1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/CachedHashString.h" 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/UniqueVector.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/ScopedPrinter.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cstdio> 44 45 using namespace clang; 46 using namespace CodeGen; 47 48 namespace { 49 50 // FIXME: We should find a nicer way to make the labels for metadata, string 51 // concatenation is lame. 52 53 class ObjCCommonTypesHelper { 54 protected: 55 llvm::LLVMContext &VMContext; 56 57 private: 58 // The types of these functions don't really matter because we 59 // should always bitcast before calling them. 60 61 /// id objc_msgSend (id, SEL, ...) 62 /// 63 /// The default messenger, used for sends whose ABI is unchanged from 64 /// the all-integer/pointer case. 65 llvm::FunctionCallee getMessageSendFn() const { 66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 67 // be called a lot. 68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 69 return CGM.CreateRuntimeFunction( 70 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 71 llvm::AttributeList::get(CGM.getLLVMContext(), 72 llvm::AttributeList::FunctionIndex, 73 llvm::Attribute::NonLazyBind)); 74 } 75 76 /// void objc_msgSend_stret (id, SEL, ...) 77 /// 78 /// The messenger used when the return value is an aggregate returned 79 /// by indirect reference in the first argument, and therefore the 80 /// self and selector parameters are shifted over by one. 81 llvm::FunctionCallee getMessageSendStretFn() const { 82 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 83 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 84 params, true), 85 "objc_msgSend_stret"); 86 } 87 88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 89 /// 90 /// The messenger used when the return value is returned on the x87 91 /// floating-point stack; without a special entrypoint, the nil case 92 /// would be unbalanced. 93 llvm::FunctionCallee getMessageSendFpretFn() const { 94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 95 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 96 params, true), 97 "objc_msgSend_fpret"); 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::FunctionCallee getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::FunctionCallee getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::FunctionCallee getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::FunctionCallee getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::PointerType *Int8PtrProgramASTy; 178 llvm::Type *IvarOffsetVarTy; 179 180 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 181 llvm::PointerType *ObjectPtrTy; 182 183 /// PtrObjectPtrTy - LLVM type for id * 184 llvm::PointerType *PtrObjectPtrTy; 185 186 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 187 llvm::PointerType *SelectorPtrTy; 188 189 private: 190 /// ProtocolPtrTy - LLVM type for external protocol handles 191 /// (typeof(Protocol)) 192 llvm::Type *ExternalProtocolPtrTy; 193 194 public: 195 llvm::Type *getExternalProtocolPtrTy() { 196 if (!ExternalProtocolPtrTy) { 197 // FIXME: It would be nice to unify this with the opaque type, so that the 198 // IR comes out a bit cleaner. 199 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 200 ASTContext &Ctx = CGM.getContext(); 201 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 202 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 203 } 204 205 return ExternalProtocolPtrTy; 206 } 207 208 // SuperCTy - clang type for struct objc_super. 209 QualType SuperCTy; 210 // SuperPtrCTy - clang type for struct objc_super *. 211 QualType SuperPtrCTy; 212 213 /// SuperTy - LLVM type for struct objc_super. 214 llvm::StructType *SuperTy; 215 /// SuperPtrTy - LLVM type for struct objc_super *. 216 llvm::PointerType *SuperPtrTy; 217 218 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 219 /// in GCC parlance). 220 llvm::StructType *PropertyTy; 221 222 /// PropertyListTy - LLVM type for struct objc_property_list 223 /// (_prop_list_t in GCC parlance). 224 llvm::StructType *PropertyListTy; 225 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 226 llvm::PointerType *PropertyListPtrTy; 227 228 // MethodTy - LLVM type for struct objc_method. 229 llvm::StructType *MethodTy; 230 231 /// CacheTy - LLVM type for struct objc_cache. 232 llvm::Type *CacheTy; 233 /// CachePtrTy - LLVM type for struct objc_cache *. 234 llvm::PointerType *CachePtrTy; 235 236 llvm::FunctionCallee getGetPropertyFn() { 237 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 238 ASTContext &Ctx = CGM.getContext(); 239 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 240 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 241 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 242 CanQualType Params[] = { 243 IdType, SelType, 244 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 245 llvm::FunctionType *FTy = 246 Types.GetFunctionType( 247 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 248 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 249 } 250 251 llvm::FunctionCallee getSetPropertyFn() { 252 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 253 ASTContext &Ctx = CGM.getContext(); 254 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 255 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 256 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 257 CanQualType Params[] = { 258 IdType, 259 SelType, 260 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 261 IdType, 262 Ctx.BoolTy, 263 Ctx.BoolTy}; 264 llvm::FunctionType *FTy = 265 Types.GetFunctionType( 266 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 267 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 268 } 269 270 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 271 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 272 ASTContext &Ctx = CGM.getContext(); 273 // void objc_setProperty_atomic(id self, SEL _cmd, 274 // id newValue, ptrdiff_t offset); 275 // void objc_setProperty_nonatomic(id self, SEL _cmd, 276 // id newValue, ptrdiff_t offset); 277 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 278 // id newValue, ptrdiff_t offset); 279 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 280 // id newValue, ptrdiff_t offset); 281 282 SmallVector<CanQualType,4> Params; 283 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 284 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 285 Params.push_back(IdType); 286 Params.push_back(SelType); 287 Params.push_back(IdType); 288 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 289 llvm::FunctionType *FTy = 290 Types.GetFunctionType( 291 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 292 const char *name; 293 if (atomic && copy) 294 name = "objc_setProperty_atomic_copy"; 295 else if (atomic && !copy) 296 name = "objc_setProperty_atomic"; 297 else if (!atomic && copy) 298 name = "objc_setProperty_nonatomic_copy"; 299 else 300 name = "objc_setProperty_nonatomic"; 301 302 return CGM.CreateRuntimeFunction(FTy, name); 303 } 304 305 llvm::FunctionCallee getCopyStructFn() { 306 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 307 ASTContext &Ctx = CGM.getContext(); 308 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 309 SmallVector<CanQualType,5> Params; 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.VoidPtrTy); 312 Params.push_back(Ctx.getSizeType()); 313 Params.push_back(Ctx.BoolTy); 314 Params.push_back(Ctx.BoolTy); 315 llvm::FunctionType *FTy = 316 Types.GetFunctionType( 317 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 318 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 319 } 320 321 /// This routine declares and returns address of: 322 /// void objc_copyCppObjectAtomic( 323 /// void *dest, const void *src, 324 /// void (*copyHelper) (void *dest, const void *source)); 325 llvm::FunctionCallee getCppAtomicObjectFunction() { 326 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 327 ASTContext &Ctx = CGM.getContext(); 328 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 329 SmallVector<CanQualType,3> Params; 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 Params.push_back(Ctx.VoidPtrTy); 333 llvm::FunctionType *FTy = 334 Types.GetFunctionType( 335 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 336 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 337 } 338 339 llvm::FunctionCallee getEnumerationMutationFn() { 340 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 341 ASTContext &Ctx = CGM.getContext(); 342 // void objc_enumerationMutation (id) 343 SmallVector<CanQualType,1> Params; 344 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 345 llvm::FunctionType *FTy = 346 Types.GetFunctionType( 347 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 348 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 349 } 350 351 llvm::FunctionCallee getLookUpClassFn() { 352 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 353 ASTContext &Ctx = CGM.getContext(); 354 // Class objc_lookUpClass (const char *) 355 SmallVector<CanQualType,1> Params; 356 Params.push_back( 357 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 358 llvm::FunctionType *FTy = 359 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 360 Ctx.getCanonicalType(Ctx.getObjCClassType()), 361 Params)); 362 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 363 } 364 365 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 366 llvm::FunctionCallee getGcReadWeakFn() { 367 // id objc_read_weak (id *) 368 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 369 llvm::FunctionType *FTy = 370 llvm::FunctionType::get(ObjectPtrTy, args, false); 371 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 372 } 373 374 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 375 llvm::FunctionCallee getGcAssignWeakFn() { 376 // id objc_assign_weak (id, id *) 377 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 378 llvm::FunctionType *FTy = 379 llvm::FunctionType::get(ObjectPtrTy, args, false); 380 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 381 } 382 383 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 384 llvm::FunctionCallee getGcAssignGlobalFn() { 385 // id objc_assign_global(id, id *) 386 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 387 llvm::FunctionType *FTy = 388 llvm::FunctionType::get(ObjectPtrTy, args, false); 389 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 390 } 391 392 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 393 llvm::FunctionCallee getGcAssignThreadLocalFn() { 394 // id objc_assign_threadlocal(id src, id * dest) 395 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 396 llvm::FunctionType *FTy = 397 llvm::FunctionType::get(ObjectPtrTy, args, false); 398 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 399 } 400 401 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 402 llvm::FunctionCallee getGcAssignIvarFn() { 403 // id objc_assign_ivar(id, id *, ptrdiff_t) 404 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 405 CGM.PtrDiffTy }; 406 llvm::FunctionType *FTy = 407 llvm::FunctionType::get(ObjectPtrTy, args, false); 408 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 409 } 410 411 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 412 llvm::FunctionCallee GcMemmoveCollectableFn() { 413 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 414 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 415 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 416 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 417 } 418 419 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 420 llvm::FunctionCallee getGcAssignStrongCastFn() { 421 // id objc_assign_strongCast(id, id *) 422 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 423 llvm::FunctionType *FTy = 424 llvm::FunctionType::get(ObjectPtrTy, args, false); 425 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 426 } 427 428 /// ExceptionThrowFn - LLVM objc_exception_throw function. 429 llvm::FunctionCallee getExceptionThrowFn() { 430 // void objc_exception_throw(id) 431 llvm::Type *args[] = { ObjectPtrTy }; 432 llvm::FunctionType *FTy = 433 llvm::FunctionType::get(CGM.VoidTy, args, false); 434 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 435 } 436 437 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 438 llvm::FunctionCallee getExceptionRethrowFn() { 439 // void objc_exception_rethrow(void) 440 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 441 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 442 } 443 444 /// SyncEnterFn - LLVM object_sync_enter function. 445 llvm::FunctionCallee getSyncEnterFn() { 446 // int objc_sync_enter (id) 447 llvm::Type *args[] = { ObjectPtrTy }; 448 llvm::FunctionType *FTy = 449 llvm::FunctionType::get(CGM.IntTy, args, false); 450 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 451 } 452 453 /// SyncExitFn - LLVM object_sync_exit function. 454 llvm::FunctionCallee getSyncExitFn() { 455 // int objc_sync_exit (id) 456 llvm::Type *args[] = { ObjectPtrTy }; 457 llvm::FunctionType *FTy = 458 llvm::FunctionType::get(CGM.IntTy, args, false); 459 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 460 } 461 462 llvm::FunctionCallee getSendFn(bool IsSuper) const { 463 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 464 } 465 466 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 467 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 468 } 469 470 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 471 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 472 } 473 474 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 475 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 476 } 477 478 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 479 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 480 } 481 482 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 483 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 484 } 485 486 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 487 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 488 } 489 490 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 491 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 492 } 493 494 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 495 }; 496 497 /// ObjCTypesHelper - Helper class that encapsulates lazy 498 /// construction of varies types used during ObjC generation. 499 class ObjCTypesHelper : public ObjCCommonTypesHelper { 500 public: 501 /// SymtabTy - LLVM type for struct objc_symtab. 502 llvm::StructType *SymtabTy; 503 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 504 llvm::PointerType *SymtabPtrTy; 505 /// ModuleTy - LLVM type for struct objc_module. 506 llvm::StructType *ModuleTy; 507 508 /// ProtocolTy - LLVM type for struct objc_protocol. 509 llvm::StructType *ProtocolTy; 510 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 511 llvm::PointerType *ProtocolPtrTy; 512 /// ProtocolExtensionTy - LLVM type for struct 513 /// objc_protocol_extension. 514 llvm::StructType *ProtocolExtensionTy; 515 /// ProtocolExtensionTy - LLVM type for struct 516 /// objc_protocol_extension *. 517 llvm::PointerType *ProtocolExtensionPtrTy; 518 /// MethodDescriptionTy - LLVM type for struct 519 /// objc_method_description. 520 llvm::StructType *MethodDescriptionTy; 521 /// MethodDescriptionListTy - LLVM type for struct 522 /// objc_method_description_list. 523 llvm::StructType *MethodDescriptionListTy; 524 /// MethodDescriptionListPtrTy - LLVM type for struct 525 /// objc_method_description_list *. 526 llvm::PointerType *MethodDescriptionListPtrTy; 527 /// ProtocolListTy - LLVM type for struct objc_property_list. 528 llvm::StructType *ProtocolListTy; 529 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 530 llvm::PointerType *ProtocolListPtrTy; 531 /// CategoryTy - LLVM type for struct objc_category. 532 llvm::StructType *CategoryTy; 533 /// ClassTy - LLVM type for struct objc_class. 534 llvm::StructType *ClassTy; 535 /// ClassPtrTy - LLVM type for struct objc_class *. 536 llvm::PointerType *ClassPtrTy; 537 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 538 llvm::StructType *ClassExtensionTy; 539 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 540 llvm::PointerType *ClassExtensionPtrTy; 541 // IvarTy - LLVM type for struct objc_ivar. 542 llvm::StructType *IvarTy; 543 /// IvarListTy - LLVM type for struct objc_ivar_list. 544 llvm::StructType *IvarListTy; 545 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 546 llvm::PointerType *IvarListPtrTy; 547 /// MethodListTy - LLVM type for struct objc_method_list. 548 llvm::StructType *MethodListTy; 549 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 550 llvm::PointerType *MethodListPtrTy; 551 552 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 553 llvm::StructType *ExceptionDataTy; 554 555 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 556 llvm::FunctionCallee getExceptionTryEnterFn() { 557 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 558 return CGM.CreateRuntimeFunction( 559 llvm::FunctionType::get(CGM.VoidTy, params, false), 560 "objc_exception_try_enter"); 561 } 562 563 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 564 llvm::FunctionCallee getExceptionTryExitFn() { 565 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 566 return CGM.CreateRuntimeFunction( 567 llvm::FunctionType::get(CGM.VoidTy, params, false), 568 "objc_exception_try_exit"); 569 } 570 571 /// ExceptionExtractFn - LLVM objc_exception_extract function. 572 llvm::FunctionCallee getExceptionExtractFn() { 573 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 574 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 575 params, false), 576 "objc_exception_extract"); 577 } 578 579 /// ExceptionMatchFn - LLVM objc_exception_match function. 580 llvm::FunctionCallee getExceptionMatchFn() { 581 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 582 return CGM.CreateRuntimeFunction( 583 llvm::FunctionType::get(CGM.Int32Ty, params, false), 584 "objc_exception_match"); 585 } 586 587 /// SetJmpFn - LLVM _setjmp function. 588 llvm::FunctionCallee getSetJmpFn() { 589 // This is specifically the prototype for x86. 590 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 591 return CGM.CreateRuntimeFunction( 592 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 593 llvm::AttributeList::get(CGM.getLLVMContext(), 594 llvm::AttributeList::FunctionIndex, 595 llvm::Attribute::NonLazyBind)); 596 } 597 598 public: 599 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 600 }; 601 602 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 603 /// modern abi 604 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 605 public: 606 // MethodListnfABITy - LLVM for struct _method_list_t 607 llvm::StructType *MethodListnfABITy; 608 609 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 610 llvm::PointerType *MethodListnfABIPtrTy; 611 612 // ProtocolnfABITy = LLVM for struct _protocol_t 613 llvm::StructType *ProtocolnfABITy; 614 615 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 616 llvm::PointerType *ProtocolnfABIPtrTy; 617 618 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 619 llvm::StructType *ProtocolListnfABITy; 620 621 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 622 llvm::PointerType *ProtocolListnfABIPtrTy; 623 624 // ClassnfABITy - LLVM for struct _class_t 625 llvm::StructType *ClassnfABITy; 626 627 // ClassnfABIPtrTy - LLVM for struct _class_t* 628 llvm::PointerType *ClassnfABIPtrTy; 629 630 // IvarnfABITy - LLVM for struct _ivar_t 631 llvm::StructType *IvarnfABITy; 632 633 // IvarListnfABITy - LLVM for struct _ivar_list_t 634 llvm::StructType *IvarListnfABITy; 635 636 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 637 llvm::PointerType *IvarListnfABIPtrTy; 638 639 // ClassRonfABITy - LLVM for struct _class_ro_t 640 llvm::StructType *ClassRonfABITy; 641 642 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 643 llvm::PointerType *ImpnfABITy; 644 645 // CategorynfABITy - LLVM for struct _category_t 646 llvm::StructType *CategorynfABITy; 647 648 // New types for nonfragile abi messaging. 649 650 // MessageRefTy - LLVM for: 651 // struct _message_ref_t { 652 // IMP messenger; 653 // SEL name; 654 // }; 655 llvm::StructType *MessageRefTy; 656 // MessageRefCTy - clang type for struct _message_ref_t 657 QualType MessageRefCTy; 658 659 // MessageRefPtrTy - LLVM for struct _message_ref_t* 660 llvm::Type *MessageRefPtrTy; 661 // MessageRefCPtrTy - clang type for struct _message_ref_t* 662 QualType MessageRefCPtrTy; 663 664 // SuperMessageRefTy - LLVM for: 665 // struct _super_message_ref_t { 666 // SUPER_IMP messenger; 667 // SEL name; 668 // }; 669 llvm::StructType *SuperMessageRefTy; 670 671 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 672 llvm::PointerType *SuperMessageRefPtrTy; 673 674 llvm::FunctionCallee getMessageSendFixupFn() { 675 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 676 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 677 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 678 params, true), 679 "objc_msgSend_fixup"); 680 } 681 682 llvm::FunctionCallee getMessageSendFpretFixupFn() { 683 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 684 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 685 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 686 params, true), 687 "objc_msgSend_fpret_fixup"); 688 } 689 690 llvm::FunctionCallee getMessageSendStretFixupFn() { 691 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 692 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 693 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 694 params, true), 695 "objc_msgSend_stret_fixup"); 696 } 697 698 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 699 // id objc_msgSendSuper2_fixup (struct objc_super *, 700 // struct _super_message_ref_t*, ...) 701 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 702 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 703 params, true), 704 "objc_msgSendSuper2_fixup"); 705 } 706 707 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 708 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 709 // struct _super_message_ref_t*, ...) 710 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 711 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 712 params, true), 713 "objc_msgSendSuper2_stret_fixup"); 714 } 715 716 llvm::FunctionCallee getObjCEndCatchFn() { 717 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 718 "objc_end_catch"); 719 } 720 721 llvm::FunctionCallee getObjCBeginCatchFn() { 722 llvm::Type *params[] = { Int8PtrTy }; 723 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 724 params, false), 725 "objc_begin_catch"); 726 } 727 728 /// Class objc_loadClassref (void *) 729 /// 730 /// Loads from a classref. For Objective-C stub classes, this invokes the 731 /// initialization callback stored inside the stub. For all other classes 732 /// this simply dereferences the pointer. 733 llvm::FunctionCallee getLoadClassrefFn() const { 734 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 735 // be called a lot. 736 // 737 // Also it is safe to make it readnone, since we never load or store the 738 // classref except by calling this function. 739 llvm::Type *params[] = { Int8PtrPtrTy }; 740 llvm::LLVMContext &C = CGM.getLLVMContext(); 741 llvm::AttributeSet AS = llvm::AttributeSet::get(C, { 742 llvm::Attribute::get(C, llvm::Attribute::NonLazyBind), 743 llvm::Attribute::getWithMemoryEffects(C, llvm::MemoryEffects::none()), 744 llvm::Attribute::get(C, llvm::Attribute::NoUnwind), 745 }); 746 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 747 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 748 "objc_loadClassref", 749 llvm::AttributeList::get(CGM.getLLVMContext(), 750 llvm::AttributeList::FunctionIndex, AS)); 751 if (!CGM.getTriple().isOSBinFormatCOFF()) 752 cast<llvm::Function>(F.getCallee())->setLinkage( 753 llvm::Function::ExternalWeakLinkage); 754 755 return F; 756 } 757 758 llvm::StructType *EHTypeTy; 759 llvm::Type *EHTypePtrTy; 760 761 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 762 }; 763 764 enum class ObjCLabelType { 765 ClassName, 766 MethodVarName, 767 MethodVarType, 768 PropertyName, 769 }; 770 771 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 772 public: 773 class SKIP_SCAN { 774 public: 775 unsigned skip; 776 unsigned scan; 777 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 778 : skip(_skip), scan(_scan) {} 779 }; 780 781 /// opcode for captured block variables layout 'instructions'. 782 /// In the following descriptions, 'I' is the value of the immediate field. 783 /// (field following the opcode). 784 /// 785 enum BLOCK_LAYOUT_OPCODE { 786 /// An operator which affects how the following layout should be 787 /// interpreted. 788 /// I == 0: Halt interpretation and treat everything else as 789 /// a non-pointer. Note that this instruction is equal 790 /// to '\0'. 791 /// I != 0: Currently unused. 792 BLOCK_LAYOUT_OPERATOR = 0, 793 794 /// The next I+1 bytes do not contain a value of object pointer type. 795 /// Note that this can leave the stream unaligned, meaning that 796 /// subsequent word-size instructions do not begin at a multiple of 797 /// the pointer size. 798 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 799 800 /// The next I+1 words do not contain a value of object pointer type. 801 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 802 /// when the required skip quantity is a multiple of the pointer size. 803 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 804 805 /// The next I+1 words are __strong pointers to Objective-C 806 /// objects or blocks. 807 BLOCK_LAYOUT_STRONG = 3, 808 809 /// The next I+1 words are pointers to __block variables. 810 BLOCK_LAYOUT_BYREF = 4, 811 812 /// The next I+1 words are __weak pointers to Objective-C 813 /// objects or blocks. 814 BLOCK_LAYOUT_WEAK = 5, 815 816 /// The next I+1 words are __unsafe_unretained pointers to 817 /// Objective-C objects or blocks. 818 BLOCK_LAYOUT_UNRETAINED = 6 819 820 /// The next I+1 words are block or object pointers with some 821 /// as-yet-unspecified ownership semantics. If we add more 822 /// flavors of ownership semantics, values will be taken from 823 /// this range. 824 /// 825 /// This is included so that older tools can at least continue 826 /// processing the layout past such things. 827 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 828 829 /// All other opcodes are reserved. Halt interpretation and 830 /// treat everything else as opaque. 831 }; 832 833 class RUN_SKIP { 834 public: 835 enum BLOCK_LAYOUT_OPCODE opcode; 836 CharUnits block_var_bytepos; 837 CharUnits block_var_size; 838 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 839 CharUnits BytePos = CharUnits::Zero(), 840 CharUnits Size = CharUnits::Zero()) 841 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 842 843 // Allow sorting based on byte pos. 844 bool operator<(const RUN_SKIP &b) const { 845 return block_var_bytepos < b.block_var_bytepos; 846 } 847 }; 848 849 protected: 850 llvm::LLVMContext &VMContext; 851 // FIXME! May not be needing this after all. 852 unsigned ObjCABI; 853 854 // arc/mrr layout of captured block literal variables. 855 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 856 857 /// LazySymbols - Symbols to generate a lazy reference for. See 858 /// DefinedSymbols and FinishModule(). 859 llvm::SetVector<IdentifierInfo*> LazySymbols; 860 861 /// DefinedSymbols - External symbols which are defined by this 862 /// module. The symbols in this list and LazySymbols are used to add 863 /// special linker symbols which ensure that Objective-C modules are 864 /// linked properly. 865 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 866 867 /// ClassNames - uniqued class names. 868 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 869 870 /// MethodVarNames - uniqued method variable names. 871 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 872 873 /// DefinedCategoryNames - list of category names in form Class_Category. 874 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 875 876 /// MethodVarTypes - uniqued method type signatures. We have to use 877 /// a StringMap here because have no other unique reference. 878 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 879 880 /// MethodDefinitions - map of methods which have been defined in 881 /// this translation unit. 882 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 883 884 /// DirectMethodDefinitions - map of direct methods which have been defined in 885 /// this translation unit. 886 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 887 888 /// PropertyNames - uniqued method variable names. 889 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 890 891 /// ClassReferences - uniqued class references. 892 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 893 894 /// SelectorReferences - uniqued selector references. 895 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 896 897 /// Protocols - Protocols for which an objc_protocol structure has 898 /// been emitted. Forward declarations are handled by creating an 899 /// empty structure whose initializer is filled in when/if defined. 900 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 901 902 /// DefinedProtocols - Protocols which have actually been 903 /// defined. We should not need this, see FIXME in GenerateProtocol. 904 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 905 906 /// DefinedClasses - List of defined classes. 907 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 908 909 /// ImplementedClasses - List of @implemented classes. 910 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 911 912 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 913 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 914 915 /// DefinedCategories - List of defined categories. 916 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 917 918 /// DefinedStubCategories - List of defined categories on class stubs. 919 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 920 921 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 922 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 923 924 /// Cached reference to the class for constant strings. This value has type 925 /// int * but is actually an Obj-C class pointer. 926 llvm::WeakTrackingVH ConstantStringClassRef; 927 928 /// The LLVM type corresponding to NSConstantString. 929 llvm::StructType *NSConstantStringType = nullptr; 930 931 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 932 933 /// GetMethodVarName - Return a unique constant for the given 934 /// selector's name. The return value has type char *. 935 llvm::Constant *GetMethodVarName(Selector Sel); 936 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 937 938 /// GetMethodVarType - Return a unique constant for the given 939 /// method's type encoding string. The return value has type char *. 940 941 // FIXME: This is a horrible name. 942 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 943 bool Extended = false); 944 llvm::Constant *GetMethodVarType(const FieldDecl *D); 945 946 /// GetPropertyName - Return a unique constant for the given 947 /// name. The return value has type char *. 948 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 949 950 // FIXME: This can be dropped once string functions are unified. 951 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 952 const Decl *Container); 953 954 /// GetClassName - Return a unique constant for the given selector's 955 /// runtime name (which may change via use of objc_runtime_name attribute on 956 /// class or protocol definition. The return value has type char *. 957 llvm::Constant *GetClassName(StringRef RuntimeName); 958 959 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 960 961 /// BuildIvarLayout - Builds ivar layout bitmap for the class 962 /// implementation for the __strong or __weak case. 963 /// 964 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 965 /// are any weak ivars defined directly in the class. Meaningless unless 966 /// building a weak layout. Does not guarantee that the layout will 967 /// actually have any entries, because the ivar might be under-aligned. 968 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 969 CharUnits beginOffset, 970 CharUnits endOffset, 971 bool forStrongLayout, 972 bool hasMRCWeakIvars); 973 974 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 975 CharUnits beginOffset, 976 CharUnits endOffset) { 977 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 978 } 979 980 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 981 CharUnits beginOffset, 982 CharUnits endOffset, 983 bool hasMRCWeakIvars) { 984 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 985 } 986 987 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 988 989 void UpdateRunSkipBlockVars(bool IsByref, 990 Qualifiers::ObjCLifetime LifeTime, 991 CharUnits FieldOffset, 992 CharUnits FieldSize); 993 994 void BuildRCBlockVarRecordLayout(const RecordType *RT, 995 CharUnits BytePos, bool &HasUnion, 996 bool ByrefLayout=false); 997 998 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 999 const RecordDecl *RD, 1000 ArrayRef<const FieldDecl*> RecFields, 1001 CharUnits BytePos, bool &HasUnion, 1002 bool ByrefLayout); 1003 1004 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1005 1006 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1007 1008 /// GetIvarLayoutName - Returns a unique constant for the given 1009 /// ivar layout bitmap. 1010 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1011 const ObjCCommonTypesHelper &ObjCTypes); 1012 1013 /// EmitPropertyList - Emit the given property list. The return 1014 /// value has type PropertyListPtrTy. 1015 llvm::Constant *EmitPropertyList(Twine Name, 1016 const Decl *Container, 1017 const ObjCContainerDecl *OCD, 1018 const ObjCCommonTypesHelper &ObjCTypes, 1019 bool IsClassProperty); 1020 1021 /// EmitProtocolMethodTypes - Generate the array of extended method type 1022 /// strings. The return value has type Int8PtrPtrTy. 1023 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1024 ArrayRef<llvm::Constant*> MethodTypes, 1025 const ObjCCommonTypesHelper &ObjCTypes); 1026 1027 /// GetProtocolRef - Return a reference to the internal protocol 1028 /// description, creating an empty one if it has not been 1029 /// defined. The return value has type ProtocolPtrTy. 1030 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1031 1032 /// Return a reference to the given Class using runtime calls rather than 1033 /// by a symbol reference. 1034 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1035 const ObjCInterfaceDecl *ID, 1036 ObjCCommonTypesHelper &ObjCTypes); 1037 1038 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1039 1040 public: 1041 /// CreateMetadataVar - Create a global variable with internal 1042 /// linkage for use by the Objective-C runtime. 1043 /// 1044 /// This is a convenience wrapper which not only creates the 1045 /// variable, but also sets the section and alignment and adds the 1046 /// global to the "llvm.used" list. 1047 /// 1048 /// \param Name - The variable name. 1049 /// \param Init - The variable initializer; this is also used to 1050 /// define the type of the variable. 1051 /// \param Section - The section the variable should go into, or empty. 1052 /// \param Align - The alignment for the variable, or 0. 1053 /// \param AddToUsed - Whether the variable should be added to 1054 /// "llvm.used". 1055 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1056 ConstantStructBuilder &Init, 1057 StringRef Section, CharUnits Align, 1058 bool AddToUsed); 1059 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1060 llvm::Constant *Init, 1061 StringRef Section, CharUnits Align, 1062 bool AddToUsed); 1063 1064 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1065 ObjCLabelType LabelType, 1066 bool ForceNonFragileABI = false, 1067 bool NullTerminate = true); 1068 1069 protected: 1070 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1071 ReturnValueSlot Return, 1072 QualType ResultType, 1073 Selector Sel, 1074 llvm::Value *Arg0, 1075 QualType Arg0Ty, 1076 bool IsSuper, 1077 const CallArgList &CallArgs, 1078 const ObjCMethodDecl *OMD, 1079 const ObjCInterfaceDecl *ClassReceiver, 1080 const ObjCCommonTypesHelper &ObjCTypes); 1081 1082 /// EmitImageInfo - Emit the image info marker used to encode some module 1083 /// level information. 1084 void EmitImageInfo(); 1085 1086 public: 1087 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) 1088 : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {} 1089 1090 bool isNonFragileABI() const { 1091 return ObjCABI == 2; 1092 } 1093 1094 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1095 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1096 1097 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1098 const ObjCContainerDecl *CD=nullptr) override; 1099 1100 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1101 const ObjCContainerDecl *CD); 1102 1103 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1104 const ObjCMethodDecl *OMD, 1105 const ObjCContainerDecl *CD) override; 1106 1107 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1108 1109 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1110 /// object for the given declaration, emitting it if needed. These 1111 /// forward references will be filled in with empty bodies if no 1112 /// definition is seen. The return value has type ProtocolPtrTy. 1113 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1114 1115 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1116 1117 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1118 const CGBlockInfo &blockInfo) override; 1119 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1120 const CGBlockInfo &blockInfo) override; 1121 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1122 const CGBlockInfo &blockInfo) override; 1123 1124 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1125 QualType T) override; 1126 1127 private: 1128 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1129 }; 1130 1131 namespace { 1132 1133 enum class MethodListType { 1134 CategoryInstanceMethods, 1135 CategoryClassMethods, 1136 InstanceMethods, 1137 ClassMethods, 1138 ProtocolInstanceMethods, 1139 ProtocolClassMethods, 1140 OptionalProtocolInstanceMethods, 1141 OptionalProtocolClassMethods, 1142 }; 1143 1144 /// A convenience class for splitting the methods of a protocol into 1145 /// the four interesting groups. 1146 class ProtocolMethodLists { 1147 public: 1148 enum Kind { 1149 RequiredInstanceMethods, 1150 RequiredClassMethods, 1151 OptionalInstanceMethods, 1152 OptionalClassMethods 1153 }; 1154 enum { 1155 NumProtocolMethodLists = 4 1156 }; 1157 1158 static MethodListType getMethodListKind(Kind kind) { 1159 switch (kind) { 1160 case RequiredInstanceMethods: 1161 return MethodListType::ProtocolInstanceMethods; 1162 case RequiredClassMethods: 1163 return MethodListType::ProtocolClassMethods; 1164 case OptionalInstanceMethods: 1165 return MethodListType::OptionalProtocolInstanceMethods; 1166 case OptionalClassMethods: 1167 return MethodListType::OptionalProtocolClassMethods; 1168 } 1169 llvm_unreachable("bad kind"); 1170 } 1171 1172 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1173 1174 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1175 ProtocolMethodLists result; 1176 1177 for (auto *MD : PD->methods()) { 1178 size_t index = (2 * size_t(MD->isOptional())) 1179 + (size_t(MD->isClassMethod())); 1180 result.Methods[index].push_back(MD); 1181 } 1182 1183 return result; 1184 } 1185 1186 template <class Self> 1187 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1188 // In both ABIs, the method types list is parallel with the 1189 // concatenation of the methods arrays in the following order: 1190 // instance methods 1191 // class methods 1192 // optional instance methods 1193 // optional class methods 1194 SmallVector<llvm::Constant*, 8> result; 1195 1196 // Methods is already in the correct order for both ABIs. 1197 for (auto &list : Methods) { 1198 for (auto MD : list) { 1199 result.push_back(self->GetMethodVarType(MD, true)); 1200 } 1201 } 1202 1203 return result; 1204 } 1205 1206 template <class Self> 1207 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1208 Kind kind) const { 1209 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1210 getMethodListKind(kind), Methods[kind]); 1211 } 1212 }; 1213 1214 } // end anonymous namespace 1215 1216 class CGObjCMac : public CGObjCCommonMac { 1217 private: 1218 friend ProtocolMethodLists; 1219 1220 ObjCTypesHelper ObjCTypes; 1221 1222 /// EmitModuleInfo - Another marker encoding module level 1223 /// information. 1224 void EmitModuleInfo(); 1225 1226 /// EmitModuleSymols - Emit module symbols, the list of defined 1227 /// classes and categories. The result has type SymtabPtrTy. 1228 llvm::Constant *EmitModuleSymbols(); 1229 1230 /// FinishModule - Write out global data structures at the end of 1231 /// processing a translation unit. 1232 void FinishModule(); 1233 1234 /// EmitClassExtension - Generate the class extension structure used 1235 /// to store the weak ivar layout and properties. The return value 1236 /// has type ClassExtensionPtrTy. 1237 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1238 CharUnits instanceSize, 1239 bool hasMRCWeakIvars, 1240 bool isMetaclass); 1241 1242 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1243 /// for the given class. 1244 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1245 const ObjCInterfaceDecl *ID); 1246 1247 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1248 IdentifierInfo *II); 1249 1250 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1251 1252 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1253 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1254 1255 /// EmitIvarList - Emit the ivar list for the given 1256 /// implementation. If ForClass is true the list of class ivars 1257 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1258 /// interface ivars will be emitted. The return value has type 1259 /// IvarListPtrTy. 1260 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1261 bool ForClass); 1262 1263 /// EmitMetaClass - Emit a forward reference to the class structure 1264 /// for the metaclass of the given interface. The return value has 1265 /// type ClassPtrTy. 1266 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1267 1268 /// EmitMetaClass - Emit a class structure for the metaclass of the 1269 /// given implementation. The return value has type ClassPtrTy. 1270 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1271 llvm::Constant *Protocols, 1272 ArrayRef<const ObjCMethodDecl *> Methods); 1273 1274 void emitMethodConstant(ConstantArrayBuilder &builder, 1275 const ObjCMethodDecl *MD); 1276 1277 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1278 const ObjCMethodDecl *MD); 1279 1280 /// EmitMethodList - Emit the method list for the given 1281 /// implementation. The return value has type MethodListPtrTy. 1282 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1283 ArrayRef<const ObjCMethodDecl *> Methods); 1284 1285 /// GetOrEmitProtocol - Get the protocol object for the given 1286 /// declaration, emitting it if necessary. The return value has type 1287 /// ProtocolPtrTy. 1288 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1289 1290 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1291 /// object for the given declaration, emitting it if needed. These 1292 /// forward references will be filled in with empty bodies if no 1293 /// definition is seen. The return value has type ProtocolPtrTy. 1294 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1295 1296 /// EmitProtocolExtension - Generate the protocol extension 1297 /// structure used to store optional instance and class methods, and 1298 /// protocol properties. The return value has type 1299 /// ProtocolExtensionPtrTy. 1300 llvm::Constant * 1301 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1302 const ProtocolMethodLists &methodLists); 1303 1304 /// EmitProtocolList - Generate the list of referenced 1305 /// protocols. The return value has type ProtocolListPtrTy. 1306 llvm::Constant *EmitProtocolList(Twine Name, 1307 ObjCProtocolDecl::protocol_iterator begin, 1308 ObjCProtocolDecl::protocol_iterator end); 1309 1310 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1311 /// for the given selector. 1312 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1313 Address EmitSelectorAddr(Selector Sel); 1314 1315 public: 1316 CGObjCMac(CodeGen::CodeGenModule &cgm); 1317 1318 llvm::Constant *getNSConstantStringClassRef() override; 1319 1320 llvm::Function *ModuleInitFunction() override; 1321 1322 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1323 ReturnValueSlot Return, 1324 QualType ResultType, 1325 Selector Sel, llvm::Value *Receiver, 1326 const CallArgList &CallArgs, 1327 const ObjCInterfaceDecl *Class, 1328 const ObjCMethodDecl *Method) override; 1329 1330 CodeGen::RValue 1331 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1332 ReturnValueSlot Return, QualType ResultType, 1333 Selector Sel, const ObjCInterfaceDecl *Class, 1334 bool isCategoryImpl, llvm::Value *Receiver, 1335 bool IsClassMessage, const CallArgList &CallArgs, 1336 const ObjCMethodDecl *Method) override; 1337 1338 llvm::Value *GetClass(CodeGenFunction &CGF, 1339 const ObjCInterfaceDecl *ID) override; 1340 1341 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1342 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1343 1344 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1345 /// untyped one. 1346 llvm::Value *GetSelector(CodeGenFunction &CGF, 1347 const ObjCMethodDecl *Method) override; 1348 1349 llvm::Constant *GetEHType(QualType T) override; 1350 1351 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1352 1353 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1354 1355 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1356 1357 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1358 const ObjCProtocolDecl *PD) override; 1359 1360 llvm::FunctionCallee GetPropertyGetFunction() override; 1361 llvm::FunctionCallee GetPropertySetFunction() override; 1362 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1363 bool copy) override; 1364 llvm::FunctionCallee GetGetStructFunction() override; 1365 llvm::FunctionCallee GetSetStructFunction() override; 1366 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1367 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1368 llvm::FunctionCallee EnumerationMutationFunction() override; 1369 1370 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1371 const ObjCAtTryStmt &S) override; 1372 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1373 const ObjCAtSynchronizedStmt &S) override; 1374 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1375 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1376 bool ClearInsertionPoint=true) override; 1377 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1378 Address AddrWeakObj) override; 1379 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1380 llvm::Value *src, Address dst) override; 1381 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1382 llvm::Value *src, Address dest, 1383 bool threadlocal = false) override; 1384 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1385 llvm::Value *src, Address dest, 1386 llvm::Value *ivarOffset) override; 1387 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1388 llvm::Value *src, Address dest) override; 1389 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1390 Address dest, Address src, 1391 llvm::Value *size) override; 1392 1393 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1394 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1395 unsigned CVRQualifiers) override; 1396 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1397 const ObjCInterfaceDecl *Interface, 1398 const ObjCIvarDecl *Ivar) override; 1399 }; 1400 1401 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1402 private: 1403 friend ProtocolMethodLists; 1404 ObjCNonFragileABITypesHelper ObjCTypes; 1405 llvm::GlobalVariable* ObjCEmptyCacheVar; 1406 llvm::Constant* ObjCEmptyVtableVar; 1407 1408 /// SuperClassReferences - uniqued super class references. 1409 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1410 1411 /// MetaClassReferences - uniqued meta class references. 1412 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1413 1414 /// EHTypeReferences - uniqued class ehtype references. 1415 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1416 1417 /// VTableDispatchMethods - List of methods for which we generate 1418 /// vtable-based message dispatch. 1419 llvm::DenseSet<Selector> VTableDispatchMethods; 1420 1421 /// DefinedMetaClasses - List of defined meta-classes. 1422 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1423 1424 /// isVTableDispatchedSelector - Returns true if SEL is a 1425 /// vtable-based selector. 1426 bool isVTableDispatchedSelector(Selector Sel); 1427 1428 /// FinishNonFragileABIModule - Write out global data structures at the end of 1429 /// processing a translation unit. 1430 void FinishNonFragileABIModule(); 1431 1432 /// AddModuleClassList - Add the given list of class pointers to the 1433 /// module with the provided symbol and section names. 1434 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1435 StringRef SymbolName, StringRef SectionName); 1436 1437 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1438 unsigned InstanceStart, 1439 unsigned InstanceSize, 1440 const ObjCImplementationDecl *ID); 1441 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1442 bool isMetaclass, 1443 llvm::Constant *IsAGV, 1444 llvm::Constant *SuperClassGV, 1445 llvm::Constant *ClassRoGV, 1446 bool HiddenVisibility); 1447 1448 void emitMethodConstant(ConstantArrayBuilder &builder, 1449 const ObjCMethodDecl *MD, 1450 bool forProtocol); 1451 1452 /// Emit the method list for the given implementation. The return value 1453 /// has type MethodListnfABITy. 1454 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1455 ArrayRef<const ObjCMethodDecl *> Methods); 1456 1457 /// EmitIvarList - Emit the ivar list for the given 1458 /// implementation. If ForClass is true the list of class ivars 1459 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1460 /// interface ivars will be emitted. The return value has type 1461 /// IvarListnfABIPtrTy. 1462 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1463 1464 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1465 const ObjCIvarDecl *Ivar, 1466 unsigned long int offset); 1467 1468 /// GetOrEmitProtocol - Get the protocol object for the given 1469 /// declaration, emitting it if necessary. The return value has type 1470 /// ProtocolPtrTy. 1471 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1472 1473 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1474 /// object for the given declaration, emitting it if needed. These 1475 /// forward references will be filled in with empty bodies if no 1476 /// definition is seen. The return value has type ProtocolPtrTy. 1477 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1478 1479 /// EmitProtocolList - Generate the list of referenced 1480 /// protocols. The return value has type ProtocolListPtrTy. 1481 llvm::Constant *EmitProtocolList(Twine Name, 1482 ObjCProtocolDecl::protocol_iterator begin, 1483 ObjCProtocolDecl::protocol_iterator end); 1484 1485 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1486 ReturnValueSlot Return, 1487 QualType ResultType, 1488 Selector Sel, 1489 llvm::Value *Receiver, 1490 QualType Arg0Ty, 1491 bool IsSuper, 1492 const CallArgList &CallArgs, 1493 const ObjCMethodDecl *Method); 1494 1495 /// GetClassGlobal - Return the global variable for the Objective-C 1496 /// class of the given name. 1497 llvm::Constant *GetClassGlobal(StringRef Name, 1498 ForDefinition_t IsForDefinition, 1499 bool Weak = false, bool DLLImport = false); 1500 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1501 bool isMetaclass, 1502 ForDefinition_t isForDefinition); 1503 1504 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1505 1506 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1507 const ObjCInterfaceDecl *ID, 1508 llvm::GlobalVariable *Entry); 1509 1510 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1511 /// for the given class reference. 1512 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1513 const ObjCInterfaceDecl *ID); 1514 1515 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1516 IdentifierInfo *II, 1517 const ObjCInterfaceDecl *ID); 1518 1519 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1520 1521 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1522 /// for the given super class reference. 1523 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1524 const ObjCInterfaceDecl *ID); 1525 1526 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1527 /// meta-data 1528 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1529 const ObjCInterfaceDecl *ID, bool Weak); 1530 1531 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1532 /// the given ivar. 1533 /// 1534 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1535 const ObjCInterfaceDecl *ID, 1536 const ObjCIvarDecl *Ivar); 1537 1538 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1539 /// for the given selector. 1540 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1541 Address EmitSelectorAddr(Selector Sel); 1542 1543 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1544 /// interface. The return value has type EHTypePtrTy. 1545 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1546 ForDefinition_t IsForDefinition); 1547 1548 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1549 1550 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1551 1552 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1553 uint32_t &InstanceStart, 1554 uint32_t &InstanceSize); 1555 1556 // Shamelessly stolen from Analysis/CFRefCount.cpp 1557 Selector GetNullarySelector(const char* name) const { 1558 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1559 return CGM.getContext().Selectors.getSelector(0, &II); 1560 } 1561 1562 Selector GetUnarySelector(const char* name) const { 1563 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1564 return CGM.getContext().Selectors.getSelector(1, &II); 1565 } 1566 1567 /// ImplementationIsNonLazy - Check whether the given category or 1568 /// class implementation is "non-lazy". 1569 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1570 1571 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1572 const ObjCIvarDecl *IV) { 1573 // Annotate the load as an invariant load iff inside an instance method 1574 // and ivar belongs to instance method's class and one of its super class. 1575 // This check is needed because the ivar offset is a lazily 1576 // initialised value that may depend on objc_msgSend to perform a fixup on 1577 // the first message dispatch. 1578 // 1579 // An additional opportunity to mark the load as invariant arises when the 1580 // base of the ivar access is a parameter to an Objective C method. 1581 // However, because the parameters are not available in the current 1582 // interface, we cannot perform this check. 1583 // 1584 // Note that for direct methods, because objc_msgSend is skipped, 1585 // and that the method may be inlined, this optimization actually 1586 // can't be performed. 1587 if (const ObjCMethodDecl *MD = 1588 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1589 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1590 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1591 return IV->getContainingInterface()->isSuperClassOf(ID); 1592 return false; 1593 } 1594 1595 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1596 // NSObject is a fixed size. If we can see the @implementation of a class 1597 // which inherits from NSObject then we know that all it's offsets also must 1598 // be fixed. FIXME: Can we do this if see a chain of super classes with 1599 // implementations leading to NSObject? 1600 return ID->getImplementation() && ID->getSuperClass() && 1601 ID->getSuperClass()->getName() == "NSObject"; 1602 } 1603 1604 public: 1605 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1606 1607 llvm::Constant *getNSConstantStringClassRef() override; 1608 1609 llvm::Function *ModuleInitFunction() override; 1610 1611 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1612 ReturnValueSlot Return, 1613 QualType ResultType, Selector Sel, 1614 llvm::Value *Receiver, 1615 const CallArgList &CallArgs, 1616 const ObjCInterfaceDecl *Class, 1617 const ObjCMethodDecl *Method) override; 1618 1619 CodeGen::RValue 1620 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1621 ReturnValueSlot Return, QualType ResultType, 1622 Selector Sel, const ObjCInterfaceDecl *Class, 1623 bool isCategoryImpl, llvm::Value *Receiver, 1624 bool IsClassMessage, const CallArgList &CallArgs, 1625 const ObjCMethodDecl *Method) override; 1626 1627 llvm::Value *GetClass(CodeGenFunction &CGF, 1628 const ObjCInterfaceDecl *ID) override; 1629 1630 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1631 { return EmitSelector(CGF, Sel); } 1632 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1633 { return EmitSelectorAddr(Sel); } 1634 1635 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1636 /// untyped one. 1637 llvm::Value *GetSelector(CodeGenFunction &CGF, 1638 const ObjCMethodDecl *Method) override 1639 { return EmitSelector(CGF, Method->getSelector()); } 1640 1641 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1642 1643 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1644 1645 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1646 1647 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1648 const ObjCProtocolDecl *PD) override; 1649 1650 llvm::Constant *GetEHType(QualType T) override; 1651 1652 llvm::FunctionCallee GetPropertyGetFunction() override { 1653 return ObjCTypes.getGetPropertyFn(); 1654 } 1655 llvm::FunctionCallee GetPropertySetFunction() override { 1656 return ObjCTypes.getSetPropertyFn(); 1657 } 1658 1659 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1660 bool copy) override { 1661 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1662 } 1663 1664 llvm::FunctionCallee GetSetStructFunction() override { 1665 return ObjCTypes.getCopyStructFn(); 1666 } 1667 1668 llvm::FunctionCallee GetGetStructFunction() override { 1669 return ObjCTypes.getCopyStructFn(); 1670 } 1671 1672 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1673 return ObjCTypes.getCppAtomicObjectFunction(); 1674 } 1675 1676 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1677 return ObjCTypes.getCppAtomicObjectFunction(); 1678 } 1679 1680 llvm::FunctionCallee EnumerationMutationFunction() override { 1681 return ObjCTypes.getEnumerationMutationFn(); 1682 } 1683 1684 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1685 const ObjCAtTryStmt &S) override; 1686 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1687 const ObjCAtSynchronizedStmt &S) override; 1688 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1689 bool ClearInsertionPoint=true) override; 1690 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1691 Address AddrWeakObj) override; 1692 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1693 llvm::Value *src, Address edst) override; 1694 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1695 llvm::Value *src, Address dest, 1696 bool threadlocal = false) override; 1697 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1698 llvm::Value *src, Address dest, 1699 llvm::Value *ivarOffset) override; 1700 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1701 llvm::Value *src, Address dest) override; 1702 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1703 Address dest, Address src, 1704 llvm::Value *size) override; 1705 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1706 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1707 unsigned CVRQualifiers) override; 1708 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1709 const ObjCInterfaceDecl *Interface, 1710 const ObjCIvarDecl *Ivar) override; 1711 }; 1712 1713 /// A helper class for performing the null-initialization of a return 1714 /// value. 1715 struct NullReturnState { 1716 llvm::BasicBlock *NullBB = nullptr; 1717 NullReturnState() = default; 1718 1719 /// Perform a null-check of the given receiver. 1720 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1721 // Make blocks for the null-receiver and call edges. 1722 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1723 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1724 1725 // Check for a null receiver and, if there is one, jump to the 1726 // null-receiver block. There's no point in trying to avoid it: 1727 // we're always going to put *something* there, because otherwise 1728 // we shouldn't have done this null-check in the first place. 1729 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1730 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1731 1732 // Otherwise, start performing the call. 1733 CGF.EmitBlock(callBB); 1734 } 1735 1736 /// Complete the null-return operation. It is valid to call this 1737 /// regardless of whether 'init' has been called. 1738 RValue complete(CodeGenFunction &CGF, 1739 ReturnValueSlot returnSlot, 1740 RValue result, 1741 QualType resultType, 1742 const CallArgList &CallArgs, 1743 const ObjCMethodDecl *Method) { 1744 // If we never had to do a null-check, just use the raw result. 1745 if (!NullBB) return result; 1746 1747 // The continuation block. This will be left null if we don't have an 1748 // IP, which can happen if the method we're calling is marked noreturn. 1749 llvm::BasicBlock *contBB = nullptr; 1750 1751 // Finish the call path. 1752 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1753 if (callBB) { 1754 contBB = CGF.createBasicBlock("msgSend.cont"); 1755 CGF.Builder.CreateBr(contBB); 1756 } 1757 1758 // Okay, start emitting the null-receiver block. 1759 CGF.EmitBlock(NullBB); 1760 1761 // Destroy any consumed arguments we've got. 1762 if (Method) { 1763 CGObjCRuntime::destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 1764 } 1765 1766 // The phi code below assumes that we haven't needed any control flow yet. 1767 assert(CGF.Builder.GetInsertBlock() == NullBB); 1768 1769 // If we've got a void return, just jump to the continuation block. 1770 if (result.isScalar() && resultType->isVoidType()) { 1771 // No jumps required if the message-send was noreturn. 1772 if (contBB) CGF.EmitBlock(contBB); 1773 return result; 1774 } 1775 1776 // If we've got a scalar return, build a phi. 1777 if (result.isScalar()) { 1778 // Derive the null-initialization value. 1779 llvm::Value *null = 1780 CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(resultType), resultType); 1781 1782 // If no join is necessary, just flow out. 1783 if (!contBB) return RValue::get(null); 1784 1785 // Otherwise, build a phi. 1786 CGF.EmitBlock(contBB); 1787 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1788 phi->addIncoming(result.getScalarVal(), callBB); 1789 phi->addIncoming(null, NullBB); 1790 return RValue::get(phi); 1791 } 1792 1793 // If we've got an aggregate return, null the buffer out. 1794 // FIXME: maybe we should be doing things differently for all the 1795 // cases where the ABI has us returning (1) non-agg values in 1796 // memory or (2) agg values in registers. 1797 if (result.isAggregate()) { 1798 assert(result.isAggregate() && "null init of non-aggregate result?"); 1799 if (!returnSlot.isUnused()) 1800 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1801 if (contBB) CGF.EmitBlock(contBB); 1802 return result; 1803 } 1804 1805 // Complex types. 1806 CGF.EmitBlock(contBB); 1807 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1808 1809 // Find the scalar type and its zero value. 1810 llvm::Type *scalarTy = callResult.first->getType(); 1811 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1812 1813 // Build phis for both coordinates. 1814 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1815 real->addIncoming(callResult.first, callBB); 1816 real->addIncoming(scalarZero, NullBB); 1817 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1818 imag->addIncoming(callResult.second, callBB); 1819 imag->addIncoming(scalarZero, NullBB); 1820 return RValue::getComplex(real, imag); 1821 } 1822 }; 1823 1824 } // end anonymous namespace 1825 1826 /* *** Helper Functions *** */ 1827 1828 /// getConstantGEP() - Help routine to construct simple GEPs. 1829 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1830 llvm::GlobalVariable *C, unsigned idx0, 1831 unsigned idx1) { 1832 llvm::Value *Idxs[] = { 1833 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1834 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1835 }; 1836 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1837 } 1838 1839 /// hasObjCExceptionAttribute - Return true if this class or any super 1840 /// class has the __objc_exception__ attribute. 1841 static bool hasObjCExceptionAttribute(ASTContext &Context, 1842 const ObjCInterfaceDecl *OID) { 1843 if (OID->hasAttr<ObjCExceptionAttr>()) 1844 return true; 1845 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1846 return hasObjCExceptionAttribute(Context, Super); 1847 return false; 1848 } 1849 1850 static llvm::GlobalValue::LinkageTypes 1851 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1852 if (CGM.getTriple().isOSBinFormatMachO() && 1853 (Section.empty() || Section.starts_with("__DATA"))) 1854 return llvm::GlobalValue::InternalLinkage; 1855 return llvm::GlobalValue::PrivateLinkage; 1856 } 1857 1858 /// A helper function to create an internal or private global variable. 1859 static llvm::GlobalVariable * 1860 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1861 const llvm::Twine &Name, CodeGenModule &CGM) { 1862 std::string SectionName; 1863 if (CGM.getTriple().isOSBinFormatMachO()) 1864 SectionName = "__DATA, __objc_const"; 1865 auto *GV = Builder.finishAndCreateGlobal( 1866 Name, CGM.getPointerAlign(), /*constant*/ false, 1867 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1868 GV->setSection(SectionName); 1869 return GV; 1870 } 1871 1872 /* *** CGObjCMac Public Interface *** */ 1873 1874 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1875 ObjCTypes(cgm) { 1876 ObjCABI = 1; 1877 EmitImageInfo(); 1878 } 1879 1880 /// GetClass - Return a reference to the class for the given interface 1881 /// decl. 1882 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1883 const ObjCInterfaceDecl *ID) { 1884 return EmitClassRef(CGF, ID); 1885 } 1886 1887 /// GetSelector - Return the pointer to the unique'd string for this selector. 1888 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1889 return EmitSelector(CGF, Sel); 1890 } 1891 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1892 return EmitSelectorAddr(Sel); 1893 } 1894 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1895 *Method) { 1896 return EmitSelector(CGF, Method->getSelector()); 1897 } 1898 1899 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1900 if (T->isObjCIdType() || 1901 T->isObjCQualifiedIdType()) { 1902 return CGM.GetAddrOfRTTIDescriptor( 1903 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1904 } 1905 if (T->isObjCClassType() || 1906 T->isObjCQualifiedClassType()) { 1907 return CGM.GetAddrOfRTTIDescriptor( 1908 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1909 } 1910 if (T->isObjCObjectPointerType()) 1911 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1912 1913 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1914 } 1915 1916 /// Generate a constant CFString object. 1917 /* 1918 struct __builtin_CFString { 1919 const int *isa; // point to __CFConstantStringClassReference 1920 int flags; 1921 const char *str; 1922 long length; 1923 }; 1924 */ 1925 1926 /// or Generate a constant NSString object. 1927 /* 1928 struct __builtin_NSString { 1929 const int *isa; // point to __NSConstantStringClassReference 1930 const char *str; 1931 unsigned int length; 1932 }; 1933 */ 1934 1935 ConstantAddress 1936 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1937 return (!CGM.getLangOpts().NoConstantCFStrings 1938 ? CGM.GetAddrOfConstantCFString(SL) 1939 : GenerateConstantNSString(SL)); 1940 } 1941 1942 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1943 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1944 const StringLiteral *Literal, unsigned &StringLength) { 1945 StringRef String = Literal->getString(); 1946 StringLength = String.size(); 1947 return *Map.insert(std::make_pair(String, nullptr)).first; 1948 } 1949 1950 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1951 if (llvm::Value *V = ConstantStringClassRef) 1952 return cast<llvm::Constant>(V); 1953 1954 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1955 std::string str = 1956 StringClass.empty() ? "_NSConstantStringClassReference" 1957 : "_" + StringClass + "ClassReference"; 1958 1959 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1960 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1961 ConstantStringClassRef = GV; 1962 return GV; 1963 } 1964 1965 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1966 if (llvm::Value *V = ConstantStringClassRef) 1967 return cast<llvm::Constant>(V); 1968 1969 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1970 std::string str = 1971 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1972 : "OBJC_CLASS_$_" + StringClass; 1973 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1974 ConstantStringClassRef = GV; 1975 return GV; 1976 } 1977 1978 ConstantAddress 1979 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1980 unsigned StringLength = 0; 1981 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1982 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1983 1984 if (auto *C = Entry.second) 1985 return ConstantAddress( 1986 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 1987 1988 // If we don't already have it, get _NSConstantStringClassReference. 1989 llvm::Constant *Class = getNSConstantStringClassRef(); 1990 1991 // If we don't already have it, construct the type for a constant NSString. 1992 if (!NSConstantStringType) { 1993 NSConstantStringType = 1994 llvm::StructType::create({CGM.UnqualPtrTy, CGM.Int8PtrTy, CGM.IntTy}, 1995 "struct.__builtin_NSString"); 1996 } 1997 1998 ConstantInitBuilder Builder(CGM); 1999 auto Fields = Builder.beginStruct(NSConstantStringType); 2000 2001 // Class pointer. 2002 Fields.add(Class); 2003 2004 // String pointer. 2005 llvm::Constant *C = 2006 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2007 2008 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2009 bool isConstant = !CGM.getLangOpts().WritableStrings; 2010 2011 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2012 Linkage, C, ".str"); 2013 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2014 // Don't enforce the target's minimum global alignment, since the only use 2015 // of the string is via this class initializer. 2016 GV->setAlignment(llvm::Align(1)); 2017 Fields.add(GV); 2018 2019 // String length. 2020 Fields.addInt(CGM.IntTy, StringLength); 2021 2022 // The struct. 2023 CharUnits Alignment = CGM.getPointerAlign(); 2024 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2025 /*constant*/ true, 2026 llvm::GlobalVariable::PrivateLinkage); 2027 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2028 const char *NSStringNonFragileABISection = 2029 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2030 // FIXME. Fix section. 2031 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2032 ? NSStringNonFragileABISection 2033 : NSStringSection); 2034 Entry.second = GV; 2035 2036 return ConstantAddress(GV, GV->getValueType(), Alignment); 2037 } 2038 2039 enum { 2040 kCFTaggedObjectID_Integer = (1 << 1) + 1 2041 }; 2042 2043 /// Generates a message send where the super is the receiver. This is 2044 /// a message send to self with special delivery semantics indicating 2045 /// which class's method should be called. 2046 CodeGen::RValue 2047 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2048 ReturnValueSlot Return, 2049 QualType ResultType, 2050 Selector Sel, 2051 const ObjCInterfaceDecl *Class, 2052 bool isCategoryImpl, 2053 llvm::Value *Receiver, 2054 bool IsClassMessage, 2055 const CodeGen::CallArgList &CallArgs, 2056 const ObjCMethodDecl *Method) { 2057 // Create and init a super structure; this is a (receiver, class) 2058 // pair we will pass to objc_msgSendSuper. 2059 Address ObjCSuper = 2060 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2061 "objc_super"); 2062 llvm::Value *ReceiverAsObject = 2063 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2064 CGF.Builder.CreateStore(ReceiverAsObject, 2065 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2066 2067 // If this is a class message the metaclass is passed as the target. 2068 llvm::Type *ClassTyPtr = llvm::PointerType::getUnqual(ObjCTypes.ClassTy); 2069 llvm::Value *Target; 2070 if (IsClassMessage) { 2071 if (isCategoryImpl) { 2072 // Message sent to 'super' in a class method defined in a category 2073 // implementation requires an odd treatment. 2074 // If we are in a class method, we must retrieve the 2075 // _metaclass_ for the current class, pointed at by 2076 // the class's "isa" pointer. The following assumes that 2077 // isa" is the first ivar in a class (which it must be). 2078 Target = EmitClassRef(CGF, Class->getSuperClass()); 2079 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2080 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, Target, 2081 CGF.getPointerAlign()); 2082 } else { 2083 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2084 llvm::Value *SuperPtr = 2085 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2086 llvm::Value *Super = CGF.Builder.CreateAlignedLoad(ClassTyPtr, SuperPtr, 2087 CGF.getPointerAlign()); 2088 Target = Super; 2089 } 2090 } else if (isCategoryImpl) 2091 Target = EmitClassRef(CGF, Class->getSuperClass()); 2092 else { 2093 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2094 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2095 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, ClassPtr, 2096 CGF.getPointerAlign()); 2097 } 2098 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2099 // ObjCTypes types. 2100 llvm::Type *ClassTy = 2101 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2102 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2103 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2104 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2105 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2106 ObjCTypes); 2107 } 2108 2109 /// Generate code for a message send expression. 2110 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2111 ReturnValueSlot Return, 2112 QualType ResultType, 2113 Selector Sel, 2114 llvm::Value *Receiver, 2115 const CallArgList &CallArgs, 2116 const ObjCInterfaceDecl *Class, 2117 const ObjCMethodDecl *Method) { 2118 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2119 CGF.getContext().getObjCIdType(), false, CallArgs, 2120 Method, Class, ObjCTypes); 2121 } 2122 2123 CodeGen::RValue 2124 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2125 ReturnValueSlot Return, 2126 QualType ResultType, 2127 Selector Sel, 2128 llvm::Value *Arg0, 2129 QualType Arg0Ty, 2130 bool IsSuper, 2131 const CallArgList &CallArgs, 2132 const ObjCMethodDecl *Method, 2133 const ObjCInterfaceDecl *ClassReceiver, 2134 const ObjCCommonTypesHelper &ObjCTypes) { 2135 CodeGenTypes &Types = CGM.getTypes(); 2136 auto selTy = CGF.getContext().getObjCSelType(); 2137 llvm::Value *SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2138 2139 CallArgList ActualArgs; 2140 if (!IsSuper) 2141 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2142 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2143 if (!Method || !Method->isDirectMethod()) 2144 ActualArgs.add(RValue::get(SelValue), selTy); 2145 ActualArgs.addFrom(CallArgs); 2146 2147 // If we're calling a method, use the formal signature. 2148 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2149 2150 if (Method) 2151 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2152 CGM.getContext().getCanonicalType(ResultType) && 2153 "Result type mismatch!"); 2154 2155 bool ReceiverCanBeNull = 2156 canMessageReceiverBeNull(CGF, Method, IsSuper, ClassReceiver, Arg0); 2157 2158 bool RequiresNullCheck = false; 2159 bool RequiresSelValue = true; 2160 2161 llvm::FunctionCallee Fn = nullptr; 2162 if (Method && Method->isDirectMethod()) { 2163 assert(!IsSuper); 2164 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2165 // Direct methods will synthesize the proper `_cmd` internally, 2166 // so just don't bother with setting the `_cmd` argument. 2167 RequiresSelValue = false; 2168 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2169 if (ReceiverCanBeNull) RequiresNullCheck = true; 2170 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2171 : ObjCTypes.getSendStretFn(IsSuper); 2172 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2173 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2174 : ObjCTypes.getSendFpretFn(IsSuper); 2175 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2176 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2177 : ObjCTypes.getSendFp2retFn(IsSuper); 2178 } else { 2179 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2180 // must be made for it. 2181 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2182 RequiresNullCheck = true; 2183 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2184 : ObjCTypes.getSendFn(IsSuper); 2185 } 2186 2187 // Cast function to proper signature 2188 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2189 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2190 2191 // We don't need to emit a null check to zero out an indirect result if the 2192 // result is ignored. 2193 if (Return.isUnused()) 2194 RequiresNullCheck = false; 2195 2196 // Emit a null-check if there's a consumed argument other than the receiver. 2197 if (!RequiresNullCheck && Method && Method->hasParamDestroyedInCallee()) 2198 RequiresNullCheck = true; 2199 2200 NullReturnState nullReturn; 2201 if (RequiresNullCheck) { 2202 nullReturn.init(CGF, Arg0); 2203 } 2204 2205 // If a selector value needs to be passed, emit the load before the call. 2206 if (RequiresSelValue) { 2207 SelValue = GetSelector(CGF, Sel); 2208 ActualArgs[1] = CallArg(RValue::get(SelValue), selTy); 2209 } 2210 2211 llvm::CallBase *CallSite; 2212 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2213 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2214 &CallSite); 2215 2216 // Mark the call as noreturn if the method is marked noreturn and the 2217 // receiver cannot be null. 2218 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2219 CallSite->setDoesNotReturn(); 2220 } 2221 2222 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2223 RequiresNullCheck ? Method : nullptr); 2224 } 2225 2226 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2227 bool pointee = false) { 2228 // Note that GC qualification applies recursively to C pointer types 2229 // that aren't otherwise decorated. This is weird, but it's probably 2230 // an intentional workaround to the unreliable placement of GC qualifiers. 2231 if (FQT.isObjCGCStrong()) 2232 return Qualifiers::Strong; 2233 2234 if (FQT.isObjCGCWeak()) 2235 return Qualifiers::Weak; 2236 2237 if (auto ownership = FQT.getObjCLifetime()) { 2238 // Ownership does not apply recursively to C pointer types. 2239 if (pointee) return Qualifiers::GCNone; 2240 switch (ownership) { 2241 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2242 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2243 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2244 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2245 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2246 } 2247 llvm_unreachable("bad objc ownership"); 2248 } 2249 2250 // Treat unqualified retainable pointers as strong. 2251 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2252 return Qualifiers::Strong; 2253 2254 // Walk into C pointer types, but only in GC. 2255 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2256 if (const PointerType *PT = FQT->getAs<PointerType>()) 2257 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2258 } 2259 2260 return Qualifiers::GCNone; 2261 } 2262 2263 namespace { 2264 struct IvarInfo { 2265 CharUnits Offset; 2266 uint64_t SizeInWords; 2267 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2268 : Offset(offset), SizeInWords(sizeInWords) {} 2269 2270 // Allow sorting based on byte pos. 2271 bool operator<(const IvarInfo &other) const { 2272 return Offset < other.Offset; 2273 } 2274 }; 2275 2276 /// A helper class for building GC layout strings. 2277 class IvarLayoutBuilder { 2278 CodeGenModule &CGM; 2279 2280 /// The start of the layout. Offsets will be relative to this value, 2281 /// and entries less than this value will be silently discarded. 2282 CharUnits InstanceBegin; 2283 2284 /// The end of the layout. Offsets will never exceed this value. 2285 CharUnits InstanceEnd; 2286 2287 /// Whether we're generating the strong layout or the weak layout. 2288 bool ForStrongLayout; 2289 2290 /// Whether the offsets in IvarsInfo might be out-of-order. 2291 bool IsDisordered = false; 2292 2293 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2294 2295 public: 2296 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2297 CharUnits instanceEnd, bool forStrongLayout) 2298 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2299 ForStrongLayout(forStrongLayout) { 2300 } 2301 2302 void visitRecord(const RecordType *RT, CharUnits offset); 2303 2304 template <class Iterator, class GetOffsetFn> 2305 void visitAggregate(Iterator begin, Iterator end, 2306 CharUnits aggrOffset, 2307 const GetOffsetFn &getOffset); 2308 2309 void visitField(const FieldDecl *field, CharUnits offset); 2310 2311 /// Add the layout of a block implementation. 2312 void visitBlock(const CGBlockInfo &blockInfo); 2313 2314 /// Is there any information for an interesting bitmap? 2315 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2316 2317 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2318 llvm::SmallVectorImpl<unsigned char> &buffer); 2319 2320 static void dump(ArrayRef<unsigned char> buffer) { 2321 const unsigned char *s = buffer.data(); 2322 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2323 if (!(s[i] & 0xf0)) 2324 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2325 else 2326 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2327 printf("\n"); 2328 } 2329 }; 2330 } // end anonymous namespace 2331 2332 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2333 const CGBlockInfo &blockInfo) { 2334 2335 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2336 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2337 return nullPtr; 2338 2339 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2340 /*for strong layout*/ true); 2341 2342 builder.visitBlock(blockInfo); 2343 2344 if (!builder.hasBitmapData()) 2345 return nullPtr; 2346 2347 llvm::SmallVector<unsigned char, 32> buffer; 2348 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2349 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2350 printf("\n block variable layout for block: "); 2351 builder.dump(buffer); 2352 } 2353 2354 return C; 2355 } 2356 2357 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2358 // __isa is the first field in block descriptor and must assume by runtime's 2359 // convention that it is GC'able. 2360 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2361 2362 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2363 2364 // Ignore the optional 'this' capture: C++ objects are not assumed 2365 // to be GC'ed. 2366 2367 CharUnits lastFieldOffset; 2368 2369 // Walk the captured variables. 2370 for (const auto &CI : blockDecl->captures()) { 2371 const VarDecl *variable = CI.getVariable(); 2372 QualType type = variable->getType(); 2373 2374 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2375 2376 // Ignore constant captures. 2377 if (capture.isConstant()) continue; 2378 2379 CharUnits fieldOffset = capture.getOffset(); 2380 2381 // Block fields are not necessarily ordered; if we detect that we're 2382 // adding them out-of-order, make sure we sort later. 2383 if (fieldOffset < lastFieldOffset) 2384 IsDisordered = true; 2385 lastFieldOffset = fieldOffset; 2386 2387 // __block variables are passed by their descriptor address. 2388 if (CI.isByRef()) { 2389 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2390 continue; 2391 } 2392 2393 assert(!type->isArrayType() && "array variable should not be caught"); 2394 if (const RecordType *record = type->getAs<RecordType>()) { 2395 visitRecord(record, fieldOffset); 2396 continue; 2397 } 2398 2399 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2400 2401 if (GCAttr == Qualifiers::Strong) { 2402 assert(CGM.getContext().getTypeSize(type) == 2403 CGM.getTarget().getPointerWidth(LangAS::Default)); 2404 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2405 } 2406 } 2407 } 2408 2409 /// getBlockCaptureLifetime - This routine returns life time of the captured 2410 /// block variable for the purpose of block layout meta-data generation. FQT is 2411 /// the type of the variable captured in the block. 2412 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2413 bool ByrefLayout) { 2414 // If it has an ownership qualifier, we're done. 2415 if (auto lifetime = FQT.getObjCLifetime()) 2416 return lifetime; 2417 2418 // If it doesn't, and this is ARC, it has no ownership. 2419 if (CGM.getLangOpts().ObjCAutoRefCount) 2420 return Qualifiers::OCL_None; 2421 2422 // In MRC, retainable pointers are owned by non-__block variables. 2423 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2424 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2425 2426 return Qualifiers::OCL_None; 2427 } 2428 2429 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2430 Qualifiers::ObjCLifetime LifeTime, 2431 CharUnits FieldOffset, 2432 CharUnits FieldSize) { 2433 // __block variables are passed by their descriptor address. 2434 if (IsByref) 2435 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2436 FieldSize)); 2437 else if (LifeTime == Qualifiers::OCL_Strong) 2438 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2439 FieldSize)); 2440 else if (LifeTime == Qualifiers::OCL_Weak) 2441 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2442 FieldSize)); 2443 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2444 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2445 FieldSize)); 2446 else 2447 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2448 FieldOffset, 2449 FieldSize)); 2450 } 2451 2452 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2453 const RecordDecl *RD, 2454 ArrayRef<const FieldDecl*> RecFields, 2455 CharUnits BytePos, bool &HasUnion, 2456 bool ByrefLayout) { 2457 bool IsUnion = (RD && RD->isUnion()); 2458 CharUnits MaxUnionSize = CharUnits::Zero(); 2459 const FieldDecl *MaxField = nullptr; 2460 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2461 CharUnits MaxFieldOffset = CharUnits::Zero(); 2462 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2463 2464 if (RecFields.empty()) 2465 return; 2466 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2467 2468 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2469 const FieldDecl *Field = RecFields[i]; 2470 // Note that 'i' here is actually the field index inside RD of Field, 2471 // although this dependency is hidden. 2472 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2473 CharUnits FieldOffset = 2474 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2475 2476 // Skip over unnamed or bitfields 2477 if (!Field->getIdentifier() || Field->isBitField()) { 2478 LastFieldBitfieldOrUnnamed = Field; 2479 LastBitfieldOrUnnamedOffset = FieldOffset; 2480 continue; 2481 } 2482 2483 LastFieldBitfieldOrUnnamed = nullptr; 2484 QualType FQT = Field->getType(); 2485 if (FQT->isRecordType() || FQT->isUnionType()) { 2486 if (FQT->isUnionType()) 2487 HasUnion = true; 2488 2489 BuildRCBlockVarRecordLayout(FQT->castAs<RecordType>(), 2490 BytePos + FieldOffset, HasUnion); 2491 continue; 2492 } 2493 2494 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2495 auto *CArray = cast<ConstantArrayType>(Array); 2496 uint64_t ElCount = CArray->getSize().getZExtValue(); 2497 assert(CArray && "only array with known element size is supported"); 2498 FQT = CArray->getElementType(); 2499 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2500 auto *CArray = cast<ConstantArrayType>(Array); 2501 ElCount *= CArray->getSize().getZExtValue(); 2502 FQT = CArray->getElementType(); 2503 } 2504 if (FQT->isRecordType() && ElCount) { 2505 int OldIndex = RunSkipBlockVars.size() - 1; 2506 auto *RT = FQT->castAs<RecordType>(); 2507 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion); 2508 2509 // Replicate layout information for each array element. Note that 2510 // one element is already done. 2511 uint64_t ElIx = 1; 2512 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2513 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2514 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2515 RunSkipBlockVars.push_back( 2516 RUN_SKIP(RunSkipBlockVars[i].opcode, 2517 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2518 RunSkipBlockVars[i].block_var_size)); 2519 } 2520 continue; 2521 } 2522 } 2523 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2524 if (IsUnion) { 2525 CharUnits UnionIvarSize = FieldSize; 2526 if (UnionIvarSize > MaxUnionSize) { 2527 MaxUnionSize = UnionIvarSize; 2528 MaxField = Field; 2529 MaxFieldOffset = FieldOffset; 2530 } 2531 } else { 2532 UpdateRunSkipBlockVars(false, 2533 getBlockCaptureLifetime(FQT, ByrefLayout), 2534 BytePos + FieldOffset, 2535 FieldSize); 2536 } 2537 } 2538 2539 if (LastFieldBitfieldOrUnnamed) { 2540 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2541 // Last field was a bitfield. Must update the info. 2542 uint64_t BitFieldSize 2543 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2544 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2545 ((BitFieldSize % ByteSizeInBits) != 0); 2546 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2547 Size += LastBitfieldOrUnnamedOffset; 2548 UpdateRunSkipBlockVars(false, 2549 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2550 ByrefLayout), 2551 BytePos + LastBitfieldOrUnnamedOffset, 2552 Size); 2553 } else { 2554 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2555 // Last field was unnamed. Must update skip info. 2556 CharUnits FieldSize 2557 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2558 UpdateRunSkipBlockVars(false, 2559 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2560 ByrefLayout), 2561 BytePos + LastBitfieldOrUnnamedOffset, 2562 FieldSize); 2563 } 2564 } 2565 2566 if (MaxField) 2567 UpdateRunSkipBlockVars(false, 2568 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2569 BytePos + MaxFieldOffset, 2570 MaxUnionSize); 2571 } 2572 2573 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2574 CharUnits BytePos, 2575 bool &HasUnion, 2576 bool ByrefLayout) { 2577 const RecordDecl *RD = RT->getDecl(); 2578 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2579 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2580 const llvm::StructLayout *RecLayout = 2581 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2582 2583 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2584 } 2585 2586 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2587 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2588 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2589 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2590 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2591 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2592 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2593 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2594 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2595 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2596 SmallVectorImpl<unsigned char> &Layout) { 2597 uint64_t Result = 0; 2598 if (Layout.size() <= 3) { 2599 unsigned size = Layout.size(); 2600 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2601 unsigned char inst; 2602 enum BLOCK_LAYOUT_OPCODE opcode ; 2603 switch (size) { 2604 case 3: 2605 inst = Layout[0]; 2606 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2607 if (opcode == BLOCK_LAYOUT_STRONG) 2608 strong_word_count = (inst & 0xF)+1; 2609 else 2610 return 0; 2611 inst = Layout[1]; 2612 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2613 if (opcode == BLOCK_LAYOUT_BYREF) 2614 byref_word_count = (inst & 0xF)+1; 2615 else 2616 return 0; 2617 inst = Layout[2]; 2618 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2619 if (opcode == BLOCK_LAYOUT_WEAK) 2620 weak_word_count = (inst & 0xF)+1; 2621 else 2622 return 0; 2623 break; 2624 2625 case 2: 2626 inst = Layout[0]; 2627 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2628 if (opcode == BLOCK_LAYOUT_STRONG) { 2629 strong_word_count = (inst & 0xF)+1; 2630 inst = Layout[1]; 2631 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2632 if (opcode == BLOCK_LAYOUT_BYREF) 2633 byref_word_count = (inst & 0xF)+1; 2634 else if (opcode == BLOCK_LAYOUT_WEAK) 2635 weak_word_count = (inst & 0xF)+1; 2636 else 2637 return 0; 2638 } 2639 else if (opcode == BLOCK_LAYOUT_BYREF) { 2640 byref_word_count = (inst & 0xF)+1; 2641 inst = Layout[1]; 2642 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2643 if (opcode == BLOCK_LAYOUT_WEAK) 2644 weak_word_count = (inst & 0xF)+1; 2645 else 2646 return 0; 2647 } 2648 else 2649 return 0; 2650 break; 2651 2652 case 1: 2653 inst = Layout[0]; 2654 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2655 if (opcode == BLOCK_LAYOUT_STRONG) 2656 strong_word_count = (inst & 0xF)+1; 2657 else if (opcode == BLOCK_LAYOUT_BYREF) 2658 byref_word_count = (inst & 0xF)+1; 2659 else if (opcode == BLOCK_LAYOUT_WEAK) 2660 weak_word_count = (inst & 0xF)+1; 2661 else 2662 return 0; 2663 break; 2664 2665 default: 2666 return 0; 2667 } 2668 2669 // Cannot inline when any of the word counts is 15. Because this is one less 2670 // than the actual work count (so 15 means 16 actual word counts), 2671 // and we can only display 0 thru 15 word counts. 2672 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2673 return 0; 2674 2675 unsigned count = 2676 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2677 2678 if (size == count) { 2679 if (strong_word_count) 2680 Result = strong_word_count; 2681 Result <<= 4; 2682 if (byref_word_count) 2683 Result += byref_word_count; 2684 Result <<= 4; 2685 if (weak_word_count) 2686 Result += weak_word_count; 2687 } 2688 } 2689 return Result; 2690 } 2691 2692 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2693 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2694 if (RunSkipBlockVars.empty()) 2695 return nullPtr; 2696 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(LangAS::Default); 2697 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2698 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2699 2700 // Sort on byte position; captures might not be allocated in order, 2701 // and unions can do funny things. 2702 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2703 SmallVector<unsigned char, 16> Layout; 2704 2705 unsigned size = RunSkipBlockVars.size(); 2706 for (unsigned i = 0; i < size; i++) { 2707 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2708 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2709 CharUnits end_byte_pos = start_byte_pos; 2710 unsigned j = i+1; 2711 while (j < size) { 2712 if (opcode == RunSkipBlockVars[j].opcode) { 2713 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2714 i++; 2715 } 2716 else 2717 break; 2718 } 2719 CharUnits size_in_bytes = 2720 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2721 if (j < size) { 2722 CharUnits gap = 2723 RunSkipBlockVars[j].block_var_bytepos - 2724 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2725 size_in_bytes += gap; 2726 } 2727 CharUnits residue_in_bytes = CharUnits::Zero(); 2728 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2729 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2730 size_in_bytes -= residue_in_bytes; 2731 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2732 } 2733 2734 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2735 while (size_in_words >= 16) { 2736 // Note that value in imm. is one less that the actual 2737 // value. So, 0xf means 16 words follow! 2738 unsigned char inst = (opcode << 4) | 0xf; 2739 Layout.push_back(inst); 2740 size_in_words -= 16; 2741 } 2742 if (size_in_words > 0) { 2743 // Note that value in imm. is one less that the actual 2744 // value. So, we subtract 1 away! 2745 unsigned char inst = (opcode << 4) | (size_in_words-1); 2746 Layout.push_back(inst); 2747 } 2748 if (residue_in_bytes > CharUnits::Zero()) { 2749 unsigned char inst = 2750 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2751 Layout.push_back(inst); 2752 } 2753 } 2754 2755 while (!Layout.empty()) { 2756 unsigned char inst = Layout.back(); 2757 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2758 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2759 Layout.pop_back(); 2760 else 2761 break; 2762 } 2763 2764 uint64_t Result = InlineLayoutInstruction(Layout); 2765 if (Result != 0) { 2766 // Block variable layout instruction has been inlined. 2767 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2768 if (ComputeByrefLayout) 2769 printf("\n Inline BYREF variable layout: "); 2770 else 2771 printf("\n Inline block variable layout: "); 2772 printf("0x0%" PRIx64 "", Result); 2773 if (auto numStrong = (Result & 0xF00) >> 8) 2774 printf(", BL_STRONG:%d", (int) numStrong); 2775 if (auto numByref = (Result & 0x0F0) >> 4) 2776 printf(", BL_BYREF:%d", (int) numByref); 2777 if (auto numWeak = (Result & 0x00F) >> 0) 2778 printf(", BL_WEAK:%d", (int) numWeak); 2779 printf(", BL_OPERATOR:0\n"); 2780 } 2781 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2782 } 2783 2784 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2785 Layout.push_back(inst); 2786 std::string BitMap; 2787 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2788 BitMap += Layout[i]; 2789 2790 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2791 if (ComputeByrefLayout) 2792 printf("\n Byref variable layout: "); 2793 else 2794 printf("\n Block variable layout: "); 2795 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2796 unsigned char inst = BitMap[i]; 2797 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2798 unsigned delta = 1; 2799 switch (opcode) { 2800 case BLOCK_LAYOUT_OPERATOR: 2801 printf("BL_OPERATOR:"); 2802 delta = 0; 2803 break; 2804 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2805 printf("BL_NON_OBJECT_BYTES:"); 2806 break; 2807 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2808 printf("BL_NON_OBJECT_WORD:"); 2809 break; 2810 case BLOCK_LAYOUT_STRONG: 2811 printf("BL_STRONG:"); 2812 break; 2813 case BLOCK_LAYOUT_BYREF: 2814 printf("BL_BYREF:"); 2815 break; 2816 case BLOCK_LAYOUT_WEAK: 2817 printf("BL_WEAK:"); 2818 break; 2819 case BLOCK_LAYOUT_UNRETAINED: 2820 printf("BL_UNRETAINED:"); 2821 break; 2822 } 2823 // Actual value of word count is one more that what is in the imm. 2824 // field of the instruction 2825 printf("%d", (inst & 0xf) + delta); 2826 if (i < e-1) 2827 printf(", "); 2828 else 2829 printf("\n"); 2830 } 2831 } 2832 2833 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2834 /*ForceNonFragileABI=*/true, 2835 /*NullTerminate=*/false); 2836 return getConstantGEP(VMContext, Entry, 0, 0); 2837 } 2838 2839 static std::string getBlockLayoutInfoString( 2840 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2841 bool HasCopyDisposeHelpers) { 2842 std::string Str; 2843 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2844 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2845 // Copy/dispose helpers don't have any information about 2846 // __unsafe_unretained captures, so unconditionally concatenate a string. 2847 Str += "u"; 2848 } else if (HasCopyDisposeHelpers) { 2849 // Information about __strong, __weak, or byref captures has already been 2850 // encoded into the names of the copy/dispose helpers. We have to add a 2851 // string here only when the copy/dispose helpers aren't generated (which 2852 // happens when the block is non-escaping). 2853 continue; 2854 } else { 2855 switch (R.opcode) { 2856 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2857 Str += "s"; 2858 break; 2859 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2860 Str += "r"; 2861 break; 2862 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2863 Str += "w"; 2864 break; 2865 default: 2866 continue; 2867 } 2868 } 2869 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2870 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2871 } 2872 return Str; 2873 } 2874 2875 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2876 const CGBlockInfo &blockInfo) { 2877 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2878 2879 RunSkipBlockVars.clear(); 2880 bool hasUnion = false; 2881 2882 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(LangAS::Default); 2883 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2884 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2885 2886 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2887 2888 // Calculate the basic layout of the block structure. 2889 const llvm::StructLayout *layout = 2890 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2891 2892 // Ignore the optional 'this' capture: C++ objects are not assumed 2893 // to be GC'ed. 2894 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2895 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2896 blockInfo.BlockHeaderForcedGapOffset, 2897 blockInfo.BlockHeaderForcedGapSize); 2898 // Walk the captured variables. 2899 for (const auto &CI : blockDecl->captures()) { 2900 const VarDecl *variable = CI.getVariable(); 2901 QualType type = variable->getType(); 2902 2903 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2904 2905 // Ignore constant captures. 2906 if (capture.isConstant()) continue; 2907 2908 CharUnits fieldOffset = 2909 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2910 2911 assert(!type->isArrayType() && "array variable should not be caught"); 2912 if (!CI.isByRef()) 2913 if (const RecordType *record = type->getAs<RecordType>()) { 2914 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2915 continue; 2916 } 2917 CharUnits fieldSize; 2918 if (CI.isByRef()) 2919 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2920 else 2921 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2922 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2923 fieldOffset, fieldSize); 2924 } 2925 } 2926 2927 llvm::Constant * 2928 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2929 const CGBlockInfo &blockInfo) { 2930 fillRunSkipBlockVars(CGM, blockInfo); 2931 return getBitmapBlockLayout(false); 2932 } 2933 2934 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2935 const CGBlockInfo &blockInfo) { 2936 fillRunSkipBlockVars(CGM, blockInfo); 2937 return getBlockLayoutInfoString(RunSkipBlockVars, blockInfo.NeedsCopyDispose); 2938 } 2939 2940 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2941 QualType T) { 2942 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2943 assert(!T->isArrayType() && "__block array variable should not be caught"); 2944 CharUnits fieldOffset; 2945 RunSkipBlockVars.clear(); 2946 bool hasUnion = false; 2947 if (const RecordType *record = T->getAs<RecordType>()) { 2948 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2949 llvm::Constant *Result = getBitmapBlockLayout(true); 2950 if (isa<llvm::ConstantInt>(Result)) 2951 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2952 return Result; 2953 } 2954 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2955 return nullPtr; 2956 } 2957 2958 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2959 const ObjCProtocolDecl *PD) { 2960 // FIXME: I don't understand why gcc generates this, or where it is 2961 // resolved. Investigate. Its also wasteful to look this up over and over. 2962 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2963 2964 return GetProtocolRef(PD); 2965 } 2966 2967 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2968 // FIXME: We shouldn't need this, the protocol decl should contain enough 2969 // information to tell us whether this was a declaration or a definition. 2970 DefinedProtocols.insert(PD->getIdentifier()); 2971 2972 // If we have generated a forward reference to this protocol, emit 2973 // it now. Otherwise do nothing, the protocol objects are lazily 2974 // emitted. 2975 if (Protocols.count(PD->getIdentifier())) 2976 GetOrEmitProtocol(PD); 2977 } 2978 2979 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2980 if (DefinedProtocols.count(PD->getIdentifier())) 2981 return GetOrEmitProtocol(PD); 2982 2983 return GetOrEmitProtocolRef(PD); 2984 } 2985 2986 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2987 CodeGenFunction &CGF, 2988 const ObjCInterfaceDecl *ID, 2989 ObjCCommonTypesHelper &ObjCTypes) { 2990 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 2991 2992 llvm::Value *className = CGF.CGM 2993 .GetAddrOfConstantCString(std::string( 2994 ID->getObjCRuntimeNameAsString())) 2995 .getPointer(); 2996 ASTContext &ctx = CGF.CGM.getContext(); 2997 className = 2998 CGF.Builder.CreateBitCast(className, 2999 CGF.ConvertType( 3000 ctx.getPointerType(ctx.CharTy.withConst()))); 3001 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3002 call->setDoesNotThrow(); 3003 return call; 3004 } 3005 3006 /* 3007 // Objective-C 1.0 extensions 3008 struct _objc_protocol { 3009 struct _objc_protocol_extension *isa; 3010 char *protocol_name; 3011 struct _objc_protocol_list *protocol_list; 3012 struct _objc__method_prototype_list *instance_methods; 3013 struct _objc__method_prototype_list *class_methods 3014 }; 3015 3016 See EmitProtocolExtension(). 3017 */ 3018 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3019 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3020 3021 // Early exit if a defining object has already been generated. 3022 if (Entry && Entry->hasInitializer()) 3023 return Entry; 3024 3025 // Use the protocol definition, if there is one. 3026 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3027 PD = Def; 3028 3029 // FIXME: I don't understand why gcc generates this, or where it is 3030 // resolved. Investigate. Its also wasteful to look this up over and over. 3031 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3032 3033 // Construct method lists. 3034 auto methodLists = ProtocolMethodLists::get(PD); 3035 3036 ConstantInitBuilder builder(CGM); 3037 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3038 values.add(EmitProtocolExtension(PD, methodLists)); 3039 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3040 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3041 PD->protocol_begin(), PD->protocol_end())); 3042 values.add(methodLists.emitMethodList(this, PD, 3043 ProtocolMethodLists::RequiredInstanceMethods)); 3044 values.add(methodLists.emitMethodList(this, PD, 3045 ProtocolMethodLists::RequiredClassMethods)); 3046 3047 if (Entry) { 3048 // Already created, update the initializer. 3049 assert(Entry->hasPrivateLinkage()); 3050 values.finishAndSetAsInitializer(Entry); 3051 } else { 3052 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3053 CGM.getPointerAlign(), 3054 /*constant*/ false, 3055 llvm::GlobalValue::PrivateLinkage); 3056 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3057 3058 Protocols[PD->getIdentifier()] = Entry; 3059 } 3060 CGM.addCompilerUsedGlobal(Entry); 3061 3062 return Entry; 3063 } 3064 3065 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3066 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3067 3068 if (!Entry) { 3069 // We use the initializer as a marker of whether this is a forward 3070 // reference or not. At module finalization we add the empty 3071 // contents for protocols which were referenced but never defined. 3072 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3073 false, llvm::GlobalValue::PrivateLinkage, 3074 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3075 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3076 // FIXME: Is this necessary? Why only for protocol? 3077 Entry->setAlignment(llvm::Align(4)); 3078 } 3079 3080 return Entry; 3081 } 3082 3083 /* 3084 struct _objc_protocol_extension { 3085 uint32_t size; 3086 struct objc_method_description_list *optional_instance_methods; 3087 struct objc_method_description_list *optional_class_methods; 3088 struct objc_property_list *instance_properties; 3089 const char ** extendedMethodTypes; 3090 struct objc_property_list *class_properties; 3091 }; 3092 */ 3093 llvm::Constant * 3094 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3095 const ProtocolMethodLists &methodLists) { 3096 auto optInstanceMethods = 3097 methodLists.emitMethodList(this, PD, 3098 ProtocolMethodLists::OptionalInstanceMethods); 3099 auto optClassMethods = 3100 methodLists.emitMethodList(this, PD, 3101 ProtocolMethodLists::OptionalClassMethods); 3102 3103 auto extendedMethodTypes = 3104 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3105 methodLists.emitExtendedTypesArray(this), 3106 ObjCTypes); 3107 3108 auto instanceProperties = 3109 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3110 ObjCTypes, false); 3111 auto classProperties = 3112 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3113 PD, ObjCTypes, true); 3114 3115 // Return null if no extension bits are used. 3116 if (optInstanceMethods->isNullValue() && 3117 optClassMethods->isNullValue() && 3118 extendedMethodTypes->isNullValue() && 3119 instanceProperties->isNullValue() && 3120 classProperties->isNullValue()) { 3121 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3122 } 3123 3124 uint64_t size = 3125 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3126 3127 ConstantInitBuilder builder(CGM); 3128 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3129 values.addInt(ObjCTypes.IntTy, size); 3130 values.add(optInstanceMethods); 3131 values.add(optClassMethods); 3132 values.add(instanceProperties); 3133 values.add(extendedMethodTypes); 3134 values.add(classProperties); 3135 3136 // No special section, but goes in llvm.used 3137 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3138 StringRef(), CGM.getPointerAlign(), true); 3139 } 3140 3141 /* 3142 struct objc_protocol_list { 3143 struct objc_protocol_list *next; 3144 long count; 3145 Protocol *list[]; 3146 }; 3147 */ 3148 llvm::Constant * 3149 CGObjCMac::EmitProtocolList(Twine name, 3150 ObjCProtocolDecl::protocol_iterator begin, 3151 ObjCProtocolDecl::protocol_iterator end) { 3152 // Just return null for empty protocol lists 3153 auto PDs = GetRuntimeProtocolList(begin, end); 3154 if (PDs.empty()) 3155 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3156 3157 ConstantInitBuilder builder(CGM); 3158 auto values = builder.beginStruct(); 3159 3160 // This field is only used by the runtime. 3161 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3162 3163 // Reserve a slot for the count. 3164 auto countSlot = values.addPlaceholder(); 3165 3166 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3167 for (const auto *Proto : PDs) 3168 refsArray.add(GetProtocolRef(Proto)); 3169 3170 auto count = refsArray.size(); 3171 3172 // This list is null terminated. 3173 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3174 3175 refsArray.finishAndAddTo(values); 3176 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3177 3178 StringRef section; 3179 if (CGM.getTriple().isOSBinFormatMachO()) 3180 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3181 3182 llvm::GlobalVariable *GV = 3183 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3184 return GV; 3185 } 3186 3187 static void 3188 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3189 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3190 const ObjCProtocolDecl *Proto, 3191 bool IsClassProperty) { 3192 for (const auto *PD : Proto->properties()) { 3193 if (IsClassProperty != PD->isClassProperty()) 3194 continue; 3195 if (!PropertySet.insert(PD->getIdentifier()).second) 3196 continue; 3197 Properties.push_back(PD); 3198 } 3199 3200 for (const auto *P : Proto->protocols()) 3201 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3202 } 3203 3204 /* 3205 struct _objc_property { 3206 const char * const name; 3207 const char * const attributes; 3208 }; 3209 3210 struct _objc_property_list { 3211 uint32_t entsize; // sizeof (struct _objc_property) 3212 uint32_t prop_count; 3213 struct _objc_property[prop_count]; 3214 }; 3215 */ 3216 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3217 const Decl *Container, 3218 const ObjCContainerDecl *OCD, 3219 const ObjCCommonTypesHelper &ObjCTypes, 3220 bool IsClassProperty) { 3221 if (IsClassProperty) { 3222 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3223 // with deployment target < 9.0. 3224 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3225 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3226 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3227 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3228 } 3229 3230 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3231 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3232 3233 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3234 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3235 for (auto *PD : ClassExt->properties()) { 3236 if (IsClassProperty != PD->isClassProperty()) 3237 continue; 3238 if (PD->isDirectProperty()) 3239 continue; 3240 PropertySet.insert(PD->getIdentifier()); 3241 Properties.push_back(PD); 3242 } 3243 3244 for (const auto *PD : OCD->properties()) { 3245 if (IsClassProperty != PD->isClassProperty()) 3246 continue; 3247 // Don't emit duplicate metadata for properties that were already in a 3248 // class extension. 3249 if (!PropertySet.insert(PD->getIdentifier()).second) 3250 continue; 3251 if (PD->isDirectProperty()) 3252 continue; 3253 Properties.push_back(PD); 3254 } 3255 3256 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3257 for (const auto *P : OID->all_referenced_protocols()) 3258 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3259 } 3260 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3261 for (const auto *P : CD->protocols()) 3262 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3263 } 3264 3265 // Return null for empty list. 3266 if (Properties.empty()) 3267 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3268 3269 unsigned propertySize = 3270 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3271 3272 ConstantInitBuilder builder(CGM); 3273 auto values = builder.beginStruct(); 3274 values.addInt(ObjCTypes.IntTy, propertySize); 3275 values.addInt(ObjCTypes.IntTy, Properties.size()); 3276 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3277 for (auto PD : Properties) { 3278 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3279 property.add(GetPropertyName(PD->getIdentifier())); 3280 property.add(GetPropertyTypeString(PD, Container)); 3281 property.finishAndAddTo(propertiesArray); 3282 } 3283 propertiesArray.finishAndAddTo(values); 3284 3285 StringRef Section; 3286 if (CGM.getTriple().isOSBinFormatMachO()) 3287 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3288 : "__OBJC,__property,regular,no_dead_strip"; 3289 3290 llvm::GlobalVariable *GV = 3291 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3292 return GV; 3293 } 3294 3295 llvm::Constant * 3296 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3297 ArrayRef<llvm::Constant*> MethodTypes, 3298 const ObjCCommonTypesHelper &ObjCTypes) { 3299 // Return null for empty list. 3300 if (MethodTypes.empty()) 3301 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3302 3303 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3304 MethodTypes.size()); 3305 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3306 3307 StringRef Section; 3308 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3309 Section = "__DATA, __objc_const"; 3310 3311 llvm::GlobalVariable *GV = 3312 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3313 return GV; 3314 } 3315 3316 /* 3317 struct _objc_category { 3318 char *category_name; 3319 char *class_name; 3320 struct _objc_method_list *instance_methods; 3321 struct _objc_method_list *class_methods; 3322 struct _objc_protocol_list *protocols; 3323 uint32_t size; // sizeof(struct _objc_category) 3324 struct _objc_property_list *instance_properties; 3325 struct _objc_property_list *class_properties; 3326 }; 3327 */ 3328 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3329 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3330 3331 // FIXME: This is poor design, the OCD should have a pointer to the category 3332 // decl. Additionally, note that Category can be null for the @implementation 3333 // w/o an @interface case. Sema should just create one for us as it does for 3334 // @implementation so everyone else can live life under a clear blue sky. 3335 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3336 const ObjCCategoryDecl *Category = 3337 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3338 3339 SmallString<256> ExtName; 3340 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3341 << OCD->getName(); 3342 3343 ConstantInitBuilder Builder(CGM); 3344 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3345 3346 enum { 3347 InstanceMethods, 3348 ClassMethods, 3349 NumMethodLists 3350 }; 3351 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3352 for (const auto *MD : OCD->methods()) { 3353 if (!MD->isDirectMethod()) 3354 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3355 } 3356 3357 Values.add(GetClassName(OCD->getName())); 3358 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3359 LazySymbols.insert(Interface->getIdentifier()); 3360 3361 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3362 Methods[InstanceMethods])); 3363 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3364 Methods[ClassMethods])); 3365 if (Category) { 3366 Values.add( 3367 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3368 Category->protocol_begin(), Category->protocol_end())); 3369 } else { 3370 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3371 } 3372 Values.addInt(ObjCTypes.IntTy, Size); 3373 3374 // If there is no category @interface then there can be no properties. 3375 if (Category) { 3376 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3377 OCD, Category, ObjCTypes, false)); 3378 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3379 OCD, Category, ObjCTypes, true)); 3380 } else { 3381 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3382 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3383 } 3384 3385 llvm::GlobalVariable *GV = 3386 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3387 "__OBJC,__category,regular,no_dead_strip", 3388 CGM.getPointerAlign(), true); 3389 DefinedCategories.push_back(GV); 3390 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3391 // method definition entries must be clear for next implementation. 3392 MethodDefinitions.clear(); 3393 } 3394 3395 enum FragileClassFlags { 3396 /// Apparently: is not a meta-class. 3397 FragileABI_Class_Factory = 0x00001, 3398 3399 /// Is a meta-class. 3400 FragileABI_Class_Meta = 0x00002, 3401 3402 /// Has a non-trivial constructor or destructor. 3403 FragileABI_Class_HasCXXStructors = 0x02000, 3404 3405 /// Has hidden visibility. 3406 FragileABI_Class_Hidden = 0x20000, 3407 3408 /// Class implementation was compiled under ARC. 3409 FragileABI_Class_CompiledByARC = 0x04000000, 3410 3411 /// Class implementation was compiled under MRC and has MRC weak ivars. 3412 /// Exclusive with CompiledByARC. 3413 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3414 }; 3415 3416 enum NonFragileClassFlags { 3417 /// Is a meta-class. 3418 NonFragileABI_Class_Meta = 0x00001, 3419 3420 /// Is a root class. 3421 NonFragileABI_Class_Root = 0x00002, 3422 3423 /// Has a non-trivial constructor or destructor. 3424 NonFragileABI_Class_HasCXXStructors = 0x00004, 3425 3426 /// Has hidden visibility. 3427 NonFragileABI_Class_Hidden = 0x00010, 3428 3429 /// Has the exception attribute. 3430 NonFragileABI_Class_Exception = 0x00020, 3431 3432 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3433 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3434 3435 /// Class implementation was compiled under ARC. 3436 NonFragileABI_Class_CompiledByARC = 0x00080, 3437 3438 /// Class has non-trivial destructors, but zero-initialization is okay. 3439 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3440 3441 /// Class implementation was compiled under MRC and has MRC weak ivars. 3442 /// Exclusive with CompiledByARC. 3443 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3444 }; 3445 3446 static bool hasWeakMember(QualType type) { 3447 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3448 return true; 3449 } 3450 3451 if (auto recType = type->getAs<RecordType>()) { 3452 for (auto *field : recType->getDecl()->fields()) { 3453 if (hasWeakMember(field->getType())) 3454 return true; 3455 } 3456 } 3457 3458 return false; 3459 } 3460 3461 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3462 /// (and actually fill in a layout string) if we really do have any 3463 /// __weak ivars. 3464 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3465 const ObjCImplementationDecl *ID) { 3466 if (!CGM.getLangOpts().ObjCWeak) return false; 3467 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3468 3469 for (const ObjCIvarDecl *ivar = 3470 ID->getClassInterface()->all_declared_ivar_begin(); 3471 ivar; ivar = ivar->getNextIvar()) { 3472 if (hasWeakMember(ivar->getType())) 3473 return true; 3474 } 3475 3476 return false; 3477 } 3478 3479 /* 3480 struct _objc_class { 3481 Class isa; 3482 Class super_class; 3483 const char *name; 3484 long version; 3485 long info; 3486 long instance_size; 3487 struct _objc_ivar_list *ivars; 3488 struct _objc_method_list *methods; 3489 struct _objc_cache *cache; 3490 struct _objc_protocol_list *protocols; 3491 // Objective-C 1.0 extensions (<rdr://4585769>) 3492 const char *ivar_layout; 3493 struct _objc_class_ext *ext; 3494 }; 3495 3496 See EmitClassExtension(); 3497 */ 3498 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3499 IdentifierInfo *RuntimeName = 3500 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3501 DefinedSymbols.insert(RuntimeName); 3502 3503 std::string ClassName = ID->getNameAsString(); 3504 // FIXME: Gross 3505 ObjCInterfaceDecl *Interface = 3506 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3507 llvm::Constant *Protocols = 3508 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3509 Interface->all_referenced_protocol_begin(), 3510 Interface->all_referenced_protocol_end()); 3511 unsigned Flags = FragileABI_Class_Factory; 3512 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3513 Flags |= FragileABI_Class_HasCXXStructors; 3514 3515 bool hasMRCWeak = false; 3516 3517 if (CGM.getLangOpts().ObjCAutoRefCount) 3518 Flags |= FragileABI_Class_CompiledByARC; 3519 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3520 Flags |= FragileABI_Class_HasMRCWeakIvars; 3521 3522 CharUnits Size = 3523 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3524 3525 // FIXME: Set CXX-structors flag. 3526 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3527 Flags |= FragileABI_Class_Hidden; 3528 3529 enum { 3530 InstanceMethods, 3531 ClassMethods, 3532 NumMethodLists 3533 }; 3534 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3535 for (const auto *MD : ID->methods()) { 3536 if (!MD->isDirectMethod()) 3537 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3538 } 3539 3540 for (const auto *PID : ID->property_impls()) { 3541 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3542 if (PID->getPropertyDecl()->isDirectProperty()) 3543 continue; 3544 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3545 if (GetMethodDefinition(MD)) 3546 Methods[InstanceMethods].push_back(MD); 3547 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3548 if (GetMethodDefinition(MD)) 3549 Methods[InstanceMethods].push_back(MD); 3550 } 3551 } 3552 3553 ConstantInitBuilder builder(CGM); 3554 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3555 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3556 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3557 // Record a reference to the super class. 3558 LazySymbols.insert(Super->getIdentifier()); 3559 3560 values.add(GetClassName(Super->getObjCRuntimeNameAsString())); 3561 } else { 3562 values.addNullPointer(ObjCTypes.ClassPtrTy); 3563 } 3564 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3565 // Version is always 0. 3566 values.addInt(ObjCTypes.LongTy, 0); 3567 values.addInt(ObjCTypes.LongTy, Flags); 3568 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3569 values.add(EmitIvarList(ID, false)); 3570 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3571 Methods[InstanceMethods])); 3572 // cache is always NULL. 3573 values.addNullPointer(ObjCTypes.CachePtrTy); 3574 values.add(Protocols); 3575 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3576 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3577 /*isMetaclass*/ false)); 3578 3579 std::string Name("OBJC_CLASS_"); 3580 Name += ClassName; 3581 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3582 // Check for a forward reference. 3583 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3584 if (GV) { 3585 assert(GV->getValueType() == ObjCTypes.ClassTy && 3586 "Forward metaclass reference has incorrect type."); 3587 values.finishAndSetAsInitializer(GV); 3588 GV->setSection(Section); 3589 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3590 CGM.addCompilerUsedGlobal(GV); 3591 } else 3592 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3593 DefinedClasses.push_back(GV); 3594 ImplementedClasses.push_back(Interface); 3595 // method definition entries must be clear for next implementation. 3596 MethodDefinitions.clear(); 3597 } 3598 3599 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3600 llvm::Constant *Protocols, 3601 ArrayRef<const ObjCMethodDecl*> Methods) { 3602 unsigned Flags = FragileABI_Class_Meta; 3603 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3604 3605 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3606 Flags |= FragileABI_Class_Hidden; 3607 3608 ConstantInitBuilder builder(CGM); 3609 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3610 // The isa for the metaclass is the root of the hierarchy. 3611 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3612 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3613 Root = Super; 3614 values.add(GetClassName(Root->getObjCRuntimeNameAsString())); 3615 // The super class for the metaclass is emitted as the name of the 3616 // super class. The runtime fixes this up to point to the 3617 // *metaclass* for the super class. 3618 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3619 values.add(GetClassName(Super->getObjCRuntimeNameAsString())); 3620 } else { 3621 values.addNullPointer(ObjCTypes.ClassPtrTy); 3622 } 3623 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3624 // Version is always 0. 3625 values.addInt(ObjCTypes.LongTy, 0); 3626 values.addInt(ObjCTypes.LongTy, Flags); 3627 values.addInt(ObjCTypes.LongTy, Size); 3628 values.add(EmitIvarList(ID, true)); 3629 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3630 Methods)); 3631 // cache is always NULL. 3632 values.addNullPointer(ObjCTypes.CachePtrTy); 3633 values.add(Protocols); 3634 // ivar_layout for metaclass is always NULL. 3635 values.addNullPointer(ObjCTypes.Int8PtrTy); 3636 // The class extension is used to store class properties for metaclasses. 3637 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3638 /*isMetaclass*/true)); 3639 3640 std::string Name("OBJC_METACLASS_"); 3641 Name += ID->getName(); 3642 3643 // Check for a forward reference. 3644 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3645 if (GV) { 3646 assert(GV->getValueType() == ObjCTypes.ClassTy && 3647 "Forward metaclass reference has incorrect type."); 3648 values.finishAndSetAsInitializer(GV); 3649 } else { 3650 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3651 /*constant*/ false, 3652 llvm::GlobalValue::PrivateLinkage); 3653 } 3654 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3655 CGM.addCompilerUsedGlobal(GV); 3656 3657 return GV; 3658 } 3659 3660 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3661 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3662 3663 // FIXME: Should we look these up somewhere other than the module. Its a bit 3664 // silly since we only generate these while processing an implementation, so 3665 // exactly one pointer would work if know when we entered/exitted an 3666 // implementation block. 3667 3668 // Check for an existing forward reference. 3669 // Previously, metaclass with internal linkage may have been defined. 3670 // pass 'true' as 2nd argument so it is returned. 3671 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3672 if (!GV) 3673 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3674 llvm::GlobalValue::PrivateLinkage, nullptr, 3675 Name); 3676 3677 assert(GV->getValueType() == ObjCTypes.ClassTy && 3678 "Forward metaclass reference has incorrect type."); 3679 return GV; 3680 } 3681 3682 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3683 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3684 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3685 3686 if (!GV) 3687 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3688 llvm::GlobalValue::PrivateLinkage, nullptr, 3689 Name); 3690 3691 assert(GV->getValueType() == ObjCTypes.ClassTy && 3692 "Forward class metadata reference has incorrect type."); 3693 return GV; 3694 } 3695 3696 /* 3697 Emit a "class extension", which in this specific context means extra 3698 data that doesn't fit in the normal fragile-ABI class structure, and 3699 has nothing to do with the language concept of a class extension. 3700 3701 struct objc_class_ext { 3702 uint32_t size; 3703 const char *weak_ivar_layout; 3704 struct _objc_property_list *properties; 3705 }; 3706 */ 3707 llvm::Constant * 3708 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3709 CharUnits InstanceSize, bool hasMRCWeakIvars, 3710 bool isMetaclass) { 3711 // Weak ivar layout. 3712 llvm::Constant *layout; 3713 if (isMetaclass) { 3714 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3715 } else { 3716 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3717 hasMRCWeakIvars); 3718 } 3719 3720 // Properties. 3721 llvm::Constant *propertyList = 3722 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3723 : Twine("_OBJC_$_PROP_LIST_")) 3724 + ID->getName(), 3725 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3726 3727 // Return null if no extension bits are used. 3728 if (layout->isNullValue() && propertyList->isNullValue()) { 3729 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3730 } 3731 3732 uint64_t size = 3733 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3734 3735 ConstantInitBuilder builder(CGM); 3736 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3737 values.addInt(ObjCTypes.IntTy, size); 3738 values.add(layout); 3739 values.add(propertyList); 3740 3741 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3742 "__OBJC,__class_ext,regular,no_dead_strip", 3743 CGM.getPointerAlign(), true); 3744 } 3745 3746 /* 3747 struct objc_ivar { 3748 char *ivar_name; 3749 char *ivar_type; 3750 int ivar_offset; 3751 }; 3752 3753 struct objc_ivar_list { 3754 int ivar_count; 3755 struct objc_ivar list[count]; 3756 }; 3757 */ 3758 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3759 bool ForClass) { 3760 // When emitting the root class GCC emits ivar entries for the 3761 // actual class structure. It is not clear if we need to follow this 3762 // behavior; for now lets try and get away with not doing it. If so, 3763 // the cleanest solution would be to make up an ObjCInterfaceDecl 3764 // for the class. 3765 if (ForClass) 3766 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3767 3768 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3769 3770 ConstantInitBuilder builder(CGM); 3771 auto ivarList = builder.beginStruct(); 3772 auto countSlot = ivarList.addPlaceholder(); 3773 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3774 3775 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3776 IVD; IVD = IVD->getNextIvar()) { 3777 // Ignore unnamed bit-fields. 3778 if (!IVD->getDeclName()) 3779 continue; 3780 3781 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3782 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3783 ivar.add(GetMethodVarType(IVD)); 3784 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3785 ivar.finishAndAddTo(ivars); 3786 } 3787 3788 // Return null for empty list. 3789 auto count = ivars.size(); 3790 if (count == 0) { 3791 ivars.abandon(); 3792 ivarList.abandon(); 3793 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3794 } 3795 3796 ivars.finishAndAddTo(ivarList); 3797 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3798 3799 llvm::GlobalVariable *GV; 3800 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3801 "__OBJC,__instance_vars,regular,no_dead_strip", 3802 CGM.getPointerAlign(), true); 3803 return GV; 3804 } 3805 3806 /// Build a struct objc_method_description constant for the given method. 3807 /// 3808 /// struct objc_method_description { 3809 /// SEL method_name; 3810 /// char *method_types; 3811 /// }; 3812 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3813 const ObjCMethodDecl *MD) { 3814 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3815 description.add(GetMethodVarName(MD->getSelector())); 3816 description.add(GetMethodVarType(MD)); 3817 description.finishAndAddTo(builder); 3818 } 3819 3820 /// Build a struct objc_method constant for the given method. 3821 /// 3822 /// struct objc_method { 3823 /// SEL method_name; 3824 /// char *method_types; 3825 /// void *method; 3826 /// }; 3827 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3828 const ObjCMethodDecl *MD) { 3829 llvm::Function *fn = GetMethodDefinition(MD); 3830 assert(fn && "no definition registered for method"); 3831 3832 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3833 method.add(GetMethodVarName(MD->getSelector())); 3834 method.add(GetMethodVarType(MD)); 3835 method.add(fn); 3836 method.finishAndAddTo(builder); 3837 } 3838 3839 /// Build a struct objc_method_list or struct objc_method_description_list, 3840 /// as appropriate. 3841 /// 3842 /// struct objc_method_list { 3843 /// struct objc_method_list *obsolete; 3844 /// int count; 3845 /// struct objc_method methods_list[count]; 3846 /// }; 3847 /// 3848 /// struct objc_method_description_list { 3849 /// int count; 3850 /// struct objc_method_description list[count]; 3851 /// }; 3852 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3853 ArrayRef<const ObjCMethodDecl *> methods) { 3854 StringRef prefix; 3855 StringRef section; 3856 bool forProtocol = false; 3857 switch (MLT) { 3858 case MethodListType::CategoryInstanceMethods: 3859 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3860 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3861 forProtocol = false; 3862 break; 3863 case MethodListType::CategoryClassMethods: 3864 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3865 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3866 forProtocol = false; 3867 break; 3868 case MethodListType::InstanceMethods: 3869 prefix = "OBJC_INSTANCE_METHODS_"; 3870 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3871 forProtocol = false; 3872 break; 3873 case MethodListType::ClassMethods: 3874 prefix = "OBJC_CLASS_METHODS_"; 3875 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3876 forProtocol = false; 3877 break; 3878 case MethodListType::ProtocolInstanceMethods: 3879 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3880 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3881 forProtocol = true; 3882 break; 3883 case MethodListType::ProtocolClassMethods: 3884 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3885 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3886 forProtocol = true; 3887 break; 3888 case MethodListType::OptionalProtocolInstanceMethods: 3889 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3890 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3891 forProtocol = true; 3892 break; 3893 case MethodListType::OptionalProtocolClassMethods: 3894 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3895 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3896 forProtocol = true; 3897 break; 3898 } 3899 3900 // Return null for empty list. 3901 if (methods.empty()) 3902 return llvm::Constant::getNullValue(forProtocol 3903 ? ObjCTypes.MethodDescriptionListPtrTy 3904 : ObjCTypes.MethodListPtrTy); 3905 3906 // For protocols, this is an objc_method_description_list, which has 3907 // a slightly different structure. 3908 if (forProtocol) { 3909 ConstantInitBuilder builder(CGM); 3910 auto values = builder.beginStruct(); 3911 values.addInt(ObjCTypes.IntTy, methods.size()); 3912 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3913 for (auto MD : methods) { 3914 emitMethodDescriptionConstant(methodArray, MD); 3915 } 3916 methodArray.finishAndAddTo(values); 3917 3918 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3919 CGM.getPointerAlign(), true); 3920 return GV; 3921 } 3922 3923 // Otherwise, it's an objc_method_list. 3924 ConstantInitBuilder builder(CGM); 3925 auto values = builder.beginStruct(); 3926 values.addNullPointer(ObjCTypes.Int8PtrTy); 3927 values.addInt(ObjCTypes.IntTy, methods.size()); 3928 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3929 for (auto MD : methods) { 3930 if (!MD->isDirectMethod()) 3931 emitMethodConstant(methodArray, MD); 3932 } 3933 methodArray.finishAndAddTo(values); 3934 3935 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3936 CGM.getPointerAlign(), true); 3937 return GV; 3938 } 3939 3940 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3941 const ObjCContainerDecl *CD) { 3942 llvm::Function *Method; 3943 3944 if (OMD->isDirectMethod()) { 3945 Method = GenerateDirectMethod(OMD, CD); 3946 } else { 3947 auto Name = getSymbolNameForMethod(OMD); 3948 3949 CodeGenTypes &Types = CGM.getTypes(); 3950 llvm::FunctionType *MethodTy = 3951 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3952 Method = 3953 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 3954 Name, &CGM.getModule()); 3955 } 3956 3957 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3958 3959 return Method; 3960 } 3961 3962 llvm::Function * 3963 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 3964 const ObjCContainerDecl *CD) { 3965 auto *COMD = OMD->getCanonicalDecl(); 3966 auto I = DirectMethodDefinitions.find(COMD); 3967 llvm::Function *OldFn = nullptr, *Fn = nullptr; 3968 3969 if (I != DirectMethodDefinitions.end()) { 3970 // Objective-C allows for the declaration and implementation types 3971 // to differ slightly. 3972 // 3973 // If we're being asked for the Function associated for a method 3974 // implementation, a previous value might have been cached 3975 // based on the type of the canonical declaration. 3976 // 3977 // If these do not match, then we'll replace this function with 3978 // a new one that has the proper type below. 3979 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 3980 return I->second; 3981 OldFn = I->second; 3982 } 3983 3984 CodeGenTypes &Types = CGM.getTypes(); 3985 llvm::FunctionType *MethodTy = 3986 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3987 3988 if (OldFn) { 3989 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 3990 "", &CGM.getModule()); 3991 Fn->takeName(OldFn); 3992 OldFn->replaceAllUsesWith(Fn); 3993 OldFn->eraseFromParent(); 3994 3995 // Replace the cached function in the map. 3996 I->second = Fn; 3997 } else { 3998 auto Name = getSymbolNameForMethod(OMD, /*include category*/ false); 3999 4000 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4001 Name, &CGM.getModule()); 4002 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn)); 4003 } 4004 4005 return Fn; 4006 } 4007 4008 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4009 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4010 const ObjCContainerDecl *CD) { 4011 auto &Builder = CGF.Builder; 4012 bool ReceiverCanBeNull = true; 4013 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4014 auto selfValue = Builder.CreateLoad(selfAddr); 4015 4016 // Generate: 4017 // 4018 // /* for class methods only to force class lazy initialization */ 4019 // self = [self self]; 4020 // 4021 // /* unless the receiver is never NULL */ 4022 // if (self == nil) { 4023 // return (ReturnType){ }; 4024 // } 4025 // 4026 // _cmd = @selector(...) 4027 // ... 4028 4029 if (OMD->isClassMethod()) { 4030 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4031 assert(OID && 4032 "GenerateDirectMethod() should be called with the Class Interface"); 4033 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4034 auto ResultType = CGF.getContext().getObjCIdType(); 4035 RValue result; 4036 CallArgList Args; 4037 4038 // TODO: If this method is inlined, the caller might know that `self` is 4039 // already initialized; for example, it might be an ordinary Objective-C 4040 // method which always receives an initialized `self`, or it might have just 4041 // forced initialization on its own. 4042 // 4043 // We should find a way to eliminate this unnecessary initialization in such 4044 // cases in LLVM. 4045 result = GeneratePossiblySpecializedMessageSend( 4046 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4047 nullptr, true); 4048 Builder.CreateStore(result.getScalarVal(), selfAddr); 4049 4050 // Nullable `Class` expressions cannot be messaged with a direct method 4051 // so the only reason why the receive can be null would be because 4052 // of weak linking. 4053 ReceiverCanBeNull = isWeakLinkedClass(OID); 4054 } 4055 4056 if (ReceiverCanBeNull) { 4057 llvm::BasicBlock *SelfIsNilBlock = 4058 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4059 llvm::BasicBlock *ContBlock = 4060 CGF.createBasicBlock("objc_direct_method.cont"); 4061 4062 // if (self == nil) { 4063 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4064 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4065 4066 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4067 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4068 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4069 4070 CGF.EmitBlock(SelfIsNilBlock); 4071 4072 // return (ReturnType){ }; 4073 auto retTy = OMD->getReturnType(); 4074 Builder.SetInsertPoint(SelfIsNilBlock); 4075 if (!retTy->isVoidType()) { 4076 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4077 } 4078 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4079 // } 4080 4081 // rest of the body 4082 CGF.EmitBlock(ContBlock); 4083 Builder.SetInsertPoint(ContBlock); 4084 } 4085 4086 // only synthesize _cmd if it's referenced 4087 if (OMD->getCmdDecl()->isUsed()) { 4088 // `_cmd` is not a parameter to direct methods, so storage must be 4089 // explicitly declared for it. 4090 CGF.EmitVarDecl(*OMD->getCmdDecl()); 4091 Builder.CreateStore(GetSelector(CGF, OMD), 4092 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4093 } 4094 } 4095 4096 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4097 ConstantStructBuilder &Init, 4098 StringRef Section, 4099 CharUnits Align, 4100 bool AddToUsed) { 4101 llvm::GlobalValue::LinkageTypes LT = 4102 getLinkageTypeForObjCMetadata(CGM, Section); 4103 llvm::GlobalVariable *GV = 4104 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4105 if (!Section.empty()) 4106 GV->setSection(Section); 4107 if (AddToUsed) 4108 CGM.addCompilerUsedGlobal(GV); 4109 return GV; 4110 } 4111 4112 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4113 llvm::Constant *Init, 4114 StringRef Section, 4115 CharUnits Align, 4116 bool AddToUsed) { 4117 llvm::Type *Ty = Init->getType(); 4118 llvm::GlobalValue::LinkageTypes LT = 4119 getLinkageTypeForObjCMetadata(CGM, Section); 4120 llvm::GlobalVariable *GV = 4121 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4122 if (!Section.empty()) 4123 GV->setSection(Section); 4124 GV->setAlignment(Align.getAsAlign()); 4125 if (AddToUsed) 4126 CGM.addCompilerUsedGlobal(GV); 4127 return GV; 4128 } 4129 4130 llvm::GlobalVariable * 4131 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4132 bool ForceNonFragileABI, 4133 bool NullTerminate) { 4134 StringRef Label; 4135 switch (Type) { 4136 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4137 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4138 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4139 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4140 } 4141 4142 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4143 4144 StringRef Section; 4145 switch (Type) { 4146 case ObjCLabelType::ClassName: 4147 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4148 : "__TEXT,__cstring,cstring_literals"; 4149 break; 4150 case ObjCLabelType::MethodVarName: 4151 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4152 : "__TEXT,__cstring,cstring_literals"; 4153 break; 4154 case ObjCLabelType::MethodVarType: 4155 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4156 : "__TEXT,__cstring,cstring_literals"; 4157 break; 4158 case ObjCLabelType::PropertyName: 4159 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4160 : "__TEXT,__cstring,cstring_literals"; 4161 break; 4162 } 4163 4164 llvm::Constant *Value = 4165 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4166 llvm::GlobalVariable *GV = 4167 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4168 /*isConstant=*/true, 4169 llvm::GlobalValue::PrivateLinkage, Value, Label); 4170 if (CGM.getTriple().isOSBinFormatMachO()) 4171 GV->setSection(Section); 4172 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4173 GV->setAlignment(CharUnits::One().getAsAlign()); 4174 CGM.addCompilerUsedGlobal(GV); 4175 4176 return GV; 4177 } 4178 4179 llvm::Function *CGObjCMac::ModuleInitFunction() { 4180 // Abuse this interface function as a place to finalize. 4181 FinishModule(); 4182 return nullptr; 4183 } 4184 4185 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4186 return ObjCTypes.getGetPropertyFn(); 4187 } 4188 4189 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4190 return ObjCTypes.getSetPropertyFn(); 4191 } 4192 4193 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4194 bool copy) { 4195 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4196 } 4197 4198 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4199 return ObjCTypes.getCopyStructFn(); 4200 } 4201 4202 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4203 return ObjCTypes.getCopyStructFn(); 4204 } 4205 4206 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4207 return ObjCTypes.getCppAtomicObjectFunction(); 4208 } 4209 4210 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4211 return ObjCTypes.getCppAtomicObjectFunction(); 4212 } 4213 4214 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4215 return ObjCTypes.getEnumerationMutationFn(); 4216 } 4217 4218 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4219 return EmitTryOrSynchronizedStmt(CGF, S); 4220 } 4221 4222 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4223 const ObjCAtSynchronizedStmt &S) { 4224 return EmitTryOrSynchronizedStmt(CGF, S); 4225 } 4226 4227 namespace { 4228 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4229 const Stmt &S; 4230 Address SyncArgSlot; 4231 Address CallTryExitVar; 4232 Address ExceptionData; 4233 ObjCTypesHelper &ObjCTypes; 4234 PerformFragileFinally(const Stmt *S, 4235 Address SyncArgSlot, 4236 Address CallTryExitVar, 4237 Address ExceptionData, 4238 ObjCTypesHelper *ObjCTypes) 4239 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4240 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4241 4242 void Emit(CodeGenFunction &CGF, Flags flags) override { 4243 // Check whether we need to call objc_exception_try_exit. 4244 // In optimized code, this branch will always be folded. 4245 llvm::BasicBlock *FinallyCallExit = 4246 CGF.createBasicBlock("finally.call_exit"); 4247 llvm::BasicBlock *FinallyNoCallExit = 4248 CGF.createBasicBlock("finally.no_call_exit"); 4249 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4250 FinallyCallExit, FinallyNoCallExit); 4251 4252 CGF.EmitBlock(FinallyCallExit); 4253 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4254 ExceptionData.getPointer()); 4255 4256 CGF.EmitBlock(FinallyNoCallExit); 4257 4258 if (isa<ObjCAtTryStmt>(S)) { 4259 if (const ObjCAtFinallyStmt* FinallyStmt = 4260 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4261 // Don't try to do the @finally if this is an EH cleanup. 4262 if (flags.isForEHCleanup()) return; 4263 4264 // Save the current cleanup destination in case there's 4265 // control flow inside the finally statement. 4266 llvm::Value *CurCleanupDest = 4267 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4268 4269 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4270 4271 if (CGF.HaveInsertPoint()) { 4272 CGF.Builder.CreateStore(CurCleanupDest, 4273 CGF.getNormalCleanupDestSlot()); 4274 } else { 4275 // Currently, the end of the cleanup must always exist. 4276 CGF.EnsureInsertPoint(); 4277 } 4278 } 4279 } else { 4280 // Emit objc_sync_exit(expr); as finally's sole statement for 4281 // @synchronized. 4282 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4283 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4284 } 4285 } 4286 }; 4287 4288 class FragileHazards { 4289 CodeGenFunction &CGF; 4290 SmallVector<llvm::Value*, 20> Locals; 4291 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4292 4293 llvm::InlineAsm *ReadHazard; 4294 llvm::InlineAsm *WriteHazard; 4295 4296 llvm::FunctionType *GetAsmFnType(); 4297 4298 void collectLocals(); 4299 void emitReadHazard(CGBuilderTy &Builder); 4300 4301 public: 4302 FragileHazards(CodeGenFunction &CGF); 4303 4304 void emitWriteHazard(); 4305 void emitHazardsInNewBlocks(); 4306 }; 4307 } // end anonymous namespace 4308 4309 /// Create the fragile-ABI read and write hazards based on the current 4310 /// state of the function, which is presumed to be immediately prior 4311 /// to a @try block. These hazards are used to maintain correct 4312 /// semantics in the face of optimization and the fragile ABI's 4313 /// cavalier use of setjmp/longjmp. 4314 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4315 collectLocals(); 4316 4317 if (Locals.empty()) return; 4318 4319 // Collect all the blocks in the function. 4320 for (llvm::Function::iterator 4321 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4322 BlocksBeforeTry.insert(&*I); 4323 4324 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4325 4326 // Create a read hazard for the allocas. This inhibits dead-store 4327 // optimizations and forces the values to memory. This hazard is 4328 // inserted before any 'throwing' calls in the protected scope to 4329 // reflect the possibility that the variables might be read from the 4330 // catch block if the call throws. 4331 { 4332 std::string Constraint; 4333 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4334 if (I) Constraint += ','; 4335 Constraint += "*m"; 4336 } 4337 4338 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4339 } 4340 4341 // Create a write hazard for the allocas. This inhibits folding 4342 // loads across the hazard. This hazard is inserted at the 4343 // beginning of the catch path to reflect the possibility that the 4344 // variables might have been written within the protected scope. 4345 { 4346 std::string Constraint; 4347 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4348 if (I) Constraint += ','; 4349 Constraint += "=*m"; 4350 } 4351 4352 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4353 } 4354 } 4355 4356 /// Emit a write hazard at the current location. 4357 void FragileHazards::emitWriteHazard() { 4358 if (Locals.empty()) return; 4359 4360 llvm::CallInst *Call = CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4361 for (auto Pair : llvm::enumerate(Locals)) 4362 Call->addParamAttr(Pair.index(), llvm::Attribute::get( 4363 CGF.getLLVMContext(), llvm::Attribute::ElementType, 4364 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType())); 4365 } 4366 4367 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4368 assert(!Locals.empty()); 4369 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4370 call->setDoesNotThrow(); 4371 call->setCallingConv(CGF.getRuntimeCC()); 4372 for (auto Pair : llvm::enumerate(Locals)) 4373 call->addParamAttr(Pair.index(), llvm::Attribute::get( 4374 Builder.getContext(), llvm::Attribute::ElementType, 4375 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType())); 4376 } 4377 4378 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4379 /// which have been inserted since the beginning of the try. 4380 void FragileHazards::emitHazardsInNewBlocks() { 4381 if (Locals.empty()) return; 4382 4383 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4384 4385 // Iterate through all blocks, skipping those prior to the try. 4386 for (llvm::Function::iterator 4387 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4388 llvm::BasicBlock &BB = *FI; 4389 if (BlocksBeforeTry.count(&BB)) continue; 4390 4391 // Walk through all the calls in the block. 4392 for (llvm::BasicBlock::iterator 4393 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4394 llvm::Instruction &I = *BI; 4395 4396 // Ignore instructions that aren't non-intrinsic calls. 4397 // These are the only calls that can possibly call longjmp. 4398 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4399 continue; 4400 if (isa<llvm::IntrinsicInst>(I)) 4401 continue; 4402 4403 // Ignore call sites marked nounwind. This may be questionable, 4404 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4405 if (cast<llvm::CallBase>(I).doesNotThrow()) 4406 continue; 4407 4408 // Insert a read hazard before the call. This will ensure that 4409 // any writes to the locals are performed before making the 4410 // call. If the call throws, then this is sufficient to 4411 // guarantee correctness as long as it doesn't also write to any 4412 // locals. 4413 Builder.SetInsertPoint(&BB, BI); 4414 emitReadHazard(Builder); 4415 } 4416 } 4417 } 4418 4419 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4420 if (V.isValid()) S.insert(V.getPointer()); 4421 } 4422 4423 void FragileHazards::collectLocals() { 4424 // Compute a set of allocas to ignore. 4425 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4426 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4427 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4428 4429 // Collect all the allocas currently in the function. This is 4430 // probably way too aggressive. 4431 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4432 for (llvm::BasicBlock::iterator 4433 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4434 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4435 Locals.push_back(&*I); 4436 } 4437 4438 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4439 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4440 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4441 tys[i] = Locals[i]->getType(); 4442 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4443 } 4444 4445 /* 4446 4447 Objective-C setjmp-longjmp (sjlj) Exception Handling 4448 -- 4449 4450 A catch buffer is a setjmp buffer plus: 4451 - a pointer to the exception that was caught 4452 - a pointer to the previous exception data buffer 4453 - two pointers of reserved storage 4454 Therefore catch buffers form a stack, with a pointer to the top 4455 of the stack kept in thread-local storage. 4456 4457 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4458 objc_exception_try_exit pops the given catch buffer, which is 4459 required to be the top of the EH stack. 4460 objc_exception_throw pops the top of the EH stack, writes the 4461 thrown exception into the appropriate field, and longjmps 4462 to the setjmp buffer. It crashes the process (with a printf 4463 and an abort()) if there are no catch buffers on the stack. 4464 objc_exception_extract just reads the exception pointer out of the 4465 catch buffer. 4466 4467 There's no reason an implementation couldn't use a light-weight 4468 setjmp here --- something like __builtin_setjmp, but API-compatible 4469 with the heavyweight setjmp. This will be more important if we ever 4470 want to implement correct ObjC/C++ exception interactions for the 4471 fragile ABI. 4472 4473 Note that for this use of setjmp/longjmp to be correct in the presence of 4474 optimization, we use inline assembly on the set of local variables to force 4475 flushing locals to memory immediately before any protected calls and to 4476 inhibit optimizing locals across the setjmp->catch edge. 4477 4478 The basic framework for a @try-catch-finally is as follows: 4479 { 4480 objc_exception_data d; 4481 id _rethrow = null; 4482 bool _call_try_exit = true; 4483 4484 objc_exception_try_enter(&d); 4485 if (!setjmp(d.jmp_buf)) { 4486 ... try body ... 4487 } else { 4488 // exception path 4489 id _caught = objc_exception_extract(&d); 4490 4491 // enter new try scope for handlers 4492 if (!setjmp(d.jmp_buf)) { 4493 ... match exception and execute catch blocks ... 4494 4495 // fell off end, rethrow. 4496 _rethrow = _caught; 4497 ... jump-through-finally to finally_rethrow ... 4498 } else { 4499 // exception in catch block 4500 _rethrow = objc_exception_extract(&d); 4501 _call_try_exit = false; 4502 ... jump-through-finally to finally_rethrow ... 4503 } 4504 } 4505 ... jump-through-finally to finally_end ... 4506 4507 finally: 4508 if (_call_try_exit) 4509 objc_exception_try_exit(&d); 4510 4511 ... finally block .... 4512 ... dispatch to finally destination ... 4513 4514 finally_rethrow: 4515 objc_exception_throw(_rethrow); 4516 4517 finally_end: 4518 } 4519 4520 This framework differs slightly from the one gcc uses, in that gcc 4521 uses _rethrow to determine if objc_exception_try_exit should be called 4522 and if the object should be rethrown. This breaks in the face of 4523 throwing nil and introduces unnecessary branches. 4524 4525 We specialize this framework for a few particular circumstances: 4526 4527 - If there are no catch blocks, then we avoid emitting the second 4528 exception handling context. 4529 4530 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4531 e)) we avoid emitting the code to rethrow an uncaught exception. 4532 4533 - FIXME: If there is no @finally block we can do a few more 4534 simplifications. 4535 4536 Rethrows and Jumps-Through-Finally 4537 -- 4538 4539 '@throw;' is supported by pushing the currently-caught exception 4540 onto ObjCEHStack while the @catch blocks are emitted. 4541 4542 Branches through the @finally block are handled with an ordinary 4543 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4544 exceptions are not compatible with C++ exceptions, and this is 4545 hardly the only place where this will go wrong. 4546 4547 @synchronized(expr) { stmt; } is emitted as if it were: 4548 id synch_value = expr; 4549 objc_sync_enter(synch_value); 4550 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4551 */ 4552 4553 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4554 const Stmt &S) { 4555 bool isTry = isa<ObjCAtTryStmt>(S); 4556 4557 // A destination for the fall-through edges of the catch handlers to 4558 // jump to. 4559 CodeGenFunction::JumpDest FinallyEnd = 4560 CGF.getJumpDestInCurrentScope("finally.end"); 4561 4562 // A destination for the rethrow edge of the catch handlers to jump 4563 // to. 4564 CodeGenFunction::JumpDest FinallyRethrow = 4565 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4566 4567 // For @synchronized, call objc_sync_enter(sync.expr). The 4568 // evaluation of the expression must occur before we enter the 4569 // @synchronized. We can't avoid a temp here because we need the 4570 // value to be preserved. If the backend ever does liveness 4571 // correctly after setjmp, this will be unnecessary. 4572 Address SyncArgSlot = Address::invalid(); 4573 if (!isTry) { 4574 llvm::Value *SyncArg = 4575 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4576 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4577 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4578 4579 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4580 CGF.getPointerAlign(), "sync.arg"); 4581 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4582 } 4583 4584 // Allocate memory for the setjmp buffer. This needs to be kept 4585 // live throughout the try and catch blocks. 4586 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4587 CGF.getPointerAlign(), 4588 "exceptiondata.ptr"); 4589 4590 // Create the fragile hazards. Note that this will not capture any 4591 // of the allocas required for exception processing, but will 4592 // capture the current basic block (which extends all the way to the 4593 // setjmp call) as "before the @try". 4594 FragileHazards Hazards(CGF); 4595 4596 // Create a flag indicating whether the cleanup needs to call 4597 // objc_exception_try_exit. This is true except when 4598 // - no catches match and we're branching through the cleanup 4599 // just to rethrow the exception, or 4600 // - a catch matched and we're falling out of the catch handler. 4601 // The setjmp-safety rule here is that we should always store to this 4602 // variable in a place that dominates the branch through the cleanup 4603 // without passing through any setjmps. 4604 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4605 CharUnits::One(), 4606 "_call_try_exit"); 4607 4608 // A slot containing the exception to rethrow. Only needed when we 4609 // have both a @catch and a @finally. 4610 Address PropagatingExnVar = Address::invalid(); 4611 4612 // Push a normal cleanup to leave the try scope. 4613 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4614 SyncArgSlot, 4615 CallTryExitVar, 4616 ExceptionData, 4617 &ObjCTypes); 4618 4619 // Enter a try block: 4620 // - Call objc_exception_try_enter to push ExceptionData on top of 4621 // the EH stack. 4622 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4623 ExceptionData.getPointer()); 4624 4625 // - Call setjmp on the exception data buffer. 4626 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4627 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4628 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4629 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4630 "setjmp_buffer"); 4631 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4632 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4633 SetJmpResult->setCanReturnTwice(); 4634 4635 // If setjmp returned 0, enter the protected block; otherwise, 4636 // branch to the handler. 4637 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4638 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4639 llvm::Value *DidCatch = 4640 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4641 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4642 4643 // Emit the protected block. 4644 CGF.EmitBlock(TryBlock); 4645 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4646 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4647 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4648 4649 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4650 4651 // Emit the exception handler block. 4652 CGF.EmitBlock(TryHandler); 4653 4654 // Don't optimize loads of the in-scope locals across this point. 4655 Hazards.emitWriteHazard(); 4656 4657 // For a @synchronized (or a @try with no catches), just branch 4658 // through the cleanup to the rethrow block. 4659 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4660 // Tell the cleanup not to re-pop the exit. 4661 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4662 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4663 4664 // Otherwise, we have to match against the caught exceptions. 4665 } else { 4666 // Retrieve the exception object. We may emit multiple blocks but 4667 // nothing can cross this so the value is already in SSA form. 4668 llvm::CallInst *Caught = 4669 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4670 ExceptionData.getPointer(), "caught"); 4671 4672 // Push the exception to rethrow onto the EH value stack for the 4673 // benefit of any @throws in the handlers. 4674 CGF.ObjCEHValueStack.push_back(Caught); 4675 4676 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4677 4678 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4679 4680 llvm::BasicBlock *CatchBlock = nullptr; 4681 llvm::BasicBlock *CatchHandler = nullptr; 4682 if (HasFinally) { 4683 // Save the currently-propagating exception before 4684 // objc_exception_try_enter clears the exception slot. 4685 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4686 CGF.getPointerAlign(), 4687 "propagating_exception"); 4688 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4689 4690 // Enter a new exception try block (in case a @catch block 4691 // throws an exception). 4692 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4693 ExceptionData.getPointer()); 4694 4695 llvm::CallInst *SetJmpResult = 4696 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4697 SetJmpBuffer, "setjmp.result"); 4698 SetJmpResult->setCanReturnTwice(); 4699 4700 llvm::Value *Threw = 4701 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4702 4703 CatchBlock = CGF.createBasicBlock("catch"); 4704 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4705 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4706 4707 CGF.EmitBlock(CatchBlock); 4708 } 4709 4710 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4711 4712 // Handle catch list. As a special case we check if everything is 4713 // matched and avoid generating code for falling off the end if 4714 // so. 4715 bool AllMatched = false; 4716 for (const ObjCAtCatchStmt *CatchStmt : AtTryStmt->catch_stmts()) { 4717 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4718 const ObjCObjectPointerType *OPT = nullptr; 4719 4720 // catch(...) always matches. 4721 if (!CatchParam) { 4722 AllMatched = true; 4723 } else { 4724 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4725 4726 // catch(id e) always matches under this ABI, since only 4727 // ObjC exceptions end up here in the first place. 4728 // FIXME: For the time being we also match id<X>; this should 4729 // be rejected by Sema instead. 4730 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4731 AllMatched = true; 4732 } 4733 4734 // If this is a catch-all, we don't need to test anything. 4735 if (AllMatched) { 4736 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4737 4738 if (CatchParam) { 4739 CGF.EmitAutoVarDecl(*CatchParam); 4740 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4741 4742 // These types work out because ConvertType(id) == i8*. 4743 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4744 } 4745 4746 CGF.EmitStmt(CatchStmt->getCatchBody()); 4747 4748 // The scope of the catch variable ends right here. 4749 CatchVarCleanups.ForceCleanup(); 4750 4751 CGF.EmitBranchThroughCleanup(FinallyEnd); 4752 break; 4753 } 4754 4755 assert(OPT && "Unexpected non-object pointer type in @catch"); 4756 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4757 4758 // FIXME: @catch (Class c) ? 4759 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4760 assert(IDecl && "Catch parameter must have Objective-C type!"); 4761 4762 // Check if the @catch block matches the exception object. 4763 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4764 4765 llvm::Value *matchArgs[] = { Class, Caught }; 4766 llvm::CallInst *Match = 4767 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4768 matchArgs, "match"); 4769 4770 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4771 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4772 4773 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4774 MatchedBlock, NextCatchBlock); 4775 4776 // Emit the @catch block. 4777 CGF.EmitBlock(MatchedBlock); 4778 4779 // Collect any cleanups for the catch variable. The scope lasts until 4780 // the end of the catch body. 4781 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4782 4783 CGF.EmitAutoVarDecl(*CatchParam); 4784 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4785 4786 // Initialize the catch variable. 4787 llvm::Value *Tmp = 4788 CGF.Builder.CreateBitCast(Caught, 4789 CGF.ConvertType(CatchParam->getType())); 4790 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4791 4792 CGF.EmitStmt(CatchStmt->getCatchBody()); 4793 4794 // We're done with the catch variable. 4795 CatchVarCleanups.ForceCleanup(); 4796 4797 CGF.EmitBranchThroughCleanup(FinallyEnd); 4798 4799 CGF.EmitBlock(NextCatchBlock); 4800 } 4801 4802 CGF.ObjCEHValueStack.pop_back(); 4803 4804 // If nothing wanted anything to do with the caught exception, 4805 // kill the extract call. 4806 if (Caught->use_empty()) 4807 Caught->eraseFromParent(); 4808 4809 if (!AllMatched) 4810 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4811 4812 if (HasFinally) { 4813 // Emit the exception handler for the @catch blocks. 4814 CGF.EmitBlock(CatchHandler); 4815 4816 // In theory we might now need a write hazard, but actually it's 4817 // unnecessary because there's no local-accessing code between 4818 // the try's write hazard and here. 4819 //Hazards.emitWriteHazard(); 4820 4821 // Extract the new exception and save it to the 4822 // propagating-exception slot. 4823 assert(PropagatingExnVar.isValid()); 4824 llvm::CallInst *NewCaught = 4825 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4826 ExceptionData.getPointer(), "caught"); 4827 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4828 4829 // Don't pop the catch handler; the throw already did. 4830 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4831 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4832 } 4833 } 4834 4835 // Insert read hazards as required in the new blocks. 4836 Hazards.emitHazardsInNewBlocks(); 4837 4838 // Pop the cleanup. 4839 CGF.Builder.restoreIP(TryFallthroughIP); 4840 if (CGF.HaveInsertPoint()) 4841 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4842 CGF.PopCleanupBlock(); 4843 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4844 4845 // Emit the rethrow block. 4846 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4847 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4848 if (CGF.HaveInsertPoint()) { 4849 // If we have a propagating-exception variable, check it. 4850 llvm::Value *PropagatingExn; 4851 if (PropagatingExnVar.isValid()) { 4852 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4853 4854 // Otherwise, just look in the buffer for the exception to throw. 4855 } else { 4856 llvm::CallInst *Caught = 4857 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4858 ExceptionData.getPointer()); 4859 PropagatingExn = Caught; 4860 } 4861 4862 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4863 PropagatingExn); 4864 CGF.Builder.CreateUnreachable(); 4865 } 4866 4867 CGF.Builder.restoreIP(SavedIP); 4868 } 4869 4870 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4871 const ObjCAtThrowStmt &S, 4872 bool ClearInsertionPoint) { 4873 llvm::Value *ExceptionAsObject; 4874 4875 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4876 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4877 ExceptionAsObject = 4878 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4879 } else { 4880 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4881 "Unexpected rethrow outside @catch block."); 4882 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4883 } 4884 4885 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4886 ->setDoesNotReturn(); 4887 CGF.Builder.CreateUnreachable(); 4888 4889 // Clear the insertion point to indicate we are in unreachable code. 4890 if (ClearInsertionPoint) 4891 CGF.Builder.ClearInsertionPoint(); 4892 } 4893 4894 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4895 /// object: objc_read_weak (id *src) 4896 /// 4897 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4898 Address AddrWeakObj) { 4899 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4900 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast( 4901 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy); 4902 llvm::Value *read_weak = 4903 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4904 AddrWeakObjVal, "weakread"); 4905 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4906 return read_weak; 4907 } 4908 4909 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4910 /// objc_assign_weak (id src, id *dst) 4911 /// 4912 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4913 llvm::Value *src, Address dst) { 4914 llvm::Type * SrcTy = src->getType(); 4915 if (!isa<llvm::PointerType>(SrcTy)) { 4916 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4917 assert(Size <= 8 && "does not support size > 8"); 4918 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4919 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4920 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4921 } 4922 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4923 llvm::Value *dstVal = 4924 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 4925 llvm::Value *args[] = { src, dstVal }; 4926 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4927 args, "weakassign"); 4928 } 4929 4930 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4931 /// objc_assign_global (id src, id *dst) 4932 /// 4933 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4934 llvm::Value *src, Address dst, 4935 bool threadlocal) { 4936 llvm::Type * SrcTy = src->getType(); 4937 if (!isa<llvm::PointerType>(SrcTy)) { 4938 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4939 assert(Size <= 8 && "does not support size > 8"); 4940 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4941 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4942 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4943 } 4944 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4945 llvm::Value *dstVal = 4946 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 4947 llvm::Value *args[] = {src, dstVal}; 4948 if (!threadlocal) 4949 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4950 args, "globalassign"); 4951 else 4952 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4953 args, "threadlocalassign"); 4954 } 4955 4956 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4957 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4958 /// 4959 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4960 llvm::Value *src, Address dst, 4961 llvm::Value *ivarOffset) { 4962 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4963 llvm::Type * SrcTy = src->getType(); 4964 if (!isa<llvm::PointerType>(SrcTy)) { 4965 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4966 assert(Size <= 8 && "does not support size > 8"); 4967 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4968 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4969 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4970 } 4971 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4972 llvm::Value *dstVal = 4973 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 4974 llvm::Value *args[] = {src, dstVal, ivarOffset}; 4975 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4976 } 4977 4978 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4979 /// objc_assign_strongCast (id src, id *dst) 4980 /// 4981 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4982 llvm::Value *src, Address dst) { 4983 llvm::Type * SrcTy = src->getType(); 4984 if (!isa<llvm::PointerType>(SrcTy)) { 4985 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4986 assert(Size <= 8 && "does not support size > 8"); 4987 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4988 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4989 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4990 } 4991 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4992 llvm::Value *dstVal = 4993 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 4994 llvm::Value *args[] = {src, dstVal}; 4995 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4996 args, "strongassign"); 4997 } 4998 4999 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5000 Address DestPtr, Address SrcPtr, 5001 llvm::Value *size) { 5002 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5003 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5004 } 5005 5006 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5007 /// 5008 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5009 QualType ObjectTy, 5010 llvm::Value *BaseValue, 5011 const ObjCIvarDecl *Ivar, 5012 unsigned CVRQualifiers) { 5013 const ObjCInterfaceDecl *ID = 5014 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5015 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5016 EmitIvarOffset(CGF, ID, Ivar)); 5017 } 5018 5019 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5020 const ObjCInterfaceDecl *Interface, 5021 const ObjCIvarDecl *Ivar) { 5022 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5023 return llvm::ConstantInt::get( 5024 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5025 Offset); 5026 } 5027 5028 /* *** Private Interface *** */ 5029 5030 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5031 StringRef MachOAttributes) { 5032 switch (CGM.getTriple().getObjectFormat()) { 5033 case llvm::Triple::UnknownObjectFormat: 5034 llvm_unreachable("unexpected object file format"); 5035 case llvm::Triple::MachO: { 5036 if (MachOAttributes.empty()) 5037 return ("__DATA," + Section).str(); 5038 return ("__DATA," + Section + "," + MachOAttributes).str(); 5039 } 5040 case llvm::Triple::ELF: 5041 assert(Section.substr(0, 2) == "__" && 5042 "expected the name to begin with __"); 5043 return Section.substr(2).str(); 5044 case llvm::Triple::COFF: 5045 assert(Section.substr(0, 2) == "__" && 5046 "expected the name to begin with __"); 5047 return ("." + Section.substr(2) + "$B").str(); 5048 case llvm::Triple::Wasm: 5049 case llvm::Triple::GOFF: 5050 case llvm::Triple::SPIRV: 5051 case llvm::Triple::XCOFF: 5052 case llvm::Triple::DXContainer: 5053 llvm::report_fatal_error( 5054 "Objective-C support is unimplemented for object file format"); 5055 } 5056 5057 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5058 } 5059 5060 /// EmitImageInfo - Emit the image info marker used to encode some module 5061 /// level information. 5062 /// 5063 /// See: <rdr://4810609&4810587&4810587> 5064 /// struct IMAGE_INFO { 5065 /// unsigned version; 5066 /// unsigned flags; 5067 /// }; 5068 enum ImageInfoFlags { 5069 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5070 eImageInfo_GarbageCollected = (1 << 1), 5071 eImageInfo_GCOnly = (1 << 2), 5072 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5073 5074 // A flag indicating that the module has no instances of a @synthesize of a 5075 // superclass variable. This flag used to be consumed by the runtime to work 5076 // around miscompile by gcc. 5077 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5078 eImageInfo_ImageIsSimulated = (1 << 5), 5079 eImageInfo_ClassProperties = (1 << 6) 5080 }; 5081 5082 void CGObjCCommonMac::EmitImageInfo() { 5083 unsigned version = 0; // Version is unused? 5084 std::string Section = 5085 (ObjCABI == 1) 5086 ? "__OBJC,__image_info,regular" 5087 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5088 5089 // Generate module-level named metadata to convey this information to the 5090 // linker and code-gen. 5091 llvm::Module &Mod = CGM.getModule(); 5092 5093 // Add the ObjC ABI version to the module flags. 5094 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5095 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5096 version); 5097 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5098 llvm::MDString::get(VMContext, Section)); 5099 5100 auto Int8Ty = llvm::Type::getInt8Ty(VMContext); 5101 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5102 // Non-GC overrides those files which specify GC. 5103 Mod.addModuleFlag(llvm::Module::Error, 5104 "Objective-C Garbage Collection", 5105 llvm::ConstantInt::get(Int8Ty,0)); 5106 } else { 5107 // Add the ObjC garbage collection value. 5108 Mod.addModuleFlag(llvm::Module::Error, 5109 "Objective-C Garbage Collection", 5110 llvm::ConstantInt::get(Int8Ty, 5111 (uint8_t)eImageInfo_GarbageCollected)); 5112 5113 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5114 // Add the ObjC GC Only value. 5115 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5116 eImageInfo_GCOnly); 5117 5118 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5119 llvm::Metadata *Ops[2] = { 5120 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5121 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5122 Int8Ty, eImageInfo_GarbageCollected))}; 5123 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5124 llvm::MDNode::get(VMContext, Ops)); 5125 } 5126 } 5127 5128 // Indicate whether we're compiling this to run on a simulator. 5129 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5130 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5131 eImageInfo_ImageIsSimulated); 5132 5133 // Indicate whether we are generating class properties. 5134 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5135 eImageInfo_ClassProperties); 5136 } 5137 5138 // struct objc_module { 5139 // unsigned long version; 5140 // unsigned long size; 5141 // const char *name; 5142 // Symtab symtab; 5143 // }; 5144 5145 // FIXME: Get from somewhere 5146 static const int ModuleVersion = 7; 5147 5148 void CGObjCMac::EmitModuleInfo() { 5149 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5150 5151 ConstantInitBuilder builder(CGM); 5152 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5153 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5154 values.addInt(ObjCTypes.LongTy, Size); 5155 // This used to be the filename, now it is unused. <rdr://4327263> 5156 values.add(GetClassName(StringRef(""))); 5157 values.add(EmitModuleSymbols()); 5158 CreateMetadataVar("OBJC_MODULES", values, 5159 "__OBJC,__module_info,regular,no_dead_strip", 5160 CGM.getPointerAlign(), true); 5161 } 5162 5163 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5164 unsigned NumClasses = DefinedClasses.size(); 5165 unsigned NumCategories = DefinedCategories.size(); 5166 5167 // Return null if no symbols were defined. 5168 if (!NumClasses && !NumCategories) 5169 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5170 5171 ConstantInitBuilder builder(CGM); 5172 auto values = builder.beginStruct(); 5173 values.addInt(ObjCTypes.LongTy, 0); 5174 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5175 values.addInt(ObjCTypes.ShortTy, NumClasses); 5176 values.addInt(ObjCTypes.ShortTy, NumCategories); 5177 5178 // The runtime expects exactly the list of defined classes followed 5179 // by the list of defined categories, in a single array. 5180 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5181 for (unsigned i=0; i<NumClasses; i++) { 5182 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5183 assert(ID); 5184 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5185 // We are implementing a weak imported interface. Give it external linkage 5186 if (ID->isWeakImported() && !IMP->isWeakImported()) 5187 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5188 5189 array.add(DefinedClasses[i]); 5190 } 5191 for (unsigned i=0; i<NumCategories; i++) 5192 array.add(DefinedCategories[i]); 5193 5194 array.finishAndAddTo(values); 5195 5196 llvm::GlobalVariable *GV = CreateMetadataVar( 5197 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5198 CGM.getPointerAlign(), true); 5199 return GV; 5200 } 5201 5202 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5203 IdentifierInfo *II) { 5204 LazySymbols.insert(II); 5205 5206 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5207 5208 if (!Entry) { 5209 Entry = 5210 CreateMetadataVar("OBJC_CLASS_REFERENCES_", GetClassName(II->getName()), 5211 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5212 CGM.getPointerAlign(), true); 5213 } 5214 5215 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, 5216 CGF.getPointerAlign()); 5217 } 5218 5219 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5220 const ObjCInterfaceDecl *ID) { 5221 // If the class has the objc_runtime_visible attribute, we need to 5222 // use the Objective-C runtime to get the class. 5223 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5224 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5225 5226 IdentifierInfo *RuntimeName = 5227 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5228 return EmitClassRefFromId(CGF, RuntimeName); 5229 } 5230 5231 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5232 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5233 return EmitClassRefFromId(CGF, II); 5234 } 5235 5236 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5237 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5238 } 5239 5240 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5241 CharUnits Align = CGM.getPointerAlign(); 5242 5243 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5244 if (!Entry) { 5245 Entry = CreateMetadataVar( 5246 "OBJC_SELECTOR_REFERENCES_", GetMethodVarName(Sel), 5247 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5248 Entry->setExternallyInitialized(true); 5249 } 5250 5251 return Address(Entry, ObjCTypes.SelectorPtrTy, Align); 5252 } 5253 5254 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5255 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5256 if (!Entry) 5257 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5258 return getConstantGEP(VMContext, Entry, 0, 0); 5259 } 5260 5261 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5262 return MethodDefinitions.lookup(MD); 5263 } 5264 5265 /// GetIvarLayoutName - Returns a unique constant for the given 5266 /// ivar layout bitmap. 5267 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5268 const ObjCCommonTypesHelper &ObjCTypes) { 5269 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5270 } 5271 5272 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5273 CharUnits offset) { 5274 const RecordDecl *RD = RT->getDecl(); 5275 5276 // If this is a union, remember that we had one, because it might mess 5277 // up the ordering of layout entries. 5278 if (RD->isUnion()) 5279 IsDisordered = true; 5280 5281 const ASTRecordLayout *recLayout = nullptr; 5282 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5283 [&](const FieldDecl *field) -> CharUnits { 5284 if (!recLayout) 5285 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5286 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5287 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5288 }); 5289 } 5290 5291 template <class Iterator, class GetOffsetFn> 5292 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5293 CharUnits aggregateOffset, 5294 const GetOffsetFn &getOffset) { 5295 for (; begin != end; ++begin) { 5296 auto field = *begin; 5297 5298 // Skip over bitfields. 5299 if (field->isBitField()) { 5300 continue; 5301 } 5302 5303 // Compute the offset of the field within the aggregate. 5304 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5305 5306 visitField(field, fieldOffset); 5307 } 5308 } 5309 5310 /// Collect layout information for the given fields into IvarsInfo. 5311 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5312 CharUnits fieldOffset) { 5313 QualType fieldType = field->getType(); 5314 5315 // Drill down into arrays. 5316 uint64_t numElts = 1; 5317 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5318 numElts = 0; 5319 fieldType = arrayType->getElementType(); 5320 } 5321 // Unlike incomplete arrays, constant arrays can be nested. 5322 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5323 numElts *= arrayType->getSize().getZExtValue(); 5324 fieldType = arrayType->getElementType(); 5325 } 5326 5327 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5328 5329 // If we ended up with a zero-sized array, we've done what we can do within 5330 // the limits of this layout encoding. 5331 if (numElts == 0) return; 5332 5333 // Recurse if the base element type is a record type. 5334 if (auto recType = fieldType->getAs<RecordType>()) { 5335 size_t oldEnd = IvarsInfo.size(); 5336 5337 visitRecord(recType, fieldOffset); 5338 5339 // If we have an array, replicate the first entry's layout information. 5340 auto numEltEntries = IvarsInfo.size() - oldEnd; 5341 if (numElts != 1 && numEltEntries != 0) { 5342 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5343 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5344 // Copy the last numEltEntries onto the end of the array, adjusting 5345 // each for the element size. 5346 for (size_t i = 0; i != numEltEntries; ++i) { 5347 auto firstEntry = IvarsInfo[oldEnd + i]; 5348 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5349 firstEntry.SizeInWords)); 5350 } 5351 } 5352 } 5353 5354 return; 5355 } 5356 5357 // Classify the element type. 5358 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5359 5360 // If it matches what we're looking for, add an entry. 5361 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5362 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5363 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5364 == CGM.getPointerSize()); 5365 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5366 } 5367 } 5368 5369 /// buildBitmap - This routine does the horsework of taking the offsets of 5370 /// strong/weak references and creating a bitmap. The bitmap is also 5371 /// returned in the given buffer, suitable for being passed to \c dump(). 5372 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5373 llvm::SmallVectorImpl<unsigned char> &buffer) { 5374 // The bitmap is a series of skip/scan instructions, aligned to word 5375 // boundaries. The skip is performed first. 5376 const unsigned char MaxNibble = 0xF; 5377 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5378 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5379 5380 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5381 5382 // Sort the ivar info on byte position in case we encounterred a 5383 // union nested in the ivar list. 5384 if (IsDisordered) { 5385 // This isn't a stable sort, but our algorithm should handle it fine. 5386 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5387 } else { 5388 assert(llvm::is_sorted(IvarsInfo)); 5389 } 5390 assert(IvarsInfo.back().Offset < InstanceEnd); 5391 5392 assert(buffer.empty()); 5393 5394 // Skip the next N words. 5395 auto skip = [&](unsigned numWords) { 5396 assert(numWords > 0); 5397 5398 // Try to merge into the previous byte. Since scans happen second, we 5399 // can't do this if it includes a scan. 5400 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5401 unsigned lastSkip = buffer.back() >> SkipShift; 5402 if (lastSkip < MaxNibble) { 5403 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5404 numWords -= claimed; 5405 lastSkip += claimed; 5406 buffer.back() = (lastSkip << SkipShift); 5407 } 5408 } 5409 5410 while (numWords >= MaxNibble) { 5411 buffer.push_back(MaxNibble << SkipShift); 5412 numWords -= MaxNibble; 5413 } 5414 if (numWords) { 5415 buffer.push_back(numWords << SkipShift); 5416 } 5417 }; 5418 5419 // Scan the next N words. 5420 auto scan = [&](unsigned numWords) { 5421 assert(numWords > 0); 5422 5423 // Try to merge into the previous byte. Since scans happen second, we can 5424 // do this even if it includes a skip. 5425 if (!buffer.empty()) { 5426 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5427 if (lastScan < MaxNibble) { 5428 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5429 numWords -= claimed; 5430 lastScan += claimed; 5431 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5432 } 5433 } 5434 5435 while (numWords >= MaxNibble) { 5436 buffer.push_back(MaxNibble << ScanShift); 5437 numWords -= MaxNibble; 5438 } 5439 if (numWords) { 5440 buffer.push_back(numWords << ScanShift); 5441 } 5442 }; 5443 5444 // One past the end of the last scan. 5445 unsigned endOfLastScanInWords = 0; 5446 const CharUnits WordSize = CGM.getPointerSize(); 5447 5448 // Consider all the scan requests. 5449 for (auto &request : IvarsInfo) { 5450 CharUnits beginOfScan = request.Offset - InstanceBegin; 5451 5452 // Ignore scan requests that don't start at an even multiple of the 5453 // word size. We can't encode them. 5454 if ((beginOfScan % WordSize) != 0) continue; 5455 5456 // Ignore scan requests that start before the instance start. 5457 // This assumes that scans never span that boundary. The boundary 5458 // isn't the true start of the ivars, because in the fragile-ARC case 5459 // it's rounded up to word alignment, but the test above should leave 5460 // us ignoring that possibility. 5461 if (beginOfScan.isNegative()) { 5462 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5463 continue; 5464 } 5465 5466 unsigned beginOfScanInWords = beginOfScan / WordSize; 5467 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5468 5469 // If the scan starts some number of words after the last one ended, 5470 // skip forward. 5471 if (beginOfScanInWords > endOfLastScanInWords) { 5472 skip(beginOfScanInWords - endOfLastScanInWords); 5473 5474 // Otherwise, start scanning where the last left off. 5475 } else { 5476 beginOfScanInWords = endOfLastScanInWords; 5477 5478 // If that leaves us with nothing to scan, ignore this request. 5479 if (beginOfScanInWords >= endOfScanInWords) continue; 5480 } 5481 5482 // Scan to the end of the request. 5483 assert(beginOfScanInWords < endOfScanInWords); 5484 scan(endOfScanInWords - beginOfScanInWords); 5485 endOfLastScanInWords = endOfScanInWords; 5486 } 5487 5488 if (buffer.empty()) 5489 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5490 5491 // For GC layouts, emit a skip to the end of the allocation so that we 5492 // have precise information about the entire thing. This isn't useful 5493 // or necessary for the ARC-style layout strings. 5494 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5495 unsigned lastOffsetInWords = 5496 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5497 if (lastOffsetInWords > endOfLastScanInWords) { 5498 skip(lastOffsetInWords - endOfLastScanInWords); 5499 } 5500 } 5501 5502 // Null terminate the string. 5503 buffer.push_back(0); 5504 5505 auto *Entry = CGObjC.CreateCStringLiteral( 5506 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5507 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5508 } 5509 5510 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5511 /// implementation for the __strong or __weak case. 5512 /// The layout map displays which words in ivar list must be skipped 5513 /// and which must be scanned by GC (see below). String is built of bytes. 5514 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5515 /// of words to skip and right nibble is count of words to scan. So, each 5516 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5517 /// represented by a 0x00 byte which also ends the string. 5518 /// 1. when ForStrongLayout is true, following ivars are scanned: 5519 /// - id, Class 5520 /// - object * 5521 /// - __strong anything 5522 /// 5523 /// 2. When ForStrongLayout is false, following ivars are scanned: 5524 /// - __weak anything 5525 /// 5526 llvm::Constant * 5527 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5528 CharUnits beginOffset, CharUnits endOffset, 5529 bool ForStrongLayout, bool HasMRCWeakIvars) { 5530 // If this is MRC, and we're either building a strong layout or there 5531 // are no weak ivars, bail out early. 5532 llvm::Type *PtrTy = CGM.Int8PtrTy; 5533 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5534 !CGM.getLangOpts().ObjCAutoRefCount && 5535 (ForStrongLayout || !HasMRCWeakIvars)) 5536 return llvm::Constant::getNullValue(PtrTy); 5537 5538 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5539 SmallVector<const ObjCIvarDecl*, 32> ivars; 5540 5541 // GC layout strings include the complete object layout, possibly 5542 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5543 // up. 5544 // 5545 // ARC layout strings only include the class's ivars. In non-fragile 5546 // runtimes, that means starting at InstanceStart, rounded up to word 5547 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5548 // starting at the offset of the first ivar, rounded up to word alignment. 5549 // 5550 // MRC weak layout strings follow the ARC style. 5551 CharUnits baseOffset; 5552 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5553 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5554 IVD; IVD = IVD->getNextIvar()) 5555 ivars.push_back(IVD); 5556 5557 if (isNonFragileABI()) { 5558 baseOffset = beginOffset; // InstanceStart 5559 } else if (!ivars.empty()) { 5560 baseOffset = 5561 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5562 } else { 5563 baseOffset = CharUnits::Zero(); 5564 } 5565 5566 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5567 } 5568 else { 5569 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5570 5571 baseOffset = CharUnits::Zero(); 5572 } 5573 5574 if (ivars.empty()) 5575 return llvm::Constant::getNullValue(PtrTy); 5576 5577 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5578 5579 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5580 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5581 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5582 }); 5583 5584 if (!builder.hasBitmapData()) 5585 return llvm::Constant::getNullValue(PtrTy); 5586 5587 llvm::SmallVector<unsigned char, 4> buffer; 5588 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5589 5590 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5591 printf("\n%s ivar layout for class '%s': ", 5592 ForStrongLayout ? "strong" : "weak", 5593 OMD->getClassInterface()->getName().str().c_str()); 5594 builder.dump(buffer); 5595 } 5596 return C; 5597 } 5598 5599 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5600 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5601 // FIXME: Avoid std::string in "Sel.getAsString()" 5602 if (!Entry) 5603 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5604 return getConstantGEP(VMContext, Entry, 0, 0); 5605 } 5606 5607 // FIXME: Merge into a single cstring creation function. 5608 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5609 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5610 } 5611 5612 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5613 std::string TypeStr; 5614 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5615 5616 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5617 if (!Entry) 5618 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5619 return getConstantGEP(VMContext, Entry, 0, 0); 5620 } 5621 5622 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5623 bool Extended) { 5624 std::string TypeStr = 5625 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5626 5627 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5628 if (!Entry) 5629 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5630 return getConstantGEP(VMContext, Entry, 0, 0); 5631 } 5632 5633 // FIXME: Merge into a single cstring creation function. 5634 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5635 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5636 if (!Entry) 5637 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5638 return getConstantGEP(VMContext, Entry, 0, 0); 5639 } 5640 5641 // FIXME: Merge into a single cstring creation function. 5642 // FIXME: This Decl should be more precise. 5643 llvm::Constant * 5644 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5645 const Decl *Container) { 5646 std::string TypeStr = 5647 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5648 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5649 } 5650 5651 void CGObjCMac::FinishModule() { 5652 EmitModuleInfo(); 5653 5654 // Emit the dummy bodies for any protocols which were referenced but 5655 // never defined. 5656 for (auto &entry : Protocols) { 5657 llvm::GlobalVariable *global = entry.second; 5658 if (global->hasInitializer()) 5659 continue; 5660 5661 ConstantInitBuilder builder(CGM); 5662 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5663 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5664 values.add(GetClassName(entry.first->getName())); 5665 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5666 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5667 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5668 values.finishAndSetAsInitializer(global); 5669 CGM.addCompilerUsedGlobal(global); 5670 } 5671 5672 // Add assembler directives to add lazy undefined symbol references 5673 // for classes which are referenced but not defined. This is 5674 // important for correct linker interaction. 5675 // 5676 // FIXME: It would be nice if we had an LLVM construct for this. 5677 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5678 CGM.getTriple().isOSBinFormatMachO()) { 5679 SmallString<256> Asm; 5680 Asm += CGM.getModule().getModuleInlineAsm(); 5681 if (!Asm.empty() && Asm.back() != '\n') 5682 Asm += '\n'; 5683 5684 llvm::raw_svector_ostream OS(Asm); 5685 for (const auto *Sym : DefinedSymbols) 5686 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5687 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5688 for (const auto *Sym : LazySymbols) 5689 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5690 for (const auto &Category : DefinedCategoryNames) 5691 OS << "\t.objc_category_name_" << Category << "=0\n" 5692 << "\t.globl .objc_category_name_" << Category << "\n"; 5693 5694 CGM.getModule().setModuleInlineAsm(OS.str()); 5695 } 5696 } 5697 5698 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5699 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5700 ObjCEmptyVtableVar(nullptr) { 5701 ObjCABI = 2; 5702 } 5703 5704 /* *** */ 5705 5706 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5707 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5708 { 5709 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5710 ASTContext &Ctx = CGM.getContext(); 5711 unsigned ProgramAS = CGM.getDataLayout().getProgramAddressSpace(); 5712 5713 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5714 IntTy = CGM.IntTy; 5715 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5716 Int8PtrTy = CGM.Int8PtrTy; 5717 Int8PtrProgramASTy = llvm::PointerType::get(CGM.Int8Ty, ProgramAS); 5718 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5719 5720 // arm64 targets use "int" ivar offset variables. All others, 5721 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5722 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5723 IvarOffsetVarTy = IntTy; 5724 else 5725 IvarOffsetVarTy = LongTy; 5726 5727 ObjectPtrTy = 5728 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5729 PtrObjectPtrTy = 5730 llvm::PointerType::getUnqual(ObjectPtrTy); 5731 SelectorPtrTy = 5732 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5733 5734 // I'm not sure I like this. The implicit coordination is a bit 5735 // gross. We should solve this in a reasonable fashion because this 5736 // is a pretty common task (match some runtime data structure with 5737 // an LLVM data structure). 5738 5739 // FIXME: This is leaked. 5740 // FIXME: Merge with rewriter code? 5741 5742 // struct _objc_super { 5743 // id self; 5744 // Class cls; 5745 // } 5746 RecordDecl *RD = RecordDecl::Create( 5747 Ctx, TagTypeKind::Struct, Ctx.getTranslationUnitDecl(), SourceLocation(), 5748 SourceLocation(), &Ctx.Idents.get("_objc_super")); 5749 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5750 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5751 false, ICIS_NoInit)); 5752 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5753 nullptr, Ctx.getObjCClassType(), nullptr, 5754 nullptr, false, ICIS_NoInit)); 5755 RD->completeDefinition(); 5756 5757 SuperCTy = Ctx.getTagDeclType(RD); 5758 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5759 5760 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5761 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5762 5763 // struct _prop_t { 5764 // char *name; 5765 // char *attributes; 5766 // } 5767 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5768 5769 // struct _prop_list_t { 5770 // uint32_t entsize; // sizeof(struct _prop_t) 5771 // uint32_t count_of_properties; 5772 // struct _prop_t prop_list[count_of_properties]; 5773 // } 5774 PropertyListTy = llvm::StructType::create( 5775 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5776 // struct _prop_list_t * 5777 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5778 5779 // struct _objc_method { 5780 // SEL _cmd; 5781 // char *method_type; 5782 // char *_imp; 5783 // } 5784 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5785 Int8PtrTy, Int8PtrProgramASTy); 5786 5787 // struct _objc_cache * 5788 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5789 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5790 } 5791 5792 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5793 : ObjCCommonTypesHelper(cgm) { 5794 // struct _objc_method_description { 5795 // SEL name; 5796 // char *types; 5797 // } 5798 MethodDescriptionTy = llvm::StructType::create( 5799 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5800 5801 // struct _objc_method_description_list { 5802 // int count; 5803 // struct _objc_method_description[1]; 5804 // } 5805 MethodDescriptionListTy = 5806 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5807 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5808 5809 // struct _objc_method_description_list * 5810 MethodDescriptionListPtrTy = 5811 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5812 5813 // Protocol description structures 5814 5815 // struct _objc_protocol_extension { 5816 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5817 // struct _objc_method_description_list *optional_instance_methods; 5818 // struct _objc_method_description_list *optional_class_methods; 5819 // struct _objc_property_list *instance_properties; 5820 // const char ** extendedMethodTypes; 5821 // struct _objc_property_list *class_properties; 5822 // } 5823 ProtocolExtensionTy = llvm::StructType::create( 5824 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5825 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5826 PropertyListPtrTy); 5827 5828 // struct _objc_protocol_extension * 5829 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5830 5831 // Handle recursive construction of Protocol and ProtocolList types 5832 5833 ProtocolTy = 5834 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5835 5836 ProtocolListTy = 5837 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5838 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5839 llvm::ArrayType::get(ProtocolTy, 0)); 5840 5841 // struct _objc_protocol { 5842 // struct _objc_protocol_extension *isa; 5843 // char *protocol_name; 5844 // struct _objc_protocol **_objc_protocol_list; 5845 // struct _objc_method_description_list *instance_methods; 5846 // struct _objc_method_description_list *class_methods; 5847 // } 5848 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5849 llvm::PointerType::getUnqual(ProtocolListTy), 5850 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5851 5852 // struct _objc_protocol_list * 5853 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5854 5855 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5856 5857 // Class description structures 5858 5859 // struct _objc_ivar { 5860 // char *ivar_name; 5861 // char *ivar_type; 5862 // int ivar_offset; 5863 // } 5864 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5865 IntTy); 5866 5867 // struct _objc_ivar_list * 5868 IvarListTy = 5869 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5870 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5871 5872 // struct _objc_method_list * 5873 MethodListTy = 5874 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5875 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5876 5877 // struct _objc_class_extension * 5878 ClassExtensionTy = llvm::StructType::create( 5879 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5880 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5881 5882 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5883 5884 // struct _objc_class { 5885 // Class isa; 5886 // Class super_class; 5887 // char *name; 5888 // long version; 5889 // long info; 5890 // long instance_size; 5891 // struct _objc_ivar_list *ivars; 5892 // struct _objc_method_list *methods; 5893 // struct _objc_cache *cache; 5894 // struct _objc_protocol_list *protocols; 5895 // char *ivar_layout; 5896 // struct _objc_class_ext *ext; 5897 // }; 5898 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5899 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5900 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5901 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5902 5903 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5904 5905 // struct _objc_category { 5906 // char *category_name; 5907 // char *class_name; 5908 // struct _objc_method_list *instance_method; 5909 // struct _objc_method_list *class_method; 5910 // struct _objc_protocol_list *protocols; 5911 // uint32_t size; // sizeof(struct _objc_category) 5912 // struct _objc_property_list *instance_properties;// category's @property 5913 // struct _objc_property_list *class_properties; 5914 // } 5915 CategoryTy = llvm::StructType::create( 5916 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5917 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5918 PropertyListPtrTy); 5919 5920 // Global metadata structures 5921 5922 // struct _objc_symtab { 5923 // long sel_ref_cnt; 5924 // SEL *refs; 5925 // short cls_def_cnt; 5926 // short cat_def_cnt; 5927 // char *defs[cls_def_cnt + cat_def_cnt]; 5928 // } 5929 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5930 SelectorPtrTy, ShortTy, ShortTy, 5931 llvm::ArrayType::get(Int8PtrTy, 0)); 5932 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5933 5934 // struct _objc_module { 5935 // long version; 5936 // long size; // sizeof(struct _objc_module) 5937 // char *name; 5938 // struct _objc_symtab* symtab; 5939 // } 5940 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5941 Int8PtrTy, SymtabPtrTy); 5942 5943 // FIXME: This is the size of the setjmp buffer and should be target 5944 // specific. 18 is what's used on 32-bit X86. 5945 uint64_t SetJmpBufferSize = 18; 5946 5947 // Exceptions 5948 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5949 5950 ExceptionDataTy = llvm::StructType::create( 5951 "struct._objc_exception_data", 5952 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5953 } 5954 5955 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5956 : ObjCCommonTypesHelper(cgm) { 5957 // struct _method_list_t { 5958 // uint32_t entsize; // sizeof(struct _objc_method) 5959 // uint32_t method_count; 5960 // struct _objc_method method_list[method_count]; 5961 // } 5962 MethodListnfABITy = 5963 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5964 llvm::ArrayType::get(MethodTy, 0)); 5965 // struct method_list_t * 5966 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5967 5968 // struct _protocol_t { 5969 // id isa; // NULL 5970 // const char * const protocol_name; 5971 // const struct _protocol_list_t * protocol_list; // super protocols 5972 // const struct method_list_t * const instance_methods; 5973 // const struct method_list_t * const class_methods; 5974 // const struct method_list_t *optionalInstanceMethods; 5975 // const struct method_list_t *optionalClassMethods; 5976 // const struct _prop_list_t * properties; 5977 // const uint32_t size; // sizeof(struct _protocol_t) 5978 // const uint32_t flags; // = 0 5979 // const char ** extendedMethodTypes; 5980 // const char *demangledName; 5981 // const struct _prop_list_t * class_properties; 5982 // } 5983 5984 // Holder for struct _protocol_list_t * 5985 ProtocolListnfABITy = 5986 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5987 5988 ProtocolnfABITy = llvm::StructType::create( 5989 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5990 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 5991 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5992 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 5993 PropertyListPtrTy); 5994 5995 // struct _protocol_t* 5996 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5997 5998 // struct _protocol_list_t { 5999 // long protocol_count; // Note, this is 32/64 bit 6000 // struct _protocol_t *[protocol_count]; 6001 // } 6002 ProtocolListnfABITy->setBody(LongTy, 6003 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6004 6005 // struct _objc_protocol_list* 6006 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6007 6008 // struct _ivar_t { 6009 // unsigned [long] int *offset; // pointer to ivar offset location 6010 // char *name; 6011 // char *type; 6012 // uint32_t alignment; 6013 // uint32_t size; 6014 // } 6015 IvarnfABITy = llvm::StructType::create( 6016 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6017 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6018 6019 // struct _ivar_list_t { 6020 // uint32 entsize; // sizeof(struct _ivar_t) 6021 // uint32 count; 6022 // struct _iver_t list[count]; 6023 // } 6024 IvarListnfABITy = 6025 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6026 llvm::ArrayType::get(IvarnfABITy, 0)); 6027 6028 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6029 6030 // struct _class_ro_t { 6031 // uint32_t const flags; 6032 // uint32_t const instanceStart; 6033 // uint32_t const instanceSize; 6034 // uint32_t const reserved; // only when building for 64bit targets 6035 // const uint8_t * const ivarLayout; 6036 // const char *const name; 6037 // const struct _method_list_t * const baseMethods; 6038 // const struct _objc_protocol_list *const baseProtocols; 6039 // const struct _ivar_list_t *const ivars; 6040 // const uint8_t * const weakIvarLayout; 6041 // const struct _prop_list_t * const properties; 6042 // } 6043 6044 // FIXME. Add 'reserved' field in 64bit abi mode! 6045 ClassRonfABITy = llvm::StructType::create( 6046 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6047 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6048 Int8PtrTy, PropertyListPtrTy); 6049 6050 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6051 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6052 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6053 ->getPointerTo(); 6054 6055 // struct _class_t { 6056 // struct _class_t *isa; 6057 // struct _class_t * const superclass; 6058 // void *cache; 6059 // IMP *vtable; 6060 // struct class_ro_t *ro; 6061 // } 6062 6063 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6064 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6065 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6066 llvm::PointerType::getUnqual(ImpnfABITy), 6067 llvm::PointerType::getUnqual(ClassRonfABITy)); 6068 6069 // LLVM for struct _class_t * 6070 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6071 6072 // struct _category_t { 6073 // const char * const name; 6074 // struct _class_t *const cls; 6075 // const struct _method_list_t * const instance_methods; 6076 // const struct _method_list_t * const class_methods; 6077 // const struct _protocol_list_t * const protocols; 6078 // const struct _prop_list_t * const properties; 6079 // const struct _prop_list_t * const class_properties; 6080 // const uint32_t size; 6081 // } 6082 CategorynfABITy = llvm::StructType::create( 6083 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6084 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6085 PropertyListPtrTy, IntTy); 6086 6087 // New types for nonfragile abi messaging. 6088 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6089 ASTContext &Ctx = CGM.getContext(); 6090 6091 // MessageRefTy - LLVM for: 6092 // struct _message_ref_t { 6093 // IMP messenger; 6094 // SEL name; 6095 // }; 6096 6097 // First the clang type for struct _message_ref_t 6098 RecordDecl *RD = RecordDecl::Create( 6099 Ctx, TagTypeKind::Struct, Ctx.getTranslationUnitDecl(), SourceLocation(), 6100 SourceLocation(), &Ctx.Idents.get("_message_ref_t")); 6101 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6102 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6103 ICIS_NoInit)); 6104 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6105 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6106 false, ICIS_NoInit)); 6107 RD->completeDefinition(); 6108 6109 MessageRefCTy = Ctx.getTagDeclType(RD); 6110 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6111 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6112 6113 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6114 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6115 6116 // SuperMessageRefTy - LLVM for: 6117 // struct _super_message_ref_t { 6118 // SUPER_IMP messenger; 6119 // SEL name; 6120 // }; 6121 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6122 ImpnfABITy, SelectorPtrTy); 6123 6124 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6125 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6126 6127 6128 // struct objc_typeinfo { 6129 // const void** vtable; // objc_ehtype_vtable + 2 6130 // const char* name; // c++ typeinfo string 6131 // Class cls; 6132 // }; 6133 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6134 llvm::PointerType::getUnqual(Int8PtrTy), 6135 Int8PtrTy, ClassnfABIPtrTy); 6136 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6137 } 6138 6139 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6140 FinishNonFragileABIModule(); 6141 6142 return nullptr; 6143 } 6144 6145 void CGObjCNonFragileABIMac::AddModuleClassList( 6146 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6147 StringRef SectionName) { 6148 unsigned NumClasses = Container.size(); 6149 6150 if (!NumClasses) 6151 return; 6152 6153 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6154 for (unsigned i=0; i<NumClasses; i++) 6155 Symbols[i] = Container[i]; 6156 6157 llvm::Constant *Init = 6158 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6159 Symbols.size()), 6160 Symbols); 6161 6162 // Section name is obtained by calling GetSectionName, which returns 6163 // sections in the __DATA segment on MachO. 6164 assert((!CGM.getTriple().isOSBinFormatMachO() || 6165 SectionName.starts_with("__DATA")) && 6166 "SectionName expected to start with __DATA on MachO"); 6167 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 6168 CGM.getModule(), Init->getType(), false, 6169 llvm::GlobalValue::PrivateLinkage, Init, SymbolName); 6170 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(Init->getType())); 6171 GV->setSection(SectionName); 6172 CGM.addCompilerUsedGlobal(GV); 6173 } 6174 6175 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6176 // nonfragile abi has no module definition. 6177 6178 // Build list of all implemented class addresses in array 6179 // L_OBJC_LABEL_CLASS_$. 6180 6181 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6182 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6183 assert(ID); 6184 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6185 // We are implementing a weak imported interface. Give it external linkage 6186 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6187 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6188 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6189 } 6190 } 6191 6192 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6193 GetSectionName("__objc_classlist", 6194 "regular,no_dead_strip")); 6195 6196 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6197 GetSectionName("__objc_nlclslist", 6198 "regular,no_dead_strip")); 6199 6200 // Build list of all implemented category addresses in array 6201 // L_OBJC_LABEL_CATEGORY_$. 6202 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6203 GetSectionName("__objc_catlist", 6204 "regular,no_dead_strip")); 6205 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6206 GetSectionName("__objc_catlist2", 6207 "regular,no_dead_strip")); 6208 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6209 GetSectionName("__objc_nlcatlist", 6210 "regular,no_dead_strip")); 6211 6212 EmitImageInfo(); 6213 } 6214 6215 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6216 /// VTableDispatchMethods; false otherwise. What this means is that 6217 /// except for the 19 selectors in the list, we generate 32bit-style 6218 /// message dispatch call for all the rest. 6219 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6220 // At various points we've experimented with using vtable-based 6221 // dispatch for all methods. 6222 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6223 case CodeGenOptions::Legacy: 6224 return false; 6225 case CodeGenOptions::NonLegacy: 6226 return true; 6227 case CodeGenOptions::Mixed: 6228 break; 6229 } 6230 6231 // If so, see whether this selector is in the white-list of things which must 6232 // use the new dispatch convention. We lazily build a dense set for this. 6233 if (VTableDispatchMethods.empty()) { 6234 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6235 VTableDispatchMethods.insert(GetNullarySelector("class")); 6236 VTableDispatchMethods.insert(GetNullarySelector("self")); 6237 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6238 VTableDispatchMethods.insert(GetNullarySelector("length")); 6239 VTableDispatchMethods.insert(GetNullarySelector("count")); 6240 6241 // These are vtable-based if GC is disabled. 6242 // Optimistically use vtable dispatch for hybrid compiles. 6243 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6244 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6245 VTableDispatchMethods.insert(GetNullarySelector("release")); 6246 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6247 } 6248 6249 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6250 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6251 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6252 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6253 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6254 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6255 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6256 6257 // These are vtable-based if GC is enabled. 6258 // Optimistically use vtable dispatch for hybrid compiles. 6259 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6260 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6261 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6262 6263 // "countByEnumeratingWithState:objects:count" 6264 IdentifierInfo *KeyIdents[] = { 6265 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6266 &CGM.getContext().Idents.get("objects"), 6267 &CGM.getContext().Idents.get("count") 6268 }; 6269 VTableDispatchMethods.insert( 6270 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6271 } 6272 } 6273 6274 return VTableDispatchMethods.count(Sel); 6275 } 6276 6277 /// BuildClassRoTInitializer - generate meta-data for: 6278 /// struct _class_ro_t { 6279 /// uint32_t const flags; 6280 /// uint32_t const instanceStart; 6281 /// uint32_t const instanceSize; 6282 /// uint32_t const reserved; // only when building for 64bit targets 6283 /// const uint8_t * const ivarLayout; 6284 /// const char *const name; 6285 /// const struct _method_list_t * const baseMethods; 6286 /// const struct _protocol_list_t *const baseProtocols; 6287 /// const struct _ivar_list_t *const ivars; 6288 /// const uint8_t * const weakIvarLayout; 6289 /// const struct _prop_list_t * const properties; 6290 /// } 6291 /// 6292 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6293 unsigned flags, 6294 unsigned InstanceStart, 6295 unsigned InstanceSize, 6296 const ObjCImplementationDecl *ID) { 6297 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString()); 6298 6299 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6300 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6301 6302 bool hasMRCWeak = false; 6303 if (CGM.getLangOpts().ObjCAutoRefCount) 6304 flags |= NonFragileABI_Class_CompiledByARC; 6305 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6306 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6307 6308 ConstantInitBuilder builder(CGM); 6309 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6310 6311 values.addInt(ObjCTypes.IntTy, flags); 6312 values.addInt(ObjCTypes.IntTy, InstanceStart); 6313 values.addInt(ObjCTypes.IntTy, InstanceSize); 6314 values.add((flags & NonFragileABI_Class_Meta) 6315 ? GetIvarLayoutName(nullptr, ObjCTypes) 6316 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6317 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6318 6319 // const struct _method_list_t * const baseMethods; 6320 SmallVector<const ObjCMethodDecl*, 16> methods; 6321 if (flags & NonFragileABI_Class_Meta) { 6322 for (const auto *MD : ID->class_methods()) 6323 if (!MD->isDirectMethod()) 6324 methods.push_back(MD); 6325 } else { 6326 for (const auto *MD : ID->instance_methods()) 6327 if (!MD->isDirectMethod()) 6328 methods.push_back(MD); 6329 } 6330 6331 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6332 (flags & NonFragileABI_Class_Meta) 6333 ? MethodListType::ClassMethods 6334 : MethodListType::InstanceMethods, 6335 methods)); 6336 6337 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6338 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6339 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6340 + OID->getObjCRuntimeNameAsString(), 6341 OID->all_referenced_protocol_begin(), 6342 OID->all_referenced_protocol_end())); 6343 6344 if (flags & NonFragileABI_Class_Meta) { 6345 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6346 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6347 values.add(EmitPropertyList( 6348 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6349 ID, ID->getClassInterface(), ObjCTypes, true)); 6350 } else { 6351 values.add(EmitIvarList(ID)); 6352 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6353 values.add(EmitPropertyList( 6354 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6355 ID, ID->getClassInterface(), ObjCTypes, false)); 6356 } 6357 6358 llvm::SmallString<64> roLabel; 6359 llvm::raw_svector_ostream(roLabel) 6360 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6361 : "_OBJC_CLASS_RO_$_") 6362 << ClassName; 6363 6364 return finishAndCreateGlobal(values, roLabel, CGM); 6365 } 6366 6367 /// Build the metaclass object for a class. 6368 /// 6369 /// struct _class_t { 6370 /// struct _class_t *isa; 6371 /// struct _class_t * const superclass; 6372 /// void *cache; 6373 /// IMP *vtable; 6374 /// struct class_ro_t *ro; 6375 /// } 6376 /// 6377 llvm::GlobalVariable * 6378 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6379 bool isMetaclass, 6380 llvm::Constant *IsAGV, 6381 llvm::Constant *SuperClassGV, 6382 llvm::Constant *ClassRoGV, 6383 bool HiddenVisibility) { 6384 ConstantInitBuilder builder(CGM); 6385 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6386 values.add(IsAGV); 6387 if (SuperClassGV) { 6388 values.add(SuperClassGV); 6389 } else { 6390 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6391 } 6392 values.add(ObjCEmptyCacheVar); 6393 values.add(ObjCEmptyVtableVar); 6394 values.add(ClassRoGV); 6395 6396 llvm::GlobalVariable *GV = 6397 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6398 values.finishAndSetAsInitializer(GV); 6399 6400 if (CGM.getTriple().isOSBinFormatMachO()) 6401 GV->setSection("__DATA, __objc_data"); 6402 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(ObjCTypes.ClassnfABITy)); 6403 if (!CGM.getTriple().isOSBinFormatCOFF()) 6404 if (HiddenVisibility) 6405 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6406 return GV; 6407 } 6408 6409 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6410 const ObjCImplDecl *OD) const { 6411 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6412 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6413 OD->hasAttr<ObjCNonLazyClassAttr>(); 6414 } 6415 6416 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6417 uint32_t &InstanceStart, 6418 uint32_t &InstanceSize) { 6419 const ASTRecordLayout &RL = 6420 CGM.getContext().getASTObjCImplementationLayout(OID); 6421 6422 // InstanceSize is really instance end. 6423 InstanceSize = RL.getDataSize().getQuantity(); 6424 6425 // If there are no fields, the start is the same as the end. 6426 if (!RL.getFieldCount()) 6427 InstanceStart = InstanceSize; 6428 else 6429 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6430 } 6431 6432 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6433 StringRef Name) { 6434 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6435 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6436 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6437 6438 const VarDecl *VD = nullptr; 6439 for (const auto *Result : DC->lookup(&II)) 6440 if ((VD = dyn_cast<VarDecl>(Result))) 6441 break; 6442 6443 if (!VD) 6444 return llvm::GlobalValue::DLLImportStorageClass; 6445 if (VD->hasAttr<DLLExportAttr>()) 6446 return llvm::GlobalValue::DLLExportStorageClass; 6447 if (VD->hasAttr<DLLImportAttr>()) 6448 return llvm::GlobalValue::DLLImportStorageClass; 6449 return llvm::GlobalValue::DefaultStorageClass; 6450 } 6451 6452 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6453 if (!ObjCEmptyCacheVar) { 6454 ObjCEmptyCacheVar = 6455 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6456 llvm::GlobalValue::ExternalLinkage, nullptr, 6457 "_objc_empty_cache"); 6458 if (CGM.getTriple().isOSBinFormatCOFF()) 6459 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6460 6461 // Only OS X with deployment version <10.9 use the empty vtable symbol 6462 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6463 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6464 ObjCEmptyVtableVar = 6465 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6466 llvm::GlobalValue::ExternalLinkage, nullptr, 6467 "_objc_empty_vtable"); 6468 else 6469 ObjCEmptyVtableVar = 6470 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6471 } 6472 6473 // FIXME: Is this correct (that meta class size is never computed)? 6474 uint32_t InstanceStart = 6475 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6476 uint32_t InstanceSize = InstanceStart; 6477 uint32_t flags = NonFragileABI_Class_Meta; 6478 6479 llvm::Constant *SuperClassGV, *IsAGV; 6480 6481 const auto *CI = ID->getClassInterface(); 6482 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6483 6484 // Build the flags for the metaclass. 6485 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6486 ? !CI->hasAttr<DLLExportAttr>() 6487 : CI->getVisibility() == HiddenVisibility; 6488 if (classIsHidden) 6489 flags |= NonFragileABI_Class_Hidden; 6490 6491 // FIXME: why is this flag set on the metaclass? 6492 // ObjC metaclasses have no fields and don't really get constructed. 6493 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6494 flags |= NonFragileABI_Class_HasCXXStructors; 6495 if (!ID->hasNonZeroConstructors()) 6496 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6497 } 6498 6499 if (!CI->getSuperClass()) { 6500 // class is root 6501 flags |= NonFragileABI_Class_Root; 6502 6503 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6504 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6505 } else { 6506 // Has a root. Current class is not a root. 6507 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6508 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6509 Root = Super; 6510 6511 const auto *Super = CI->getSuperClass(); 6512 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6513 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6514 } 6515 6516 llvm::GlobalVariable *CLASS_RO_GV = 6517 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6518 6519 llvm::GlobalVariable *MetaTClass = 6520 BuildClassObject(CI, /*metaclass*/ true, 6521 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6522 CGM.setGVProperties(MetaTClass, CI); 6523 DefinedMetaClasses.push_back(MetaTClass); 6524 6525 // Metadata for the class 6526 flags = 0; 6527 if (classIsHidden) 6528 flags |= NonFragileABI_Class_Hidden; 6529 6530 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6531 flags |= NonFragileABI_Class_HasCXXStructors; 6532 6533 // Set a flag to enable a runtime optimization when a class has 6534 // fields that require destruction but which don't require 6535 // anything except zero-initialization during construction. This 6536 // is most notably true of __strong and __weak types, but you can 6537 // also imagine there being C++ types with non-trivial default 6538 // constructors that merely set all fields to null. 6539 if (!ID->hasNonZeroConstructors()) 6540 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6541 } 6542 6543 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6544 flags |= NonFragileABI_Class_Exception; 6545 6546 if (!CI->getSuperClass()) { 6547 flags |= NonFragileABI_Class_Root; 6548 SuperClassGV = nullptr; 6549 } else { 6550 // Has a root. Current class is not a root. 6551 const auto *Super = CI->getSuperClass(); 6552 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6553 } 6554 6555 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6556 CLASS_RO_GV = 6557 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6558 6559 llvm::GlobalVariable *ClassMD = 6560 BuildClassObject(CI, /*metaclass*/ false, 6561 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6562 CGM.setGVProperties(ClassMD, CI); 6563 DefinedClasses.push_back(ClassMD); 6564 ImplementedClasses.push_back(CI); 6565 6566 // Determine if this class is also "non-lazy". 6567 if (ImplementationIsNonLazy(ID)) 6568 DefinedNonLazyClasses.push_back(ClassMD); 6569 6570 // Force the definition of the EHType if necessary. 6571 if (flags & NonFragileABI_Class_Exception) 6572 (void) GetInterfaceEHType(CI, ForDefinition); 6573 // Make sure method definition entries are all clear for next implementation. 6574 MethodDefinitions.clear(); 6575 } 6576 6577 /// GenerateProtocolRef - This routine is called to generate code for 6578 /// a protocol reference expression; as in: 6579 /// @code 6580 /// @protocol(Proto1); 6581 /// @endcode 6582 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6583 /// which will hold address of the protocol meta-data. 6584 /// 6585 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6586 const ObjCProtocolDecl *PD) { 6587 6588 // This routine is called for @protocol only. So, we must build definition 6589 // of protocol's meta-data (not a reference to it!) 6590 assert(!PD->isNonRuntimeProtocol() && 6591 "attempting to get a protocol ref to a static protocol."); 6592 llvm::Constant *Init = GetOrEmitProtocol(PD); 6593 6594 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6595 ProtocolName += PD->getObjCRuntimeNameAsString(); 6596 6597 CharUnits Align = CGF.getPointerAlign(); 6598 6599 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6600 if (PTGV) 6601 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6602 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6603 llvm::GlobalValue::WeakAnyLinkage, Init, 6604 ProtocolName); 6605 PTGV->setSection(GetSectionName("__objc_protorefs", 6606 "coalesced,no_dead_strip")); 6607 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6608 PTGV->setAlignment(Align.getAsAlign()); 6609 if (!CGM.getTriple().isOSBinFormatMachO()) 6610 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6611 CGM.addUsedGlobal(PTGV); 6612 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6613 } 6614 6615 /// GenerateCategory - Build metadata for a category implementation. 6616 /// struct _category_t { 6617 /// const char * const name; 6618 /// struct _class_t *const cls; 6619 /// const struct _method_list_t * const instance_methods; 6620 /// const struct _method_list_t * const class_methods; 6621 /// const struct _protocol_list_t * const protocols; 6622 /// const struct _prop_list_t * const properties; 6623 /// const struct _prop_list_t * const class_properties; 6624 /// const uint32_t size; 6625 /// } 6626 /// 6627 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6628 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6629 const char *Prefix = "_OBJC_$_CATEGORY_"; 6630 6631 llvm::SmallString<64> ExtCatName(Prefix); 6632 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6633 ExtCatName += "_$_"; 6634 ExtCatName += OCD->getNameAsString(); 6635 6636 ConstantInitBuilder builder(CGM); 6637 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6638 values.add(GetClassName(OCD->getIdentifier()->getName())); 6639 // meta-class entry symbol 6640 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6641 std::string listName = 6642 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6643 6644 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6645 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6646 for (const auto *MD : OCD->methods()) { 6647 if (MD->isDirectMethod()) 6648 continue; 6649 if (MD->isInstanceMethod()) { 6650 instanceMethods.push_back(MD); 6651 } else { 6652 classMethods.push_back(MD); 6653 } 6654 } 6655 6656 auto instanceMethodList = emitMethodList( 6657 listName, MethodListType::CategoryInstanceMethods, instanceMethods); 6658 auto classMethodList = emitMethodList( 6659 listName, MethodListType::CategoryClassMethods, classMethods); 6660 values.add(instanceMethodList); 6661 values.add(classMethodList); 6662 // Keep track of whether we have actual metadata to emit. 6663 bool isEmptyCategory = 6664 instanceMethodList->isNullValue() && classMethodList->isNullValue(); 6665 6666 const ObjCCategoryDecl *Category = 6667 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6668 if (Category) { 6669 SmallString<256> ExtName; 6670 llvm::raw_svector_ostream(ExtName) 6671 << Interface->getObjCRuntimeNameAsString() << "_$_" << OCD->getName(); 6672 auto protocolList = 6673 EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" + 6674 Interface->getObjCRuntimeNameAsString() + "_$_" + 6675 Category->getName(), 6676 Category->protocol_begin(), Category->protocol_end()); 6677 auto propertyList = EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6678 OCD, Category, ObjCTypes, false); 6679 auto classPropertyList = 6680 EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), OCD, 6681 Category, ObjCTypes, true); 6682 values.add(protocolList); 6683 values.add(propertyList); 6684 values.add(classPropertyList); 6685 isEmptyCategory &= protocolList->isNullValue() && 6686 propertyList->isNullValue() && 6687 classPropertyList->isNullValue(); 6688 } else { 6689 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6690 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6691 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6692 } 6693 6694 if (isEmptyCategory) { 6695 // Empty category, don't emit any metadata. 6696 values.abandon(); 6697 MethodDefinitions.clear(); 6698 return; 6699 } 6700 6701 unsigned Size = 6702 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6703 values.addInt(ObjCTypes.IntTy, Size); 6704 6705 llvm::GlobalVariable *GCATV = 6706 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6707 CGM.addCompilerUsedGlobal(GCATV); 6708 if (Interface->hasAttr<ObjCClassStubAttr>()) 6709 DefinedStubCategories.push_back(GCATV); 6710 else 6711 DefinedCategories.push_back(GCATV); 6712 6713 // Determine if this category is also "non-lazy". 6714 if (ImplementationIsNonLazy(OCD)) 6715 DefinedNonLazyCategories.push_back(GCATV); 6716 // method definition entries must be clear for next implementation. 6717 MethodDefinitions.clear(); 6718 } 6719 6720 /// emitMethodConstant - Return a struct objc_method constant. If 6721 /// forProtocol is true, the implementation will be null; otherwise, 6722 /// the method must have a definition registered with the runtime. 6723 /// 6724 /// struct _objc_method { 6725 /// SEL _cmd; 6726 /// char *method_type; 6727 /// char *_imp; 6728 /// } 6729 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6730 const ObjCMethodDecl *MD, 6731 bool forProtocol) { 6732 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6733 method.add(GetMethodVarName(MD->getSelector())); 6734 method.add(GetMethodVarType(MD)); 6735 6736 if (forProtocol) { 6737 // Protocol methods have no implementation. So, this entry is always NULL. 6738 method.addNullPointer(ObjCTypes.Int8PtrProgramASTy); 6739 } else { 6740 llvm::Function *fn = GetMethodDefinition(MD); 6741 assert(fn && "no definition for method?"); 6742 method.add(fn); 6743 } 6744 6745 method.finishAndAddTo(builder); 6746 } 6747 6748 /// Build meta-data for method declarations. 6749 /// 6750 /// struct _method_list_t { 6751 /// uint32_t entsize; // sizeof(struct _objc_method) 6752 /// uint32_t method_count; 6753 /// struct _objc_method method_list[method_count]; 6754 /// } 6755 /// 6756 llvm::Constant * 6757 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6758 ArrayRef<const ObjCMethodDecl *> methods) { 6759 // Return null for empty list. 6760 if (methods.empty()) 6761 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6762 6763 StringRef prefix; 6764 bool forProtocol; 6765 switch (kind) { 6766 case MethodListType::CategoryInstanceMethods: 6767 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6768 forProtocol = false; 6769 break; 6770 case MethodListType::CategoryClassMethods: 6771 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6772 forProtocol = false; 6773 break; 6774 case MethodListType::InstanceMethods: 6775 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6776 forProtocol = false; 6777 break; 6778 case MethodListType::ClassMethods: 6779 prefix = "_OBJC_$_CLASS_METHODS_"; 6780 forProtocol = false; 6781 break; 6782 6783 case MethodListType::ProtocolInstanceMethods: 6784 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6785 forProtocol = true; 6786 break; 6787 case MethodListType::ProtocolClassMethods: 6788 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6789 forProtocol = true; 6790 break; 6791 case MethodListType::OptionalProtocolInstanceMethods: 6792 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6793 forProtocol = true; 6794 break; 6795 case MethodListType::OptionalProtocolClassMethods: 6796 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6797 forProtocol = true; 6798 break; 6799 } 6800 6801 ConstantInitBuilder builder(CGM); 6802 auto values = builder.beginStruct(); 6803 6804 // sizeof(struct _objc_method) 6805 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6806 values.addInt(ObjCTypes.IntTy, Size); 6807 // method_count 6808 values.addInt(ObjCTypes.IntTy, methods.size()); 6809 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6810 for (auto MD : methods) 6811 emitMethodConstant(methodArray, MD, forProtocol); 6812 methodArray.finishAndAddTo(values); 6813 6814 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6815 CGM.addCompilerUsedGlobal(GV); 6816 return GV; 6817 } 6818 6819 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6820 /// the given ivar. 6821 llvm::GlobalVariable * 6822 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6823 const ObjCIvarDecl *Ivar) { 6824 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6825 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6826 Name += Container->getObjCRuntimeNameAsString(); 6827 Name += "."; 6828 Name += Ivar->getName(); 6829 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6830 if (!IvarOffsetGV) { 6831 IvarOffsetGV = 6832 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6833 false, llvm::GlobalValue::ExternalLinkage, 6834 nullptr, Name.str()); 6835 if (CGM.getTriple().isOSBinFormatCOFF()) { 6836 bool IsPrivateOrPackage = 6837 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6838 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6839 6840 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6841 6842 if (ContainingID->hasAttr<DLLImportAttr>()) 6843 IvarOffsetGV 6844 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6845 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6846 IvarOffsetGV 6847 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6848 } 6849 } 6850 return IvarOffsetGV; 6851 } 6852 6853 llvm::Constant * 6854 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6855 const ObjCIvarDecl *Ivar, 6856 unsigned long int Offset) { 6857 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6858 IvarOffsetGV->setInitializer( 6859 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6860 IvarOffsetGV->setAlignment( 6861 CGM.getDataLayout().getABITypeAlign(ObjCTypes.IvarOffsetVarTy)); 6862 6863 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6864 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6865 // as well (i.e., in ObjCIvarOffsetVariable). 6866 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6867 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6868 ID->getVisibility() == HiddenVisibility) 6869 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6870 else 6871 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6872 } 6873 6874 // If ID's layout is known, then make the global constant. This serves as a 6875 // useful assertion: we'll never use this variable to calculate ivar offsets, 6876 // so if the runtime tries to patch it then we should crash. 6877 if (isClassLayoutKnownStatically(ID)) 6878 IvarOffsetGV->setConstant(true); 6879 6880 if (CGM.getTriple().isOSBinFormatMachO()) 6881 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6882 return IvarOffsetGV; 6883 } 6884 6885 /// EmitIvarList - Emit the ivar list for the given 6886 /// implementation. The return value has type 6887 /// IvarListnfABIPtrTy. 6888 /// struct _ivar_t { 6889 /// unsigned [long] int *offset; // pointer to ivar offset location 6890 /// char *name; 6891 /// char *type; 6892 /// uint32_t alignment; 6893 /// uint32_t size; 6894 /// } 6895 /// struct _ivar_list_t { 6896 /// uint32 entsize; // sizeof(struct _ivar_t) 6897 /// uint32 count; 6898 /// struct _iver_t list[count]; 6899 /// } 6900 /// 6901 6902 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6903 const ObjCImplementationDecl *ID) { 6904 6905 ConstantInitBuilder builder(CGM); 6906 auto ivarList = builder.beginStruct(); 6907 ivarList.addInt(ObjCTypes.IntTy, 6908 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6909 auto ivarCountSlot = ivarList.addPlaceholder(); 6910 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6911 6912 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6913 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6914 6915 // FIXME. Consolidate this with similar code in GenerateClass. 6916 6917 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6918 IVD; IVD = IVD->getNextIvar()) { 6919 // Ignore unnamed bit-fields. 6920 if (!IVD->getDeclName()) 6921 continue; 6922 6923 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6924 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6925 ComputeIvarBaseOffset(CGM, ID, IVD))); 6926 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6927 ivar.add(GetMethodVarType(IVD)); 6928 llvm::Type *FieldTy = 6929 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6930 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6931 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6932 IVD->getType().getTypePtr()) >> 3; 6933 Align = llvm::Log2_32(Align); 6934 ivar.addInt(ObjCTypes.IntTy, Align); 6935 // NOTE. Size of a bitfield does not match gcc's, because of the 6936 // way bitfields are treated special in each. But I am told that 6937 // 'size' for bitfield ivars is ignored by the runtime so it does 6938 // not matter. If it matters, there is enough info to get the 6939 // bitfield right! 6940 ivar.addInt(ObjCTypes.IntTy, Size); 6941 ivar.finishAndAddTo(ivars); 6942 } 6943 // Return null for empty list. 6944 if (ivars.empty()) { 6945 ivars.abandon(); 6946 ivarList.abandon(); 6947 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6948 } 6949 6950 auto ivarCount = ivars.size(); 6951 ivars.finishAndAddTo(ivarList); 6952 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6953 6954 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 6955 llvm::GlobalVariable *GV = finishAndCreateGlobal( 6956 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 6957 CGM.addCompilerUsedGlobal(GV); 6958 return GV; 6959 } 6960 6961 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6962 const ObjCProtocolDecl *PD) { 6963 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6964 6965 assert(!PD->isNonRuntimeProtocol() && 6966 "attempting to GetOrEmit a non-runtime protocol"); 6967 if (!Entry) { 6968 // We use the initializer as a marker of whether this is a forward 6969 // reference or not. At module finalization we add the empty 6970 // contents for protocols which were referenced but never defined. 6971 llvm::SmallString<64> Protocol; 6972 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 6973 << PD->getObjCRuntimeNameAsString(); 6974 6975 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6976 false, llvm::GlobalValue::ExternalLinkage, 6977 nullptr, Protocol); 6978 if (!CGM.getTriple().isOSBinFormatMachO()) 6979 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 6980 } 6981 6982 return Entry; 6983 } 6984 6985 /// GetOrEmitProtocol - Generate the protocol meta-data: 6986 /// @code 6987 /// struct _protocol_t { 6988 /// id isa; // NULL 6989 /// const char * const protocol_name; 6990 /// const struct _protocol_list_t * protocol_list; // super protocols 6991 /// const struct method_list_t * const instance_methods; 6992 /// const struct method_list_t * const class_methods; 6993 /// const struct method_list_t *optionalInstanceMethods; 6994 /// const struct method_list_t *optionalClassMethods; 6995 /// const struct _prop_list_t * properties; 6996 /// const uint32_t size; // sizeof(struct _protocol_t) 6997 /// const uint32_t flags; // = 0 6998 /// const char ** extendedMethodTypes; 6999 /// const char *demangledName; 7000 /// const struct _prop_list_t * class_properties; 7001 /// } 7002 /// @endcode 7003 /// 7004 7005 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7006 const ObjCProtocolDecl *PD) { 7007 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7008 7009 // Early exit if a defining object has already been generated. 7010 if (Entry && Entry->hasInitializer()) 7011 return Entry; 7012 7013 // Use the protocol definition, if there is one. 7014 assert(PD->hasDefinition() && 7015 "emitting protocol metadata without definition"); 7016 PD = PD->getDefinition(); 7017 7018 auto methodLists = ProtocolMethodLists::get(PD); 7019 7020 ConstantInitBuilder builder(CGM); 7021 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7022 7023 // isa is NULL 7024 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7025 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7026 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7027 + PD->getObjCRuntimeNameAsString(), 7028 PD->protocol_begin(), 7029 PD->protocol_end())); 7030 values.add(methodLists.emitMethodList(this, PD, 7031 ProtocolMethodLists::RequiredInstanceMethods)); 7032 values.add(methodLists.emitMethodList(this, PD, 7033 ProtocolMethodLists::RequiredClassMethods)); 7034 values.add(methodLists.emitMethodList(this, PD, 7035 ProtocolMethodLists::OptionalInstanceMethods)); 7036 values.add(methodLists.emitMethodList(this, PD, 7037 ProtocolMethodLists::OptionalClassMethods)); 7038 values.add(EmitPropertyList( 7039 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7040 nullptr, PD, ObjCTypes, false)); 7041 uint32_t Size = 7042 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7043 values.addInt(ObjCTypes.IntTy, Size); 7044 values.addInt(ObjCTypes.IntTy, 0); 7045 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7046 + PD->getObjCRuntimeNameAsString(), 7047 methodLists.emitExtendedTypesArray(this), 7048 ObjCTypes)); 7049 7050 // const char *demangledName; 7051 values.addNullPointer(ObjCTypes.Int8PtrTy); 7052 7053 values.add(EmitPropertyList( 7054 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7055 nullptr, PD, ObjCTypes, true)); 7056 7057 if (Entry) { 7058 // Already created, fix the linkage and update the initializer. 7059 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7060 values.finishAndSetAsInitializer(Entry); 7061 } else { 7062 llvm::SmallString<64> symbolName; 7063 llvm::raw_svector_ostream(symbolName) 7064 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7065 7066 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7067 /*constant*/ false, 7068 llvm::GlobalValue::WeakAnyLinkage); 7069 if (!CGM.getTriple().isOSBinFormatMachO()) 7070 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7071 7072 Protocols[PD->getIdentifier()] = Entry; 7073 } 7074 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7075 CGM.addUsedGlobal(Entry); 7076 7077 // Use this protocol meta-data to build protocol list table in section 7078 // __DATA, __objc_protolist 7079 llvm::SmallString<64> ProtocolRef; 7080 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7081 << PD->getObjCRuntimeNameAsString(); 7082 7083 llvm::GlobalVariable *PTGV = 7084 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7085 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7086 ProtocolRef); 7087 if (!CGM.getTriple().isOSBinFormatMachO()) 7088 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7089 PTGV->setAlignment( 7090 CGM.getDataLayout().getABITypeAlign(ObjCTypes.ProtocolnfABIPtrTy)); 7091 PTGV->setSection(GetSectionName("__objc_protolist", 7092 "coalesced,no_dead_strip")); 7093 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7094 CGM.addUsedGlobal(PTGV); 7095 return Entry; 7096 } 7097 7098 /// EmitProtocolList - Generate protocol list meta-data: 7099 /// @code 7100 /// struct _protocol_list_t { 7101 /// long protocol_count; // Note, this is 32/64 bit 7102 /// struct _protocol_t[protocol_count]; 7103 /// } 7104 /// @endcode 7105 /// 7106 llvm::Constant * 7107 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7108 ObjCProtocolDecl::protocol_iterator begin, 7109 ObjCProtocolDecl::protocol_iterator end) { 7110 // Just return null for empty protocol lists 7111 auto Protocols = GetRuntimeProtocolList(begin, end); 7112 if (Protocols.empty()) 7113 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7114 7115 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7116 ProtocolRefs.reserve(Protocols.size()); 7117 7118 for (const auto *PD : Protocols) 7119 ProtocolRefs.push_back(GetProtocolRef(PD)); 7120 7121 // If all of the protocols in the protocol list are objc_non_runtime_protocol 7122 // just return null 7123 if (ProtocolRefs.size() == 0) 7124 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7125 7126 // FIXME: We shouldn't need to do this lookup here, should we? 7127 SmallString<256> TmpName; 7128 Name.toVector(TmpName); 7129 llvm::GlobalVariable *GV = 7130 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7131 if (GV) 7132 return GV; 7133 7134 ConstantInitBuilder builder(CGM); 7135 auto values = builder.beginStruct(); 7136 auto countSlot = values.addPlaceholder(); 7137 7138 // A null-terminated array of protocols. 7139 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7140 for (auto const &proto : ProtocolRefs) 7141 array.add(proto); 7142 auto count = array.size(); 7143 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7144 7145 array.finishAndAddTo(values); 7146 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7147 7148 GV = finishAndCreateGlobal(values, Name, CGM); 7149 CGM.addCompilerUsedGlobal(GV); 7150 return GV; 7151 } 7152 7153 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7154 /// This code gen. amounts to generating code for: 7155 /// @code 7156 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7157 /// @encode 7158 /// 7159 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7160 CodeGen::CodeGenFunction &CGF, 7161 QualType ObjectTy, 7162 llvm::Value *BaseValue, 7163 const ObjCIvarDecl *Ivar, 7164 unsigned CVRQualifiers) { 7165 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7166 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7167 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7168 Offset); 7169 } 7170 7171 llvm::Value * 7172 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7173 const ObjCInterfaceDecl *Interface, 7174 const ObjCIvarDecl *Ivar) { 7175 llvm::Value *IvarOffsetValue; 7176 if (isClassLayoutKnownStatically(Interface)) { 7177 IvarOffsetValue = llvm::ConstantInt::get( 7178 ObjCTypes.IvarOffsetVarTy, 7179 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7180 } else { 7181 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7182 IvarOffsetValue = 7183 CGF.Builder.CreateAlignedLoad(GV->getValueType(), GV, 7184 CGF.getSizeAlign(), "ivar"); 7185 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7186 cast<llvm::LoadInst>(IvarOffsetValue) 7187 ->setMetadata(llvm::LLVMContext::MD_invariant_load, 7188 llvm::MDNode::get(VMContext, std::nullopt)); 7189 } 7190 7191 // This could be 32bit int or 64bit integer depending on the architecture. 7192 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7193 // as this is what caller always expects. 7194 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7195 IvarOffsetValue = CGF.Builder.CreateIntCast( 7196 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7197 return IvarOffsetValue; 7198 } 7199 7200 static void appendSelectorForMessageRefTable(std::string &buffer, 7201 Selector selector) { 7202 if (selector.isUnarySelector()) { 7203 buffer += selector.getNameForSlot(0); 7204 return; 7205 } 7206 7207 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7208 buffer += selector.getNameForSlot(i); 7209 buffer += '_'; 7210 } 7211 } 7212 7213 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7214 /// struct, initially containing the selector pointer and a pointer to 7215 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7216 /// load and call the function pointer, passing the address of the 7217 /// struct as the second parameter. The runtime determines whether 7218 /// the selector is currently emitted using vtable dispatch; if so, it 7219 /// substitutes a stub function which simply tail-calls through the 7220 /// appropriate vtable slot, and if not, it substitues a stub function 7221 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7222 /// argument to correctly point to the selector. 7223 RValue 7224 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7225 ReturnValueSlot returnSlot, 7226 QualType resultType, 7227 Selector selector, 7228 llvm::Value *arg0, 7229 QualType arg0Type, 7230 bool isSuper, 7231 const CallArgList &formalArgs, 7232 const ObjCMethodDecl *method) { 7233 // Compute the actual arguments. 7234 CallArgList args; 7235 7236 // First argument: the receiver / super-call structure. 7237 if (!isSuper) 7238 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7239 args.add(RValue::get(arg0), arg0Type); 7240 7241 // Second argument: a pointer to the message ref structure. Leave 7242 // the actual argument value blank for now. 7243 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7244 7245 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7246 7247 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7248 7249 NullReturnState nullReturn; 7250 7251 // Find the function to call and the mangled name for the message 7252 // ref structure. Using a different mangled name wouldn't actually 7253 // be a problem; it would just be a waste. 7254 // 7255 // The runtime currently never uses vtable dispatch for anything 7256 // except normal, non-super message-sends. 7257 // FIXME: don't use this for that. 7258 llvm::FunctionCallee fn = nullptr; 7259 std::string messageRefName("_"); 7260 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7261 if (isSuper) { 7262 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7263 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7264 } else { 7265 nullReturn.init(CGF, arg0); 7266 fn = ObjCTypes.getMessageSendStretFixupFn(); 7267 messageRefName += "objc_msgSend_stret_fixup"; 7268 } 7269 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7270 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7271 messageRefName += "objc_msgSend_fpret_fixup"; 7272 } else { 7273 if (isSuper) { 7274 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7275 messageRefName += "objc_msgSendSuper2_fixup"; 7276 } else { 7277 fn = ObjCTypes.getMessageSendFixupFn(); 7278 messageRefName += "objc_msgSend_fixup"; 7279 } 7280 } 7281 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7282 messageRefName += '_'; 7283 7284 // Append the selector name, except use underscores anywhere we 7285 // would have used colons. 7286 appendSelectorForMessageRefTable(messageRefName, selector); 7287 7288 llvm::GlobalVariable *messageRef 7289 = CGM.getModule().getGlobalVariable(messageRefName); 7290 if (!messageRef) { 7291 // Build the message ref structure. 7292 ConstantInitBuilder builder(CGM); 7293 auto values = builder.beginStruct(); 7294 values.add(cast<llvm::Constant>(fn.getCallee())); 7295 values.add(GetMethodVarName(selector)); 7296 messageRef = values.finishAndCreateGlobal(messageRefName, 7297 CharUnits::fromQuantity(16), 7298 /*constant*/ false, 7299 llvm::GlobalValue::WeakAnyLinkage); 7300 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7301 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7302 } 7303 7304 bool requiresnullCheck = false; 7305 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7306 for (const auto *ParamDecl : method->parameters()) { 7307 if (ParamDecl->isDestroyedInCallee()) { 7308 if (!nullReturn.NullBB) 7309 nullReturn.init(CGF, arg0); 7310 requiresnullCheck = true; 7311 break; 7312 } 7313 } 7314 7315 Address mref = 7316 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7317 ObjCTypes.MessageRefTy, CGF.getPointerAlign()); 7318 7319 // Update the message ref argument. 7320 args[1].setRValue(RValue::get(mref.getPointer())); 7321 7322 // Load the function to call from the message ref table. 7323 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7324 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7325 7326 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7327 CGCallee callee(CGCalleeInfo(), calleePtr); 7328 7329 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7330 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7331 requiresnullCheck ? method : nullptr); 7332 } 7333 7334 /// Generate code for a message send expression in the nonfragile abi. 7335 CodeGen::RValue 7336 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7337 ReturnValueSlot Return, 7338 QualType ResultType, 7339 Selector Sel, 7340 llvm::Value *Receiver, 7341 const CallArgList &CallArgs, 7342 const ObjCInterfaceDecl *Class, 7343 const ObjCMethodDecl *Method) { 7344 return isVTableDispatchedSelector(Sel) 7345 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7346 Receiver, CGF.getContext().getObjCIdType(), 7347 false, CallArgs, Method) 7348 : EmitMessageSend(CGF, Return, ResultType, Sel, 7349 Receiver, CGF.getContext().getObjCIdType(), 7350 false, CallArgs, Method, Class, ObjCTypes); 7351 } 7352 7353 llvm::Constant * 7354 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7355 bool metaclass, 7356 ForDefinition_t isForDefinition) { 7357 auto prefix = 7358 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7359 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7360 isForDefinition, 7361 ID->isWeakImported(), 7362 !isForDefinition 7363 && CGM.getTriple().isOSBinFormatCOFF() 7364 && ID->hasAttr<DLLImportAttr>()); 7365 } 7366 7367 llvm::Constant * 7368 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7369 ForDefinition_t IsForDefinition, 7370 bool Weak, bool DLLImport) { 7371 llvm::GlobalValue::LinkageTypes L = 7372 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7373 : llvm::GlobalValue::ExternalLinkage; 7374 7375 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7376 if (!GV || GV->getValueType() != ObjCTypes.ClassnfABITy) { 7377 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7378 nullptr, Name); 7379 7380 if (DLLImport) 7381 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7382 7383 if (GV) { 7384 GV->replaceAllUsesWith(NewGV); 7385 GV->eraseFromParent(); 7386 } 7387 GV = NewGV; 7388 CGM.getModule().insertGlobalVariable(GV); 7389 } 7390 7391 assert(GV->getLinkage() == L); 7392 return GV; 7393 } 7394 7395 llvm::Constant * 7396 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7397 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7398 NotForDefinition); 7399 7400 if (!ID->hasAttr<ObjCClassStubAttr>()) 7401 return ClassGV; 7402 7403 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7404 7405 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7406 // must set the least significant bit set to 1. 7407 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7408 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7409 } 7410 7411 llvm::Value * 7412 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7413 const ObjCInterfaceDecl *ID, 7414 llvm::GlobalVariable *Entry) { 7415 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7416 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7417 // a special runtime function. 7418 return CGF.EmitRuntimeCall( 7419 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7420 } 7421 7422 CharUnits Align = CGF.getPointerAlign(); 7423 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, Align); 7424 } 7425 7426 llvm::Value * 7427 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7428 IdentifierInfo *II, 7429 const ObjCInterfaceDecl *ID) { 7430 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7431 7432 if (!Entry) { 7433 llvm::Constant *ClassGV; 7434 if (ID) { 7435 ClassGV = GetClassGlobalForClassRef(ID); 7436 } else { 7437 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7438 NotForDefinition); 7439 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7440 "classref was emitted with the wrong type?"); 7441 } 7442 7443 std::string SectionName = 7444 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7445 Entry = new llvm::GlobalVariable( 7446 CGM.getModule(), ClassGV->getType(), false, 7447 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7448 "OBJC_CLASSLIST_REFERENCES_$_"); 7449 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7450 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7451 Entry->setSection(SectionName); 7452 7453 CGM.addCompilerUsedGlobal(Entry); 7454 } 7455 7456 return EmitLoadOfClassRef(CGF, ID, Entry); 7457 } 7458 7459 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7460 const ObjCInterfaceDecl *ID) { 7461 // If the class has the objc_runtime_visible attribute, we need to 7462 // use the Objective-C runtime to get the class. 7463 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7464 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7465 7466 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7467 } 7468 7469 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7470 CodeGenFunction &CGF) { 7471 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7472 return EmitClassRefFromId(CGF, II, nullptr); 7473 } 7474 7475 llvm::Value * 7476 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7477 const ObjCInterfaceDecl *ID) { 7478 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7479 7480 if (!Entry) { 7481 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7482 std::string SectionName = 7483 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7484 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false, 7485 llvm::GlobalValue::PrivateLinkage, ClassGV, 7486 "OBJC_CLASSLIST_SUP_REFS_$_"); 7487 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7488 Entry->setSection(SectionName); 7489 CGM.addCompilerUsedGlobal(Entry); 7490 } 7491 7492 return EmitLoadOfClassRef(CGF, ID, Entry); 7493 } 7494 7495 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7496 /// meta-data 7497 /// 7498 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7499 const ObjCInterfaceDecl *ID, 7500 bool Weak) { 7501 CharUnits Align = CGF.getPointerAlign(); 7502 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7503 if (!Entry) { 7504 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7505 std::string SectionName = 7506 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7507 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7508 false, llvm::GlobalValue::PrivateLinkage, 7509 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7510 Entry->setAlignment(Align.getAsAlign()); 7511 Entry->setSection(SectionName); 7512 CGM.addCompilerUsedGlobal(Entry); 7513 } 7514 7515 return CGF.Builder.CreateAlignedLoad(ObjCTypes.ClassnfABIPtrTy, Entry, Align); 7516 } 7517 7518 /// GetClass - Return a reference to the class for the given interface 7519 /// decl. 7520 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7521 const ObjCInterfaceDecl *ID) { 7522 if (ID->isWeakImported()) { 7523 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7524 (void)ClassGV; 7525 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7526 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7527 } 7528 7529 return EmitClassRef(CGF, ID); 7530 } 7531 7532 /// Generates a message send where the super is the receiver. This is 7533 /// a message send to self with special delivery semantics indicating 7534 /// which class's method should be called. 7535 CodeGen::RValue 7536 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7537 ReturnValueSlot Return, 7538 QualType ResultType, 7539 Selector Sel, 7540 const ObjCInterfaceDecl *Class, 7541 bool isCategoryImpl, 7542 llvm::Value *Receiver, 7543 bool IsClassMessage, 7544 const CodeGen::CallArgList &CallArgs, 7545 const ObjCMethodDecl *Method) { 7546 // ... 7547 // Create and init a super structure; this is a (receiver, class) 7548 // pair we will pass to objc_msgSendSuper. 7549 Address ObjCSuper = 7550 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7551 "objc_super"); 7552 7553 llvm::Value *ReceiverAsObject = 7554 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7555 CGF.Builder.CreateStore(ReceiverAsObject, 7556 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7557 7558 // If this is a class message the metaclass is passed as the target. 7559 llvm::Value *Target; 7560 if (IsClassMessage) 7561 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7562 else 7563 Target = EmitSuperClassRef(CGF, Class); 7564 7565 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7566 // ObjCTypes types. 7567 llvm::Type *ClassTy = 7568 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7569 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7570 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7571 7572 return (isVTableDispatchedSelector(Sel)) 7573 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7574 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7575 true, CallArgs, Method) 7576 : EmitMessageSend(CGF, Return, ResultType, Sel, 7577 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7578 true, CallArgs, Method, Class, ObjCTypes); 7579 } 7580 7581 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7582 Selector Sel) { 7583 Address Addr = EmitSelectorAddr(Sel); 7584 7585 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7586 LI->setMetadata(llvm::LLVMContext::MD_invariant_load, 7587 llvm::MDNode::get(VMContext, std::nullopt)); 7588 return LI; 7589 } 7590 7591 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7592 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7593 CharUnits Align = CGM.getPointerAlign(); 7594 if (!Entry) { 7595 std::string SectionName = 7596 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7597 Entry = new llvm::GlobalVariable( 7598 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7599 getLinkageTypeForObjCMetadata(CGM, SectionName), GetMethodVarName(Sel), 7600 "OBJC_SELECTOR_REFERENCES_"); 7601 Entry->setExternallyInitialized(true); 7602 Entry->setSection(SectionName); 7603 Entry->setAlignment(Align.getAsAlign()); 7604 CGM.addCompilerUsedGlobal(Entry); 7605 } 7606 7607 return Address(Entry, ObjCTypes.SelectorPtrTy, Align); 7608 } 7609 7610 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7611 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7612 /// 7613 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7614 llvm::Value *src, 7615 Address dst, 7616 llvm::Value *ivarOffset) { 7617 llvm::Type * SrcTy = src->getType(); 7618 if (!isa<llvm::PointerType>(SrcTy)) { 7619 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7620 assert(Size <= 8 && "does not support size > 8"); 7621 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7622 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7623 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7624 } 7625 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7626 llvm::Value *dstVal = 7627 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7628 llvm::Value *args[] = {src, dstVal, ivarOffset}; 7629 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7630 } 7631 7632 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7633 /// objc_assign_strongCast (id src, id *dst) 7634 /// 7635 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7636 CodeGen::CodeGenFunction &CGF, 7637 llvm::Value *src, Address dst) { 7638 llvm::Type * SrcTy = src->getType(); 7639 if (!isa<llvm::PointerType>(SrcTy)) { 7640 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7641 assert(Size <= 8 && "does not support size > 8"); 7642 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7643 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7644 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7645 } 7646 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7647 llvm::Value *dstVal = 7648 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7649 llvm::Value *args[] = {src, dstVal}; 7650 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7651 args, "weakassign"); 7652 } 7653 7654 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7655 CodeGen::CodeGenFunction &CGF, Address DestPtr, Address SrcPtr, 7656 llvm::Value *Size) { 7657 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7658 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7659 } 7660 7661 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7662 /// object: objc_read_weak (id *src) 7663 /// 7664 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7665 CodeGen::CodeGenFunction &CGF, 7666 Address AddrWeakObj) { 7667 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7668 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast( 7669 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy); 7670 llvm::Value *read_weak = 7671 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7672 AddrWeakObjVal, "weakread"); 7673 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7674 return read_weak; 7675 } 7676 7677 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7678 /// objc_assign_weak (id src, id *dst) 7679 /// 7680 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7681 llvm::Value *src, Address dst) { 7682 llvm::Type * SrcTy = src->getType(); 7683 if (!isa<llvm::PointerType>(SrcTy)) { 7684 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7685 assert(Size <= 8 && "does not support size > 8"); 7686 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7687 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7688 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7689 } 7690 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7691 llvm::Value *dstVal = 7692 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7693 llvm::Value *args[] = {src, dstVal}; 7694 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7695 args, "weakassign"); 7696 } 7697 7698 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7699 /// objc_assign_global (id src, id *dst) 7700 /// 7701 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7702 llvm::Value *src, Address dst, 7703 bool threadlocal) { 7704 llvm::Type * SrcTy = src->getType(); 7705 if (!isa<llvm::PointerType>(SrcTy)) { 7706 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7707 assert(Size <= 8 && "does not support size > 8"); 7708 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7709 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7710 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7711 } 7712 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7713 llvm::Value *dstVal = 7714 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7715 llvm::Value *args[] = {src, dstVal}; 7716 if (!threadlocal) 7717 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7718 args, "globalassign"); 7719 else 7720 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7721 args, "threadlocalassign"); 7722 } 7723 7724 void 7725 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7726 const ObjCAtSynchronizedStmt &S) { 7727 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7728 ObjCTypes.getSyncExitFn()); 7729 } 7730 7731 llvm::Constant * 7732 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7733 // There's a particular fixed type info for 'id'. 7734 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7735 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7736 if (!IDEHType) { 7737 IDEHType = 7738 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7739 llvm::GlobalValue::ExternalLinkage, nullptr, 7740 "OBJC_EHTYPE_id"); 7741 if (CGM.getTriple().isOSBinFormatCOFF()) 7742 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7743 } 7744 return IDEHType; 7745 } 7746 7747 // All other types should be Objective-C interface pointer types. 7748 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7749 assert(PT && "Invalid @catch type."); 7750 7751 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7752 assert(IT && "Invalid @catch type."); 7753 7754 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7755 } 7756 7757 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7758 const ObjCAtTryStmt &S) { 7759 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7760 ObjCTypes.getObjCEndCatchFn(), 7761 ObjCTypes.getExceptionRethrowFn()); 7762 } 7763 7764 /// EmitThrowStmt - Generate code for a throw statement. 7765 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7766 const ObjCAtThrowStmt &S, 7767 bool ClearInsertionPoint) { 7768 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7769 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7770 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7771 llvm::CallBase *Call = 7772 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7773 Call->setDoesNotReturn(); 7774 } else { 7775 llvm::CallBase *Call = 7776 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7777 Call->setDoesNotReturn(); 7778 } 7779 7780 CGF.Builder.CreateUnreachable(); 7781 if (ClearInsertionPoint) 7782 CGF.Builder.ClearInsertionPoint(); 7783 } 7784 7785 llvm::Constant * 7786 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7787 ForDefinition_t IsForDefinition) { 7788 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7789 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7790 7791 // If we don't need a definition, return the entry if found or check 7792 // if we use an external reference. 7793 if (!IsForDefinition) { 7794 if (Entry) 7795 return Entry; 7796 7797 // If this type (or a super class) has the __objc_exception__ 7798 // attribute, emit an external reference. 7799 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7800 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7801 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7802 false, llvm::GlobalValue::ExternalLinkage, 7803 nullptr, EHTypeName); 7804 CGM.setGVProperties(Entry, ID); 7805 return Entry; 7806 } 7807 } 7808 7809 // Otherwise we need to either make a new entry or fill in the initializer. 7810 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7811 7812 std::string VTableName = "objc_ehtype_vtable"; 7813 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7814 if (!VTableGV) { 7815 VTableGV = 7816 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7817 llvm::GlobalValue::ExternalLinkage, nullptr, 7818 VTableName); 7819 if (CGM.getTriple().isOSBinFormatCOFF()) 7820 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7821 } 7822 7823 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7824 ConstantInitBuilder builder(CGM); 7825 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7826 values.add( 7827 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7828 VTableGV, VTableIdx)); 7829 values.add(GetClassName(ClassName)); 7830 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7831 7832 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7833 ? llvm::GlobalValue::ExternalLinkage 7834 : llvm::GlobalValue::WeakAnyLinkage; 7835 if (Entry) { 7836 values.finishAndSetAsInitializer(Entry); 7837 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7838 } else { 7839 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7840 CGM.getPointerAlign(), 7841 /*constant*/ false, 7842 L); 7843 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7844 CGM.setGVProperties(Entry, ID); 7845 } 7846 assert(Entry->getLinkage() == L); 7847 7848 if (!CGM.getTriple().isOSBinFormatCOFF()) 7849 if (ID->getVisibility() == HiddenVisibility) 7850 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7851 7852 if (IsForDefinition) 7853 if (CGM.getTriple().isOSBinFormatMachO()) 7854 Entry->setSection("__DATA,__objc_const"); 7855 7856 return Entry; 7857 } 7858 7859 /* *** */ 7860 7861 CodeGen::CGObjCRuntime * 7862 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7863 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7864 case ObjCRuntime::FragileMacOSX: 7865 return new CGObjCMac(CGM); 7866 7867 case ObjCRuntime::MacOSX: 7868 case ObjCRuntime::iOS: 7869 case ObjCRuntime::WatchOS: 7870 return new CGObjCNonFragileABIMac(CGM); 7871 7872 case ObjCRuntime::GNUstep: 7873 case ObjCRuntime::GCC: 7874 case ObjCRuntime::ObjFW: 7875 llvm_unreachable("these runtimes are not Mac runtimes"); 7876 } 7877 llvm_unreachable("bad runtime"); 7878 } 7879