enum {
1151     NumProtocolMethodLists = 4
1152   };
1153 
1154   static MethodListType getMethodListKind(Kind kind) {
1155     switch (kind) {
1156     case RequiredInstanceMethods:
1157       return MethodListType::ProtocolInstanceMethods;
1158     case RequiredClassMethods:
1159       return MethodListType::ProtocolClassMethods;
1160     case OptionalInstanceMethods:
1161       return MethodListType::OptionalProtocolInstanceMethods;
1162     case OptionalClassMethods:
1163       return MethodListType::OptionalProtocolClassMethods;
1164     }
1165     llvm_unreachable("bad kind");
1166   }
1167 
1168   SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists];
1169 
1170   static ProtocolMethodLists get(const ObjCProtocolDecl *PD) {
1171     ProtocolMethodLists result;
1172 
1173     for (auto MD : PD->methods()) {
1174       size_t index = (2 * size_t(MD->isOptional()))
1175                    + (size_t(MD->isClassMethod()));
1176       result.Methods[index].push_back(MD);
1177     }
1178 
1179     return result;
1180   }
1181 
1182   template <class Self>
1183   SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const {
1184     // In both ABIs, the method types list is parallel with the
1185     // concatenation of the methods arrays in the following order:
1186     //   instance methods
1187     //   class methods
1188     //   optional instance methods
1189     //   optional class methods
1190     SmallVector<llvm::Constant*, 8> result;
1191 
1192     // Methods is already in the correct order for both ABIs.
1193     for (auto &list : Methods) {
1194       for (auto MD : list) {
1195         result.push_back(self->GetMethodVarType(MD, true));
1196       }
1197     }
1198 
1199     return result;
1200   }
1201 
1202   template <class Self>
1203   llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD,
1204                                  Kind kind) const {
1205     return self->emitMethodList(PD->getObjCRuntimeNameAsString(),
1206                                 getMethodListKind(kind), Methods[kind]);
1207   }
1208 };
1209 
1210 } // end anonymous namespace
1211 
1212 class CGObjCMac : public CGObjCCommonMac {
1213 private:
1214   friend ProtocolMethodLists;
1215 
1216   ObjCTypesHelper ObjCTypes;
1217 
1218   /// EmitModuleInfo - Another marker encoding module level
1219   /// information.
1220   void EmitModuleInfo();
1221 
1222   /// EmitModuleSymols - Emit module symbols, the list of defined
1223   /// classes and categories. The result has type SymtabPtrTy.
1224   llvm::Constant *EmitModuleSymbols();
1225 
1226   /// FinishModule - Write out global data structures at the end of
1227   /// processing a translation unit.
1228   void FinishModule();
1229 
1230   /// EmitClassExtension - Generate the class extension structure used
1231   /// to store the weak ivar layout and properties. The return value
1232   /// has type ClassExtensionPtrTy.
1233   llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID,
1234                                      CharUnits instanceSize,
1235                                      bool hasMRCWeakIvars,
1236                                      bool isMetaclass);
1237 
1238   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1239   /// for the given class.
1240   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1241                             const ObjCInterfaceDecl *ID);
1242 
1243   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1244                                   IdentifierInfo *II);
1245 
1246   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1247 
1248   /// EmitSuperClassRef - Emits reference to class's main metadata class.
1249   llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID);
1250 
1251   /// EmitIvarList - Emit the ivar list for the given
1252   /// implementation. If ForClass is true the list of class ivars
1253   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1254   /// interface ivars will be emitted. The return value has type
1255   /// IvarListPtrTy.
1256   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
1257                                bool ForClass);
1258 
1259   /// EmitMetaClass - Emit a forward reference to the class structure
1260   /// for the metaclass of the given interface. The return value has
1261   /// type ClassPtrTy.
1262   llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
1263 
1264   /// EmitMetaClass - Emit a class structure for the metaclass of the
1265   /// given implementation. The return value has type ClassPtrTy.
1266   llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
1267                                 llvm::Constant *Protocols,
1268                                 ArrayRef<const ObjCMethodDecl *> Methods);
1269 
1270   void emitMethodConstant(ConstantArrayBuilder &builder,
1271                           const ObjCMethodDecl *MD);
1272 
1273   void emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
1274                                      const ObjCMethodDecl *MD);
1275 
1276   /// EmitMethodList - Emit the method list for the given
1277   /// implementation. The return value has type MethodListPtrTy.
1278   llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1279                                  ArrayRef<const ObjCMethodDecl *> Methods);
1280 
1281   /// GetOrEmitProtocol - Get the protocol object for the given
1282   /// declaration, emitting it if necessary. The return value has type
1283   /// ProtocolPtrTy.
1284   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1285 
1286   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1287   /// object for the given declaration, emitting it if needed. These
1288   /// forward references will be filled in with empty bodies if no
1289   /// definition is seen. The return value has type ProtocolPtrTy.
1290   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1291 
1292   /// EmitProtocolExtension - Generate the protocol extension
1293   /// structure used to store optional instance and class methods, and
1294   /// protocol properties. The return value has type
1295   /// ProtocolExtensionPtrTy.
1296   llvm::Constant *
1297   EmitProtocolExtension(const ObjCProtocolDecl *PD,
1298                         const ProtocolMethodLists &methodLists);
1299 
1300   /// EmitProtocolList - Generate the list of referenced
1301   /// protocols. The return value has type ProtocolListPtrTy.
1302   llvm::Constant *EmitProtocolList(Twine Name,
1303                                    ObjCProtocolDecl::protocol_iterator begin,
1304                                    ObjCProtocolDecl::protocol_iterator end);
1305 
1306   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1307   /// for the given selector.
1308   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1309   Address EmitSelectorAddr(Selector Sel);
1310 
1311 public:
1312   CGObjCMac(CodeGen::CodeGenModule &cgm);
1313 
1314   llvm::Constant *getNSConstantStringClassRef() override;
1315 
1316   llvm::Function *ModuleInitFunction() override;
1317 
1318   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1319                                       ReturnValueSlot Return,
1320                                       QualType ResultType,
1321                                       Selector Sel, llvm::Value *Receiver,
1322                                       const CallArgList &CallArgs,
1323                                       const ObjCInterfaceDecl *Class,
1324                                       const ObjCMethodDecl *Method) override;
1325 
1326   CodeGen::RValue
1327   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1328                            ReturnValueSlot Return, QualType ResultType,
1329                            Selector Sel, const ObjCInterfaceDecl *Class,
1330                            bool isCategoryImpl, llvm::Value *Receiver,
1331                            bool IsClassMessage, const CallArgList &CallArgs,
1332                            const ObjCMethodDecl *Method) override;
1333 
1334   llvm::Value *GetClass(CodeGenFunction &CGF,
1335                         const ObjCInterfaceDecl *ID) override;
1336 
1337   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
1338   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
1339 
1340   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1341   /// untyped one.
1342   llvm::Value *GetSelector(CodeGenFunction &CGF,
1343                            const ObjCMethodDecl *Method) override;
1344 
1345   llvm::Constant *GetEHType(QualType T) override;
1346 
1347   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1348 
1349   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1350 
1351   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1352 
1353   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1354                                    const ObjCProtocolDecl *PD) override;
1355 
1356   llvm::FunctionCallee GetPropertyGetFunction() override;
1357   llvm::FunctionCallee GetPropertySetFunction() override;
1358   llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
1359                                                        bool copy) override;
1360   llvm::FunctionCallee GetGetStructFunction() override;
1361   llvm::FunctionCallee GetSetStructFunction() override;
1362   llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
1363   llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
1364   llvm::FunctionCallee EnumerationMutationFunction() override;
1365 
1366   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1367                    const ObjCAtTryStmt &S) override;
1368   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1369                             const ObjCAtSynchronizedStmt &S) override;
1370   void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S);
1371   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1372                      bool ClearInsertionPoint=true) override;
1373   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1374                                  Address AddrWeakObj) override;
1375   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1376                           llvm::Value *src, Address dst) override;
1377   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1378                             llvm::Value *src, Address dest,
1379                             bool threadlocal = false) override;
1380   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1381                           llvm::Value *src, Address dest,
1382                           llvm::Value *ivarOffset) override;
1383   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1384                                 llvm::Value *src, Address dest) override;
1385   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1386                                 Address dest, Address src,
1387                                 llvm::Value *size) override;
1388 
1389   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1390                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1391                               unsigned CVRQualifiers) override;
1392   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1393                               const ObjCInterfaceDecl *Interface,
1394                               const ObjCIvarDecl *Ivar) override;
1395 };
1396 
1397 class CGObjCNonFragileABIMac : public CGObjCCommonMac {
1398 private:
1399   friend ProtocolMethodLists;
1400   ObjCNonFragileABITypesHelper ObjCTypes;
1401   llvm::GlobalVariable* ObjCEmptyCacheVar;
1402   llvm::Constant* ObjCEmptyVtableVar;
1403 
1404   /// SuperClassReferences - uniqued super class references.
1405   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
1406 
1407   /// MetaClassReferences - uniqued meta class references.
1408   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
1409 
1410   /// EHTypeReferences - uniqued class ehtype references.
1411   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
1412 
1413   /// VTableDispatchMethods - List of methods for which we generate
1414   /// vtable-based message dispatch.
1415   llvm::DenseSet<Selector> VTableDispatchMethods;
1416 
1417   /// DefinedMetaClasses - List of defined meta-classes.
1418   std::vector<llvm::GlobalValue*> DefinedMetaClasses;
1419 
1420   /// isVTableDispatchedSelector - Returns true if SEL is a
1421   /// vtable-based selector.
1422   bool isVTableDispatchedSelector(Selector Sel);
1423 
1424   /// FinishNonFragileABIModule - Write out global data structures at the end of
1425   /// processing a translation unit.
1426   void FinishNonFragileABIModule();
1427 
1428   /// AddModuleClassList - Add the given list of class pointers to the
1429   /// module with the provided symbol and section names.
1430   void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container,
1431                           StringRef SymbolName, StringRef SectionName);
1432 
1433   llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
1434                                               unsigned InstanceStart,
1435                                               unsigned InstanceSize,
1436                                               const ObjCImplementationDecl *ID);
1437   llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI,
1438                                          bool isMetaclass,
1439                                          llvm::Constant *IsAGV,
1440                                          llvm::Constant *SuperClassGV,
1441                                          llvm::Constant *ClassRoGV,
1442                                          bool HiddenVisibility);
1443 
1444   void emitMethodConstant(ConstantArrayBuilder &builder,
1445                             const ObjCMethodDecl *MD,
1446                             bool forProtocol);
1447 
1448   /// Emit the method list for the given implementation. The return value
1449   /// has type MethodListnfABITy.
1450   llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1451                                  ArrayRef<const ObjCMethodDecl *> Methods);
1452 
1453   /// EmitIvarList - Emit the ivar list for the given
1454   /// implementation. If ForClass is true the list of class ivars
1455   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1456   /// interface ivars will be emitted. The return value has type
1457   /// IvarListnfABIPtrTy.
1458   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
1459 
1460   llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
1461                                     const ObjCIvarDecl *Ivar,
1462                                     unsigned long int offset);
1463 
1464   /// GetOrEmitProtocol - Get the protocol object for the given
1465   /// declaration, emitting it if necessary. The return value has type
1466   /// ProtocolPtrTy.
1467   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1468 
1469   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1470   /// object for the given declaration, emitting it if needed. These
1471   /// forward references will be filled in with empty bodies if no
1472   /// definition is seen. The return value has type ProtocolPtrTy.
1473   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1474 
1475   /// EmitProtocolList - Generate the list of referenced
1476   /// protocols. The return value has type ProtocolListPtrTy.
1477   llvm::Constant *EmitProtocolList(Twine Name,
1478                                    ObjCProtocolDecl::protocol_iterator begin,
1479                                    ObjCProtocolDecl::protocol_iterator end);
1480 
1481   CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF,
1482                                         ReturnValueSlot Return,
1483                                         QualType ResultType,
1484                                         Selector Sel,
1485                                         llvm::Value *Receiver,
1486                                         QualType Arg0Ty,
1487                                         bool IsSuper,
1488                                         const CallArgList &CallArgs,
1489                                         const ObjCMethodDecl *Method);
1490 
1491   /// GetClassGlobal - Return the global variable for the Objective-C
1492   /// class of the given name.
1493   llvm::Constant *GetClassGlobal(StringRef Name,
1494                                  ForDefinition_t IsForDefinition,
1495                                  bool Weak = false, bool DLLImport = false);
1496   llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID,
1497                                  bool isMetaclass,
1498                                  ForDefinition_t isForDefinition);
1499 
1500   llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID);
1501 
1502   llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF,
1503                                   const ObjCInterfaceDecl *ID,
1504                                   llvm::GlobalVariable *Entry);
1505 
1506   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1507   /// for the given class reference.
1508   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1509                             const ObjCInterfaceDecl *ID);
1510 
1511   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1512                                   IdentifierInfo *II,
1513                                   const ObjCInterfaceDecl *ID);
1514 
1515   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1516 
1517   /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1518   /// for the given super class reference.
1519   llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF,
1520                                  const ObjCInterfaceDecl *ID);
1521 
1522   /// EmitMetaClassRef - Return a Value * of the address of _class_t
1523   /// meta-data
1524   llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF,
1525                                 const ObjCInterfaceDecl *ID, bool Weak);
1526 
1527   /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
1528   /// the given ivar.
1529   ///
1530   llvm::GlobalVariable * ObjCIvarOffsetVariable(
1531     const ObjCInterfaceDecl *ID,
1532     const ObjCIvarDecl *Ivar);
1533 
1534   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1535   /// for the given selector.
1536   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1537   Address EmitSelectorAddr(Selector Sel);
1538 
1539   /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
1540   /// interface. The return value has type EHTypePtrTy.
1541   llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
1542                                      ForDefinition_t IsForDefinition);
1543 
1544   StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; }
1545 
1546   StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; }
1547 
1548   void GetClassSizeInfo(const ObjCImplementationDecl *OID,
1549                         uint32_t &InstanceStart,
1550                         uint32_t &InstanceSize);
1551 
1552   // Shamelessly stolen from Analysis/CFRefCount.cpp
1553   Selector GetNullarySelector(const char* name) const {
1554     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1555     return CGM.getContext().Selectors.getSelector(0, &II);
1556   }
1557 
1558   Selector GetUnarySelector(const char* name) const {
1559     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1560     return CGM.getContext().Selectors.getSelector(1, &II);
1561   }
1562 
1563   /// ImplementationIsNonLazy - Check whether the given category or
1564   /// class implementation is "non-lazy".
1565   bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
1566 
1567   bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF,
1568                                    const ObjCIvarDecl *IV) {
1569     // Annotate the load as an invariant load iff inside an instance method
1570     // and ivar belongs to instance method's class and one of its super class.
1571     // This check is needed because the ivar offset is a lazily
1572     // initialised value that may depend on objc_msgSend to perform a fixup on
1573     // the first message dispatch.
1574     //
1575     // An additional opportunity to mark the load as invariant arises when the
1576     // base of the ivar access is a parameter to an Objective C method.
1577     // However, because the parameters are not available in the current
1578     // interface, we cannot perform this check.
1579     //
1580     // Note that for direct methods, because objc_msgSend is skipped,
1581     // and that the method may be inlined, this optimization actually
1582     // can't be performed.
1583     if (const ObjCMethodDecl *MD =
1584           dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
1585       if (MD->isInstanceMethod() && !MD->isDirectMethod())
1586         if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
1587           return IV->getContainingInterface()->isSuperClassOf(ID);
1588     return false;
1589   }
1590 
1591   bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) {
1592     // NSObject is a fixed size. If we can see the @implementation of a class
1593     // which inherits from NSObject then we know that all it's offsets also must
1594     // be fixed. FIXME: Can we do this if see a chain of super classes with
1595     // implementations leading to NSObject?
1596     return ID->getImplementation() && ID->getSuperClass() &&
1597            ID->getSuperClass()->getName() == "NSObject";
1598   }
1599 
1600 public:
1601   CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
1602 
1603   llvm::Constant *getNSConstantStringClassRef() override;
1604 
1605   llvm::Function *ModuleInitFunction() override;
1606 
1607   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1608                                       ReturnValueSlot Return,
1609                                       QualType ResultType, Selector Sel,
1610                                       llvm::Value *Receiver,
1611                                       const CallArgList &CallArgs,
1612                                       const ObjCInterfaceDecl *Class,
1613                                       const ObjCMethodDecl *Method) override;
1614 
1615   CodeGen::RValue
1616   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1617                            ReturnValueSlot Return, QualType ResultType,
1618                            Selector Sel, const ObjCInterfaceDecl *Class,
1619                            bool isCategoryImpl, llvm::Value *Receiver,
1620                            bool IsClassMessage, const CallArgList &CallArgs,
1621                            const ObjCMethodDecl *Method) override;
1622 
1623   llvm::Value *GetClass(CodeGenFunction &CGF,
1624                         const ObjCInterfaceDecl *ID) override;
1625 
1626   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override
1627     { return EmitSelector(CGF, Sel); }
1628   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override
1629     { return EmitSelectorAddr(Sel); }
1630 
1631   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1632   /// untyped one.
1633   llvm::Value *GetSelector(CodeGenFunction &CGF,
1634                            const ObjCMethodDecl *Method) override
1635     { return EmitSelector(CGF, Method->getSelector()); }
1636 
1637   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1638 
1639   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1640 
1641   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1642 
1643   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1644                                    const ObjCProtocolDecl *PD) override;
1645 
1646   llvm::Constant *GetEHType(QualType T) override;
1647 
1648   llvm::FunctionCallee GetPropertyGetFunction() override {
1649     return ObjCTypes.getGetPropertyFn();
1650   }
1651   llvm::FunctionCallee GetPropertySetFunction() override {
1652     return ObjCTypes.getSetPropertyFn();
1653   }
1654 
1655   llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
1656                                                        bool copy) override {
1657     return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
1658   }
1659 
1660   llvm::FunctionCallee GetSetStructFunction() override {
1661     return ObjCTypes.getCopyStructFn();
1662   }
1663 
1664   llvm::FunctionCallee GetGetStructFunction() override {
1665     return ObjCTypes.getCopyStructFn();
1666   }
1667 
1668   llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
1669     return ObjCTypes.getCppAtomicObjectFunction();
1670   }
1671 
1672   llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
1673     return ObjCTypes.getCppAtomicObjectFunction();
1674   }
1675 
1676   llvm::FunctionCallee EnumerationMutationFunction() override {
1677     return ObjCTypes.getEnumerationMutationFn();
1678   }
1679 
1680   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1681                    const ObjCAtTryStmt &S) override;
1682   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1683                             const ObjCAtSynchronizedStmt &S) override;
1684   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1685                      bool ClearInsertionPoint=true) override;
1686   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1687                                  Address AddrWeakObj) override;
1688   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1689                           llvm::Value *src, Address edst) override;
1690   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1691                             llvm::Value *src, Address dest,
1692                             bool threadlocal = false) override;
1693   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1694                           llvm::Value *src, Address dest,
1695                           llvm::Value *ivarOffset) override;
1696   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1697                                 llvm::Value *src, Address dest) override;
1698   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1699                                 Address dest, Address src,
1700                                 llvm::Value *size) override;
1701   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1702                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1703                               unsigned CVRQualifiers) override;
1704   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1705                               const ObjCInterfaceDecl *Interface,
1706                               const ObjCIvarDecl *Ivar) override;
1707 };
1708 
1709 /// A helper class for performing the null-initialization of a return
1710 /// value.
1711 struct NullReturnState {
1712   llvm::BasicBlock *NullBB;
1713   NullReturnState() : NullBB(nullptr) {}
1714 
1715   /// Perform a null-check of the given receiver.
1716   void init(CodeGenFunction &CGF, llvm::Value *receiver) {
1717     // Make blocks for the null-receiver and call edges.
1718     NullBB = CGF.createBasicBlock("msgSend.null-receiver");
1719     llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call");
1720 
1721     // Check for a null receiver and, if there is one, jump to the
1722     // null-receiver block.  There's no point in trying to avoid it:
1723     // we're always going to put *something* there, because otherwise
1724     // we shouldn't have done this null-check in the first place.
1725     llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver);
1726     CGF.Builder.CreateCondBr(isNull, NullBB, callBB);
1727 
1728     // Otherwise, start performing the call.
1729     CGF.EmitBlock(callBB);
1730   }
1731 
1732   /// Complete the null-return operation.  It is valid to call this
1733   /// regardless of whether 'init' has been called.
1734   RValue complete(CodeGenFunction &CGF,
1735                   ReturnValueSlot returnSlot,
1736                   RValue result,
1737                   QualType resultType,
1738                   const CallArgList &CallArgs,
1739                   const ObjCMethodDecl *Method) {
1740     // If we never had to do a null-check, just use the raw result.
1741     if (!NullBB) return result;
1742 
1743     // The continuation block.  This will be left null if we don't have an
1744     // IP, which can happen if the method we're calling is marked noreturn.
1745     llvm::BasicBlock *contBB = nullptr;
1746 
1747     // Finish the call path.
1748     llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock();
1749     if (callBB) {
1750       contBB = CGF.createBasicBlock("msgSend.cont");
1751       CGF.Builder.CreateBr(contBB);
1752     }
1753 
1754     // Okay, start emitting the null-receiver block.
1755     CGF.EmitBlock(NullBB);
1756 
1757     // Destroy any consumed arguments we've got.
1758     if (Method) {
1759       CGObjCRuntime::destroyCalleeDestroyedArguments(CGF, Method, CallArgs);
1760     }
1761 
1762     // The phi code below assumes that we haven't needed any control flow yet.
1763     assert(CGF.Builder.GetInsertBlock() == NullBB);
1764 
1765     // If we've got a void return, just jump to the continuation block.
1766     if (result.isScalar() && resultType->isVoidType()) {
1767       // No jumps required if the message-send was noreturn.
1768       if (contBB) CGF.EmitBlock(contBB);
1769       return result;
1770     }
1771 
1772     // If we've got a scalar return, build a phi.
1773     if (result.isScalar()) {
1774       // Derive the null-initialization value.
1775       llvm::Value *null =
1776           CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(resultType), resultType);
1777 
1778       // If no join is necessary, just flow out.
1779       if (!contBB) return RValue::get(null);
1780 
1781       // Otherwise, build a phi.
1782       CGF.EmitBlock(contBB);
1783       llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2);
1784       phi->addIncoming(result.getScalarVal(), callBB);
1785       phi->addIncoming(null, NullBB);
1786       return RValue::get(phi);
1787     }
1788 
1789     // If we've got an aggregate return, null the buffer out.
1790     // FIXME: maybe we should be doing things differently for all the
1791     // cases where the ABI has us returning (1) non-agg values in
1792     // memory or (2) agg values in registers.
1793     if (result.isAggregate()) {
1794       assert(result.isAggregate() && "null init of non-aggregate result?");
1795       if (!returnSlot.isUnused())
1796         CGF.EmitNullInitialization(result.getAggregateAddress(), resultType);
1797       if (contBB) CGF.EmitBlock(contBB);
1798       return result;
1799     }
1800 
1801     // Complex types.
1802     CGF.EmitBlock(contBB);
1803     CodeGenFunction::ComplexPairTy callResult = result.getComplexVal();
1804 
1805     // Find the scalar type and its zero value.
1806     llvm::Type *scalarTy = callResult.first->getType();
1807     llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy);
1808 
1809     // Build phis for both coordinates.
1810     llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2);
1811     real->addIncoming(callResult.first, callBB);
1812     real->addIncoming(scalarZero, NullBB);
1813     llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2);
1814     imag->addIncoming(callResult.second, callBB);
1815     imag->addIncoming(scalarZero, NullBB);
1816     return RValue::getComplex(real, imag);
1817   }
1818 };
1819 
1820 } // end anonymous namespace
1821 
1822 /* *** Helper Functions *** */
1823 
1824 /// getConstantGEP() - Help routine to construct simple GEPs.
1825 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
1826                                       llvm::GlobalVariable *C, unsigned idx0,
1827                                       unsigned idx1) {
1828   llvm::Value *Idxs[] = {
1829     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0),
1830     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1)
1831   };
1832   return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs);
1833 }
1834 
1835 /// hasObjCExceptionAttribute - Return true if this class or any super
1836 /// class has the __objc_exception__ attribute.
1837 static bool hasObjCExceptionAttribute(ASTContext &Context,
1838                                       const ObjCInterfaceDecl *OID) {
1839   if (OID->hasAttr<ObjCExceptionAttr>())
1840     return true;
1841   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
1842     return hasObjCExceptionAttribute(Context, Super);
1843   return false;
1844 }
1845 
1846 static llvm::GlobalValue::LinkageTypes
1847 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) {
1848   if (CGM.getTriple().isOSBinFormatMachO() &&
1849       (Section.empty() || Section.startswith("__DATA")))
1850     return llvm::GlobalValue::InternalLinkage;
1851   return llvm::GlobalValue::PrivateLinkage;
1852 }
1853 
1854 /// A helper function to create an internal or private global variable.
1855 static llvm::GlobalVariable *
1856 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder,
1857                      const llvm::Twine &Name, CodeGenModule &CGM) {
1858   std::string SectionName;
1859   if (CGM.getTriple().isOSBinFormatMachO())
1860     SectionName = "__DATA, __objc_const";
1861   auto *GV = Builder.finishAndCreateGlobal(
1862       Name, CGM.getPointerAlign(), /*constant*/ false,
1863       getLinkageTypeForObjCMetadata(CGM, SectionName));
1864   GV->setSection(SectionName);
1865   return GV;
1866 }
1867 
1868 /* *** CGObjCMac Public Interface *** */
1869 
1870 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
1871                                                     ObjCTypes(cgm) {
1872   ObjCABI = 1;
1873   EmitImageInfo();
1874 }
1875 
1876 /// GetClass - Return a reference to the class for the given interface
1877 /// decl.
1878 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF,
1879                                  const ObjCInterfaceDecl *ID) {
1880   return EmitClassRef(CGF, ID);
1881 }
1882 
1883 /// GetSelector - Return the pointer to the unique'd string for this selector.
1884 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1885   return EmitSelector(CGF, Sel);
1886 }
1887 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1888   return EmitSelectorAddr(Sel);
1889 }
1890 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
1891                                     *Method) {
1892   return EmitSelector(CGF, Method->getSelector());
1893 }
1894 
1895 llvm::Constant *CGObjCMac::GetEHType(QualType T) {
1896   if (T->isObjCIdType() ||
1897       T->isObjCQualifiedIdType()) {
1898     return CGM.GetAddrOfRTTIDescriptor(
1899               CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true);
1900   }
1901   if (T->isObjCClassType() ||
1902       T->isObjCQualifiedClassType()) {
1903     return CGM.GetAddrOfRTTIDescriptor(
1904              CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true);
1905   }
1906   if (T->isObjCObjectPointerType())
1907     return CGM.GetAddrOfRTTIDescriptor(T,  /*ForEH=*/true);
1908 
1909   llvm_unreachable("asking for catch type for ObjC type in fragile runtime");
1910 }
1911 
1912 /// Generate a constant CFString object.
1913 /*
1914   struct __builtin_CFString {
1915   const int *isa; // point to __CFConstantStringClassReference
1916   int flags;
1917   const char *str;
1918   long length;
1919   };
1920 */
1921 
1922 /// or Generate a constant NSString object.
1923 /*
1924    struct __builtin_NSString {
1925      const int *isa; // point to __NSConstantStringClassReference
1926      const char *str;
1927      unsigned int length;
1928    };
1929 */
1930 
1931 ConstantAddress
1932 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) {
1933   return (!CGM.getLangOpts().NoConstantCFStrings
1934             ? CGM.GetAddrOfConstantCFString(SL)
1935             : GenerateConstantNSString(SL));
1936 }
1937 
1938 static llvm::StringMapEntry<llvm::GlobalVariable *> &
1939 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
1940                        const StringLiteral *Literal, unsigned &StringLength) {
1941   StringRef String = Literal->getString();
1942   StringLength = String.size();
1943   return *Map.insert(std::make_pair(String, nullptr)).first;
1944 }
1945 
1946 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() {
1947   if (llvm::Value *V = ConstantStringClassRef)
1948     return cast<llvm::Constant>(V);
1949 
1950   auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1951   std::string str =
1952     StringClass.empty() ? "_NSConstantStringClassReference"
1953                         : "_" + StringClass + "ClassReference";
1954 
1955   llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0);
1956   auto GV = CGM.CreateRuntimeVariable(PTy, str);
1957   auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo());
1958   ConstantStringClassRef = V;
1959   return V;
1960 }
1961 
1962 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() {
1963   if (llvm::Value *V = ConstantStringClassRef)
1964     return cast<llvm::Constant>(V);
1965 
1966   auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1967   std::string str =
1968     StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1969                         : "OBJC_CLASS_$_" + StringClass;
1970   llvm::Constant *GV = GetClassGlobal(str, NotForDefinition);
1971 
1972   // Make sure the result is of the correct type.
1973   auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo());
1974 
1975   ConstantStringClassRef = V;
1976   return V;
1977 }
1978 
1979 ConstantAddress
1980 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) {
1981   unsigned StringLength = 0;
1982   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
1983     GetConstantStringEntry(NSConstantStringMap, Literal, StringLength);
1984 
1985   if (auto *C = Entry.second)
1986     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
1987 
1988   // If we don't already have it, get _NSConstantStringClassReference.
1989   llvm::Constant *Class = getNSConstantStringClassRef();
1990 
1991   // If we don't already have it, construct the type for a constant NSString.
1992   if (!NSConstantStringType) {
1993     NSConstantStringType =
1994       llvm::StructType::create({
1995         CGM.Int32Ty->getPointerTo(),
1996         CGM.Int8PtrTy,
1997         CGM.IntTy
1998       }, "struct.__builtin_NSString");
1999   }
2000 
2001   ConstantInitBuilder Builder(CGM);
2002   auto Fields = Builder.beginStruct(NSConstantStringType);
2003 
2004   // Class pointer.
2005   Fields.add(Class);
2006 
2007   // String pointer.
2008   llvm::Constant *C =
2009     llvm::ConstantDataArray::getString(VMContext, Entry.first());
2010 
2011   llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage;
2012   bool isConstant = !CGM.getLangOpts().WritableStrings;
2013 
2014   auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant,
2015                                       Linkage, C, ".str");
2016   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2017   // Don't enforce the target's minimum global alignment, since the only use
2018   // of the string is via this class initializer.
2019   GV->setAlignment(llvm::Align(1));
2020   Fields.addBitCast(GV, CGM.Int8PtrTy);
2021 
2022   // String length.
2023   Fields.addInt(CGM.IntTy, StringLength);
2024 
2025   // The struct.
2026   CharUnits Alignment = CGM.getPointerAlign();
2027   GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment,
2028                                     /*constant*/ true,
2029                                     llvm::GlobalVariable::PrivateLinkage);
2030   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2031   const char *NSStringNonFragileABISection =
2032       "__DATA,__objc_stringobj,regular,no_dead_strip";
2033   // FIXME. Fix section.
2034   GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile()
2035                      ? NSStringNonFragileABISection
2036                      : NSStringSection);
2037   Entry.second = GV;
2038 
2039   return ConstantAddress(GV, Alignment);
2040 }
2041 
2042 enum {
2043   kCFTaggedObjectID_Integer = (1 << 1) + 1
2044 };
2045 
2046 /// Generates a message send where the super is the receiver.  This is
2047 /// a message send to self with special delivery semantics indicating
2048 /// which class's method should be called.
2049 CodeGen::RValue
2050 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
2051                                     ReturnValueSlot Return,
2052                                     QualType ResultType,
2053                                     Selector Sel,
2054                                     const ObjCInterfaceDecl *Class,
2055                                     bool isCategoryImpl,
2056                                     llvm::Value *Receiver,
2057                                     bool IsClassMessage,
2058                                     const CodeGen::CallArgList &CallArgs,
2059                                     const ObjCMethodDecl *Method) {
2060   // Create and init a super structure; this is a (receiver, class)
2061   // pair we will pass to objc_msgSendSuper.
2062   Address ObjCSuper =
2063     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
2064                          "objc_super");
2065   llvm::Value *ReceiverAsObject =
2066     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
2067   CGF.Builder.CreateStore(ReceiverAsObject,
2068                           CGF.Builder.CreateStructGEP(ObjCSuper, 0));
2069 
2070   // If this is a class message the metaclass is passed as the target.
2071   llvm::Type *ClassTyPtr = llvm::PointerType::getUnqual(ObjCTypes.ClassTy);
2072   llvm::Value *Target;
2073   if (IsClassMessage) {
2074     if (isCategoryImpl) {
2075       // Message sent to 'super' in a class method defined in a category
2076       // implementation requires an odd treatment.
2077       // If we are in a class method, we must retrieve the
2078       // _metaclass_ for the current class, pointed at by
2079       // the class's "isa" pointer.  The following assumes that
2080       // isa" is the first ivar in a class (which it must be).
2081       Target = EmitClassRef(CGF, Class->getSuperClass());
2082       Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0);
2083       Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, Target,
2084                                              CGF.getPointerAlign());
2085     } else {
2086       llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class);
2087       llvm::Value *SuperPtr =
2088           CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1);
2089       llvm::Value *Super = CGF.Builder.CreateAlignedLoad(ClassTyPtr, SuperPtr,
2090                                                          CGF.getPointerAlign());
2091       Target = Super;
2092     }
2093   } else if (isCategoryImpl)
2094     Target = EmitClassRef(CGF, Class->getSuperClass());
2095   else {
2096     llvm::Value *ClassPtr = EmitSuperClassRef(Class);
2097     ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1);
2098     Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, ClassPtr,
2099                                            CGF.getPointerAlign());
2100   }
2101   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
2102   // ObjCTypes types.
2103   llvm::Type *ClassTy =
2104     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
2105   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
2106   CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1));
2107   return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(),
2108                          ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class,
2109                          ObjCTypes);
2110 }
2111 
2112 /// Generate code for a message send expression.
2113 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
2114                                                ReturnValueSlot Return,
2115                                                QualType ResultType,
2116                                                Selector Sel,
2117                                                llvm::Value *Receiver,
2118                                                const CallArgList &CallArgs,
2119                                                const ObjCInterfaceDecl *Class,
2120                                                const ObjCMethodDecl *Method) {
2121   return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver,
2122                          CGF.getContext().getObjCIdType(), false, CallArgs,
2123                          Method, Class, ObjCTypes);
2124 }
2125 
2126 CodeGen::RValue
2127 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF,
2128                                  ReturnValueSlot Return,
2129                                  QualType ResultType,
2130                                  Selector Sel,
2131                                  llvm::Value *Arg0,
2132                                  QualType Arg0Ty,
2133                                  bool IsSuper,
2134                                  const CallArgList &CallArgs,
2135                                  const ObjCMethodDecl *Method,
2136                                  const ObjCInterfaceDecl *ClassReceiver,
2137                                  const ObjCCommonTypesHelper &ObjCTypes) {
2138   CodeGenTypes &Types = CGM.getTypes();
2139   auto selTy = CGF.getContext().getObjCSelType();
2140   llvm::Value *SelValue;
2141 
2142   if (Method && Method->isDirectMethod()) {
2143     // Direct methods will synthesize the proper `_cmd` internally,
2144     // so just don't bother with setting the `_cmd` argument.
2145     assert(!IsSuper);
2146     SelValue = llvm::UndefValue::get(Types.ConvertType(selTy));
2147   } else {
2148     SelValue = GetSelector(CGF, Sel);
2149   }
2150 
2151   CallArgList ActualArgs;
2152   if (!IsSuper)
2153     Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy);
2154   ActualArgs.add(RValue::get(Arg0), Arg0Ty);
2155   ActualArgs.add(RValue::get(SelValue), selTy);
2156   ActualArgs.addFrom(CallArgs);
2157 
2158   // If we're calling a method, use the formal signature.
2159   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2160 
2161   if (Method)
2162     assert(CGM.getContext().getCanonicalType(Method->getReturnType()) ==
2163                CGM.getContext().getCanonicalType(ResultType) &&
2164            "Result type mismatch!");
2165 
2166   bool ReceiverCanBeNull =
2167     canMessageReceiverBeNull(CGF, Method, IsSuper, ClassReceiver, Arg0);
2168 
2169   bool RequiresNullCheck = false;
2170 
2171   llvm::FunctionCallee Fn = nullptr;
2172   if (Method && Method->isDirectMethod()) {
2173     Fn = GenerateDirectMethod(Method, Method->getClassInterface());
2174   } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
2175     if (ReceiverCanBeNull) RequiresNullCheck = true;
2176     Fn = (ObjCABI == 2) ?  ObjCTypes.getSendStretFn2(IsSuper)
2177       : ObjCTypes.getSendStretFn(IsSuper);
2178   } else if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2179     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper)
2180       : ObjCTypes.getSendFpretFn(IsSuper);
2181   } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) {
2182     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper)
2183       : ObjCTypes.getSendFp2retFn(IsSuper);
2184   } else {
2185     // arm64 uses objc_msgSend for stret methods and yet null receiver check
2186     // must be made for it.
2187     if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2188       RequiresNullCheck = true;
2189     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
2190       : ObjCTypes.getSendFn(IsSuper);
2191   }
2192 
2193   // Cast function to proper signature
2194   llvm::Constant *BitcastFn = cast<llvm::Constant>(
2195       CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType));
2196 
2197   // We don't need to emit a null check to zero out an indirect result if the
2198   // result is ignored.
2199   if (Return.isUnused())
2200     RequiresNullCheck = false;
2201 
2202   // Emit a null-check if there's a consumed argument other than the receiver.
2203   if (!RequiresNullCheck && Method && Method->hasParamDestroyedInCallee())
2204     RequiresNullCheck = true;
2205 
2206   NullReturnState nullReturn;
2207   if (RequiresNullCheck) {
2208     nullReturn.init(CGF, Arg0);
2209   }
2210 
2211   llvm::CallBase *CallSite;
2212   CGCallee Callee = CGCallee::forDirect(BitcastFn);
2213   RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs,
2214                                &CallSite);
2215 
2216   // Mark the call as noreturn if the method is marked noreturn and the
2217   // receiver cannot be null.
2218   if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) {
2219     CallSite->setDoesNotReturn();
2220   }
2221 
2222   return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs,
2223                              RequiresNullCheck ? Method : nullptr);
2224 }
2225 
2226 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT,
2227                                            bool pointee = false) {
2228   // Note that GC qualification applies recursively to C pointer types
2229   // that aren't otherwise decorated.  This is weird, but it's probably
2230   // an intentional workaround to the unreliable placement of GC qualifiers.
2231   if (FQT.isObjCGCStrong())
2232     return Qualifiers::Strong;
2233 
2234   if (FQT.isObjCGCWeak())
2235     return Qualifiers::Weak;
2236 
2237   if (auto ownership = FQT.getObjCLifetime()) {
2238     // Ownership does not apply recursively to C pointer types.
2239     if (pointee) return Qualifiers::GCNone;
2240     switch (ownership) {
2241     case Qualifiers::OCL_Weak: return Qualifiers::Weak;
2242     case Qualifiers::OCL_Strong: return Qualifiers::Strong;
2243     case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone;
2244     case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?");
2245     case Qualifiers::OCL_None: llvm_unreachable("known nonzero");
2246     }
2247     llvm_unreachable("bad objc ownership");
2248   }
2249 
2250   // Treat unqualified retainable pointers as strong.
2251   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2252     return Qualifiers::Strong;
2253 
2254   // Walk into C pointer types, but only in GC.
2255   if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) {
2256     if (const PointerType *PT = FQT->getAs<PointerType>())
2257       return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true);
2258   }
2259 
2260   return Qualifiers::GCNone;
2261 }
2262 
2263 namespace {
2264   struct IvarInfo {
2265     CharUnits Offset;
2266     uint64_t SizeInWords;
2267     IvarInfo(CharUnits offset, uint64_t sizeInWords)
2268       : Offset(offset), SizeInWords(sizeInWords) {}
2269 
2270     // Allow sorting based on byte pos.
2271     bool operator<(const IvarInfo &other) const {
2272       return Offset < other.Offset;
2273     }
2274   };
2275 
2276   /// A helper class for building GC layout strings.
2277   class IvarLayoutBuilder {
2278     CodeGenModule &CGM;
2279 
2280     /// The start of the layout.  Offsets will be relative to this value,
2281     /// and entries less than this value will be silently discarded.
2282     CharUnits InstanceBegin;
2283 
2284     /// The end of the layout.  Offsets will never exceed this value.
2285     CharUnits InstanceEnd;
2286 
2287     /// Whether we're generating the strong layout or the weak layout.
2288     bool ForStrongLayout;
2289 
2290     /// Whether the offsets in IvarsInfo might be out-of-order.
2291     bool IsDisordered = false;
2292 
2293     llvm::SmallVector<IvarInfo, 8> IvarsInfo;
2294 
2295   public:
2296     IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin,
2297                       CharUnits instanceEnd, bool forStrongLayout)
2298       : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd),
2299         ForStrongLayout(forStrongLayout) {
2300     }
2301 
2302     void visitRecord(const RecordType *RT, CharUnits offset);
2303 
2304     template <class Iterator, class GetOffsetFn>
2305     void visitAggregate(Iterator begin, Iterator end,
2306                         CharUnits aggrOffset,
2307                         const GetOffsetFn &getOffset);
2308 
2309     void visitField(const FieldDecl *field, CharUnits offset);
2310 
2311     /// Add the layout of a block implementation.
2312     void visitBlock(const CGBlockInfo &blockInfo);
2313 
2314     /// Is there any information for an interesting bitmap?
2315     bool hasBitmapData() const { return !IvarsInfo.empty(); }
2316 
2317     llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC,
2318                                 llvm::SmallVectorImpl<unsigned char> &buffer);
2319 
2320     static void dump(ArrayRef<unsigned char> buffer) {
2321       const unsigned char *s = buffer.data();
2322       for (unsigned i = 0, e = buffer.size(); i < e; i++)
2323         if (!(s[i] & 0xf0))
2324           printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
2325         else
2326           printf("0x%x%s",  s[i], s[i] != 0 ? ", " : "");
2327       printf("\n");
2328     }
2329   };
2330 } // end anonymous namespace
2331 
2332 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM,
2333                                                 const CGBlockInfo &blockInfo) {
2334 
2335   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2336   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
2337     return nullPtr;
2338 
2339   IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize,
2340                             /*for strong layout*/ true);
2341 
2342   builder.visitBlock(blockInfo);
2343 
2344   if (!builder.hasBitmapData())
2345     return nullPtr;
2346 
2347   llvm::SmallVector<unsigned char, 32> buffer;
2348   llvm::Constant *C = builder.buildBitmap(*this, buffer);
2349   if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
2350     printf("\n block variable layout for block: ");
2351     builder.dump(buffer);
2352   }
2353 
2354   return C;
2355 }
2356 
2357 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) {
2358   // __isa is the first field in block descriptor and must assume by runtime's
2359   // convention that it is GC'able.
2360   IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1));
2361 
2362   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2363 
2364   // Ignore the optional 'this' capture: C++ objects are not assumed
2365   // to be GC'ed.
2366 
2367   CharUnits lastFieldOffset;
2368 
2369   // Walk the captured variables.
2370   for (const auto &CI : blockDecl->captures()) {
2371     const VarDecl *variable = CI.getVariable();
2372     QualType type = variable->getType();
2373 
2374     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2375 
2376     // Ignore constant captures.
2377     if (capture.isConstant()) continue;
2378 
2379     CharUnits fieldOffset = capture.getOffset();
2380 
2381     // Block fields are not necessarily ordered; if we detect that we're
2382     // adding them out-of-order, make sure we sort later.
2383     if (fieldOffset < lastFieldOffset)
2384       IsDisordered = true;
2385     lastFieldOffset = fieldOffset;
2386 
2387     // __block variables are passed by their descriptor address.
2388     if (CI.isByRef()) {
2389       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2390       continue;
2391     }
2392 
2393     assert(!type->isArrayType() && "array variable should not be caught");
2394     if (const RecordType *record = type->getAs<RecordType>()) {
2395       visitRecord(record, fieldOffset);
2396       continue;
2397     }
2398 
2399     Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type);
2400 
2401     if (GCAttr == Qualifiers::Strong) {
2402       assert(CGM.getContext().getTypeSize(type)
2403                 == CGM.getTarget().getPointerWidth(0));
2404       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2405     }
2406   }
2407 }
2408 
2409 /// getBlockCaptureLifetime - This routine returns life time of the captured
2410 /// block variable for the purpose of block layout meta-data generation. FQT is
2411 /// the type of the variable captured in the block.
2412 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT,
2413                                                                   bool ByrefLayout) {
2414   // If it has an ownership qualifier, we're done.
2415   if (auto lifetime = FQT.getObjCLifetime())
2416     return lifetime;
2417 
2418   // If it doesn't, and this is ARC, it has no ownership.
2419   if (CGM.getLangOpts().ObjCAutoRefCount)
2420     return Qualifiers::OCL_None;
2421 
2422   // In MRC, retainable pointers are owned by non-__block variables.
2423   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2424     return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong;
2425 
2426   return Qualifiers::OCL_None;
2427 }
2428 
2429 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref,
2430                                              Qualifiers::ObjCLifetime LifeTime,
2431                                              CharUnits FieldOffset,
2432                                              CharUnits FieldSize) {
2433   // __block variables are passed by their descriptor address.
2434   if (IsByref)
2435     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset,
2436                                         FieldSize));
2437   else if (LifeTime == Qualifiers::OCL_Strong)
2438     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset,
2439                                         FieldSize));
2440   else if (LifeTime == Qualifiers::OCL_Weak)
2441     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset,
2442                                         FieldSize));
2443   else if (LifeTime == Qualifiers::OCL_ExplicitNone)
2444     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset,
2445                                         FieldSize));
2446   else
2447     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES,
2448                                         FieldOffset,
2449                                         FieldSize));
2450 }
2451 
2452 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
2453                                           const RecordDecl *RD,
2454                                           ArrayRef<const FieldDecl*> RecFields,
2455                                           CharUnits BytePos, bool &HasUnion,
2456                                           bool ByrefLayout) {
2457   bool IsUnion = (RD && RD->isUnion());
2458   CharUnits MaxUnionSize = CharUnits::Zero();
2459   const FieldDecl *MaxField = nullptr;
2460   const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
2461   CharUnits MaxFieldOffset = CharUnits::Zero();
2462   CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero();
2463 
2464   if (RecFields.empty())
2465     return;
2466   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2467 
2468   for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2469     const FieldDecl *Field = RecFields[i];
2470     // Note that 'i' here is actually the field index inside RD of Field,
2471     // although this dependency is hidden.
2472     const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
2473     CharUnits FieldOffset =
2474       CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i));
2475 
2476     // Skip over unnamed or bitfields
2477     if (!Field->getIdentifier() || Field->isBitField()) {
2478       LastFieldBitfieldOrUnnamed = Field;
2479       LastBitfieldOrUnnamedOffset = FieldOffset;
2480       continue;
2481     }
2482 
2483     LastFieldBitfieldOrUnnamed = nullptr;
2484     QualType FQT = Field->getType();
2485     if (FQT->isRecordType() || FQT->isUnionType()) {
2486       if (FQT->isUnionType())
2487         HasUnion = true;
2488 
2489       BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(),
2490                                   BytePos + FieldOffset, HasUnion);
2491       continue;
2492     }
2493 
2494     if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2495       auto *CArray = cast<ConstantArrayType>(Array);
2496       uint64_t ElCount = CArray->getSize().getZExtValue();
2497       assert(CArray && "only array with known element size is supported");
2498       FQT = CArray->getElementType();
2499       while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2500         auto *CArray = cast<ConstantArrayType>(Array);
2501         ElCount *= CArray->getSize().getZExtValue();
2502         FQT = CArray->getElementType();
2503       }
2504       if (FQT->isRecordType() && ElCount) {
2505         int OldIndex = RunSkipBlockVars.size() - 1;
2506         auto *RT = FQT->castAs<RecordType>();
2507         BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion);
2508 
2509         // Replicate layout information for each array element. Note that
2510         // one element is already done.
2511         uint64_t ElIx = 1;
2512         for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) {
2513           CharUnits Size = CGM.getContext().getTypeSizeInChars(RT);
2514           for (int i = OldIndex+1; i <= FirstIndex; ++i)
2515             RunSkipBlockVars.push_back(
2516               RUN_SKIP(RunSkipBlockVars[i].opcode,
2517               RunSkipBlockVars[i].block_var_bytepos + Size*ElIx,
2518               RunSkipBlockVars[i].block_var_size));
2519         }
2520         continue;
2521       }
2522     }
2523     CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType());
2524     if (IsUnion) {
2525       CharUnits UnionIvarSize = FieldSize;
2526       if (UnionIvarSize > MaxUnionSize) {
2527         MaxUnionSize = UnionIvarSize;
2528         MaxField = Field;
2529         MaxFieldOffset = FieldOffset;
2530       }
2531     } else {
2532       UpdateRunSkipBlockVars(false,
2533                              getBlockCaptureLifetime(FQT, ByrefLayout),
2534                              BytePos + FieldOffset,
2535                              FieldSize);
2536     }
2537   }
2538 
2539   if (LastFieldBitfieldOrUnnamed) {
2540     if (LastFieldBitfieldOrUnnamed->isBitField()) {
2541       // Last field was a bitfield. Must update the info.
2542       uint64_t BitFieldSize
2543         = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext());
2544       unsigned UnsSize = (BitFieldSize / ByteSizeInBits) +
2545                         ((BitFieldSize % ByteSizeInBits) != 0);
2546       CharUnits Size = CharUnits::fromQuantity(UnsSize);
2547       Size += LastBitfieldOrUnnamedOffset;
2548       UpdateRunSkipBlockVars(false,
2549                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2550                                                      ByrefLayout),
2551                              BytePos + LastBitfieldOrUnnamedOffset,
2552                              Size);
2553     } else {
2554       assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
2555       // Last field was unnamed. Must update skip info.
2556       CharUnits FieldSize
2557         = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType());
2558       UpdateRunSkipBlockVars(false,
2559                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2560                                                      ByrefLayout),
2561                              BytePos + LastBitfieldOrUnnamedOffset,
2562                              FieldSize);
2563     }
2564   }
2565 
2566   if (MaxField)
2567     UpdateRunSkipBlockVars(false,
2568                            getBlockCaptureLifetime(MaxField->getType(), ByrefLayout),
2569                            BytePos + MaxFieldOffset,
2570                            MaxUnionSize);
2571 }
2572 
2573 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT,
2574                                                   CharUnits BytePos,
2575                                                   bool &HasUnion,
2576                                                   bool ByrefLayout) {
2577   const RecordDecl *RD = RT->getDecl();
2578   SmallVector<const FieldDecl*, 16> Fields(RD->fields());
2579   llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
2580   const llvm::StructLayout *RecLayout =
2581     CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty));
2582 
2583   BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout);
2584 }
2585 
2586 /// InlineLayoutInstruction - This routine produce an inline instruction for the
2587 /// block variable layout if it can. If not, it returns 0. Rules are as follow:
2588 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world,
2589 /// an inline layout of value 0x0000000000000xyz is interpreted as follows:
2590 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by
2591 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by
2592 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero
2593 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no
2594 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured.
2595 uint64_t CGObjCCommonMac::InlineLayoutInstruction(
2596                                     SmallVectorImpl<unsigned char> &Layout) {
2597   uint64_t Result = 0;
2598   if (Layout.size() <= 3) {
2599     unsigned size = Layout.size();
2600     unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0;
2601     unsigned char inst;
2602     enum BLOCK_LAYOUT_OPCODE opcode ;
2603     switch (size) {
2604       case 3:
2605         inst = Layout[0];
2606         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2607         if (opcode == BLOCK_LAYOUT_STRONG)
2608           strong_word_count = (inst & 0xF)+1;
2609         else
2610           return 0;
2611         inst = Layout[1];
2612         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2613         if (opcode == BLOCK_LAYOUT_BYREF)
2614           byref_word_count = (inst & 0xF)+1;
2615         else
2616           return 0;
2617         inst = Layout[2];
2618         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2619         if (opcode == BLOCK_LAYOUT_WEAK)
2620           weak_word_count = (inst & 0xF)+1;
2621         else
2622           return 0;
2623         break;
2624 
2625       case 2:
2626         inst = Layout[0];
2627         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2628         if (opcode == BLOCK_LAYOUT_STRONG) {
2629           strong_word_count = (inst & 0xF)+1;
2630           inst = Layout[1];
2631           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2632           if (opcode == BLOCK_LAYOUT_BYREF)
2633             byref_word_count = (inst & 0xF)+1;
2634           else if (opcode == BLOCK_LAYOUT_WEAK)
2635             weak_word_count = (inst & 0xF)+1;
2636           else
2637             return 0;
2638         }
2639         else if (opcode == BLOCK_LAYOUT_BYREF) {
2640           byref_word_count = (inst & 0xF)+1;
2641           inst = Layout[1];
2642           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2643           if (opcode == BLOCK_LAYOUT_WEAK)
2644             weak_word_count = (inst & 0xF)+1;
2645           else
2646             return 0;
2647         }
2648         else
2649           return 0;
2650         break;
2651 
2652       case 1:
2653         inst = Layout[0];
2654         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2655         if (opcode == BLOCK_LAYOUT_STRONG)
2656           strong_word_count = (inst & 0xF)+1;
2657         else if (opcode == BLOCK_LAYOUT_BYREF)
2658           byref_word_count = (inst & 0xF)+1;
2659         else if (opcode == BLOCK_LAYOUT_WEAK)
2660           weak_word_count = (inst & 0xF)+1;
2661         else
2662           return 0;
2663         break;
2664 
2665       default:
2666         return 0;
2667     }
2668 
2669     // Cannot inline when any of the word counts is 15. Because this is one less
2670     // than the actual work count (so 15 means 16 actual word counts),
2671     // and we can only display 0 thru 15 word counts.
2672     if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16)
2673       return 0;
2674 
2675     unsigned count =
2676       (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0);
2677 
2678     if (size == count) {
2679       if (strong_word_count)
2680         Result = strong_word_count;
2681       Result <<= 4;
2682       if (byref_word_count)
2683         Result += byref_word_count;
2684       Result <<= 4;
2685       if (weak_word_count)
2686         Result += weak_word_count;
2687     }
2688   }
2689   return Result;
2690 }
2691 
2692 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) {
2693   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2694   if (RunSkipBlockVars.empty())
2695     return nullPtr;
2696   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2697   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2698   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2699 
2700   // Sort on byte position; captures might not be allocated in order,
2701   // and unions can do funny things.
2702   llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end());
2703   SmallVector<unsigned char, 16> Layout;
2704 
2705   unsigned size = RunSkipBlockVars.size();
2706   for (unsigned i = 0; i < size; i++) {
2707     enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode;
2708     CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos;
2709     CharUnits end_byte_pos = start_byte_pos;
2710     unsigned j = i+1;
2711     while (j < size) {
2712       if (opcode == RunSkipBlockVars[j].opcode) {
2713         end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos;
2714         i++;
2715       }
2716       else
2717         break;
2718     }
2719     CharUnits size_in_bytes =
2720     end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size;
2721     if (j < size) {
2722       CharUnits gap =
2723       RunSkipBlockVars[j].block_var_bytepos -
2724       RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size;
2725       size_in_bytes += gap;
2726     }
2727     CharUnits residue_in_bytes = CharUnits::Zero();
2728     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) {
2729       residue_in_bytes = size_in_bytes % WordSizeInBytes;
2730       size_in_bytes -= residue_in_bytes;
2731       opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS;
2732     }
2733 
2734     unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes;
2735     while (size_in_words >= 16) {
2736       // Note that value in imm. is one less that the actual
2737       // value. So, 0xf means 16 words follow!
2738       unsigned char inst = (opcode << 4) | 0xf;
2739       Layout.push_back(inst);
2740       size_in_words -= 16;
2741     }
2742     if (size_in_words > 0) {
2743       // Note that value in imm. is one less that the actual
2744       // value. So, we subtract 1 away!
2745       unsigned char inst = (opcode << 4) | (size_in_words-1);
2746       Layout.push_back(inst);
2747     }
2748     if (residue_in_bytes > CharUnits::Zero()) {
2749       unsigned char inst =
2750       (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1);
2751       Layout.push_back(inst);
2752     }
2753   }
2754 
2755   while (!Layout.empty()) {
2756     unsigned char inst = Layout.back();
2757     enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2758     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS)
2759       Layout.pop_back();
2760     else
2761       break;
2762   }
2763 
2764   uint64_t Result = InlineLayoutInstruction(Layout);
2765   if (Result != 0) {
2766     // Block variable layout instruction has been inlined.
2767     if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2768       if (ComputeByrefLayout)
2769         printf("\n Inline BYREF variable layout: ");
2770       else
2771         printf("\n Inline block variable layout: ");
2772       printf("0x0%" PRIx64 "", Result);
2773       if (auto numStrong = (Result & 0xF00) >> 8)
2774         printf(", BL_STRONG:%d", (int) numStrong);
2775       if (auto numByref = (Result & 0x0F0) >> 4)
2776         printf(", BL_BYREF:%d", (int) numByref);
2777       if (auto numWeak = (Result & 0x00F) >> 0)
2778         printf(", BL_WEAK:%d", (int) numWeak);
2779       printf(", BL_OPERATOR:0\n");
2780     }
2781     return llvm::ConstantInt::get(CGM.IntPtrTy, Result);
2782   }
2783 
2784   unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0;
2785   Layout.push_back(inst);
2786   std::string BitMap;
2787   for (unsigned i = 0, e = Layout.size(); i != e; i++)
2788     BitMap += Layout[i];
2789 
2790   if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2791     if (ComputeByrefLayout)
2792       printf("\n Byref variable layout: ");
2793     else
2794       printf("\n Block variable layout: ");
2795     for (unsigned i = 0, e = BitMap.size(); i != e; i++) {
2796       unsigned char inst = BitMap[i];
2797       enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2798       unsigned delta = 1;
2799       switch (opcode) {
2800         case BLOCK_LAYOUT_OPERATOR:
2801           printf("BL_OPERATOR:");
2802           delta = 0;
2803           break;
2804         case BLOCK_LAYOUT_NON_OBJECT_BYTES:
2805           printf("BL_NON_OBJECT_BYTES:");
2806           break;
2807         case BLOCK_LAYOUT_NON_OBJECT_WORDS:
2808           printf("BL_NON_OBJECT_WORD:");
2809           break;
2810         case BLOCK_LAYOUT_STRONG:
2811           printf("BL_STRONG:");
2812           break;
2813         case BLOCK_LAYOUT_BYREF:
2814           printf("BL_BYREF:");
2815           break;
2816         case BLOCK_LAYOUT_WEAK:
2817           printf("BL_WEAK:");
2818           break;
2819         case BLOCK_LAYOUT_UNRETAINED:
2820           printf("BL_UNRETAINED:");
2821           break;
2822       }
2823       // Actual value of word count is one more that what is in the imm.
2824       // field of the instruction
2825       printf("%d", (inst & 0xf) + delta);
2826       if (i < e-1)
2827         printf(", ");
2828       else
2829         printf("\n");
2830     }
2831   }
2832 
2833   auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName,
2834                                      /*ForceNonFragileABI=*/true,
2835                                      /*NullTerminate=*/false);
2836   return getConstantGEP(VMContext, Entry, 0, 0);
2837 }
2838 
2839 static std::string getBlockLayoutInfoString(
2840     const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars,
2841     bool HasCopyDisposeHelpers) {
2842   std::string Str;
2843   for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) {
2844     if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) {
2845       // Copy/dispose helpers don't have any information about
2846       // __unsafe_unretained captures, so unconditionally concatenate a string.
2847       Str += "u";
2848     } else if (HasCopyDisposeHelpers) {
2849       // Information about __strong, __weak, or byref captures has already been
2850       // encoded into the names of the copy/dispose helpers. We have to add a
2851       // string here only when the copy/dispose helpers aren't generated (which
2852       // happens when the block is non-escaping).
2853       continue;
2854     } else {
2855       switch (R.opcode) {
2856       case CGObjCCommonMac::BLOCK_LAYOUT_STRONG:
2857         Str += "s";
2858         break;
2859       case CGObjCCommonMac::BLOCK_LAYOUT_BYREF:
2860         Str += "r";
2861         break;
2862       case CGObjCCommonMac::BLOCK_LAYOUT_WEAK:
2863         Str += "w";
2864         break;
2865       default:
2866         continue;
2867       }
2868     }
2869     Str += llvm::to_string(R.block_var_bytepos.getQuantity());
2870     Str += "l" + llvm::to_string(R.block_var_size.getQuantity());
2871   }
2872   return Str;
2873 }
2874 
2875 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM,
2876                                            const CGBlockInfo &blockInfo) {
2877   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2878 
2879   RunSkipBlockVars.clear();
2880   bool hasUnion = false;
2881 
2882   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2883   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2884   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2885 
2886   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2887 
2888   // Calculate the basic layout of the block structure.
2889   const llvm::StructLayout *layout =
2890   CGM.getDataLayout().getStructLayout(blockInfo.StructureType);
2891 
2892   // Ignore the optional 'this' capture: C++ objects are not assumed
2893   // to be GC'ed.
2894   if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero())
2895     UpdateRunSkipBlockVars(false, Qualifiers::OCL_None,
2896                            blockInfo.BlockHeaderForcedGapOffset,
2897                            blockInfo.BlockHeaderForcedGapSize);
2898   // Walk the captured variables.
2899   for (const auto &CI : blockDecl->captures()) {
2900     const VarDecl *variable = CI.getVariable();
2901     QualType type = variable->getType();
2902 
2903     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2904 
2905     // Ignore constant captures.
2906     if (capture.isConstant()) continue;
2907 
2908     CharUnits fieldOffset =
2909        CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex()));
2910 
2911     assert(!type->isArrayType() && "array variable should not be caught");
2912     if (!CI.isByRef())
2913       if (const RecordType *record = type->getAs<RecordType>()) {
2914         BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion);
2915         continue;
2916       }
2917     CharUnits fieldSize;
2918     if (CI.isByRef())
2919       fieldSize = CharUnits::fromQuantity(WordSizeInBytes);
2920     else
2921       fieldSize = CGM.getContext().getTypeSizeInChars(type);
2922     UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false),
2923                            fieldOffset, fieldSize);
2924   }
2925 }
2926 
2927 llvm::Constant *
2928 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM,
2929                                     const CGBlockInfo &blockInfo) {
2930   fillRunSkipBlockVars(CGM, blockInfo);
2931   return getBitmapBlockLayout(false);
2932 }
2933 
2934 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM,
2935                                                  const CGBlockInfo &blockInfo) {
2936   fillRunSkipBlockVars(CGM, blockInfo);
2937   return getBlockLayoutInfoString(RunSkipBlockVars,
2938                                   blockInfo.needsCopyDisposeHelpers());
2939 }
2940 
2941 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM,
2942                                                   QualType T) {
2943   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2944   assert(!T->isArrayType() && "__block array variable should not be caught");
2945   CharUnits fieldOffset;
2946   RunSkipBlockVars.clear();
2947   bool hasUnion = false;
2948   if (const RecordType *record = T->getAs<RecordType>()) {
2949     BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */);
2950     llvm::Constant *Result = getBitmapBlockLayout(true);
2951     if (isa<llvm::ConstantInt>(Result))
2952       Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy);
2953     return Result;
2954   }
2955   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2956   return nullPtr;
2957 }
2958 
2959 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF,
2960                                             const ObjCProtocolDecl *PD) {
2961   // FIXME: I don't understand why gcc generates this, or where it is
2962   // resolved. Investigate. Its also wasteful to look this up over and over.
2963   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2964 
2965   return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD),
2966                                         ObjCTypes.getExternalProtocolPtrTy());
2967 }
2968 
2969 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
2970   // FIXME: We shouldn't need this, the protocol decl should contain enough
2971   // information to tell us whether this was a declaration or a definition.
2972   DefinedProtocols.insert(PD->getIdentifier());
2973 
2974   // If we have generated a forward reference to this protocol, emit
2975   // it now. Otherwise do nothing, the protocol objects are lazily
2976   // emitted.
2977   if (Protocols.count(PD->getIdentifier()))
2978     GetOrEmitProtocol(PD);
2979 }
2980 
2981 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
2982   if (DefinedProtocols.count(PD->getIdentifier()))
2983     return GetOrEmitProtocol(PD);
2984 
2985   return GetOrEmitProtocolRef(PD);
2986 }
2987 
2988 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime(
2989                CodeGenFunction &CGF,
2990                const ObjCInterfaceDecl *ID,
2991                ObjCCommonTypesHelper &ObjCTypes) {
2992   llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn();
2993 
2994   llvm::Value *className = CGF.CGM
2995                                .GetAddrOfConstantCString(std::string(
2996                                    ID->getObjCRuntimeNameAsString()))
2997                                .getPointer();
2998   ASTContext &ctx = CGF.CGM.getContext();
2999   className =
3000       CGF.Builder.CreateBitCast(className,
3001                                 CGF.ConvertType(
3002                                   ctx.getPointerType(ctx.CharTy.withConst())));
3003   llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className);
3004   call->setDoesNotThrow();
3005   return call;
3006 }
3007 
3008 /*
3009 // Objective-C 1.0 extensions
3010 struct _objc_protocol {
3011 struct _objc_protocol_extension *isa;
3012 char *protocol_name;
3013 struct _objc_protocol_list *protocol_list;
3014 struct _objc__method_prototype_list *instance_methods;
3015 struct _objc__method_prototype_list *class_methods
3016 };
3017 
3018 See EmitProtocolExtension().
3019 */
3020 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
3021   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
3022 
3023   // Early exit if a defining object has already been generated.
3024   if (Entry && Entry->hasInitializer())
3025     return Entry;
3026 
3027   // Use the protocol definition, if there is one.
3028   if (const ObjCProtocolDecl *Def = PD->getDefinition())
3029     PD = Def;
3030 
3031   // FIXME: I don't understand why gcc generates this, or where it is
3032   // resolved. Investigate. Its also wasteful to look this up over and over.
3033   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
3034 
3035   // Construct method lists.
3036   auto methodLists = ProtocolMethodLists::get(PD);
3037 
3038   ConstantInitBuilder builder(CGM);
3039   auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
3040   values.add(EmitProtocolExtension(PD, methodLists));
3041   values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
3042   values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(),
3043                               PD->protocol_begin(), PD->protocol_end()));
3044   values.add(methodLists.emitMethodList(this, PD,
3045                               ProtocolMethodLists::RequiredInstanceMethods));
3046   values.add(methodLists.emitMethodList(this, PD,
3047                               ProtocolMethodLists::RequiredClassMethods));
3048 
3049   if (Entry) {
3050     // Already created, update the initializer.
3051     assert(Entry->hasPrivateLinkage());
3052     values.finishAndSetAsInitializer(Entry);
3053   } else {
3054     Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(),
3055                                          CGM.getPointerAlign(),
3056                                          /*constant*/ false,
3057                                          llvm::GlobalValue::PrivateLinkage);
3058     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
3059 
3060     Protocols[PD->getIdentifier()] = Entry;
3061   }
3062   CGM.addCompilerUsedGlobal(Entry);
3063 
3064   return Entry;
3065 }
3066 
3067 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
3068   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
3069 
3070   if (!Entry) {
3071     // We use the initializer as a marker of whether this is a forward
3072     // reference or not. At module finalization we add the empty
3073     // contents for protocols which were referenced but never defined.
3074     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
3075                                      false, llvm::GlobalValue::PrivateLinkage,
3076                                      nullptr, "OBJC_PROTOCOL_" + PD->getName());
3077     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
3078     // FIXME: Is this necessary? Why only for protocol?
3079     Entry->setAlignment(llvm::Align(4));
3080   }
3081 
3082   return Entry;
3083 }
3084 
3085 /*
3086   struct _objc_protocol_extension {
3087   uint32_t size;
3088   struct objc_method_description_list *optional_instance_methods;
3089   struct objc_method_description_list *optional_class_methods;
3090   struct objc_property_list *instance_properties;
3091   const char ** extendedMethodTypes;
3092   struct objc_property_list *class_properties;
3093   };
3094 */
3095 llvm::Constant *
3096 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
3097                                  const ProtocolMethodLists &methodLists) {
3098   auto optInstanceMethods =
3099     methodLists.emitMethodList(this, PD,
3100                                ProtocolMethodLists::OptionalInstanceMethods);
3101   auto optClassMethods =
3102     methodLists.emitMethodList(this, PD,
3103                                ProtocolMethodLists::OptionalClassMethods);
3104 
3105   auto extendedMethodTypes =
3106     EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(),
3107                             methodLists.emitExtendedTypesArray(this),
3108                             ObjCTypes);
3109 
3110   auto instanceProperties =
3111     EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD,
3112                      ObjCTypes, false);
3113   auto classProperties =
3114     EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr,
3115                      PD, ObjCTypes, true);
3116 
3117   // Return null if no extension bits are used.
3118   if (optInstanceMethods->isNullValue() &&
3119       optClassMethods->isNullValue() &&
3120       extendedMethodTypes->isNullValue() &&
3121       instanceProperties->isNullValue() &&
3122       classProperties->isNullValue()) {
3123     return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
3124   }
3125 
3126   uint64_t size =
3127     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
3128 
3129   ConstantInitBuilder builder(CGM);
3130   auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy);
3131   values.addInt(ObjCTypes.IntTy, size);
3132   values.add(optInstanceMethods);
3133   values.add(optClassMethods);
3134   values.add(instanceProperties);
3135   values.add(extendedMethodTypes);
3136   values.add(classProperties);
3137 
3138   // No special section, but goes in llvm.used
3139   return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values,
3140                            StringRef(), CGM.getPointerAlign(), true);
3141 }
3142 
3143 /*
3144   struct objc_protocol_list {
3145     struct objc_protocol_list *next;
3146     long count;
3147     Protocol *list[];
3148   };
3149 */
3150 llvm::Constant *
3151 CGObjCMac::EmitProtocolList(Twine name,
3152                             ObjCProtocolDecl::protocol_iterator begin,
3153                             ObjCProtocolDecl::protocol_iterator end) {
3154   // Just return null for empty protocol lists
3155   auto PDs = GetRuntimeProtocolList(begin, end);
3156   if (PDs.empty())
3157     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
3158 
3159   ConstantInitBuilder builder(CGM);
3160   auto values = builder.beginStruct();
3161 
3162   // This field is only used by the runtime.
3163   values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3164 
3165   // Reserve a slot for the count.
3166   auto countSlot = values.addPlaceholder();
3167 
3168   auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy);
3169   for (const auto *Proto : PDs)
3170     refsArray.add(GetProtocolRef(Proto));
3171 
3172   auto count = refsArray.size();
3173 
3174   // This list is null terminated.
3175   refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy);
3176 
3177   refsArray.finishAndAddTo(values);
3178   values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
3179 
3180   StringRef section;
3181   if (CGM.getTriple().isOSBinFormatMachO())
3182     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3183 
3184   llvm::GlobalVariable *GV =
3185       CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false);
3186   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy);
3187 }
3188 
3189 static void
3190 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet,
3191                        SmallVectorImpl<const ObjCPropertyDecl *> &Properties,
3192                        const ObjCProtocolDecl *Proto,
3193                        bool IsClassProperty) {
3194   for (const auto *PD : Proto->properties()) {
3195     if (IsClassProperty != PD->isClassProperty())
3196       continue;
3197     if (!PropertySet.insert(PD->getIdentifier()).second)
3198       continue;
3199     Properties.push_back(PD);
3200   }
3201 
3202   for (const auto *P : Proto->protocols())
3203     PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3204 }
3205 
3206 /*
3207   struct _objc_property {
3208     const char * const name;
3209     const char * const attributes;
3210   };
3211 
3212   struct _objc_property_list {
3213     uint32_t entsize; // sizeof (struct _objc_property)
3214     uint32_t prop_count;
3215     struct _objc_property[prop_count];
3216   };
3217 */
3218 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name,
3219                                        const Decl *Container,
3220                                        const ObjCContainerDecl *OCD,
3221                                        const ObjCCommonTypesHelper &ObjCTypes,
3222                                        bool IsClassProperty) {
3223   if (IsClassProperty) {
3224     // Make this entry NULL for OS X with deployment target < 10.11, for iOS
3225     // with deployment target < 9.0.
3226     const llvm::Triple &Triple = CGM.getTarget().getTriple();
3227     if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) ||
3228         (Triple.isiOS() && Triple.isOSVersionLT(9)))
3229       return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3230   }
3231 
3232   SmallVector<const ObjCPropertyDecl *, 16> Properties;
3233   llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3234 
3235   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3236     for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3237       for (auto *PD : ClassExt->properties()) {
3238         if (IsClassProperty != PD->isClassProperty())
3239           continue;
3240         if (PD->isDirectProperty())
3241           continue;
3242         PropertySet.insert(PD->getIdentifier());
3243         Properties.push_back(PD);
3244       }
3245 
3246   for (const auto *PD : OCD->properties()) {
3247     if (IsClassProperty != PD->isClassProperty())
3248       continue;
3249     // Don't emit duplicate metadata for properties that were already in a
3250     // class extension.
3251     if (!PropertySet.insert(PD->getIdentifier()).second)
3252       continue;
3253     if (PD->isDirectProperty())
3254       continue;
3255     Properties.push_back(PD);
3256   }
3257 
3258   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) {
3259     for (const auto *P : OID->all_referenced_protocols())
3260       PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3261   }
3262   else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) {
3263     for (const auto *P : CD->protocols())
3264       PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3265   }
3266 
3267   // Return null for empty list.
3268   if (Properties.empty())
3269     return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3270 
3271   unsigned propertySize =
3272     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy);
3273 
3274   ConstantInitBuilder builder(CGM);
3275   auto values = builder.beginStruct();
3276   values.addInt(ObjCTypes.IntTy, propertySize);
3277   values.addInt(ObjCTypes.IntTy, Properties.size());
3278   auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy);
3279   for (auto PD : Properties) {
3280     auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy);
3281     property.add(GetPropertyName(PD->getIdentifier()));
3282     property.add(GetPropertyTypeString(PD, Container));
3283     property.finishAndAddTo(propertiesArray);
3284   }
3285   propertiesArray.finishAndAddTo(values);
3286 
3287   StringRef Section;
3288   if (CGM.getTriple().isOSBinFormatMachO())
3289     Section = (ObjCABI == 2) ? "__DATA, __objc_const"
3290                              : "__OBJC,__property,regular,no_dead_strip";
3291 
3292   llvm::GlobalVariable *GV =
3293       CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3294   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy);
3295 }
3296 
3297 llvm::Constant *
3298 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name,
3299                                          ArrayRef<llvm::Constant*> MethodTypes,
3300                                          const ObjCCommonTypesHelper &ObjCTypes) {
3301   // Return null for empty list.
3302   if (MethodTypes.empty())
3303     return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy);
3304 
3305   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
3306                                              MethodTypes.size());
3307   llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes);
3308 
3309   StringRef Section;
3310   if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2)
3311     Section = "__DATA, __objc_const";
3312 
3313   llvm::GlobalVariable *GV =
3314       CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3315   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy);
3316 }
3317 
3318 /*
3319   struct _objc_category {
3320   char *category_name;
3321   char *class_name;
3322   struct _objc_method_list *instance_methods;
3323   struct _objc_method_list *class_methods;
3324   struct _objc_protocol_list *protocols;
3325   uint32_t size; // <rdar://4585769>
3326   struct _objc_property_list *instance_properties;
3327   struct _objc_property_list *class_properties;
3328   };
3329 */
3330 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3331   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy);
3332 
3333   // FIXME: This is poor design, the OCD should have a pointer to the category
3334   // decl. Additionally, note that Category can be null for the @implementation
3335   // w/o an @interface case. Sema should just create one for us as it does for
3336   // @implementation so everyone else can live life under a clear blue sky.
3337   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
3338   const ObjCCategoryDecl *Category =
3339     Interface->FindCategoryDeclaration(OCD->getIdentifier());
3340 
3341   SmallString<256> ExtName;
3342   llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_'
3343                                      << OCD->getName();
3344 
3345   ConstantInitBuilder Builder(CGM);
3346   auto Values = Builder.beginStruct(ObjCTypes.CategoryTy);
3347 
3348   enum {
3349     InstanceMethods,
3350     ClassMethods,
3351     NumMethodLists
3352   };
3353   SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3354   for (const auto *MD : OCD->methods()) {
3355     if (!MD->isDirectMethod())
3356       Methods[unsigned(MD->isClassMethod())].push_back(MD);
3357   }
3358 
3359   Values.add(GetClassName(OCD->getName()));
3360   Values.add(GetClassName(Interface->getObjCRuntimeNameAsString()));
3361   LazySymbols.insert(Interface->getIdentifier());
3362 
3363   Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods,
3364                             Methods[InstanceMethods]));
3365   Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods,
3366                             Methods[ClassMethods]));
3367   if (Category) {
3368     Values.add(
3369         EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(),
3370                          Category->protocol_begin(), Category->protocol_end()));
3371   } else {
3372     Values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3373   }
3374   Values.addInt(ObjCTypes.IntTy, Size);
3375 
3376   // If there is no category @interface then there can be no properties.
3377   if (Category) {
3378     Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(),
3379                                 OCD, Category, ObjCTypes, false));
3380     Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
3381                                 OCD, Category, ObjCTypes, true));
3382   } else {
3383     Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3384     Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3385   }
3386 
3387   llvm::GlobalVariable *GV =
3388       CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values,
3389                         "__OBJC,__category,regular,no_dead_strip",
3390                         CGM.getPointerAlign(), true);
3391   DefinedCategories.push_back(GV);
3392   DefinedCategoryNames.insert(llvm::CachedHashString(ExtName));
3393   // method definition entries must be clear for next implementation.
3394   MethodDefinitions.clear();
3395 }
3396 
3397 enum FragileClassFlags {
3398   /// Apparently: is not a meta-class.
3399   FragileABI_Class_Factory                 = 0x00001,
3400 
3401   /// Is a meta-class.
3402   FragileABI_Class_Meta                    = 0x00002,
3403 
3404   /// Has a non-trivial constructor or destructor.
3405   FragileABI_Class_HasCXXStructors         = 0x02000,
3406 
3407   /// Has hidden visibility.
3408   FragileABI_Class_Hidden                  = 0x20000,
3409 
3410   /// Class implementation was compiled under ARC.
3411   FragileABI_Class_CompiledByARC           = 0x04000000,
3412 
3413   /// Class implementation was compiled under MRC and has MRC weak ivars.
3414   /// Exclusive with CompiledByARC.
3415   FragileABI_Class_HasMRCWeakIvars         = 0x08000000,
3416 };
3417 
3418 enum NonFragileClassFlags {
3419   /// Is a meta-class.
3420   NonFragileABI_Class_Meta                 = 0x00001,
3421 
3422   /// Is a root class.
3423   NonFragileABI_Class_Root                 = 0x00002,
3424 
3425   /// Has a non-trivial constructor or destructor.
3426   NonFragileABI_Class_HasCXXStructors      = 0x00004,
3427 
3428   /// Has hidden visibility.
3429   NonFragileABI_Class_Hidden               = 0x00010,
3430 
3431   /// Has the exception attribute.
3432   NonFragileABI_Class_Exception            = 0x00020,
3433 
3434   /// (Obsolete) ARC-specific: this class has a .release_ivars method
3435   NonFragileABI_Class_HasIvarReleaser      = 0x00040,
3436 
3437   /// Class implementation was compiled under ARC.
3438   NonFragileABI_Class_CompiledByARC        = 0x00080,
3439 
3440   /// Class has non-trivial destructors, but zero-initialization is okay.
3441   NonFragileABI_Class_HasCXXDestructorOnly = 0x00100,
3442 
3443   /// Class implementation was compiled under MRC and has MRC weak ivars.
3444   /// Exclusive with CompiledByARC.
3445   NonFragileABI_Class_HasMRCWeakIvars      = 0x00200,
3446 };
3447 
3448 static bool hasWeakMember(QualType type) {
3449   if (type.getObjCLifetime() == Qualifiers::OCL_Weak) {
3450     return true;
3451   }
3452 
3453   if (auto recType = type->getAs<RecordType>()) {
3454     for (auto field : recType->getDecl()->fields()) {
3455       if (hasWeakMember(field->getType()))
3456         return true;
3457     }
3458   }
3459 
3460   return false;
3461 }
3462 
3463 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag
3464 /// (and actually fill in a layout string) if we really do have any
3465 /// __weak ivars.
3466 static bool hasMRCWeakIvars(CodeGenModule &CGM,
3467                             const ObjCImplementationDecl *ID) {
3468   if (!CGM.getLangOpts().ObjCWeak) return false;
3469   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
3470 
3471   for (const ObjCIvarDecl *ivar =
3472          ID->getClassInterface()->all_declared_ivar_begin();
3473        ivar; ivar = ivar->getNextIvar()) {
3474     if (hasWeakMember(ivar->getType()))
3475       return true;
3476   }
3477 
3478   return false;
3479 }
3480 
3481 /*
3482   struct _objc_class {
3483   Class isa;
3484   Class super_class;
3485   const char *name;
3486   long version;
3487   long info;
3488   long instance_size;
3489   struct _objc_ivar_list *ivars;
3490   struct _objc_method_list *methods;
3491   struct _objc_cache *cache;
3492   struct _objc_protocol_list *protocols;
3493   // Objective-C 1.0 extensions (<rdr://4585769>)
3494   const char *ivar_layout;
3495   struct _objc_class_ext *ext;
3496   };
3497 
3498   See EmitClassExtension();
3499 */
3500 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
3501   IdentifierInfo *RuntimeName =
3502       &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString());
3503   DefinedSymbols.insert(RuntimeName);
3504 
3505   std::string ClassName = ID->getNameAsString();
3506   // FIXME: Gross
3507   ObjCInterfaceDecl *Interface =
3508     const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
3509   llvm::Constant *Protocols =
3510       EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(),
3511                        Interface->all_referenced_protocol_begin(),
3512                        Interface->all_referenced_protocol_end());
3513   unsigned Flags = FragileABI_Class_Factory;
3514   if (ID->hasNonZeroConstructors() || ID->hasDestructors())
3515     Flags |= FragileABI_Class_HasCXXStructors;
3516 
3517   bool hasMRCWeak = false;
3518 
3519   if (CGM.getLangOpts().ObjCAutoRefCount)
3520     Flags |= FragileABI_Class_CompiledByARC;
3521   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
3522     Flags |= FragileABI_Class_HasMRCWeakIvars;
3523 
3524   CharUnits Size =
3525     CGM.getContext().getASTObjCImplementationLayout(ID).getSize();
3526 
3527   // FIXME: Set CXX-structors flag.
3528   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3529     Flags |= FragileABI_Class_Hidden;
3530 
3531   enum {
3532     InstanceMethods,
3533     ClassMethods,
3534     NumMethodLists
3535   };
3536   SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3537   for (const auto *MD : ID->methods()) {
3538     if (!MD->isDirectMethod())
3539       Methods[unsigned(MD->isClassMethod())].push_back(MD);
3540   }
3541 
3542   for (const auto *PID : ID->property_impls()) {
3543     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3544       if (PID->getPropertyDecl()->isDirectProperty())
3545         continue;
3546       if (ObjCMethodDecl *MD = PID->getGetterMethodDecl())
3547         if (GetMethodDefinition(MD))
3548           Methods[InstanceMethods].push_back(MD);
3549       if (ObjCMethodDecl *MD = PID->getSetterMethodDecl())
3550         if (GetMethodDefinition(MD))
3551           Methods[InstanceMethods].push_back(MD);
3552     }
3553   }
3554 
3555   ConstantInitBuilder builder(CGM);
3556   auto values = builder.beginStruct(ObjCTypes.ClassTy);
3557   values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods]));
3558   if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
3559     // Record a reference to the super class.
3560     LazySymbols.insert(Super->getIdentifier());
3561 
3562     values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3563                       ObjCTypes.ClassPtrTy);
3564   } else {
3565     values.addNullPointer(ObjCTypes.ClassPtrTy);
3566   }
3567   values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3568   // Version is always 0.
3569   values.addInt(ObjCTypes.LongTy, 0);
3570   values.addInt(ObjCTypes.LongTy, Flags);
3571   values.addInt(ObjCTypes.LongTy, Size.getQuantity());
3572   values.add(EmitIvarList(ID, false));
3573   values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods,
3574                             Methods[InstanceMethods]));
3575   // cache is always NULL.
3576   values.addNullPointer(ObjCTypes.CachePtrTy);
3577   values.add(Protocols);
3578   values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size));
3579   values.add(EmitClassExtension(ID, Size, hasMRCWeak,
3580                                 /*isMetaclass*/ false));
3581 
3582   std::string Name("OBJC_CLASS_");
3583   Name += ClassName;
3584   const char *Section = "__OBJC,__class,regular,no_dead_strip";
3585   // Check for a forward reference.
3586   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3587   if (GV) {
3588     assert(GV->getValueType() == ObjCTypes.ClassTy &&
3589            "Forward metaclass reference has incorrect type.");
3590     values.finishAndSetAsInitializer(GV);
3591     GV->setSection(Section);
3592     GV->setAlignment(CGM.getPointerAlign().getAsAlign());
3593     CGM.addCompilerUsedGlobal(GV);
3594   } else
3595     GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3596   DefinedClasses.push_back(GV);
3597   ImplementedClasses.push_back(Interface);
3598   // method definition entries must be clear for next implementation.
3599   MethodDefinitions.clear();
3600 }
3601 
3602 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
3603                                          llvm::Constant *Protocols,
3604                                 ArrayRef<const ObjCMethodDecl*> Methods) {
3605   unsigned Flags = FragileABI_Class_Meta;
3606   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy);
3607 
3608   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3609     Flags |= FragileABI_Class_Hidden;
3610 
3611   ConstantInitBuilder builder(CGM);
3612   auto values = builder.beginStruct(ObjCTypes.ClassTy);
3613   // The isa for the metaclass is the root of the hierarchy.
3614   const ObjCInterfaceDecl *Root = ID->getClassInterface();
3615   while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
3616     Root = Super;
3617   values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()),
3618                     ObjCTypes.ClassPtrTy);
3619   // The super class for the metaclass is emitted as the name of the
3620   // super class. The runtime fixes this up to point to the
3621   // *metaclass* for the super class.
3622   if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
3623     values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3624                       ObjCTypes.ClassPtrTy);
3625   } else {
3626     values.addNullPointer(ObjCTypes.ClassPtrTy);
3627   }
3628   values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3629   // Version is always 0.
3630   values.addInt(ObjCTypes.LongTy, 0);
3631   values.addInt(ObjCTypes.LongTy, Flags);
3632   values.addInt(ObjCTypes.LongTy, Size);
3633   values.add(EmitIvarList(ID, true));
3634   values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods,
3635                             Methods));
3636   // cache is always NULL.
3637   values.addNullPointer(ObjCTypes.CachePtrTy);
3638   values.add(Protocols);
3639   // ivar_layout for metaclass is always NULL.
3640   values.addNullPointer(ObjCTypes.Int8PtrTy);
3641   // The class extension is used to store class properties for metaclasses.
3642   values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/,
3643                                 /*isMetaclass*/true));
3644 
3645   std::string Name("OBJC_METACLASS_");
3646   Name += ID->getName();
3647 
3648   // Check for a forward reference.
3649   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3650   if (GV) {
3651     assert(GV->getValueType() == ObjCTypes.ClassTy &&
3652            "Forward metaclass reference has incorrect type.");
3653     values.finishAndSetAsInitializer(GV);
3654   } else {
3655     GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
3656                                       /*constant*/ false,
3657                                       llvm::GlobalValue::PrivateLinkage);
3658   }
3659   GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
3660   CGM.addCompilerUsedGlobal(GV);
3661 
3662   return GV;
3663 }
3664 
3665 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
3666   std::string Name = "OBJC_METACLASS_" + ID->getNameAsString();
3667 
3668   // FIXME: Should we look these up somewhere other than the module. Its a bit
3669   // silly since we only generate these while processing an implementation, so
3670   // exactly one pointer would work if know when we entered/exitted an
3671   // implementation block.
3672 
3673   // Check for an existing forward reference.
3674   // Previously, metaclass with internal linkage may have been defined.
3675   // pass 'true' as 2nd argument so it is returned.
3676   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3677   if (!GV)
3678     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3679                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3680                                   Name);
3681 
3682   assert(GV->getValueType() == ObjCTypes.ClassTy &&
3683          "Forward metaclass reference has incorrect type.");
3684   return GV;
3685 }
3686 
3687 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) {
3688   std::string Name = "OBJC_CLASS_" + ID->getNameAsString();
3689   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3690 
3691   if (!GV)
3692     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3693                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3694                                   Name);
3695 
3696   assert(GV->getValueType() == ObjCTypes.ClassTy &&
3697          "Forward class metadata reference has incorrect type.");
3698   return GV;
3699 }
3700 
3701 /*
3702   Emit a "class extension", which in this specific context means extra
3703   data that doesn't fit in the normal fragile-ABI class structure, and
3704   has nothing to do with the language concept of a class extension.
3705 
3706   struct objc_class_ext {
3707   uint32_t size;
3708   const char *weak_ivar_layout;
3709   struct _objc_property_list *properties;
3710   };
3711 */
3712 llvm::Constant *
3713 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID,
3714                               CharUnits InstanceSize, bool hasMRCWeakIvars,
3715                               bool isMetaclass) {
3716   // Weak ivar layout.
3717   llvm::Constant *layout;
3718   if (isMetaclass) {
3719     layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
3720   } else {
3721     layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize,
3722                                  hasMRCWeakIvars);
3723   }
3724 
3725   // Properties.
3726   llvm::Constant *propertyList =
3727     EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_")
3728                                   : Twine("_OBJC_$_PROP_LIST_"))
3729                         + ID->getName(),
3730                      ID, ID->getClassInterface(), ObjCTypes, isMetaclass);
3731 
3732   // Return null if no extension bits are used.
3733   if (layout->isNullValue() && propertyList->isNullValue()) {
3734     return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
3735   }
3736 
3737   uint64_t size =
3738     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
3739 
3740   ConstantInitBuilder builder(CGM);
3741   auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy);
3742   values.addInt(ObjCTypes.IntTy, size);
3743   values.add(layout);
3744   values.add(propertyList);
3745 
3746   return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values,
3747                            "__OBJC,__class_ext,regular,no_dead_strip",
3748                            CGM.getPointerAlign(), true);
3749 }
3750 
3751 /*
3752   struct objc_ivar {
3753     char *ivar_name;
3754     char *ivar_type;
3755     int ivar_offset;
3756   };
3757 
3758   struct objc_ivar_list {
3759     int ivar_count;
3760     struct objc_ivar list[count];
3761   };
3762 */
3763 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
3764                                         bool ForClass) {
3765   // When emitting the root class GCC emits ivar entries for the
3766   // actual class structure. It is not clear if we need to follow this
3767   // behavior; for now lets try and get away with not doing it. If so,
3768   // the cleanest solution would be to make up an ObjCInterfaceDecl
3769   // for the class.
3770   if (ForClass)
3771     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3772 
3773   const ObjCInterfaceDecl *OID = ID->getClassInterface();
3774 
3775   ConstantInitBuilder builder(CGM);
3776   auto ivarList = builder.beginStruct();
3777   auto countSlot = ivarList.addPlaceholder();
3778   auto ivars = ivarList.beginArray(ObjCTypes.IvarTy);
3779 
3780   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
3781        IVD; IVD = IVD->getNextIvar()) {
3782     // Ignore unnamed bit-fields.
3783     if (!IVD->getDeclName())
3784       continue;
3785 
3786     auto ivar = ivars.beginStruct(ObjCTypes.IvarTy);
3787     ivar.add(GetMethodVarName(IVD->getIdentifier()));
3788     ivar.add(GetMethodVarType(IVD));
3789     ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD));
3790     ivar.finishAndAddTo(ivars);
3791   }
3792 
3793   // Return null for empty list.
3794   auto count = ivars.size();
3795   if (count == 0) {
3796     ivars.abandon();
3797     ivarList.abandon();
3798     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3799   }
3800 
3801   ivars.finishAndAddTo(ivarList);
3802   ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count);
3803 
3804   llvm::GlobalVariable *GV;
3805   if (ForClass)
3806     GV =
3807         CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList,
3808                           "__OBJC,__class_vars,regular,no_dead_strip",
3809                           CGM.getPointerAlign(), true);
3810   else
3811     GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList,
3812                            "__OBJC,__instance_vars,regular,no_dead_strip",
3813                            CGM.getPointerAlign(), true);
3814   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy);
3815 }
3816 
3817 /// Build a struct objc_method_description constant for the given method.
3818 ///
3819 /// struct objc_method_description {
3820 ///   SEL method_name;
3821 ///   char *method_types;
3822 /// };
3823 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
3824                                               const ObjCMethodDecl *MD) {
3825   auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy);
3826   description.addBitCast(GetMethodVarName(MD->getSelector()),
3827                          ObjCTypes.SelectorPtrTy);
3828   description.add(GetMethodVarType(MD));
3829   description.finishAndAddTo(builder);
3830 }
3831 
3832 /// Build a struct objc_method constant for the given method.
3833 ///
3834 /// struct objc_method {
3835 ///   SEL method_name;
3836 ///   char *method_types;
3837 ///   void *method;
3838 /// };
3839 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder,
3840                                    const ObjCMethodDecl *MD) {
3841   llvm::Function *fn = GetMethodDefinition(MD);
3842   assert(fn && "no definition registered for method");
3843 
3844   auto method = builder.beginStruct(ObjCTypes.MethodTy);
3845   method.addBitCast(GetMethodVarName(MD->getSelector()),
3846                     ObjCTypes.SelectorPtrTy);
3847   method.add(GetMethodVarType(MD));
3848   method.addBitCast(fn, ObjCTypes.Int8PtrTy);
3849   method.finishAndAddTo(builder);
3850 }
3851 
3852 /// Build a struct objc_method_list or struct objc_method_description_list,
3853 /// as appropriate.
3854 ///
3855 /// struct objc_method_list {
3856 ///   struct objc_method_list *obsolete;
3857 ///   int count;
3858 ///   struct objc_method methods_list[count];
3859 /// };
3860 ///
3861 /// struct objc_method_description_list {
3862 ///   int count;
3863 ///   struct objc_method_description list[count];
3864 /// };
3865 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT,
3866                                  ArrayRef<const ObjCMethodDecl *> methods) {
3867   StringRef prefix;
3868   StringRef section;
3869   bool forProtocol = false;
3870   switch (MLT) {
3871   case MethodListType::CategoryInstanceMethods:
3872     prefix = "OBJC_CATEGORY_INSTANCE_METHODS_";
3873     section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3874     forProtocol = false;
3875     break;
3876   case MethodListType::CategoryClassMethods:
3877     prefix = "OBJC_CATEGORY_CLASS_METHODS_";
3878     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3879     forProtocol = false;
3880     break;
3881   case MethodListType::InstanceMethods:
3882     prefix = "OBJC_INSTANCE_METHODS_";
3883     section = "__OBJC,__inst_meth,regular,no_dead_strip";
3884     forProtocol = false;
3885     break;
3886   case MethodListType::ClassMethods:
3887     prefix = "OBJC_CLASS_METHODS_";
3888     section = "__OBJC,__cls_meth,regular,no_dead_strip";
3889     forProtocol = false;
3890     break;
3891   case MethodListType::ProtocolInstanceMethods:
3892     prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_";
3893     section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3894     forProtocol = true;
3895     break;
3896   case MethodListType::ProtocolClassMethods:
3897     prefix = "OBJC_PROTOCOL_CLASS_METHODS_";
3898     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3899     forProtocol = true;
3900     break;
3901   case MethodListType::OptionalProtocolInstanceMethods:
3902     prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_";
3903     section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3904     forProtocol = true;
3905     break;
3906   case MethodListType::OptionalProtocolClassMethods:
3907     prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_";
3908     section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3909     forProtocol = true;
3910     break;
3911   }
3912 
3913   // Return null for empty list.
3914   if (methods.empty())
3915     return llvm::Constant::getNullValue(forProtocol
3916                                         ? ObjCTypes.MethodDescriptionListPtrTy
3917                                         : ObjCTypes.MethodListPtrTy);
3918 
3919   // For protocols, this is an objc_method_description_list, which has
3920   // a slightly different structure.
3921   if (forProtocol) {
3922     ConstantInitBuilder builder(CGM);
3923     auto values = builder.beginStruct();
3924     values.addInt(ObjCTypes.IntTy, methods.size());
3925     auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy);
3926     for (auto MD : methods) {
3927       emitMethodDescriptionConstant(methodArray, MD);
3928     }
3929     methodArray.finishAndAddTo(values);
3930 
3931     llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3932                                                  CGM.getPointerAlign(), true);
3933     return llvm::ConstantExpr::getBitCast(GV,
3934                                           ObjCTypes.MethodDescriptionListPtrTy);
3935   }
3936 
3937   // Otherwise, it's an objc_method_list.
3938   ConstantInitBuilder builder(CGM);
3939   auto values = builder.beginStruct();
3940   values.addNullPointer(ObjCTypes.Int8PtrTy);
3941   values.addInt(ObjCTypes.IntTy, methods.size());
3942   auto methodArray = values.beginArray(ObjCTypes.MethodTy);
3943   for (auto MD : methods) {
3944     if (!MD->isDirectMethod())
3945       emitMethodConstant(methodArray, MD);
3946   }
3947   methodArray.finishAndAddTo(values);
3948 
3949   llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3950                                                CGM.getPointerAlign(), true);
3951   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy);
3952 }
3953 
3954 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
3955                                                 const ObjCContainerDecl *CD) {
3956   llvm::Function *Method;
3957 
3958   if (OMD->isDirectMethod()) {
3959     Method = GenerateDirectMethod(OMD, CD);
3960   } else {
3961     auto Name = getSymbolNameForMethod(OMD);
3962 
3963     CodeGenTypes &Types = CGM.getTypes();
3964     llvm::FunctionType *MethodTy =
3965         Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3966     Method =
3967         llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage,
3968                                Name, &CGM.getModule());
3969   }
3970 
3971   MethodDefinitions.insert(std::make_pair(OMD, Method));
3972 
3973   return Method;
3974 }
3975 
3976 llvm::Function *
3977 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD,
3978                                       const ObjCContainerDecl *CD) {
3979   auto *COMD = OMD->getCanonicalDecl();
3980   auto I = DirectMethodDefinitions.find(COMD);
3981   llvm::Function *OldFn = nullptr, *Fn = nullptr;
3982 
3983   if (I != DirectMethodDefinitions.end()) {
3984     // Objective-C allows for the declaration and implementation types
3985     // to differ slightly.
3986     //
3987     // If we're being asked for the Function associated for a method
3988     // implementation, a previous value might have been cached
3989     // based on the type of the canonical declaration.
3990     //
3991     // If these do not match, then we'll replace this function with
3992     // a new one that has the proper type below.
3993     if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType())
3994       return I->second;
3995     OldFn = I->second;
3996   }
3997 
3998   CodeGenTypes &Types = CGM.getTypes();
3999   llvm::FunctionType *MethodTy =
4000     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
4001 
4002   if (OldFn) {
4003     Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage,
4004                                 "", &CGM.getModule());
4005     Fn->takeName(OldFn);
4006     OldFn->replaceAllUsesWith(
4007         llvm::ConstantExpr::getBitCast(Fn, OldFn->getType()));
4008     OldFn->eraseFromParent();
4009 
4010     // Replace the cached function in the map.
4011     I->second = Fn;
4012   } else {
4013     auto Name = getSymbolNameForMethod(OMD, /*include category*/ false);
4014 
4015     Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage,
4016                                 Name, &CGM.getModule());
4017     DirectMethodDefinitions.insert(std::make_pair(COMD, Fn));
4018   }
4019 
4020   return Fn;
4021 }
4022 
4023 void CGObjCCommonMac::GenerateDirectMethodPrologue(
4024     CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD,
4025     const ObjCContainerDecl *CD) {
4026   auto &Builder = CGF.Builder;
4027   bool ReceiverCanBeNull = true;
4028   auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl());
4029   auto selfValue = Builder.CreateLoad(selfAddr);
4030 
4031   // Generate:
4032   //
4033   // /* for class methods only to force class lazy initialization */
4034   // self = [self self];
4035   //
4036   // /* unless the receiver is never NULL */
4037   // if (self == nil) {
4038   //     return (ReturnType){ };
4039   // }
4040   //
4041   // _cmd = @selector(...)
4042   // ...
4043 
4044   if (OMD->isClassMethod()) {
4045     const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD);
4046     assert(OID &&
4047            "GenerateDirectMethod() should be called with the Class Interface");
4048     Selector SelfSel = GetNullarySelector("self", CGM.getContext());
4049     auto ResultType = CGF.getContext().getObjCIdType();
4050     RValue result;
4051     CallArgList Args;
4052 
4053     // TODO: If this method is inlined, the caller might know that `self` is
4054     // already initialized; for example, it might be an ordinary Objective-C
4055     // method which always receives an initialized `self`, or it might have just
4056     // forced initialization on its own.
4057     //
4058     // We should find a way to eliminate this unnecessary initialization in such
4059     // cases in LLVM.
4060     result = GeneratePossiblySpecializedMessageSend(
4061         CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID,
4062         nullptr, true);
4063     Builder.CreateStore(result.getScalarVal(), selfAddr);
4064 
4065     // Nullable `Class` expressions cannot be messaged with a direct method
4066     // so the only reason why the receive can be null would be because
4067     // of weak linking.
4068     ReceiverCanBeNull = isWeakLinkedClass(OID);
4069   }
4070 
4071   if (ReceiverCanBeNull) {
4072     llvm::BasicBlock *SelfIsNilBlock =
4073         CGF.createBasicBlock("objc_direct_method.self_is_nil");
4074     llvm::BasicBlock *ContBlock =
4075         CGF.createBasicBlock("objc_direct_method.cont");
4076 
4077     // if (self == nil) {
4078     auto selfTy = cast<llvm::PointerType>(selfValue->getType());
4079     auto Zero = llvm::ConstantPointerNull::get(selfTy);
4080 
4081     llvm::MDBuilder MDHelper(CGM.getLLVMContext());
4082     Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock,
4083                          ContBlock, MDHelper.createBranchWeights(1, 1 << 20));
4084 
4085     CGF.EmitBlock(SelfIsNilBlock);
4086 
4087     //   return (ReturnType){ };
4088     auto retTy = OMD->getReturnType();
4089     Builder.SetInsertPoint(SelfIsNilBlock);
4090     if (!retTy->isVoidType()) {
4091       CGF.EmitNullInitialization(CGF.ReturnValue, retTy);
4092     }
4093     CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
4094     // }
4095 
4096     // rest of the body
4097     CGF.EmitBlock(ContBlock);
4098     Builder.SetInsertPoint(ContBlock);
4099   }
4100 
4101   // only synthesize _cmd if it's referenced
4102   if (OMD->getCmdDecl()->isUsed()) {
4103     Builder.CreateStore(GetSelector(CGF, OMD),
4104                         CGF.GetAddrOfLocalVar(OMD->getCmdDecl()));
4105   }
4106 }
4107 
4108 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
4109                                                ConstantStructBuilder &Init,
4110                                                          StringRef Section,
4111                                                          CharUnits Align,
4112                                                          bool AddToUsed) {
4113   llvm::GlobalValue::LinkageTypes LT =
4114       getLinkageTypeForObjCMetadata(CGM, Section);
4115   llvm::GlobalVariable *GV =
4116       Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT);
4117   if (!Section.empty())
4118     GV->setSection(Section);
4119   if (AddToUsed)
4120     CGM.addCompilerUsedGlobal(GV);
4121   return GV;
4122 }
4123 
4124 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
4125                                                          llvm::Constant *Init,
4126                                                          StringRef Section,
4127                                                          CharUnits Align,
4128                                                          bool AddToUsed) {
4129   llvm::Type *Ty = Init->getType();
4130   llvm::GlobalValue::LinkageTypes LT =
4131       getLinkageTypeForObjCMetadata(CGM, Section);
4132   llvm::GlobalVariable *GV =
4133       new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name);
4134   if (!Section.empty())
4135     GV->setSection(Section);
4136   GV->setAlignment(Align.getAsAlign());
4137   if (AddToUsed)
4138     CGM.addCompilerUsedGlobal(GV);
4139   return GV;
4140 }
4141 
4142 llvm::GlobalVariable *
4143 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type,
4144                                       bool ForceNonFragileABI,
4145                                       bool NullTerminate) {
4146   StringRef Label;
4147   switch (Type) {
4148   case ObjCLabelType::ClassName:     Label = "OBJC_CLASS_NAME_"; break;
4149   case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break;
4150   case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break;
4151   case ObjCLabelType::PropertyName:  Label = "OBJC_PROP_NAME_ATTR_"; break;
4152   }
4153 
4154   bool NonFragile = ForceNonFragileABI || isNonFragileABI();
4155 
4156   StringRef Section;
4157   switch (Type) {
4158   case ObjCLabelType::ClassName:
4159     Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals"
4160                          : "__TEXT,__cstring,cstring_literals";
4161     break;
4162   case ObjCLabelType::MethodVarName:
4163     Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals"
4164                          : "__TEXT,__cstring,cstring_literals";
4165     break;
4166   case ObjCLabelType::MethodVarType:
4167     Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals"
4168                          : "__TEXT,__cstring,cstring_literals";
4169     break;
4170   case ObjCLabelType::PropertyName:
4171     Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals"
4172                          : "__TEXT,__cstring,cstring_literals";
4173     break;
4174   }
4175 
4176   llvm::Constant *Value =
4177       llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate);
4178   llvm::GlobalVariable *GV =
4179       new llvm::GlobalVariable(CGM.getModule(), Value->getType(),
4180                                /*isConstant=*/true,
4181                                llvm::GlobalValue::PrivateLinkage, Value, Label);
4182   if (CGM.getTriple().isOSBinFormatMachO())
4183     GV->setSection(Section);
4184   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4185   GV->setAlignment(CharUnits::One().getAsAlign());
4186   CGM.addCompilerUsedGlobal(GV);
4187 
4188   return GV;
4189 }
4190 
4191 llvm::Function *CGObjCMac::ModuleInitFunction() {
4192   // Abuse this interface function as a place to finalize.
4193   FinishModule();
4194   return nullptr;
4195 }
4196 
4197 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() {
4198   return ObjCTypes.getGetPropertyFn();
4199 }
4200 
4201 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() {
4202   return ObjCTypes.getSetPropertyFn();
4203 }
4204 
4205 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic,
4206                                                                 bool copy) {
4207   return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
4208 }
4209 
4210 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() {
4211   return ObjCTypes.getCopyStructFn();
4212 }
4213 
4214 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() {
4215   return ObjCTypes.getCopyStructFn();
4216 }
4217 
4218 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() {
4219   return ObjCTypes.getCppAtomicObjectFunction();
4220 }
4221 
4222 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() {
4223   return ObjCTypes.getCppAtomicObjectFunction();
4224 }
4225 
4226 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() {
4227   return ObjCTypes.getEnumerationMutationFn();
4228 }
4229 
4230 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) {
4231   return EmitTryOrSynchronizedStmt(CGF, S);
4232 }
4233 
4234 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF,
4235                                      const ObjCAtSynchronizedStmt &S) {
4236   return EmitTryOrSynchronizedStmt(CGF, S);
4237 }
4238 
4239 namespace {
4240   struct PerformFragileFinally final : EHScopeStack::Cleanup {
4241     const Stmt &S;
4242     Address SyncArgSlot;
4243     Address CallTryExitVar;
4244     Address ExceptionData;
4245     ObjCTypesHelper &ObjCTypes;
4246     PerformFragileFinally(const Stmt *S,
4247                           Address SyncArgSlot,
4248                           Address CallTryExitVar,
4249                           Address ExceptionData,
4250                           ObjCTypesHelper *ObjCTypes)
4251       : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar),
4252         ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {}
4253 
4254     void Emit(CodeGenFunction &CGF, Flags flags) override {
4255       // Check whether we need to call objc_exception_try_exit.
4256       // In optimized code, this branch will always be folded.
4257       llvm::BasicBlock *FinallyCallExit =
4258         CGF.createBasicBlock("finally.call_exit");
4259       llvm::BasicBlock *FinallyNoCallExit =
4260         CGF.createBasicBlock("finally.no_call_exit");
4261       CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar),
4262                                FinallyCallExit, FinallyNoCallExit);
4263 
4264       CGF.EmitBlock(FinallyCallExit);
4265       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(),
4266                                   ExceptionData.getPointer());
4267 
4268       CGF.EmitBlock(FinallyNoCallExit);
4269 
4270       if (isa<ObjCAtTryStmt>(S)) {
4271         if (const ObjCAtFinallyStmt* FinallyStmt =
4272               cast<ObjCAtTryStmt>(S).getFinallyStmt()) {
4273           // Don't try to do the @finally if this is an EH cleanup.
4274           if (flags.isForEHCleanup()) return;
4275 
4276           // Save the current cleanup destination in case there's
4277           // control flow inside the finally statement.
4278           llvm::Value *CurCleanupDest =
4279             CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot());
4280 
4281           CGF.EmitStmt(FinallyStmt->getFinallyBody());
4282 
4283           if (CGF.HaveInsertPoint()) {
4284             CGF.Builder.CreateStore(CurCleanupDest,
4285                                     CGF.getNormalCleanupDestSlot());
4286           } else {
4287             // Currently, the end of the cleanup must always exist.
4288             CGF.EnsureInsertPoint();
4289           }
4290         }
4291       } else {
4292         // Emit objc_sync_exit(expr); as finally's sole statement for
4293         // @synchronized.
4294         llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot);
4295         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg);
4296       }
4297     }
4298   };
4299 
4300   class FragileHazards {
4301     CodeGenFunction &CGF;
4302     SmallVector<llvm::Value*, 20> Locals;
4303     llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry;
4304 
4305     llvm::InlineAsm *ReadHazard;
4306     llvm::InlineAsm *WriteHazard;
4307 
4308     llvm::FunctionType *GetAsmFnType();
4309 
4310     void collectLocals();
4311     void emitReadHazard(CGBuilderTy &Builder);
4312 
4313   public:
4314     FragileHazards(CodeGenFunction &CGF);
4315 
4316     void emitWriteHazard();
4317     void emitHazardsInNewBlocks();
4318   };
4319 } // end anonymous namespace
4320 
4321 /// Create the fragile-ABI read and write hazards based on the current
4322 /// state of the function, which is presumed to be immediately prior
4323 /// to a @try block.  These hazards are used to maintain correct
4324 /// semantics in the face of optimization and the fragile ABI's
4325 /// cavalier use of setjmp/longjmp.
4326 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) {
4327   collectLocals();
4328 
4329   if (Locals.empty()) return;
4330 
4331   // Collect all the blocks in the function.
4332   for (llvm::Function::iterator
4333          I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I)
4334     BlocksBeforeTry.insert(&*I);
4335 
4336   llvm::FunctionType *AsmFnTy = GetAsmFnType();
4337 
4338   // Create a read hazard for the allocas.  This inhibits dead-store
4339   // optimizations and forces the values to memory.  This hazard is
4340   // inserted before any 'throwing' calls in the protected scope to
4341   // reflect the possibility that the variables might be read from the
4342   // catch block if the call throws.
4343   {
4344     std::string Constraint;
4345     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4346       if (I) Constraint += ',';
4347       Constraint += "*m";
4348     }
4349 
4350     ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
4351   }
4352 
4353   // Create a write hazard for the allocas.  This inhibits folding
4354   // loads across the hazard.  This hazard is inserted at the
4355   // beginning of the catch path to reflect the possibility that the
4356   // variables might have been written within the protected scope.
4357   {
4358     std::string Constraint;
4359     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4360       if (I) Constraint += ',';
4361       Constraint += "=*m";
4362     }
4363 
4364     WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
4365   }
4366 }
4367 
4368 /// Emit a write hazard at the current location.
4369 void FragileHazards::emitWriteHazard() {
4370   if (Locals.empty()) return;
4371 
4372   CGF.EmitNounwindRuntimeCall(WriteHazard, Locals);
4373 }
4374 
4375 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) {
4376   assert(!Locals.empty());
4377   llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals);
4378   call->setDoesNotThrow();
4379   call->setCallingConv(CGF.getRuntimeCC());
4380 }
4381 
4382 /// Emit read hazards in all the protected blocks, i.e. all the blocks
4383 /// which have been inserted since the beginning of the try.
4384 void FragileHazards::emitHazardsInNewBlocks() {
4385   if (Locals.empty()) return;
4386 
4387   CGBuilderTy Builder(CGF, CGF.getLLVMContext());
4388 
4389   // Iterate through all blocks, skipping those prior to the try.
4390   for (llvm::Function::iterator
4391          FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) {
4392     llvm::BasicBlock &BB = *FI;
4393     if (BlocksBeforeTry.count(&BB)) continue;
4394 
4395     // Walk through all the calls in the block.
4396     for (llvm::BasicBlock::iterator
4397            BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) {
4398       llvm::Instruction &I = *BI;
4399 
4400       // Ignore instructions that aren't non-intrinsic calls.
4401       // These are the only calls that can possibly call longjmp.
4402       if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I))
4403         continue;
4404       if (isa<llvm::IntrinsicInst>(I))
4405         continue;
4406 
4407       // Ignore call sites marked nounwind.  This may be questionable,
4408       // since 'nounwind' doesn't necessarily mean 'does not call longjmp'.
4409       if (cast<llvm::CallBase>(I).doesNotThrow())
4410         continue;
4411 
4412       // Insert a read hazard before the call.  This will ensure that
4413       // any writes to the locals are performed before making the
4414       // call.  If the call throws, then this is sufficient to
4415       // guarantee correctness as long as it doesn't also write to any
4416       // locals.
4417       Builder.SetInsertPoint(&BB, BI);
4418       emitReadHazard(Builder);
4419     }
4420   }
4421 }
4422 
4423 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) {
4424   if (V.isValid()) S.insert(V.getPointer());
4425 }
4426 
4427 void FragileHazards::collectLocals() {
4428   // Compute a set of allocas to ignore.
4429   llvm::DenseSet<llvm::Value*> AllocasToIgnore;
4430   addIfPresent(AllocasToIgnore, CGF.ReturnValue);
4431   addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest);
4432 
4433   // Collect all the allocas currently in the function.  This is
4434   // probably way too aggressive.
4435   llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock();
4436   for (llvm::BasicBlock::iterator
4437          I = Entry.begin(), E = Entry.end(); I != E; ++I)
4438     if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I))
4439       Locals.push_back(&*I);
4440 }
4441 
4442 llvm::FunctionType *FragileHazards::GetAsmFnType() {
4443   SmallVector<llvm::Type *, 16> tys(Locals.size());
4444   for (unsigned i = 0, e = Locals.size(); i != e; ++i)
4445     tys[i] = Locals[i]->getType();
4446   return llvm::FunctionType::get(CGF.VoidTy, tys, false);
4447 }
4448 
4449 /*
4450 
4451   Objective-C setjmp-longjmp (sjlj) Exception Handling
4452   --
4453 
4454   A catch buffer is a setjmp buffer plus:
4455     - a pointer to the exception that was caught
4456     - a pointer to the previous exception data buffer
4457     - two pointers of reserved storage
4458   Therefore catch buffers form a stack, with a pointer to the top
4459   of the stack kept in thread-local storage.
4460 
4461   objc_exception_try_enter pushes a catch buffer onto the EH stack.
4462   objc_exception_try_exit pops the given catch buffer, which is
4463     required to be the top of the EH stack.
4464   objc_exception_throw pops the top of the EH stack, writes the
4465     thrown exception into the appropriate field, and longjmps
4466     to the setjmp buffer.  It crashes the process (with a printf
4467     and an abort()) if there are no catch buffers on the stack.
4468   objc_exception_extract just reads the exception pointer out of the
4469     catch buffer.
4470 
4471   There's no reason an implementation couldn't use a light-weight
4472   setjmp here --- something like __builtin_setjmp, but API-compatible
4473   with the heavyweight setjmp.  This will be more important if we ever
4474   want to implement correct ObjC/C++ exception interactions for the
4475   fragile ABI.
4476 
4477   Note that for this use of setjmp/longjmp to be correct, we may need
4478   to mark some local variables volatile: if a non-volatile local
4479   variable is modified between the setjmp and the longjmp, it has
4480   indeterminate value.  For the purposes of LLVM IR, it may be
4481   sufficient to make loads and stores within the @try (to variables
4482   declared outside the @try) volatile.  This is necessary for
4483   optimized correctness, but is not currently being done; this is
4484   being tracked as rdar://problem/8160285
4485 
4486   The basic framework for a @try-catch-finally is as follows:
4487   {
4488   objc_exception_data d;
4489   id _rethrow = null;
4490   bool _call_try_exit = true;
4491 
4492   objc_exception_try_enter(&d);
4493   if (!setjmp(d.jmp_buf)) {
4494   ... try body ...
4495   } else {
4496   // exception path
4497   id _caught = objc_exception_extract(&d);
4498 
4499   // enter new try scope for handlers
4500   if (!setjmp(d.jmp_buf)) {
4501   ... match exception and execute catch blocks ...
4502 
4503   // fell off end, rethrow.
4504   _rethrow = _caught;
4505   ... jump-through-finally to finally_rethrow ...
4506   } else {
4507   // exception in catch block
4508   _rethrow = objc_exception_extract(&d);
4509   _call_try_exit = false;
4510   ... jump-through-finally to finally_rethrow ...
4511   }
4512   }
4513   ... jump-through-finally to finally_end ...
4514 
4515   finally:
4516   if (_call_try_exit)
4517   objc_exception_try_exit(&d);
4518 
4519   ... finally block ....
4520   ... dispatch to finally destination ...
4521 
4522   finally_rethrow:
4523   objc_exception_throw(_rethrow);
4524 
4525   finally_end:
4526   }
4527 
4528   This framework differs slightly from the one gcc uses, in that gcc
4529   uses _rethrow to determine if objc_exception_try_exit should be called
4530   and if the object should be rethrown. This breaks in the face of
4531   throwing nil and introduces unnecessary branches.
4532 
4533   We specialize this framework for a few particular circumstances:
4534 
4535   - If there are no catch blocks, then we avoid emitting the second
4536   exception handling context.
4537 
4538   - If there is a catch-all catch block (i.e. @catch(...) or @catch(id
4539   e)) we avoid emitting the code to rethrow an uncaught exception.
4540 
4541   - FIXME: If there is no @finally block we can do a few more
4542   simplifications.
4543 
4544   Rethrows and Jumps-Through-Finally
4545   --
4546 
4547   '@throw;' is supported by pushing the currently-caught exception
4548   onto ObjCEHStack while the @catch blocks are emitted.
4549 
4550   Branches through the @finally block are handled with an ordinary
4551   normal cleanup.  We do not register an EH cleanup; fragile-ABI ObjC
4552   exceptions are not compatible with C++ exceptions, and this is
4553   hardly the only place where this will go wrong.
4554 
4555   @synchronized(expr) { stmt; } is emitted as if it were:
4556     id synch_value = expr;
4557     objc_sync_enter(synch_value);
4558     @try { stmt; } @finally { objc_sync_exit(synch_value); }
4559 */
4560 
4561 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
4562                                           const Stmt &S) {
4563   bool isTry = isa<ObjCAtTryStmt>(S);
4564 
4565   // A destination for the fall-through edges of the catch handlers to
4566   // jump to.
4567   CodeGenFunction::JumpDest FinallyEnd =
4568     CGF.getJumpDestInCurrentScope("finally.end");
4569 
4570   // A destination for the rethrow edge of the catch handlers to jump
4571   // to.
4572   CodeGenFunction::JumpDest FinallyRethrow =
4573     CGF.getJumpDestInCurrentScope("finally.rethrow");
4574 
4575   // For @synchronized, call objc_sync_enter(sync.expr). The
4576   // evaluation of the expression must occur before we enter the
4577   // @synchronized.  We can't avoid a temp here because we need the
4578   // value to be preserved.  If the backend ever does liveness
4579   // correctly after setjmp, this will be unnecessary.
4580   Address SyncArgSlot = Address::invalid();
4581   if (!isTry) {
4582     llvm::Value *SyncArg =
4583       CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
4584     SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
4585     CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg);
4586 
4587     SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(),
4588                                        CGF.getPointerAlign(), "sync.arg");
4589     CGF.Builder.CreateStore(SyncArg, SyncArgSlot);
4590   }
4591 
4592   // Allocate memory for the setjmp buffer.  This needs to be kept
4593   // live throughout the try and catch blocks.
4594   Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
4595                                                CGF.getPointerAlign(),
4596                                                "exceptiondata.ptr");
4597 
4598   // Create the fragile hazards.  Note that this will not capture any
4599   // of the allocas required for exception processing, but will
4600   // capture the current basic block (which extends all the way to the
4601   // setjmp call) as "before the @try".
4602   FragileHazards Hazards(CGF);
4603 
4604   // Create a flag indicating whether the cleanup needs to call
4605   // objc_exception_try_exit.  This is true except when
4606   //   - no catches match and we're branching through the cleanup
4607   //     just to rethrow the exception, or
4608   //   - a catch matched and we're falling out of the catch handler.
4609   // The setjmp-safety rule here is that we should always store to this
4610   // variable in a place that dominates the branch through the cleanup
4611   // without passing through any setjmps.
4612   Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(),
4613                                                 CharUnits::One(),
4614                                                 "_call_try_exit");
4615 
4616   // A slot containing the exception to rethrow.  Only needed when we
4617   // have both a @catch and a @finally.
4618   Address PropagatingExnVar = Address::invalid();
4619 
4620   // Push a normal cleanup to leave the try scope.
4621   CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S,
4622                                                  SyncArgSlot,
4623                                                  CallTryExitVar,
4624                                                  ExceptionData,
4625                                                  &ObjCTypes);
4626 
4627   // Enter a try block:
4628   //  - Call objc_exception_try_enter to push ExceptionData on top of
4629   //    the EH stack.
4630   CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4631                               ExceptionData.getPointer());
4632 
4633   //  - Call setjmp on the exception data buffer.
4634   llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
4635   llvm::Value *GEPIndexes[] = { Zero, Zero, Zero };
4636   llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP(
4637       ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes,
4638       "setjmp_buffer");
4639   llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall(
4640       ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result");
4641   SetJmpResult->setCanReturnTwice();
4642 
4643   // If setjmp returned 0, enter the protected block; otherwise,
4644   // branch to the handler.
4645   llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
4646   llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
4647   llvm::Value *DidCatch =
4648     CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4649   CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock);
4650 
4651   // Emit the protected block.
4652   CGF.EmitBlock(TryBlock);
4653   CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4654   CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
4655                      : cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
4656 
4657   CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP();
4658 
4659   // Emit the exception handler block.
4660   CGF.EmitBlock(TryHandler);
4661 
4662   // Don't optimize loads of the in-scope locals across this point.
4663   Hazards.emitWriteHazard();
4664 
4665   // For a @synchronized (or a @try with no catches), just branch
4666   // through the cleanup to the rethrow block.
4667   if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) {
4668     // Tell the cleanup not to re-pop the exit.
4669     CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4670     CGF.EmitBranchThroughCleanup(FinallyRethrow);
4671 
4672   // Otherwise, we have to match against the caught exceptions.
4673   } else {
4674     // Retrieve the exception object.  We may emit multiple blocks but
4675     // nothing can cross this so the value is already in SSA form.
4676     llvm::CallInst *Caught =
4677       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4678                                   ExceptionData.getPointer(), "caught");
4679 
4680     // Push the exception to rethrow onto the EH value stack for the
4681     // benefit of any @throws in the handlers.
4682     CGF.ObjCEHValueStack.push_back(Caught);
4683 
4684     const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S);
4685 
4686     bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr);
4687 
4688     llvm::BasicBlock *CatchBlock = nullptr;
4689     llvm::BasicBlock *CatchHandler = nullptr;
4690     if (HasFinally) {
4691       // Save the currently-propagating exception before
4692       // objc_exception_try_enter clears the exception slot.
4693       PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(),
4694                                                CGF.getPointerAlign(),
4695                                                "propagating_exception");
4696       CGF.Builder.CreateStore(Caught, PropagatingExnVar);
4697 
4698       // Enter a new exception try block (in case a @catch block
4699       // throws an exception).
4700       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4701                                   ExceptionData.getPointer());
4702 
4703       llvm::CallInst *SetJmpResult =
4704         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(),
4705                                     SetJmpBuffer, "setjmp.result");
4706       SetJmpResult->setCanReturnTwice();
4707 
4708       llvm::Value *Threw =
4709         CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4710 
4711       CatchBlock = CGF.createBasicBlock("catch");
4712       CatchHandler = CGF.createBasicBlock("catch_for_catch");
4713       CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock);
4714 
4715       CGF.EmitBlock(CatchBlock);
4716     }
4717 
4718     CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar);
4719 
4720     // Handle catch list. As a special case we check if everything is
4721     // matched and avoid generating code for falling off the end if
4722     // so.
4723     bool AllMatched = false;
4724     for (const ObjCAtCatchStmt *CatchStmt : AtTryStmt->catch_stmts()) {
4725       const VarDecl *CatchParam = CatchStmt->getCatchParamDecl();
4726       const ObjCObjectPointerType *OPT = nullptr;
4727 
4728       // catch(...) always matches.
4729       if (!CatchParam) {
4730         AllMatched = true;
4731       } else {
4732         OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
4733 
4734         // catch(id e) always matches under this ABI, since only
4735         // ObjC exceptions end up here in the first place.
4736         // FIXME: For the time being we also match id<X>; this should
4737         // be rejected by Sema instead.
4738         if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
4739           AllMatched = true;
4740       }
4741 
4742       // If this is a catch-all, we don't need to test anything.
4743       if (AllMatched) {
4744         CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4745 
4746         if (CatchParam) {
4747           CGF.EmitAutoVarDecl(*CatchParam);
4748           assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4749 
4750           // These types work out because ConvertType(id) == i8*.
4751           EmitInitOfCatchParam(CGF, Caught, CatchParam);
4752         }
4753 
4754         CGF.EmitStmt(CatchStmt->getCatchBody());
4755 
4756         // The scope of the catch variable ends right here.
4757         CatchVarCleanups.ForceCleanup();
4758 
4759         CGF.EmitBranchThroughCleanup(FinallyEnd);
4760         break;
4761       }
4762 
4763       assert(OPT && "Unexpected non-object pointer type in @catch");
4764       const ObjCObjectType *ObjTy = OPT->getObjectType();
4765 
4766       // FIXME: @catch (Class c) ?
4767       ObjCInterfaceDecl *IDecl = ObjTy->getInterface();
4768       assert(IDecl && "Catch parameter must have Objective-C type!");
4769 
4770       // Check if the @catch block matches the exception object.
4771       llvm::Value *Class = EmitClassRef(CGF, IDecl);
4772 
4773       llvm::Value *matchArgs[] = { Class, Caught };
4774       llvm::CallInst *Match =
4775         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(),
4776                                     matchArgs, "match");
4777 
4778       llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match");
4779       llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next");
4780 
4781       CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
4782                                MatchedBlock, NextCatchBlock);
4783 
4784       // Emit the @catch block.
4785       CGF.EmitBlock(MatchedBlock);
4786 
4787       // Collect any cleanups for the catch variable.  The scope lasts until
4788       // the end of the catch body.
4789       CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4790 
4791       CGF.EmitAutoVarDecl(*CatchParam);
4792       assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4793 
4794       // Initialize the catch variable.
4795       llvm::Value *Tmp =
4796         CGF.Builder.CreateBitCast(Caught,
4797                                   CGF.ConvertType(CatchParam->getType()));
4798       EmitInitOfCatchParam(CGF, Tmp, CatchParam);
4799 
4800       CGF.EmitStmt(CatchStmt->getCatchBody());
4801 
4802       // We're done with the catch variable.
4803       CatchVarCleanups.ForceCleanup();
4804 
4805       CGF.EmitBranchThroughCleanup(FinallyEnd);
4806 
4807       CGF.EmitBlock(NextCatchBlock);
4808     }
4809 
4810     CGF.ObjCEHValueStack.pop_back();
4811 
4812     // If nothing wanted anything to do with the caught exception,
4813     // kill the extract call.
4814     if (Caught->use_empty())
4815       Caught->eraseFromParent();
4816 
4817     if (!AllMatched)
4818       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4819 
4820     if (HasFinally) {
4821       // Emit the exception handler for the @catch blocks.
4822       CGF.EmitBlock(CatchHandler);
4823 
4824       // In theory we might now need a write hazard, but actually it's
4825       // unnecessary because there's no local-accessing code between
4826       // the try's write hazard and here.
4827       //Hazards.emitWriteHazard();
4828 
4829       // Extract the new exception and save it to the
4830       // propagating-exception slot.
4831       assert(PropagatingExnVar.isValid());
4832       llvm::CallInst *NewCaught =
4833         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4834                                     ExceptionData.getPointer(), "caught");
4835       CGF.Builder.CreateStore(NewCaught, PropagatingExnVar);
4836 
4837       // Don't pop the catch handler; the throw already did.
4838       CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4839       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4840     }
4841   }
4842 
4843   // Insert read hazards as required in the new blocks.
4844   Hazards.emitHazardsInNewBlocks();
4845 
4846   // Pop the cleanup.
4847   CGF.Builder.restoreIP(TryFallthroughIP);
4848   if (CGF.HaveInsertPoint())
4849     CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4850   CGF.PopCleanupBlock();
4851   CGF.EmitBlock(FinallyEnd.getBlock(), true);
4852 
4853   // Emit the rethrow block.
4854   CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
4855   CGF.EmitBlock(FinallyRethrow.getBlock(), true);
4856   if (CGF.HaveInsertPoint()) {
4857     // If we have a propagating-exception variable, check it.
4858     llvm::Value *PropagatingExn;
4859     if (PropagatingExnVar.isValid()) {
4860       PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar);
4861 
4862     // Otherwise, just look in the buffer for the exception to throw.
4863     } else {
4864       llvm::CallInst *Caught =
4865         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4866                                     ExceptionData.getPointer());
4867       PropagatingExn = Caught;
4868     }
4869 
4870     CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(),
4871                                 PropagatingExn);
4872     CGF.Builder.CreateUnreachable();
4873   }
4874 
4875   CGF.Builder.restoreIP(SavedIP);
4876 }
4877 
4878 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
4879                               const ObjCAtThrowStmt &S,
4880                               bool ClearInsertionPoint) {
4881   llvm::Value *ExceptionAsObject;
4882 
4883   if (const Expr *ThrowExpr = S.getThrowExpr()) {
4884     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4885     ExceptionAsObject =
4886       CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
4887   } else {
4888     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4889            "Unexpected rethrow outside @catch block.");
4890     ExceptionAsObject = CGF.ObjCEHValueStack.back();
4891   }
4892 
4893   CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject)
4894     ->setDoesNotReturn();
4895   CGF.Builder.CreateUnreachable();
4896 
4897   // Clear the insertion point to indicate we are in unreachable code.
4898   if (ClearInsertionPoint)
4899     CGF.Builder.ClearInsertionPoint();
4900 }
4901 
4902 /// EmitObjCWeakRead - Code gen for loading value of a __weak
4903 /// object: objc_read_weak (id *src)
4904 ///
4905 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
4906                                           Address AddrWeakObj) {
4907   llvm::Type* DestTy = AddrWeakObj.getElementType();
4908   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj,
4909                                           ObjCTypes.PtrObjectPtrTy);
4910   llvm::Value *read_weak =
4911     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
4912                                 AddrWeakObj.getPointer(), "weakread");
4913   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
4914   return read_weak;
4915 }
4916 
4917 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
4918 /// objc_assign_weak (id src, id *dst)
4919 ///
4920 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
4921                                    llvm::Value *src, Address dst) {
4922   llvm::Type * SrcTy = src->getType();
4923   if (!isa<llvm::PointerType>(SrcTy)) {
4924     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4925     assert(Size <= 8 && "does not support size > 8");
4926     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4927                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4928     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4929   }
4930   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4931   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4932   llvm::Value *args[] = { src, dst.getPointer() };
4933   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
4934                               args, "weakassign");
4935 }
4936 
4937 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
4938 /// objc_assign_global (id src, id *dst)
4939 ///
4940 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
4941                                      llvm::Value *src, Address dst,
4942                                      bool threadlocal) {
4943   llvm::Type * SrcTy = src->getType();
4944   if (!isa<llvm::PointerType>(SrcTy)) {
4945     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4946     assert(Size <= 8 && "does not support size > 8");
4947     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4948                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4949     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4950   }
4951   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4952   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4953   llvm::Value *args[] = { src, dst.getPointer() };
4954   if (!threadlocal)
4955     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
4956                                 args, "globalassign");
4957   else
4958     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
4959                                 args, "threadlocalassign");
4960 }
4961 
4962 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
4963 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset)
4964 ///
4965 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
4966                                    llvm::Value *src, Address dst,
4967                                    llvm::Value *ivarOffset) {
4968   assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL");
4969   llvm::Type * SrcTy = src->getType();
4970   if (!isa<llvm::PointerType>(SrcTy)) {
4971     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4972     assert(Size <= 8 && "does not support size > 8");
4973     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4974                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4975     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4976   }
4977   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4978   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4979   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
4980   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
4981 }
4982 
4983 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
4984 /// objc_assign_strongCast (id src, id *dst)
4985 ///
4986 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
4987                                          llvm::Value *src, Address dst) {
4988   llvm::Type * SrcTy = src->getType();
4989   if (!isa<llvm::PointerType>(SrcTy)) {
4990     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4991     assert(Size <= 8 && "does not support size > 8");
4992     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4993                       : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4994     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4995   }
4996   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4997   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4998   llvm::Value *args[] = { src, dst.getPointer() };
4999   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
5000                               args, "strongassign");
5001 }
5002 
5003 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
5004                                          Address DestPtr,
5005                                          Address SrcPtr,
5006                                          llvm::Value *size) {
5007   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
5008   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
5009   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size };
5010   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
5011 }
5012 
5013 /// EmitObjCValueForIvar - Code Gen for ivar reference.
5014 ///
5015 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
5016                                        QualType ObjectTy,
5017                                        llvm::Value *BaseValue,
5018                                        const ObjCIvarDecl *Ivar,
5019                                        unsigned CVRQualifiers) {
5020   const ObjCInterfaceDecl *ID =
5021     ObjectTy->castAs<ObjCObjectType>()->getInterface();
5022   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
5023                                   EmitIvarOffset(CGF, ID, Ivar));
5024 }
5025 
5026 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
5027                                        const ObjCInterfaceDecl *Interface,
5028                                        const ObjCIvarDecl *Ivar) {
5029   uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
5030   return llvm::ConstantInt::get(
5031     CGM.getTypes().ConvertType(CGM.getContext().LongTy),
5032     Offset);
5033 }
5034 
5035 /* *** Private Interface *** */
5036 
5037 std::string CGObjCCommonMac::GetSectionName(StringRef Section,
5038                                             StringRef MachOAttributes) {
5039   switch (CGM.getTriple().getObjectFormat()) {
5040   case llvm::Triple::UnknownObjectFormat:
5041     llvm_unreachable("unexpected object file format");
5042   case llvm::Triple::MachO: {
5043     if (MachOAttributes.empty())
5044       return ("__DATA," + Section).str();
5045     return ("__DATA," + Section + "," + MachOAttributes).str();
5046   }
5047   case llvm::Triple::ELF:
5048     assert(Section.substr(0, 2) == "__" &&
5049            "expected the name to begin with __");
5050     return Section.substr(2).str();
5051   case llvm::Triple::COFF:
5052     assert(Section.substr(0, 2) == "__" &&
5053            "expected the name to begin with __");
5054     return ("." + Section.substr(2) + "$B").str();
5055   case llvm::Triple::Wasm:
5056   case llvm::Triple::GOFF:
5057   case llvm::Triple::XCOFF:
5058     llvm::report_fatal_error(
5059         "Objective-C support is unimplemented for object file format");
5060   }
5061 
5062   llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum");
5063 }
5064 
5065 /// EmitImageInfo - Emit the image info marker used to encode some module
5066 /// level information.
5067 ///
5068 /// See: <rdr://4810609&4810587&4810587>
5069 /// struct IMAGE_INFO {
5070 ///   unsigned version;
5071 ///   unsigned flags;
5072 /// };
5073 enum ImageInfoFlags {
5074   eImageInfo_FixAndContinue      = (1 << 0), // This flag is no longer set by clang.
5075   eImageInfo_GarbageCollected    = (1 << 1),
5076   eImageInfo_GCOnly              = (1 << 2),
5077   eImageInfo_OptimizedByDyld     = (1 << 3), // This flag is set by the dyld shared cache.
5078 
5079   // A flag indicating that the module has no instances of a @synthesize of a
5080   // superclass variable. <rdar://problem/6803242>
5081   eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang.
5082   eImageInfo_ImageIsSimulated    = (1 << 5),
5083   eImageInfo_ClassProperties     = (1 << 6)
5084 };
5085 
5086 void CGObjCCommonMac::EmitImageInfo() {
5087   unsigned version = 0; // Version is unused?
5088   std::string Section =
5089       (ObjCABI == 1)
5090           ? "__OBJC,__image_info,regular"
5091           : GetSectionName("__objc_imageinfo", "regular,no_dead_strip");
5092 
5093   // Generate module-level named metadata to convey this information to the
5094   // linker and code-gen.
5095   llvm::Module &Mod = CGM.getModule();
5096 
5097   // Add the ObjC ABI version to the module flags.
5098   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI);
5099   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version",
5100                     version);
5101   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section",
5102                     llvm::MDString::get(VMContext, Section));
5103 
5104   auto Int8Ty = llvm::Type::getInt8Ty(VMContext);
5105   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5106     // Non-GC overrides those files which specify GC.
5107     Mod.addModuleFlag(llvm::Module::Error,
5108                       "Objective-C Garbage Collection",
5109                       llvm::ConstantInt::get(Int8Ty,0));
5110   } else {
5111     // Add the ObjC garbage collection value.
5112     Mod.addModuleFlag(llvm::Module::Error,
5113                       "Objective-C Garbage Collection",
5114                       llvm::ConstantInt::get(Int8Ty,
5115                         (uint8_t)eImageInfo_GarbageCollected));
5116 
5117     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
5118       // Add the ObjC GC Only value.
5119       Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only",
5120                         eImageInfo_GCOnly);
5121 
5122       // Require that GC be specified and set to eImageInfo_GarbageCollected.
5123       llvm::Metadata *Ops[2] = {
5124           llvm::MDString::get(VMContext, "Objective-C Garbage Collection"),
5125           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
5126               Int8Ty, eImageInfo_GarbageCollected))};
5127       Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only",
5128                         llvm::MDNode::get(VMContext, Ops));
5129     }
5130   }
5131 
5132   // Indicate whether we're compiling this to run on a simulator.
5133   if (CGM.getTarget().getTriple().isSimulatorEnvironment())
5134     Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated",
5135                       eImageInfo_ImageIsSimulated);
5136 
5137   // Indicate whether we are generating class properties.
5138   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties",
5139                     eImageInfo_ClassProperties);
5140 }
5141 
5142 // struct objc_module {
5143 //   unsigned long version;
5144 //   unsigned long size;
5145 //   const char *name;
5146 //   Symtab symtab;
5147 // };
5148 
5149 // FIXME: Get from somewhere
5150 static const int ModuleVersion = 7;
5151 
5152 void CGObjCMac::EmitModuleInfo() {
5153   uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy);
5154 
5155   ConstantInitBuilder builder(CGM);
5156   auto values = builder.beginStruct(ObjCTypes.ModuleTy);
5157   values.addInt(ObjCTypes.LongTy, ModuleVersion);
5158   values.addInt(ObjCTypes.LongTy, Size);
5159   // This used to be the filename, now it is unused. <rdr://4327263>
5160   values.add(GetClassName(StringRef("")));
5161   values.add(EmitModuleSymbols());
5162   CreateMetadataVar("OBJC_MODULES", values,
5163                     "__OBJC,__module_info,regular,no_dead_strip",
5164                     CGM.getPointerAlign(), true);
5165 }
5166 
5167 llvm::Constant *CGObjCMac::EmitModuleSymbols() {
5168   unsigned NumClasses = DefinedClasses.size();
5169   unsigned NumCategories = DefinedCategories.size();
5170 
5171   // Return null if no symbols were defined.
5172   if (!NumClasses && !NumCategories)
5173     return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
5174 
5175   ConstantInitBuilder builder(CGM);
5176   auto values = builder.beginStruct();
5177   values.addInt(ObjCTypes.LongTy, 0);
5178   values.addNullPointer(ObjCTypes.SelectorPtrTy);
5179   values.addInt(ObjCTypes.ShortTy, NumClasses);
5180   values.addInt(ObjCTypes.ShortTy, NumCategories);
5181 
5182   // The runtime expects exactly the list of defined classes followed
5183   // by the list of defined categories, in a single array.
5184   auto array = values.beginArray(ObjCTypes.Int8PtrTy);
5185   for (unsigned i=0; i<NumClasses; i++) {
5186     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
5187     assert(ID);
5188     if (ObjCImplementationDecl *IMP = ID->getImplementation())
5189       // We are implementing a weak imported interface. Give it external linkage
5190       if (ID->isWeakImported() && !IMP->isWeakImported())
5191         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5192 
5193     array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy);
5194   }
5195   for (unsigned i=0; i<NumCategories; i++)
5196     array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy);
5197 
5198   array.finishAndAddTo(values);
5199 
5200   llvm::GlobalVariable *GV = CreateMetadataVar(
5201       "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip",
5202       CGM.getPointerAlign(), true);
5203   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy);
5204 }
5205 
5206 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF,
5207                                            IdentifierInfo *II) {
5208   LazySymbols.insert(II);
5209 
5210   llvm::GlobalVariable *&Entry = ClassReferences[II];
5211 
5212   if (!Entry) {
5213     llvm::Constant *Casted =
5214     llvm::ConstantExpr::getBitCast(GetClassName(II->getName()),
5215                                    ObjCTypes.ClassPtrTy);
5216     Entry = CreateMetadataVar(
5217         "OBJC_CLASS_REFERENCES_", Casted,
5218         "__OBJC,__cls_refs,literal_pointers,no_dead_strip",
5219         CGM.getPointerAlign(), true);
5220   }
5221 
5222   return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry,
5223                                        CGF.getPointerAlign());
5224 }
5225 
5226 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF,
5227                                      const ObjCInterfaceDecl *ID) {
5228   // If the class has the objc_runtime_visible attribute, we need to
5229   // use the Objective-C runtime to get the class.
5230   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
5231     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
5232 
5233   IdentifierInfo *RuntimeName =
5234       &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString());
5235   return EmitClassRefFromId(CGF, RuntimeName);
5236 }
5237 
5238 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
5239   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
5240   return EmitClassRefFromId(CGF, II);
5241 }
5242 
5243 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) {
5244   return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel));
5245 }
5246 
5247 Address CGObjCMac::EmitSelectorAddr(Selector Sel) {
5248   CharUnits Align = CGM.getPointerAlign();
5249 
5250   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
5251   if (!Entry) {
5252     llvm::Constant *Casted =
5253       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
5254                                      ObjCTypes.SelectorPtrTy);
5255     Entry = CreateMetadataVar(
5256         "OBJC_SELECTOR_REFERENCES_", Casted,
5257         "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true);
5258     Entry->setExternallyInitialized(true);
5259   }
5260 
5261   return Address(Entry, Align);
5262 }
5263 
5264 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) {
5265     llvm::GlobalVariable *&Entry = ClassNames[RuntimeName];
5266     if (!Entry)
5267       Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName);
5268     return getConstantGEP(VMContext, Entry, 0, 0);
5269 }
5270 
5271 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) {
5272   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator
5273       I = MethodDefinitions.find(MD);
5274   if (I != MethodDefinitions.end())
5275     return I->second;
5276 
5277   return nullptr;
5278 }
5279 
5280 /// GetIvarLayoutName - Returns a unique constant for the given
5281 /// ivar layout bitmap.
5282 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
5283                                        const ObjCCommonTypesHelper &ObjCTypes) {
5284   return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
5285 }
5286 
5287 void IvarLayoutBuilder::visitRecord(const RecordType *RT,
5288                                     CharUnits offset) {
5289   const RecordDecl *RD = RT->getDecl();
5290 
5291   // If this is a union, remember that we had one, because it might mess
5292   // up the ordering of layout entries.
5293   if (RD->isUnion())
5294     IsDisordered = true;
5295 
5296   const ASTRecordLayout *recLayout = nullptr;
5297   visitAggregate(RD->field_begin(), RD->field_end(), offset,
5298                  [&](const FieldDecl *field) -> CharUnits {
5299     if (!recLayout)
5300       recLayout = &CGM.getContext().getASTRecordLayout(RD);
5301     auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex());
5302     return CGM.getContext().toCharUnitsFromBits(offsetInBits);
5303   });
5304 }
5305 
5306 template <class Iterator, class GetOffsetFn>
5307 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end,
5308                                        CharUnits aggregateOffset,
5309                                        const GetOffsetFn &getOffset) {
5310   for (; begin != end; ++begin) {
5311     auto field = *begin;
5312 
5313     // Skip over bitfields.
5314     if (field->isBitField()) {
5315       continue;
5316     }
5317 
5318     // Compute the offset of the field within the aggregate.
5319     CharUnits fieldOffset = aggregateOffset + getOffset(field);
5320 
5321     visitField(field, fieldOffset);
5322   }
5323 }
5324 
5325 /// Collect layout information for the given fields into IvarsInfo.
5326 void IvarLayoutBuilder::visitField(const FieldDecl *field,
5327                                    CharUnits fieldOffset) {
5328   QualType fieldType = field->getType();
5329 
5330   // Drill down into arrays.
5331   uint64_t numElts = 1;
5332   if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) {
5333     numElts = 0;
5334     fieldType = arrayType->getElementType();
5335   }
5336   // Unlike incomplete arrays, constant arrays can be nested.
5337   while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) {
5338     numElts *= arrayType->getSize().getZExtValue();
5339     fieldType = arrayType->getElementType();
5340   }
5341 
5342   assert(!fieldType->isArrayType() && "ivar of non-constant array type?");
5343 
5344   // If we ended up with a zero-sized array, we've done what we can do within
5345   // the limits of this layout encoding.
5346   if (numElts == 0) return;
5347 
5348   // Recurse if the base element type is a record type.
5349   if (auto recType = fieldType->getAs<RecordType>()) {
5350     size_t oldEnd = IvarsInfo.size();
5351 
5352     visitRecord(recType, fieldOffset);
5353 
5354     // If we have an array, replicate the first entry's layout information.
5355     auto numEltEntries = IvarsInfo.size() - oldEnd;
5356     if (numElts != 1 && numEltEntries != 0) {
5357       CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType);
5358       for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) {
5359         // Copy the last numEltEntries onto the end of the array, adjusting
5360         // each for the element size.
5361         for (size_t i = 0; i != numEltEntries; ++i) {
5362           auto firstEntry = IvarsInfo[oldEnd + i];
5363           IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize,
5364                                        firstEntry.SizeInWords));
5365         }
5366       }
5367     }
5368 
5369     return;
5370   }
5371 
5372   // Classify the element type.
5373   Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType);
5374 
5375   // If it matches what we're looking for, add an entry.
5376   if ((ForStrongLayout && GCAttr == Qualifiers::Strong)
5377       || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) {
5378     assert(CGM.getContext().getTypeSizeInChars(fieldType)
5379              == CGM.getPointerSize());
5380     IvarsInfo.push_back(IvarInfo(fieldOffset, numElts));
5381   }
5382 }
5383 
5384 /// buildBitmap - This routine does the horsework of taking the offsets of
5385 /// strong/weak references and creating a bitmap.  The bitmap is also
5386 /// returned in the given buffer, suitable for being passed to \c dump().
5387 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC,
5388                                 llvm::SmallVectorImpl<unsigned char> &buffer) {
5389   // The bitmap is a series of skip/scan instructions, aligned to word
5390   // boundaries.  The skip is performed first.
5391   const unsigned char MaxNibble = 0xF;
5392   const unsigned char SkipMask = 0xF0, SkipShift = 4;
5393   const unsigned char ScanMask = 0x0F, ScanShift = 0;
5394 
5395   assert(!IvarsInfo.empty() && "generating bitmap for no data");
5396 
5397   // Sort the ivar info on byte position in case we encounterred a
5398   // union nested in the ivar list.
5399   if (IsDisordered) {
5400     // This isn't a stable sort, but our algorithm should handle it fine.
5401     llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end());
5402   } else {
5403     assert(llvm::is_sorted(IvarsInfo));
5404   }
5405   assert(IvarsInfo.back().Offset < InstanceEnd);
5406 
5407   assert(buffer.empty());
5408 
5409   // Skip the next N words.
5410   auto skip = [&](unsigned numWords) {
5411     assert(numWords > 0);
5412 
5413     // Try to merge into the previous byte.  Since scans happen second, we
5414     // can't do this if it includes a scan.
5415     if (!buffer.empty() && !(buffer.back() & ScanMask)) {
5416       unsigned lastSkip = buffer.back() >> SkipShift;
5417       if (lastSkip < MaxNibble) {
5418         unsigned claimed = std::min(MaxNibble - lastSkip, numWords);
5419         numWords -= claimed;
5420         lastSkip += claimed;
5421         buffer.back() = (lastSkip << SkipShift);
5422       }
5423     }
5424 
5425     while (numWords >= MaxNibble) {
5426       buffer.push_back(MaxNibble << SkipShift);
5427       numWords -= MaxNibble;
5428     }
5429     if (numWords) {
5430       buffer.push_back(numWords << SkipShift);
5431     }
5432   };
5433 
5434   // Scan the next N words.
5435   auto scan = [&](unsigned numWords) {
5436     assert(numWords > 0);
5437 
5438     // Try to merge into the previous byte.  Since scans happen second, we can
5439     // do this even if it includes a skip.
5440     if (!buffer.empty()) {
5441       unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift;
5442       if (lastScan < MaxNibble) {
5443         unsigned claimed = std::min(MaxNibble - lastScan, numWords);
5444         numWords -= claimed;
5445         lastScan += claimed;
5446         buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift);
5447       }
5448     }
5449 
5450     while (numWords >= MaxNibble) {
5451       buffer.push_back(MaxNibble << ScanShift);
5452       numWords -= MaxNibble;
5453     }
5454     if (numWords) {
5455       buffer.push_back(numWords << ScanShift);
5456     }
5457   };
5458 
5459   // One past the end of the last scan.
5460   unsigned endOfLastScanInWords = 0;
5461   const CharUnits WordSize = CGM.getPointerSize();
5462 
5463   // Consider all the scan requests.
5464   for (auto &request : IvarsInfo) {
5465     CharUnits beginOfScan = request.Offset - InstanceBegin;
5466 
5467     // Ignore scan requests that don't start at an even multiple of the
5468     // word size.  We can't encode them.
5469     if ((beginOfScan % WordSize) != 0) continue;
5470 
5471     // Ignore scan requests that start before the instance start.
5472     // This assumes that scans never span that boundary.  The boundary
5473     // isn't the true start of the ivars, because in the fragile-ARC case
5474     // it's rounded up to word alignment, but the test above should leave
5475     // us ignoring that possibility.
5476     if (beginOfScan.isNegative()) {
5477       assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin);
5478       continue;
5479     }
5480 
5481     unsigned beginOfScanInWords = beginOfScan / WordSize;
5482     unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords;
5483 
5484     // If the scan starts some number of words after the last one ended,
5485     // skip forward.
5486     if (beginOfScanInWords > endOfLastScanInWords) {
5487       skip(beginOfScanInWords - endOfLastScanInWords);
5488 
5489     // Otherwise, start scanning where the last left off.
5490     } else {
5491       beginOfScanInWords = endOfLastScanInWords;
5492 
5493       // If that leaves us with nothing to scan, ignore this request.
5494       if (beginOfScanInWords >= endOfScanInWords) continue;
5495     }
5496 
5497     // Scan to the end of the request.
5498     assert(beginOfScanInWords < endOfScanInWords);
5499     scan(endOfScanInWords - beginOfScanInWords);
5500     endOfLastScanInWords = endOfScanInWords;
5501   }
5502 
5503   if (buffer.empty())
5504     return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
5505 
5506   // For GC layouts, emit a skip to the end of the allocation so that we
5507   // have precise information about the entire thing.  This isn't useful
5508   // or necessary for the ARC-style layout strings.
5509   if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
5510     unsigned lastOffsetInWords =
5511       (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize;
5512     if (lastOffsetInWords > endOfLastScanInWords) {
5513       skip(lastOffsetInWords - endOfLastScanInWords);
5514     }
5515   }
5516 
5517   // Null terminate the string.
5518   buffer.push_back(0);
5519 
5520   auto *Entry = CGObjC.CreateCStringLiteral(
5521       reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName);
5522   return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0);
5523 }
5524 
5525 /// BuildIvarLayout - Builds ivar layout bitmap for the class
5526 /// implementation for the __strong or __weak case.
5527 /// The layout map displays which words in ivar list must be skipped
5528 /// and which must be scanned by GC (see below). String is built of bytes.
5529 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
5530 /// of words to skip and right nibble is count of words to scan. So, each
5531 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is
5532 /// represented by a 0x00 byte which also ends the string.
5533 /// 1. when ForStrongLayout is true, following ivars are scanned:
5534 /// - id, Class
5535 /// - object *
5536 /// - __strong anything
5537 ///
5538 /// 2. When ForStrongLayout is false, following ivars are scanned:
5539 /// - __weak anything
5540 ///
5541 llvm::Constant *
5542 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD,
5543                                  CharUnits beginOffset, CharUnits endOffset,
5544                                  bool ForStrongLayout, bool HasMRCWeakIvars) {
5545   // If this is MRC, and we're either building a strong layout or there
5546   // are no weak ivars, bail out early.
5547   llvm::Type *PtrTy = CGM.Int8PtrTy;
5548   if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
5549       !CGM.getLangOpts().ObjCAutoRefCount &&
5550       (ForStrongLayout || !HasMRCWeakIvars))
5551     return llvm::Constant::getNullValue(PtrTy);
5552 
5553   const ObjCInterfaceDecl *OI = OMD->getClassInterface();
5554   SmallVector<const ObjCIvarDecl*, 32> ivars;
5555 
5556   // GC layout strings include the complete object layout, possibly
5557   // inaccurately in the non-fragile ABI; the runtime knows how to fix this
5558   // up.
5559   //
5560   // ARC layout strings only include the class's ivars.  In non-fragile
5561   // runtimes, that means starting at InstanceStart, rounded up to word
5562   // alignment.  In fragile runtimes, there's no InstanceStart, so it means
5563   // starting at the offset of the first ivar, rounded up to word alignment.
5564   //
5565   // MRC weak layout strings follow the ARC style.
5566   CharUnits baseOffset;
5567   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5568     for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
5569          IVD; IVD = IVD->getNextIvar())
5570       ivars.push_back(IVD);
5571 
5572     if (isNonFragileABI()) {
5573       baseOffset = beginOffset; // InstanceStart
5574     } else if (!ivars.empty()) {
5575       baseOffset =
5576         CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0]));
5577     } else {
5578       baseOffset = CharUnits::Zero();
5579     }
5580 
5581     baseOffset = baseOffset.alignTo(CGM.getPointerAlign());
5582   }
5583   else {
5584     CGM.getContext().DeepCollectObjCIvars(OI, true, ivars);
5585 
5586     baseOffset = CharUnits::Zero();
5587   }
5588 
5589   if (ivars.empty())
5590     return llvm::Constant::getNullValue(PtrTy);
5591 
5592   IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout);
5593 
5594   builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(),
5595                          [&](const ObjCIvarDecl *ivar) -> CharUnits {
5596       return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar));
5597   });
5598 
5599   if (!builder.hasBitmapData())
5600     return llvm::Constant::getNullValue(PtrTy);
5601 
5602   llvm::SmallVector<unsigned char, 4> buffer;
5603   llvm::Constant *C = builder.buildBitmap(*this, buffer);
5604 
5605    if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
5606     printf("\n%s ivar layout for class '%s': ",
5607            ForStrongLayout ? "strong" : "weak",
5608            OMD->getClassInterface()->getName().str().c_str());
5609     builder.dump(buffer);
5610   }
5611   return C;
5612 }
5613 
5614 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
5615   llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
5616   // FIXME: Avoid std::string in "Sel.getAsString()"
5617   if (!Entry)
5618     Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName);
5619   return getConstantGEP(VMContext, Entry, 0, 0);
5620 }
5621 
5622 // FIXME: Merge into a single cstring creation function.
5623 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
5624   return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID));
5625 }
5626 
5627 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
5628   std::string TypeStr;
5629   CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field);
5630 
5631   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5632   if (!Entry)
5633     Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType);
5634   return getConstantGEP(VMContext, Entry, 0, 0);
5635 }
5636 
5637 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D,
5638                                                   bool Extended) {
5639   std::string TypeStr =
5640     CGM.getContext().getObjCEncodingForMethodDecl(D, Extended);
5641 
5642   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5643   if (!Entry)
5644     Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType);
5645   return getConstantGEP(VMContext, Entry, 0, 0);
5646 }
5647 
5648 // FIXME: Merge into a single cstring creation function.
5649 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
5650   llvm::GlobalVariable *&Entry = PropertyNames[Ident];
5651   if (!Entry)
5652     Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName);
5653   return getConstantGEP(VMContext, Entry, 0, 0);
5654 }
5655 
5656 // FIXME: Merge into a single cstring creation function.
5657 // FIXME: This Decl should be more precise.
5658 llvm::Constant *
5659 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
5660                                        const Decl *Container) {
5661   std::string TypeStr =
5662     CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
5663   return GetPropertyName(&CGM.getContext().Idents.get(TypeStr));
5664 }
5665 
5666 void CGObjCMac::FinishModule() {
5667   EmitModuleInfo();
5668 
5669   // Emit the dummy bodies for any protocols which were referenced but
5670   // never defined.
5671   for (auto &entry : Protocols) {
5672     llvm::GlobalVariable *global = entry.second;
5673     if (global->hasInitializer())
5674       continue;
5675 
5676     ConstantInitBuilder builder(CGM);
5677     auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
5678     values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy);
5679     values.add(GetClassName(entry.first->getName()));
5680     values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
5681     values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5682     values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5683     values.finishAndSetAsInitializer(global);
5684     CGM.addCompilerUsedGlobal(global);
5685   }
5686 
5687   // Add assembler directives to add lazy undefined symbol references
5688   // for classes which are referenced but not defined. This is
5689   // important for correct linker interaction.
5690   //
5691   // FIXME: It would be nice if we had an LLVM construct for this.
5692   if ((!LazySymbols.empty() || !DefinedSymbols.empty()) &&
5693       CGM.getTriple().isOSBinFormatMachO()) {
5694     SmallString<256> Asm;
5695     Asm += CGM.getModule().getModuleInlineAsm();
5696     if (!Asm.empty() && Asm.back() != '\n')
5697       Asm += '\n';
5698 
5699     llvm::raw_svector_ostream OS(Asm);
5700     for (const auto *Sym : DefinedSymbols)
5701       OS << "\t.objc_class_name_" << Sym->getName() << "=0\n"
5702          << "\t.globl .objc_class_name_" << Sym->getName() << "\n";
5703     for (const auto *Sym : LazySymbols)
5704       OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n";
5705     for (const auto &Category : DefinedCategoryNames)
5706       OS << "\t.objc_category_name_" << Category << "=0\n"
5707          << "\t.globl .objc_category_name_" << Category << "\n";
5708 
5709     CGM.getModule().setModuleInlineAsm(OS.str());
5710   }
5711 }
5712 
5713 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
5714     : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr),
5715       ObjCEmptyVtableVar(nullptr) {
5716   ObjCABI = 2;
5717 }
5718 
5719 /* *** */
5720 
5721 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
5722   : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr)
5723 {
5724   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5725   ASTContext &Ctx = CGM.getContext();
5726 
5727   ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy));
5728   IntTy = CGM.IntTy;
5729   LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy));
5730   Int8PtrTy = CGM.Int8PtrTy;
5731   Int8PtrPtrTy = CGM.Int8PtrPtrTy;
5732 
5733   // arm64 targets use "int" ivar offset variables. All others,
5734   // including OS X x86_64 and Windows x86_64, use "long" ivar offsets.
5735   if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5736     IvarOffsetVarTy = IntTy;
5737   else
5738     IvarOffsetVarTy = LongTy;
5739 
5740   ObjectPtrTy =
5741     cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType()));
5742   PtrObjectPtrTy =
5743     llvm::PointerType::getUnqual(ObjectPtrTy);
5744   SelectorPtrTy =
5745     cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType()));
5746 
5747   // I'm not sure I like this. The implicit coordination is a bit
5748   // gross. We should solve this in a reasonable fashion because this
5749   // is a pretty common task (match some runtime data structure with
5750   // an LLVM data structure).
5751 
5752   // FIXME: This is leaked.
5753   // FIXME: Merge with rewriter code?
5754 
5755   // struct _objc_super {
5756   //   id self;
5757   //   Class cls;
5758   // }
5759   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5760                                       Ctx.getTranslationUnitDecl(),
5761                                       SourceLocation(), SourceLocation(),
5762                                       &Ctx.Idents.get("_objc_super"));
5763   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5764                                 nullptr, Ctx.getObjCIdType(), nullptr, nullptr,
5765                                 false, ICIS_NoInit));
5766   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5767                                 nullptr, Ctx.getObjCClassType(), nullptr,
5768                                 nullptr, false, ICIS_NoInit));
5769   RD->completeDefinition();
5770 
5771   SuperCTy = Ctx.getTagDeclType(RD);
5772   SuperPtrCTy = Ctx.getPointerType(SuperCTy);
5773 
5774   SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
5775   SuperPtrTy = llvm::PointerType::getUnqual(SuperTy);
5776 
5777   // struct _prop_t {
5778   //   char *name;
5779   //   char *attributes;
5780   // }
5781   PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy);
5782 
5783   // struct _prop_list_t {
5784   //   uint32_t entsize;      // sizeof(struct _prop_t)
5785   //   uint32_t count_of_properties;
5786   //   struct _prop_t prop_list[count_of_properties];
5787   // }
5788   PropertyListTy = llvm::StructType::create(
5789       "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0));
5790   // struct _prop_list_t *
5791   PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy);
5792 
5793   // struct _objc_method {
5794   //   SEL _cmd;
5795   //   char *method_type;
5796   //   char *_imp;
5797   // }
5798   MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy,
5799                                       Int8PtrTy, Int8PtrTy);
5800 
5801   // struct _objc_cache *
5802   CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache");
5803   CachePtrTy = llvm::PointerType::getUnqual(CacheTy);
5804 }
5805 
5806 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
5807   : ObjCCommonTypesHelper(cgm) {
5808   // struct _objc_method_description {
5809   //   SEL name;
5810   //   char *types;
5811   // }
5812   MethodDescriptionTy = llvm::StructType::create(
5813       "struct._objc_method_description", SelectorPtrTy, Int8PtrTy);
5814 
5815   // struct _objc_method_description_list {
5816   //   int count;
5817   //   struct _objc_method_description[1];
5818   // }
5819   MethodDescriptionListTy =
5820       llvm::StructType::create("struct._objc_method_description_list", IntTy,
5821                                llvm::ArrayType::get(MethodDescriptionTy, 0));
5822 
5823   // struct _objc_method_description_list *
5824   MethodDescriptionListPtrTy =
5825     llvm::PointerType::getUnqual(MethodDescriptionListTy);
5826 
5827   // Protocol description structures
5828 
5829   // struct _objc_protocol_extension {
5830   //   uint32_t size;  // sizeof(struct _objc_protocol_extension)
5831   //   struct _objc_method_description_list *optional_instance_methods;
5832   //   struct _objc_method_description_list *optional_class_methods;
5833   //   struct _objc_property_list *instance_properties;
5834   //   const char ** extendedMethodTypes;
5835   //   struct _objc_property_list *class_properties;
5836   // }
5837   ProtocolExtensionTy = llvm::StructType::create(
5838       "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy,
5839       MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy,
5840       PropertyListPtrTy);
5841 
5842   // struct _objc_protocol_extension *
5843   ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy);
5844 
5845   // Handle recursive construction of Protocol and ProtocolList types
5846 
5847   ProtocolTy =
5848     llvm::StructType::create(VMContext, "struct._objc_protocol");
5849 
5850   ProtocolListTy =
5851     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5852   ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy,
5853                           llvm::ArrayType::get(ProtocolTy, 0));
5854 
5855   // struct _objc_protocol {
5856   //   struct _objc_protocol_extension *isa;
5857   //   char *protocol_name;
5858   //   struct _objc_protocol **_objc_protocol_list;
5859   //   struct _objc_method_description_list *instance_methods;
5860   //   struct _objc_method_description_list *class_methods;
5861   // }
5862   ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy,
5863                       llvm::PointerType::getUnqual(ProtocolListTy),
5864                       MethodDescriptionListPtrTy, MethodDescriptionListPtrTy);
5865 
5866   // struct _objc_protocol_list *
5867   ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy);
5868 
5869   ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy);
5870 
5871   // Class description structures
5872 
5873   // struct _objc_ivar {
5874   //   char *ivar_name;
5875   //   char *ivar_type;
5876   //   int  ivar_offset;
5877   // }
5878   IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy,
5879                                     IntTy);
5880 
5881   // struct _objc_ivar_list *
5882   IvarListTy =
5883     llvm::StructType::create(VMContext, "struct._objc_ivar_list");
5884   IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy);
5885 
5886   // struct _objc_method_list *
5887   MethodListTy =
5888     llvm::StructType::create(VMContext, "struct._objc_method_list");
5889   MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy);
5890 
5891   // struct _objc_class_extension *
5892   ClassExtensionTy = llvm::StructType::create(
5893       "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy);
5894   ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy);
5895 
5896   ClassTy = llvm::StructType::create(VMContext, "struct._objc_class");
5897 
5898   // struct _objc_class {
5899   //   Class isa;
5900   //   Class super_class;
5901   //   char *name;
5902   //   long version;
5903   //   long info;
5904   //   long instance_size;
5905   //   struct _objc_ivar_list *ivars;
5906   //   struct _objc_method_list *methods;
5907   //   struct _objc_cache *cache;
5908   //   struct _objc_protocol_list *protocols;
5909   //   char *ivar_layout;
5910   //   struct _objc_class_ext *ext;
5911   // };
5912   ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy),
5913                    llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy,
5914                    LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy,
5915                    ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy);
5916 
5917   ClassPtrTy = llvm::PointerType::getUnqual(ClassTy);
5918 
5919   // struct _objc_category {
5920   //   char *category_name;
5921   //   char *class_name;
5922   //   struct _objc_method_list *instance_method;
5923   //   struct _objc_method_list *class_method;
5924   //   struct _objc_protocol_list *protocols;
5925   //   uint32_t size;  // sizeof(struct _objc_category)
5926   //   struct _objc_property_list *instance_properties;// category's @property
5927   //   struct _objc_property_list *class_properties;
5928   // }
5929   CategoryTy = llvm::StructType::create(
5930       "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy,
5931       MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy,
5932       PropertyListPtrTy);
5933 
5934   // Global metadata structures
5935 
5936   // struct _objc_symtab {
5937   //   long sel_ref_cnt;
5938   //   SEL *refs;
5939   //   short cls_def_cnt;
5940   //   short cat_def_cnt;
5941   //   char *defs[cls_def_cnt + cat_def_cnt];
5942   // }
5943   SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy,
5944                                       SelectorPtrTy, ShortTy, ShortTy,
5945                                       llvm::ArrayType::get(Int8PtrTy, 0));
5946   SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy);
5947 
5948   // struct _objc_module {
5949   //   long version;
5950   //   long size;   // sizeof(struct _objc_module)
5951   //   char *name;
5952   //   struct _objc_symtab* symtab;
5953   //  }
5954   ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy,
5955                                       Int8PtrTy, SymtabPtrTy);
5956 
5957   // FIXME: This is the size of the setjmp buffer and should be target
5958   // specific. 18 is what's used on 32-bit X86.
5959   uint64_t SetJmpBufferSize = 18;
5960 
5961   // Exceptions
5962   llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4);
5963 
5964   ExceptionDataTy = llvm::StructType::create(
5965       "struct._objc_exception_data",
5966       llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy);
5967 }
5968 
5969 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
5970   : ObjCCommonTypesHelper(cgm) {
5971   // struct _method_list_t {
5972   //   uint32_t entsize;  // sizeof(struct _objc_method)
5973   //   uint32_t method_count;
5974   //   struct _objc_method method_list[method_count];
5975   // }
5976   MethodListnfABITy =
5977       llvm::StructType::create("struct.__method_list_t", IntTy, IntTy,
5978                                llvm::ArrayType::get(MethodTy, 0));
5979   // struct method_list_t *
5980   MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy);
5981 
5982   // struct _protocol_t {
5983   //   id isa;  // NULL
5984   //   const char * const protocol_name;
5985   //   const struct _protocol_list_t * protocol_list; // super protocols
5986   //   const struct method_list_t * const instance_methods;
5987   //   const struct method_list_t * const class_methods;
5988   //   const struct method_list_t *optionalInstanceMethods;
5989   //   const struct method_list_t *optionalClassMethods;
5990   //   const struct _prop_list_t * properties;
5991   //   const uint32_t size;  // sizeof(struct _protocol_t)
5992   //   const uint32_t flags;  // = 0
5993   //   const char ** extendedMethodTypes;
5994   //   const char *demangledName;
5995   //   const struct _prop_list_t * class_properties;
5996   // }
5997 
5998   // Holder for struct _protocol_list_t *
5999   ProtocolListnfABITy =
6000     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
6001 
6002   ProtocolnfABITy = llvm::StructType::create(
6003       "struct._protocol_t", ObjectPtrTy, Int8PtrTy,
6004       llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy,
6005       MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy,
6006       PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy,
6007       PropertyListPtrTy);
6008 
6009   // struct _protocol_t*
6010   ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy);
6011 
6012   // struct _protocol_list_t {
6013   //   long protocol_count;   // Note, this is 32/64 bit
6014   //   struct _protocol_t *[protocol_count];
6015   // }
6016   ProtocolListnfABITy->setBody(LongTy,
6017                                llvm::ArrayType::get(ProtocolnfABIPtrTy, 0));
6018 
6019   // struct _objc_protocol_list*
6020   ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy);
6021 
6022   // struct _ivar_t {
6023   //   unsigned [long] int *offset;  // pointer to ivar offset location
6024   //   char *name;
6025   //   char *type;
6026   //   uint32_t alignment;
6027   //   uint32_t size;
6028   // }
6029   IvarnfABITy = llvm::StructType::create(
6030       "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy),
6031       Int8PtrTy, Int8PtrTy, IntTy, IntTy);
6032 
6033   // struct _ivar_list_t {
6034   //   uint32 entsize;  // sizeof(struct _ivar_t)
6035   //   uint32 count;
6036   //   struct _iver_t list[count];
6037   // }
6038   IvarListnfABITy =
6039       llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy,
6040                                llvm::ArrayType::get(IvarnfABITy, 0));
6041 
6042   IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy);
6043 
6044   // struct _class_ro_t {
6045   //   uint32_t const flags;
6046   //   uint32_t const instanceStart;
6047   //   uint32_t const instanceSize;
6048   //   uint32_t const reserved;  // only when building for 64bit targets
6049   //   const uint8_t * const ivarLayout;
6050   //   const char *const name;
6051   //   const struct _method_list_t * const baseMethods;
6052   //   const struct _objc_protocol_list *const baseProtocols;
6053   //   const struct _ivar_list_t *const ivars;
6054   //   const uint8_t * const weakIvarLayout;
6055   //   const struct _prop_list_t * const properties;
6056   // }
6057 
6058   // FIXME. Add 'reserved' field in 64bit abi mode!
6059   ClassRonfABITy = llvm::StructType::create(
6060       "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy,
6061       MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy,
6062       Int8PtrTy, PropertyListPtrTy);
6063 
6064   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
6065   llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
6066   ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false)
6067                  ->getPointerTo();
6068 
6069   // struct _class_t {
6070   //   struct _class_t *isa;
6071   //   struct _class_t * const superclass;
6072   //   void *cache;
6073   //   IMP *vtable;
6074   //   struct class_ro_t *ro;
6075   // }
6076 
6077   ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t");
6078   ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy),
6079                         llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy,
6080                         llvm::PointerType::getUnqual(ImpnfABITy),
6081                         llvm::PointerType::getUnqual(ClassRonfABITy));
6082 
6083   // LLVM for struct _class_t *
6084   ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy);
6085 
6086   // struct _category_t {
6087   //   const char * const name;
6088   //   struct _class_t *const cls;
6089   //   const struct _method_list_t * const instance_methods;
6090   //   const struct _method_list_t * const class_methods;
6091   //   const struct _protocol_list_t * const protocols;
6092   //   const struct _prop_list_t * const properties;
6093   //   const struct _prop_list_t * const class_properties;
6094   //   const uint32_t size;
6095   // }
6096   CategorynfABITy = llvm::StructType::create(
6097       "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy,
6098       MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy,
6099       PropertyListPtrTy, IntTy);
6100 
6101   // New types for nonfragile abi messaging.
6102   CodeGen::CodeGenTypes &Types = CGM.getTypes();
6103   ASTContext &Ctx = CGM.getContext();
6104 
6105   // MessageRefTy - LLVM for:
6106   // struct _message_ref_t {
6107   //   IMP messenger;
6108   //   SEL name;
6109   // };
6110 
6111   // First the clang type for struct _message_ref_t
6112   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
6113                                       Ctx.getTranslationUnitDecl(),
6114                                       SourceLocation(), SourceLocation(),
6115                                       &Ctx.Idents.get("_message_ref_t"));
6116   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
6117                                 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false,
6118                                 ICIS_NoInit));
6119   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
6120                                 nullptr, Ctx.getObjCSelType(), nullptr, nullptr,
6121                                 false, ICIS_NoInit));
6122   RD->completeDefinition();
6123 
6124   MessageRefCTy = Ctx.getTagDeclType(RD);
6125   MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
6126   MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
6127 
6128   // MessageRefPtrTy - LLVM for struct _message_ref_t*
6129   MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy);
6130 
6131   // SuperMessageRefTy - LLVM for:
6132   // struct _super_message_ref_t {
6133   //   SUPER_IMP messenger;
6134   //   SEL name;
6135   // };
6136   SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t",
6137                                                ImpnfABITy, SelectorPtrTy);
6138 
6139   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
6140   SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy);
6141 
6142 
6143   // struct objc_typeinfo {
6144   //   const void** vtable; // objc_ehtype_vtable + 2
6145   //   const char*  name;    // c++ typeinfo string
6146   //   Class        cls;
6147   // };
6148   EHTypeTy = llvm::StructType::create("struct._objc_typeinfo",
6149                                       llvm::PointerType::getUnqual(Int8PtrTy),
6150                                       Int8PtrTy, ClassnfABIPtrTy);
6151   EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy);
6152 }
6153 
6154 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
6155   FinishNonFragileABIModule();
6156 
6157   return nullptr;
6158 }
6159 
6160 void CGObjCNonFragileABIMac::AddModuleClassList(
6161     ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName,
6162     StringRef SectionName) {
6163   unsigned NumClasses = Container.size();
6164 
6165   if (!NumClasses)
6166     return;
6167 
6168   SmallVector<llvm::Constant*, 8> Symbols(NumClasses);
6169   for (unsigned i=0; i<NumClasses; i++)
6170     Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i],
6171                                                 ObjCTypes.Int8PtrTy);
6172   llvm::Constant *Init =
6173     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
6174                                                   Symbols.size()),
6175                              Symbols);
6176 
6177   // Section name is obtained by calling GetSectionName, which returns
6178   // sections in the __DATA segment on MachO.
6179   assert((!CGM.getTriple().isOSBinFormatMachO() ||
6180           SectionName.startswith("__DATA")) &&
6181          "SectionName expected to start with __DATA on MachO");
6182   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
6183       CGM.getModule(), Init->getType(), false,
6184       llvm::GlobalValue::PrivateLinkage, Init, SymbolName);
6185   GV->setAlignment(
6186       llvm::Align(CGM.getDataLayout().getABITypeAlignment(Init->getType())));
6187   GV->setSection(SectionName);
6188   CGM.addCompilerUsedGlobal(GV);
6189 }
6190 
6191 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
6192   // nonfragile abi has no module definition.
6193 
6194   // Build list of all implemented class addresses in array
6195   // L_OBJC_LABEL_CLASS_$.
6196 
6197   for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) {
6198     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
6199     assert(ID);
6200     if (ObjCImplementationDecl *IMP = ID->getImplementation())
6201       // We are implementing a weak imported interface. Give it external linkage
6202       if (ID->isWeakImported() && !IMP->isWeakImported()) {
6203         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
6204         DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
6205       }
6206   }
6207 
6208   AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$",
6209                      GetSectionName("__objc_classlist",
6210                                     "regular,no_dead_strip"));
6211 
6212   AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$",
6213                      GetSectionName("__objc_nlclslist",
6214                                     "regular,no_dead_strip"));
6215 
6216   // Build list of all implemented category addresses in array
6217   // L_OBJC_LABEL_CATEGORY_$.
6218   AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$",
6219                      GetSectionName("__objc_catlist",
6220                                     "regular,no_dead_strip"));
6221   AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$",
6222                      GetSectionName("__objc_catlist2",
6223                                     "regular,no_dead_strip"));
6224   AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$",
6225                      GetSectionName("__objc_nlcatlist",
6226                                     "regular,no_dead_strip"));
6227 
6228   EmitImageInfo();
6229 }
6230 
6231 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of
6232 /// VTableDispatchMethods; false otherwise. What this means is that
6233 /// except for the 19 selectors in the list, we generate 32bit-style
6234 /// message dispatch call for all the rest.
6235 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) {
6236   // At various points we've experimented with using vtable-based
6237   // dispatch for all methods.
6238   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
6239   case CodeGenOptions::Legacy:
6240     return false;
6241   case CodeGenOptions::NonLegacy:
6242     return true;
6243   case CodeGenOptions::Mixed:
6244     break;
6245   }
6246 
6247   // If so, see whether this selector is in the white-list of things which must
6248   // use the new dispatch convention. We lazily build a dense set for this.
6249   if (VTableDispatchMethods.empty()) {
6250     VTableDispatchMethods.insert(GetNullarySelector("alloc"));
6251     VTableDispatchMethods.insert(GetNullarySelector("class"));
6252     VTableDispatchMethods.insert(GetNullarySelector("self"));
6253     VTableDispatchMethods.insert(GetNullarySelector("isFlipped"));
6254     VTableDispatchMethods.insert(GetNullarySelector("length"));
6255     VTableDispatchMethods.insert(GetNullarySelector("count"));
6256 
6257     // These are vtable-based if GC is disabled.
6258     // Optimistically use vtable dispatch for hybrid compiles.
6259     if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
6260       VTableDispatchMethods.insert(GetNullarySelector("retain"));
6261       VTableDispatchMethods.insert(GetNullarySelector("release"));
6262       VTableDispatchMethods.insert(GetNullarySelector("autorelease"));
6263     }
6264 
6265     VTableDispatchMethods.insert(GetUnarySelector("allocWithZone"));
6266     VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass"));
6267     VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector"));
6268     VTableDispatchMethods.insert(GetUnarySelector("objectForKey"));
6269     VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex"));
6270     VTableDispatchMethods.insert(GetUnarySelector("isEqualToString"));
6271     VTableDispatchMethods.insert(GetUnarySelector("isEqual"));
6272 
6273     // These are vtable-based if GC is enabled.
6274     // Optimistically use vtable dispatch for hybrid compiles.
6275     if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
6276       VTableDispatchMethods.insert(GetNullarySelector("hash"));
6277       VTableDispatchMethods.insert(GetUnarySelector("addObject"));
6278 
6279       // "countByEnumeratingWithState:objects:count"
6280       IdentifierInfo *KeyIdents[] = {
6281         &CGM.getContext().Idents.get("countByEnumeratingWithState"),
6282         &CGM.getContext().Idents.get("objects"),
6283         &CGM.getContext().Idents.get("count")
6284       };
6285       VTableDispatchMethods.insert(
6286         CGM.getContext().Selectors.getSelector(3, KeyIdents));
6287     }
6288   }
6289 
6290   return VTableDispatchMethods.count(Sel);
6291 }
6292 
6293 /// BuildClassRoTInitializer - generate meta-data for:
6294 /// struct _class_ro_t {
6295 ///   uint32_t const flags;
6296 ///   uint32_t const instanceStart;
6297 ///   uint32_t const instanceSize;
6298 ///   uint32_t const reserved;  // only when building for 64bit targets
6299 ///   const uint8_t * const ivarLayout;
6300 ///   const char *const name;
6301 ///   const struct _method_list_t * const baseMethods;
6302 ///   const struct _protocol_list_t *const baseProtocols;
6303 ///   const struct _ivar_list_t *const ivars;
6304 ///   const uint8_t * const weakIvarLayout;
6305 ///   const struct _prop_list_t * const properties;
6306 /// }
6307 ///
6308 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
6309   unsigned flags,
6310   unsigned InstanceStart,
6311   unsigned InstanceSize,
6312   const ObjCImplementationDecl *ID) {
6313   std::string ClassName = std::string(ID->getObjCRuntimeNameAsString());
6314 
6315   CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart);
6316   CharUnits endInstance = CharUnits::fromQuantity(InstanceSize);
6317 
6318   bool hasMRCWeak = false;
6319   if (CGM.getLangOpts().ObjCAutoRefCount)
6320     flags |= NonFragileABI_Class_CompiledByARC;
6321   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
6322     flags |= NonFragileABI_Class_HasMRCWeakIvars;
6323 
6324   ConstantInitBuilder builder(CGM);
6325   auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy);
6326 
6327   values.addInt(ObjCTypes.IntTy, flags);
6328   values.addInt(ObjCTypes.IntTy, InstanceStart);
6329   values.addInt(ObjCTypes.IntTy, InstanceSize);
6330   values.add((flags & NonFragileABI_Class_Meta)
6331                 ? GetIvarLayoutName(nullptr, ObjCTypes)
6332                 : BuildStrongIvarLayout(ID, beginInstance, endInstance));
6333   values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
6334 
6335   // const struct _method_list_t * const baseMethods;
6336   SmallVector<const ObjCMethodDecl*, 16> methods;
6337   if (flags & NonFragileABI_Class_Meta) {
6338     for (const auto *MD : ID->class_methods())
6339       if (!MD->isDirectMethod())
6340         methods.push_back(MD);
6341   } else {
6342     for (const auto *MD : ID->instance_methods())
6343       if (!MD->isDirectMethod())
6344         methods.push_back(MD);
6345   }
6346 
6347   values.add(emitMethodList(ID->getObjCRuntimeNameAsString(),
6348                             (flags & NonFragileABI_Class_Meta)
6349                                ? MethodListType::ClassMethods
6350                                : MethodListType::InstanceMethods,
6351                             methods));
6352 
6353   const ObjCInterfaceDecl *OID = ID->getClassInterface();
6354   assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
6355   values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_"
6356                                 + OID->getObjCRuntimeNameAsString(),
6357                               OID->all_referenced_protocol_begin(),
6358                               OID->all_referenced_protocol_end()));
6359 
6360   if (flags & NonFragileABI_Class_Meta) {
6361     values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy);
6362     values.add(GetIvarLayoutName(nullptr, ObjCTypes));
6363     values.add(EmitPropertyList(
6364         "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6365         ID, ID->getClassInterface(), ObjCTypes, true));
6366   } else {
6367     values.add(EmitIvarList(ID));
6368     values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak));
6369     values.add(EmitPropertyList(
6370         "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6371         ID, ID->getClassInterface(), ObjCTypes, false));
6372   }
6373 
6374   llvm::SmallString<64> roLabel;
6375   llvm::raw_svector_ostream(roLabel)
6376       << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_"
6377                                              : "_OBJC_CLASS_RO_$_")
6378       << ClassName;
6379 
6380   return finishAndCreateGlobal(values, roLabel, CGM);
6381 }
6382 
6383 /// Build the metaclass object for a class.
6384 ///
6385 /// struct _class_t {
6386 ///   struct _class_t *isa;
6387 ///   struct _class_t * const superclass;
6388 ///   void *cache;
6389 ///   IMP *vtable;
6390 ///   struct class_ro_t *ro;
6391 /// }
6392 ///
6393 llvm::GlobalVariable *
6394 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI,
6395                                          bool isMetaclass,
6396                                          llvm::Constant *IsAGV,
6397                                          llvm::Constant *SuperClassGV,
6398                                          llvm::Constant *ClassRoGV,
6399                                          bool HiddenVisibility) {
6400   ConstantInitBuilder builder(CGM);
6401   auto values = builder.beginStruct(ObjCTypes.ClassnfABITy);
6402   values.add(IsAGV);
6403   if (SuperClassGV) {
6404     values.add(SuperClassGV);
6405   } else {
6406     values.addNullPointer(ObjCTypes.ClassnfABIPtrTy);
6407   }
6408   values.add(ObjCEmptyCacheVar);
6409   values.add(ObjCEmptyVtableVar);
6410   values.add(ClassRoGV);
6411 
6412   llvm::GlobalVariable *GV =
6413     cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition));
6414   values.finishAndSetAsInitializer(GV);
6415 
6416   if (CGM.getTriple().isOSBinFormatMachO())
6417     GV->setSection("__DATA, __objc_data");
6418   GV->setAlignment(llvm::Align(
6419       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)));
6420   if (!CGM.getTriple().isOSBinFormatCOFF())
6421     if (HiddenVisibility)
6422       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6423   return GV;
6424 }
6425 
6426 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy(
6427     const ObjCImplDecl *OD) const {
6428   return OD->getClassMethod(GetNullarySelector("load")) != nullptr ||
6429          OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() ||
6430          OD->hasAttr<ObjCNonLazyClassAttr>();
6431 }
6432 
6433 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
6434                                               uint32_t &InstanceStart,
6435                                               uint32_t &InstanceSize) {
6436   const ASTRecordLayout &RL =
6437     CGM.getContext().getASTObjCImplementationLayout(OID);
6438 
6439   // InstanceSize is really instance end.
6440   InstanceSize = RL.getDataSize().getQuantity();
6441 
6442   // If there are no fields, the start is the same as the end.
6443   if (!RL.getFieldCount())
6444     InstanceStart = InstanceSize;
6445   else
6446     InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth();
6447 }
6448 
6449 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM,
6450                                                           StringRef Name) {
6451   IdentifierInfo &II = CGM.getContext().Idents.get(Name);
6452   TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
6453   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6454 
6455   const VarDecl *VD = nullptr;
6456   for (const auto *Result : DC->lookup(&II))
6457     if ((VD = dyn_cast<VarDecl>(Result)))
6458       break;
6459 
6460   if (!VD)
6461     return llvm::GlobalValue::DLLImportStorageClass;
6462   if (VD->hasAttr<DLLExportAttr>())
6463     return llvm::GlobalValue::DLLExportStorageClass;
6464   if (VD->hasAttr<DLLImportAttr>())
6465     return llvm::GlobalValue::DLLImportStorageClass;
6466   return llvm::GlobalValue::DefaultStorageClass;
6467 }
6468 
6469 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
6470   if (!ObjCEmptyCacheVar) {
6471     ObjCEmptyCacheVar =
6472         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false,
6473                                  llvm::GlobalValue::ExternalLinkage, nullptr,
6474                                  "_objc_empty_cache");
6475     if (CGM.getTriple().isOSBinFormatCOFF())
6476       ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache"));
6477 
6478     // Only OS X with deployment version <10.9 use the empty vtable symbol
6479     const llvm::Triple &Triple = CGM.getTarget().getTriple();
6480     if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9))
6481       ObjCEmptyVtableVar =
6482           new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false,
6483                                    llvm::GlobalValue::ExternalLinkage, nullptr,
6484                                    "_objc_empty_vtable");
6485     else
6486       ObjCEmptyVtableVar =
6487         llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo());
6488   }
6489 
6490   // FIXME: Is this correct (that meta class size is never computed)?
6491   uint32_t InstanceStart =
6492     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy);
6493   uint32_t InstanceSize = InstanceStart;
6494   uint32_t flags = NonFragileABI_Class_Meta;
6495 
6496   llvm::Constant *SuperClassGV, *IsAGV;
6497 
6498   const auto *CI = ID->getClassInterface();
6499   assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0");
6500 
6501   // Build the flags for the metaclass.
6502   bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF())
6503                            ? !CI->hasAttr<DLLExportAttr>()
6504                            : CI->getVisibility() == HiddenVisibility;
6505   if (classIsHidden)
6506     flags |= NonFragileABI_Class_Hidden;
6507 
6508   // FIXME: why is this flag set on the metaclass?
6509   // ObjC metaclasses have no fields and don't really get constructed.
6510   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6511     flags |= NonFragileABI_Class_HasCXXStructors;
6512     if (!ID->hasNonZeroConstructors())
6513       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6514   }
6515 
6516   if (!CI->getSuperClass()) {
6517     // class is root
6518     flags |= NonFragileABI_Class_Root;
6519 
6520     SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition);
6521     IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition);
6522   } else {
6523     // Has a root. Current class is not a root.
6524     const ObjCInterfaceDecl *Root = ID->getClassInterface();
6525     while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
6526       Root = Super;
6527 
6528     const auto *Super = CI->getSuperClass();
6529     IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition);
6530     SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition);
6531   }
6532 
6533   llvm::GlobalVariable *CLASS_RO_GV =
6534       BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6535 
6536   llvm::GlobalVariable *MetaTClass =
6537     BuildClassObject(CI, /*metaclass*/ true,
6538                      IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden);
6539   CGM.setGVProperties(MetaTClass, CI);
6540   DefinedMetaClasses.push_back(MetaTClass);
6541 
6542   // Metadata for the class
6543   flags = 0;
6544   if (classIsHidden)
6545     flags |= NonFragileABI_Class_Hidden;
6546 
6547   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6548     flags |= NonFragileABI_Class_HasCXXStructors;
6549 
6550     // Set a flag to enable a runtime optimization when a class has
6551     // fields that require destruction but which don't require
6552     // anything except zero-initialization during construction.  This
6553     // is most notably true of __strong and __weak types, but you can
6554     // also imagine there being C++ types with non-trivial default
6555     // constructors that merely set all fields to null.
6556     if (!ID->hasNonZeroConstructors())
6557       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6558   }
6559 
6560   if (hasObjCExceptionAttribute(CGM.getContext(), CI))
6561     flags |= NonFragileABI_Class_Exception;
6562 
6563   if (!CI->getSuperClass()) {
6564     flags |= NonFragileABI_Class_Root;
6565     SuperClassGV = nullptr;
6566   } else {
6567     // Has a root. Current class is not a root.
6568     const auto *Super = CI->getSuperClass();
6569     SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition);
6570   }
6571 
6572   GetClassSizeInfo(ID, InstanceStart, InstanceSize);
6573   CLASS_RO_GV =
6574       BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6575 
6576   llvm::GlobalVariable *ClassMD =
6577     BuildClassObject(CI, /*metaclass*/ false,
6578                      MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden);
6579   CGM.setGVProperties(ClassMD, CI);
6580   DefinedClasses.push_back(ClassMD);
6581   ImplementedClasses.push_back(CI);
6582 
6583   // Determine if this class is also "non-lazy".
6584   if (ImplementationIsNonLazy(ID))
6585     DefinedNonLazyClasses.push_back(ClassMD);
6586 
6587   // Force the definition of the EHType if necessary.
6588   if (flags & NonFragileABI_Class_Exception)
6589     (void) GetInterfaceEHType(CI, ForDefinition);
6590   // Make sure method definition entries are all clear for next implementation.
6591   MethodDefinitions.clear();
6592 }
6593 
6594 /// GenerateProtocolRef - This routine is called to generate code for
6595 /// a protocol reference expression; as in:
6596 /// @code
6597 ///   @protocol(Proto1);
6598 /// @endcode
6599 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
6600 /// which will hold address of the protocol meta-data.
6601 ///
6602 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF,
6603                                                          const ObjCProtocolDecl *PD) {
6604 
6605   // This routine is called for @protocol only. So, we must build definition
6606   // of protocol's meta-data (not a reference to it!)
6607   assert(!PD->isNonRuntimeProtocol() &&
6608          "attempting to get a protocol ref to a static protocol.");
6609   llvm::Constant *Init =
6610     llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD),
6611                                    ObjCTypes.getExternalProtocolPtrTy());
6612 
6613   std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_");
6614   ProtocolName += PD->getObjCRuntimeNameAsString();
6615 
6616   CharUnits Align = CGF.getPointerAlign();
6617 
6618   llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName);
6619   if (PTGV)
6620     return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align);
6621   PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6622                                   llvm::GlobalValue::WeakAnyLinkage, Init,
6623                                   ProtocolName);
6624   PTGV->setSection(GetSectionName("__objc_protorefs",
6625                                   "coalesced,no_dead_strip"));
6626   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6627   PTGV->setAlignment(Align.getAsAlign());
6628   if (!CGM.getTriple().isOSBinFormatMachO())
6629     PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName));
6630   CGM.addUsedGlobal(PTGV);
6631   return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align);
6632 }
6633 
6634 /// GenerateCategory - Build metadata for a category implementation.
6635 /// struct _category_t {
6636 ///   const char * const name;
6637 ///   struct _class_t *const cls;
6638 ///   const struct _method_list_t * const instance_methods;
6639 ///   const struct _method_list_t * const class_methods;
6640 ///   const struct _protocol_list_t * const protocols;
6641 ///   const struct _prop_list_t * const properties;
6642 ///   const struct _prop_list_t * const class_properties;
6643 ///   const uint32_t size;
6644 /// }
6645 ///
6646 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
6647   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
6648   const char *Prefix = "_OBJC_$_CATEGORY_";
6649 
6650   llvm::SmallString<64> ExtCatName(Prefix);
6651   ExtCatName += Interface->getObjCRuntimeNameAsString();
6652   ExtCatName += "_$_";
6653   ExtCatName += OCD->getNameAsString();
6654 
6655   ConstantInitBuilder builder(CGM);
6656   auto values = builder.beginStruct(ObjCTypes.CategorynfABITy);
6657   values.add(GetClassName(OCD->getIdentifier()->getName()));
6658   // meta-class entry symbol
6659   values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition));
6660   std::string listName =
6661       (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str();
6662 
6663   SmallVector<const ObjCMethodDecl *, 16> instanceMethods;
6664   SmallVector<const ObjCMethodDecl *, 8> classMethods;
6665   for (const auto *MD : OCD->methods()) {
6666     if (MD->isDirectMethod())
6667       continue;
6668     if (MD->isInstanceMethod()) {
6669       instanceMethods.push_back(MD);
6670     } else {
6671       classMethods.push_back(MD);
6672     }
6673   }
6674 
6675   auto instanceMethodList = emitMethodList(
6676       listName, MethodListType::CategoryInstanceMethods, instanceMethods);
6677   auto classMethodList = emitMethodList(
6678       listName, MethodListType::CategoryClassMethods, classMethods);
6679   values.add(instanceMethodList);
6680   values.add(classMethodList);
6681   // Keep track of whether we have actual metadata to emit.
6682   bool isEmptyCategory =
6683       instanceMethodList->isNullValue() && classMethodList->isNullValue();
6684 
6685   const ObjCCategoryDecl *Category =
6686       Interface->FindCategoryDeclaration(OCD->getIdentifier());
6687   if (Category) {
6688     SmallString<256> ExtName;
6689     llvm::raw_svector_ostream(ExtName)
6690         << Interface->getObjCRuntimeNameAsString() << "_$_" << OCD->getName();
6691     auto protocolList =
6692         EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" +
6693                              Interface->getObjCRuntimeNameAsString() + "_$_" +
6694                              Category->getName(),
6695                          Category->protocol_begin(), Category->protocol_end());
6696     auto propertyList = EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(),
6697                                          OCD, Category, ObjCTypes, false);
6698     auto classPropertyList =
6699         EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), OCD,
6700                          Category, ObjCTypes, true);
6701     values.add(protocolList);
6702     values.add(propertyList);
6703     values.add(classPropertyList);
6704     isEmptyCategory &= protocolList->isNullValue() &&
6705                        propertyList->isNullValue() &&
6706                        classPropertyList->isNullValue();
6707   } else {
6708     values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy);
6709     values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6710     values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6711   }
6712 
6713   if (isEmptyCategory) {
6714     // Empty category, don't emit any metadata.
6715     values.abandon();
6716     MethodDefinitions.clear();
6717     return;
6718   }
6719 
6720   unsigned Size =
6721       CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy);
6722   values.addInt(ObjCTypes.IntTy, Size);
6723 
6724   llvm::GlobalVariable *GCATV =
6725       finishAndCreateGlobal(values, ExtCatName.str(), CGM);
6726   CGM.addCompilerUsedGlobal(GCATV);
6727   if (Interface->hasAttr<ObjCClassStubAttr>())
6728     DefinedStubCategories.push_back(GCATV);
6729   else
6730     DefinedCategories.push_back(GCATV);
6731 
6732   // Determine if this category is also "non-lazy".
6733   if (ImplementationIsNonLazy(OCD))
6734     DefinedNonLazyCategories.push_back(GCATV);
6735   // method definition entries must be clear for next implementation.
6736   MethodDefinitions.clear();
6737 }
6738 
6739 /// emitMethodConstant - Return a struct objc_method constant.  If
6740 /// forProtocol is true, the implementation will be null; otherwise,
6741 /// the method must have a definition registered with the runtime.
6742 ///
6743 /// struct _objc_method {
6744 ///   SEL _cmd;
6745 ///   char *method_type;
6746 ///   char *_imp;
6747 /// }
6748 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder,
6749                                                 const ObjCMethodDecl *MD,
6750                                                 bool forProtocol) {
6751   auto method = builder.beginStruct(ObjCTypes.MethodTy);
6752   method.addBitCast(GetMethodVarName(MD->getSelector()),
6753                     ObjCTypes.SelectorPtrTy);
6754   method.add(GetMethodVarType(MD));
6755 
6756   if (forProtocol) {
6757     // Protocol methods have no implementation. So, this entry is always NULL.
6758     method.addNullPointer(ObjCTypes.Int8PtrTy);
6759   } else {
6760     llvm::Function *fn = GetMethodDefinition(MD);
6761     assert(fn && "no definition for method?");
6762     method.addBitCast(fn, ObjCTypes.Int8PtrTy);
6763   }
6764 
6765   method.finishAndAddTo(builder);
6766 }
6767 
6768 /// Build meta-data for method declarations.
6769 ///
6770 /// struct _method_list_t {
6771 ///   uint32_t entsize;  // sizeof(struct _objc_method)
6772 ///   uint32_t method_count;
6773 ///   struct _objc_method method_list[method_count];
6774 /// }
6775 ///
6776 llvm::Constant *
6777 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind,
6778                               ArrayRef<const ObjCMethodDecl *> methods) {
6779   // Return null for empty list.
6780   if (methods.empty())
6781     return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
6782 
6783   StringRef prefix;
6784   bool forProtocol;
6785   switch (kind) {
6786   case MethodListType::CategoryInstanceMethods:
6787     prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_";
6788     forProtocol = false;
6789     break;
6790   case MethodListType::CategoryClassMethods:
6791     prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_";
6792     forProtocol = false;
6793     break;
6794   case MethodListType::InstanceMethods:
6795     prefix = "_OBJC_$_INSTANCE_METHODS_";
6796     forProtocol = false;
6797     break;
6798   case MethodListType::ClassMethods:
6799     prefix = "_OBJC_$_CLASS_METHODS_";
6800     forProtocol = false;
6801     break;
6802 
6803   case MethodListType::ProtocolInstanceMethods:
6804     prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_";
6805     forProtocol = true;
6806     break;
6807   case MethodListType::ProtocolClassMethods:
6808     prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_";
6809     forProtocol = true;
6810     break;
6811   case MethodListType::OptionalProtocolInstanceMethods:
6812     prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_";
6813     forProtocol = true;
6814     break;
6815   case MethodListType::OptionalProtocolClassMethods:
6816     prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_";
6817     forProtocol = true;
6818     break;
6819   }
6820 
6821   ConstantInitBuilder builder(CGM);
6822   auto values = builder.beginStruct();
6823 
6824   // sizeof(struct _objc_method)
6825   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy);
6826   values.addInt(ObjCTypes.IntTy, Size);
6827   // method_count
6828   values.addInt(ObjCTypes.IntTy, methods.size());
6829   auto methodArray = values.beginArray(ObjCTypes.MethodTy);
6830   for (auto MD : methods)
6831     emitMethodConstant(methodArray, MD, forProtocol);
6832   methodArray.finishAndAddTo(values);
6833 
6834   llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM);
6835   CGM.addCompilerUsedGlobal(GV);
6836   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy);
6837 }
6838 
6839 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
6840 /// the given ivar.
6841 llvm::GlobalVariable *
6842 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
6843                                                const ObjCIvarDecl *Ivar) {
6844   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
6845   llvm::SmallString<64> Name("OBJC_IVAR_$_");
6846   Name += Container->getObjCRuntimeNameAsString();
6847   Name += ".";
6848   Name += Ivar->getName();
6849   llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name);
6850   if (!IvarOffsetGV) {
6851     IvarOffsetGV =
6852         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy,
6853                                  false, llvm::GlobalValue::ExternalLinkage,
6854                                  nullptr, Name.str());
6855     if (CGM.getTriple().isOSBinFormatCOFF()) {
6856       bool IsPrivateOrPackage =
6857           Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6858           Ivar->getAccessControl() == ObjCIvarDecl::Package;
6859 
6860       const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface();
6861 
6862       if (ContainingID->hasAttr<DLLImportAttr>())
6863         IvarOffsetGV
6864             ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6865       else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage)
6866         IvarOffsetGV
6867             ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6868     }
6869   }
6870   return IvarOffsetGV;
6871 }
6872 
6873 llvm::Constant *
6874 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
6875                                           const ObjCIvarDecl *Ivar,
6876                                           unsigned long int Offset) {
6877   llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
6878   IvarOffsetGV->setInitializer(
6879       llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset));
6880   IvarOffsetGV->setAlignment(llvm::Align(
6881       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy)));
6882 
6883   if (!CGM.getTriple().isOSBinFormatCOFF()) {
6884     // FIXME: This matches gcc, but shouldn't the visibility be set on the use
6885     // as well (i.e., in ObjCIvarOffsetVariable).
6886     if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6887         Ivar->getAccessControl() == ObjCIvarDecl::Package ||
6888         ID->getVisibility() == HiddenVisibility)
6889       IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6890     else
6891       IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
6892   }
6893 
6894   // If ID's layout is known, then make the global constant. This serves as a
6895   // useful assertion: we'll never use this variable to calculate ivar offsets,
6896   // so if the runtime tries to patch it then we should crash.
6897   if (isClassLayoutKnownStatically(ID))
6898     IvarOffsetGV->setConstant(true);
6899 
6900   if (CGM.getTriple().isOSBinFormatMachO())
6901     IvarOffsetGV->setSection("__DATA, __objc_ivar");
6902   return IvarOffsetGV;
6903 }
6904 
6905 /// EmitIvarList - Emit the ivar list for the given
6906 /// implementation. The return value has type
6907 /// IvarListnfABIPtrTy.
6908 ///  struct _ivar_t {
6909 ///   unsigned [long] int *offset;  // pointer to ivar offset location
6910 ///   char *name;
6911 ///   char *type;
6912 ///   uint32_t alignment;
6913 ///   uint32_t size;
6914 /// }
6915 /// struct _ivar_list_t {
6916 ///   uint32 entsize;  // sizeof(struct _ivar_t)
6917 ///   uint32 count;
6918 ///   struct _iver_t list[count];
6919 /// }
6920 ///
6921 
6922 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
6923   const ObjCImplementationDecl *ID) {
6924 
6925   ConstantInitBuilder builder(CGM);
6926   auto ivarList = builder.beginStruct();
6927   ivarList.addInt(ObjCTypes.IntTy,
6928                   CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy));
6929   auto ivarCountSlot = ivarList.addPlaceholder();
6930   auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy);
6931 
6932   const ObjCInterfaceDecl *OID = ID->getClassInterface();
6933   assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
6934 
6935   // FIXME. Consolidate this with similar code in GenerateClass.
6936 
6937   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
6938        IVD; IVD = IVD->getNextIvar()) {
6939     // Ignore unnamed bit-fields.
6940     if (!IVD->getDeclName())
6941       continue;
6942 
6943     auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy);
6944     ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD,
6945                                ComputeIvarBaseOffset(CGM, ID, IVD)));
6946     ivar.add(GetMethodVarName(IVD->getIdentifier()));
6947     ivar.add(GetMethodVarType(IVD));
6948     llvm::Type *FieldTy =
6949       CGM.getTypes().ConvertTypeForMem(IVD->getType());
6950     unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy);
6951     unsigned Align = CGM.getContext().getPreferredTypeAlign(
6952       IVD->getType().getTypePtr()) >> 3;
6953     Align = llvm::Log2_32(Align);
6954     ivar.addInt(ObjCTypes.IntTy, Align);
6955     // NOTE. Size of a bitfield does not match gcc's, because of the
6956     // way bitfields are treated special in each. But I am told that
6957     // 'size' for bitfield ivars is ignored by the runtime so it does
6958     // not matter.  If it matters, there is enough info to get the
6959     // bitfield right!
6960     ivar.addInt(ObjCTypes.IntTy, Size);
6961     ivar.finishAndAddTo(ivars);
6962   }
6963   // Return null for empty list.
6964   if (ivars.empty()) {
6965     ivars.abandon();
6966     ivarList.abandon();
6967     return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
6968   }
6969 
6970   auto ivarCount = ivars.size();
6971   ivars.finishAndAddTo(ivarList);
6972   ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount);
6973 
6974   const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_";
6975   llvm::GlobalVariable *GV = finishAndCreateGlobal(
6976       ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM);
6977   CGM.addCompilerUsedGlobal(GV);
6978   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy);
6979 }
6980 
6981 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
6982   const ObjCProtocolDecl *PD) {
6983   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
6984 
6985   assert(!PD->isNonRuntimeProtocol() &&
6986          "attempting to GetOrEmit a non-runtime protocol");
6987   if (!Entry) {
6988     // We use the initializer as a marker of whether this is a forward
6989     // reference or not. At module finalization we add the empty
6990     // contents for protocols which were referenced but never defined.
6991     llvm::SmallString<64> Protocol;
6992     llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_"
6993                                         << PD->getObjCRuntimeNameAsString();
6994 
6995     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6996                                      false, llvm::GlobalValue::ExternalLinkage,
6997                                      nullptr, Protocol);
6998     if (!CGM.getTriple().isOSBinFormatMachO())
6999       Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol));
7000   }
7001 
7002   return Entry;
7003 }
7004 
7005 /// GetOrEmitProtocol - Generate the protocol meta-data:
7006 /// @code
7007 /// struct _protocol_t {
7008 ///   id isa;  // NULL
7009 ///   const char * const protocol_name;
7010 ///   const struct _protocol_list_t * protocol_list; // super protocols
7011 ///   const struct method_list_t * const instance_methods;
7012 ///   const struct method_list_t * const class_methods;
7013 ///   const struct method_list_t *optionalInstanceMethods;
7014 ///   const struct method_list_t *optionalClassMethods;
7015 ///   const struct _prop_list_t * properties;
7016 ///   const uint32_t size;  // sizeof(struct _protocol_t)
7017 ///   const uint32_t flags;  // = 0
7018 ///   const char ** extendedMethodTypes;
7019 ///   const char *demangledName;
7020 ///   const struct _prop_list_t * class_properties;
7021 /// }
7022 /// @endcode
7023 ///
7024 
7025 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
7026   const ObjCProtocolDecl *PD) {
7027   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
7028 
7029   // Early exit if a defining object has already been generated.
7030   if (Entry && Entry->hasInitializer())
7031     return Entry;
7032 
7033   // Use the protocol definition, if there is one.
7034   assert(PD->hasDefinition() &&
7035          "emitting protocol metadata without definition");
7036   PD = PD->getDefinition();
7037 
7038   auto methodLists = ProtocolMethodLists::get(PD);
7039 
7040   ConstantInitBuilder builder(CGM);
7041   auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy);
7042 
7043   // isa is NULL
7044   values.addNullPointer(ObjCTypes.ObjectPtrTy);
7045   values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
7046   values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_"
7047                                 + PD->getObjCRuntimeNameAsString(),
7048                                PD->protocol_begin(),
7049                                PD->protocol_end()));
7050   values.add(methodLists.emitMethodList(this, PD,
7051                                  ProtocolMethodLists::RequiredInstanceMethods));
7052   values.add(methodLists.emitMethodList(this, PD,
7053                                  ProtocolMethodLists::RequiredClassMethods));
7054   values.add(methodLists.emitMethodList(this, PD,
7055                                  ProtocolMethodLists::OptionalInstanceMethods));
7056   values.add(methodLists.emitMethodList(this, PD,
7057                                  ProtocolMethodLists::OptionalClassMethods));
7058   values.add(EmitPropertyList(
7059                "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
7060                nullptr, PD, ObjCTypes, false));
7061   uint32_t Size =
7062     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
7063   values.addInt(ObjCTypes.IntTy, Size);
7064   values.addInt(ObjCTypes.IntTy, 0);
7065   values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_"
7066                                        + PD->getObjCRuntimeNameAsString(),
7067                                      methodLists.emitExtendedTypesArray(this),
7068                                      ObjCTypes));
7069 
7070   // const char *demangledName;
7071   values.addNullPointer(ObjCTypes.Int8PtrTy);
7072 
7073   values.add(EmitPropertyList(
7074       "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
7075       nullptr, PD, ObjCTypes, true));
7076 
7077   if (Entry) {
7078     // Already created, fix the linkage and update the initializer.
7079     Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
7080     values.finishAndSetAsInitializer(Entry);
7081   } else {
7082     llvm::SmallString<64> symbolName;
7083     llvm::raw_svector_ostream(symbolName)
7084       << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString();
7085 
7086     Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(),
7087                                          /*constant*/ false,
7088                                          llvm::GlobalValue::WeakAnyLinkage);
7089     if (!CGM.getTriple().isOSBinFormatMachO())
7090       Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName));
7091 
7092     Protocols[PD->getIdentifier()] = Entry;
7093   }
7094   Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7095   CGM.addUsedGlobal(Entry);
7096 
7097   // Use this protocol meta-data to build protocol list table in section
7098   // __DATA, __objc_protolist
7099   llvm::SmallString<64> ProtocolRef;
7100   llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_"
7101                                          << PD->getObjCRuntimeNameAsString();
7102 
7103   llvm::GlobalVariable *PTGV =
7104     new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy,
7105                              false, llvm::GlobalValue::WeakAnyLinkage, Entry,
7106                              ProtocolRef);
7107   if (!CGM.getTriple().isOSBinFormatMachO())
7108     PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef));
7109   PTGV->setAlignment(llvm::Align(
7110       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)));
7111   PTGV->setSection(GetSectionName("__objc_protolist",
7112                                   "coalesced,no_dead_strip"));
7113   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
7114   CGM.addUsedGlobal(PTGV);
7115   return Entry;
7116 }
7117 
7118 /// EmitProtocolList - Generate protocol list meta-data:
7119 /// @code
7120 /// struct _protocol_list_t {
7121 ///   long protocol_count;   // Note, this is 32/64 bit
7122 ///   struct _protocol_t[protocol_count];
7123 /// }
7124 /// @endcode
7125 ///
7126 llvm::Constant *
7127 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name,
7128                                       ObjCProtocolDecl::protocol_iterator begin,
7129                                       ObjCProtocolDecl::protocol_iterator end) {
7130   // Just return null for empty protocol lists
7131   auto Protocols = GetRuntimeProtocolList(begin, end);
7132   if (Protocols.empty())
7133     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
7134 
7135   SmallVector<llvm::Constant *, 16> ProtocolRefs;
7136   ProtocolRefs.reserve(Protocols.size());
7137 
7138   for (const auto *PD : Protocols)
7139     ProtocolRefs.push_back(GetProtocolRef(PD));
7140 
7141   // If all of the protocols in the protocol list are objc_non_runtime_protocol
7142   // just return null
7143   if (ProtocolRefs.size() == 0)
7144     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
7145 
7146   // FIXME: We shouldn't need to do this lookup here, should we?
7147   SmallString<256> TmpName;
7148   Name.toVector(TmpName);
7149   llvm::GlobalVariable *GV =
7150     CGM.getModule().getGlobalVariable(TmpName.str(), true);
7151   if (GV)
7152     return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy);
7153 
7154   ConstantInitBuilder builder(CGM);
7155   auto values = builder.beginStruct();
7156   auto countSlot = values.addPlaceholder();
7157 
7158   // A null-terminated array of protocols.
7159   auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy);
7160   for (auto const &proto : ProtocolRefs)
7161     array.add(proto);
7162   auto count = array.size();
7163   array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy);
7164 
7165   array.finishAndAddTo(values);
7166   values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
7167 
7168   GV = finishAndCreateGlobal(values, Name, CGM);
7169   CGM.addCompilerUsedGlobal(GV);
7170   return llvm::ConstantExpr::getBitCast(GV,
7171                                         ObjCTypes.ProtocolListnfABIPtrTy);
7172 }
7173 
7174 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
7175 /// This code gen. amounts to generating code for:
7176 /// @code
7177 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
7178 /// @encode
7179 ///
7180 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
7181                                                CodeGen::CodeGenFunction &CGF,
7182                                                QualType ObjectTy,
7183                                                llvm::Value *BaseValue,
7184                                                const ObjCIvarDecl *Ivar,
7185                                                unsigned CVRQualifiers) {
7186   ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface();
7187   llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar);
7188   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
7189                                   Offset);
7190 }
7191 
7192 llvm::Value *
7193 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
7194                                        const ObjCInterfaceDecl *Interface,
7195                                        const ObjCIvarDecl *Ivar) {
7196   llvm::Value *IvarOffsetValue;
7197   if (isClassLayoutKnownStatically(Interface)) {
7198     IvarOffsetValue = llvm::ConstantInt::get(
7199         ObjCTypes.IvarOffsetVarTy,
7200         ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar));
7201   } else {
7202     llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar);
7203     IvarOffsetValue =
7204         CGF.Builder.CreateAlignedLoad(GV->getValueType(), GV,
7205                                       CGF.getSizeAlign(), "ivar");
7206     if (IsIvarOffsetKnownIdempotent(CGF, Ivar))
7207       cast<llvm::LoadInst>(IvarOffsetValue)
7208           ->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
7209                         llvm::MDNode::get(VMContext, None));
7210   }
7211 
7212   // This could be 32bit int or 64bit integer depending on the architecture.
7213   // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value
7214   //  as this is what caller always expects.
7215   if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy)
7216     IvarOffsetValue = CGF.Builder.CreateIntCast(
7217         IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv");
7218   return IvarOffsetValue;
7219 }
7220 
7221 static void appendSelectorForMessageRefTable(std::string &buffer,
7222                                              Selector selector) {
7223   if (selector.isUnarySelector()) {
7224     buffer += selector.getNameForSlot(0);
7225     return;
7226   }
7227 
7228   for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
7229     buffer += selector.getNameForSlot(i);
7230     buffer += '_';
7231   }
7232 }
7233 
7234 /// Emit a "vtable" message send.  We emit a weak hidden-visibility
7235 /// struct, initially containing the selector pointer and a pointer to
7236 /// a "fixup" variant of the appropriate objc_msgSend.  To call, we
7237 /// load and call the function pointer, passing the address of the
7238 /// struct as the second parameter.  The runtime determines whether
7239 /// the selector is currently emitted using vtable dispatch; if so, it
7240 /// substitutes a stub function which simply tail-calls through the
7241 /// appropriate vtable slot, and if not, it substitues a stub function
7242 /// which tail-calls objc_msgSend.  Both stubs adjust the selector
7243 /// argument to correctly point to the selector.
7244 RValue
7245 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF,
7246                                               ReturnValueSlot returnSlot,
7247                                               QualType resultType,
7248                                               Selector selector,
7249                                               llvm::Value *arg0,
7250                                               QualType arg0Type,
7251                                               bool isSuper,
7252                                               const CallArgList &formalArgs,
7253                                               const ObjCMethodDecl *method) {
7254   // Compute the actual arguments.
7255   CallArgList args;
7256 
7257   // First argument: the receiver / super-call structure.
7258   if (!isSuper)
7259     arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy);
7260   args.add(RValue::get(arg0), arg0Type);
7261 
7262   // Second argument: a pointer to the message ref structure.  Leave
7263   // the actual argument value blank for now.
7264   args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy);
7265 
7266   args.insert(args.end(), formalArgs.begin(), formalArgs.end());
7267 
7268   MessageSendInfo MSI = getMessageSendInfo(method, resultType, args);
7269 
7270   NullReturnState nullReturn;
7271 
7272   // Find the function to call and the mangled name for the message
7273   // ref structure.  Using a different mangled name wouldn't actually
7274   // be a problem; it would just be a waste.
7275   //
7276   // The runtime currently never uses vtable dispatch for anything
7277   // except normal, non-super message-sends.
7278   // FIXME: don't use this for that.
7279   llvm::FunctionCallee fn = nullptr;
7280   std::string messageRefName("_");
7281   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
7282     if (isSuper) {
7283       fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
7284       messageRefName += "objc_msgSendSuper2_stret_fixup";
7285     } else {
7286       nullReturn.init(CGF, arg0);
7287       fn = ObjCTypes.getMessageSendStretFixupFn();
7288       messageRefName += "objc_msgSend_stret_fixup";
7289     }
7290   } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) {
7291     fn = ObjCTypes.getMessageSendFpretFixupFn();
7292     messageRefName += "objc_msgSend_fpret_fixup";
7293   } else {
7294     if (isSuper) {
7295       fn = ObjCTypes.getMessageSendSuper2FixupFn();
7296       messageRefName += "objc_msgSendSuper2_fixup";
7297     } else {
7298       fn = ObjCTypes.getMessageSendFixupFn();
7299       messageRefName += "objc_msgSend_fixup";
7300     }
7301   }
7302   assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend");
7303   messageRefName += '_';
7304 
7305   // Append the selector name, except use underscores anywhere we
7306   // would have used colons.
7307   appendSelectorForMessageRefTable(messageRefName, selector);
7308 
7309   llvm::GlobalVariable *messageRef
7310     = CGM.getModule().getGlobalVariable(messageRefName);
7311   if (!messageRef) {
7312     // Build the message ref structure.
7313     ConstantInitBuilder builder(CGM);
7314     auto values = builder.beginStruct();
7315     values.add(cast<llvm::Constant>(fn.getCallee()));
7316     values.add(GetMethodVarName(selector));
7317     messageRef = values.finishAndCreateGlobal(messageRefName,
7318                                               CharUnits::fromQuantity(16),
7319                                               /*constant*/ false,
7320                                         llvm::GlobalValue::WeakAnyLinkage);
7321     messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
7322     messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced"));
7323   }
7324 
7325   bool requiresnullCheck = false;
7326   if (CGM.getLangOpts().ObjCAutoRefCount && method)
7327     for (const auto *ParamDecl : method->parameters()) {
7328       if (ParamDecl->isDestroyedInCallee()) {
7329         if (!nullReturn.NullBB)
7330           nullReturn.init(CGF, arg0);
7331         requiresnullCheck = true;
7332         break;
7333       }
7334     }
7335 
7336   Address mref =
7337     Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy),
7338             CGF.getPointerAlign());
7339 
7340   // Update the message ref argument.
7341   args[1].setRValue(RValue::get(mref.getPointer()));
7342 
7343   // Load the function to call from the message ref table.
7344   Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0);
7345   llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn");
7346 
7347   calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType);
7348   CGCallee callee(CGCalleeInfo(), calleePtr);
7349 
7350   RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args);
7351   return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs,
7352                              requiresnullCheck ? method : nullptr);
7353 }
7354 
7355 /// Generate code for a message send expression in the nonfragile abi.
7356 CodeGen::RValue
7357 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
7358                                             ReturnValueSlot Return,
7359                                             QualType ResultType,
7360                                             Selector Sel,
7361                                             llvm::Value *Receiver,
7362                                             const CallArgList &CallArgs,
7363                                             const ObjCInterfaceDecl *Class,
7364                                             const ObjCMethodDecl *Method) {
7365   return isVTableDispatchedSelector(Sel)
7366     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7367                             Receiver, CGF.getContext().getObjCIdType(),
7368                             false, CallArgs, Method)
7369     : EmitMessageSend(CGF, Return, ResultType, Sel,
7370                       Receiver, CGF.getContext().getObjCIdType(),
7371                       false, CallArgs, Method, Class, ObjCTypes);
7372 }
7373 
7374 llvm::Constant *
7375 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID,
7376                                        bool metaclass,
7377                                        ForDefinition_t isForDefinition) {
7378   auto prefix =
7379     (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix());
7380   return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(),
7381                         isForDefinition,
7382                         ID->isWeakImported(),
7383                         !isForDefinition
7384                           && CGM.getTriple().isOSBinFormatCOFF()
7385                           && ID->hasAttr<DLLImportAttr>());
7386 }
7387 
7388 llvm::Constant *
7389 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name,
7390                                        ForDefinition_t IsForDefinition,
7391                                        bool Weak, bool DLLImport) {
7392   llvm::GlobalValue::LinkageTypes L =
7393       Weak ? llvm::GlobalValue::ExternalWeakLinkage
7394            : llvm::GlobalValue::ExternalLinkage;
7395 
7396   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
7397   if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) {
7398     auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L,
7399                                            nullptr, Name);
7400 
7401     if (DLLImport)
7402       NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
7403 
7404     if (GV) {
7405       GV->replaceAllUsesWith(
7406           llvm::ConstantExpr::getBitCast(NewGV, GV->getType()));
7407       GV->eraseFromParent();
7408     }
7409     GV = NewGV;
7410     CGM.getModule().getGlobalList().push_back(GV);
7411   }
7412 
7413   assert(GV->getLinkage() == L);
7414   return GV;
7415 }
7416 
7417 llvm::Constant *
7418 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) {
7419   llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false,
7420                                            NotForDefinition);
7421 
7422   if (!ID->hasAttr<ObjCClassStubAttr>())
7423     return ClassGV;
7424 
7425   ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy);
7426 
7427   // Stub classes are pointer-aligned. Classrefs pointing at stub classes
7428   // must set the least significant bit set to 1.
7429   auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1);
7430   return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx);
7431 }
7432 
7433 llvm::Value *
7434 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF,
7435                                            const ObjCInterfaceDecl *ID,
7436                                            llvm::GlobalVariable *Entry) {
7437   if (ID && ID->hasAttr<ObjCClassStubAttr>()) {
7438     // Classrefs pointing at Objective-C stub classes must be loaded by calling
7439     // a special runtime function.
7440     return CGF.EmitRuntimeCall(
7441       ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result");
7442   }
7443 
7444   CharUnits Align = CGF.getPointerAlign();
7445   return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, Align);
7446 }
7447 
7448 llvm::Value *
7449 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF,
7450                                            IdentifierInfo *II,
7451                                            const ObjCInterfaceDecl *ID) {
7452   llvm::GlobalVariable *&Entry = ClassReferences[II];
7453 
7454   if (!Entry) {
7455     llvm::Constant *ClassGV;
7456     if (ID) {
7457       ClassGV = GetClassGlobalForClassRef(ID);
7458     } else {
7459       ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(),
7460                                NotForDefinition);
7461       assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy &&
7462              "classref was emitted with the wrong type?");
7463     }
7464 
7465     std::string SectionName =
7466         GetSectionName("__objc_classrefs", "regular,no_dead_strip");
7467     Entry = new llvm::GlobalVariable(
7468         CGM.getModule(), ClassGV->getType(), false,
7469         getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV,
7470         "OBJC_CLASSLIST_REFERENCES_$_");
7471     Entry->setAlignment(CGF.getPointerAlign().getAsAlign());
7472     if (!ID || !ID->hasAttr<ObjCClassStubAttr>())
7473       Entry->setSection(SectionName);
7474 
7475     CGM.addCompilerUsedGlobal(Entry);
7476   }
7477 
7478   return EmitLoadOfClassRef(CGF, ID, Entry);
7479 }
7480 
7481 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF,
7482                                                   const ObjCInterfaceDecl *ID) {
7483   // If the class has the objc_runtime_visible attribute, we need to
7484   // use the Objective-C runtime to get the class.
7485   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
7486     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
7487 
7488   return EmitClassRefFromId(CGF, ID->getIdentifier(), ID);
7489 }
7490 
7491 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef(
7492                                                     CodeGenFunction &CGF) {
7493   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
7494   return EmitClassRefFromId(CGF, II, nullptr);
7495 }
7496 
7497 llvm::Value *
7498 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF,
7499                                           const ObjCInterfaceDecl *ID) {
7500   llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
7501 
7502   if (!Entry) {
7503     llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID);
7504     std::string SectionName =
7505         GetSectionName("__objc_superrefs", "regular,no_dead_strip");
7506     Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false,
7507                                      llvm::GlobalValue::PrivateLinkage, ClassGV,
7508                                      "OBJC_CLASSLIST_SUP_REFS_$_");
7509     Entry->setAlignment(CGF.getPointerAlign().getAsAlign());
7510     Entry->setSection(SectionName);
7511     CGM.addCompilerUsedGlobal(Entry);
7512   }
7513 
7514   return EmitLoadOfClassRef(CGF, ID, Entry);
7515 }
7516 
7517 /// EmitMetaClassRef - Return a Value * of the address of _class_t
7518 /// meta-data
7519 ///
7520 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF,
7521                                                       const ObjCInterfaceDecl *ID,
7522                                                       bool Weak) {
7523   CharUnits Align = CGF.getPointerAlign();
7524   llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
7525   if (!Entry) {
7526     auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition);
7527     std::string SectionName =
7528         GetSectionName("__objc_superrefs", "regular,no_dead_strip");
7529     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
7530                                      false, llvm::GlobalValue::PrivateLinkage,
7531                                      MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
7532     Entry->setAlignment(Align.getAsAlign());
7533     Entry->setSection(SectionName);
7534     CGM.addCompilerUsedGlobal(Entry);
7535   }
7536 
7537   return CGF.Builder.CreateAlignedLoad(ObjCTypes.ClassnfABIPtrTy, Entry, Align);
7538 }
7539 
7540 /// GetClass - Return a reference to the class for the given interface
7541 /// decl.
7542 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF,
7543                                               const ObjCInterfaceDecl *ID) {
7544   if (ID->isWeakImported()) {
7545     auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition);
7546     (void)ClassGV;
7547     assert(!isa<llvm::GlobalVariable>(ClassGV) ||
7548            cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage());
7549   }
7550 
7551   return EmitClassRef(CGF, ID);
7552 }
7553 
7554 /// Generates a message send where the super is the receiver.  This is
7555 /// a message send to self with special delivery semantics indicating
7556 /// which class's method should be called.
7557 CodeGen::RValue
7558 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
7559                                                  ReturnValueSlot Return,
7560                                                  QualType ResultType,
7561                                                  Selector Sel,
7562                                                  const ObjCInterfaceDecl *Class,
7563                                                  bool isCategoryImpl,
7564                                                  llvm::Value *Receiver,
7565                                                  bool IsClassMessage,
7566                                                  const CodeGen::CallArgList &CallArgs,
7567                                                  const ObjCMethodDecl *Method) {
7568   // ...
7569   // Create and init a super structure; this is a (receiver, class)
7570   // pair we will pass to objc_msgSendSuper.
7571   Address ObjCSuper =
7572     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
7573                          "objc_super");
7574 
7575   llvm::Value *ReceiverAsObject =
7576     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
7577   CGF.Builder.CreateStore(ReceiverAsObject,
7578                           CGF.Builder.CreateStructGEP(ObjCSuper, 0));
7579 
7580   // If this is a class message the metaclass is passed as the target.
7581   llvm::Value *Target;
7582   if (IsClassMessage)
7583       Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported());
7584   else
7585     Target = EmitSuperClassRef(CGF, Class);
7586 
7587   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
7588   // ObjCTypes types.
7589   llvm::Type *ClassTy =
7590     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
7591   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
7592   CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1));
7593 
7594   return (isVTableDispatchedSelector(Sel))
7595     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7596                             ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7597                             true, CallArgs, Method)
7598     : EmitMessageSend(CGF, Return, ResultType, Sel,
7599                       ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7600                       true, CallArgs, Method, Class, ObjCTypes);
7601 }
7602 
7603 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF,
7604                                                   Selector Sel) {
7605   Address Addr = EmitSelectorAddr(Sel);
7606 
7607   llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr);
7608   LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
7609                   llvm::MDNode::get(VMContext, None));
7610   return LI;
7611 }
7612 
7613 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) {
7614   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
7615   CharUnits Align = CGM.getPointerAlign();
7616   if (!Entry) {
7617     llvm::Constant *Casted =
7618       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
7619                                      ObjCTypes.SelectorPtrTy);
7620     std::string SectionName =
7621         GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip");
7622     Entry = new llvm::GlobalVariable(
7623         CGM.getModule(), ObjCTypes.SelectorPtrTy, false,
7624         getLinkageTypeForObjCMetadata(CGM, SectionName), Casted,
7625         "OBJC_SELECTOR_REFERENCES_");
7626     Entry->setExternallyInitialized(true);
7627     Entry->setSection(SectionName);
7628     Entry->setAlignment(Align.getAsAlign());
7629     CGM.addCompilerUsedGlobal(Entry);
7630   }
7631 
7632   return Address(Entry, Align);
7633 }
7634 
7635 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
7636 /// objc_assign_ivar (id src, id *dst, ptrdiff_t)
7637 ///
7638 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
7639                                                 llvm::Value *src,
7640                                                 Address dst,
7641                                                 llvm::Value *ivarOffset) {
7642   llvm::Type * SrcTy = src->getType();
7643   if (!isa<llvm::PointerType>(SrcTy)) {
7644     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7645     assert(Size <= 8 && "does not support size > 8");
7646     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7647            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7648     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7649   }
7650   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7651   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7652   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
7653   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
7654 }
7655 
7656 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
7657 /// objc_assign_strongCast (id src, id *dst)
7658 ///
7659 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
7660   CodeGen::CodeGenFunction &CGF,
7661   llvm::Value *src, Address dst) {
7662   llvm::Type * SrcTy = src->getType();
7663   if (!isa<llvm::PointerType>(SrcTy)) {
7664     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7665     assert(Size <= 8 && "does not support size > 8");
7666     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7667            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7668     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7669   }
7670   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7671   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7672   llvm::Value *args[] = { src, dst.getPointer() };
7673   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
7674                               args, "weakassign");
7675 }
7676 
7677 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
7678   CodeGen::CodeGenFunction &CGF,
7679   Address DestPtr,
7680   Address SrcPtr,
7681   llvm::Value *Size) {
7682   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
7683   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
7684   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size };
7685   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
7686 }
7687 
7688 /// EmitObjCWeakRead - Code gen for loading value of a __weak
7689 /// object: objc_read_weak (id *src)
7690 ///
7691 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
7692   CodeGen::CodeGenFunction &CGF,
7693   Address AddrWeakObj) {
7694   llvm::Type *DestTy = AddrWeakObj.getElementType();
7695   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy);
7696   llvm::Value *read_weak =
7697     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
7698                                 AddrWeakObj.getPointer(), "weakread");
7699   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
7700   return read_weak;
7701 }
7702 
7703 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
7704 /// objc_assign_weak (id src, id *dst)
7705 ///
7706 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
7707                                                 llvm::Value *src, Address dst) {
7708   llvm::Type * SrcTy = src->getType();
7709   if (!isa<llvm::PointerType>(SrcTy)) {
7710     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7711     assert(Size <= 8 && "does not support size > 8");
7712     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7713            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7714     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7715   }
7716   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7717   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7718   llvm::Value *args[] = { src, dst.getPointer() };
7719   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
7720                               args, "weakassign");
7721 }
7722 
7723 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
7724 /// objc_assign_global (id src, id *dst)
7725 ///
7726 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
7727                                           llvm::Value *src, Address dst,
7728                                           bool threadlocal) {
7729   llvm::Type * SrcTy = src->getType();
7730   if (!isa<llvm::PointerType>(SrcTy)) {
7731     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7732     assert(Size <= 8 && "does not support size > 8");
7733     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7734            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7735     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7736   }
7737   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7738   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7739   llvm::Value *args[] = { src, dst.getPointer() };
7740   if (!threadlocal)
7741     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
7742                                 args, "globalassign");
7743   else
7744     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
7745                                 args, "threadlocalassign");
7746 }
7747 
7748 void
7749 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
7750                                              const ObjCAtSynchronizedStmt &S) {
7751   EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(),
7752                          ObjCTypes.getSyncExitFn());
7753 }
7754 
7755 llvm::Constant *
7756 CGObjCNonFragileABIMac::GetEHType(QualType T) {
7757   // There's a particular fixed type info for 'id'.
7758   if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
7759     auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id");
7760     if (!IDEHType) {
7761       IDEHType =
7762           new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7763                                    llvm::GlobalValue::ExternalLinkage, nullptr,
7764                                    "OBJC_EHTYPE_id");
7765       if (CGM.getTriple().isOSBinFormatCOFF())
7766         IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id"));
7767     }
7768     return IDEHType;
7769   }
7770 
7771   // All other types should be Objective-C interface pointer types.
7772   const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
7773   assert(PT && "Invalid @catch type.");
7774 
7775   const ObjCInterfaceType *IT = PT->getInterfaceType();
7776   assert(IT && "Invalid @catch type.");
7777 
7778   return GetInterfaceEHType(IT->getDecl(), NotForDefinition);
7779 }
7780 
7781 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF,
7782                                          const ObjCAtTryStmt &S) {
7783   EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(),
7784                    ObjCTypes.getObjCEndCatchFn(),
7785                    ObjCTypes.getExceptionRethrowFn());
7786 }
7787 
7788 /// EmitThrowStmt - Generate code for a throw statement.
7789 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
7790                                            const ObjCAtThrowStmt &S,
7791                                            bool ClearInsertionPoint) {
7792   if (const Expr *ThrowExpr = S.getThrowExpr()) {
7793     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
7794     Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
7795     llvm::CallBase *Call =
7796         CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception);
7797     Call->setDoesNotReturn();
7798   } else {
7799     llvm::CallBase *Call =
7800         CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn());
7801     Call->setDoesNotReturn();
7802   }
7803 
7804   CGF.Builder.CreateUnreachable();
7805   if (ClearInsertionPoint)
7806     CGF.Builder.ClearInsertionPoint();
7807 }
7808 
7809 llvm::Constant *
7810 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
7811                                            ForDefinition_t IsForDefinition) {
7812   llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
7813   StringRef ClassName = ID->getObjCRuntimeNameAsString();
7814 
7815   // If we don't need a definition, return the entry if found or check
7816   // if we use an external reference.
7817   if (!IsForDefinition) {
7818     if (Entry)
7819       return Entry;
7820 
7821     // If this type (or a super class) has the __objc_exception__
7822     // attribute, emit an external reference.
7823     if (hasObjCExceptionAttribute(CGM.getContext(), ID)) {
7824       std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str();
7825       Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
7826                                        false, llvm::GlobalValue::ExternalLinkage,
7827                                        nullptr, EHTypeName);
7828       CGM.setGVProperties(Entry, ID);
7829       return Entry;
7830     }
7831   }
7832 
7833   // Otherwise we need to either make a new entry or fill in the initializer.
7834   assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
7835 
7836   std::string VTableName = "objc_ehtype_vtable";
7837   auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName);
7838   if (!VTableGV) {
7839     VTableGV =
7840         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false,
7841                                  llvm::GlobalValue::ExternalLinkage, nullptr,
7842                                  VTableName);
7843     if (CGM.getTriple().isOSBinFormatCOFF())
7844       VTableGV->setDLLStorageClass(getStorage(CGM, VTableName));
7845   }
7846 
7847   llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2);
7848   ConstantInitBuilder builder(CGM);
7849   auto values = builder.beginStruct(ObjCTypes.EHTypeTy);
7850   values.add(
7851     llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(),
7852                                                  VTableGV, VTableIdx));
7853   values.add(GetClassName(ClassName));
7854   values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition));
7855 
7856   llvm::GlobalValue::LinkageTypes L = IsForDefinition
7857                                           ? llvm::GlobalValue::ExternalLinkage
7858                                           : llvm::GlobalValue::WeakAnyLinkage;
7859   if (Entry) {
7860     values.finishAndSetAsInitializer(Entry);
7861     Entry->setAlignment(CGM.getPointerAlign().getAsAlign());
7862   } else {
7863     Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName,
7864                                          CGM.getPointerAlign(),
7865                                          /*constant*/ false,
7866                                          L);
7867     if (hasObjCExceptionAttribute(CGM.getContext(), ID))
7868       CGM.setGVProperties(Entry, ID);
7869   }
7870   assert(Entry->getLinkage() == L);
7871 
7872   if (!CGM.getTriple().isOSBinFormatCOFF())
7873     if (ID->getVisibility() == HiddenVisibility)
7874       Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7875 
7876   if (IsForDefinition)
7877     if (CGM.getTriple().isOSBinFormatMachO())
7878       Entry->setSection("__DATA,__objc_const");
7879 
7880   return Entry;
7881 }
7882 
7883 /* *** */
7884 
7885 CodeGen::CGObjCRuntime *
7886 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
7887   switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
7888   case ObjCRuntime::FragileMacOSX:
7889   return new CGObjCMac(CGM);
7890 
7891   case ObjCRuntime::MacOSX:
7892   case ObjCRuntime::iOS:
7893   case ObjCRuntime::WatchOS:
7894     return new CGObjCNonFragileABIMac(CGM);
7895 
7896   case ObjCRuntime::GNUstep:
7897   case ObjCRuntime::GCC:
7898   case ObjCRuntime::ObjFW:
7899     llvm_unreachable("these runtimes are not Mac runtimes");
7900   }
7901   llvm_unreachable("bad runtime");
7902 }
7903