1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/CachedHashString.h" 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/UniqueVector.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/ScopedPrinter.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cstdio> 44 45 using namespace clang; 46 using namespace CodeGen; 47 48 namespace { 49 50 // FIXME: We should find a nicer way to make the labels for metadata, string 51 // concatenation is lame. 52 53 class ObjCCommonTypesHelper { 54 protected: 55 llvm::LLVMContext &VMContext; 56 57 private: 58 // The types of these functions don't really matter because we 59 // should always bitcast before calling them. 60 61 /// id objc_msgSend (id, SEL, ...) 62 /// 63 /// The default messenger, used for sends whose ABI is unchanged from 64 /// the all-integer/pointer case. 65 llvm::FunctionCallee getMessageSendFn() const { 66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 67 // be called a lot. 68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 69 return CGM.CreateRuntimeFunction( 70 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 71 llvm::AttributeList::get(CGM.getLLVMContext(), 72 llvm::AttributeList::FunctionIndex, 73 llvm::Attribute::NonLazyBind)); 74 } 75 76 /// void objc_msgSend_stret (id, SEL, ...) 77 /// 78 /// The messenger used when the return value is an aggregate returned 79 /// by indirect reference in the first argument, and therefore the 80 /// self and selector parameters are shifted over by one. 81 llvm::FunctionCallee getMessageSendStretFn() const { 82 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 83 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 84 params, true), 85 "objc_msgSend_stret"); 86 } 87 88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 89 /// 90 /// The messenger used when the return value is returned on the x87 91 /// floating-point stack; without a special entrypoint, the nil case 92 /// would be unbalanced. 93 llvm::FunctionCallee getMessageSendFpretFn() const { 94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 95 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 96 params, true), 97 "objc_msgSend_fpret"); 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::FunctionCallee getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::FunctionCallee getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::FunctionCallee getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::FunctionCallee getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::PointerType *Int8PtrProgramASTy; 178 llvm::Type *IvarOffsetVarTy; 179 180 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 181 llvm::PointerType *ObjectPtrTy; 182 183 /// PtrObjectPtrTy - LLVM type for id * 184 llvm::PointerType *PtrObjectPtrTy; 185 186 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 187 llvm::PointerType *SelectorPtrTy; 188 189 private: 190 /// ProtocolPtrTy - LLVM type for external protocol handles 191 /// (typeof(Protocol)) 192 llvm::Type *ExternalProtocolPtrTy; 193 194 public: 195 llvm::Type *getExternalProtocolPtrTy() { 196 if (!ExternalProtocolPtrTy) { 197 // FIXME: It would be nice to unify this with the opaque type, so that the 198 // IR comes out a bit cleaner. 199 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 200 ASTContext &Ctx = CGM.getContext(); 201 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 202 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 203 } 204 205 return ExternalProtocolPtrTy; 206 } 207 208 // SuperCTy - clang type for struct objc_super. 209 QualType SuperCTy; 210 // SuperPtrCTy - clang type for struct objc_super *. 211 QualType SuperPtrCTy; 212 213 /// SuperTy - LLVM type for struct objc_super. 214 llvm::StructType *SuperTy; 215 /// SuperPtrTy - LLVM type for struct objc_super *. 216 llvm::PointerType *SuperPtrTy; 217 218 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 219 /// in GCC parlance). 220 llvm::StructType *PropertyTy; 221 222 /// PropertyListTy - LLVM type for struct objc_property_list 223 /// (_prop_list_t in GCC parlance). 224 llvm::StructType *PropertyListTy; 225 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 226 llvm::PointerType *PropertyListPtrTy; 227 228 // MethodTy - LLVM type for struct objc_method. 229 llvm::StructType *MethodTy; 230 231 /// CacheTy - LLVM type for struct objc_cache. 232 llvm::Type *CacheTy; 233 /// CachePtrTy - LLVM type for struct objc_cache *. 234 llvm::PointerType *CachePtrTy; 235 236 llvm::FunctionCallee getGetPropertyFn() { 237 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 238 ASTContext &Ctx = CGM.getContext(); 239 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 240 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 241 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 242 CanQualType Params[] = { 243 IdType, SelType, 244 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 245 llvm::FunctionType *FTy = 246 Types.GetFunctionType( 247 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 248 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 249 } 250 251 llvm::FunctionCallee getSetPropertyFn() { 252 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 253 ASTContext &Ctx = CGM.getContext(); 254 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 255 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 256 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 257 CanQualType Params[] = { 258 IdType, 259 SelType, 260 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 261 IdType, 262 Ctx.BoolTy, 263 Ctx.BoolTy}; 264 llvm::FunctionType *FTy = 265 Types.GetFunctionType( 266 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 267 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 268 } 269 270 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 271 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 272 ASTContext &Ctx = CGM.getContext(); 273 // void objc_setProperty_atomic(id self, SEL _cmd, 274 // id newValue, ptrdiff_t offset); 275 // void objc_setProperty_nonatomic(id self, SEL _cmd, 276 // id newValue, ptrdiff_t offset); 277 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 278 // id newValue, ptrdiff_t offset); 279 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 280 // id newValue, ptrdiff_t offset); 281 282 SmallVector<CanQualType,4> Params; 283 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 284 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 285 Params.push_back(IdType); 286 Params.push_back(SelType); 287 Params.push_back(IdType); 288 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 289 llvm::FunctionType *FTy = 290 Types.GetFunctionType( 291 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 292 const char *name; 293 if (atomic && copy) 294 name = "objc_setProperty_atomic_copy"; 295 else if (atomic && !copy) 296 name = "objc_setProperty_atomic"; 297 else if (!atomic && copy) 298 name = "objc_setProperty_nonatomic_copy"; 299 else 300 name = "objc_setProperty_nonatomic"; 301 302 return CGM.CreateRuntimeFunction(FTy, name); 303 } 304 305 llvm::FunctionCallee getCopyStructFn() { 306 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 307 ASTContext &Ctx = CGM.getContext(); 308 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 309 SmallVector<CanQualType,5> Params; 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.VoidPtrTy); 312 Params.push_back(Ctx.getSizeType()); 313 Params.push_back(Ctx.BoolTy); 314 Params.push_back(Ctx.BoolTy); 315 llvm::FunctionType *FTy = 316 Types.GetFunctionType( 317 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 318 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 319 } 320 321 /// This routine declares and returns address of: 322 /// void objc_copyCppObjectAtomic( 323 /// void *dest, const void *src, 324 /// void (*copyHelper) (void *dest, const void *source)); 325 llvm::FunctionCallee getCppAtomicObjectFunction() { 326 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 327 ASTContext &Ctx = CGM.getContext(); 328 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 329 SmallVector<CanQualType,3> Params; 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 Params.push_back(Ctx.VoidPtrTy); 333 llvm::FunctionType *FTy = 334 Types.GetFunctionType( 335 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 336 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 337 } 338 339 llvm::FunctionCallee getEnumerationMutationFn() { 340 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 341 ASTContext &Ctx = CGM.getContext(); 342 // void objc_enumerationMutation (id) 343 SmallVector<CanQualType,1> Params; 344 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 345 llvm::FunctionType *FTy = 346 Types.GetFunctionType( 347 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 348 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 349 } 350 351 llvm::FunctionCallee getLookUpClassFn() { 352 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 353 ASTContext &Ctx = CGM.getContext(); 354 // Class objc_lookUpClass (const char *) 355 SmallVector<CanQualType,1> Params; 356 Params.push_back( 357 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 358 llvm::FunctionType *FTy = 359 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 360 Ctx.getCanonicalType(Ctx.getObjCClassType()), 361 Params)); 362 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 363 } 364 365 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 366 llvm::FunctionCallee getGcReadWeakFn() { 367 // id objc_read_weak (id *) 368 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 369 llvm::FunctionType *FTy = 370 llvm::FunctionType::get(ObjectPtrTy, args, false); 371 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 372 } 373 374 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 375 llvm::FunctionCallee getGcAssignWeakFn() { 376 // id objc_assign_weak (id, id *) 377 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 378 llvm::FunctionType *FTy = 379 llvm::FunctionType::get(ObjectPtrTy, args, false); 380 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 381 } 382 383 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 384 llvm::FunctionCallee getGcAssignGlobalFn() { 385 // id objc_assign_global(id, id *) 386 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 387 llvm::FunctionType *FTy = 388 llvm::FunctionType::get(ObjectPtrTy, args, false); 389 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 390 } 391 392 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 393 llvm::FunctionCallee getGcAssignThreadLocalFn() { 394 // id objc_assign_threadlocal(id src, id * dest) 395 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 396 llvm::FunctionType *FTy = 397 llvm::FunctionType::get(ObjectPtrTy, args, false); 398 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 399 } 400 401 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 402 llvm::FunctionCallee getGcAssignIvarFn() { 403 // id objc_assign_ivar(id, id *, ptrdiff_t) 404 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 405 CGM.PtrDiffTy }; 406 llvm::FunctionType *FTy = 407 llvm::FunctionType::get(ObjectPtrTy, args, false); 408 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 409 } 410 411 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 412 llvm::FunctionCallee GcMemmoveCollectableFn() { 413 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 414 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 415 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 416 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 417 } 418 419 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 420 llvm::FunctionCallee getGcAssignStrongCastFn() { 421 // id objc_assign_strongCast(id, id *) 422 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 423 llvm::FunctionType *FTy = 424 llvm::FunctionType::get(ObjectPtrTy, args, false); 425 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 426 } 427 428 /// ExceptionThrowFn - LLVM objc_exception_throw function. 429 llvm::FunctionCallee getExceptionThrowFn() { 430 // void objc_exception_throw(id) 431 llvm::Type *args[] = { ObjectPtrTy }; 432 llvm::FunctionType *FTy = 433 llvm::FunctionType::get(CGM.VoidTy, args, false); 434 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 435 } 436 437 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 438 llvm::FunctionCallee getExceptionRethrowFn() { 439 // void objc_exception_rethrow(void) 440 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 441 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 442 } 443 444 /// SyncEnterFn - LLVM object_sync_enter function. 445 llvm::FunctionCallee getSyncEnterFn() { 446 // int objc_sync_enter (id) 447 llvm::Type *args[] = { ObjectPtrTy }; 448 llvm::FunctionType *FTy = 449 llvm::FunctionType::get(CGM.IntTy, args, false); 450 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 451 } 452 453 /// SyncExitFn - LLVM object_sync_exit function. 454 llvm::FunctionCallee getSyncExitFn() { 455 // int objc_sync_exit (id) 456 llvm::Type *args[] = { ObjectPtrTy }; 457 llvm::FunctionType *FTy = 458 llvm::FunctionType::get(CGM.IntTy, args, false); 459 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 460 } 461 462 llvm::FunctionCallee getSendFn(bool IsSuper) const { 463 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 464 } 465 466 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 467 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 468 } 469 470 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 471 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 472 } 473 474 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 475 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 476 } 477 478 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 479 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 480 } 481 482 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 483 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 484 } 485 486 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 487 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 488 } 489 490 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 491 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 492 } 493 494 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 495 }; 496 497 /// ObjCTypesHelper - Helper class that encapsulates lazy 498 /// construction of varies types used during ObjC generation. 499 class ObjCTypesHelper : public ObjCCommonTypesHelper { 500 public: 501 /// SymtabTy - LLVM type for struct objc_symtab. 502 llvm::StructType *SymtabTy; 503 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 504 llvm::PointerType *SymtabPtrTy; 505 /// ModuleTy - LLVM type for struct objc_module. 506 llvm::StructType *ModuleTy; 507 508 /// ProtocolTy - LLVM type for struct objc_protocol. 509 llvm::StructType *ProtocolTy; 510 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 511 llvm::PointerType *ProtocolPtrTy; 512 /// ProtocolExtensionTy - LLVM type for struct 513 /// objc_protocol_extension. 514 llvm::StructType *ProtocolExtensionTy; 515 /// ProtocolExtensionTy - LLVM type for struct 516 /// objc_protocol_extension *. 517 llvm::PointerType *ProtocolExtensionPtrTy; 518 /// MethodDescriptionTy - LLVM type for struct 519 /// objc_method_description. 520 llvm::StructType *MethodDescriptionTy; 521 /// MethodDescriptionListTy - LLVM type for struct 522 /// objc_method_description_list. 523 llvm::StructType *MethodDescriptionListTy; 524 /// MethodDescriptionListPtrTy - LLVM type for struct 525 /// objc_method_description_list *. 526 llvm::PointerType *MethodDescriptionListPtrTy; 527 /// ProtocolListTy - LLVM type for struct objc_property_list. 528 llvm::StructType *ProtocolListTy; 529 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 530 llvm::PointerType *ProtocolListPtrTy; 531 /// CategoryTy - LLVM type for struct objc_category. 532 llvm::StructType *CategoryTy; 533 /// ClassTy - LLVM type for struct objc_class. 534 llvm::StructType *ClassTy; 535 /// ClassPtrTy - LLVM type for struct objc_class *. 536 llvm::PointerType *ClassPtrTy; 537 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 538 llvm::StructType *ClassExtensionTy; 539 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 540 llvm::PointerType *ClassExtensionPtrTy; 541 // IvarTy - LLVM type for struct objc_ivar. 542 llvm::StructType *IvarTy; 543 /// IvarListTy - LLVM type for struct objc_ivar_list. 544 llvm::StructType *IvarListTy; 545 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 546 llvm::PointerType *IvarListPtrTy; 547 /// MethodListTy - LLVM type for struct objc_method_list. 548 llvm::StructType *MethodListTy; 549 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 550 llvm::PointerType *MethodListPtrTy; 551 552 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 553 llvm::StructType *ExceptionDataTy; 554 555 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 556 llvm::FunctionCallee getExceptionTryEnterFn() { 557 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 558 return CGM.CreateRuntimeFunction( 559 llvm::FunctionType::get(CGM.VoidTy, params, false), 560 "objc_exception_try_enter"); 561 } 562 563 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 564 llvm::FunctionCallee getExceptionTryExitFn() { 565 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 566 return CGM.CreateRuntimeFunction( 567 llvm::FunctionType::get(CGM.VoidTy, params, false), 568 "objc_exception_try_exit"); 569 } 570 571 /// ExceptionExtractFn - LLVM objc_exception_extract function. 572 llvm::FunctionCallee getExceptionExtractFn() { 573 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 574 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 575 params, false), 576 "objc_exception_extract"); 577 } 578 579 /// ExceptionMatchFn - LLVM objc_exception_match function. 580 llvm::FunctionCallee getExceptionMatchFn() { 581 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 582 return CGM.CreateRuntimeFunction( 583 llvm::FunctionType::get(CGM.Int32Ty, params, false), 584 "objc_exception_match"); 585 } 586 587 /// SetJmpFn - LLVM _setjmp function. 588 llvm::FunctionCallee getSetJmpFn() { 589 // This is specifically the prototype for x86. 590 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 591 return CGM.CreateRuntimeFunction( 592 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 593 llvm::AttributeList::get(CGM.getLLVMContext(), 594 llvm::AttributeList::FunctionIndex, 595 llvm::Attribute::NonLazyBind)); 596 } 597 598 public: 599 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 600 }; 601 602 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 603 /// modern abi 604 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 605 public: 606 // MethodListnfABITy - LLVM for struct _method_list_t 607 llvm::StructType *MethodListnfABITy; 608 609 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 610 llvm::PointerType *MethodListnfABIPtrTy; 611 612 // ProtocolnfABITy = LLVM for struct _protocol_t 613 llvm::StructType *ProtocolnfABITy; 614 615 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 616 llvm::PointerType *ProtocolnfABIPtrTy; 617 618 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 619 llvm::StructType *ProtocolListnfABITy; 620 621 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 622 llvm::PointerType *ProtocolListnfABIPtrTy; 623 624 // ClassnfABITy - LLVM for struct _class_t 625 llvm::StructType *ClassnfABITy; 626 627 // ClassnfABIPtrTy - LLVM for struct _class_t* 628 llvm::PointerType *ClassnfABIPtrTy; 629 630 // IvarnfABITy - LLVM for struct _ivar_t 631 llvm::StructType *IvarnfABITy; 632 633 // IvarListnfABITy - LLVM for struct _ivar_list_t 634 llvm::StructType *IvarListnfABITy; 635 636 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 637 llvm::PointerType *IvarListnfABIPtrTy; 638 639 // ClassRonfABITy - LLVM for struct _class_ro_t 640 llvm::StructType *ClassRonfABITy; 641 642 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 643 llvm::PointerType *ImpnfABITy; 644 645 // CategorynfABITy - LLVM for struct _category_t 646 llvm::StructType *CategorynfABITy; 647 648 // New types for nonfragile abi messaging. 649 650 // MessageRefTy - LLVM for: 651 // struct _message_ref_t { 652 // IMP messenger; 653 // SEL name; 654 // }; 655 llvm::StructType *MessageRefTy; 656 // MessageRefCTy - clang type for struct _message_ref_t 657 QualType MessageRefCTy; 658 659 // MessageRefPtrTy - LLVM for struct _message_ref_t* 660 llvm::Type *MessageRefPtrTy; 661 // MessageRefCPtrTy - clang type for struct _message_ref_t* 662 QualType MessageRefCPtrTy; 663 664 // SuperMessageRefTy - LLVM for: 665 // struct _super_message_ref_t { 666 // SUPER_IMP messenger; 667 // SEL name; 668 // }; 669 llvm::StructType *SuperMessageRefTy; 670 671 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 672 llvm::PointerType *SuperMessageRefPtrTy; 673 674 llvm::FunctionCallee getMessageSendFixupFn() { 675 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 676 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 677 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 678 params, true), 679 "objc_msgSend_fixup"); 680 } 681 682 llvm::FunctionCallee getMessageSendFpretFixupFn() { 683 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 684 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 685 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 686 params, true), 687 "objc_msgSend_fpret_fixup"); 688 } 689 690 llvm::FunctionCallee getMessageSendStretFixupFn() { 691 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 692 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 693 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 694 params, true), 695 "objc_msgSend_stret_fixup"); 696 } 697 698 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 699 // id objc_msgSendSuper2_fixup (struct objc_super *, 700 // struct _super_message_ref_t*, ...) 701 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 702 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 703 params, true), 704 "objc_msgSendSuper2_fixup"); 705 } 706 707 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 708 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 709 // struct _super_message_ref_t*, ...) 710 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 711 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 712 params, true), 713 "objc_msgSendSuper2_stret_fixup"); 714 } 715 716 llvm::FunctionCallee getObjCEndCatchFn() { 717 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 718 "objc_end_catch"); 719 } 720 721 llvm::FunctionCallee getObjCBeginCatchFn() { 722 llvm::Type *params[] = { Int8PtrTy }; 723 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 724 params, false), 725 "objc_begin_catch"); 726 } 727 728 /// Class objc_loadClassref (void *) 729 /// 730 /// Loads from a classref. For Objective-C stub classes, this invokes the 731 /// initialization callback stored inside the stub. For all other classes 732 /// this simply dereferences the pointer. 733 llvm::FunctionCallee getLoadClassrefFn() const { 734 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 735 // be called a lot. 736 // 737 // Also it is safe to make it readnone, since we never load or store the 738 // classref except by calling this function. 739 llvm::Type *params[] = { Int8PtrPtrTy }; 740 llvm::LLVMContext &C = CGM.getLLVMContext(); 741 llvm::AttributeSet AS = llvm::AttributeSet::get(C, { 742 llvm::Attribute::get(C, llvm::Attribute::NonLazyBind), 743 llvm::Attribute::getWithMemoryEffects(C, llvm::MemoryEffects::none()), 744 llvm::Attribute::get(C, llvm::Attribute::NoUnwind), 745 }); 746 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 747 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 748 "objc_loadClassref", 749 llvm::AttributeList::get(CGM.getLLVMContext(), 750 llvm::AttributeList::FunctionIndex, AS)); 751 if (!CGM.getTriple().isOSBinFormatCOFF()) 752 cast<llvm::Function>(F.getCallee())->setLinkage( 753 llvm::Function::ExternalWeakLinkage); 754 755 return F; 756 } 757 758 llvm::StructType *EHTypeTy; 759 llvm::Type *EHTypePtrTy; 760 761 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 762 }; 763 764 enum class ObjCLabelType { 765 ClassName, 766 MethodVarName, 767 MethodVarType, 768 PropertyName, 769 }; 770 771 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 772 public: 773 class SKIP_SCAN { 774 public: 775 unsigned skip; 776 unsigned scan; 777 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 778 : skip(_skip), scan(_scan) {} 779 }; 780 781 /// opcode for captured block variables layout 'instructions'. 782 /// In the following descriptions, 'I' is the value of the immediate field. 783 /// (field following the opcode). 784 /// 785 enum BLOCK_LAYOUT_OPCODE { 786 /// An operator which affects how the following layout should be 787 /// interpreted. 788 /// I == 0: Halt interpretation and treat everything else as 789 /// a non-pointer. Note that this instruction is equal 790 /// to '\0'. 791 /// I != 0: Currently unused. 792 BLOCK_LAYOUT_OPERATOR = 0, 793 794 /// The next I+1 bytes do not contain a value of object pointer type. 795 /// Note that this can leave the stream unaligned, meaning that 796 /// subsequent word-size instructions do not begin at a multiple of 797 /// the pointer size. 798 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 799 800 /// The next I+1 words do not contain a value of object pointer type. 801 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 802 /// when the required skip quantity is a multiple of the pointer size. 803 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 804 805 /// The next I+1 words are __strong pointers to Objective-C 806 /// objects or blocks. 807 BLOCK_LAYOUT_STRONG = 3, 808 809 /// The next I+1 words are pointers to __block variables. 810 BLOCK_LAYOUT_BYREF = 4, 811 812 /// The next I+1 words are __weak pointers to Objective-C 813 /// objects or blocks. 814 BLOCK_LAYOUT_WEAK = 5, 815 816 /// The next I+1 words are __unsafe_unretained pointers to 817 /// Objective-C objects or blocks. 818 BLOCK_LAYOUT_UNRETAINED = 6 819 820 /// The next I+1 words are block or object pointers with some 821 /// as-yet-unspecified ownership semantics. If we add more 822 /// flavors of ownership semantics, values will be taken from 823 /// this range. 824 /// 825 /// This is included so that older tools can at least continue 826 /// processing the layout past such things. 827 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 828 829 /// All other opcodes are reserved. Halt interpretation and 830 /// treat everything else as opaque. 831 }; 832 833 class RUN_SKIP { 834 public: 835 enum BLOCK_LAYOUT_OPCODE opcode; 836 CharUnits block_var_bytepos; 837 CharUnits block_var_size; 838 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 839 CharUnits BytePos = CharUnits::Zero(), 840 CharUnits Size = CharUnits::Zero()) 841 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 842 843 // Allow sorting based on byte pos. 844 bool operator<(const RUN_SKIP &b) const { 845 return block_var_bytepos < b.block_var_bytepos; 846 } 847 }; 848 849 protected: 850 llvm::LLVMContext &VMContext; 851 // FIXME! May not be needing this after all. 852 unsigned ObjCABI; 853 854 // arc/mrr layout of captured block literal variables. 855 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 856 857 /// LazySymbols - Symbols to generate a lazy reference for. See 858 /// DefinedSymbols and FinishModule(). 859 llvm::SetVector<IdentifierInfo*> LazySymbols; 860 861 /// DefinedSymbols - External symbols which are defined by this 862 /// module. The symbols in this list and LazySymbols are used to add 863 /// special linker symbols which ensure that Objective-C modules are 864 /// linked properly. 865 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 866 867 /// ClassNames - uniqued class names. 868 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 869 870 /// MethodVarNames - uniqued method variable names. 871 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 872 873 /// DefinedCategoryNames - list of category names in form Class_Category. 874 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 875 876 /// MethodVarTypes - uniqued method type signatures. We have to use 877 /// a StringMap here because have no other unique reference. 878 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 879 880 /// MethodDefinitions - map of methods which have been defined in 881 /// this translation unit. 882 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 883 884 /// DirectMethodDefinitions - map of direct methods which have been defined in 885 /// this translation unit. 886 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 887 888 /// PropertyNames - uniqued method variable names. 889 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 890 891 /// ClassReferences - uniqued class references. 892 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 893 894 /// SelectorReferences - uniqued selector references. 895 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 896 897 /// Protocols - Protocols for which an objc_protocol structure has 898 /// been emitted. Forward declarations are handled by creating an 899 /// empty structure whose initializer is filled in when/if defined. 900 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 901 902 /// DefinedProtocols - Protocols which have actually been 903 /// defined. We should not need this, see FIXME in GenerateProtocol. 904 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 905 906 /// DefinedClasses - List of defined classes. 907 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 908 909 /// ImplementedClasses - List of @implemented classes. 910 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 911 912 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 913 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 914 915 /// DefinedCategories - List of defined categories. 916 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 917 918 /// DefinedStubCategories - List of defined categories on class stubs. 919 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 920 921 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 922 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 923 924 /// Cached reference to the class for constant strings. This value has type 925 /// int * but is actually an Obj-C class pointer. 926 llvm::WeakTrackingVH ConstantStringClassRef; 927 928 /// The LLVM type corresponding to NSConstantString. 929 llvm::StructType *NSConstantStringType = nullptr; 930 931 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 932 933 /// GetMethodVarName - Return a unique constant for the given 934 /// selector's name. The return value has type char *. 935 llvm::Constant *GetMethodVarName(Selector Sel); 936 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 937 938 /// GetMethodVarType - Return a unique constant for the given 939 /// method's type encoding string. The return value has type char *. 940 941 // FIXME: This is a horrible name. 942 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 943 bool Extended = false); 944 llvm::Constant *GetMethodVarType(const FieldDecl *D); 945 946 /// GetPropertyName - Return a unique constant for the given 947 /// name. The return value has type char *. 948 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 949 950 // FIXME: This can be dropped once string functions are unified. 951 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 952 const Decl *Container); 953 954 /// GetClassName - Return a unique constant for the given selector's 955 /// runtime name (which may change via use of objc_runtime_name attribute on 956 /// class or protocol definition. The return value has type char *. 957 llvm::Constant *GetClassName(StringRef RuntimeName); 958 959 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 960 961 /// BuildIvarLayout - Builds ivar layout bitmap for the class 962 /// implementation for the __strong or __weak case. 963 /// 964 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 965 /// are any weak ivars defined directly in the class. Meaningless unless 966 /// building a weak layout. Does not guarantee that the layout will 967 /// actually have any entries, because the ivar might be under-aligned. 968 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 969 CharUnits beginOffset, 970 CharUnits endOffset, 971 bool forStrongLayout, 972 bool hasMRCWeakIvars); 973 974 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 975 CharUnits beginOffset, 976 CharUnits endOffset) { 977 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 978 } 979 980 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 981 CharUnits beginOffset, 982 CharUnits endOffset, 983 bool hasMRCWeakIvars) { 984 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 985 } 986 987 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 988 989 void UpdateRunSkipBlockVars(bool IsByref, 990 Qualifiers::ObjCLifetime LifeTime, 991 CharUnits FieldOffset, 992 CharUnits FieldSize); 993 994 void BuildRCBlockVarRecordLayout(const RecordType *RT, 995 CharUnits BytePos, bool &HasUnion, 996 bool ByrefLayout=false); 997 998 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 999 const RecordDecl *RD, 1000 ArrayRef<const FieldDecl*> RecFields, 1001 CharUnits BytePos, bool &HasUnion, 1002 bool ByrefLayout); 1003 1004 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1005 1006 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1007 1008 /// GetIvarLayoutName - Returns a unique constant for the given 1009 /// ivar layout bitmap. 1010 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1011 const ObjCCommonTypesHelper &ObjCTypes); 1012 1013 /// EmitPropertyList - Emit the given property list. The return 1014 /// value has type PropertyListPtrTy. 1015 llvm::Constant *EmitPropertyList(Twine Name, 1016 const Decl *Container, 1017 const ObjCContainerDecl *OCD, 1018 const ObjCCommonTypesHelper &ObjCTypes, 1019 bool IsClassProperty); 1020 1021 /// EmitProtocolMethodTypes - Generate the array of extended method type 1022 /// strings. The return value has type Int8PtrPtrTy. 1023 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1024 ArrayRef<llvm::Constant*> MethodTypes, 1025 const ObjCCommonTypesHelper &ObjCTypes); 1026 1027 /// GetProtocolRef - Return a reference to the internal protocol 1028 /// description, creating an empty one if it has not been 1029 /// defined. The return value has type ProtocolPtrTy. 1030 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1031 1032 /// Return a reference to the given Class using runtime calls rather than 1033 /// by a symbol reference. 1034 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1035 const ObjCInterfaceDecl *ID, 1036 ObjCCommonTypesHelper &ObjCTypes); 1037 1038 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1039 1040 public: 1041 /// CreateMetadataVar - Create a global variable with internal 1042 /// linkage for use by the Objective-C runtime. 1043 /// 1044 /// This is a convenience wrapper which not only creates the 1045 /// variable, but also sets the section and alignment and adds the 1046 /// global to the "llvm.used" list. 1047 /// 1048 /// \param Name - The variable name. 1049 /// \param Init - The variable initializer; this is also used to 1050 /// define the type of the variable. 1051 /// \param Section - The section the variable should go into, or empty. 1052 /// \param Align - The alignment for the variable, or 0. 1053 /// \param AddToUsed - Whether the variable should be added to 1054 /// "llvm.used". 1055 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1056 ConstantStructBuilder &Init, 1057 StringRef Section, CharUnits Align, 1058 bool AddToUsed); 1059 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1060 llvm::Constant *Init, 1061 StringRef Section, CharUnits Align, 1062 bool AddToUsed); 1063 1064 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1065 ObjCLabelType LabelType, 1066 bool ForceNonFragileABI = false, 1067 bool NullTerminate = true); 1068 1069 protected: 1070 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1071 ReturnValueSlot Return, 1072 QualType ResultType, 1073 Selector Sel, 1074 llvm::Value *Arg0, 1075 QualType Arg0Ty, 1076 bool IsSuper, 1077 const CallArgList &CallArgs, 1078 const ObjCMethodDecl *OMD, 1079 const ObjCInterfaceDecl *ClassReceiver, 1080 const ObjCCommonTypesHelper &ObjCTypes); 1081 1082 /// EmitImageInfo - Emit the image info marker used to encode some module 1083 /// level information. 1084 void EmitImageInfo(); 1085 1086 public: 1087 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) 1088 : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {} 1089 1090 bool isNonFragileABI() const { 1091 return ObjCABI == 2; 1092 } 1093 1094 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1095 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1096 1097 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1098 const ObjCContainerDecl *CD=nullptr) override; 1099 1100 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1101 const ObjCContainerDecl *CD); 1102 1103 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1104 const ObjCMethodDecl *OMD, 1105 const ObjCContainerDecl *CD) override; 1106 1107 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1108 1109 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1110 /// object for the given declaration, emitting it if needed. These 1111 /// forward references will be filled in with empty bodies if no 1112 /// definition is seen. The return value has type ProtocolPtrTy. 1113 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1114 1115 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1116 1117 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1118 const CGBlockInfo &blockInfo) override; 1119 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1120 const CGBlockInfo &blockInfo) override; 1121 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1122 const CGBlockInfo &blockInfo) override; 1123 1124 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1125 QualType T) override; 1126 1127 private: 1128 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1129 }; 1130 1131 namespace { 1132 1133 enum class MethodListType { 1134 CategoryInstanceMethods, 1135 CategoryClassMethods, 1136 InstanceMethods, 1137 ClassMethods, 1138 ProtocolInstanceMethods, 1139 ProtocolClassMethods, 1140 OptionalProtocolInstanceMethods, 1141 OptionalProtocolClassMethods, 1142 }; 1143 1144 /// A convenience class for splitting the methods of a protocol into 1145 /// the four interesting groups. 1146 class ProtocolMethodLists { 1147 public: 1148 enum Kind { 1149 RequiredInstanceMethods, 1150 RequiredClassMethods, 1151 OptionalInstanceMethods, 1152 OptionalClassMethods 1153 }; 1154 enum { 1155 NumProtocolMethodLists = 4 1156 }; 1157 1158 static MethodListType getMethodListKind(Kind kind) { 1159 switch (kind) { 1160 case RequiredInstanceMethods: 1161 return MethodListType::ProtocolInstanceMethods; 1162 case RequiredClassMethods: 1163 return MethodListType::ProtocolClassMethods; 1164 case OptionalInstanceMethods: 1165 return MethodListType::OptionalProtocolInstanceMethods; 1166 case OptionalClassMethods: 1167 return MethodListType::OptionalProtocolClassMethods; 1168 } 1169 llvm_unreachable("bad kind"); 1170 } 1171 1172 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1173 1174 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1175 ProtocolMethodLists result; 1176 1177 for (auto *MD : PD->methods()) { 1178 size_t index = (2 * size_t(MD->isOptional())) 1179 + (size_t(MD->isClassMethod())); 1180 result.Methods[index].push_back(MD); 1181 } 1182 1183 return result; 1184 } 1185 1186 template <class Self> 1187 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1188 // In both ABIs, the method types list is parallel with the 1189 // concatenation of the methods arrays in the following order: 1190 // instance methods 1191 // class methods 1192 // optional instance methods 1193 // optional class methods 1194 SmallVector<llvm::Constant*, 8> result; 1195 1196 // Methods is already in the correct order for both ABIs. 1197 for (auto &list : Methods) { 1198 for (auto MD : list) { 1199 result.push_back(self->GetMethodVarType(MD, true)); 1200 } 1201 } 1202 1203 return result; 1204 } 1205 1206 template <class Self> 1207 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1208 Kind kind) const { 1209 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1210 getMethodListKind(kind), Methods[kind]); 1211 } 1212 }; 1213 1214 } // end anonymous namespace 1215 1216 class CGObjCMac : public CGObjCCommonMac { 1217 private: 1218 friend ProtocolMethodLists; 1219 1220 ObjCTypesHelper ObjCTypes; 1221 1222 /// EmitModuleInfo - Another marker encoding module level 1223 /// information. 1224 void EmitModuleInfo(); 1225 1226 /// EmitModuleSymols - Emit module symbols, the list of defined 1227 /// classes and categories. The result has type SymtabPtrTy. 1228 llvm::Constant *EmitModuleSymbols(); 1229 1230 /// FinishModule - Write out global data structures at the end of 1231 /// processing a translation unit. 1232 void FinishModule(); 1233 1234 /// EmitClassExtension - Generate the class extension structure used 1235 /// to store the weak ivar layout and properties. The return value 1236 /// has type ClassExtensionPtrTy. 1237 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1238 CharUnits instanceSize, 1239 bool hasMRCWeakIvars, 1240 bool isMetaclass); 1241 1242 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1243 /// for the given class. 1244 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1245 const ObjCInterfaceDecl *ID); 1246 1247 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1248 IdentifierInfo *II); 1249 1250 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1251 1252 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1253 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1254 1255 /// EmitIvarList - Emit the ivar list for the given 1256 /// implementation. If ForClass is true the list of class ivars 1257 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1258 /// interface ivars will be emitted. The return value has type 1259 /// IvarListPtrTy. 1260 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1261 bool ForClass); 1262 1263 /// EmitMetaClass - Emit a forward reference to the class structure 1264 /// for the metaclass of the given interface. The return value has 1265 /// type ClassPtrTy. 1266 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1267 1268 /// EmitMetaClass - Emit a class structure for the metaclass of the 1269 /// given implementation. The return value has type ClassPtrTy. 1270 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1271 llvm::Constant *Protocols, 1272 ArrayRef<const ObjCMethodDecl *> Methods); 1273 1274 void emitMethodConstant(ConstantArrayBuilder &builder, 1275 const ObjCMethodDecl *MD); 1276 1277 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1278 const ObjCMethodDecl *MD); 1279 1280 /// EmitMethodList - Emit the method list for the given 1281 /// implementation. The return value has type MethodListPtrTy. 1282 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1283 ArrayRef<const ObjCMethodDecl *> Methods); 1284 1285 /// GetOrEmitProtocol - Get the protocol object for the given 1286 /// declaration, emitting it if necessary. The return value has type 1287 /// ProtocolPtrTy. 1288 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1289 1290 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1291 /// object for the given declaration, emitting it if needed. These 1292 /// forward references will be filled in with empty bodies if no 1293 /// definition is seen. The return value has type ProtocolPtrTy. 1294 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1295 1296 /// EmitProtocolExtension - Generate the protocol extension 1297 /// structure used to store optional instance and class methods, and 1298 /// protocol properties. The return value has type 1299 /// ProtocolExtensionPtrTy. 1300 llvm::Constant * 1301 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1302 const ProtocolMethodLists &methodLists); 1303 1304 /// EmitProtocolList - Generate the list of referenced 1305 /// protocols. The return value has type ProtocolListPtrTy. 1306 llvm::Constant *EmitProtocolList(Twine Name, 1307 ObjCProtocolDecl::protocol_iterator begin, 1308 ObjCProtocolDecl::protocol_iterator end); 1309 1310 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1311 /// for the given selector. 1312 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1313 Address EmitSelectorAddr(Selector Sel); 1314 1315 public: 1316 CGObjCMac(CodeGen::CodeGenModule &cgm); 1317 1318 llvm::Constant *getNSConstantStringClassRef() override; 1319 1320 llvm::Function *ModuleInitFunction() override; 1321 1322 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1323 ReturnValueSlot Return, 1324 QualType ResultType, 1325 Selector Sel, llvm::Value *Receiver, 1326 const CallArgList &CallArgs, 1327 const ObjCInterfaceDecl *Class, 1328 const ObjCMethodDecl *Method) override; 1329 1330 CodeGen::RValue 1331 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1332 ReturnValueSlot Return, QualType ResultType, 1333 Selector Sel, const ObjCInterfaceDecl *Class, 1334 bool isCategoryImpl, llvm::Value *Receiver, 1335 bool IsClassMessage, const CallArgList &CallArgs, 1336 const ObjCMethodDecl *Method) override; 1337 1338 llvm::Value *GetClass(CodeGenFunction &CGF, 1339 const ObjCInterfaceDecl *ID) override; 1340 1341 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1342 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1343 1344 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1345 /// untyped one. 1346 llvm::Value *GetSelector(CodeGenFunction &CGF, 1347 const ObjCMethodDecl *Method) override; 1348 1349 llvm::Constant *GetEHType(QualType T) override; 1350 1351 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1352 1353 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1354 1355 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1356 1357 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1358 const ObjCProtocolDecl *PD) override; 1359 1360 llvm::FunctionCallee GetPropertyGetFunction() override; 1361 llvm::FunctionCallee GetPropertySetFunction() override; 1362 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1363 bool copy) override; 1364 llvm::FunctionCallee GetGetStructFunction() override; 1365 llvm::FunctionCallee GetSetStructFunction() override; 1366 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1367 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1368 llvm::FunctionCallee EnumerationMutationFunction() override; 1369 1370 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1371 const ObjCAtTryStmt &S) override; 1372 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1373 const ObjCAtSynchronizedStmt &S) override; 1374 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1375 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1376 bool ClearInsertionPoint=true) override; 1377 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1378 Address AddrWeakObj) override; 1379 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1380 llvm::Value *src, Address dst) override; 1381 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1382 llvm::Value *src, Address dest, 1383 bool threadlocal = false) override; 1384 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1385 llvm::Value *src, Address dest, 1386 llvm::Value *ivarOffset) override; 1387 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1388 llvm::Value *src, Address dest) override; 1389 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1390 Address dest, Address src, 1391 llvm::Value *size) override; 1392 1393 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1394 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1395 unsigned CVRQualifiers) override; 1396 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1397 const ObjCInterfaceDecl *Interface, 1398 const ObjCIvarDecl *Ivar) override; 1399 }; 1400 1401 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1402 private: 1403 friend ProtocolMethodLists; 1404 ObjCNonFragileABITypesHelper ObjCTypes; 1405 llvm::GlobalVariable* ObjCEmptyCacheVar; 1406 llvm::Constant* ObjCEmptyVtableVar; 1407 1408 /// SuperClassReferences - uniqued super class references. 1409 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1410 1411 /// MetaClassReferences - uniqued meta class references. 1412 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1413 1414 /// EHTypeReferences - uniqued class ehtype references. 1415 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1416 1417 /// VTableDispatchMethods - List of methods for which we generate 1418 /// vtable-based message dispatch. 1419 llvm::DenseSet<Selector> VTableDispatchMethods; 1420 1421 /// DefinedMetaClasses - List of defined meta-classes. 1422 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1423 1424 /// isVTableDispatchedSelector - Returns true if SEL is a 1425 /// vtable-based selector. 1426 bool isVTableDispatchedSelector(Selector Sel); 1427 1428 /// FinishNonFragileABIModule - Write out global data structures at the end of 1429 /// processing a translation unit. 1430 void FinishNonFragileABIModule(); 1431 1432 /// AddModuleClassList - Add the given list of class pointers to the 1433 /// module with the provided symbol and section names. 1434 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1435 StringRef SymbolName, StringRef SectionName); 1436 1437 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1438 unsigned InstanceStart, 1439 unsigned InstanceSize, 1440 const ObjCImplementationDecl *ID); 1441 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1442 bool isMetaclass, 1443 llvm::Constant *IsAGV, 1444 llvm::Constant *SuperClassGV, 1445 llvm::Constant *ClassRoGV, 1446 bool HiddenVisibility); 1447 1448 void emitMethodConstant(ConstantArrayBuilder &builder, 1449 const ObjCMethodDecl *MD, 1450 bool forProtocol); 1451 1452 /// Emit the method list for the given implementation. The return value 1453 /// has type MethodListnfABITy. 1454 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1455 ArrayRef<const ObjCMethodDecl *> Methods); 1456 1457 /// EmitIvarList - Emit the ivar list for the given 1458 /// implementation. If ForClass is true the list of class ivars 1459 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1460 /// interface ivars will be emitted. The return value has type 1461 /// IvarListnfABIPtrTy. 1462 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1463 1464 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1465 const ObjCIvarDecl *Ivar, 1466 unsigned long int offset); 1467 1468 /// GetOrEmitProtocol - Get the protocol object for the given 1469 /// declaration, emitting it if necessary. The return value has type 1470 /// ProtocolPtrTy. 1471 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1472 1473 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1474 /// object for the given declaration, emitting it if needed. These 1475 /// forward references will be filled in with empty bodies if no 1476 /// definition is seen. The return value has type ProtocolPtrTy. 1477 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1478 1479 /// EmitProtocolList - Generate the list of referenced 1480 /// protocols. The return value has type ProtocolListPtrTy. 1481 llvm::Constant *EmitProtocolList(Twine Name, 1482 ObjCProtocolDecl::protocol_iterator begin, 1483 ObjCProtocolDecl::protocol_iterator end); 1484 1485 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1486 ReturnValueSlot Return, 1487 QualType ResultType, 1488 Selector Sel, 1489 llvm::Value *Receiver, 1490 QualType Arg0Ty, 1491 bool IsSuper, 1492 const CallArgList &CallArgs, 1493 const ObjCMethodDecl *Method); 1494 1495 /// GetClassGlobal - Return the global variable for the Objective-C 1496 /// class of the given name. 1497 llvm::Constant *GetClassGlobal(StringRef Name, 1498 ForDefinition_t IsForDefinition, 1499 bool Weak = false, bool DLLImport = false); 1500 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1501 bool isMetaclass, 1502 ForDefinition_t isForDefinition); 1503 1504 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1505 1506 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1507 const ObjCInterfaceDecl *ID, 1508 llvm::GlobalVariable *Entry); 1509 1510 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1511 /// for the given class reference. 1512 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1513 const ObjCInterfaceDecl *ID); 1514 1515 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1516 IdentifierInfo *II, 1517 const ObjCInterfaceDecl *ID); 1518 1519 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1520 1521 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1522 /// for the given super class reference. 1523 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1524 const ObjCInterfaceDecl *ID); 1525 1526 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1527 /// meta-data 1528 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1529 const ObjCInterfaceDecl *ID, bool Weak); 1530 1531 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1532 /// the given ivar. 1533 /// 1534 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1535 const ObjCInterfaceDecl *ID, 1536 const ObjCIvarDecl *Ivar); 1537 1538 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1539 /// for the given selector. 1540 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1541 Address EmitSelectorAddr(Selector Sel); 1542 1543 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1544 /// interface. The return value has type EHTypePtrTy. 1545 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1546 ForDefinition_t IsForDefinition); 1547 1548 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1549 1550 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1551 1552 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1553 uint32_t &InstanceStart, 1554 uint32_t &InstanceSize); 1555 1556 // Shamelessly stolen from Analysis/CFRefCount.cpp 1557 Selector GetNullarySelector(const char* name) const { 1558 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1559 return CGM.getContext().Selectors.getSelector(0, &II); 1560 } 1561 1562 Selector GetUnarySelector(const char* name) const { 1563 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1564 return CGM.getContext().Selectors.getSelector(1, &II); 1565 } 1566 1567 /// ImplementationIsNonLazy - Check whether the given category or 1568 /// class implementation is "non-lazy". 1569 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1570 1571 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1572 const ObjCIvarDecl *IV) { 1573 // Annotate the load as an invariant load iff inside an instance method 1574 // and ivar belongs to instance method's class and one of its super class. 1575 // This check is needed because the ivar offset is a lazily 1576 // initialised value that may depend on objc_msgSend to perform a fixup on 1577 // the first message dispatch. 1578 // 1579 // An additional opportunity to mark the load as invariant arises when the 1580 // base of the ivar access is a parameter to an Objective C method. 1581 // However, because the parameters are not available in the current 1582 // interface, we cannot perform this check. 1583 // 1584 // Note that for direct methods, because objc_msgSend is skipped, 1585 // and that the method may be inlined, this optimization actually 1586 // can't be performed. 1587 if (const ObjCMethodDecl *MD = 1588 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1589 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1590 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1591 return IV->getContainingInterface()->isSuperClassOf(ID); 1592 return false; 1593 } 1594 1595 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1596 // NSObject is a fixed size. If we can see the @implementation of a class 1597 // which inherits from NSObject then we know that all it's offsets also must 1598 // be fixed. FIXME: Can we do this if see a chain of super classes with 1599 // implementations leading to NSObject? 1600 return ID->getImplementation() && ID->getSuperClass() && 1601 ID->getSuperClass()->getName() == "NSObject"; 1602 } 1603 1604 public: 1605 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1606 1607 llvm::Constant *getNSConstantStringClassRef() override; 1608 1609 llvm::Function *ModuleInitFunction() override; 1610 1611 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1612 ReturnValueSlot Return, 1613 QualType ResultType, Selector Sel, 1614 llvm::Value *Receiver, 1615 const CallArgList &CallArgs, 1616 const ObjCInterfaceDecl *Class, 1617 const ObjCMethodDecl *Method) override; 1618 1619 CodeGen::RValue 1620 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1621 ReturnValueSlot Return, QualType ResultType, 1622 Selector Sel, const ObjCInterfaceDecl *Class, 1623 bool isCategoryImpl, llvm::Value *Receiver, 1624 bool IsClassMessage, const CallArgList &CallArgs, 1625 const ObjCMethodDecl *Method) override; 1626 1627 llvm::Value *GetClass(CodeGenFunction &CGF, 1628 const ObjCInterfaceDecl *ID) override; 1629 1630 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1631 { return EmitSelector(CGF, Sel); } 1632 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1633 { return EmitSelectorAddr(Sel); } 1634 1635 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1636 /// untyped one. 1637 llvm::Value *GetSelector(CodeGenFunction &CGF, 1638 const ObjCMethodDecl *Method) override 1639 { return EmitSelector(CGF, Method->getSelector()); } 1640 1641 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1642 1643 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1644 1645 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1646 1647 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1648 const ObjCProtocolDecl *PD) override; 1649 1650 llvm::Constant *GetEHType(QualType T) override; 1651 1652 llvm::FunctionCallee GetPropertyGetFunction() override { 1653 return ObjCTypes.getGetPropertyFn(); 1654 } 1655 llvm::FunctionCallee GetPropertySetFunction() override { 1656 return ObjCTypes.getSetPropertyFn(); 1657 } 1658 1659 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1660 bool copy) override { 1661 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1662 } 1663 1664 llvm::FunctionCallee GetSetStructFunction() override { 1665 return ObjCTypes.getCopyStructFn(); 1666 } 1667 1668 llvm::FunctionCallee GetGetStructFunction() override { 1669 return ObjCTypes.getCopyStructFn(); 1670 } 1671 1672 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1673 return ObjCTypes.getCppAtomicObjectFunction(); 1674 } 1675 1676 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1677 return ObjCTypes.getCppAtomicObjectFunction(); 1678 } 1679 1680 llvm::FunctionCallee EnumerationMutationFunction() override { 1681 return ObjCTypes.getEnumerationMutationFn(); 1682 } 1683 1684 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1685 const ObjCAtTryStmt &S) override; 1686 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1687 const ObjCAtSynchronizedStmt &S) override; 1688 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1689 bool ClearInsertionPoint=true) override; 1690 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1691 Address AddrWeakObj) override; 1692 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1693 llvm::Value *src, Address edst) override; 1694 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1695 llvm::Value *src, Address dest, 1696 bool threadlocal = false) override; 1697 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1698 llvm::Value *src, Address dest, 1699 llvm::Value *ivarOffset) override; 1700 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1701 llvm::Value *src, Address dest) override; 1702 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1703 Address dest, Address src, 1704 llvm::Value *size) override; 1705 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1706 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1707 unsigned CVRQualifiers) override; 1708 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1709 const ObjCInterfaceDecl *Interface, 1710 const ObjCIvarDecl *Ivar) override; 1711 }; 1712 1713 /// A helper class for performing the null-initialization of a return 1714 /// value. 1715 struct NullReturnState { 1716 llvm::BasicBlock *NullBB; 1717 NullReturnState() : NullBB(nullptr) {} 1718 1719 /// Perform a null-check of the given receiver. 1720 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1721 // Make blocks for the null-receiver and call edges. 1722 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1723 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1724 1725 // Check for a null receiver and, if there is one, jump to the 1726 // null-receiver block. There's no point in trying to avoid it: 1727 // we're always going to put *something* there, because otherwise 1728 // we shouldn't have done this null-check in the first place. 1729 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1730 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1731 1732 // Otherwise, start performing the call. 1733 CGF.EmitBlock(callBB); 1734 } 1735 1736 /// Complete the null-return operation. It is valid to call this 1737 /// regardless of whether 'init' has been called. 1738 RValue complete(CodeGenFunction &CGF, 1739 ReturnValueSlot returnSlot, 1740 RValue result, 1741 QualType resultType, 1742 const CallArgList &CallArgs, 1743 const ObjCMethodDecl *Method) { 1744 // If we never had to do a null-check, just use the raw result. 1745 if (!NullBB) return result; 1746 1747 // The continuation block. This will be left null if we don't have an 1748 // IP, which can happen if the method we're calling is marked noreturn. 1749 llvm::BasicBlock *contBB = nullptr; 1750 1751 // Finish the call path. 1752 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1753 if (callBB) { 1754 contBB = CGF.createBasicBlock("msgSend.cont"); 1755 CGF.Builder.CreateBr(contBB); 1756 } 1757 1758 // Okay, start emitting the null-receiver block. 1759 CGF.EmitBlock(NullBB); 1760 1761 // Destroy any consumed arguments we've got. 1762 if (Method) { 1763 CGObjCRuntime::destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 1764 } 1765 1766 // The phi code below assumes that we haven't needed any control flow yet. 1767 assert(CGF.Builder.GetInsertBlock() == NullBB); 1768 1769 // If we've got a void return, just jump to the continuation block. 1770 if (result.isScalar() && resultType->isVoidType()) { 1771 // No jumps required if the message-send was noreturn. 1772 if (contBB) CGF.EmitBlock(contBB); 1773 return result; 1774 } 1775 1776 // If we've got a scalar return, build a phi. 1777 if (result.isScalar()) { 1778 // Derive the null-initialization value. 1779 llvm::Value *null = 1780 CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(resultType), resultType); 1781 1782 // If no join is necessary, just flow out. 1783 if (!contBB) return RValue::get(null); 1784 1785 // Otherwise, build a phi. 1786 CGF.EmitBlock(contBB); 1787 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1788 phi->addIncoming(result.getScalarVal(), callBB); 1789 phi->addIncoming(null, NullBB); 1790 return RValue::get(phi); 1791 } 1792 1793 // If we've got an aggregate return, null the buffer out. 1794 // FIXME: maybe we should be doing things differently for all the 1795 // cases where the ABI has us returning (1) non-agg values in 1796 // memory or (2) agg values in registers. 1797 if (result.isAggregate()) { 1798 assert(result.isAggregate() && "null init of non-aggregate result?"); 1799 if (!returnSlot.isUnused()) 1800 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1801 if (contBB) CGF.EmitBlock(contBB); 1802 return result; 1803 } 1804 1805 // Complex types. 1806 CGF.EmitBlock(contBB); 1807 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1808 1809 // Find the scalar type and its zero value. 1810 llvm::Type *scalarTy = callResult.first->getType(); 1811 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1812 1813 // Build phis for both coordinates. 1814 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1815 real->addIncoming(callResult.first, callBB); 1816 real->addIncoming(scalarZero, NullBB); 1817 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1818 imag->addIncoming(callResult.second, callBB); 1819 imag->addIncoming(scalarZero, NullBB); 1820 return RValue::getComplex(real, imag); 1821 } 1822 }; 1823 1824 } // end anonymous namespace 1825 1826 /* *** Helper Functions *** */ 1827 1828 /// getConstantGEP() - Help routine to construct simple GEPs. 1829 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1830 llvm::GlobalVariable *C, unsigned idx0, 1831 unsigned idx1) { 1832 llvm::Value *Idxs[] = { 1833 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1834 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1835 }; 1836 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1837 } 1838 1839 /// hasObjCExceptionAttribute - Return true if this class or any super 1840 /// class has the __objc_exception__ attribute. 1841 static bool hasObjCExceptionAttribute(ASTContext &Context, 1842 const ObjCInterfaceDecl *OID) { 1843 if (OID->hasAttr<ObjCExceptionAttr>()) 1844 return true; 1845 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1846 return hasObjCExceptionAttribute(Context, Super); 1847 return false; 1848 } 1849 1850 static llvm::GlobalValue::LinkageTypes 1851 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1852 if (CGM.getTriple().isOSBinFormatMachO() && 1853 (Section.empty() || Section.startswith("__DATA"))) 1854 return llvm::GlobalValue::InternalLinkage; 1855 return llvm::GlobalValue::PrivateLinkage; 1856 } 1857 1858 /// A helper function to create an internal or private global variable. 1859 static llvm::GlobalVariable * 1860 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1861 const llvm::Twine &Name, CodeGenModule &CGM) { 1862 std::string SectionName; 1863 if (CGM.getTriple().isOSBinFormatMachO()) 1864 SectionName = "__DATA, __objc_const"; 1865 auto *GV = Builder.finishAndCreateGlobal( 1866 Name, CGM.getPointerAlign(), /*constant*/ false, 1867 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1868 GV->setSection(SectionName); 1869 return GV; 1870 } 1871 1872 /* *** CGObjCMac Public Interface *** */ 1873 1874 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1875 ObjCTypes(cgm) { 1876 ObjCABI = 1; 1877 EmitImageInfo(); 1878 } 1879 1880 /// GetClass - Return a reference to the class for the given interface 1881 /// decl. 1882 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1883 const ObjCInterfaceDecl *ID) { 1884 return EmitClassRef(CGF, ID); 1885 } 1886 1887 /// GetSelector - Return the pointer to the unique'd string for this selector. 1888 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1889 return EmitSelector(CGF, Sel); 1890 } 1891 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1892 return EmitSelectorAddr(Sel); 1893 } 1894 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1895 *Method) { 1896 return EmitSelector(CGF, Method->getSelector()); 1897 } 1898 1899 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1900 if (T->isObjCIdType() || 1901 T->isObjCQualifiedIdType()) { 1902 return CGM.GetAddrOfRTTIDescriptor( 1903 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1904 } 1905 if (T->isObjCClassType() || 1906 T->isObjCQualifiedClassType()) { 1907 return CGM.GetAddrOfRTTIDescriptor( 1908 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1909 } 1910 if (T->isObjCObjectPointerType()) 1911 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1912 1913 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1914 } 1915 1916 /// Generate a constant CFString object. 1917 /* 1918 struct __builtin_CFString { 1919 const int *isa; // point to __CFConstantStringClassReference 1920 int flags; 1921 const char *str; 1922 long length; 1923 }; 1924 */ 1925 1926 /// or Generate a constant NSString object. 1927 /* 1928 struct __builtin_NSString { 1929 const int *isa; // point to __NSConstantStringClassReference 1930 const char *str; 1931 unsigned int length; 1932 }; 1933 */ 1934 1935 ConstantAddress 1936 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1937 return (!CGM.getLangOpts().NoConstantCFStrings 1938 ? CGM.GetAddrOfConstantCFString(SL) 1939 : GenerateConstantNSString(SL)); 1940 } 1941 1942 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1943 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1944 const StringLiteral *Literal, unsigned &StringLength) { 1945 StringRef String = Literal->getString(); 1946 StringLength = String.size(); 1947 return *Map.insert(std::make_pair(String, nullptr)).first; 1948 } 1949 1950 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1951 if (llvm::Value *V = ConstantStringClassRef) 1952 return cast<llvm::Constant>(V); 1953 1954 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1955 std::string str = 1956 StringClass.empty() ? "_NSConstantStringClassReference" 1957 : "_" + StringClass + "ClassReference"; 1958 1959 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1960 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1961 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1962 ConstantStringClassRef = V; 1963 return V; 1964 } 1965 1966 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1967 if (llvm::Value *V = ConstantStringClassRef) 1968 return cast<llvm::Constant>(V); 1969 1970 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1971 std::string str = 1972 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1973 : "OBJC_CLASS_$_" + StringClass; 1974 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1975 1976 // Make sure the result is of the correct type. 1977 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1978 1979 ConstantStringClassRef = V; 1980 return V; 1981 } 1982 1983 ConstantAddress 1984 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1985 unsigned StringLength = 0; 1986 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1987 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1988 1989 if (auto *C = Entry.second) 1990 return ConstantAddress( 1991 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 1992 1993 // If we don't already have it, get _NSConstantStringClassReference. 1994 llvm::Constant *Class = getNSConstantStringClassRef(); 1995 1996 // If we don't already have it, construct the type for a constant NSString. 1997 if (!NSConstantStringType) { 1998 NSConstantStringType = 1999 llvm::StructType::create({ 2000 CGM.Int32Ty->getPointerTo(), 2001 CGM.Int8PtrTy, 2002 CGM.IntTy 2003 }, "struct.__builtin_NSString"); 2004 } 2005 2006 ConstantInitBuilder Builder(CGM); 2007 auto Fields = Builder.beginStruct(NSConstantStringType); 2008 2009 // Class pointer. 2010 Fields.add(Class); 2011 2012 // String pointer. 2013 llvm::Constant *C = 2014 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2015 2016 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2017 bool isConstant = !CGM.getLangOpts().WritableStrings; 2018 2019 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2020 Linkage, C, ".str"); 2021 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2022 // Don't enforce the target's minimum global alignment, since the only use 2023 // of the string is via this class initializer. 2024 GV->setAlignment(llvm::Align(1)); 2025 Fields.addBitCast(GV, CGM.Int8PtrTy); 2026 2027 // String length. 2028 Fields.addInt(CGM.IntTy, StringLength); 2029 2030 // The struct. 2031 CharUnits Alignment = CGM.getPointerAlign(); 2032 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2033 /*constant*/ true, 2034 llvm::GlobalVariable::PrivateLinkage); 2035 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2036 const char *NSStringNonFragileABISection = 2037 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2038 // FIXME. Fix section. 2039 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2040 ? NSStringNonFragileABISection 2041 : NSStringSection); 2042 Entry.second = GV; 2043 2044 return ConstantAddress(GV, GV->getValueType(), Alignment); 2045 } 2046 2047 enum { 2048 kCFTaggedObjectID_Integer = (1 << 1) + 1 2049 }; 2050 2051 /// Generates a message send where the super is the receiver. This is 2052 /// a message send to self with special delivery semantics indicating 2053 /// which class's method should be called. 2054 CodeGen::RValue 2055 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2056 ReturnValueSlot Return, 2057 QualType ResultType, 2058 Selector Sel, 2059 const ObjCInterfaceDecl *Class, 2060 bool isCategoryImpl, 2061 llvm::Value *Receiver, 2062 bool IsClassMessage, 2063 const CodeGen::CallArgList &CallArgs, 2064 const ObjCMethodDecl *Method) { 2065 // Create and init a super structure; this is a (receiver, class) 2066 // pair we will pass to objc_msgSendSuper. 2067 Address ObjCSuper = 2068 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2069 "objc_super"); 2070 llvm::Value *ReceiverAsObject = 2071 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2072 CGF.Builder.CreateStore(ReceiverAsObject, 2073 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2074 2075 // If this is a class message the metaclass is passed as the target. 2076 llvm::Type *ClassTyPtr = llvm::PointerType::getUnqual(ObjCTypes.ClassTy); 2077 llvm::Value *Target; 2078 if (IsClassMessage) { 2079 if (isCategoryImpl) { 2080 // Message sent to 'super' in a class method defined in a category 2081 // implementation requires an odd treatment. 2082 // If we are in a class method, we must retrieve the 2083 // _metaclass_ for the current class, pointed at by 2084 // the class's "isa" pointer. The following assumes that 2085 // isa" is the first ivar in a class (which it must be). 2086 Target = EmitClassRef(CGF, Class->getSuperClass()); 2087 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2088 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, Target, 2089 CGF.getPointerAlign()); 2090 } else { 2091 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2092 llvm::Value *SuperPtr = 2093 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2094 llvm::Value *Super = CGF.Builder.CreateAlignedLoad(ClassTyPtr, SuperPtr, 2095 CGF.getPointerAlign()); 2096 Target = Super; 2097 } 2098 } else if (isCategoryImpl) 2099 Target = EmitClassRef(CGF, Class->getSuperClass()); 2100 else { 2101 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2102 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2103 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, ClassPtr, 2104 CGF.getPointerAlign()); 2105 } 2106 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2107 // ObjCTypes types. 2108 llvm::Type *ClassTy = 2109 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2110 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2111 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2112 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2113 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2114 ObjCTypes); 2115 } 2116 2117 /// Generate code for a message send expression. 2118 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2119 ReturnValueSlot Return, 2120 QualType ResultType, 2121 Selector Sel, 2122 llvm::Value *Receiver, 2123 const CallArgList &CallArgs, 2124 const ObjCInterfaceDecl *Class, 2125 const ObjCMethodDecl *Method) { 2126 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2127 CGF.getContext().getObjCIdType(), false, CallArgs, 2128 Method, Class, ObjCTypes); 2129 } 2130 2131 CodeGen::RValue 2132 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2133 ReturnValueSlot Return, 2134 QualType ResultType, 2135 Selector Sel, 2136 llvm::Value *Arg0, 2137 QualType Arg0Ty, 2138 bool IsSuper, 2139 const CallArgList &CallArgs, 2140 const ObjCMethodDecl *Method, 2141 const ObjCInterfaceDecl *ClassReceiver, 2142 const ObjCCommonTypesHelper &ObjCTypes) { 2143 CodeGenTypes &Types = CGM.getTypes(); 2144 auto selTy = CGF.getContext().getObjCSelType(); 2145 llvm::Value *SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2146 2147 CallArgList ActualArgs; 2148 if (!IsSuper) 2149 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2150 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2151 if (!Method || !Method->isDirectMethod()) 2152 ActualArgs.add(RValue::get(SelValue), selTy); 2153 ActualArgs.addFrom(CallArgs); 2154 2155 // If we're calling a method, use the formal signature. 2156 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2157 2158 if (Method) 2159 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2160 CGM.getContext().getCanonicalType(ResultType) && 2161 "Result type mismatch!"); 2162 2163 bool ReceiverCanBeNull = 2164 canMessageReceiverBeNull(CGF, Method, IsSuper, ClassReceiver, Arg0); 2165 2166 bool RequiresNullCheck = false; 2167 bool RequiresSelValue = true; 2168 2169 llvm::FunctionCallee Fn = nullptr; 2170 if (Method && Method->isDirectMethod()) { 2171 assert(!IsSuper); 2172 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2173 // Direct methods will synthesize the proper `_cmd` internally, 2174 // so just don't bother with setting the `_cmd` argument. 2175 RequiresSelValue = false; 2176 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2177 if (ReceiverCanBeNull) RequiresNullCheck = true; 2178 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2179 : ObjCTypes.getSendStretFn(IsSuper); 2180 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2181 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2182 : ObjCTypes.getSendFpretFn(IsSuper); 2183 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2184 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2185 : ObjCTypes.getSendFp2retFn(IsSuper); 2186 } else { 2187 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2188 // must be made for it. 2189 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2190 RequiresNullCheck = true; 2191 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2192 : ObjCTypes.getSendFn(IsSuper); 2193 } 2194 2195 // Cast function to proper signature 2196 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2197 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2198 2199 // We don't need to emit a null check to zero out an indirect result if the 2200 // result is ignored. 2201 if (Return.isUnused()) 2202 RequiresNullCheck = false; 2203 2204 // Emit a null-check if there's a consumed argument other than the receiver. 2205 if (!RequiresNullCheck && Method && Method->hasParamDestroyedInCallee()) 2206 RequiresNullCheck = true; 2207 2208 NullReturnState nullReturn; 2209 if (RequiresNullCheck) { 2210 nullReturn.init(CGF, Arg0); 2211 } 2212 2213 // If a selector value needs to be passed, emit the load before the call. 2214 if (RequiresSelValue) { 2215 SelValue = GetSelector(CGF, Sel); 2216 ActualArgs[1] = CallArg(RValue::get(SelValue), selTy); 2217 } 2218 2219 llvm::CallBase *CallSite; 2220 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2221 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2222 &CallSite); 2223 2224 // Mark the call as noreturn if the method is marked noreturn and the 2225 // receiver cannot be null. 2226 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2227 CallSite->setDoesNotReturn(); 2228 } 2229 2230 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2231 RequiresNullCheck ? Method : nullptr); 2232 } 2233 2234 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2235 bool pointee = false) { 2236 // Note that GC qualification applies recursively to C pointer types 2237 // that aren't otherwise decorated. This is weird, but it's probably 2238 // an intentional workaround to the unreliable placement of GC qualifiers. 2239 if (FQT.isObjCGCStrong()) 2240 return Qualifiers::Strong; 2241 2242 if (FQT.isObjCGCWeak()) 2243 return Qualifiers::Weak; 2244 2245 if (auto ownership = FQT.getObjCLifetime()) { 2246 // Ownership does not apply recursively to C pointer types. 2247 if (pointee) return Qualifiers::GCNone; 2248 switch (ownership) { 2249 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2250 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2251 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2252 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2253 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2254 } 2255 llvm_unreachable("bad objc ownership"); 2256 } 2257 2258 // Treat unqualified retainable pointers as strong. 2259 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2260 return Qualifiers::Strong; 2261 2262 // Walk into C pointer types, but only in GC. 2263 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2264 if (const PointerType *PT = FQT->getAs<PointerType>()) 2265 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2266 } 2267 2268 return Qualifiers::GCNone; 2269 } 2270 2271 namespace { 2272 struct IvarInfo { 2273 CharUnits Offset; 2274 uint64_t SizeInWords; 2275 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2276 : Offset(offset), SizeInWords(sizeInWords) {} 2277 2278 // Allow sorting based on byte pos. 2279 bool operator<(const IvarInfo &other) const { 2280 return Offset < other.Offset; 2281 } 2282 }; 2283 2284 /// A helper class for building GC layout strings. 2285 class IvarLayoutBuilder { 2286 CodeGenModule &CGM; 2287 2288 /// The start of the layout. Offsets will be relative to this value, 2289 /// and entries less than this value will be silently discarded. 2290 CharUnits InstanceBegin; 2291 2292 /// The end of the layout. Offsets will never exceed this value. 2293 CharUnits InstanceEnd; 2294 2295 /// Whether we're generating the strong layout or the weak layout. 2296 bool ForStrongLayout; 2297 2298 /// Whether the offsets in IvarsInfo might be out-of-order. 2299 bool IsDisordered = false; 2300 2301 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2302 2303 public: 2304 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2305 CharUnits instanceEnd, bool forStrongLayout) 2306 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2307 ForStrongLayout(forStrongLayout) { 2308 } 2309 2310 void visitRecord(const RecordType *RT, CharUnits offset); 2311 2312 template <class Iterator, class GetOffsetFn> 2313 void visitAggregate(Iterator begin, Iterator end, 2314 CharUnits aggrOffset, 2315 const GetOffsetFn &getOffset); 2316 2317 void visitField(const FieldDecl *field, CharUnits offset); 2318 2319 /// Add the layout of a block implementation. 2320 void visitBlock(const CGBlockInfo &blockInfo); 2321 2322 /// Is there any information for an interesting bitmap? 2323 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2324 2325 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2326 llvm::SmallVectorImpl<unsigned char> &buffer); 2327 2328 static void dump(ArrayRef<unsigned char> buffer) { 2329 const unsigned char *s = buffer.data(); 2330 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2331 if (!(s[i] & 0xf0)) 2332 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2333 else 2334 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2335 printf("\n"); 2336 } 2337 }; 2338 } // end anonymous namespace 2339 2340 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2341 const CGBlockInfo &blockInfo) { 2342 2343 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2344 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2345 return nullPtr; 2346 2347 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2348 /*for strong layout*/ true); 2349 2350 builder.visitBlock(blockInfo); 2351 2352 if (!builder.hasBitmapData()) 2353 return nullPtr; 2354 2355 llvm::SmallVector<unsigned char, 32> buffer; 2356 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2357 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2358 printf("\n block variable layout for block: "); 2359 builder.dump(buffer); 2360 } 2361 2362 return C; 2363 } 2364 2365 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2366 // __isa is the first field in block descriptor and must assume by runtime's 2367 // convention that it is GC'able. 2368 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2369 2370 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2371 2372 // Ignore the optional 'this' capture: C++ objects are not assumed 2373 // to be GC'ed. 2374 2375 CharUnits lastFieldOffset; 2376 2377 // Walk the captured variables. 2378 for (const auto &CI : blockDecl->captures()) { 2379 const VarDecl *variable = CI.getVariable(); 2380 QualType type = variable->getType(); 2381 2382 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2383 2384 // Ignore constant captures. 2385 if (capture.isConstant()) continue; 2386 2387 CharUnits fieldOffset = capture.getOffset(); 2388 2389 // Block fields are not necessarily ordered; if we detect that we're 2390 // adding them out-of-order, make sure we sort later. 2391 if (fieldOffset < lastFieldOffset) 2392 IsDisordered = true; 2393 lastFieldOffset = fieldOffset; 2394 2395 // __block variables are passed by their descriptor address. 2396 if (CI.isByRef()) { 2397 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2398 continue; 2399 } 2400 2401 assert(!type->isArrayType() && "array variable should not be caught"); 2402 if (const RecordType *record = type->getAs<RecordType>()) { 2403 visitRecord(record, fieldOffset); 2404 continue; 2405 } 2406 2407 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2408 2409 if (GCAttr == Qualifiers::Strong) { 2410 assert(CGM.getContext().getTypeSize(type) == 2411 CGM.getTarget().getPointerWidth(LangAS::Default)); 2412 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2413 } 2414 } 2415 } 2416 2417 /// getBlockCaptureLifetime - This routine returns life time of the captured 2418 /// block variable for the purpose of block layout meta-data generation. FQT is 2419 /// the type of the variable captured in the block. 2420 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2421 bool ByrefLayout) { 2422 // If it has an ownership qualifier, we're done. 2423 if (auto lifetime = FQT.getObjCLifetime()) 2424 return lifetime; 2425 2426 // If it doesn't, and this is ARC, it has no ownership. 2427 if (CGM.getLangOpts().ObjCAutoRefCount) 2428 return Qualifiers::OCL_None; 2429 2430 // In MRC, retainable pointers are owned by non-__block variables. 2431 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2432 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2433 2434 return Qualifiers::OCL_None; 2435 } 2436 2437 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2438 Qualifiers::ObjCLifetime LifeTime, 2439 CharUnits FieldOffset, 2440 CharUnits FieldSize) { 2441 // __block variables are passed by their descriptor address. 2442 if (IsByref) 2443 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2444 FieldSize)); 2445 else if (LifeTime == Qualifiers::OCL_Strong) 2446 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2447 FieldSize)); 2448 else if (LifeTime == Qualifiers::OCL_Weak) 2449 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2450 FieldSize)); 2451 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2452 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2453 FieldSize)); 2454 else 2455 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2456 FieldOffset, 2457 FieldSize)); 2458 } 2459 2460 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2461 const RecordDecl *RD, 2462 ArrayRef<const FieldDecl*> RecFields, 2463 CharUnits BytePos, bool &HasUnion, 2464 bool ByrefLayout) { 2465 bool IsUnion = (RD && RD->isUnion()); 2466 CharUnits MaxUnionSize = CharUnits::Zero(); 2467 const FieldDecl *MaxField = nullptr; 2468 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2469 CharUnits MaxFieldOffset = CharUnits::Zero(); 2470 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2471 2472 if (RecFields.empty()) 2473 return; 2474 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2475 2476 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2477 const FieldDecl *Field = RecFields[i]; 2478 // Note that 'i' here is actually the field index inside RD of Field, 2479 // although this dependency is hidden. 2480 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2481 CharUnits FieldOffset = 2482 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2483 2484 // Skip over unnamed or bitfields 2485 if (!Field->getIdentifier() || Field->isBitField()) { 2486 LastFieldBitfieldOrUnnamed = Field; 2487 LastBitfieldOrUnnamedOffset = FieldOffset; 2488 continue; 2489 } 2490 2491 LastFieldBitfieldOrUnnamed = nullptr; 2492 QualType FQT = Field->getType(); 2493 if (FQT->isRecordType() || FQT->isUnionType()) { 2494 if (FQT->isUnionType()) 2495 HasUnion = true; 2496 2497 BuildRCBlockVarRecordLayout(FQT->castAs<RecordType>(), 2498 BytePos + FieldOffset, HasUnion); 2499 continue; 2500 } 2501 2502 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2503 auto *CArray = cast<ConstantArrayType>(Array); 2504 uint64_t ElCount = CArray->getSize().getZExtValue(); 2505 assert(CArray && "only array with known element size is supported"); 2506 FQT = CArray->getElementType(); 2507 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2508 auto *CArray = cast<ConstantArrayType>(Array); 2509 ElCount *= CArray->getSize().getZExtValue(); 2510 FQT = CArray->getElementType(); 2511 } 2512 if (FQT->isRecordType() && ElCount) { 2513 int OldIndex = RunSkipBlockVars.size() - 1; 2514 auto *RT = FQT->castAs<RecordType>(); 2515 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion); 2516 2517 // Replicate layout information for each array element. Note that 2518 // one element is already done. 2519 uint64_t ElIx = 1; 2520 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2521 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2522 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2523 RunSkipBlockVars.push_back( 2524 RUN_SKIP(RunSkipBlockVars[i].opcode, 2525 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2526 RunSkipBlockVars[i].block_var_size)); 2527 } 2528 continue; 2529 } 2530 } 2531 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2532 if (IsUnion) { 2533 CharUnits UnionIvarSize = FieldSize; 2534 if (UnionIvarSize > MaxUnionSize) { 2535 MaxUnionSize = UnionIvarSize; 2536 MaxField = Field; 2537 MaxFieldOffset = FieldOffset; 2538 } 2539 } else { 2540 UpdateRunSkipBlockVars(false, 2541 getBlockCaptureLifetime(FQT, ByrefLayout), 2542 BytePos + FieldOffset, 2543 FieldSize); 2544 } 2545 } 2546 2547 if (LastFieldBitfieldOrUnnamed) { 2548 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2549 // Last field was a bitfield. Must update the info. 2550 uint64_t BitFieldSize 2551 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2552 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2553 ((BitFieldSize % ByteSizeInBits) != 0); 2554 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2555 Size += LastBitfieldOrUnnamedOffset; 2556 UpdateRunSkipBlockVars(false, 2557 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2558 ByrefLayout), 2559 BytePos + LastBitfieldOrUnnamedOffset, 2560 Size); 2561 } else { 2562 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2563 // Last field was unnamed. Must update skip info. 2564 CharUnits FieldSize 2565 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2566 UpdateRunSkipBlockVars(false, 2567 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2568 ByrefLayout), 2569 BytePos + LastBitfieldOrUnnamedOffset, 2570 FieldSize); 2571 } 2572 } 2573 2574 if (MaxField) 2575 UpdateRunSkipBlockVars(false, 2576 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2577 BytePos + MaxFieldOffset, 2578 MaxUnionSize); 2579 } 2580 2581 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2582 CharUnits BytePos, 2583 bool &HasUnion, 2584 bool ByrefLayout) { 2585 const RecordDecl *RD = RT->getDecl(); 2586 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2587 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2588 const llvm::StructLayout *RecLayout = 2589 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2590 2591 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2592 } 2593 2594 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2595 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2596 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2597 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2598 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2599 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2600 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2601 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2602 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2603 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2604 SmallVectorImpl<unsigned char> &Layout) { 2605 uint64_t Result = 0; 2606 if (Layout.size() <= 3) { 2607 unsigned size = Layout.size(); 2608 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2609 unsigned char inst; 2610 enum BLOCK_LAYOUT_OPCODE opcode ; 2611 switch (size) { 2612 case 3: 2613 inst = Layout[0]; 2614 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2615 if (opcode == BLOCK_LAYOUT_STRONG) 2616 strong_word_count = (inst & 0xF)+1; 2617 else 2618 return 0; 2619 inst = Layout[1]; 2620 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2621 if (opcode == BLOCK_LAYOUT_BYREF) 2622 byref_word_count = (inst & 0xF)+1; 2623 else 2624 return 0; 2625 inst = Layout[2]; 2626 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2627 if (opcode == BLOCK_LAYOUT_WEAK) 2628 weak_word_count = (inst & 0xF)+1; 2629 else 2630 return 0; 2631 break; 2632 2633 case 2: 2634 inst = Layout[0]; 2635 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2636 if (opcode == BLOCK_LAYOUT_STRONG) { 2637 strong_word_count = (inst & 0xF)+1; 2638 inst = Layout[1]; 2639 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2640 if (opcode == BLOCK_LAYOUT_BYREF) 2641 byref_word_count = (inst & 0xF)+1; 2642 else if (opcode == BLOCK_LAYOUT_WEAK) 2643 weak_word_count = (inst & 0xF)+1; 2644 else 2645 return 0; 2646 } 2647 else if (opcode == BLOCK_LAYOUT_BYREF) { 2648 byref_word_count = (inst & 0xF)+1; 2649 inst = Layout[1]; 2650 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2651 if (opcode == BLOCK_LAYOUT_WEAK) 2652 weak_word_count = (inst & 0xF)+1; 2653 else 2654 return 0; 2655 } 2656 else 2657 return 0; 2658 break; 2659 2660 case 1: 2661 inst = Layout[0]; 2662 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2663 if (opcode == BLOCK_LAYOUT_STRONG) 2664 strong_word_count = (inst & 0xF)+1; 2665 else if (opcode == BLOCK_LAYOUT_BYREF) 2666 byref_word_count = (inst & 0xF)+1; 2667 else if (opcode == BLOCK_LAYOUT_WEAK) 2668 weak_word_count = (inst & 0xF)+1; 2669 else 2670 return 0; 2671 break; 2672 2673 default: 2674 return 0; 2675 } 2676 2677 // Cannot inline when any of the word counts is 15. Because this is one less 2678 // than the actual work count (so 15 means 16 actual word counts), 2679 // and we can only display 0 thru 15 word counts. 2680 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2681 return 0; 2682 2683 unsigned count = 2684 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2685 2686 if (size == count) { 2687 if (strong_word_count) 2688 Result = strong_word_count; 2689 Result <<= 4; 2690 if (byref_word_count) 2691 Result += byref_word_count; 2692 Result <<= 4; 2693 if (weak_word_count) 2694 Result += weak_word_count; 2695 } 2696 } 2697 return Result; 2698 } 2699 2700 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2701 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2702 if (RunSkipBlockVars.empty()) 2703 return nullPtr; 2704 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(LangAS::Default); 2705 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2706 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2707 2708 // Sort on byte position; captures might not be allocated in order, 2709 // and unions can do funny things. 2710 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2711 SmallVector<unsigned char, 16> Layout; 2712 2713 unsigned size = RunSkipBlockVars.size(); 2714 for (unsigned i = 0; i < size; i++) { 2715 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2716 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2717 CharUnits end_byte_pos = start_byte_pos; 2718 unsigned j = i+1; 2719 while (j < size) { 2720 if (opcode == RunSkipBlockVars[j].opcode) { 2721 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2722 i++; 2723 } 2724 else 2725 break; 2726 } 2727 CharUnits size_in_bytes = 2728 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2729 if (j < size) { 2730 CharUnits gap = 2731 RunSkipBlockVars[j].block_var_bytepos - 2732 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2733 size_in_bytes += gap; 2734 } 2735 CharUnits residue_in_bytes = CharUnits::Zero(); 2736 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2737 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2738 size_in_bytes -= residue_in_bytes; 2739 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2740 } 2741 2742 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2743 while (size_in_words >= 16) { 2744 // Note that value in imm. is one less that the actual 2745 // value. So, 0xf means 16 words follow! 2746 unsigned char inst = (opcode << 4) | 0xf; 2747 Layout.push_back(inst); 2748 size_in_words -= 16; 2749 } 2750 if (size_in_words > 0) { 2751 // Note that value in imm. is one less that the actual 2752 // value. So, we subtract 1 away! 2753 unsigned char inst = (opcode << 4) | (size_in_words-1); 2754 Layout.push_back(inst); 2755 } 2756 if (residue_in_bytes > CharUnits::Zero()) { 2757 unsigned char inst = 2758 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2759 Layout.push_back(inst); 2760 } 2761 } 2762 2763 while (!Layout.empty()) { 2764 unsigned char inst = Layout.back(); 2765 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2766 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2767 Layout.pop_back(); 2768 else 2769 break; 2770 } 2771 2772 uint64_t Result = InlineLayoutInstruction(Layout); 2773 if (Result != 0) { 2774 // Block variable layout instruction has been inlined. 2775 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2776 if (ComputeByrefLayout) 2777 printf("\n Inline BYREF variable layout: "); 2778 else 2779 printf("\n Inline block variable layout: "); 2780 printf("0x0%" PRIx64 "", Result); 2781 if (auto numStrong = (Result & 0xF00) >> 8) 2782 printf(", BL_STRONG:%d", (int) numStrong); 2783 if (auto numByref = (Result & 0x0F0) >> 4) 2784 printf(", BL_BYREF:%d", (int) numByref); 2785 if (auto numWeak = (Result & 0x00F) >> 0) 2786 printf(", BL_WEAK:%d", (int) numWeak); 2787 printf(", BL_OPERATOR:0\n"); 2788 } 2789 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2790 } 2791 2792 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2793 Layout.push_back(inst); 2794 std::string BitMap; 2795 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2796 BitMap += Layout[i]; 2797 2798 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2799 if (ComputeByrefLayout) 2800 printf("\n Byref variable layout: "); 2801 else 2802 printf("\n Block variable layout: "); 2803 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2804 unsigned char inst = BitMap[i]; 2805 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2806 unsigned delta = 1; 2807 switch (opcode) { 2808 case BLOCK_LAYOUT_OPERATOR: 2809 printf("BL_OPERATOR:"); 2810 delta = 0; 2811 break; 2812 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2813 printf("BL_NON_OBJECT_BYTES:"); 2814 break; 2815 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2816 printf("BL_NON_OBJECT_WORD:"); 2817 break; 2818 case BLOCK_LAYOUT_STRONG: 2819 printf("BL_STRONG:"); 2820 break; 2821 case BLOCK_LAYOUT_BYREF: 2822 printf("BL_BYREF:"); 2823 break; 2824 case BLOCK_LAYOUT_WEAK: 2825 printf("BL_WEAK:"); 2826 break; 2827 case BLOCK_LAYOUT_UNRETAINED: 2828 printf("BL_UNRETAINED:"); 2829 break; 2830 } 2831 // Actual value of word count is one more that what is in the imm. 2832 // field of the instruction 2833 printf("%d", (inst & 0xf) + delta); 2834 if (i < e-1) 2835 printf(", "); 2836 else 2837 printf("\n"); 2838 } 2839 } 2840 2841 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2842 /*ForceNonFragileABI=*/true, 2843 /*NullTerminate=*/false); 2844 return getConstantGEP(VMContext, Entry, 0, 0); 2845 } 2846 2847 static std::string getBlockLayoutInfoString( 2848 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2849 bool HasCopyDisposeHelpers) { 2850 std::string Str; 2851 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2852 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2853 // Copy/dispose helpers don't have any information about 2854 // __unsafe_unretained captures, so unconditionally concatenate a string. 2855 Str += "u"; 2856 } else if (HasCopyDisposeHelpers) { 2857 // Information about __strong, __weak, or byref captures has already been 2858 // encoded into the names of the copy/dispose helpers. We have to add a 2859 // string here only when the copy/dispose helpers aren't generated (which 2860 // happens when the block is non-escaping). 2861 continue; 2862 } else { 2863 switch (R.opcode) { 2864 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2865 Str += "s"; 2866 break; 2867 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2868 Str += "r"; 2869 break; 2870 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2871 Str += "w"; 2872 break; 2873 default: 2874 continue; 2875 } 2876 } 2877 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2878 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2879 } 2880 return Str; 2881 } 2882 2883 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2884 const CGBlockInfo &blockInfo) { 2885 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2886 2887 RunSkipBlockVars.clear(); 2888 bool hasUnion = false; 2889 2890 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(LangAS::Default); 2891 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2892 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2893 2894 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2895 2896 // Calculate the basic layout of the block structure. 2897 const llvm::StructLayout *layout = 2898 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2899 2900 // Ignore the optional 'this' capture: C++ objects are not assumed 2901 // to be GC'ed. 2902 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2903 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2904 blockInfo.BlockHeaderForcedGapOffset, 2905 blockInfo.BlockHeaderForcedGapSize); 2906 // Walk the captured variables. 2907 for (const auto &CI : blockDecl->captures()) { 2908 const VarDecl *variable = CI.getVariable(); 2909 QualType type = variable->getType(); 2910 2911 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2912 2913 // Ignore constant captures. 2914 if (capture.isConstant()) continue; 2915 2916 CharUnits fieldOffset = 2917 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2918 2919 assert(!type->isArrayType() && "array variable should not be caught"); 2920 if (!CI.isByRef()) 2921 if (const RecordType *record = type->getAs<RecordType>()) { 2922 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2923 continue; 2924 } 2925 CharUnits fieldSize; 2926 if (CI.isByRef()) 2927 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2928 else 2929 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2930 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2931 fieldOffset, fieldSize); 2932 } 2933 } 2934 2935 llvm::Constant * 2936 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2937 const CGBlockInfo &blockInfo) { 2938 fillRunSkipBlockVars(CGM, blockInfo); 2939 return getBitmapBlockLayout(false); 2940 } 2941 2942 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2943 const CGBlockInfo &blockInfo) { 2944 fillRunSkipBlockVars(CGM, blockInfo); 2945 return getBlockLayoutInfoString(RunSkipBlockVars, blockInfo.NeedsCopyDispose); 2946 } 2947 2948 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2949 QualType T) { 2950 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2951 assert(!T->isArrayType() && "__block array variable should not be caught"); 2952 CharUnits fieldOffset; 2953 RunSkipBlockVars.clear(); 2954 bool hasUnion = false; 2955 if (const RecordType *record = T->getAs<RecordType>()) { 2956 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2957 llvm::Constant *Result = getBitmapBlockLayout(true); 2958 if (isa<llvm::ConstantInt>(Result)) 2959 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2960 return Result; 2961 } 2962 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2963 return nullPtr; 2964 } 2965 2966 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2967 const ObjCProtocolDecl *PD) { 2968 // FIXME: I don't understand why gcc generates this, or where it is 2969 // resolved. Investigate. Its also wasteful to look this up over and over. 2970 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2971 2972 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2973 ObjCTypes.getExternalProtocolPtrTy()); 2974 } 2975 2976 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2977 // FIXME: We shouldn't need this, the protocol decl should contain enough 2978 // information to tell us whether this was a declaration or a definition. 2979 DefinedProtocols.insert(PD->getIdentifier()); 2980 2981 // If we have generated a forward reference to this protocol, emit 2982 // it now. Otherwise do nothing, the protocol objects are lazily 2983 // emitted. 2984 if (Protocols.count(PD->getIdentifier())) 2985 GetOrEmitProtocol(PD); 2986 } 2987 2988 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2989 if (DefinedProtocols.count(PD->getIdentifier())) 2990 return GetOrEmitProtocol(PD); 2991 2992 return GetOrEmitProtocolRef(PD); 2993 } 2994 2995 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2996 CodeGenFunction &CGF, 2997 const ObjCInterfaceDecl *ID, 2998 ObjCCommonTypesHelper &ObjCTypes) { 2999 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 3000 3001 llvm::Value *className = CGF.CGM 3002 .GetAddrOfConstantCString(std::string( 3003 ID->getObjCRuntimeNameAsString())) 3004 .getPointer(); 3005 ASTContext &ctx = CGF.CGM.getContext(); 3006 className = 3007 CGF.Builder.CreateBitCast(className, 3008 CGF.ConvertType( 3009 ctx.getPointerType(ctx.CharTy.withConst()))); 3010 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3011 call->setDoesNotThrow(); 3012 return call; 3013 } 3014 3015 /* 3016 // Objective-C 1.0 extensions 3017 struct _objc_protocol { 3018 struct _objc_protocol_extension *isa; 3019 char *protocol_name; 3020 struct _objc_protocol_list *protocol_list; 3021 struct _objc__method_prototype_list *instance_methods; 3022 struct _objc__method_prototype_list *class_methods 3023 }; 3024 3025 See EmitProtocolExtension(). 3026 */ 3027 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3028 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3029 3030 // Early exit if a defining object has already been generated. 3031 if (Entry && Entry->hasInitializer()) 3032 return Entry; 3033 3034 // Use the protocol definition, if there is one. 3035 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3036 PD = Def; 3037 3038 // FIXME: I don't understand why gcc generates this, or where it is 3039 // resolved. Investigate. Its also wasteful to look this up over and over. 3040 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3041 3042 // Construct method lists. 3043 auto methodLists = ProtocolMethodLists::get(PD); 3044 3045 ConstantInitBuilder builder(CGM); 3046 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3047 values.add(EmitProtocolExtension(PD, methodLists)); 3048 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3049 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3050 PD->protocol_begin(), PD->protocol_end())); 3051 values.add(methodLists.emitMethodList(this, PD, 3052 ProtocolMethodLists::RequiredInstanceMethods)); 3053 values.add(methodLists.emitMethodList(this, PD, 3054 ProtocolMethodLists::RequiredClassMethods)); 3055 3056 if (Entry) { 3057 // Already created, update the initializer. 3058 assert(Entry->hasPrivateLinkage()); 3059 values.finishAndSetAsInitializer(Entry); 3060 } else { 3061 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3062 CGM.getPointerAlign(), 3063 /*constant*/ false, 3064 llvm::GlobalValue::PrivateLinkage); 3065 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3066 3067 Protocols[PD->getIdentifier()] = Entry; 3068 } 3069 CGM.addCompilerUsedGlobal(Entry); 3070 3071 return Entry; 3072 } 3073 3074 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3075 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3076 3077 if (!Entry) { 3078 // We use the initializer as a marker of whether this is a forward 3079 // reference or not. At module finalization we add the empty 3080 // contents for protocols which were referenced but never defined. 3081 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3082 false, llvm::GlobalValue::PrivateLinkage, 3083 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3084 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3085 // FIXME: Is this necessary? Why only for protocol? 3086 Entry->setAlignment(llvm::Align(4)); 3087 } 3088 3089 return Entry; 3090 } 3091 3092 /* 3093 struct _objc_protocol_extension { 3094 uint32_t size; 3095 struct objc_method_description_list *optional_instance_methods; 3096 struct objc_method_description_list *optional_class_methods; 3097 struct objc_property_list *instance_properties; 3098 const char ** extendedMethodTypes; 3099 struct objc_property_list *class_properties; 3100 }; 3101 */ 3102 llvm::Constant * 3103 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3104 const ProtocolMethodLists &methodLists) { 3105 auto optInstanceMethods = 3106 methodLists.emitMethodList(this, PD, 3107 ProtocolMethodLists::OptionalInstanceMethods); 3108 auto optClassMethods = 3109 methodLists.emitMethodList(this, PD, 3110 ProtocolMethodLists::OptionalClassMethods); 3111 3112 auto extendedMethodTypes = 3113 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3114 methodLists.emitExtendedTypesArray(this), 3115 ObjCTypes); 3116 3117 auto instanceProperties = 3118 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3119 ObjCTypes, false); 3120 auto classProperties = 3121 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3122 PD, ObjCTypes, true); 3123 3124 // Return null if no extension bits are used. 3125 if (optInstanceMethods->isNullValue() && 3126 optClassMethods->isNullValue() && 3127 extendedMethodTypes->isNullValue() && 3128 instanceProperties->isNullValue() && 3129 classProperties->isNullValue()) { 3130 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3131 } 3132 3133 uint64_t size = 3134 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3135 3136 ConstantInitBuilder builder(CGM); 3137 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3138 values.addInt(ObjCTypes.IntTy, size); 3139 values.add(optInstanceMethods); 3140 values.add(optClassMethods); 3141 values.add(instanceProperties); 3142 values.add(extendedMethodTypes); 3143 values.add(classProperties); 3144 3145 // No special section, but goes in llvm.used 3146 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3147 StringRef(), CGM.getPointerAlign(), true); 3148 } 3149 3150 /* 3151 struct objc_protocol_list { 3152 struct objc_protocol_list *next; 3153 long count; 3154 Protocol *list[]; 3155 }; 3156 */ 3157 llvm::Constant * 3158 CGObjCMac::EmitProtocolList(Twine name, 3159 ObjCProtocolDecl::protocol_iterator begin, 3160 ObjCProtocolDecl::protocol_iterator end) { 3161 // Just return null for empty protocol lists 3162 auto PDs = GetRuntimeProtocolList(begin, end); 3163 if (PDs.empty()) 3164 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3165 3166 ConstantInitBuilder builder(CGM); 3167 auto values = builder.beginStruct(); 3168 3169 // This field is only used by the runtime. 3170 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3171 3172 // Reserve a slot for the count. 3173 auto countSlot = values.addPlaceholder(); 3174 3175 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3176 for (const auto *Proto : PDs) 3177 refsArray.add(GetProtocolRef(Proto)); 3178 3179 auto count = refsArray.size(); 3180 3181 // This list is null terminated. 3182 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3183 3184 refsArray.finishAndAddTo(values); 3185 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3186 3187 StringRef section; 3188 if (CGM.getTriple().isOSBinFormatMachO()) 3189 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3190 3191 llvm::GlobalVariable *GV = 3192 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3193 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3194 } 3195 3196 static void 3197 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3198 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3199 const ObjCProtocolDecl *Proto, 3200 bool IsClassProperty) { 3201 for (const auto *PD : Proto->properties()) { 3202 if (IsClassProperty != PD->isClassProperty()) 3203 continue; 3204 if (!PropertySet.insert(PD->getIdentifier()).second) 3205 continue; 3206 Properties.push_back(PD); 3207 } 3208 3209 for (const auto *P : Proto->protocols()) 3210 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3211 } 3212 3213 /* 3214 struct _objc_property { 3215 const char * const name; 3216 const char * const attributes; 3217 }; 3218 3219 struct _objc_property_list { 3220 uint32_t entsize; // sizeof (struct _objc_property) 3221 uint32_t prop_count; 3222 struct _objc_property[prop_count]; 3223 }; 3224 */ 3225 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3226 const Decl *Container, 3227 const ObjCContainerDecl *OCD, 3228 const ObjCCommonTypesHelper &ObjCTypes, 3229 bool IsClassProperty) { 3230 if (IsClassProperty) { 3231 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3232 // with deployment target < 9.0. 3233 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3234 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3235 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3236 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3237 } 3238 3239 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3240 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3241 3242 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3243 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3244 for (auto *PD : ClassExt->properties()) { 3245 if (IsClassProperty != PD->isClassProperty()) 3246 continue; 3247 if (PD->isDirectProperty()) 3248 continue; 3249 PropertySet.insert(PD->getIdentifier()); 3250 Properties.push_back(PD); 3251 } 3252 3253 for (const auto *PD : OCD->properties()) { 3254 if (IsClassProperty != PD->isClassProperty()) 3255 continue; 3256 // Don't emit duplicate metadata for properties that were already in a 3257 // class extension. 3258 if (!PropertySet.insert(PD->getIdentifier()).second) 3259 continue; 3260 if (PD->isDirectProperty()) 3261 continue; 3262 Properties.push_back(PD); 3263 } 3264 3265 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3266 for (const auto *P : OID->all_referenced_protocols()) 3267 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3268 } 3269 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3270 for (const auto *P : CD->protocols()) 3271 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3272 } 3273 3274 // Return null for empty list. 3275 if (Properties.empty()) 3276 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3277 3278 unsigned propertySize = 3279 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3280 3281 ConstantInitBuilder builder(CGM); 3282 auto values = builder.beginStruct(); 3283 values.addInt(ObjCTypes.IntTy, propertySize); 3284 values.addInt(ObjCTypes.IntTy, Properties.size()); 3285 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3286 for (auto PD : Properties) { 3287 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3288 property.add(GetPropertyName(PD->getIdentifier())); 3289 property.add(GetPropertyTypeString(PD, Container)); 3290 property.finishAndAddTo(propertiesArray); 3291 } 3292 propertiesArray.finishAndAddTo(values); 3293 3294 StringRef Section; 3295 if (CGM.getTriple().isOSBinFormatMachO()) 3296 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3297 : "__OBJC,__property,regular,no_dead_strip"; 3298 3299 llvm::GlobalVariable *GV = 3300 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3301 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3302 } 3303 3304 llvm::Constant * 3305 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3306 ArrayRef<llvm::Constant*> MethodTypes, 3307 const ObjCCommonTypesHelper &ObjCTypes) { 3308 // Return null for empty list. 3309 if (MethodTypes.empty()) 3310 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3311 3312 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3313 MethodTypes.size()); 3314 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3315 3316 StringRef Section; 3317 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3318 Section = "__DATA, __objc_const"; 3319 3320 llvm::GlobalVariable *GV = 3321 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3322 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3323 } 3324 3325 /* 3326 struct _objc_category { 3327 char *category_name; 3328 char *class_name; 3329 struct _objc_method_list *instance_methods; 3330 struct _objc_method_list *class_methods; 3331 struct _objc_protocol_list *protocols; 3332 uint32_t size; // <rdar://4585769> 3333 struct _objc_property_list *instance_properties; 3334 struct _objc_property_list *class_properties; 3335 }; 3336 */ 3337 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3338 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3339 3340 // FIXME: This is poor design, the OCD should have a pointer to the category 3341 // decl. Additionally, note that Category can be null for the @implementation 3342 // w/o an @interface case. Sema should just create one for us as it does for 3343 // @implementation so everyone else can live life under a clear blue sky. 3344 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3345 const ObjCCategoryDecl *Category = 3346 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3347 3348 SmallString<256> ExtName; 3349 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3350 << OCD->getName(); 3351 3352 ConstantInitBuilder Builder(CGM); 3353 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3354 3355 enum { 3356 InstanceMethods, 3357 ClassMethods, 3358 NumMethodLists 3359 }; 3360 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3361 for (const auto *MD : OCD->methods()) { 3362 if (!MD->isDirectMethod()) 3363 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3364 } 3365 3366 Values.add(GetClassName(OCD->getName())); 3367 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3368 LazySymbols.insert(Interface->getIdentifier()); 3369 3370 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3371 Methods[InstanceMethods])); 3372 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3373 Methods[ClassMethods])); 3374 if (Category) { 3375 Values.add( 3376 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3377 Category->protocol_begin(), Category->protocol_end())); 3378 } else { 3379 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3380 } 3381 Values.addInt(ObjCTypes.IntTy, Size); 3382 3383 // If there is no category @interface then there can be no properties. 3384 if (Category) { 3385 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3386 OCD, Category, ObjCTypes, false)); 3387 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3388 OCD, Category, ObjCTypes, true)); 3389 } else { 3390 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3391 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3392 } 3393 3394 llvm::GlobalVariable *GV = 3395 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3396 "__OBJC,__category,regular,no_dead_strip", 3397 CGM.getPointerAlign(), true); 3398 DefinedCategories.push_back(GV); 3399 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3400 // method definition entries must be clear for next implementation. 3401 MethodDefinitions.clear(); 3402 } 3403 3404 enum FragileClassFlags { 3405 /// Apparently: is not a meta-class. 3406 FragileABI_Class_Factory = 0x00001, 3407 3408 /// Is a meta-class. 3409 FragileABI_Class_Meta = 0x00002, 3410 3411 /// Has a non-trivial constructor or destructor. 3412 FragileABI_Class_HasCXXStructors = 0x02000, 3413 3414 /// Has hidden visibility. 3415 FragileABI_Class_Hidden = 0x20000, 3416 3417 /// Class implementation was compiled under ARC. 3418 FragileABI_Class_CompiledByARC = 0x04000000, 3419 3420 /// Class implementation was compiled under MRC and has MRC weak ivars. 3421 /// Exclusive with CompiledByARC. 3422 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3423 }; 3424 3425 enum NonFragileClassFlags { 3426 /// Is a meta-class. 3427 NonFragileABI_Class_Meta = 0x00001, 3428 3429 /// Is a root class. 3430 NonFragileABI_Class_Root = 0x00002, 3431 3432 /// Has a non-trivial constructor or destructor. 3433 NonFragileABI_Class_HasCXXStructors = 0x00004, 3434 3435 /// Has hidden visibility. 3436 NonFragileABI_Class_Hidden = 0x00010, 3437 3438 /// Has the exception attribute. 3439 NonFragileABI_Class_Exception = 0x00020, 3440 3441 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3442 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3443 3444 /// Class implementation was compiled under ARC. 3445 NonFragileABI_Class_CompiledByARC = 0x00080, 3446 3447 /// Class has non-trivial destructors, but zero-initialization is okay. 3448 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3449 3450 /// Class implementation was compiled under MRC and has MRC weak ivars. 3451 /// Exclusive with CompiledByARC. 3452 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3453 }; 3454 3455 static bool hasWeakMember(QualType type) { 3456 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3457 return true; 3458 } 3459 3460 if (auto recType = type->getAs<RecordType>()) { 3461 for (auto *field : recType->getDecl()->fields()) { 3462 if (hasWeakMember(field->getType())) 3463 return true; 3464 } 3465 } 3466 3467 return false; 3468 } 3469 3470 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3471 /// (and actually fill in a layout string) if we really do have any 3472 /// __weak ivars. 3473 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3474 const ObjCImplementationDecl *ID) { 3475 if (!CGM.getLangOpts().ObjCWeak) return false; 3476 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3477 3478 for (const ObjCIvarDecl *ivar = 3479 ID->getClassInterface()->all_declared_ivar_begin(); 3480 ivar; ivar = ivar->getNextIvar()) { 3481 if (hasWeakMember(ivar->getType())) 3482 return true; 3483 } 3484 3485 return false; 3486 } 3487 3488 /* 3489 struct _objc_class { 3490 Class isa; 3491 Class super_class; 3492 const char *name; 3493 long version; 3494 long info; 3495 long instance_size; 3496 struct _objc_ivar_list *ivars; 3497 struct _objc_method_list *methods; 3498 struct _objc_cache *cache; 3499 struct _objc_protocol_list *protocols; 3500 // Objective-C 1.0 extensions (<rdr://4585769>) 3501 const char *ivar_layout; 3502 struct _objc_class_ext *ext; 3503 }; 3504 3505 See EmitClassExtension(); 3506 */ 3507 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3508 IdentifierInfo *RuntimeName = 3509 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3510 DefinedSymbols.insert(RuntimeName); 3511 3512 std::string ClassName = ID->getNameAsString(); 3513 // FIXME: Gross 3514 ObjCInterfaceDecl *Interface = 3515 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3516 llvm::Constant *Protocols = 3517 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3518 Interface->all_referenced_protocol_begin(), 3519 Interface->all_referenced_protocol_end()); 3520 unsigned Flags = FragileABI_Class_Factory; 3521 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3522 Flags |= FragileABI_Class_HasCXXStructors; 3523 3524 bool hasMRCWeak = false; 3525 3526 if (CGM.getLangOpts().ObjCAutoRefCount) 3527 Flags |= FragileABI_Class_CompiledByARC; 3528 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3529 Flags |= FragileABI_Class_HasMRCWeakIvars; 3530 3531 CharUnits Size = 3532 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3533 3534 // FIXME: Set CXX-structors flag. 3535 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3536 Flags |= FragileABI_Class_Hidden; 3537 3538 enum { 3539 InstanceMethods, 3540 ClassMethods, 3541 NumMethodLists 3542 }; 3543 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3544 for (const auto *MD : ID->methods()) { 3545 if (!MD->isDirectMethod()) 3546 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3547 } 3548 3549 for (const auto *PID : ID->property_impls()) { 3550 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3551 if (PID->getPropertyDecl()->isDirectProperty()) 3552 continue; 3553 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3554 if (GetMethodDefinition(MD)) 3555 Methods[InstanceMethods].push_back(MD); 3556 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3557 if (GetMethodDefinition(MD)) 3558 Methods[InstanceMethods].push_back(MD); 3559 } 3560 } 3561 3562 ConstantInitBuilder builder(CGM); 3563 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3564 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3565 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3566 // Record a reference to the super class. 3567 LazySymbols.insert(Super->getIdentifier()); 3568 3569 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3570 ObjCTypes.ClassPtrTy); 3571 } else { 3572 values.addNullPointer(ObjCTypes.ClassPtrTy); 3573 } 3574 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3575 // Version is always 0. 3576 values.addInt(ObjCTypes.LongTy, 0); 3577 values.addInt(ObjCTypes.LongTy, Flags); 3578 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3579 values.add(EmitIvarList(ID, false)); 3580 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3581 Methods[InstanceMethods])); 3582 // cache is always NULL. 3583 values.addNullPointer(ObjCTypes.CachePtrTy); 3584 values.add(Protocols); 3585 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3586 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3587 /*isMetaclass*/ false)); 3588 3589 std::string Name("OBJC_CLASS_"); 3590 Name += ClassName; 3591 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3592 // Check for a forward reference. 3593 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3594 if (GV) { 3595 assert(GV->getValueType() == ObjCTypes.ClassTy && 3596 "Forward metaclass reference has incorrect type."); 3597 values.finishAndSetAsInitializer(GV); 3598 GV->setSection(Section); 3599 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3600 CGM.addCompilerUsedGlobal(GV); 3601 } else 3602 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3603 DefinedClasses.push_back(GV); 3604 ImplementedClasses.push_back(Interface); 3605 // method definition entries must be clear for next implementation. 3606 MethodDefinitions.clear(); 3607 } 3608 3609 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3610 llvm::Constant *Protocols, 3611 ArrayRef<const ObjCMethodDecl*> Methods) { 3612 unsigned Flags = FragileABI_Class_Meta; 3613 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3614 3615 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3616 Flags |= FragileABI_Class_Hidden; 3617 3618 ConstantInitBuilder builder(CGM); 3619 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3620 // The isa for the metaclass is the root of the hierarchy. 3621 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3622 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3623 Root = Super; 3624 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3625 ObjCTypes.ClassPtrTy); 3626 // The super class for the metaclass is emitted as the name of the 3627 // super class. The runtime fixes this up to point to the 3628 // *metaclass* for the super class. 3629 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3630 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3631 ObjCTypes.ClassPtrTy); 3632 } else { 3633 values.addNullPointer(ObjCTypes.ClassPtrTy); 3634 } 3635 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3636 // Version is always 0. 3637 values.addInt(ObjCTypes.LongTy, 0); 3638 values.addInt(ObjCTypes.LongTy, Flags); 3639 values.addInt(ObjCTypes.LongTy, Size); 3640 values.add(EmitIvarList(ID, true)); 3641 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3642 Methods)); 3643 // cache is always NULL. 3644 values.addNullPointer(ObjCTypes.CachePtrTy); 3645 values.add(Protocols); 3646 // ivar_layout for metaclass is always NULL. 3647 values.addNullPointer(ObjCTypes.Int8PtrTy); 3648 // The class extension is used to store class properties for metaclasses. 3649 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3650 /*isMetaclass*/true)); 3651 3652 std::string Name("OBJC_METACLASS_"); 3653 Name += ID->getName(); 3654 3655 // Check for a forward reference. 3656 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3657 if (GV) { 3658 assert(GV->getValueType() == ObjCTypes.ClassTy && 3659 "Forward metaclass reference has incorrect type."); 3660 values.finishAndSetAsInitializer(GV); 3661 } else { 3662 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3663 /*constant*/ false, 3664 llvm::GlobalValue::PrivateLinkage); 3665 } 3666 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3667 CGM.addCompilerUsedGlobal(GV); 3668 3669 return GV; 3670 } 3671 3672 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3673 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3674 3675 // FIXME: Should we look these up somewhere other than the module. Its a bit 3676 // silly since we only generate these while processing an implementation, so 3677 // exactly one pointer would work if know when we entered/exitted an 3678 // implementation block. 3679 3680 // Check for an existing forward reference. 3681 // Previously, metaclass with internal linkage may have been defined. 3682 // pass 'true' as 2nd argument so it is returned. 3683 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3684 if (!GV) 3685 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3686 llvm::GlobalValue::PrivateLinkage, nullptr, 3687 Name); 3688 3689 assert(GV->getValueType() == ObjCTypes.ClassTy && 3690 "Forward metaclass reference has incorrect type."); 3691 return GV; 3692 } 3693 3694 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3695 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3696 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3697 3698 if (!GV) 3699 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3700 llvm::GlobalValue::PrivateLinkage, nullptr, 3701 Name); 3702 3703 assert(GV->getValueType() == ObjCTypes.ClassTy && 3704 "Forward class metadata reference has incorrect type."); 3705 return GV; 3706 } 3707 3708 /* 3709 Emit a "class extension", which in this specific context means extra 3710 data that doesn't fit in the normal fragile-ABI class structure, and 3711 has nothing to do with the language concept of a class extension. 3712 3713 struct objc_class_ext { 3714 uint32_t size; 3715 const char *weak_ivar_layout; 3716 struct _objc_property_list *properties; 3717 }; 3718 */ 3719 llvm::Constant * 3720 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3721 CharUnits InstanceSize, bool hasMRCWeakIvars, 3722 bool isMetaclass) { 3723 // Weak ivar layout. 3724 llvm::Constant *layout; 3725 if (isMetaclass) { 3726 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3727 } else { 3728 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3729 hasMRCWeakIvars); 3730 } 3731 3732 // Properties. 3733 llvm::Constant *propertyList = 3734 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3735 : Twine("_OBJC_$_PROP_LIST_")) 3736 + ID->getName(), 3737 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3738 3739 // Return null if no extension bits are used. 3740 if (layout->isNullValue() && propertyList->isNullValue()) { 3741 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3742 } 3743 3744 uint64_t size = 3745 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3746 3747 ConstantInitBuilder builder(CGM); 3748 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3749 values.addInt(ObjCTypes.IntTy, size); 3750 values.add(layout); 3751 values.add(propertyList); 3752 3753 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3754 "__OBJC,__class_ext,regular,no_dead_strip", 3755 CGM.getPointerAlign(), true); 3756 } 3757 3758 /* 3759 struct objc_ivar { 3760 char *ivar_name; 3761 char *ivar_type; 3762 int ivar_offset; 3763 }; 3764 3765 struct objc_ivar_list { 3766 int ivar_count; 3767 struct objc_ivar list[count]; 3768 }; 3769 */ 3770 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3771 bool ForClass) { 3772 // When emitting the root class GCC emits ivar entries for the 3773 // actual class structure. It is not clear if we need to follow this 3774 // behavior; for now lets try and get away with not doing it. If so, 3775 // the cleanest solution would be to make up an ObjCInterfaceDecl 3776 // for the class. 3777 if (ForClass) 3778 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3779 3780 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3781 3782 ConstantInitBuilder builder(CGM); 3783 auto ivarList = builder.beginStruct(); 3784 auto countSlot = ivarList.addPlaceholder(); 3785 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3786 3787 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3788 IVD; IVD = IVD->getNextIvar()) { 3789 // Ignore unnamed bit-fields. 3790 if (!IVD->getDeclName()) 3791 continue; 3792 3793 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3794 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3795 ivar.add(GetMethodVarType(IVD)); 3796 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3797 ivar.finishAndAddTo(ivars); 3798 } 3799 3800 // Return null for empty list. 3801 auto count = ivars.size(); 3802 if (count == 0) { 3803 ivars.abandon(); 3804 ivarList.abandon(); 3805 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3806 } 3807 3808 ivars.finishAndAddTo(ivarList); 3809 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3810 3811 llvm::GlobalVariable *GV; 3812 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3813 "__OBJC,__instance_vars,regular,no_dead_strip", 3814 CGM.getPointerAlign(), true); 3815 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3816 } 3817 3818 /// Build a struct objc_method_description constant for the given method. 3819 /// 3820 /// struct objc_method_description { 3821 /// SEL method_name; 3822 /// char *method_types; 3823 /// }; 3824 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3825 const ObjCMethodDecl *MD) { 3826 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3827 description.addBitCast(GetMethodVarName(MD->getSelector()), 3828 ObjCTypes.SelectorPtrTy); 3829 description.add(GetMethodVarType(MD)); 3830 description.finishAndAddTo(builder); 3831 } 3832 3833 /// Build a struct objc_method constant for the given method. 3834 /// 3835 /// struct objc_method { 3836 /// SEL method_name; 3837 /// char *method_types; 3838 /// void *method; 3839 /// }; 3840 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3841 const ObjCMethodDecl *MD) { 3842 llvm::Function *fn = GetMethodDefinition(MD); 3843 assert(fn && "no definition registered for method"); 3844 3845 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3846 method.addBitCast(GetMethodVarName(MD->getSelector()), 3847 ObjCTypes.SelectorPtrTy); 3848 method.add(GetMethodVarType(MD)); 3849 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3850 method.finishAndAddTo(builder); 3851 } 3852 3853 /// Build a struct objc_method_list or struct objc_method_description_list, 3854 /// as appropriate. 3855 /// 3856 /// struct objc_method_list { 3857 /// struct objc_method_list *obsolete; 3858 /// int count; 3859 /// struct objc_method methods_list[count]; 3860 /// }; 3861 /// 3862 /// struct objc_method_description_list { 3863 /// int count; 3864 /// struct objc_method_description list[count]; 3865 /// }; 3866 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3867 ArrayRef<const ObjCMethodDecl *> methods) { 3868 StringRef prefix; 3869 StringRef section; 3870 bool forProtocol = false; 3871 switch (MLT) { 3872 case MethodListType::CategoryInstanceMethods: 3873 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3874 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3875 forProtocol = false; 3876 break; 3877 case MethodListType::CategoryClassMethods: 3878 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3879 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3880 forProtocol = false; 3881 break; 3882 case MethodListType::InstanceMethods: 3883 prefix = "OBJC_INSTANCE_METHODS_"; 3884 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3885 forProtocol = false; 3886 break; 3887 case MethodListType::ClassMethods: 3888 prefix = "OBJC_CLASS_METHODS_"; 3889 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3890 forProtocol = false; 3891 break; 3892 case MethodListType::ProtocolInstanceMethods: 3893 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3894 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3895 forProtocol = true; 3896 break; 3897 case MethodListType::ProtocolClassMethods: 3898 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3899 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3900 forProtocol = true; 3901 break; 3902 case MethodListType::OptionalProtocolInstanceMethods: 3903 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3904 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3905 forProtocol = true; 3906 break; 3907 case MethodListType::OptionalProtocolClassMethods: 3908 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3909 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3910 forProtocol = true; 3911 break; 3912 } 3913 3914 // Return null for empty list. 3915 if (methods.empty()) 3916 return llvm::Constant::getNullValue(forProtocol 3917 ? ObjCTypes.MethodDescriptionListPtrTy 3918 : ObjCTypes.MethodListPtrTy); 3919 3920 // For protocols, this is an objc_method_description_list, which has 3921 // a slightly different structure. 3922 if (forProtocol) { 3923 ConstantInitBuilder builder(CGM); 3924 auto values = builder.beginStruct(); 3925 values.addInt(ObjCTypes.IntTy, methods.size()); 3926 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3927 for (auto MD : methods) { 3928 emitMethodDescriptionConstant(methodArray, MD); 3929 } 3930 methodArray.finishAndAddTo(values); 3931 3932 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3933 CGM.getPointerAlign(), true); 3934 return llvm::ConstantExpr::getBitCast(GV, 3935 ObjCTypes.MethodDescriptionListPtrTy); 3936 } 3937 3938 // Otherwise, it's an objc_method_list. 3939 ConstantInitBuilder builder(CGM); 3940 auto values = builder.beginStruct(); 3941 values.addNullPointer(ObjCTypes.Int8PtrTy); 3942 values.addInt(ObjCTypes.IntTy, methods.size()); 3943 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3944 for (auto MD : methods) { 3945 if (!MD->isDirectMethod()) 3946 emitMethodConstant(methodArray, MD); 3947 } 3948 methodArray.finishAndAddTo(values); 3949 3950 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3951 CGM.getPointerAlign(), true); 3952 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3953 } 3954 3955 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3956 const ObjCContainerDecl *CD) { 3957 llvm::Function *Method; 3958 3959 if (OMD->isDirectMethod()) { 3960 Method = GenerateDirectMethod(OMD, CD); 3961 } else { 3962 auto Name = getSymbolNameForMethod(OMD); 3963 3964 CodeGenTypes &Types = CGM.getTypes(); 3965 llvm::FunctionType *MethodTy = 3966 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3967 Method = 3968 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 3969 Name, &CGM.getModule()); 3970 } 3971 3972 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3973 3974 return Method; 3975 } 3976 3977 llvm::Function * 3978 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 3979 const ObjCContainerDecl *CD) { 3980 auto *COMD = OMD->getCanonicalDecl(); 3981 auto I = DirectMethodDefinitions.find(COMD); 3982 llvm::Function *OldFn = nullptr, *Fn = nullptr; 3983 3984 if (I != DirectMethodDefinitions.end()) { 3985 // Objective-C allows for the declaration and implementation types 3986 // to differ slightly. 3987 // 3988 // If we're being asked for the Function associated for a method 3989 // implementation, a previous value might have been cached 3990 // based on the type of the canonical declaration. 3991 // 3992 // If these do not match, then we'll replace this function with 3993 // a new one that has the proper type below. 3994 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 3995 return I->second; 3996 OldFn = I->second; 3997 } 3998 3999 CodeGenTypes &Types = CGM.getTypes(); 4000 llvm::FunctionType *MethodTy = 4001 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4002 4003 if (OldFn) { 4004 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4005 "", &CGM.getModule()); 4006 Fn->takeName(OldFn); 4007 OldFn->replaceAllUsesWith( 4008 llvm::ConstantExpr::getBitCast(Fn, OldFn->getType())); 4009 OldFn->eraseFromParent(); 4010 4011 // Replace the cached function in the map. 4012 I->second = Fn; 4013 } else { 4014 auto Name = getSymbolNameForMethod(OMD, /*include category*/ false); 4015 4016 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4017 Name, &CGM.getModule()); 4018 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn)); 4019 } 4020 4021 return Fn; 4022 } 4023 4024 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4025 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4026 const ObjCContainerDecl *CD) { 4027 auto &Builder = CGF.Builder; 4028 bool ReceiverCanBeNull = true; 4029 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4030 auto selfValue = Builder.CreateLoad(selfAddr); 4031 4032 // Generate: 4033 // 4034 // /* for class methods only to force class lazy initialization */ 4035 // self = [self self]; 4036 // 4037 // /* unless the receiver is never NULL */ 4038 // if (self == nil) { 4039 // return (ReturnType){ }; 4040 // } 4041 // 4042 // _cmd = @selector(...) 4043 // ... 4044 4045 if (OMD->isClassMethod()) { 4046 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4047 assert(OID && 4048 "GenerateDirectMethod() should be called with the Class Interface"); 4049 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4050 auto ResultType = CGF.getContext().getObjCIdType(); 4051 RValue result; 4052 CallArgList Args; 4053 4054 // TODO: If this method is inlined, the caller might know that `self` is 4055 // already initialized; for example, it might be an ordinary Objective-C 4056 // method which always receives an initialized `self`, or it might have just 4057 // forced initialization on its own. 4058 // 4059 // We should find a way to eliminate this unnecessary initialization in such 4060 // cases in LLVM. 4061 result = GeneratePossiblySpecializedMessageSend( 4062 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4063 nullptr, true); 4064 Builder.CreateStore(result.getScalarVal(), selfAddr); 4065 4066 // Nullable `Class` expressions cannot be messaged with a direct method 4067 // so the only reason why the receive can be null would be because 4068 // of weak linking. 4069 ReceiverCanBeNull = isWeakLinkedClass(OID); 4070 } 4071 4072 if (ReceiverCanBeNull) { 4073 llvm::BasicBlock *SelfIsNilBlock = 4074 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4075 llvm::BasicBlock *ContBlock = 4076 CGF.createBasicBlock("objc_direct_method.cont"); 4077 4078 // if (self == nil) { 4079 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4080 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4081 4082 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4083 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4084 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4085 4086 CGF.EmitBlock(SelfIsNilBlock); 4087 4088 // return (ReturnType){ }; 4089 auto retTy = OMD->getReturnType(); 4090 Builder.SetInsertPoint(SelfIsNilBlock); 4091 if (!retTy->isVoidType()) { 4092 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4093 } 4094 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4095 // } 4096 4097 // rest of the body 4098 CGF.EmitBlock(ContBlock); 4099 Builder.SetInsertPoint(ContBlock); 4100 } 4101 4102 // only synthesize _cmd if it's referenced 4103 if (OMD->getCmdDecl()->isUsed()) { 4104 // `_cmd` is not a parameter to direct methods, so storage must be 4105 // explicitly declared for it. 4106 CGF.EmitVarDecl(*OMD->getCmdDecl()); 4107 Builder.CreateStore(GetSelector(CGF, OMD), 4108 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4109 } 4110 } 4111 4112 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4113 ConstantStructBuilder &Init, 4114 StringRef Section, 4115 CharUnits Align, 4116 bool AddToUsed) { 4117 llvm::GlobalValue::LinkageTypes LT = 4118 getLinkageTypeForObjCMetadata(CGM, Section); 4119 llvm::GlobalVariable *GV = 4120 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4121 if (!Section.empty()) 4122 GV->setSection(Section); 4123 if (AddToUsed) 4124 CGM.addCompilerUsedGlobal(GV); 4125 return GV; 4126 } 4127 4128 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4129 llvm::Constant *Init, 4130 StringRef Section, 4131 CharUnits Align, 4132 bool AddToUsed) { 4133 llvm::Type *Ty = Init->getType(); 4134 llvm::GlobalValue::LinkageTypes LT = 4135 getLinkageTypeForObjCMetadata(CGM, Section); 4136 llvm::GlobalVariable *GV = 4137 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4138 if (!Section.empty()) 4139 GV->setSection(Section); 4140 GV->setAlignment(Align.getAsAlign()); 4141 if (AddToUsed) 4142 CGM.addCompilerUsedGlobal(GV); 4143 return GV; 4144 } 4145 4146 llvm::GlobalVariable * 4147 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4148 bool ForceNonFragileABI, 4149 bool NullTerminate) { 4150 StringRef Label; 4151 switch (Type) { 4152 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4153 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4154 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4155 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4156 } 4157 4158 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4159 4160 StringRef Section; 4161 switch (Type) { 4162 case ObjCLabelType::ClassName: 4163 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4164 : "__TEXT,__cstring,cstring_literals"; 4165 break; 4166 case ObjCLabelType::MethodVarName: 4167 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4168 : "__TEXT,__cstring,cstring_literals"; 4169 break; 4170 case ObjCLabelType::MethodVarType: 4171 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4172 : "__TEXT,__cstring,cstring_literals"; 4173 break; 4174 case ObjCLabelType::PropertyName: 4175 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4176 : "__TEXT,__cstring,cstring_literals"; 4177 break; 4178 } 4179 4180 llvm::Constant *Value = 4181 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4182 llvm::GlobalVariable *GV = 4183 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4184 /*isConstant=*/true, 4185 llvm::GlobalValue::PrivateLinkage, Value, Label); 4186 if (CGM.getTriple().isOSBinFormatMachO()) 4187 GV->setSection(Section); 4188 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4189 GV->setAlignment(CharUnits::One().getAsAlign()); 4190 CGM.addCompilerUsedGlobal(GV); 4191 4192 return GV; 4193 } 4194 4195 llvm::Function *CGObjCMac::ModuleInitFunction() { 4196 // Abuse this interface function as a place to finalize. 4197 FinishModule(); 4198 return nullptr; 4199 } 4200 4201 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4202 return ObjCTypes.getGetPropertyFn(); 4203 } 4204 4205 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4206 return ObjCTypes.getSetPropertyFn(); 4207 } 4208 4209 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4210 bool copy) { 4211 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4212 } 4213 4214 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4215 return ObjCTypes.getCopyStructFn(); 4216 } 4217 4218 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4219 return ObjCTypes.getCopyStructFn(); 4220 } 4221 4222 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4223 return ObjCTypes.getCppAtomicObjectFunction(); 4224 } 4225 4226 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4227 return ObjCTypes.getCppAtomicObjectFunction(); 4228 } 4229 4230 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4231 return ObjCTypes.getEnumerationMutationFn(); 4232 } 4233 4234 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4235 return EmitTryOrSynchronizedStmt(CGF, S); 4236 } 4237 4238 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4239 const ObjCAtSynchronizedStmt &S) { 4240 return EmitTryOrSynchronizedStmt(CGF, S); 4241 } 4242 4243 namespace { 4244 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4245 const Stmt &S; 4246 Address SyncArgSlot; 4247 Address CallTryExitVar; 4248 Address ExceptionData; 4249 ObjCTypesHelper &ObjCTypes; 4250 PerformFragileFinally(const Stmt *S, 4251 Address SyncArgSlot, 4252 Address CallTryExitVar, 4253 Address ExceptionData, 4254 ObjCTypesHelper *ObjCTypes) 4255 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4256 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4257 4258 void Emit(CodeGenFunction &CGF, Flags flags) override { 4259 // Check whether we need to call objc_exception_try_exit. 4260 // In optimized code, this branch will always be folded. 4261 llvm::BasicBlock *FinallyCallExit = 4262 CGF.createBasicBlock("finally.call_exit"); 4263 llvm::BasicBlock *FinallyNoCallExit = 4264 CGF.createBasicBlock("finally.no_call_exit"); 4265 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4266 FinallyCallExit, FinallyNoCallExit); 4267 4268 CGF.EmitBlock(FinallyCallExit); 4269 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4270 ExceptionData.getPointer()); 4271 4272 CGF.EmitBlock(FinallyNoCallExit); 4273 4274 if (isa<ObjCAtTryStmt>(S)) { 4275 if (const ObjCAtFinallyStmt* FinallyStmt = 4276 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4277 // Don't try to do the @finally if this is an EH cleanup. 4278 if (flags.isForEHCleanup()) return; 4279 4280 // Save the current cleanup destination in case there's 4281 // control flow inside the finally statement. 4282 llvm::Value *CurCleanupDest = 4283 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4284 4285 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4286 4287 if (CGF.HaveInsertPoint()) { 4288 CGF.Builder.CreateStore(CurCleanupDest, 4289 CGF.getNormalCleanupDestSlot()); 4290 } else { 4291 // Currently, the end of the cleanup must always exist. 4292 CGF.EnsureInsertPoint(); 4293 } 4294 } 4295 } else { 4296 // Emit objc_sync_exit(expr); as finally's sole statement for 4297 // @synchronized. 4298 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4299 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4300 } 4301 } 4302 }; 4303 4304 class FragileHazards { 4305 CodeGenFunction &CGF; 4306 SmallVector<llvm::Value*, 20> Locals; 4307 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4308 4309 llvm::InlineAsm *ReadHazard; 4310 llvm::InlineAsm *WriteHazard; 4311 4312 llvm::FunctionType *GetAsmFnType(); 4313 4314 void collectLocals(); 4315 void emitReadHazard(CGBuilderTy &Builder); 4316 4317 public: 4318 FragileHazards(CodeGenFunction &CGF); 4319 4320 void emitWriteHazard(); 4321 void emitHazardsInNewBlocks(); 4322 }; 4323 } // end anonymous namespace 4324 4325 /// Create the fragile-ABI read and write hazards based on the current 4326 /// state of the function, which is presumed to be immediately prior 4327 /// to a @try block. These hazards are used to maintain correct 4328 /// semantics in the face of optimization and the fragile ABI's 4329 /// cavalier use of setjmp/longjmp. 4330 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4331 collectLocals(); 4332 4333 if (Locals.empty()) return; 4334 4335 // Collect all the blocks in the function. 4336 for (llvm::Function::iterator 4337 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4338 BlocksBeforeTry.insert(&*I); 4339 4340 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4341 4342 // Create a read hazard for the allocas. This inhibits dead-store 4343 // optimizations and forces the values to memory. This hazard is 4344 // inserted before any 'throwing' calls in the protected scope to 4345 // reflect the possibility that the variables might be read from the 4346 // catch block if the call throws. 4347 { 4348 std::string Constraint; 4349 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4350 if (I) Constraint += ','; 4351 Constraint += "*m"; 4352 } 4353 4354 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4355 } 4356 4357 // Create a write hazard for the allocas. This inhibits folding 4358 // loads across the hazard. This hazard is inserted at the 4359 // beginning of the catch path to reflect the possibility that the 4360 // variables might have been written within the protected scope. 4361 { 4362 std::string Constraint; 4363 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4364 if (I) Constraint += ','; 4365 Constraint += "=*m"; 4366 } 4367 4368 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4369 } 4370 } 4371 4372 /// Emit a write hazard at the current location. 4373 void FragileHazards::emitWriteHazard() { 4374 if (Locals.empty()) return; 4375 4376 llvm::CallInst *Call = CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4377 for (auto Pair : llvm::enumerate(Locals)) 4378 Call->addParamAttr(Pair.index(), llvm::Attribute::get( 4379 CGF.getLLVMContext(), llvm::Attribute::ElementType, 4380 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType())); 4381 } 4382 4383 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4384 assert(!Locals.empty()); 4385 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4386 call->setDoesNotThrow(); 4387 call->setCallingConv(CGF.getRuntimeCC()); 4388 for (auto Pair : llvm::enumerate(Locals)) 4389 call->addParamAttr(Pair.index(), llvm::Attribute::get( 4390 Builder.getContext(), llvm::Attribute::ElementType, 4391 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType())); 4392 } 4393 4394 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4395 /// which have been inserted since the beginning of the try. 4396 void FragileHazards::emitHazardsInNewBlocks() { 4397 if (Locals.empty()) return; 4398 4399 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4400 4401 // Iterate through all blocks, skipping those prior to the try. 4402 for (llvm::Function::iterator 4403 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4404 llvm::BasicBlock &BB = *FI; 4405 if (BlocksBeforeTry.count(&BB)) continue; 4406 4407 // Walk through all the calls in the block. 4408 for (llvm::BasicBlock::iterator 4409 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4410 llvm::Instruction &I = *BI; 4411 4412 // Ignore instructions that aren't non-intrinsic calls. 4413 // These are the only calls that can possibly call longjmp. 4414 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4415 continue; 4416 if (isa<llvm::IntrinsicInst>(I)) 4417 continue; 4418 4419 // Ignore call sites marked nounwind. This may be questionable, 4420 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4421 if (cast<llvm::CallBase>(I).doesNotThrow()) 4422 continue; 4423 4424 // Insert a read hazard before the call. This will ensure that 4425 // any writes to the locals are performed before making the 4426 // call. If the call throws, then this is sufficient to 4427 // guarantee correctness as long as it doesn't also write to any 4428 // locals. 4429 Builder.SetInsertPoint(&BB, BI); 4430 emitReadHazard(Builder); 4431 } 4432 } 4433 } 4434 4435 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4436 if (V.isValid()) S.insert(V.getPointer()); 4437 } 4438 4439 void FragileHazards::collectLocals() { 4440 // Compute a set of allocas to ignore. 4441 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4442 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4443 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4444 4445 // Collect all the allocas currently in the function. This is 4446 // probably way too aggressive. 4447 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4448 for (llvm::BasicBlock::iterator 4449 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4450 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4451 Locals.push_back(&*I); 4452 } 4453 4454 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4455 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4456 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4457 tys[i] = Locals[i]->getType(); 4458 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4459 } 4460 4461 /* 4462 4463 Objective-C setjmp-longjmp (sjlj) Exception Handling 4464 -- 4465 4466 A catch buffer is a setjmp buffer plus: 4467 - a pointer to the exception that was caught 4468 - a pointer to the previous exception data buffer 4469 - two pointers of reserved storage 4470 Therefore catch buffers form a stack, with a pointer to the top 4471 of the stack kept in thread-local storage. 4472 4473 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4474 objc_exception_try_exit pops the given catch buffer, which is 4475 required to be the top of the EH stack. 4476 objc_exception_throw pops the top of the EH stack, writes the 4477 thrown exception into the appropriate field, and longjmps 4478 to the setjmp buffer. It crashes the process (with a printf 4479 and an abort()) if there are no catch buffers on the stack. 4480 objc_exception_extract just reads the exception pointer out of the 4481 catch buffer. 4482 4483 There's no reason an implementation couldn't use a light-weight 4484 setjmp here --- something like __builtin_setjmp, but API-compatible 4485 with the heavyweight setjmp. This will be more important if we ever 4486 want to implement correct ObjC/C++ exception interactions for the 4487 fragile ABI. 4488 4489 Note that for this use of setjmp/longjmp to be correct, we may need 4490 to mark some local variables volatile: if a non-volatile local 4491 variable is modified between the setjmp and the longjmp, it has 4492 indeterminate value. For the purposes of LLVM IR, it may be 4493 sufficient to make loads and stores within the @try (to variables 4494 declared outside the @try) volatile. This is necessary for 4495 optimized correctness, but is not currently being done; this is 4496 being tracked as rdar://problem/8160285 4497 4498 The basic framework for a @try-catch-finally is as follows: 4499 { 4500 objc_exception_data d; 4501 id _rethrow = null; 4502 bool _call_try_exit = true; 4503 4504 objc_exception_try_enter(&d); 4505 if (!setjmp(d.jmp_buf)) { 4506 ... try body ... 4507 } else { 4508 // exception path 4509 id _caught = objc_exception_extract(&d); 4510 4511 // enter new try scope for handlers 4512 if (!setjmp(d.jmp_buf)) { 4513 ... match exception and execute catch blocks ... 4514 4515 // fell off end, rethrow. 4516 _rethrow = _caught; 4517 ... jump-through-finally to finally_rethrow ... 4518 } else { 4519 // exception in catch block 4520 _rethrow = objc_exception_extract(&d); 4521 _call_try_exit = false; 4522 ... jump-through-finally to finally_rethrow ... 4523 } 4524 } 4525 ... jump-through-finally to finally_end ... 4526 4527 finally: 4528 if (_call_try_exit) 4529 objc_exception_try_exit(&d); 4530 4531 ... finally block .... 4532 ... dispatch to finally destination ... 4533 4534 finally_rethrow: 4535 objc_exception_throw(_rethrow); 4536 4537 finally_end: 4538 } 4539 4540 This framework differs slightly from the one gcc uses, in that gcc 4541 uses _rethrow to determine if objc_exception_try_exit should be called 4542 and if the object should be rethrown. This breaks in the face of 4543 throwing nil and introduces unnecessary branches. 4544 4545 We specialize this framework for a few particular circumstances: 4546 4547 - If there are no catch blocks, then we avoid emitting the second 4548 exception handling context. 4549 4550 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4551 e)) we avoid emitting the code to rethrow an uncaught exception. 4552 4553 - FIXME: If there is no @finally block we can do a few more 4554 simplifications. 4555 4556 Rethrows and Jumps-Through-Finally 4557 -- 4558 4559 '@throw;' is supported by pushing the currently-caught exception 4560 onto ObjCEHStack while the @catch blocks are emitted. 4561 4562 Branches through the @finally block are handled with an ordinary 4563 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4564 exceptions are not compatible with C++ exceptions, and this is 4565 hardly the only place where this will go wrong. 4566 4567 @synchronized(expr) { stmt; } is emitted as if it were: 4568 id synch_value = expr; 4569 objc_sync_enter(synch_value); 4570 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4571 */ 4572 4573 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4574 const Stmt &S) { 4575 bool isTry = isa<ObjCAtTryStmt>(S); 4576 4577 // A destination for the fall-through edges of the catch handlers to 4578 // jump to. 4579 CodeGenFunction::JumpDest FinallyEnd = 4580 CGF.getJumpDestInCurrentScope("finally.end"); 4581 4582 // A destination for the rethrow edge of the catch handlers to jump 4583 // to. 4584 CodeGenFunction::JumpDest FinallyRethrow = 4585 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4586 4587 // For @synchronized, call objc_sync_enter(sync.expr). The 4588 // evaluation of the expression must occur before we enter the 4589 // @synchronized. We can't avoid a temp here because we need the 4590 // value to be preserved. If the backend ever does liveness 4591 // correctly after setjmp, this will be unnecessary. 4592 Address SyncArgSlot = Address::invalid(); 4593 if (!isTry) { 4594 llvm::Value *SyncArg = 4595 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4596 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4597 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4598 4599 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4600 CGF.getPointerAlign(), "sync.arg"); 4601 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4602 } 4603 4604 // Allocate memory for the setjmp buffer. This needs to be kept 4605 // live throughout the try and catch blocks. 4606 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4607 CGF.getPointerAlign(), 4608 "exceptiondata.ptr"); 4609 4610 // Create the fragile hazards. Note that this will not capture any 4611 // of the allocas required for exception processing, but will 4612 // capture the current basic block (which extends all the way to the 4613 // setjmp call) as "before the @try". 4614 FragileHazards Hazards(CGF); 4615 4616 // Create a flag indicating whether the cleanup needs to call 4617 // objc_exception_try_exit. This is true except when 4618 // - no catches match and we're branching through the cleanup 4619 // just to rethrow the exception, or 4620 // - a catch matched and we're falling out of the catch handler. 4621 // The setjmp-safety rule here is that we should always store to this 4622 // variable in a place that dominates the branch through the cleanup 4623 // without passing through any setjmps. 4624 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4625 CharUnits::One(), 4626 "_call_try_exit"); 4627 4628 // A slot containing the exception to rethrow. Only needed when we 4629 // have both a @catch and a @finally. 4630 Address PropagatingExnVar = Address::invalid(); 4631 4632 // Push a normal cleanup to leave the try scope. 4633 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4634 SyncArgSlot, 4635 CallTryExitVar, 4636 ExceptionData, 4637 &ObjCTypes); 4638 4639 // Enter a try block: 4640 // - Call objc_exception_try_enter to push ExceptionData on top of 4641 // the EH stack. 4642 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4643 ExceptionData.getPointer()); 4644 4645 // - Call setjmp on the exception data buffer. 4646 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4647 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4648 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4649 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4650 "setjmp_buffer"); 4651 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4652 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4653 SetJmpResult->setCanReturnTwice(); 4654 4655 // If setjmp returned 0, enter the protected block; otherwise, 4656 // branch to the handler. 4657 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4658 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4659 llvm::Value *DidCatch = 4660 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4661 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4662 4663 // Emit the protected block. 4664 CGF.EmitBlock(TryBlock); 4665 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4666 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4667 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4668 4669 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4670 4671 // Emit the exception handler block. 4672 CGF.EmitBlock(TryHandler); 4673 4674 // Don't optimize loads of the in-scope locals across this point. 4675 Hazards.emitWriteHazard(); 4676 4677 // For a @synchronized (or a @try with no catches), just branch 4678 // through the cleanup to the rethrow block. 4679 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4680 // Tell the cleanup not to re-pop the exit. 4681 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4682 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4683 4684 // Otherwise, we have to match against the caught exceptions. 4685 } else { 4686 // Retrieve the exception object. We may emit multiple blocks but 4687 // nothing can cross this so the value is already in SSA form. 4688 llvm::CallInst *Caught = 4689 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4690 ExceptionData.getPointer(), "caught"); 4691 4692 // Push the exception to rethrow onto the EH value stack for the 4693 // benefit of any @throws in the handlers. 4694 CGF.ObjCEHValueStack.push_back(Caught); 4695 4696 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4697 4698 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4699 4700 llvm::BasicBlock *CatchBlock = nullptr; 4701 llvm::BasicBlock *CatchHandler = nullptr; 4702 if (HasFinally) { 4703 // Save the currently-propagating exception before 4704 // objc_exception_try_enter clears the exception slot. 4705 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4706 CGF.getPointerAlign(), 4707 "propagating_exception"); 4708 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4709 4710 // Enter a new exception try block (in case a @catch block 4711 // throws an exception). 4712 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4713 ExceptionData.getPointer()); 4714 4715 llvm::CallInst *SetJmpResult = 4716 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4717 SetJmpBuffer, "setjmp.result"); 4718 SetJmpResult->setCanReturnTwice(); 4719 4720 llvm::Value *Threw = 4721 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4722 4723 CatchBlock = CGF.createBasicBlock("catch"); 4724 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4725 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4726 4727 CGF.EmitBlock(CatchBlock); 4728 } 4729 4730 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4731 4732 // Handle catch list. As a special case we check if everything is 4733 // matched and avoid generating code for falling off the end if 4734 // so. 4735 bool AllMatched = false; 4736 for (const ObjCAtCatchStmt *CatchStmt : AtTryStmt->catch_stmts()) { 4737 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4738 const ObjCObjectPointerType *OPT = nullptr; 4739 4740 // catch(...) always matches. 4741 if (!CatchParam) { 4742 AllMatched = true; 4743 } else { 4744 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4745 4746 // catch(id e) always matches under this ABI, since only 4747 // ObjC exceptions end up here in the first place. 4748 // FIXME: For the time being we also match id<X>; this should 4749 // be rejected by Sema instead. 4750 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4751 AllMatched = true; 4752 } 4753 4754 // If this is a catch-all, we don't need to test anything. 4755 if (AllMatched) { 4756 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4757 4758 if (CatchParam) { 4759 CGF.EmitAutoVarDecl(*CatchParam); 4760 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4761 4762 // These types work out because ConvertType(id) == i8*. 4763 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4764 } 4765 4766 CGF.EmitStmt(CatchStmt->getCatchBody()); 4767 4768 // The scope of the catch variable ends right here. 4769 CatchVarCleanups.ForceCleanup(); 4770 4771 CGF.EmitBranchThroughCleanup(FinallyEnd); 4772 break; 4773 } 4774 4775 assert(OPT && "Unexpected non-object pointer type in @catch"); 4776 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4777 4778 // FIXME: @catch (Class c) ? 4779 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4780 assert(IDecl && "Catch parameter must have Objective-C type!"); 4781 4782 // Check if the @catch block matches the exception object. 4783 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4784 4785 llvm::Value *matchArgs[] = { Class, Caught }; 4786 llvm::CallInst *Match = 4787 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4788 matchArgs, "match"); 4789 4790 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4791 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4792 4793 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4794 MatchedBlock, NextCatchBlock); 4795 4796 // Emit the @catch block. 4797 CGF.EmitBlock(MatchedBlock); 4798 4799 // Collect any cleanups for the catch variable. The scope lasts until 4800 // the end of the catch body. 4801 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4802 4803 CGF.EmitAutoVarDecl(*CatchParam); 4804 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4805 4806 // Initialize the catch variable. 4807 llvm::Value *Tmp = 4808 CGF.Builder.CreateBitCast(Caught, 4809 CGF.ConvertType(CatchParam->getType())); 4810 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4811 4812 CGF.EmitStmt(CatchStmt->getCatchBody()); 4813 4814 // We're done with the catch variable. 4815 CatchVarCleanups.ForceCleanup(); 4816 4817 CGF.EmitBranchThroughCleanup(FinallyEnd); 4818 4819 CGF.EmitBlock(NextCatchBlock); 4820 } 4821 4822 CGF.ObjCEHValueStack.pop_back(); 4823 4824 // If nothing wanted anything to do with the caught exception, 4825 // kill the extract call. 4826 if (Caught->use_empty()) 4827 Caught->eraseFromParent(); 4828 4829 if (!AllMatched) 4830 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4831 4832 if (HasFinally) { 4833 // Emit the exception handler for the @catch blocks. 4834 CGF.EmitBlock(CatchHandler); 4835 4836 // In theory we might now need a write hazard, but actually it's 4837 // unnecessary because there's no local-accessing code between 4838 // the try's write hazard and here. 4839 //Hazards.emitWriteHazard(); 4840 4841 // Extract the new exception and save it to the 4842 // propagating-exception slot. 4843 assert(PropagatingExnVar.isValid()); 4844 llvm::CallInst *NewCaught = 4845 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4846 ExceptionData.getPointer(), "caught"); 4847 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4848 4849 // Don't pop the catch handler; the throw already did. 4850 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4851 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4852 } 4853 } 4854 4855 // Insert read hazards as required in the new blocks. 4856 Hazards.emitHazardsInNewBlocks(); 4857 4858 // Pop the cleanup. 4859 CGF.Builder.restoreIP(TryFallthroughIP); 4860 if (CGF.HaveInsertPoint()) 4861 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4862 CGF.PopCleanupBlock(); 4863 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4864 4865 // Emit the rethrow block. 4866 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4867 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4868 if (CGF.HaveInsertPoint()) { 4869 // If we have a propagating-exception variable, check it. 4870 llvm::Value *PropagatingExn; 4871 if (PropagatingExnVar.isValid()) { 4872 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4873 4874 // Otherwise, just look in the buffer for the exception to throw. 4875 } else { 4876 llvm::CallInst *Caught = 4877 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4878 ExceptionData.getPointer()); 4879 PropagatingExn = Caught; 4880 } 4881 4882 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4883 PropagatingExn); 4884 CGF.Builder.CreateUnreachable(); 4885 } 4886 4887 CGF.Builder.restoreIP(SavedIP); 4888 } 4889 4890 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4891 const ObjCAtThrowStmt &S, 4892 bool ClearInsertionPoint) { 4893 llvm::Value *ExceptionAsObject; 4894 4895 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4896 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4897 ExceptionAsObject = 4898 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4899 } else { 4900 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4901 "Unexpected rethrow outside @catch block."); 4902 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4903 } 4904 4905 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4906 ->setDoesNotReturn(); 4907 CGF.Builder.CreateUnreachable(); 4908 4909 // Clear the insertion point to indicate we are in unreachable code. 4910 if (ClearInsertionPoint) 4911 CGF.Builder.ClearInsertionPoint(); 4912 } 4913 4914 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4915 /// object: objc_read_weak (id *src) 4916 /// 4917 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4918 Address AddrWeakObj) { 4919 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4920 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast( 4921 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy); 4922 llvm::Value *read_weak = 4923 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4924 AddrWeakObjVal, "weakread"); 4925 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4926 return read_weak; 4927 } 4928 4929 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4930 /// objc_assign_weak (id src, id *dst) 4931 /// 4932 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4933 llvm::Value *src, Address dst) { 4934 llvm::Type * SrcTy = src->getType(); 4935 if (!isa<llvm::PointerType>(SrcTy)) { 4936 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4937 assert(Size <= 8 && "does not support size > 8"); 4938 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4939 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4940 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4941 } 4942 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4943 llvm::Value *dstVal = 4944 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 4945 llvm::Value *args[] = { src, dstVal }; 4946 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4947 args, "weakassign"); 4948 } 4949 4950 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4951 /// objc_assign_global (id src, id *dst) 4952 /// 4953 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4954 llvm::Value *src, Address dst, 4955 bool threadlocal) { 4956 llvm::Type * SrcTy = src->getType(); 4957 if (!isa<llvm::PointerType>(SrcTy)) { 4958 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4959 assert(Size <= 8 && "does not support size > 8"); 4960 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4961 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4962 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4963 } 4964 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4965 llvm::Value *dstVal = 4966 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 4967 llvm::Value *args[] = {src, dstVal}; 4968 if (!threadlocal) 4969 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4970 args, "globalassign"); 4971 else 4972 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4973 args, "threadlocalassign"); 4974 } 4975 4976 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4977 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4978 /// 4979 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4980 llvm::Value *src, Address dst, 4981 llvm::Value *ivarOffset) { 4982 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4983 llvm::Type * SrcTy = src->getType(); 4984 if (!isa<llvm::PointerType>(SrcTy)) { 4985 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4986 assert(Size <= 8 && "does not support size > 8"); 4987 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4988 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4989 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4990 } 4991 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4992 llvm::Value *dstVal = 4993 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 4994 llvm::Value *args[] = {src, dstVal, ivarOffset}; 4995 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4996 } 4997 4998 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4999 /// objc_assign_strongCast (id src, id *dst) 5000 /// 5001 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 5002 llvm::Value *src, Address dst) { 5003 llvm::Type * SrcTy = src->getType(); 5004 if (!isa<llvm::PointerType>(SrcTy)) { 5005 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5006 assert(Size <= 8 && "does not support size > 8"); 5007 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5008 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5009 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5010 } 5011 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5012 llvm::Value *dstVal = 5013 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 5014 llvm::Value *args[] = {src, dstVal}; 5015 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5016 args, "strongassign"); 5017 } 5018 5019 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5020 Address DestPtr, Address SrcPtr, 5021 llvm::Value *size) { 5022 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5023 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5024 } 5025 5026 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5027 /// 5028 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5029 QualType ObjectTy, 5030 llvm::Value *BaseValue, 5031 const ObjCIvarDecl *Ivar, 5032 unsigned CVRQualifiers) { 5033 const ObjCInterfaceDecl *ID = 5034 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5035 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5036 EmitIvarOffset(CGF, ID, Ivar)); 5037 } 5038 5039 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5040 const ObjCInterfaceDecl *Interface, 5041 const ObjCIvarDecl *Ivar) { 5042 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5043 return llvm::ConstantInt::get( 5044 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5045 Offset); 5046 } 5047 5048 /* *** Private Interface *** */ 5049 5050 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5051 StringRef MachOAttributes) { 5052 switch (CGM.getTriple().getObjectFormat()) { 5053 case llvm::Triple::UnknownObjectFormat: 5054 llvm_unreachable("unexpected object file format"); 5055 case llvm::Triple::MachO: { 5056 if (MachOAttributes.empty()) 5057 return ("__DATA," + Section).str(); 5058 return ("__DATA," + Section + "," + MachOAttributes).str(); 5059 } 5060 case llvm::Triple::ELF: 5061 assert(Section.substr(0, 2) == "__" && 5062 "expected the name to begin with __"); 5063 return Section.substr(2).str(); 5064 case llvm::Triple::COFF: 5065 assert(Section.substr(0, 2) == "__" && 5066 "expected the name to begin with __"); 5067 return ("." + Section.substr(2) + "$B").str(); 5068 case llvm::Triple::Wasm: 5069 case llvm::Triple::GOFF: 5070 case llvm::Triple::SPIRV: 5071 case llvm::Triple::XCOFF: 5072 case llvm::Triple::DXContainer: 5073 llvm::report_fatal_error( 5074 "Objective-C support is unimplemented for object file format"); 5075 } 5076 5077 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5078 } 5079 5080 /// EmitImageInfo - Emit the image info marker used to encode some module 5081 /// level information. 5082 /// 5083 /// See: <rdr://4810609&4810587&4810587> 5084 /// struct IMAGE_INFO { 5085 /// unsigned version; 5086 /// unsigned flags; 5087 /// }; 5088 enum ImageInfoFlags { 5089 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5090 eImageInfo_GarbageCollected = (1 << 1), 5091 eImageInfo_GCOnly = (1 << 2), 5092 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5093 5094 // A flag indicating that the module has no instances of a @synthesize of a 5095 // superclass variable. <rdar://problem/6803242> 5096 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5097 eImageInfo_ImageIsSimulated = (1 << 5), 5098 eImageInfo_ClassProperties = (1 << 6) 5099 }; 5100 5101 void CGObjCCommonMac::EmitImageInfo() { 5102 unsigned version = 0; // Version is unused? 5103 std::string Section = 5104 (ObjCABI == 1) 5105 ? "__OBJC,__image_info,regular" 5106 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5107 5108 // Generate module-level named metadata to convey this information to the 5109 // linker and code-gen. 5110 llvm::Module &Mod = CGM.getModule(); 5111 5112 // Add the ObjC ABI version to the module flags. 5113 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5114 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5115 version); 5116 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5117 llvm::MDString::get(VMContext, Section)); 5118 5119 auto Int8Ty = llvm::Type::getInt8Ty(VMContext); 5120 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5121 // Non-GC overrides those files which specify GC. 5122 Mod.addModuleFlag(llvm::Module::Error, 5123 "Objective-C Garbage Collection", 5124 llvm::ConstantInt::get(Int8Ty,0)); 5125 } else { 5126 // Add the ObjC garbage collection value. 5127 Mod.addModuleFlag(llvm::Module::Error, 5128 "Objective-C Garbage Collection", 5129 llvm::ConstantInt::get(Int8Ty, 5130 (uint8_t)eImageInfo_GarbageCollected)); 5131 5132 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5133 // Add the ObjC GC Only value. 5134 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5135 eImageInfo_GCOnly); 5136 5137 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5138 llvm::Metadata *Ops[2] = { 5139 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5140 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5141 Int8Ty, eImageInfo_GarbageCollected))}; 5142 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5143 llvm::MDNode::get(VMContext, Ops)); 5144 } 5145 } 5146 5147 // Indicate whether we're compiling this to run on a simulator. 5148 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5149 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5150 eImageInfo_ImageIsSimulated); 5151 5152 // Indicate whether we are generating class properties. 5153 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5154 eImageInfo_ClassProperties); 5155 } 5156 5157 // struct objc_module { 5158 // unsigned long version; 5159 // unsigned long size; 5160 // const char *name; 5161 // Symtab symtab; 5162 // }; 5163 5164 // FIXME: Get from somewhere 5165 static const int ModuleVersion = 7; 5166 5167 void CGObjCMac::EmitModuleInfo() { 5168 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5169 5170 ConstantInitBuilder builder(CGM); 5171 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5172 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5173 values.addInt(ObjCTypes.LongTy, Size); 5174 // This used to be the filename, now it is unused. <rdr://4327263> 5175 values.add(GetClassName(StringRef(""))); 5176 values.add(EmitModuleSymbols()); 5177 CreateMetadataVar("OBJC_MODULES", values, 5178 "__OBJC,__module_info,regular,no_dead_strip", 5179 CGM.getPointerAlign(), true); 5180 } 5181 5182 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5183 unsigned NumClasses = DefinedClasses.size(); 5184 unsigned NumCategories = DefinedCategories.size(); 5185 5186 // Return null if no symbols were defined. 5187 if (!NumClasses && !NumCategories) 5188 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5189 5190 ConstantInitBuilder builder(CGM); 5191 auto values = builder.beginStruct(); 5192 values.addInt(ObjCTypes.LongTy, 0); 5193 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5194 values.addInt(ObjCTypes.ShortTy, NumClasses); 5195 values.addInt(ObjCTypes.ShortTy, NumCategories); 5196 5197 // The runtime expects exactly the list of defined classes followed 5198 // by the list of defined categories, in a single array. 5199 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5200 for (unsigned i=0; i<NumClasses; i++) { 5201 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5202 assert(ID); 5203 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5204 // We are implementing a weak imported interface. Give it external linkage 5205 if (ID->isWeakImported() && !IMP->isWeakImported()) 5206 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5207 5208 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5209 } 5210 for (unsigned i=0; i<NumCategories; i++) 5211 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5212 5213 array.finishAndAddTo(values); 5214 5215 llvm::GlobalVariable *GV = CreateMetadataVar( 5216 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5217 CGM.getPointerAlign(), true); 5218 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5219 } 5220 5221 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5222 IdentifierInfo *II) { 5223 LazySymbols.insert(II); 5224 5225 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5226 5227 if (!Entry) { 5228 llvm::Constant *Casted = 5229 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5230 ObjCTypes.ClassPtrTy); 5231 Entry = CreateMetadataVar( 5232 "OBJC_CLASS_REFERENCES_", Casted, 5233 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5234 CGM.getPointerAlign(), true); 5235 } 5236 5237 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, 5238 CGF.getPointerAlign()); 5239 } 5240 5241 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5242 const ObjCInterfaceDecl *ID) { 5243 // If the class has the objc_runtime_visible attribute, we need to 5244 // use the Objective-C runtime to get the class. 5245 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5246 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5247 5248 IdentifierInfo *RuntimeName = 5249 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5250 return EmitClassRefFromId(CGF, RuntimeName); 5251 } 5252 5253 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5254 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5255 return EmitClassRefFromId(CGF, II); 5256 } 5257 5258 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5259 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5260 } 5261 5262 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5263 CharUnits Align = CGM.getPointerAlign(); 5264 5265 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5266 if (!Entry) { 5267 llvm::Constant *Casted = 5268 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5269 ObjCTypes.SelectorPtrTy); 5270 Entry = CreateMetadataVar( 5271 "OBJC_SELECTOR_REFERENCES_", Casted, 5272 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5273 Entry->setExternallyInitialized(true); 5274 } 5275 5276 return Address(Entry, ObjCTypes.SelectorPtrTy, Align); 5277 } 5278 5279 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5280 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5281 if (!Entry) 5282 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5283 return getConstantGEP(VMContext, Entry, 0, 0); 5284 } 5285 5286 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5287 return MethodDefinitions.lookup(MD); 5288 } 5289 5290 /// GetIvarLayoutName - Returns a unique constant for the given 5291 /// ivar layout bitmap. 5292 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5293 const ObjCCommonTypesHelper &ObjCTypes) { 5294 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5295 } 5296 5297 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5298 CharUnits offset) { 5299 const RecordDecl *RD = RT->getDecl(); 5300 5301 // If this is a union, remember that we had one, because it might mess 5302 // up the ordering of layout entries. 5303 if (RD->isUnion()) 5304 IsDisordered = true; 5305 5306 const ASTRecordLayout *recLayout = nullptr; 5307 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5308 [&](const FieldDecl *field) -> CharUnits { 5309 if (!recLayout) 5310 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5311 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5312 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5313 }); 5314 } 5315 5316 template <class Iterator, class GetOffsetFn> 5317 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5318 CharUnits aggregateOffset, 5319 const GetOffsetFn &getOffset) { 5320 for (; begin != end; ++begin) { 5321 auto field = *begin; 5322 5323 // Skip over bitfields. 5324 if (field->isBitField()) { 5325 continue; 5326 } 5327 5328 // Compute the offset of the field within the aggregate. 5329 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5330 5331 visitField(field, fieldOffset); 5332 } 5333 } 5334 5335 /// Collect layout information for the given fields into IvarsInfo. 5336 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5337 CharUnits fieldOffset) { 5338 QualType fieldType = field->getType(); 5339 5340 // Drill down into arrays. 5341 uint64_t numElts = 1; 5342 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5343 numElts = 0; 5344 fieldType = arrayType->getElementType(); 5345 } 5346 // Unlike incomplete arrays, constant arrays can be nested. 5347 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5348 numElts *= arrayType->getSize().getZExtValue(); 5349 fieldType = arrayType->getElementType(); 5350 } 5351 5352 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5353 5354 // If we ended up with a zero-sized array, we've done what we can do within 5355 // the limits of this layout encoding. 5356 if (numElts == 0) return; 5357 5358 // Recurse if the base element type is a record type. 5359 if (auto recType = fieldType->getAs<RecordType>()) { 5360 size_t oldEnd = IvarsInfo.size(); 5361 5362 visitRecord(recType, fieldOffset); 5363 5364 // If we have an array, replicate the first entry's layout information. 5365 auto numEltEntries = IvarsInfo.size() - oldEnd; 5366 if (numElts != 1 && numEltEntries != 0) { 5367 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5368 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5369 // Copy the last numEltEntries onto the end of the array, adjusting 5370 // each for the element size. 5371 for (size_t i = 0; i != numEltEntries; ++i) { 5372 auto firstEntry = IvarsInfo[oldEnd + i]; 5373 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5374 firstEntry.SizeInWords)); 5375 } 5376 } 5377 } 5378 5379 return; 5380 } 5381 5382 // Classify the element type. 5383 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5384 5385 // If it matches what we're looking for, add an entry. 5386 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5387 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5388 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5389 == CGM.getPointerSize()); 5390 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5391 } 5392 } 5393 5394 /// buildBitmap - This routine does the horsework of taking the offsets of 5395 /// strong/weak references and creating a bitmap. The bitmap is also 5396 /// returned in the given buffer, suitable for being passed to \c dump(). 5397 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5398 llvm::SmallVectorImpl<unsigned char> &buffer) { 5399 // The bitmap is a series of skip/scan instructions, aligned to word 5400 // boundaries. The skip is performed first. 5401 const unsigned char MaxNibble = 0xF; 5402 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5403 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5404 5405 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5406 5407 // Sort the ivar info on byte position in case we encounterred a 5408 // union nested in the ivar list. 5409 if (IsDisordered) { 5410 // This isn't a stable sort, but our algorithm should handle it fine. 5411 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5412 } else { 5413 assert(llvm::is_sorted(IvarsInfo)); 5414 } 5415 assert(IvarsInfo.back().Offset < InstanceEnd); 5416 5417 assert(buffer.empty()); 5418 5419 // Skip the next N words. 5420 auto skip = [&](unsigned numWords) { 5421 assert(numWords > 0); 5422 5423 // Try to merge into the previous byte. Since scans happen second, we 5424 // can't do this if it includes a scan. 5425 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5426 unsigned lastSkip = buffer.back() >> SkipShift; 5427 if (lastSkip < MaxNibble) { 5428 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5429 numWords -= claimed; 5430 lastSkip += claimed; 5431 buffer.back() = (lastSkip << SkipShift); 5432 } 5433 } 5434 5435 while (numWords >= MaxNibble) { 5436 buffer.push_back(MaxNibble << SkipShift); 5437 numWords -= MaxNibble; 5438 } 5439 if (numWords) { 5440 buffer.push_back(numWords << SkipShift); 5441 } 5442 }; 5443 5444 // Scan the next N words. 5445 auto scan = [&](unsigned numWords) { 5446 assert(numWords > 0); 5447 5448 // Try to merge into the previous byte. Since scans happen second, we can 5449 // do this even if it includes a skip. 5450 if (!buffer.empty()) { 5451 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5452 if (lastScan < MaxNibble) { 5453 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5454 numWords -= claimed; 5455 lastScan += claimed; 5456 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5457 } 5458 } 5459 5460 while (numWords >= MaxNibble) { 5461 buffer.push_back(MaxNibble << ScanShift); 5462 numWords -= MaxNibble; 5463 } 5464 if (numWords) { 5465 buffer.push_back(numWords << ScanShift); 5466 } 5467 }; 5468 5469 // One past the end of the last scan. 5470 unsigned endOfLastScanInWords = 0; 5471 const CharUnits WordSize = CGM.getPointerSize(); 5472 5473 // Consider all the scan requests. 5474 for (auto &request : IvarsInfo) { 5475 CharUnits beginOfScan = request.Offset - InstanceBegin; 5476 5477 // Ignore scan requests that don't start at an even multiple of the 5478 // word size. We can't encode them. 5479 if ((beginOfScan % WordSize) != 0) continue; 5480 5481 // Ignore scan requests that start before the instance start. 5482 // This assumes that scans never span that boundary. The boundary 5483 // isn't the true start of the ivars, because in the fragile-ARC case 5484 // it's rounded up to word alignment, but the test above should leave 5485 // us ignoring that possibility. 5486 if (beginOfScan.isNegative()) { 5487 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5488 continue; 5489 } 5490 5491 unsigned beginOfScanInWords = beginOfScan / WordSize; 5492 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5493 5494 // If the scan starts some number of words after the last one ended, 5495 // skip forward. 5496 if (beginOfScanInWords > endOfLastScanInWords) { 5497 skip(beginOfScanInWords - endOfLastScanInWords); 5498 5499 // Otherwise, start scanning where the last left off. 5500 } else { 5501 beginOfScanInWords = endOfLastScanInWords; 5502 5503 // If that leaves us with nothing to scan, ignore this request. 5504 if (beginOfScanInWords >= endOfScanInWords) continue; 5505 } 5506 5507 // Scan to the end of the request. 5508 assert(beginOfScanInWords < endOfScanInWords); 5509 scan(endOfScanInWords - beginOfScanInWords); 5510 endOfLastScanInWords = endOfScanInWords; 5511 } 5512 5513 if (buffer.empty()) 5514 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5515 5516 // For GC layouts, emit a skip to the end of the allocation so that we 5517 // have precise information about the entire thing. This isn't useful 5518 // or necessary for the ARC-style layout strings. 5519 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5520 unsigned lastOffsetInWords = 5521 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5522 if (lastOffsetInWords > endOfLastScanInWords) { 5523 skip(lastOffsetInWords - endOfLastScanInWords); 5524 } 5525 } 5526 5527 // Null terminate the string. 5528 buffer.push_back(0); 5529 5530 auto *Entry = CGObjC.CreateCStringLiteral( 5531 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5532 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5533 } 5534 5535 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5536 /// implementation for the __strong or __weak case. 5537 /// The layout map displays which words in ivar list must be skipped 5538 /// and which must be scanned by GC (see below). String is built of bytes. 5539 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5540 /// of words to skip and right nibble is count of words to scan. So, each 5541 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5542 /// represented by a 0x00 byte which also ends the string. 5543 /// 1. when ForStrongLayout is true, following ivars are scanned: 5544 /// - id, Class 5545 /// - object * 5546 /// - __strong anything 5547 /// 5548 /// 2. When ForStrongLayout is false, following ivars are scanned: 5549 /// - __weak anything 5550 /// 5551 llvm::Constant * 5552 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5553 CharUnits beginOffset, CharUnits endOffset, 5554 bool ForStrongLayout, bool HasMRCWeakIvars) { 5555 // If this is MRC, and we're either building a strong layout or there 5556 // are no weak ivars, bail out early. 5557 llvm::Type *PtrTy = CGM.Int8PtrTy; 5558 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5559 !CGM.getLangOpts().ObjCAutoRefCount && 5560 (ForStrongLayout || !HasMRCWeakIvars)) 5561 return llvm::Constant::getNullValue(PtrTy); 5562 5563 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5564 SmallVector<const ObjCIvarDecl*, 32> ivars; 5565 5566 // GC layout strings include the complete object layout, possibly 5567 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5568 // up. 5569 // 5570 // ARC layout strings only include the class's ivars. In non-fragile 5571 // runtimes, that means starting at InstanceStart, rounded up to word 5572 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5573 // starting at the offset of the first ivar, rounded up to word alignment. 5574 // 5575 // MRC weak layout strings follow the ARC style. 5576 CharUnits baseOffset; 5577 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5578 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5579 IVD; IVD = IVD->getNextIvar()) 5580 ivars.push_back(IVD); 5581 5582 if (isNonFragileABI()) { 5583 baseOffset = beginOffset; // InstanceStart 5584 } else if (!ivars.empty()) { 5585 baseOffset = 5586 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5587 } else { 5588 baseOffset = CharUnits::Zero(); 5589 } 5590 5591 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5592 } 5593 else { 5594 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5595 5596 baseOffset = CharUnits::Zero(); 5597 } 5598 5599 if (ivars.empty()) 5600 return llvm::Constant::getNullValue(PtrTy); 5601 5602 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5603 5604 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5605 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5606 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5607 }); 5608 5609 if (!builder.hasBitmapData()) 5610 return llvm::Constant::getNullValue(PtrTy); 5611 5612 llvm::SmallVector<unsigned char, 4> buffer; 5613 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5614 5615 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5616 printf("\n%s ivar layout for class '%s': ", 5617 ForStrongLayout ? "strong" : "weak", 5618 OMD->getClassInterface()->getName().str().c_str()); 5619 builder.dump(buffer); 5620 } 5621 return C; 5622 } 5623 5624 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5625 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5626 // FIXME: Avoid std::string in "Sel.getAsString()" 5627 if (!Entry) 5628 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5629 return getConstantGEP(VMContext, Entry, 0, 0); 5630 } 5631 5632 // FIXME: Merge into a single cstring creation function. 5633 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5634 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5635 } 5636 5637 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5638 std::string TypeStr; 5639 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5640 5641 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5642 if (!Entry) 5643 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5644 return getConstantGEP(VMContext, Entry, 0, 0); 5645 } 5646 5647 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5648 bool Extended) { 5649 std::string TypeStr = 5650 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5651 5652 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5653 if (!Entry) 5654 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5655 return getConstantGEP(VMContext, Entry, 0, 0); 5656 } 5657 5658 // FIXME: Merge into a single cstring creation function. 5659 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5660 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5661 if (!Entry) 5662 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5663 return getConstantGEP(VMContext, Entry, 0, 0); 5664 } 5665 5666 // FIXME: Merge into a single cstring creation function. 5667 // FIXME: This Decl should be more precise. 5668 llvm::Constant * 5669 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5670 const Decl *Container) { 5671 std::string TypeStr = 5672 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5673 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5674 } 5675 5676 void CGObjCMac::FinishModule() { 5677 EmitModuleInfo(); 5678 5679 // Emit the dummy bodies for any protocols which were referenced but 5680 // never defined. 5681 for (auto &entry : Protocols) { 5682 llvm::GlobalVariable *global = entry.second; 5683 if (global->hasInitializer()) 5684 continue; 5685 5686 ConstantInitBuilder builder(CGM); 5687 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5688 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5689 values.add(GetClassName(entry.first->getName())); 5690 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5691 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5692 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5693 values.finishAndSetAsInitializer(global); 5694 CGM.addCompilerUsedGlobal(global); 5695 } 5696 5697 // Add assembler directives to add lazy undefined symbol references 5698 // for classes which are referenced but not defined. This is 5699 // important for correct linker interaction. 5700 // 5701 // FIXME: It would be nice if we had an LLVM construct for this. 5702 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5703 CGM.getTriple().isOSBinFormatMachO()) { 5704 SmallString<256> Asm; 5705 Asm += CGM.getModule().getModuleInlineAsm(); 5706 if (!Asm.empty() && Asm.back() != '\n') 5707 Asm += '\n'; 5708 5709 llvm::raw_svector_ostream OS(Asm); 5710 for (const auto *Sym : DefinedSymbols) 5711 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5712 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5713 for (const auto *Sym : LazySymbols) 5714 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5715 for (const auto &Category : DefinedCategoryNames) 5716 OS << "\t.objc_category_name_" << Category << "=0\n" 5717 << "\t.globl .objc_category_name_" << Category << "\n"; 5718 5719 CGM.getModule().setModuleInlineAsm(OS.str()); 5720 } 5721 } 5722 5723 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5724 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5725 ObjCEmptyVtableVar(nullptr) { 5726 ObjCABI = 2; 5727 } 5728 5729 /* *** */ 5730 5731 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5732 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5733 { 5734 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5735 ASTContext &Ctx = CGM.getContext(); 5736 unsigned ProgramAS = CGM.getDataLayout().getProgramAddressSpace(); 5737 5738 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5739 IntTy = CGM.IntTy; 5740 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5741 Int8PtrTy = CGM.Int8PtrTy; 5742 Int8PtrProgramASTy = llvm::PointerType::get(CGM.Int8Ty, ProgramAS); 5743 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5744 5745 // arm64 targets use "int" ivar offset variables. All others, 5746 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5747 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5748 IvarOffsetVarTy = IntTy; 5749 else 5750 IvarOffsetVarTy = LongTy; 5751 5752 ObjectPtrTy = 5753 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5754 PtrObjectPtrTy = 5755 llvm::PointerType::getUnqual(ObjectPtrTy); 5756 SelectorPtrTy = 5757 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5758 5759 // I'm not sure I like this. The implicit coordination is a bit 5760 // gross. We should solve this in a reasonable fashion because this 5761 // is a pretty common task (match some runtime data structure with 5762 // an LLVM data structure). 5763 5764 // FIXME: This is leaked. 5765 // FIXME: Merge with rewriter code? 5766 5767 // struct _objc_super { 5768 // id self; 5769 // Class cls; 5770 // } 5771 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5772 Ctx.getTranslationUnitDecl(), 5773 SourceLocation(), SourceLocation(), 5774 &Ctx.Idents.get("_objc_super")); 5775 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5776 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5777 false, ICIS_NoInit)); 5778 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5779 nullptr, Ctx.getObjCClassType(), nullptr, 5780 nullptr, false, ICIS_NoInit)); 5781 RD->completeDefinition(); 5782 5783 SuperCTy = Ctx.getTagDeclType(RD); 5784 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5785 5786 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5787 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5788 5789 // struct _prop_t { 5790 // char *name; 5791 // char *attributes; 5792 // } 5793 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5794 5795 // struct _prop_list_t { 5796 // uint32_t entsize; // sizeof(struct _prop_t) 5797 // uint32_t count_of_properties; 5798 // struct _prop_t prop_list[count_of_properties]; 5799 // } 5800 PropertyListTy = llvm::StructType::create( 5801 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5802 // struct _prop_list_t * 5803 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5804 5805 // struct _objc_method { 5806 // SEL _cmd; 5807 // char *method_type; 5808 // char *_imp; 5809 // } 5810 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5811 Int8PtrTy, Int8PtrProgramASTy); 5812 5813 // struct _objc_cache * 5814 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5815 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5816 } 5817 5818 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5819 : ObjCCommonTypesHelper(cgm) { 5820 // struct _objc_method_description { 5821 // SEL name; 5822 // char *types; 5823 // } 5824 MethodDescriptionTy = llvm::StructType::create( 5825 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5826 5827 // struct _objc_method_description_list { 5828 // int count; 5829 // struct _objc_method_description[1]; 5830 // } 5831 MethodDescriptionListTy = 5832 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5833 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5834 5835 // struct _objc_method_description_list * 5836 MethodDescriptionListPtrTy = 5837 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5838 5839 // Protocol description structures 5840 5841 // struct _objc_protocol_extension { 5842 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5843 // struct _objc_method_description_list *optional_instance_methods; 5844 // struct _objc_method_description_list *optional_class_methods; 5845 // struct _objc_property_list *instance_properties; 5846 // const char ** extendedMethodTypes; 5847 // struct _objc_property_list *class_properties; 5848 // } 5849 ProtocolExtensionTy = llvm::StructType::create( 5850 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5851 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5852 PropertyListPtrTy); 5853 5854 // struct _objc_protocol_extension * 5855 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5856 5857 // Handle recursive construction of Protocol and ProtocolList types 5858 5859 ProtocolTy = 5860 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5861 5862 ProtocolListTy = 5863 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5864 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5865 llvm::ArrayType::get(ProtocolTy, 0)); 5866 5867 // struct _objc_protocol { 5868 // struct _objc_protocol_extension *isa; 5869 // char *protocol_name; 5870 // struct _objc_protocol **_objc_protocol_list; 5871 // struct _objc_method_description_list *instance_methods; 5872 // struct _objc_method_description_list *class_methods; 5873 // } 5874 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5875 llvm::PointerType::getUnqual(ProtocolListTy), 5876 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5877 5878 // struct _objc_protocol_list * 5879 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5880 5881 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5882 5883 // Class description structures 5884 5885 // struct _objc_ivar { 5886 // char *ivar_name; 5887 // char *ivar_type; 5888 // int ivar_offset; 5889 // } 5890 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5891 IntTy); 5892 5893 // struct _objc_ivar_list * 5894 IvarListTy = 5895 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5896 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5897 5898 // struct _objc_method_list * 5899 MethodListTy = 5900 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5901 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5902 5903 // struct _objc_class_extension * 5904 ClassExtensionTy = llvm::StructType::create( 5905 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5906 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5907 5908 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5909 5910 // struct _objc_class { 5911 // Class isa; 5912 // Class super_class; 5913 // char *name; 5914 // long version; 5915 // long info; 5916 // long instance_size; 5917 // struct _objc_ivar_list *ivars; 5918 // struct _objc_method_list *methods; 5919 // struct _objc_cache *cache; 5920 // struct _objc_protocol_list *protocols; 5921 // char *ivar_layout; 5922 // struct _objc_class_ext *ext; 5923 // }; 5924 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5925 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5926 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5927 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5928 5929 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5930 5931 // struct _objc_category { 5932 // char *category_name; 5933 // char *class_name; 5934 // struct _objc_method_list *instance_method; 5935 // struct _objc_method_list *class_method; 5936 // struct _objc_protocol_list *protocols; 5937 // uint32_t size; // sizeof(struct _objc_category) 5938 // struct _objc_property_list *instance_properties;// category's @property 5939 // struct _objc_property_list *class_properties; 5940 // } 5941 CategoryTy = llvm::StructType::create( 5942 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5943 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5944 PropertyListPtrTy); 5945 5946 // Global metadata structures 5947 5948 // struct _objc_symtab { 5949 // long sel_ref_cnt; 5950 // SEL *refs; 5951 // short cls_def_cnt; 5952 // short cat_def_cnt; 5953 // char *defs[cls_def_cnt + cat_def_cnt]; 5954 // } 5955 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5956 SelectorPtrTy, ShortTy, ShortTy, 5957 llvm::ArrayType::get(Int8PtrTy, 0)); 5958 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5959 5960 // struct _objc_module { 5961 // long version; 5962 // long size; // sizeof(struct _objc_module) 5963 // char *name; 5964 // struct _objc_symtab* symtab; 5965 // } 5966 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5967 Int8PtrTy, SymtabPtrTy); 5968 5969 // FIXME: This is the size of the setjmp buffer and should be target 5970 // specific. 18 is what's used on 32-bit X86. 5971 uint64_t SetJmpBufferSize = 18; 5972 5973 // Exceptions 5974 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5975 5976 ExceptionDataTy = llvm::StructType::create( 5977 "struct._objc_exception_data", 5978 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5979 } 5980 5981 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5982 : ObjCCommonTypesHelper(cgm) { 5983 // struct _method_list_t { 5984 // uint32_t entsize; // sizeof(struct _objc_method) 5985 // uint32_t method_count; 5986 // struct _objc_method method_list[method_count]; 5987 // } 5988 MethodListnfABITy = 5989 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5990 llvm::ArrayType::get(MethodTy, 0)); 5991 // struct method_list_t * 5992 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5993 5994 // struct _protocol_t { 5995 // id isa; // NULL 5996 // const char * const protocol_name; 5997 // const struct _protocol_list_t * protocol_list; // super protocols 5998 // const struct method_list_t * const instance_methods; 5999 // const struct method_list_t * const class_methods; 6000 // const struct method_list_t *optionalInstanceMethods; 6001 // const struct method_list_t *optionalClassMethods; 6002 // const struct _prop_list_t * properties; 6003 // const uint32_t size; // sizeof(struct _protocol_t) 6004 // const uint32_t flags; // = 0 6005 // const char ** extendedMethodTypes; 6006 // const char *demangledName; 6007 // const struct _prop_list_t * class_properties; 6008 // } 6009 6010 // Holder for struct _protocol_list_t * 6011 ProtocolListnfABITy = 6012 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6013 6014 ProtocolnfABITy = llvm::StructType::create( 6015 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6016 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6017 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6018 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6019 PropertyListPtrTy); 6020 6021 // struct _protocol_t* 6022 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6023 6024 // struct _protocol_list_t { 6025 // long protocol_count; // Note, this is 32/64 bit 6026 // struct _protocol_t *[protocol_count]; 6027 // } 6028 ProtocolListnfABITy->setBody(LongTy, 6029 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6030 6031 // struct _objc_protocol_list* 6032 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6033 6034 // struct _ivar_t { 6035 // unsigned [long] int *offset; // pointer to ivar offset location 6036 // char *name; 6037 // char *type; 6038 // uint32_t alignment; 6039 // uint32_t size; 6040 // } 6041 IvarnfABITy = llvm::StructType::create( 6042 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6043 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6044 6045 // struct _ivar_list_t { 6046 // uint32 entsize; // sizeof(struct _ivar_t) 6047 // uint32 count; 6048 // struct _iver_t list[count]; 6049 // } 6050 IvarListnfABITy = 6051 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6052 llvm::ArrayType::get(IvarnfABITy, 0)); 6053 6054 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6055 6056 // struct _class_ro_t { 6057 // uint32_t const flags; 6058 // uint32_t const instanceStart; 6059 // uint32_t const instanceSize; 6060 // uint32_t const reserved; // only when building for 64bit targets 6061 // const uint8_t * const ivarLayout; 6062 // const char *const name; 6063 // const struct _method_list_t * const baseMethods; 6064 // const struct _objc_protocol_list *const baseProtocols; 6065 // const struct _ivar_list_t *const ivars; 6066 // const uint8_t * const weakIvarLayout; 6067 // const struct _prop_list_t * const properties; 6068 // } 6069 6070 // FIXME. Add 'reserved' field in 64bit abi mode! 6071 ClassRonfABITy = llvm::StructType::create( 6072 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6073 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6074 Int8PtrTy, PropertyListPtrTy); 6075 6076 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6077 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6078 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6079 ->getPointerTo(); 6080 6081 // struct _class_t { 6082 // struct _class_t *isa; 6083 // struct _class_t * const superclass; 6084 // void *cache; 6085 // IMP *vtable; 6086 // struct class_ro_t *ro; 6087 // } 6088 6089 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6090 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6091 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6092 llvm::PointerType::getUnqual(ImpnfABITy), 6093 llvm::PointerType::getUnqual(ClassRonfABITy)); 6094 6095 // LLVM for struct _class_t * 6096 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6097 6098 // struct _category_t { 6099 // const char * const name; 6100 // struct _class_t *const cls; 6101 // const struct _method_list_t * const instance_methods; 6102 // const struct _method_list_t * const class_methods; 6103 // const struct _protocol_list_t * const protocols; 6104 // const struct _prop_list_t * const properties; 6105 // const struct _prop_list_t * const class_properties; 6106 // const uint32_t size; 6107 // } 6108 CategorynfABITy = llvm::StructType::create( 6109 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6110 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6111 PropertyListPtrTy, IntTy); 6112 6113 // New types for nonfragile abi messaging. 6114 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6115 ASTContext &Ctx = CGM.getContext(); 6116 6117 // MessageRefTy - LLVM for: 6118 // struct _message_ref_t { 6119 // IMP messenger; 6120 // SEL name; 6121 // }; 6122 6123 // First the clang type for struct _message_ref_t 6124 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6125 Ctx.getTranslationUnitDecl(), 6126 SourceLocation(), SourceLocation(), 6127 &Ctx.Idents.get("_message_ref_t")); 6128 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6129 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6130 ICIS_NoInit)); 6131 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6132 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6133 false, ICIS_NoInit)); 6134 RD->completeDefinition(); 6135 6136 MessageRefCTy = Ctx.getTagDeclType(RD); 6137 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6138 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6139 6140 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6141 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6142 6143 // SuperMessageRefTy - LLVM for: 6144 // struct _super_message_ref_t { 6145 // SUPER_IMP messenger; 6146 // SEL name; 6147 // }; 6148 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6149 ImpnfABITy, SelectorPtrTy); 6150 6151 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6152 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6153 6154 6155 // struct objc_typeinfo { 6156 // const void** vtable; // objc_ehtype_vtable + 2 6157 // const char* name; // c++ typeinfo string 6158 // Class cls; 6159 // }; 6160 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6161 llvm::PointerType::getUnqual(Int8PtrTy), 6162 Int8PtrTy, ClassnfABIPtrTy); 6163 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6164 } 6165 6166 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6167 FinishNonFragileABIModule(); 6168 6169 return nullptr; 6170 } 6171 6172 void CGObjCNonFragileABIMac::AddModuleClassList( 6173 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6174 StringRef SectionName) { 6175 unsigned NumClasses = Container.size(); 6176 6177 if (!NumClasses) 6178 return; 6179 6180 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6181 for (unsigned i=0; i<NumClasses; i++) 6182 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6183 ObjCTypes.Int8PtrTy); 6184 llvm::Constant *Init = 6185 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6186 Symbols.size()), 6187 Symbols); 6188 6189 // Section name is obtained by calling GetSectionName, which returns 6190 // sections in the __DATA segment on MachO. 6191 assert((!CGM.getTriple().isOSBinFormatMachO() || 6192 SectionName.startswith("__DATA")) && 6193 "SectionName expected to start with __DATA on MachO"); 6194 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 6195 CGM.getModule(), Init->getType(), false, 6196 llvm::GlobalValue::PrivateLinkage, Init, SymbolName); 6197 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(Init->getType())); 6198 GV->setSection(SectionName); 6199 CGM.addCompilerUsedGlobal(GV); 6200 } 6201 6202 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6203 // nonfragile abi has no module definition. 6204 6205 // Build list of all implemented class addresses in array 6206 // L_OBJC_LABEL_CLASS_$. 6207 6208 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6209 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6210 assert(ID); 6211 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6212 // We are implementing a weak imported interface. Give it external linkage 6213 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6214 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6215 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6216 } 6217 } 6218 6219 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6220 GetSectionName("__objc_classlist", 6221 "regular,no_dead_strip")); 6222 6223 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6224 GetSectionName("__objc_nlclslist", 6225 "regular,no_dead_strip")); 6226 6227 // Build list of all implemented category addresses in array 6228 // L_OBJC_LABEL_CATEGORY_$. 6229 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6230 GetSectionName("__objc_catlist", 6231 "regular,no_dead_strip")); 6232 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6233 GetSectionName("__objc_catlist2", 6234 "regular,no_dead_strip")); 6235 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6236 GetSectionName("__objc_nlcatlist", 6237 "regular,no_dead_strip")); 6238 6239 EmitImageInfo(); 6240 } 6241 6242 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6243 /// VTableDispatchMethods; false otherwise. What this means is that 6244 /// except for the 19 selectors in the list, we generate 32bit-style 6245 /// message dispatch call for all the rest. 6246 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6247 // At various points we've experimented with using vtable-based 6248 // dispatch for all methods. 6249 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6250 case CodeGenOptions::Legacy: 6251 return false; 6252 case CodeGenOptions::NonLegacy: 6253 return true; 6254 case CodeGenOptions::Mixed: 6255 break; 6256 } 6257 6258 // If so, see whether this selector is in the white-list of things which must 6259 // use the new dispatch convention. We lazily build a dense set for this. 6260 if (VTableDispatchMethods.empty()) { 6261 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6262 VTableDispatchMethods.insert(GetNullarySelector("class")); 6263 VTableDispatchMethods.insert(GetNullarySelector("self")); 6264 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6265 VTableDispatchMethods.insert(GetNullarySelector("length")); 6266 VTableDispatchMethods.insert(GetNullarySelector("count")); 6267 6268 // These are vtable-based if GC is disabled. 6269 // Optimistically use vtable dispatch for hybrid compiles. 6270 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6271 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6272 VTableDispatchMethods.insert(GetNullarySelector("release")); 6273 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6274 } 6275 6276 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6277 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6278 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6279 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6280 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6281 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6282 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6283 6284 // These are vtable-based if GC is enabled. 6285 // Optimistically use vtable dispatch for hybrid compiles. 6286 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6287 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6288 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6289 6290 // "countByEnumeratingWithState:objects:count" 6291 IdentifierInfo *KeyIdents[] = { 6292 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6293 &CGM.getContext().Idents.get("objects"), 6294 &CGM.getContext().Idents.get("count") 6295 }; 6296 VTableDispatchMethods.insert( 6297 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6298 } 6299 } 6300 6301 return VTableDispatchMethods.count(Sel); 6302 } 6303 6304 /// BuildClassRoTInitializer - generate meta-data for: 6305 /// struct _class_ro_t { 6306 /// uint32_t const flags; 6307 /// uint32_t const instanceStart; 6308 /// uint32_t const instanceSize; 6309 /// uint32_t const reserved; // only when building for 64bit targets 6310 /// const uint8_t * const ivarLayout; 6311 /// const char *const name; 6312 /// const struct _method_list_t * const baseMethods; 6313 /// const struct _protocol_list_t *const baseProtocols; 6314 /// const struct _ivar_list_t *const ivars; 6315 /// const uint8_t * const weakIvarLayout; 6316 /// const struct _prop_list_t * const properties; 6317 /// } 6318 /// 6319 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6320 unsigned flags, 6321 unsigned InstanceStart, 6322 unsigned InstanceSize, 6323 const ObjCImplementationDecl *ID) { 6324 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString()); 6325 6326 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6327 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6328 6329 bool hasMRCWeak = false; 6330 if (CGM.getLangOpts().ObjCAutoRefCount) 6331 flags |= NonFragileABI_Class_CompiledByARC; 6332 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6333 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6334 6335 ConstantInitBuilder builder(CGM); 6336 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6337 6338 values.addInt(ObjCTypes.IntTy, flags); 6339 values.addInt(ObjCTypes.IntTy, InstanceStart); 6340 values.addInt(ObjCTypes.IntTy, InstanceSize); 6341 values.add((flags & NonFragileABI_Class_Meta) 6342 ? GetIvarLayoutName(nullptr, ObjCTypes) 6343 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6344 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6345 6346 // const struct _method_list_t * const baseMethods; 6347 SmallVector<const ObjCMethodDecl*, 16> methods; 6348 if (flags & NonFragileABI_Class_Meta) { 6349 for (const auto *MD : ID->class_methods()) 6350 if (!MD->isDirectMethod()) 6351 methods.push_back(MD); 6352 } else { 6353 for (const auto *MD : ID->instance_methods()) 6354 if (!MD->isDirectMethod()) 6355 methods.push_back(MD); 6356 } 6357 6358 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6359 (flags & NonFragileABI_Class_Meta) 6360 ? MethodListType::ClassMethods 6361 : MethodListType::InstanceMethods, 6362 methods)); 6363 6364 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6365 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6366 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6367 + OID->getObjCRuntimeNameAsString(), 6368 OID->all_referenced_protocol_begin(), 6369 OID->all_referenced_protocol_end())); 6370 6371 if (flags & NonFragileABI_Class_Meta) { 6372 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6373 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6374 values.add(EmitPropertyList( 6375 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6376 ID, ID->getClassInterface(), ObjCTypes, true)); 6377 } else { 6378 values.add(EmitIvarList(ID)); 6379 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6380 values.add(EmitPropertyList( 6381 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6382 ID, ID->getClassInterface(), ObjCTypes, false)); 6383 } 6384 6385 llvm::SmallString<64> roLabel; 6386 llvm::raw_svector_ostream(roLabel) 6387 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6388 : "_OBJC_CLASS_RO_$_") 6389 << ClassName; 6390 6391 return finishAndCreateGlobal(values, roLabel, CGM); 6392 } 6393 6394 /// Build the metaclass object for a class. 6395 /// 6396 /// struct _class_t { 6397 /// struct _class_t *isa; 6398 /// struct _class_t * const superclass; 6399 /// void *cache; 6400 /// IMP *vtable; 6401 /// struct class_ro_t *ro; 6402 /// } 6403 /// 6404 llvm::GlobalVariable * 6405 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6406 bool isMetaclass, 6407 llvm::Constant *IsAGV, 6408 llvm::Constant *SuperClassGV, 6409 llvm::Constant *ClassRoGV, 6410 bool HiddenVisibility) { 6411 ConstantInitBuilder builder(CGM); 6412 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6413 values.add(IsAGV); 6414 if (SuperClassGV) { 6415 values.add(SuperClassGV); 6416 } else { 6417 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6418 } 6419 values.add(ObjCEmptyCacheVar); 6420 values.add(ObjCEmptyVtableVar); 6421 values.add(ClassRoGV); 6422 6423 llvm::GlobalVariable *GV = 6424 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6425 values.finishAndSetAsInitializer(GV); 6426 6427 if (CGM.getTriple().isOSBinFormatMachO()) 6428 GV->setSection("__DATA, __objc_data"); 6429 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(ObjCTypes.ClassnfABITy)); 6430 if (!CGM.getTriple().isOSBinFormatCOFF()) 6431 if (HiddenVisibility) 6432 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6433 return GV; 6434 } 6435 6436 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6437 const ObjCImplDecl *OD) const { 6438 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6439 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6440 OD->hasAttr<ObjCNonLazyClassAttr>(); 6441 } 6442 6443 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6444 uint32_t &InstanceStart, 6445 uint32_t &InstanceSize) { 6446 const ASTRecordLayout &RL = 6447 CGM.getContext().getASTObjCImplementationLayout(OID); 6448 6449 // InstanceSize is really instance end. 6450 InstanceSize = RL.getDataSize().getQuantity(); 6451 6452 // If there are no fields, the start is the same as the end. 6453 if (!RL.getFieldCount()) 6454 InstanceStart = InstanceSize; 6455 else 6456 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6457 } 6458 6459 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6460 StringRef Name) { 6461 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6462 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6463 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6464 6465 const VarDecl *VD = nullptr; 6466 for (const auto *Result : DC->lookup(&II)) 6467 if ((VD = dyn_cast<VarDecl>(Result))) 6468 break; 6469 6470 if (!VD) 6471 return llvm::GlobalValue::DLLImportStorageClass; 6472 if (VD->hasAttr<DLLExportAttr>()) 6473 return llvm::GlobalValue::DLLExportStorageClass; 6474 if (VD->hasAttr<DLLImportAttr>()) 6475 return llvm::GlobalValue::DLLImportStorageClass; 6476 return llvm::GlobalValue::DefaultStorageClass; 6477 } 6478 6479 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6480 if (!ObjCEmptyCacheVar) { 6481 ObjCEmptyCacheVar = 6482 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6483 llvm::GlobalValue::ExternalLinkage, nullptr, 6484 "_objc_empty_cache"); 6485 if (CGM.getTriple().isOSBinFormatCOFF()) 6486 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6487 6488 // Only OS X with deployment version <10.9 use the empty vtable symbol 6489 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6490 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6491 ObjCEmptyVtableVar = 6492 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6493 llvm::GlobalValue::ExternalLinkage, nullptr, 6494 "_objc_empty_vtable"); 6495 else 6496 ObjCEmptyVtableVar = 6497 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6498 } 6499 6500 // FIXME: Is this correct (that meta class size is never computed)? 6501 uint32_t InstanceStart = 6502 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6503 uint32_t InstanceSize = InstanceStart; 6504 uint32_t flags = NonFragileABI_Class_Meta; 6505 6506 llvm::Constant *SuperClassGV, *IsAGV; 6507 6508 const auto *CI = ID->getClassInterface(); 6509 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6510 6511 // Build the flags for the metaclass. 6512 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6513 ? !CI->hasAttr<DLLExportAttr>() 6514 : CI->getVisibility() == HiddenVisibility; 6515 if (classIsHidden) 6516 flags |= NonFragileABI_Class_Hidden; 6517 6518 // FIXME: why is this flag set on the metaclass? 6519 // ObjC metaclasses have no fields and don't really get constructed. 6520 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6521 flags |= NonFragileABI_Class_HasCXXStructors; 6522 if (!ID->hasNonZeroConstructors()) 6523 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6524 } 6525 6526 if (!CI->getSuperClass()) { 6527 // class is root 6528 flags |= NonFragileABI_Class_Root; 6529 6530 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6531 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6532 } else { 6533 // Has a root. Current class is not a root. 6534 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6535 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6536 Root = Super; 6537 6538 const auto *Super = CI->getSuperClass(); 6539 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6540 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6541 } 6542 6543 llvm::GlobalVariable *CLASS_RO_GV = 6544 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6545 6546 llvm::GlobalVariable *MetaTClass = 6547 BuildClassObject(CI, /*metaclass*/ true, 6548 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6549 CGM.setGVProperties(MetaTClass, CI); 6550 DefinedMetaClasses.push_back(MetaTClass); 6551 6552 // Metadata for the class 6553 flags = 0; 6554 if (classIsHidden) 6555 flags |= NonFragileABI_Class_Hidden; 6556 6557 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6558 flags |= NonFragileABI_Class_HasCXXStructors; 6559 6560 // Set a flag to enable a runtime optimization when a class has 6561 // fields that require destruction but which don't require 6562 // anything except zero-initialization during construction. This 6563 // is most notably true of __strong and __weak types, but you can 6564 // also imagine there being C++ types with non-trivial default 6565 // constructors that merely set all fields to null. 6566 if (!ID->hasNonZeroConstructors()) 6567 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6568 } 6569 6570 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6571 flags |= NonFragileABI_Class_Exception; 6572 6573 if (!CI->getSuperClass()) { 6574 flags |= NonFragileABI_Class_Root; 6575 SuperClassGV = nullptr; 6576 } else { 6577 // Has a root. Current class is not a root. 6578 const auto *Super = CI->getSuperClass(); 6579 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6580 } 6581 6582 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6583 CLASS_RO_GV = 6584 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6585 6586 llvm::GlobalVariable *ClassMD = 6587 BuildClassObject(CI, /*metaclass*/ false, 6588 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6589 CGM.setGVProperties(ClassMD, CI); 6590 DefinedClasses.push_back(ClassMD); 6591 ImplementedClasses.push_back(CI); 6592 6593 // Determine if this class is also "non-lazy". 6594 if (ImplementationIsNonLazy(ID)) 6595 DefinedNonLazyClasses.push_back(ClassMD); 6596 6597 // Force the definition of the EHType if necessary. 6598 if (flags & NonFragileABI_Class_Exception) 6599 (void) GetInterfaceEHType(CI, ForDefinition); 6600 // Make sure method definition entries are all clear for next implementation. 6601 MethodDefinitions.clear(); 6602 } 6603 6604 /// GenerateProtocolRef - This routine is called to generate code for 6605 /// a protocol reference expression; as in: 6606 /// @code 6607 /// @protocol(Proto1); 6608 /// @endcode 6609 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6610 /// which will hold address of the protocol meta-data. 6611 /// 6612 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6613 const ObjCProtocolDecl *PD) { 6614 6615 // This routine is called for @protocol only. So, we must build definition 6616 // of protocol's meta-data (not a reference to it!) 6617 assert(!PD->isNonRuntimeProtocol() && 6618 "attempting to get a protocol ref to a static protocol."); 6619 llvm::Constant *Init = 6620 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6621 ObjCTypes.getExternalProtocolPtrTy()); 6622 6623 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6624 ProtocolName += PD->getObjCRuntimeNameAsString(); 6625 6626 CharUnits Align = CGF.getPointerAlign(); 6627 6628 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6629 if (PTGV) 6630 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6631 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6632 llvm::GlobalValue::WeakAnyLinkage, Init, 6633 ProtocolName); 6634 PTGV->setSection(GetSectionName("__objc_protorefs", 6635 "coalesced,no_dead_strip")); 6636 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6637 PTGV->setAlignment(Align.getAsAlign()); 6638 if (!CGM.getTriple().isOSBinFormatMachO()) 6639 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6640 CGM.addUsedGlobal(PTGV); 6641 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6642 } 6643 6644 /// GenerateCategory - Build metadata for a category implementation. 6645 /// struct _category_t { 6646 /// const char * const name; 6647 /// struct _class_t *const cls; 6648 /// const struct _method_list_t * const instance_methods; 6649 /// const struct _method_list_t * const class_methods; 6650 /// const struct _protocol_list_t * const protocols; 6651 /// const struct _prop_list_t * const properties; 6652 /// const struct _prop_list_t * const class_properties; 6653 /// const uint32_t size; 6654 /// } 6655 /// 6656 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6657 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6658 const char *Prefix = "_OBJC_$_CATEGORY_"; 6659 6660 llvm::SmallString<64> ExtCatName(Prefix); 6661 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6662 ExtCatName += "_$_"; 6663 ExtCatName += OCD->getNameAsString(); 6664 6665 ConstantInitBuilder builder(CGM); 6666 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6667 values.add(GetClassName(OCD->getIdentifier()->getName())); 6668 // meta-class entry symbol 6669 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6670 std::string listName = 6671 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6672 6673 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6674 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6675 for (const auto *MD : OCD->methods()) { 6676 if (MD->isDirectMethod()) 6677 continue; 6678 if (MD->isInstanceMethod()) { 6679 instanceMethods.push_back(MD); 6680 } else { 6681 classMethods.push_back(MD); 6682 } 6683 } 6684 6685 auto instanceMethodList = emitMethodList( 6686 listName, MethodListType::CategoryInstanceMethods, instanceMethods); 6687 auto classMethodList = emitMethodList( 6688 listName, MethodListType::CategoryClassMethods, classMethods); 6689 values.add(instanceMethodList); 6690 values.add(classMethodList); 6691 // Keep track of whether we have actual metadata to emit. 6692 bool isEmptyCategory = 6693 instanceMethodList->isNullValue() && classMethodList->isNullValue(); 6694 6695 const ObjCCategoryDecl *Category = 6696 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6697 if (Category) { 6698 SmallString<256> ExtName; 6699 llvm::raw_svector_ostream(ExtName) 6700 << Interface->getObjCRuntimeNameAsString() << "_$_" << OCD->getName(); 6701 auto protocolList = 6702 EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" + 6703 Interface->getObjCRuntimeNameAsString() + "_$_" + 6704 Category->getName(), 6705 Category->protocol_begin(), Category->protocol_end()); 6706 auto propertyList = EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6707 OCD, Category, ObjCTypes, false); 6708 auto classPropertyList = 6709 EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), OCD, 6710 Category, ObjCTypes, true); 6711 values.add(protocolList); 6712 values.add(propertyList); 6713 values.add(classPropertyList); 6714 isEmptyCategory &= protocolList->isNullValue() && 6715 propertyList->isNullValue() && 6716 classPropertyList->isNullValue(); 6717 } else { 6718 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6719 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6720 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6721 } 6722 6723 if (isEmptyCategory) { 6724 // Empty category, don't emit any metadata. 6725 values.abandon(); 6726 MethodDefinitions.clear(); 6727 return; 6728 } 6729 6730 unsigned Size = 6731 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6732 values.addInt(ObjCTypes.IntTy, Size); 6733 6734 llvm::GlobalVariable *GCATV = 6735 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6736 CGM.addCompilerUsedGlobal(GCATV); 6737 if (Interface->hasAttr<ObjCClassStubAttr>()) 6738 DefinedStubCategories.push_back(GCATV); 6739 else 6740 DefinedCategories.push_back(GCATV); 6741 6742 // Determine if this category is also "non-lazy". 6743 if (ImplementationIsNonLazy(OCD)) 6744 DefinedNonLazyCategories.push_back(GCATV); 6745 // method definition entries must be clear for next implementation. 6746 MethodDefinitions.clear(); 6747 } 6748 6749 /// emitMethodConstant - Return a struct objc_method constant. If 6750 /// forProtocol is true, the implementation will be null; otherwise, 6751 /// the method must have a definition registered with the runtime. 6752 /// 6753 /// struct _objc_method { 6754 /// SEL _cmd; 6755 /// char *method_type; 6756 /// char *_imp; 6757 /// } 6758 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6759 const ObjCMethodDecl *MD, 6760 bool forProtocol) { 6761 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6762 method.addBitCast(GetMethodVarName(MD->getSelector()), 6763 ObjCTypes.SelectorPtrTy); 6764 method.add(GetMethodVarType(MD)); 6765 6766 if (forProtocol) { 6767 // Protocol methods have no implementation. So, this entry is always NULL. 6768 method.addNullPointer(ObjCTypes.Int8PtrProgramASTy); 6769 } else { 6770 llvm::Function *fn = GetMethodDefinition(MD); 6771 assert(fn && "no definition for method?"); 6772 method.addBitCast(fn, ObjCTypes.Int8PtrProgramASTy); 6773 } 6774 6775 method.finishAndAddTo(builder); 6776 } 6777 6778 /// Build meta-data for method declarations. 6779 /// 6780 /// struct _method_list_t { 6781 /// uint32_t entsize; // sizeof(struct _objc_method) 6782 /// uint32_t method_count; 6783 /// struct _objc_method method_list[method_count]; 6784 /// } 6785 /// 6786 llvm::Constant * 6787 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6788 ArrayRef<const ObjCMethodDecl *> methods) { 6789 // Return null for empty list. 6790 if (methods.empty()) 6791 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6792 6793 StringRef prefix; 6794 bool forProtocol; 6795 switch (kind) { 6796 case MethodListType::CategoryInstanceMethods: 6797 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6798 forProtocol = false; 6799 break; 6800 case MethodListType::CategoryClassMethods: 6801 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6802 forProtocol = false; 6803 break; 6804 case MethodListType::InstanceMethods: 6805 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6806 forProtocol = false; 6807 break; 6808 case MethodListType::ClassMethods: 6809 prefix = "_OBJC_$_CLASS_METHODS_"; 6810 forProtocol = false; 6811 break; 6812 6813 case MethodListType::ProtocolInstanceMethods: 6814 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6815 forProtocol = true; 6816 break; 6817 case MethodListType::ProtocolClassMethods: 6818 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6819 forProtocol = true; 6820 break; 6821 case MethodListType::OptionalProtocolInstanceMethods: 6822 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6823 forProtocol = true; 6824 break; 6825 case MethodListType::OptionalProtocolClassMethods: 6826 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6827 forProtocol = true; 6828 break; 6829 } 6830 6831 ConstantInitBuilder builder(CGM); 6832 auto values = builder.beginStruct(); 6833 6834 // sizeof(struct _objc_method) 6835 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6836 values.addInt(ObjCTypes.IntTy, Size); 6837 // method_count 6838 values.addInt(ObjCTypes.IntTy, methods.size()); 6839 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6840 for (auto MD : methods) 6841 emitMethodConstant(methodArray, MD, forProtocol); 6842 methodArray.finishAndAddTo(values); 6843 6844 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6845 CGM.addCompilerUsedGlobal(GV); 6846 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6847 } 6848 6849 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6850 /// the given ivar. 6851 llvm::GlobalVariable * 6852 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6853 const ObjCIvarDecl *Ivar) { 6854 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6855 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6856 Name += Container->getObjCRuntimeNameAsString(); 6857 Name += "."; 6858 Name += Ivar->getName(); 6859 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6860 if (!IvarOffsetGV) { 6861 IvarOffsetGV = 6862 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6863 false, llvm::GlobalValue::ExternalLinkage, 6864 nullptr, Name.str()); 6865 if (CGM.getTriple().isOSBinFormatCOFF()) { 6866 bool IsPrivateOrPackage = 6867 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6868 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6869 6870 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6871 6872 if (ContainingID->hasAttr<DLLImportAttr>()) 6873 IvarOffsetGV 6874 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6875 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6876 IvarOffsetGV 6877 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6878 } 6879 } 6880 return IvarOffsetGV; 6881 } 6882 6883 llvm::Constant * 6884 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6885 const ObjCIvarDecl *Ivar, 6886 unsigned long int Offset) { 6887 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6888 IvarOffsetGV->setInitializer( 6889 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6890 IvarOffsetGV->setAlignment( 6891 CGM.getDataLayout().getABITypeAlign(ObjCTypes.IvarOffsetVarTy)); 6892 6893 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6894 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6895 // as well (i.e., in ObjCIvarOffsetVariable). 6896 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6897 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6898 ID->getVisibility() == HiddenVisibility) 6899 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6900 else 6901 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6902 } 6903 6904 // If ID's layout is known, then make the global constant. This serves as a 6905 // useful assertion: we'll never use this variable to calculate ivar offsets, 6906 // so if the runtime tries to patch it then we should crash. 6907 if (isClassLayoutKnownStatically(ID)) 6908 IvarOffsetGV->setConstant(true); 6909 6910 if (CGM.getTriple().isOSBinFormatMachO()) 6911 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6912 return IvarOffsetGV; 6913 } 6914 6915 /// EmitIvarList - Emit the ivar list for the given 6916 /// implementation. The return value has type 6917 /// IvarListnfABIPtrTy. 6918 /// struct _ivar_t { 6919 /// unsigned [long] int *offset; // pointer to ivar offset location 6920 /// char *name; 6921 /// char *type; 6922 /// uint32_t alignment; 6923 /// uint32_t size; 6924 /// } 6925 /// struct _ivar_list_t { 6926 /// uint32 entsize; // sizeof(struct _ivar_t) 6927 /// uint32 count; 6928 /// struct _iver_t list[count]; 6929 /// } 6930 /// 6931 6932 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6933 const ObjCImplementationDecl *ID) { 6934 6935 ConstantInitBuilder builder(CGM); 6936 auto ivarList = builder.beginStruct(); 6937 ivarList.addInt(ObjCTypes.IntTy, 6938 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6939 auto ivarCountSlot = ivarList.addPlaceholder(); 6940 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6941 6942 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6943 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6944 6945 // FIXME. Consolidate this with similar code in GenerateClass. 6946 6947 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6948 IVD; IVD = IVD->getNextIvar()) { 6949 // Ignore unnamed bit-fields. 6950 if (!IVD->getDeclName()) 6951 continue; 6952 6953 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6954 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6955 ComputeIvarBaseOffset(CGM, ID, IVD))); 6956 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6957 ivar.add(GetMethodVarType(IVD)); 6958 llvm::Type *FieldTy = 6959 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6960 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6961 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6962 IVD->getType().getTypePtr()) >> 3; 6963 Align = llvm::Log2_32(Align); 6964 ivar.addInt(ObjCTypes.IntTy, Align); 6965 // NOTE. Size of a bitfield does not match gcc's, because of the 6966 // way bitfields are treated special in each. But I am told that 6967 // 'size' for bitfield ivars is ignored by the runtime so it does 6968 // not matter. If it matters, there is enough info to get the 6969 // bitfield right! 6970 ivar.addInt(ObjCTypes.IntTy, Size); 6971 ivar.finishAndAddTo(ivars); 6972 } 6973 // Return null for empty list. 6974 if (ivars.empty()) { 6975 ivars.abandon(); 6976 ivarList.abandon(); 6977 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6978 } 6979 6980 auto ivarCount = ivars.size(); 6981 ivars.finishAndAddTo(ivarList); 6982 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6983 6984 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 6985 llvm::GlobalVariable *GV = finishAndCreateGlobal( 6986 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 6987 CGM.addCompilerUsedGlobal(GV); 6988 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6989 } 6990 6991 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6992 const ObjCProtocolDecl *PD) { 6993 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6994 6995 assert(!PD->isNonRuntimeProtocol() && 6996 "attempting to GetOrEmit a non-runtime protocol"); 6997 if (!Entry) { 6998 // We use the initializer as a marker of whether this is a forward 6999 // reference or not. At module finalization we add the empty 7000 // contents for protocols which were referenced but never defined. 7001 llvm::SmallString<64> Protocol; 7002 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 7003 << PD->getObjCRuntimeNameAsString(); 7004 7005 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 7006 false, llvm::GlobalValue::ExternalLinkage, 7007 nullptr, Protocol); 7008 if (!CGM.getTriple().isOSBinFormatMachO()) 7009 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 7010 } 7011 7012 return Entry; 7013 } 7014 7015 /// GetOrEmitProtocol - Generate the protocol meta-data: 7016 /// @code 7017 /// struct _protocol_t { 7018 /// id isa; // NULL 7019 /// const char * const protocol_name; 7020 /// const struct _protocol_list_t * protocol_list; // super protocols 7021 /// const struct method_list_t * const instance_methods; 7022 /// const struct method_list_t * const class_methods; 7023 /// const struct method_list_t *optionalInstanceMethods; 7024 /// const struct method_list_t *optionalClassMethods; 7025 /// const struct _prop_list_t * properties; 7026 /// const uint32_t size; // sizeof(struct _protocol_t) 7027 /// const uint32_t flags; // = 0 7028 /// const char ** extendedMethodTypes; 7029 /// const char *demangledName; 7030 /// const struct _prop_list_t * class_properties; 7031 /// } 7032 /// @endcode 7033 /// 7034 7035 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7036 const ObjCProtocolDecl *PD) { 7037 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7038 7039 // Early exit if a defining object has already been generated. 7040 if (Entry && Entry->hasInitializer()) 7041 return Entry; 7042 7043 // Use the protocol definition, if there is one. 7044 assert(PD->hasDefinition() && 7045 "emitting protocol metadata without definition"); 7046 PD = PD->getDefinition(); 7047 7048 auto methodLists = ProtocolMethodLists::get(PD); 7049 7050 ConstantInitBuilder builder(CGM); 7051 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7052 7053 // isa is NULL 7054 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7055 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7056 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7057 + PD->getObjCRuntimeNameAsString(), 7058 PD->protocol_begin(), 7059 PD->protocol_end())); 7060 values.add(methodLists.emitMethodList(this, PD, 7061 ProtocolMethodLists::RequiredInstanceMethods)); 7062 values.add(methodLists.emitMethodList(this, PD, 7063 ProtocolMethodLists::RequiredClassMethods)); 7064 values.add(methodLists.emitMethodList(this, PD, 7065 ProtocolMethodLists::OptionalInstanceMethods)); 7066 values.add(methodLists.emitMethodList(this, PD, 7067 ProtocolMethodLists::OptionalClassMethods)); 7068 values.add(EmitPropertyList( 7069 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7070 nullptr, PD, ObjCTypes, false)); 7071 uint32_t Size = 7072 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7073 values.addInt(ObjCTypes.IntTy, Size); 7074 values.addInt(ObjCTypes.IntTy, 0); 7075 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7076 + PD->getObjCRuntimeNameAsString(), 7077 methodLists.emitExtendedTypesArray(this), 7078 ObjCTypes)); 7079 7080 // const char *demangledName; 7081 values.addNullPointer(ObjCTypes.Int8PtrTy); 7082 7083 values.add(EmitPropertyList( 7084 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7085 nullptr, PD, ObjCTypes, true)); 7086 7087 if (Entry) { 7088 // Already created, fix the linkage and update the initializer. 7089 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7090 values.finishAndSetAsInitializer(Entry); 7091 } else { 7092 llvm::SmallString<64> symbolName; 7093 llvm::raw_svector_ostream(symbolName) 7094 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7095 7096 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7097 /*constant*/ false, 7098 llvm::GlobalValue::WeakAnyLinkage); 7099 if (!CGM.getTriple().isOSBinFormatMachO()) 7100 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7101 7102 Protocols[PD->getIdentifier()] = Entry; 7103 } 7104 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7105 CGM.addUsedGlobal(Entry); 7106 7107 // Use this protocol meta-data to build protocol list table in section 7108 // __DATA, __objc_protolist 7109 llvm::SmallString<64> ProtocolRef; 7110 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7111 << PD->getObjCRuntimeNameAsString(); 7112 7113 llvm::GlobalVariable *PTGV = 7114 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7115 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7116 ProtocolRef); 7117 if (!CGM.getTriple().isOSBinFormatMachO()) 7118 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7119 PTGV->setAlignment( 7120 CGM.getDataLayout().getABITypeAlign(ObjCTypes.ProtocolnfABIPtrTy)); 7121 PTGV->setSection(GetSectionName("__objc_protolist", 7122 "coalesced,no_dead_strip")); 7123 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7124 CGM.addUsedGlobal(PTGV); 7125 return Entry; 7126 } 7127 7128 /// EmitProtocolList - Generate protocol list meta-data: 7129 /// @code 7130 /// struct _protocol_list_t { 7131 /// long protocol_count; // Note, this is 32/64 bit 7132 /// struct _protocol_t[protocol_count]; 7133 /// } 7134 /// @endcode 7135 /// 7136 llvm::Constant * 7137 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7138 ObjCProtocolDecl::protocol_iterator begin, 7139 ObjCProtocolDecl::protocol_iterator end) { 7140 // Just return null for empty protocol lists 7141 auto Protocols = GetRuntimeProtocolList(begin, end); 7142 if (Protocols.empty()) 7143 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7144 7145 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7146 ProtocolRefs.reserve(Protocols.size()); 7147 7148 for (const auto *PD : Protocols) 7149 ProtocolRefs.push_back(GetProtocolRef(PD)); 7150 7151 // If all of the protocols in the protocol list are objc_non_runtime_protocol 7152 // just return null 7153 if (ProtocolRefs.size() == 0) 7154 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7155 7156 // FIXME: We shouldn't need to do this lookup here, should we? 7157 SmallString<256> TmpName; 7158 Name.toVector(TmpName); 7159 llvm::GlobalVariable *GV = 7160 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7161 if (GV) 7162 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7163 7164 ConstantInitBuilder builder(CGM); 7165 auto values = builder.beginStruct(); 7166 auto countSlot = values.addPlaceholder(); 7167 7168 // A null-terminated array of protocols. 7169 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7170 for (auto const &proto : ProtocolRefs) 7171 array.add(proto); 7172 auto count = array.size(); 7173 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7174 7175 array.finishAndAddTo(values); 7176 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7177 7178 GV = finishAndCreateGlobal(values, Name, CGM); 7179 CGM.addCompilerUsedGlobal(GV); 7180 return llvm::ConstantExpr::getBitCast(GV, 7181 ObjCTypes.ProtocolListnfABIPtrTy); 7182 } 7183 7184 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7185 /// This code gen. amounts to generating code for: 7186 /// @code 7187 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7188 /// @encode 7189 /// 7190 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7191 CodeGen::CodeGenFunction &CGF, 7192 QualType ObjectTy, 7193 llvm::Value *BaseValue, 7194 const ObjCIvarDecl *Ivar, 7195 unsigned CVRQualifiers) { 7196 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7197 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7198 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7199 Offset); 7200 } 7201 7202 llvm::Value * 7203 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7204 const ObjCInterfaceDecl *Interface, 7205 const ObjCIvarDecl *Ivar) { 7206 llvm::Value *IvarOffsetValue; 7207 if (isClassLayoutKnownStatically(Interface)) { 7208 IvarOffsetValue = llvm::ConstantInt::get( 7209 ObjCTypes.IvarOffsetVarTy, 7210 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7211 } else { 7212 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7213 IvarOffsetValue = 7214 CGF.Builder.CreateAlignedLoad(GV->getValueType(), GV, 7215 CGF.getSizeAlign(), "ivar"); 7216 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7217 cast<llvm::LoadInst>(IvarOffsetValue) 7218 ->setMetadata(llvm::LLVMContext::MD_invariant_load, 7219 llvm::MDNode::get(VMContext, std::nullopt)); 7220 } 7221 7222 // This could be 32bit int or 64bit integer depending on the architecture. 7223 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7224 // as this is what caller always expects. 7225 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7226 IvarOffsetValue = CGF.Builder.CreateIntCast( 7227 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7228 return IvarOffsetValue; 7229 } 7230 7231 static void appendSelectorForMessageRefTable(std::string &buffer, 7232 Selector selector) { 7233 if (selector.isUnarySelector()) { 7234 buffer += selector.getNameForSlot(0); 7235 return; 7236 } 7237 7238 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7239 buffer += selector.getNameForSlot(i); 7240 buffer += '_'; 7241 } 7242 } 7243 7244 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7245 /// struct, initially containing the selector pointer and a pointer to 7246 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7247 /// load and call the function pointer, passing the address of the 7248 /// struct as the second parameter. The runtime determines whether 7249 /// the selector is currently emitted using vtable dispatch; if so, it 7250 /// substitutes a stub function which simply tail-calls through the 7251 /// appropriate vtable slot, and if not, it substitues a stub function 7252 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7253 /// argument to correctly point to the selector. 7254 RValue 7255 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7256 ReturnValueSlot returnSlot, 7257 QualType resultType, 7258 Selector selector, 7259 llvm::Value *arg0, 7260 QualType arg0Type, 7261 bool isSuper, 7262 const CallArgList &formalArgs, 7263 const ObjCMethodDecl *method) { 7264 // Compute the actual arguments. 7265 CallArgList args; 7266 7267 // First argument: the receiver / super-call structure. 7268 if (!isSuper) 7269 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7270 args.add(RValue::get(arg0), arg0Type); 7271 7272 // Second argument: a pointer to the message ref structure. Leave 7273 // the actual argument value blank for now. 7274 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7275 7276 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7277 7278 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7279 7280 NullReturnState nullReturn; 7281 7282 // Find the function to call and the mangled name for the message 7283 // ref structure. Using a different mangled name wouldn't actually 7284 // be a problem; it would just be a waste. 7285 // 7286 // The runtime currently never uses vtable dispatch for anything 7287 // except normal, non-super message-sends. 7288 // FIXME: don't use this for that. 7289 llvm::FunctionCallee fn = nullptr; 7290 std::string messageRefName("_"); 7291 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7292 if (isSuper) { 7293 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7294 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7295 } else { 7296 nullReturn.init(CGF, arg0); 7297 fn = ObjCTypes.getMessageSendStretFixupFn(); 7298 messageRefName += "objc_msgSend_stret_fixup"; 7299 } 7300 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7301 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7302 messageRefName += "objc_msgSend_fpret_fixup"; 7303 } else { 7304 if (isSuper) { 7305 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7306 messageRefName += "objc_msgSendSuper2_fixup"; 7307 } else { 7308 fn = ObjCTypes.getMessageSendFixupFn(); 7309 messageRefName += "objc_msgSend_fixup"; 7310 } 7311 } 7312 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7313 messageRefName += '_'; 7314 7315 // Append the selector name, except use underscores anywhere we 7316 // would have used colons. 7317 appendSelectorForMessageRefTable(messageRefName, selector); 7318 7319 llvm::GlobalVariable *messageRef 7320 = CGM.getModule().getGlobalVariable(messageRefName); 7321 if (!messageRef) { 7322 // Build the message ref structure. 7323 ConstantInitBuilder builder(CGM); 7324 auto values = builder.beginStruct(); 7325 values.add(cast<llvm::Constant>(fn.getCallee())); 7326 values.add(GetMethodVarName(selector)); 7327 messageRef = values.finishAndCreateGlobal(messageRefName, 7328 CharUnits::fromQuantity(16), 7329 /*constant*/ false, 7330 llvm::GlobalValue::WeakAnyLinkage); 7331 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7332 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7333 } 7334 7335 bool requiresnullCheck = false; 7336 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7337 for (const auto *ParamDecl : method->parameters()) { 7338 if (ParamDecl->isDestroyedInCallee()) { 7339 if (!nullReturn.NullBB) 7340 nullReturn.init(CGF, arg0); 7341 requiresnullCheck = true; 7342 break; 7343 } 7344 } 7345 7346 Address mref = 7347 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7348 ObjCTypes.MessageRefTy, CGF.getPointerAlign()); 7349 7350 // Update the message ref argument. 7351 args[1].setRValue(RValue::get(mref.getPointer())); 7352 7353 // Load the function to call from the message ref table. 7354 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7355 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7356 7357 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7358 CGCallee callee(CGCalleeInfo(), calleePtr); 7359 7360 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7361 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7362 requiresnullCheck ? method : nullptr); 7363 } 7364 7365 /// Generate code for a message send expression in the nonfragile abi. 7366 CodeGen::RValue 7367 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7368 ReturnValueSlot Return, 7369 QualType ResultType, 7370 Selector Sel, 7371 llvm::Value *Receiver, 7372 const CallArgList &CallArgs, 7373 const ObjCInterfaceDecl *Class, 7374 const ObjCMethodDecl *Method) { 7375 return isVTableDispatchedSelector(Sel) 7376 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7377 Receiver, CGF.getContext().getObjCIdType(), 7378 false, CallArgs, Method) 7379 : EmitMessageSend(CGF, Return, ResultType, Sel, 7380 Receiver, CGF.getContext().getObjCIdType(), 7381 false, CallArgs, Method, Class, ObjCTypes); 7382 } 7383 7384 llvm::Constant * 7385 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7386 bool metaclass, 7387 ForDefinition_t isForDefinition) { 7388 auto prefix = 7389 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7390 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7391 isForDefinition, 7392 ID->isWeakImported(), 7393 !isForDefinition 7394 && CGM.getTriple().isOSBinFormatCOFF() 7395 && ID->hasAttr<DLLImportAttr>()); 7396 } 7397 7398 llvm::Constant * 7399 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7400 ForDefinition_t IsForDefinition, 7401 bool Weak, bool DLLImport) { 7402 llvm::GlobalValue::LinkageTypes L = 7403 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7404 : llvm::GlobalValue::ExternalLinkage; 7405 7406 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7407 if (!GV || GV->getValueType() != ObjCTypes.ClassnfABITy) { 7408 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7409 nullptr, Name); 7410 7411 if (DLLImport) 7412 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7413 7414 if (GV) { 7415 GV->replaceAllUsesWith( 7416 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7417 GV->eraseFromParent(); 7418 } 7419 GV = NewGV; 7420 CGM.getModule().insertGlobalVariable(GV); 7421 } 7422 7423 assert(GV->getLinkage() == L); 7424 return GV; 7425 } 7426 7427 llvm::Constant * 7428 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7429 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7430 NotForDefinition); 7431 7432 if (!ID->hasAttr<ObjCClassStubAttr>()) 7433 return ClassGV; 7434 7435 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7436 7437 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7438 // must set the least significant bit set to 1. 7439 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7440 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7441 } 7442 7443 llvm::Value * 7444 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7445 const ObjCInterfaceDecl *ID, 7446 llvm::GlobalVariable *Entry) { 7447 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7448 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7449 // a special runtime function. 7450 return CGF.EmitRuntimeCall( 7451 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7452 } 7453 7454 CharUnits Align = CGF.getPointerAlign(); 7455 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, Align); 7456 } 7457 7458 llvm::Value * 7459 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7460 IdentifierInfo *II, 7461 const ObjCInterfaceDecl *ID) { 7462 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7463 7464 if (!Entry) { 7465 llvm::Constant *ClassGV; 7466 if (ID) { 7467 ClassGV = GetClassGlobalForClassRef(ID); 7468 } else { 7469 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7470 NotForDefinition); 7471 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7472 "classref was emitted with the wrong type?"); 7473 } 7474 7475 std::string SectionName = 7476 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7477 Entry = new llvm::GlobalVariable( 7478 CGM.getModule(), ClassGV->getType(), false, 7479 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7480 "OBJC_CLASSLIST_REFERENCES_$_"); 7481 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7482 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7483 Entry->setSection(SectionName); 7484 7485 CGM.addCompilerUsedGlobal(Entry); 7486 } 7487 7488 return EmitLoadOfClassRef(CGF, ID, Entry); 7489 } 7490 7491 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7492 const ObjCInterfaceDecl *ID) { 7493 // If the class has the objc_runtime_visible attribute, we need to 7494 // use the Objective-C runtime to get the class. 7495 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7496 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7497 7498 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7499 } 7500 7501 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7502 CodeGenFunction &CGF) { 7503 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7504 return EmitClassRefFromId(CGF, II, nullptr); 7505 } 7506 7507 llvm::Value * 7508 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7509 const ObjCInterfaceDecl *ID) { 7510 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7511 7512 if (!Entry) { 7513 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7514 std::string SectionName = 7515 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7516 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false, 7517 llvm::GlobalValue::PrivateLinkage, ClassGV, 7518 "OBJC_CLASSLIST_SUP_REFS_$_"); 7519 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7520 Entry->setSection(SectionName); 7521 CGM.addCompilerUsedGlobal(Entry); 7522 } 7523 7524 return EmitLoadOfClassRef(CGF, ID, Entry); 7525 } 7526 7527 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7528 /// meta-data 7529 /// 7530 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7531 const ObjCInterfaceDecl *ID, 7532 bool Weak) { 7533 CharUnits Align = CGF.getPointerAlign(); 7534 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7535 if (!Entry) { 7536 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7537 std::string SectionName = 7538 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7539 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7540 false, llvm::GlobalValue::PrivateLinkage, 7541 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7542 Entry->setAlignment(Align.getAsAlign()); 7543 Entry->setSection(SectionName); 7544 CGM.addCompilerUsedGlobal(Entry); 7545 } 7546 7547 return CGF.Builder.CreateAlignedLoad(ObjCTypes.ClassnfABIPtrTy, Entry, Align); 7548 } 7549 7550 /// GetClass - Return a reference to the class for the given interface 7551 /// decl. 7552 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7553 const ObjCInterfaceDecl *ID) { 7554 if (ID->isWeakImported()) { 7555 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7556 (void)ClassGV; 7557 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7558 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7559 } 7560 7561 return EmitClassRef(CGF, ID); 7562 } 7563 7564 /// Generates a message send where the super is the receiver. This is 7565 /// a message send to self with special delivery semantics indicating 7566 /// which class's method should be called. 7567 CodeGen::RValue 7568 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7569 ReturnValueSlot Return, 7570 QualType ResultType, 7571 Selector Sel, 7572 const ObjCInterfaceDecl *Class, 7573 bool isCategoryImpl, 7574 llvm::Value *Receiver, 7575 bool IsClassMessage, 7576 const CodeGen::CallArgList &CallArgs, 7577 const ObjCMethodDecl *Method) { 7578 // ... 7579 // Create and init a super structure; this is a (receiver, class) 7580 // pair we will pass to objc_msgSendSuper. 7581 Address ObjCSuper = 7582 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7583 "objc_super"); 7584 7585 llvm::Value *ReceiverAsObject = 7586 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7587 CGF.Builder.CreateStore(ReceiverAsObject, 7588 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7589 7590 // If this is a class message the metaclass is passed as the target. 7591 llvm::Value *Target; 7592 if (IsClassMessage) 7593 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7594 else 7595 Target = EmitSuperClassRef(CGF, Class); 7596 7597 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7598 // ObjCTypes types. 7599 llvm::Type *ClassTy = 7600 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7601 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7602 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7603 7604 return (isVTableDispatchedSelector(Sel)) 7605 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7606 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7607 true, CallArgs, Method) 7608 : EmitMessageSend(CGF, Return, ResultType, Sel, 7609 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7610 true, CallArgs, Method, Class, ObjCTypes); 7611 } 7612 7613 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7614 Selector Sel) { 7615 Address Addr = EmitSelectorAddr(Sel); 7616 7617 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7618 LI->setMetadata(llvm::LLVMContext::MD_invariant_load, 7619 llvm::MDNode::get(VMContext, std::nullopt)); 7620 return LI; 7621 } 7622 7623 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7624 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7625 CharUnits Align = CGM.getPointerAlign(); 7626 if (!Entry) { 7627 llvm::Constant *Casted = 7628 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7629 ObjCTypes.SelectorPtrTy); 7630 std::string SectionName = 7631 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7632 Entry = new llvm::GlobalVariable( 7633 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7634 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7635 "OBJC_SELECTOR_REFERENCES_"); 7636 Entry->setExternallyInitialized(true); 7637 Entry->setSection(SectionName); 7638 Entry->setAlignment(Align.getAsAlign()); 7639 CGM.addCompilerUsedGlobal(Entry); 7640 } 7641 7642 return Address(Entry, ObjCTypes.SelectorPtrTy, Align); 7643 } 7644 7645 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7646 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7647 /// 7648 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7649 llvm::Value *src, 7650 Address dst, 7651 llvm::Value *ivarOffset) { 7652 llvm::Type * SrcTy = src->getType(); 7653 if (!isa<llvm::PointerType>(SrcTy)) { 7654 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7655 assert(Size <= 8 && "does not support size > 8"); 7656 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7657 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7658 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7659 } 7660 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7661 llvm::Value *dstVal = 7662 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7663 llvm::Value *args[] = {src, dstVal, ivarOffset}; 7664 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7665 } 7666 7667 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7668 /// objc_assign_strongCast (id src, id *dst) 7669 /// 7670 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7671 CodeGen::CodeGenFunction &CGF, 7672 llvm::Value *src, Address dst) { 7673 llvm::Type * SrcTy = src->getType(); 7674 if (!isa<llvm::PointerType>(SrcTy)) { 7675 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7676 assert(Size <= 8 && "does not support size > 8"); 7677 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7678 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7679 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7680 } 7681 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7682 llvm::Value *dstVal = 7683 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7684 llvm::Value *args[] = {src, dstVal}; 7685 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7686 args, "weakassign"); 7687 } 7688 7689 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7690 CodeGen::CodeGenFunction &CGF, Address DestPtr, Address SrcPtr, 7691 llvm::Value *Size) { 7692 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7693 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7694 } 7695 7696 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7697 /// object: objc_read_weak (id *src) 7698 /// 7699 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7700 CodeGen::CodeGenFunction &CGF, 7701 Address AddrWeakObj) { 7702 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7703 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast( 7704 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy); 7705 llvm::Value *read_weak = 7706 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7707 AddrWeakObjVal, "weakread"); 7708 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7709 return read_weak; 7710 } 7711 7712 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7713 /// objc_assign_weak (id src, id *dst) 7714 /// 7715 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7716 llvm::Value *src, Address dst) { 7717 llvm::Type * SrcTy = src->getType(); 7718 if (!isa<llvm::PointerType>(SrcTy)) { 7719 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7720 assert(Size <= 8 && "does not support size > 8"); 7721 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7722 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7723 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7724 } 7725 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7726 llvm::Value *dstVal = 7727 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7728 llvm::Value *args[] = {src, dstVal}; 7729 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7730 args, "weakassign"); 7731 } 7732 7733 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7734 /// objc_assign_global (id src, id *dst) 7735 /// 7736 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7737 llvm::Value *src, Address dst, 7738 bool threadlocal) { 7739 llvm::Type * SrcTy = src->getType(); 7740 if (!isa<llvm::PointerType>(SrcTy)) { 7741 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7742 assert(Size <= 8 && "does not support size > 8"); 7743 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7744 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7745 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7746 } 7747 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7748 llvm::Value *dstVal = 7749 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7750 llvm::Value *args[] = {src, dstVal}; 7751 if (!threadlocal) 7752 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7753 args, "globalassign"); 7754 else 7755 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7756 args, "threadlocalassign"); 7757 } 7758 7759 void 7760 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7761 const ObjCAtSynchronizedStmt &S) { 7762 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7763 ObjCTypes.getSyncExitFn()); 7764 } 7765 7766 llvm::Constant * 7767 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7768 // There's a particular fixed type info for 'id'. 7769 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7770 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7771 if (!IDEHType) { 7772 IDEHType = 7773 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7774 llvm::GlobalValue::ExternalLinkage, nullptr, 7775 "OBJC_EHTYPE_id"); 7776 if (CGM.getTriple().isOSBinFormatCOFF()) 7777 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7778 } 7779 return IDEHType; 7780 } 7781 7782 // All other types should be Objective-C interface pointer types. 7783 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7784 assert(PT && "Invalid @catch type."); 7785 7786 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7787 assert(IT && "Invalid @catch type."); 7788 7789 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7790 } 7791 7792 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7793 const ObjCAtTryStmt &S) { 7794 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7795 ObjCTypes.getObjCEndCatchFn(), 7796 ObjCTypes.getExceptionRethrowFn()); 7797 } 7798 7799 /// EmitThrowStmt - Generate code for a throw statement. 7800 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7801 const ObjCAtThrowStmt &S, 7802 bool ClearInsertionPoint) { 7803 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7804 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7805 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7806 llvm::CallBase *Call = 7807 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7808 Call->setDoesNotReturn(); 7809 } else { 7810 llvm::CallBase *Call = 7811 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7812 Call->setDoesNotReturn(); 7813 } 7814 7815 CGF.Builder.CreateUnreachable(); 7816 if (ClearInsertionPoint) 7817 CGF.Builder.ClearInsertionPoint(); 7818 } 7819 7820 llvm::Constant * 7821 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7822 ForDefinition_t IsForDefinition) { 7823 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7824 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7825 7826 // If we don't need a definition, return the entry if found or check 7827 // if we use an external reference. 7828 if (!IsForDefinition) { 7829 if (Entry) 7830 return Entry; 7831 7832 // If this type (or a super class) has the __objc_exception__ 7833 // attribute, emit an external reference. 7834 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7835 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7836 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7837 false, llvm::GlobalValue::ExternalLinkage, 7838 nullptr, EHTypeName); 7839 CGM.setGVProperties(Entry, ID); 7840 return Entry; 7841 } 7842 } 7843 7844 // Otherwise we need to either make a new entry or fill in the initializer. 7845 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7846 7847 std::string VTableName = "objc_ehtype_vtable"; 7848 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7849 if (!VTableGV) { 7850 VTableGV = 7851 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7852 llvm::GlobalValue::ExternalLinkage, nullptr, 7853 VTableName); 7854 if (CGM.getTriple().isOSBinFormatCOFF()) 7855 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7856 } 7857 7858 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7859 ConstantInitBuilder builder(CGM); 7860 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7861 values.add( 7862 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7863 VTableGV, VTableIdx)); 7864 values.add(GetClassName(ClassName)); 7865 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7866 7867 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7868 ? llvm::GlobalValue::ExternalLinkage 7869 : llvm::GlobalValue::WeakAnyLinkage; 7870 if (Entry) { 7871 values.finishAndSetAsInitializer(Entry); 7872 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7873 } else { 7874 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7875 CGM.getPointerAlign(), 7876 /*constant*/ false, 7877 L); 7878 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7879 CGM.setGVProperties(Entry, ID); 7880 } 7881 assert(Entry->getLinkage() == L); 7882 7883 if (!CGM.getTriple().isOSBinFormatCOFF()) 7884 if (ID->getVisibility() == HiddenVisibility) 7885 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7886 7887 if (IsForDefinition) 7888 if (CGM.getTriple().isOSBinFormatMachO()) 7889 Entry->setSection("__DATA,__objc_const"); 7890 7891 return Entry; 7892 } 7893 7894 /* *** */ 7895 7896 CodeGen::CGObjCRuntime * 7897 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7898 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7899 case ObjCRuntime::FragileMacOSX: 7900 return new CGObjCMac(CGM); 7901 7902 case ObjCRuntime::MacOSX: 7903 case ObjCRuntime::iOS: 7904 case ObjCRuntime::WatchOS: 7905 return new CGObjCNonFragileABIMac(CGM); 7906 7907 case ObjCRuntime::GNUstep: 7908 case ObjCRuntime::GCC: 7909 case ObjCRuntime::ObjFW: 7910 llvm_unreachable("these runtimes are not Mac runtimes"); 7911 } 7912 llvm_unreachable("bad runtime"); 7913 } 7914