1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/CachedHashString.h" 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/UniqueVector.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/ScopedPrinter.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cstdio> 44 45 using namespace clang; 46 using namespace CodeGen; 47 48 namespace { 49 50 // FIXME: We should find a nicer way to make the labels for metadata, string 51 // concatenation is lame. 52 53 class ObjCCommonTypesHelper { 54 protected: 55 llvm::LLVMContext &VMContext; 56 57 private: 58 // The types of these functions don't really matter because we 59 // should always bitcast before calling them. 60 61 /// id objc_msgSend (id, SEL, ...) 62 /// 63 /// The default messenger, used for sends whose ABI is unchanged from 64 /// the all-integer/pointer case. 65 llvm::FunctionCallee getMessageSendFn() const { 66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 67 // be called a lot. 68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 69 return CGM.CreateRuntimeFunction( 70 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 71 llvm::AttributeList::get(CGM.getLLVMContext(), 72 llvm::AttributeList::FunctionIndex, 73 llvm::Attribute::NonLazyBind)); 74 } 75 76 /// void objc_msgSend_stret (id, SEL, ...) 77 /// 78 /// The messenger used when the return value is an aggregate returned 79 /// by indirect reference in the first argument, and therefore the 80 /// self and selector parameters are shifted over by one. 81 llvm::FunctionCallee getMessageSendStretFn() const { 82 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 83 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 84 params, true), 85 "objc_msgSend_stret"); 86 } 87 88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 89 /// 90 /// The messenger used when the return value is returned on the x87 91 /// floating-point stack; without a special entrypoint, the nil case 92 /// would be unbalanced. 93 llvm::FunctionCallee getMessageSendFpretFn() const { 94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 95 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 96 params, true), 97 "objc_msgSend_fpret"); 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::FunctionCallee getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::FunctionCallee getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::FunctionCallee getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::FunctionCallee getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::PointerType *Int8PtrProgramASTy; 178 llvm::Type *IvarOffsetVarTy; 179 180 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 181 llvm::PointerType *ObjectPtrTy; 182 183 /// PtrObjectPtrTy - LLVM type for id * 184 llvm::PointerType *PtrObjectPtrTy; 185 186 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 187 llvm::PointerType *SelectorPtrTy; 188 189 private: 190 /// ProtocolPtrTy - LLVM type for external protocol handles 191 /// (typeof(Protocol)) 192 llvm::Type *ExternalProtocolPtrTy; 193 194 public: 195 llvm::Type *getExternalProtocolPtrTy() { 196 if (!ExternalProtocolPtrTy) { 197 // FIXME: It would be nice to unify this with the opaque type, so that the 198 // IR comes out a bit cleaner. 199 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 200 ASTContext &Ctx = CGM.getContext(); 201 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 202 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 203 } 204 205 return ExternalProtocolPtrTy; 206 } 207 208 // SuperCTy - clang type for struct objc_super. 209 QualType SuperCTy; 210 // SuperPtrCTy - clang type for struct objc_super *. 211 QualType SuperPtrCTy; 212 213 /// SuperTy - LLVM type for struct objc_super. 214 llvm::StructType *SuperTy; 215 /// SuperPtrTy - LLVM type for struct objc_super *. 216 llvm::PointerType *SuperPtrTy; 217 218 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 219 /// in GCC parlance). 220 llvm::StructType *PropertyTy; 221 222 /// PropertyListTy - LLVM type for struct objc_property_list 223 /// (_prop_list_t in GCC parlance). 224 llvm::StructType *PropertyListTy; 225 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 226 llvm::PointerType *PropertyListPtrTy; 227 228 // MethodTy - LLVM type for struct objc_method. 229 llvm::StructType *MethodTy; 230 231 /// CacheTy - LLVM type for struct objc_cache. 232 llvm::Type *CacheTy; 233 /// CachePtrTy - LLVM type for struct objc_cache *. 234 llvm::PointerType *CachePtrTy; 235 236 llvm::FunctionCallee getGetPropertyFn() { 237 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 238 ASTContext &Ctx = CGM.getContext(); 239 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 240 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 241 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 242 CanQualType Params[] = { 243 IdType, SelType, 244 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 245 llvm::FunctionType *FTy = 246 Types.GetFunctionType( 247 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 248 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 249 } 250 251 llvm::FunctionCallee getSetPropertyFn() { 252 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 253 ASTContext &Ctx = CGM.getContext(); 254 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 255 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 256 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 257 CanQualType Params[] = { 258 IdType, 259 SelType, 260 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 261 IdType, 262 Ctx.BoolTy, 263 Ctx.BoolTy}; 264 llvm::FunctionType *FTy = 265 Types.GetFunctionType( 266 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 267 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 268 } 269 270 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 271 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 272 ASTContext &Ctx = CGM.getContext(); 273 // void objc_setProperty_atomic(id self, SEL _cmd, 274 // id newValue, ptrdiff_t offset); 275 // void objc_setProperty_nonatomic(id self, SEL _cmd, 276 // id newValue, ptrdiff_t offset); 277 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 278 // id newValue, ptrdiff_t offset); 279 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 280 // id newValue, ptrdiff_t offset); 281 282 SmallVector<CanQualType,4> Params; 283 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 284 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 285 Params.push_back(IdType); 286 Params.push_back(SelType); 287 Params.push_back(IdType); 288 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 289 llvm::FunctionType *FTy = 290 Types.GetFunctionType( 291 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 292 const char *name; 293 if (atomic && copy) 294 name = "objc_setProperty_atomic_copy"; 295 else if (atomic && !copy) 296 name = "objc_setProperty_atomic"; 297 else if (!atomic && copy) 298 name = "objc_setProperty_nonatomic_copy"; 299 else 300 name = "objc_setProperty_nonatomic"; 301 302 return CGM.CreateRuntimeFunction(FTy, name); 303 } 304 305 llvm::FunctionCallee getCopyStructFn() { 306 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 307 ASTContext &Ctx = CGM.getContext(); 308 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 309 SmallVector<CanQualType,5> Params; 310 Params.push_back(Ctx.VoidPtrTy); 311 Params.push_back(Ctx.VoidPtrTy); 312 Params.push_back(Ctx.getSizeType()); 313 Params.push_back(Ctx.BoolTy); 314 Params.push_back(Ctx.BoolTy); 315 llvm::FunctionType *FTy = 316 Types.GetFunctionType( 317 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 318 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 319 } 320 321 /// This routine declares and returns address of: 322 /// void objc_copyCppObjectAtomic( 323 /// void *dest, const void *src, 324 /// void (*copyHelper) (void *dest, const void *source)); 325 llvm::FunctionCallee getCppAtomicObjectFunction() { 326 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 327 ASTContext &Ctx = CGM.getContext(); 328 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 329 SmallVector<CanQualType,3> Params; 330 Params.push_back(Ctx.VoidPtrTy); 331 Params.push_back(Ctx.VoidPtrTy); 332 Params.push_back(Ctx.VoidPtrTy); 333 llvm::FunctionType *FTy = 334 Types.GetFunctionType( 335 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 336 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 337 } 338 339 llvm::FunctionCallee getEnumerationMutationFn() { 340 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 341 ASTContext &Ctx = CGM.getContext(); 342 // void objc_enumerationMutation (id) 343 SmallVector<CanQualType,1> Params; 344 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 345 llvm::FunctionType *FTy = 346 Types.GetFunctionType( 347 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 348 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 349 } 350 351 llvm::FunctionCallee getLookUpClassFn() { 352 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 353 ASTContext &Ctx = CGM.getContext(); 354 // Class objc_lookUpClass (const char *) 355 SmallVector<CanQualType,1> Params; 356 Params.push_back( 357 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 358 llvm::FunctionType *FTy = 359 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 360 Ctx.getCanonicalType(Ctx.getObjCClassType()), 361 Params)); 362 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 363 } 364 365 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 366 llvm::FunctionCallee getGcReadWeakFn() { 367 // id objc_read_weak (id *) 368 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 369 llvm::FunctionType *FTy = 370 llvm::FunctionType::get(ObjectPtrTy, args, false); 371 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 372 } 373 374 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 375 llvm::FunctionCallee getGcAssignWeakFn() { 376 // id objc_assign_weak (id, id *) 377 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 378 llvm::FunctionType *FTy = 379 llvm::FunctionType::get(ObjectPtrTy, args, false); 380 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 381 } 382 383 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 384 llvm::FunctionCallee getGcAssignGlobalFn() { 385 // id objc_assign_global(id, id *) 386 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 387 llvm::FunctionType *FTy = 388 llvm::FunctionType::get(ObjectPtrTy, args, false); 389 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 390 } 391 392 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 393 llvm::FunctionCallee getGcAssignThreadLocalFn() { 394 // id objc_assign_threadlocal(id src, id * dest) 395 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 396 llvm::FunctionType *FTy = 397 llvm::FunctionType::get(ObjectPtrTy, args, false); 398 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 399 } 400 401 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 402 llvm::FunctionCallee getGcAssignIvarFn() { 403 // id objc_assign_ivar(id, id *, ptrdiff_t) 404 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 405 CGM.PtrDiffTy }; 406 llvm::FunctionType *FTy = 407 llvm::FunctionType::get(ObjectPtrTy, args, false); 408 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 409 } 410 411 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 412 llvm::FunctionCallee GcMemmoveCollectableFn() { 413 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 414 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 415 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 416 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 417 } 418 419 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 420 llvm::FunctionCallee getGcAssignStrongCastFn() { 421 // id objc_assign_strongCast(id, id *) 422 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 423 llvm::FunctionType *FTy = 424 llvm::FunctionType::get(ObjectPtrTy, args, false); 425 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 426 } 427 428 /// ExceptionThrowFn - LLVM objc_exception_throw function. 429 llvm::FunctionCallee getExceptionThrowFn() { 430 // void objc_exception_throw(id) 431 llvm::Type *args[] = { ObjectPtrTy }; 432 llvm::FunctionType *FTy = 433 llvm::FunctionType::get(CGM.VoidTy, args, false); 434 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 435 } 436 437 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 438 llvm::FunctionCallee getExceptionRethrowFn() { 439 // void objc_exception_rethrow(void) 440 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 441 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 442 } 443 444 /// SyncEnterFn - LLVM object_sync_enter function. 445 llvm::FunctionCallee getSyncEnterFn() { 446 // int objc_sync_enter (id) 447 llvm::Type *args[] = { ObjectPtrTy }; 448 llvm::FunctionType *FTy = 449 llvm::FunctionType::get(CGM.IntTy, args, false); 450 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 451 } 452 453 /// SyncExitFn - LLVM object_sync_exit function. 454 llvm::FunctionCallee getSyncExitFn() { 455 // int objc_sync_exit (id) 456 llvm::Type *args[] = { ObjectPtrTy }; 457 llvm::FunctionType *FTy = 458 llvm::FunctionType::get(CGM.IntTy, args, false); 459 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 460 } 461 462 llvm::FunctionCallee getSendFn(bool IsSuper) const { 463 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 464 } 465 466 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 467 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 468 } 469 470 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 471 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 472 } 473 474 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 475 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 476 } 477 478 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 479 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 480 } 481 482 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 483 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 484 } 485 486 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 487 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 488 } 489 490 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 491 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 492 } 493 494 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 495 }; 496 497 /// ObjCTypesHelper - Helper class that encapsulates lazy 498 /// construction of varies types used during ObjC generation. 499 class ObjCTypesHelper : public ObjCCommonTypesHelper { 500 public: 501 /// SymtabTy - LLVM type for struct objc_symtab. 502 llvm::StructType *SymtabTy; 503 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 504 llvm::PointerType *SymtabPtrTy; 505 /// ModuleTy - LLVM type for struct objc_module. 506 llvm::StructType *ModuleTy; 507 508 /// ProtocolTy - LLVM type for struct objc_protocol. 509 llvm::StructType *ProtocolTy; 510 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 511 llvm::PointerType *ProtocolPtrTy; 512 /// ProtocolExtensionTy - LLVM type for struct 513 /// objc_protocol_extension. 514 llvm::StructType *ProtocolExtensionTy; 515 /// ProtocolExtensionTy - LLVM type for struct 516 /// objc_protocol_extension *. 517 llvm::PointerType *ProtocolExtensionPtrTy; 518 /// MethodDescriptionTy - LLVM type for struct 519 /// objc_method_description. 520 llvm::StructType *MethodDescriptionTy; 521 /// MethodDescriptionListTy - LLVM type for struct 522 /// objc_method_description_list. 523 llvm::StructType *MethodDescriptionListTy; 524 /// MethodDescriptionListPtrTy - LLVM type for struct 525 /// objc_method_description_list *. 526 llvm::PointerType *MethodDescriptionListPtrTy; 527 /// ProtocolListTy - LLVM type for struct objc_property_list. 528 llvm::StructType *ProtocolListTy; 529 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 530 llvm::PointerType *ProtocolListPtrTy; 531 /// CategoryTy - LLVM type for struct objc_category. 532 llvm::StructType *CategoryTy; 533 /// ClassTy - LLVM type for struct objc_class. 534 llvm::StructType *ClassTy; 535 /// ClassPtrTy - LLVM type for struct objc_class *. 536 llvm::PointerType *ClassPtrTy; 537 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 538 llvm::StructType *ClassExtensionTy; 539 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 540 llvm::PointerType *ClassExtensionPtrTy; 541 // IvarTy - LLVM type for struct objc_ivar. 542 llvm::StructType *IvarTy; 543 /// IvarListTy - LLVM type for struct objc_ivar_list. 544 llvm::StructType *IvarListTy; 545 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 546 llvm::PointerType *IvarListPtrTy; 547 /// MethodListTy - LLVM type for struct objc_method_list. 548 llvm::StructType *MethodListTy; 549 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 550 llvm::PointerType *MethodListPtrTy; 551 552 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 553 llvm::StructType *ExceptionDataTy; 554 555 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 556 llvm::FunctionCallee getExceptionTryEnterFn() { 557 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 558 return CGM.CreateRuntimeFunction( 559 llvm::FunctionType::get(CGM.VoidTy, params, false), 560 "objc_exception_try_enter"); 561 } 562 563 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 564 llvm::FunctionCallee getExceptionTryExitFn() { 565 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 566 return CGM.CreateRuntimeFunction( 567 llvm::FunctionType::get(CGM.VoidTy, params, false), 568 "objc_exception_try_exit"); 569 } 570 571 /// ExceptionExtractFn - LLVM objc_exception_extract function. 572 llvm::FunctionCallee getExceptionExtractFn() { 573 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 574 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 575 params, false), 576 "objc_exception_extract"); 577 } 578 579 /// ExceptionMatchFn - LLVM objc_exception_match function. 580 llvm::FunctionCallee getExceptionMatchFn() { 581 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 582 return CGM.CreateRuntimeFunction( 583 llvm::FunctionType::get(CGM.Int32Ty, params, false), 584 "objc_exception_match"); 585 } 586 587 /// SetJmpFn - LLVM _setjmp function. 588 llvm::FunctionCallee getSetJmpFn() { 589 // This is specifically the prototype for x86. 590 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 591 return CGM.CreateRuntimeFunction( 592 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 593 llvm::AttributeList::get(CGM.getLLVMContext(), 594 llvm::AttributeList::FunctionIndex, 595 llvm::Attribute::NonLazyBind)); 596 } 597 598 public: 599 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 600 }; 601 602 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 603 /// modern abi 604 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 605 public: 606 // MethodListnfABITy - LLVM for struct _method_list_t 607 llvm::StructType *MethodListnfABITy; 608 609 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 610 llvm::PointerType *MethodListnfABIPtrTy; 611 612 // ProtocolnfABITy = LLVM for struct _protocol_t 613 llvm::StructType *ProtocolnfABITy; 614 615 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 616 llvm::PointerType *ProtocolnfABIPtrTy; 617 618 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 619 llvm::StructType *ProtocolListnfABITy; 620 621 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 622 llvm::PointerType *ProtocolListnfABIPtrTy; 623 624 // ClassnfABITy - LLVM for struct _class_t 625 llvm::StructType *ClassnfABITy; 626 627 // ClassnfABIPtrTy - LLVM for struct _class_t* 628 llvm::PointerType *ClassnfABIPtrTy; 629 630 // IvarnfABITy - LLVM for struct _ivar_t 631 llvm::StructType *IvarnfABITy; 632 633 // IvarListnfABITy - LLVM for struct _ivar_list_t 634 llvm::StructType *IvarListnfABITy; 635 636 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 637 llvm::PointerType *IvarListnfABIPtrTy; 638 639 // ClassRonfABITy - LLVM for struct _class_ro_t 640 llvm::StructType *ClassRonfABITy; 641 642 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 643 llvm::PointerType *ImpnfABITy; 644 645 // CategorynfABITy - LLVM for struct _category_t 646 llvm::StructType *CategorynfABITy; 647 648 // New types for nonfragile abi messaging. 649 650 // MessageRefTy - LLVM for: 651 // struct _message_ref_t { 652 // IMP messenger; 653 // SEL name; 654 // }; 655 llvm::StructType *MessageRefTy; 656 // MessageRefCTy - clang type for struct _message_ref_t 657 QualType MessageRefCTy; 658 659 // MessageRefPtrTy - LLVM for struct _message_ref_t* 660 llvm::Type *MessageRefPtrTy; 661 // MessageRefCPtrTy - clang type for struct _message_ref_t* 662 QualType MessageRefCPtrTy; 663 664 // SuperMessageRefTy - LLVM for: 665 // struct _super_message_ref_t { 666 // SUPER_IMP messenger; 667 // SEL name; 668 // }; 669 llvm::StructType *SuperMessageRefTy; 670 671 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 672 llvm::PointerType *SuperMessageRefPtrTy; 673 674 llvm::FunctionCallee getMessageSendFixupFn() { 675 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 676 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 677 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 678 params, true), 679 "objc_msgSend_fixup"); 680 } 681 682 llvm::FunctionCallee getMessageSendFpretFixupFn() { 683 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 684 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 685 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 686 params, true), 687 "objc_msgSend_fpret_fixup"); 688 } 689 690 llvm::FunctionCallee getMessageSendStretFixupFn() { 691 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 692 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 693 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 694 params, true), 695 "objc_msgSend_stret_fixup"); 696 } 697 698 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 699 // id objc_msgSendSuper2_fixup (struct objc_super *, 700 // struct _super_message_ref_t*, ...) 701 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 702 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 703 params, true), 704 "objc_msgSendSuper2_fixup"); 705 } 706 707 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 708 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 709 // struct _super_message_ref_t*, ...) 710 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 711 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 712 params, true), 713 "objc_msgSendSuper2_stret_fixup"); 714 } 715 716 llvm::FunctionCallee getObjCEndCatchFn() { 717 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 718 "objc_end_catch"); 719 } 720 721 llvm::FunctionCallee getObjCBeginCatchFn() { 722 llvm::Type *params[] = { Int8PtrTy }; 723 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 724 params, false), 725 "objc_begin_catch"); 726 } 727 728 /// Class objc_loadClassref (void *) 729 /// 730 /// Loads from a classref. For Objective-C stub classes, this invokes the 731 /// initialization callback stored inside the stub. For all other classes 732 /// this simply dereferences the pointer. 733 llvm::FunctionCallee getLoadClassrefFn() const { 734 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 735 // be called a lot. 736 // 737 // Also it is safe to make it readnone, since we never load or store the 738 // classref except by calling this function. 739 llvm::Type *params[] = { Int8PtrPtrTy }; 740 llvm::LLVMContext &C = CGM.getLLVMContext(); 741 llvm::AttributeSet AS = llvm::AttributeSet::get(C, { 742 llvm::Attribute::get(C, llvm::Attribute::NonLazyBind), 743 llvm::Attribute::getWithMemoryEffects(C, llvm::MemoryEffects::none()), 744 llvm::Attribute::get(C, llvm::Attribute::NoUnwind), 745 }); 746 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 747 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 748 "objc_loadClassref", 749 llvm::AttributeList::get(CGM.getLLVMContext(), 750 llvm::AttributeList::FunctionIndex, AS)); 751 if (!CGM.getTriple().isOSBinFormatCOFF()) 752 cast<llvm::Function>(F.getCallee())->setLinkage( 753 llvm::Function::ExternalWeakLinkage); 754 755 return F; 756 } 757 758 llvm::StructType *EHTypeTy; 759 llvm::Type *EHTypePtrTy; 760 761 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 762 }; 763 764 enum class ObjCLabelType { 765 ClassName, 766 MethodVarName, 767 MethodVarType, 768 PropertyName, 769 }; 770 771 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 772 public: 773 class SKIP_SCAN { 774 public: 775 unsigned skip; 776 unsigned scan; 777 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 778 : skip(_skip), scan(_scan) {} 779 }; 780 781 /// opcode for captured block variables layout 'instructions'. 782 /// In the following descriptions, 'I' is the value of the immediate field. 783 /// (field following the opcode). 784 /// 785 enum BLOCK_LAYOUT_OPCODE { 786 /// An operator which affects how the following layout should be 787 /// interpreted. 788 /// I == 0: Halt interpretation and treat everything else as 789 /// a non-pointer. Note that this instruction is equal 790 /// to '\0'. 791 /// I != 0: Currently unused. 792 BLOCK_LAYOUT_OPERATOR = 0, 793 794 /// The next I+1 bytes do not contain a value of object pointer type. 795 /// Note that this can leave the stream unaligned, meaning that 796 /// subsequent word-size instructions do not begin at a multiple of 797 /// the pointer size. 798 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 799 800 /// The next I+1 words do not contain a value of object pointer type. 801 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 802 /// when the required skip quantity is a multiple of the pointer size. 803 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 804 805 /// The next I+1 words are __strong pointers to Objective-C 806 /// objects or blocks. 807 BLOCK_LAYOUT_STRONG = 3, 808 809 /// The next I+1 words are pointers to __block variables. 810 BLOCK_LAYOUT_BYREF = 4, 811 812 /// The next I+1 words are __weak pointers to Objective-C 813 /// objects or blocks. 814 BLOCK_LAYOUT_WEAK = 5, 815 816 /// The next I+1 words are __unsafe_unretained pointers to 817 /// Objective-C objects or blocks. 818 BLOCK_LAYOUT_UNRETAINED = 6 819 820 /// The next I+1 words are block or object pointers with some 821 /// as-yet-unspecified ownership semantics. If we add more 822 /// flavors of ownership semantics, values will be taken from 823 /// this range. 824 /// 825 /// This is included so that older tools can at least continue 826 /// processing the layout past such things. 827 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 828 829 /// All other opcodes are reserved. Halt interpretation and 830 /// treat everything else as opaque. 831 }; 832 833 class RUN_SKIP { 834 public: 835 enum BLOCK_LAYOUT_OPCODE opcode; 836 CharUnits block_var_bytepos; 837 CharUnits block_var_size; 838 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 839 CharUnits BytePos = CharUnits::Zero(), 840 CharUnits Size = CharUnits::Zero()) 841 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 842 843 // Allow sorting based on byte pos. 844 bool operator<(const RUN_SKIP &b) const { 845 return block_var_bytepos < b.block_var_bytepos; 846 } 847 }; 848 849 protected: 850 llvm::LLVMContext &VMContext; 851 // FIXME! May not be needing this after all. 852 unsigned ObjCABI; 853 854 // arc/mrr layout of captured block literal variables. 855 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 856 857 /// LazySymbols - Symbols to generate a lazy reference for. See 858 /// DefinedSymbols and FinishModule(). 859 llvm::SetVector<IdentifierInfo*> LazySymbols; 860 861 /// DefinedSymbols - External symbols which are defined by this 862 /// module. The symbols in this list and LazySymbols are used to add 863 /// special linker symbols which ensure that Objective-C modules are 864 /// linked properly. 865 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 866 867 /// ClassNames - uniqued class names. 868 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 869 870 /// MethodVarNames - uniqued method variable names. 871 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 872 873 /// DefinedCategoryNames - list of category names in form Class_Category. 874 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 875 876 /// MethodVarTypes - uniqued method type signatures. We have to use 877 /// a StringMap here because have no other unique reference. 878 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 879 880 /// MethodDefinitions - map of methods which have been defined in 881 /// this translation unit. 882 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 883 884 /// DirectMethodDefinitions - map of direct methods which have been defined in 885 /// this translation unit. 886 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 887 888 /// PropertyNames - uniqued method variable names. 889 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 890 891 /// ClassReferences - uniqued class references. 892 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 893 894 /// SelectorReferences - uniqued selector references. 895 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 896 897 /// Protocols - Protocols for which an objc_protocol structure has 898 /// been emitted. Forward declarations are handled by creating an 899 /// empty structure whose initializer is filled in when/if defined. 900 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 901 902 /// DefinedProtocols - Protocols which have actually been 903 /// defined. We should not need this, see FIXME in GenerateProtocol. 904 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 905 906 /// DefinedClasses - List of defined classes. 907 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 908 909 /// ImplementedClasses - List of @implemented classes. 910 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 911 912 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 913 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 914 915 /// DefinedCategories - List of defined categories. 916 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 917 918 /// DefinedStubCategories - List of defined categories on class stubs. 919 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 920 921 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 922 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 923 924 /// Cached reference to the class for constant strings. This value has type 925 /// int * but is actually an Obj-C class pointer. 926 llvm::WeakTrackingVH ConstantStringClassRef; 927 928 /// The LLVM type corresponding to NSConstantString. 929 llvm::StructType *NSConstantStringType = nullptr; 930 931 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 932 933 /// GetMethodVarName - Return a unique constant for the given 934 /// selector's name. The return value has type char *. 935 llvm::Constant *GetMethodVarName(Selector Sel); 936 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 937 938 /// GetMethodVarType - Return a unique constant for the given 939 /// method's type encoding string. The return value has type char *. 940 941 // FIXME: This is a horrible name. 942 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 943 bool Extended = false); 944 llvm::Constant *GetMethodVarType(const FieldDecl *D); 945 946 /// GetPropertyName - Return a unique constant for the given 947 /// name. The return value has type char *. 948 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 949 950 // FIXME: This can be dropped once string functions are unified. 951 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 952 const Decl *Container); 953 954 /// GetClassName - Return a unique constant for the given selector's 955 /// runtime name (which may change via use of objc_runtime_name attribute on 956 /// class or protocol definition. The return value has type char *. 957 llvm::Constant *GetClassName(StringRef RuntimeName); 958 959 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 960 961 /// BuildIvarLayout - Builds ivar layout bitmap for the class 962 /// implementation for the __strong or __weak case. 963 /// 964 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 965 /// are any weak ivars defined directly in the class. Meaningless unless 966 /// building a weak layout. Does not guarantee that the layout will 967 /// actually have any entries, because the ivar might be under-aligned. 968 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 969 CharUnits beginOffset, 970 CharUnits endOffset, 971 bool forStrongLayout, 972 bool hasMRCWeakIvars); 973 974 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 975 CharUnits beginOffset, 976 CharUnits endOffset) { 977 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 978 } 979 980 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 981 CharUnits beginOffset, 982 CharUnits endOffset, 983 bool hasMRCWeakIvars) { 984 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 985 } 986 987 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 988 989 void UpdateRunSkipBlockVars(bool IsByref, 990 Qualifiers::ObjCLifetime LifeTime, 991 CharUnits FieldOffset, 992 CharUnits FieldSize); 993 994 void BuildRCBlockVarRecordLayout(const RecordType *RT, 995 CharUnits BytePos, bool &HasUnion, 996 bool ByrefLayout=false); 997 998 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 999 const RecordDecl *RD, 1000 ArrayRef<const FieldDecl*> RecFields, 1001 CharUnits BytePos, bool &HasUnion, 1002 bool ByrefLayout); 1003 1004 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1005 1006 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1007 1008 /// GetIvarLayoutName - Returns a unique constant for the given 1009 /// ivar layout bitmap. 1010 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1011 const ObjCCommonTypesHelper &ObjCTypes); 1012 1013 /// EmitPropertyList - Emit the given property list. The return 1014 /// value has type PropertyListPtrTy. 1015 llvm::Constant *EmitPropertyList(Twine Name, 1016 const Decl *Container, 1017 const ObjCContainerDecl *OCD, 1018 const ObjCCommonTypesHelper &ObjCTypes, 1019 bool IsClassProperty); 1020 1021 /// EmitProtocolMethodTypes - Generate the array of extended method type 1022 /// strings. The return value has type Int8PtrPtrTy. 1023 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1024 ArrayRef<llvm::Constant*> MethodTypes, 1025 const ObjCCommonTypesHelper &ObjCTypes); 1026 1027 /// GetProtocolRef - Return a reference to the internal protocol 1028 /// description, creating an empty one if it has not been 1029 /// defined. The return value has type ProtocolPtrTy. 1030 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1031 1032 /// Return a reference to the given Class using runtime calls rather than 1033 /// by a symbol reference. 1034 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1035 const ObjCInterfaceDecl *ID, 1036 ObjCCommonTypesHelper &ObjCTypes); 1037 1038 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1039 1040 public: 1041 /// CreateMetadataVar - Create a global variable with internal 1042 /// linkage for use by the Objective-C runtime. 1043 /// 1044 /// This is a convenience wrapper which not only creates the 1045 /// variable, but also sets the section and alignment and adds the 1046 /// global to the "llvm.used" list. 1047 /// 1048 /// \param Name - The variable name. 1049 /// \param Init - The variable initializer; this is also used to 1050 /// define the type of the variable. 1051 /// \param Section - The section the variable should go into, or empty. 1052 /// \param Align - The alignment for the variable, or 0. 1053 /// \param AddToUsed - Whether the variable should be added to 1054 /// "llvm.used". 1055 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1056 ConstantStructBuilder &Init, 1057 StringRef Section, CharUnits Align, 1058 bool AddToUsed); 1059 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1060 llvm::Constant *Init, 1061 StringRef Section, CharUnits Align, 1062 bool AddToUsed); 1063 1064 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1065 ObjCLabelType LabelType, 1066 bool ForceNonFragileABI = false, 1067 bool NullTerminate = true); 1068 1069 protected: 1070 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1071 ReturnValueSlot Return, 1072 QualType ResultType, 1073 Selector Sel, 1074 llvm::Value *Arg0, 1075 QualType Arg0Ty, 1076 bool IsSuper, 1077 const CallArgList &CallArgs, 1078 const ObjCMethodDecl *OMD, 1079 const ObjCInterfaceDecl *ClassReceiver, 1080 const ObjCCommonTypesHelper &ObjCTypes); 1081 1082 /// EmitImageInfo - Emit the image info marker used to encode some module 1083 /// level information. 1084 void EmitImageInfo(); 1085 1086 public: 1087 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) 1088 : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {} 1089 1090 bool isNonFragileABI() const { 1091 return ObjCABI == 2; 1092 } 1093 1094 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1095 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1096 1097 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1098 const ObjCContainerDecl *CD=nullptr) override; 1099 1100 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1101 const ObjCContainerDecl *CD); 1102 1103 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1104 const ObjCMethodDecl *OMD, 1105 const ObjCContainerDecl *CD) override; 1106 1107 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1108 1109 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1110 /// object for the given declaration, emitting it if needed. These 1111 /// forward references will be filled in with empty bodies if no 1112 /// definition is seen. The return value has type ProtocolPtrTy. 1113 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1114 1115 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1116 1117 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1118 const CGBlockInfo &blockInfo) override; 1119 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1120 const CGBlockInfo &blockInfo) override; 1121 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1122 const CGBlockInfo &blockInfo) override; 1123 1124 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1125 QualType T) override; 1126 1127 private: 1128 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1129 }; 1130 1131 namespace { 1132 1133 enum class MethodListType { 1134 CategoryInstanceMethods, 1135 CategoryClassMethods, 1136 InstanceMethods, 1137 ClassMethods, 1138 ProtocolInstanceMethods, 1139 ProtocolClassMethods, 1140 OptionalProtocolInstanceMethods, 1141 OptionalProtocolClassMethods, 1142 }; 1143 1144 /// A convenience class for splitting the methods of a protocol into 1145 /// the four interesting groups. 1146 class ProtocolMethodLists { 1147 public: 1148 enum Kind { 1149 RequiredInstanceMethods, 1150 RequiredClassMethods, 1151 OptionalInstanceMethods, 1152 OptionalClassMethods 1153 }; 1154 enum { 1155 NumProtocolMethodLists = 4 1156 }; 1157 1158 static MethodListType getMethodListKind(Kind kind) { 1159 switch (kind) { 1160 case RequiredInstanceMethods: 1161 return MethodListType::ProtocolInstanceMethods; 1162 case RequiredClassMethods: 1163 return MethodListType::ProtocolClassMethods; 1164 case OptionalInstanceMethods: 1165 return MethodListType::OptionalProtocolInstanceMethods; 1166 case OptionalClassMethods: 1167 return MethodListType::OptionalProtocolClassMethods; 1168 } 1169 llvm_unreachable("bad kind"); 1170 } 1171 1172 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1173 1174 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1175 ProtocolMethodLists result; 1176 1177 for (auto *MD : PD->methods()) { 1178 size_t index = (2 * size_t(MD->isOptional())) 1179 + (size_t(MD->isClassMethod())); 1180 result.Methods[index].push_back(MD); 1181 } 1182 1183 return result; 1184 } 1185 1186 template <class Self> 1187 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1188 // In both ABIs, the method types list is parallel with the 1189 // concatenation of the methods arrays in the following order: 1190 // instance methods 1191 // class methods 1192 // optional instance methods 1193 // optional class methods 1194 SmallVector<llvm::Constant*, 8> result; 1195 1196 // Methods is already in the correct order for both ABIs. 1197 for (auto &list : Methods) { 1198 for (auto MD : list) { 1199 result.push_back(self->GetMethodVarType(MD, true)); 1200 } 1201 } 1202 1203 return result; 1204 } 1205 1206 template <class Self> 1207 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1208 Kind kind) const { 1209 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1210 getMethodListKind(kind), Methods[kind]); 1211 } 1212 }; 1213 1214 } // end anonymous namespace 1215 1216 class CGObjCMac : public CGObjCCommonMac { 1217 private: 1218 friend ProtocolMethodLists; 1219 1220 ObjCTypesHelper ObjCTypes; 1221 1222 /// EmitModuleInfo - Another marker encoding module level 1223 /// information. 1224 void EmitModuleInfo(); 1225 1226 /// EmitModuleSymols - Emit module symbols, the list of defined 1227 /// classes and categories. The result has type SymtabPtrTy. 1228 llvm::Constant *EmitModuleSymbols(); 1229 1230 /// FinishModule - Write out global data structures at the end of 1231 /// processing a translation unit. 1232 void FinishModule(); 1233 1234 /// EmitClassExtension - Generate the class extension structure used 1235 /// to store the weak ivar layout and properties. The return value 1236 /// has type ClassExtensionPtrTy. 1237 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1238 CharUnits instanceSize, 1239 bool hasMRCWeakIvars, 1240 bool isMetaclass); 1241 1242 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1243 /// for the given class. 1244 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1245 const ObjCInterfaceDecl *ID); 1246 1247 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1248 IdentifierInfo *II); 1249 1250 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1251 1252 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1253 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1254 1255 /// EmitIvarList - Emit the ivar list for the given 1256 /// implementation. If ForClass is true the list of class ivars 1257 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1258 /// interface ivars will be emitted. The return value has type 1259 /// IvarListPtrTy. 1260 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1261 bool ForClass); 1262 1263 /// EmitMetaClass - Emit a forward reference to the class structure 1264 /// for the metaclass of the given interface. The return value has 1265 /// type ClassPtrTy. 1266 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1267 1268 /// EmitMetaClass - Emit a class structure for the metaclass of the 1269 /// given implementation. The return value has type ClassPtrTy. 1270 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1271 llvm::Constant *Protocols, 1272 ArrayRef<const ObjCMethodDecl *> Methods); 1273 1274 void emitMethodConstant(ConstantArrayBuilder &builder, 1275 const ObjCMethodDecl *MD); 1276 1277 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1278 const ObjCMethodDecl *MD); 1279 1280 /// EmitMethodList - Emit the method list for the given 1281 /// implementation. The return value has type MethodListPtrTy. 1282 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1283 ArrayRef<const ObjCMethodDecl *> Methods); 1284 1285 /// GetOrEmitProtocol - Get the protocol object for the given 1286 /// declaration, emitting it if necessary. The return value has type 1287 /// ProtocolPtrTy. 1288 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1289 1290 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1291 /// object for the given declaration, emitting it if needed. These 1292 /// forward references will be filled in with empty bodies if no 1293 /// definition is seen. The return value has type ProtocolPtrTy. 1294 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1295 1296 /// EmitProtocolExtension - Generate the protocol extension 1297 /// structure used to store optional instance and class methods, and 1298 /// protocol properties. The return value has type 1299 /// ProtocolExtensionPtrTy. 1300 llvm::Constant * 1301 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1302 const ProtocolMethodLists &methodLists); 1303 1304 /// EmitProtocolList - Generate the list of referenced 1305 /// protocols. The return value has type ProtocolListPtrTy. 1306 llvm::Constant *EmitProtocolList(Twine Name, 1307 ObjCProtocolDecl::protocol_iterator begin, 1308 ObjCProtocolDecl::protocol_iterator end); 1309 1310 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1311 /// for the given selector. 1312 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1313 Address EmitSelectorAddr(Selector Sel); 1314 1315 public: 1316 CGObjCMac(CodeGen::CodeGenModule &cgm); 1317 1318 llvm::Constant *getNSConstantStringClassRef() override; 1319 1320 llvm::Function *ModuleInitFunction() override; 1321 1322 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1323 ReturnValueSlot Return, 1324 QualType ResultType, 1325 Selector Sel, llvm::Value *Receiver, 1326 const CallArgList &CallArgs, 1327 const ObjCInterfaceDecl *Class, 1328 const ObjCMethodDecl *Method) override; 1329 1330 CodeGen::RValue 1331 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1332 ReturnValueSlot Return, QualType ResultType, 1333 Selector Sel, const ObjCInterfaceDecl *Class, 1334 bool isCategoryImpl, llvm::Value *Receiver, 1335 bool IsClassMessage, const CallArgList &CallArgs, 1336 const ObjCMethodDecl *Method) override; 1337 1338 llvm::Value *GetClass(CodeGenFunction &CGF, 1339 const ObjCInterfaceDecl *ID) override; 1340 1341 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1342 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1343 1344 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1345 /// untyped one. 1346 llvm::Value *GetSelector(CodeGenFunction &CGF, 1347 const ObjCMethodDecl *Method) override; 1348 1349 llvm::Constant *GetEHType(QualType T) override; 1350 1351 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1352 1353 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1354 1355 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1356 1357 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1358 const ObjCProtocolDecl *PD) override; 1359 1360 llvm::FunctionCallee GetPropertyGetFunction() override; 1361 llvm::FunctionCallee GetPropertySetFunction() override; 1362 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1363 bool copy) override; 1364 llvm::FunctionCallee GetGetStructFunction() override; 1365 llvm::FunctionCallee GetSetStructFunction() override; 1366 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1367 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1368 llvm::FunctionCallee EnumerationMutationFunction() override; 1369 1370 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1371 const ObjCAtTryStmt &S) override; 1372 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1373 const ObjCAtSynchronizedStmt &S) override; 1374 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1375 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1376 bool ClearInsertionPoint=true) override; 1377 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1378 Address AddrWeakObj) override; 1379 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1380 llvm::Value *src, Address dst) override; 1381 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1382 llvm::Value *src, Address dest, 1383 bool threadlocal = false) override; 1384 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1385 llvm::Value *src, Address dest, 1386 llvm::Value *ivarOffset) override; 1387 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1388 llvm::Value *src, Address dest) override; 1389 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1390 Address dest, Address src, 1391 llvm::Value *size) override; 1392 1393 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1394 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1395 unsigned CVRQualifiers) override; 1396 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1397 const ObjCInterfaceDecl *Interface, 1398 const ObjCIvarDecl *Ivar) override; 1399 }; 1400 1401 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1402 private: 1403 friend ProtocolMethodLists; 1404 ObjCNonFragileABITypesHelper ObjCTypes; 1405 llvm::GlobalVariable* ObjCEmptyCacheVar; 1406 llvm::Constant* ObjCEmptyVtableVar; 1407 1408 /// SuperClassReferences - uniqued super class references. 1409 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1410 1411 /// MetaClassReferences - uniqued meta class references. 1412 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1413 1414 /// EHTypeReferences - uniqued class ehtype references. 1415 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1416 1417 /// VTableDispatchMethods - List of methods for which we generate 1418 /// vtable-based message dispatch. 1419 llvm::DenseSet<Selector> VTableDispatchMethods; 1420 1421 /// DefinedMetaClasses - List of defined meta-classes. 1422 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1423 1424 /// isVTableDispatchedSelector - Returns true if SEL is a 1425 /// vtable-based selector. 1426 bool isVTableDispatchedSelector(Selector Sel); 1427 1428 /// FinishNonFragileABIModule - Write out global data structures at the end of 1429 /// processing a translation unit. 1430 void FinishNonFragileABIModule(); 1431 1432 /// AddModuleClassList - Add the given list of class pointers to the 1433 /// module with the provided symbol and section names. 1434 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1435 StringRef SymbolName, StringRef SectionName); 1436 1437 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1438 unsigned InstanceStart, 1439 unsigned InstanceSize, 1440 const ObjCImplementationDecl *ID); 1441 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1442 bool isMetaclass, 1443 llvm::Constant *IsAGV, 1444 llvm::Constant *SuperClassGV, 1445 llvm::Constant *ClassRoGV, 1446 bool HiddenVisibility); 1447 1448 void emitMethodConstant(ConstantArrayBuilder &builder, 1449 const ObjCMethodDecl *MD, 1450 bool forProtocol); 1451 1452 /// Emit the method list for the given implementation. The return value 1453 /// has type MethodListnfABITy. 1454 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1455 ArrayRef<const ObjCMethodDecl *> Methods); 1456 1457 /// EmitIvarList - Emit the ivar list for the given 1458 /// implementation. If ForClass is true the list of class ivars 1459 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1460 /// interface ivars will be emitted. The return value has type 1461 /// IvarListnfABIPtrTy. 1462 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1463 1464 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1465 const ObjCIvarDecl *Ivar, 1466 unsigned long int offset); 1467 1468 /// GetOrEmitProtocol - Get the protocol object for the given 1469 /// declaration, emitting it if necessary. The return value has type 1470 /// ProtocolPtrTy. 1471 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1472 1473 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1474 /// object for the given declaration, emitting it if needed. These 1475 /// forward references will be filled in with empty bodies if no 1476 /// definition is seen. The return value has type ProtocolPtrTy. 1477 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1478 1479 /// EmitProtocolList - Generate the list of referenced 1480 /// protocols. The return value has type ProtocolListPtrTy. 1481 llvm::Constant *EmitProtocolList(Twine Name, 1482 ObjCProtocolDecl::protocol_iterator begin, 1483 ObjCProtocolDecl::protocol_iterator end); 1484 1485 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1486 ReturnValueSlot Return, 1487 QualType ResultType, 1488 Selector Sel, 1489 llvm::Value *Receiver, 1490 QualType Arg0Ty, 1491 bool IsSuper, 1492 const CallArgList &CallArgs, 1493 const ObjCMethodDecl *Method); 1494 1495 /// GetClassGlobal - Return the global variable for the Objective-C 1496 /// class of the given name. 1497 llvm::Constant *GetClassGlobal(StringRef Name, 1498 ForDefinition_t IsForDefinition, 1499 bool Weak = false, bool DLLImport = false); 1500 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1501 bool isMetaclass, 1502 ForDefinition_t isForDefinition); 1503 1504 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1505 1506 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1507 const ObjCInterfaceDecl *ID, 1508 llvm::GlobalVariable *Entry); 1509 1510 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1511 /// for the given class reference. 1512 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1513 const ObjCInterfaceDecl *ID); 1514 1515 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1516 IdentifierInfo *II, 1517 const ObjCInterfaceDecl *ID); 1518 1519 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1520 1521 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1522 /// for the given super class reference. 1523 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1524 const ObjCInterfaceDecl *ID); 1525 1526 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1527 /// meta-data 1528 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1529 const ObjCInterfaceDecl *ID, bool Weak); 1530 1531 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1532 /// the given ivar. 1533 /// 1534 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1535 const ObjCInterfaceDecl *ID, 1536 const ObjCIvarDecl *Ivar); 1537 1538 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1539 /// for the given selector. 1540 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1541 Address EmitSelectorAddr(Selector Sel); 1542 1543 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1544 /// interface. The return value has type EHTypePtrTy. 1545 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1546 ForDefinition_t IsForDefinition); 1547 1548 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1549 1550 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1551 1552 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1553 uint32_t &InstanceStart, 1554 uint32_t &InstanceSize); 1555 1556 // Shamelessly stolen from Analysis/CFRefCount.cpp 1557 Selector GetNullarySelector(const char* name) const { 1558 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1559 return CGM.getContext().Selectors.getSelector(0, &II); 1560 } 1561 1562 Selector GetUnarySelector(const char* name) const { 1563 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1564 return CGM.getContext().Selectors.getSelector(1, &II); 1565 } 1566 1567 /// ImplementationIsNonLazy - Check whether the given category or 1568 /// class implementation is "non-lazy". 1569 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1570 1571 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1572 const ObjCIvarDecl *IV) { 1573 // Annotate the load as an invariant load iff inside an instance method 1574 // and ivar belongs to instance method's class and one of its super class. 1575 // This check is needed because the ivar offset is a lazily 1576 // initialised value that may depend on objc_msgSend to perform a fixup on 1577 // the first message dispatch. 1578 // 1579 // An additional opportunity to mark the load as invariant arises when the 1580 // base of the ivar access is a parameter to an Objective C method. 1581 // However, because the parameters are not available in the current 1582 // interface, we cannot perform this check. 1583 // 1584 // Note that for direct methods, because objc_msgSend is skipped, 1585 // and that the method may be inlined, this optimization actually 1586 // can't be performed. 1587 if (const ObjCMethodDecl *MD = 1588 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1589 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1590 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1591 return IV->getContainingInterface()->isSuperClassOf(ID); 1592 return false; 1593 } 1594 1595 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1596 // NSObject is a fixed size. If we can see the @implementation of a class 1597 // which inherits from NSObject then we know that all it's offsets also must 1598 // be fixed. FIXME: Can we do this if see a chain of super classes with 1599 // implementations leading to NSObject? 1600 return ID->getImplementation() && ID->getSuperClass() && 1601 ID->getSuperClass()->getName() == "NSObject"; 1602 } 1603 1604 public: 1605 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1606 1607 llvm::Constant *getNSConstantStringClassRef() override; 1608 1609 llvm::Function *ModuleInitFunction() override; 1610 1611 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1612 ReturnValueSlot Return, 1613 QualType ResultType, Selector Sel, 1614 llvm::Value *Receiver, 1615 const CallArgList &CallArgs, 1616 const ObjCInterfaceDecl *Class, 1617 const ObjCMethodDecl *Method) override; 1618 1619 CodeGen::RValue 1620 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1621 ReturnValueSlot Return, QualType ResultType, 1622 Selector Sel, const ObjCInterfaceDecl *Class, 1623 bool isCategoryImpl, llvm::Value *Receiver, 1624 bool IsClassMessage, const CallArgList &CallArgs, 1625 const ObjCMethodDecl *Method) override; 1626 1627 llvm::Value *GetClass(CodeGenFunction &CGF, 1628 const ObjCInterfaceDecl *ID) override; 1629 1630 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1631 { return EmitSelector(CGF, Sel); } 1632 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1633 { return EmitSelectorAddr(Sel); } 1634 1635 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1636 /// untyped one. 1637 llvm::Value *GetSelector(CodeGenFunction &CGF, 1638 const ObjCMethodDecl *Method) override 1639 { return EmitSelector(CGF, Method->getSelector()); } 1640 1641 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1642 1643 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1644 1645 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1646 1647 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1648 const ObjCProtocolDecl *PD) override; 1649 1650 llvm::Constant *GetEHType(QualType T) override; 1651 1652 llvm::FunctionCallee GetPropertyGetFunction() override { 1653 return ObjCTypes.getGetPropertyFn(); 1654 } 1655 llvm::FunctionCallee GetPropertySetFunction() override { 1656 return ObjCTypes.getSetPropertyFn(); 1657 } 1658 1659 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1660 bool copy) override { 1661 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1662 } 1663 1664 llvm::FunctionCallee GetSetStructFunction() override { 1665 return ObjCTypes.getCopyStructFn(); 1666 } 1667 1668 llvm::FunctionCallee GetGetStructFunction() override { 1669 return ObjCTypes.getCopyStructFn(); 1670 } 1671 1672 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1673 return ObjCTypes.getCppAtomicObjectFunction(); 1674 } 1675 1676 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1677 return ObjCTypes.getCppAtomicObjectFunction(); 1678 } 1679 1680 llvm::FunctionCallee EnumerationMutationFunction() override { 1681 return ObjCTypes.getEnumerationMutationFn(); 1682 } 1683 1684 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1685 const ObjCAtTryStmt &S) override; 1686 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1687 const ObjCAtSynchronizedStmt &S) override; 1688 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1689 bool ClearInsertionPoint=true) override; 1690 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1691 Address AddrWeakObj) override; 1692 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1693 llvm::Value *src, Address edst) override; 1694 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1695 llvm::Value *src, Address dest, 1696 bool threadlocal = false) override; 1697 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1698 llvm::Value *src, Address dest, 1699 llvm::Value *ivarOffset) override; 1700 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1701 llvm::Value *src, Address dest) override; 1702 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1703 Address dest, Address src, 1704 llvm::Value *size) override; 1705 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1706 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1707 unsigned CVRQualifiers) override; 1708 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1709 const ObjCInterfaceDecl *Interface, 1710 const ObjCIvarDecl *Ivar) override; 1711 }; 1712 1713 /// A helper class for performing the null-initialization of a return 1714 /// value. 1715 struct NullReturnState { 1716 llvm::BasicBlock *NullBB; 1717 NullReturnState() : NullBB(nullptr) {} 1718 1719 /// Perform a null-check of the given receiver. 1720 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1721 // Make blocks for the null-receiver and call edges. 1722 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1723 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1724 1725 // Check for a null receiver and, if there is one, jump to the 1726 // null-receiver block. There's no point in trying to avoid it: 1727 // we're always going to put *something* there, because otherwise 1728 // we shouldn't have done this null-check in the first place. 1729 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1730 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1731 1732 // Otherwise, start performing the call. 1733 CGF.EmitBlock(callBB); 1734 } 1735 1736 /// Complete the null-return operation. It is valid to call this 1737 /// regardless of whether 'init' has been called. 1738 RValue complete(CodeGenFunction &CGF, 1739 ReturnValueSlot returnSlot, 1740 RValue result, 1741 QualType resultType, 1742 const CallArgList &CallArgs, 1743 const ObjCMethodDecl *Method) { 1744 // If we never had to do a null-check, just use the raw result. 1745 if (!NullBB) return result; 1746 1747 // The continuation block. This will be left null if we don't have an 1748 // IP, which can happen if the method we're calling is marked noreturn. 1749 llvm::BasicBlock *contBB = nullptr; 1750 1751 // Finish the call path. 1752 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1753 if (callBB) { 1754 contBB = CGF.createBasicBlock("msgSend.cont"); 1755 CGF.Builder.CreateBr(contBB); 1756 } 1757 1758 // Okay, start emitting the null-receiver block. 1759 CGF.EmitBlock(NullBB); 1760 1761 // Destroy any consumed arguments we've got. 1762 if (Method) { 1763 CGObjCRuntime::destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 1764 } 1765 1766 // The phi code below assumes that we haven't needed any control flow yet. 1767 assert(CGF.Builder.GetInsertBlock() == NullBB); 1768 1769 // If we've got a void return, just jump to the continuation block. 1770 if (result.isScalar() && resultType->isVoidType()) { 1771 // No jumps required if the message-send was noreturn. 1772 if (contBB) CGF.EmitBlock(contBB); 1773 return result; 1774 } 1775 1776 // If we've got a scalar return, build a phi. 1777 if (result.isScalar()) { 1778 // Derive the null-initialization value. 1779 llvm::Value *null = 1780 CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(resultType), resultType); 1781 1782 // If no join is necessary, just flow out. 1783 if (!contBB) return RValue::get(null); 1784 1785 // Otherwise, build a phi. 1786 CGF.EmitBlock(contBB); 1787 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1788 phi->addIncoming(result.getScalarVal(), callBB); 1789 phi->addIncoming(null, NullBB); 1790 return RValue::get(phi); 1791 } 1792 1793 // If we've got an aggregate return, null the buffer out. 1794 // FIXME: maybe we should be doing things differently for all the 1795 // cases where the ABI has us returning (1) non-agg values in 1796 // memory or (2) agg values in registers. 1797 if (result.isAggregate()) { 1798 assert(result.isAggregate() && "null init of non-aggregate result?"); 1799 if (!returnSlot.isUnused()) 1800 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1801 if (contBB) CGF.EmitBlock(contBB); 1802 return result; 1803 } 1804 1805 // Complex types. 1806 CGF.EmitBlock(contBB); 1807 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1808 1809 // Find the scalar type and its zero value. 1810 llvm::Type *scalarTy = callResult.first->getType(); 1811 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1812 1813 // Build phis for both coordinates. 1814 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1815 real->addIncoming(callResult.first, callBB); 1816 real->addIncoming(scalarZero, NullBB); 1817 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1818 imag->addIncoming(callResult.second, callBB); 1819 imag->addIncoming(scalarZero, NullBB); 1820 return RValue::getComplex(real, imag); 1821 } 1822 }; 1823 1824 } // end anonymous namespace 1825 1826 /* *** Helper Functions *** */ 1827 1828 /// getConstantGEP() - Help routine to construct simple GEPs. 1829 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1830 llvm::GlobalVariable *C, unsigned idx0, 1831 unsigned idx1) { 1832 llvm::Value *Idxs[] = { 1833 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1834 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1835 }; 1836 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1837 } 1838 1839 /// hasObjCExceptionAttribute - Return true if this class or any super 1840 /// class has the __objc_exception__ attribute. 1841 static bool hasObjCExceptionAttribute(ASTContext &Context, 1842 const ObjCInterfaceDecl *OID) { 1843 if (OID->hasAttr<ObjCExceptionAttr>()) 1844 return true; 1845 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1846 return hasObjCExceptionAttribute(Context, Super); 1847 return false; 1848 } 1849 1850 static llvm::GlobalValue::LinkageTypes 1851 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1852 if (CGM.getTriple().isOSBinFormatMachO() && 1853 (Section.empty() || Section.startswith("__DATA"))) 1854 return llvm::GlobalValue::InternalLinkage; 1855 return llvm::GlobalValue::PrivateLinkage; 1856 } 1857 1858 /// A helper function to create an internal or private global variable. 1859 static llvm::GlobalVariable * 1860 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1861 const llvm::Twine &Name, CodeGenModule &CGM) { 1862 std::string SectionName; 1863 if (CGM.getTriple().isOSBinFormatMachO()) 1864 SectionName = "__DATA, __objc_const"; 1865 auto *GV = Builder.finishAndCreateGlobal( 1866 Name, CGM.getPointerAlign(), /*constant*/ false, 1867 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1868 GV->setSection(SectionName); 1869 return GV; 1870 } 1871 1872 /* *** CGObjCMac Public Interface *** */ 1873 1874 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1875 ObjCTypes(cgm) { 1876 ObjCABI = 1; 1877 EmitImageInfo(); 1878 } 1879 1880 /// GetClass - Return a reference to the class for the given interface 1881 /// decl. 1882 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1883 const ObjCInterfaceDecl *ID) { 1884 return EmitClassRef(CGF, ID); 1885 } 1886 1887 /// GetSelector - Return the pointer to the unique'd string for this selector. 1888 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1889 return EmitSelector(CGF, Sel); 1890 } 1891 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1892 return EmitSelectorAddr(Sel); 1893 } 1894 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1895 *Method) { 1896 return EmitSelector(CGF, Method->getSelector()); 1897 } 1898 1899 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1900 if (T->isObjCIdType() || 1901 T->isObjCQualifiedIdType()) { 1902 return CGM.GetAddrOfRTTIDescriptor( 1903 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1904 } 1905 if (T->isObjCClassType() || 1906 T->isObjCQualifiedClassType()) { 1907 return CGM.GetAddrOfRTTIDescriptor( 1908 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1909 } 1910 if (T->isObjCObjectPointerType()) 1911 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1912 1913 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1914 } 1915 1916 /// Generate a constant CFString object. 1917 /* 1918 struct __builtin_CFString { 1919 const int *isa; // point to __CFConstantStringClassReference 1920 int flags; 1921 const char *str; 1922 long length; 1923 }; 1924 */ 1925 1926 /// or Generate a constant NSString object. 1927 /* 1928 struct __builtin_NSString { 1929 const int *isa; // point to __NSConstantStringClassReference 1930 const char *str; 1931 unsigned int length; 1932 }; 1933 */ 1934 1935 ConstantAddress 1936 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1937 return (!CGM.getLangOpts().NoConstantCFStrings 1938 ? CGM.GetAddrOfConstantCFString(SL) 1939 : GenerateConstantNSString(SL)); 1940 } 1941 1942 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1943 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1944 const StringLiteral *Literal, unsigned &StringLength) { 1945 StringRef String = Literal->getString(); 1946 StringLength = String.size(); 1947 return *Map.insert(std::make_pair(String, nullptr)).first; 1948 } 1949 1950 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1951 if (llvm::Value *V = ConstantStringClassRef) 1952 return cast<llvm::Constant>(V); 1953 1954 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1955 std::string str = 1956 StringClass.empty() ? "_NSConstantStringClassReference" 1957 : "_" + StringClass + "ClassReference"; 1958 1959 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1960 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1961 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1962 ConstantStringClassRef = V; 1963 return V; 1964 } 1965 1966 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1967 if (llvm::Value *V = ConstantStringClassRef) 1968 return cast<llvm::Constant>(V); 1969 1970 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1971 std::string str = 1972 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1973 : "OBJC_CLASS_$_" + StringClass; 1974 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1975 1976 // Make sure the result is of the correct type. 1977 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1978 1979 ConstantStringClassRef = V; 1980 return V; 1981 } 1982 1983 ConstantAddress 1984 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 1985 unsigned StringLength = 0; 1986 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 1987 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 1988 1989 if (auto *C = Entry.second) 1990 return ConstantAddress( 1991 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 1992 1993 // If we don't already have it, get _NSConstantStringClassReference. 1994 llvm::Constant *Class = getNSConstantStringClassRef(); 1995 1996 // If we don't already have it, construct the type for a constant NSString. 1997 if (!NSConstantStringType) { 1998 NSConstantStringType = 1999 llvm::StructType::create({ 2000 CGM.Int32Ty->getPointerTo(), 2001 CGM.Int8PtrTy, 2002 CGM.IntTy 2003 }, "struct.__builtin_NSString"); 2004 } 2005 2006 ConstantInitBuilder Builder(CGM); 2007 auto Fields = Builder.beginStruct(NSConstantStringType); 2008 2009 // Class pointer. 2010 Fields.add(Class); 2011 2012 // String pointer. 2013 llvm::Constant *C = 2014 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2015 2016 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2017 bool isConstant = !CGM.getLangOpts().WritableStrings; 2018 2019 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2020 Linkage, C, ".str"); 2021 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2022 // Don't enforce the target's minimum global alignment, since the only use 2023 // of the string is via this class initializer. 2024 GV->setAlignment(llvm::Align(1)); 2025 Fields.addBitCast(GV, CGM.Int8PtrTy); 2026 2027 // String length. 2028 Fields.addInt(CGM.IntTy, StringLength); 2029 2030 // The struct. 2031 CharUnits Alignment = CGM.getPointerAlign(); 2032 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2033 /*constant*/ true, 2034 llvm::GlobalVariable::PrivateLinkage); 2035 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2036 const char *NSStringNonFragileABISection = 2037 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2038 // FIXME. Fix section. 2039 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2040 ? NSStringNonFragileABISection 2041 : NSStringSection); 2042 Entry.second = GV; 2043 2044 return ConstantAddress(GV, GV->getValueType(), Alignment); 2045 } 2046 2047 enum { 2048 kCFTaggedObjectID_Integer = (1 << 1) + 1 2049 }; 2050 2051 /// Generates a message send where the super is the receiver. This is 2052 /// a message send to self with special delivery semantics indicating 2053 /// which class's method should be called. 2054 CodeGen::RValue 2055 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2056 ReturnValueSlot Return, 2057 QualType ResultType, 2058 Selector Sel, 2059 const ObjCInterfaceDecl *Class, 2060 bool isCategoryImpl, 2061 llvm::Value *Receiver, 2062 bool IsClassMessage, 2063 const CodeGen::CallArgList &CallArgs, 2064 const ObjCMethodDecl *Method) { 2065 // Create and init a super structure; this is a (receiver, class) 2066 // pair we will pass to objc_msgSendSuper. 2067 Address ObjCSuper = 2068 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2069 "objc_super"); 2070 llvm::Value *ReceiverAsObject = 2071 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2072 CGF.Builder.CreateStore(ReceiverAsObject, 2073 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2074 2075 // If this is a class message the metaclass is passed as the target. 2076 llvm::Type *ClassTyPtr = llvm::PointerType::getUnqual(ObjCTypes.ClassTy); 2077 llvm::Value *Target; 2078 if (IsClassMessage) { 2079 if (isCategoryImpl) { 2080 // Message sent to 'super' in a class method defined in a category 2081 // implementation requires an odd treatment. 2082 // If we are in a class method, we must retrieve the 2083 // _metaclass_ for the current class, pointed at by 2084 // the class's "isa" pointer. The following assumes that 2085 // isa" is the first ivar in a class (which it must be). 2086 Target = EmitClassRef(CGF, Class->getSuperClass()); 2087 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2088 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, Target, 2089 CGF.getPointerAlign()); 2090 } else { 2091 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2092 llvm::Value *SuperPtr = 2093 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2094 llvm::Value *Super = CGF.Builder.CreateAlignedLoad(ClassTyPtr, SuperPtr, 2095 CGF.getPointerAlign()); 2096 Target = Super; 2097 } 2098 } else if (isCategoryImpl) 2099 Target = EmitClassRef(CGF, Class->getSuperClass()); 2100 else { 2101 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2102 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2103 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, ClassPtr, 2104 CGF.getPointerAlign()); 2105 } 2106 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2107 // ObjCTypes types. 2108 llvm::Type *ClassTy = 2109 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2110 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2111 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2112 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2113 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2114 ObjCTypes); 2115 } 2116 2117 /// Generate code for a message send expression. 2118 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2119 ReturnValueSlot Return, 2120 QualType ResultType, 2121 Selector Sel, 2122 llvm::Value *Receiver, 2123 const CallArgList &CallArgs, 2124 const ObjCInterfaceDecl *Class, 2125 const ObjCMethodDecl *Method) { 2126 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2127 CGF.getContext().getObjCIdType(), false, CallArgs, 2128 Method, Class, ObjCTypes); 2129 } 2130 2131 CodeGen::RValue 2132 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2133 ReturnValueSlot Return, 2134 QualType ResultType, 2135 Selector Sel, 2136 llvm::Value *Arg0, 2137 QualType Arg0Ty, 2138 bool IsSuper, 2139 const CallArgList &CallArgs, 2140 const ObjCMethodDecl *Method, 2141 const ObjCInterfaceDecl *ClassReceiver, 2142 const ObjCCommonTypesHelper &ObjCTypes) { 2143 CodeGenTypes &Types = CGM.getTypes(); 2144 auto selTy = CGF.getContext().getObjCSelType(); 2145 llvm::Value *SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2146 2147 CallArgList ActualArgs; 2148 if (!IsSuper) 2149 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2150 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2151 if (!Method || !Method->isDirectMethod()) 2152 ActualArgs.add(RValue::get(SelValue), selTy); 2153 ActualArgs.addFrom(CallArgs); 2154 2155 // If we're calling a method, use the formal signature. 2156 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2157 2158 if (Method) 2159 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2160 CGM.getContext().getCanonicalType(ResultType) && 2161 "Result type mismatch!"); 2162 2163 bool ReceiverCanBeNull = 2164 canMessageReceiverBeNull(CGF, Method, IsSuper, ClassReceiver, Arg0); 2165 2166 bool RequiresNullCheck = false; 2167 bool RequiresSelValue = true; 2168 2169 llvm::FunctionCallee Fn = nullptr; 2170 if (Method && Method->isDirectMethod()) { 2171 assert(!IsSuper); 2172 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2173 // Direct methods will synthesize the proper `_cmd` internally, 2174 // so just don't bother with setting the `_cmd` argument. 2175 RequiresSelValue = false; 2176 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2177 if (ReceiverCanBeNull) RequiresNullCheck = true; 2178 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2179 : ObjCTypes.getSendStretFn(IsSuper); 2180 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2181 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2182 : ObjCTypes.getSendFpretFn(IsSuper); 2183 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2184 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2185 : ObjCTypes.getSendFp2retFn(IsSuper); 2186 } else { 2187 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2188 // must be made for it. 2189 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2190 RequiresNullCheck = true; 2191 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2192 : ObjCTypes.getSendFn(IsSuper); 2193 } 2194 2195 // Cast function to proper signature 2196 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2197 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2198 2199 // We don't need to emit a null check to zero out an indirect result if the 2200 // result is ignored. 2201 if (Return.isUnused()) 2202 RequiresNullCheck = false; 2203 2204 // Emit a null-check if there's a consumed argument other than the receiver. 2205 if (!RequiresNullCheck && Method && Method->hasParamDestroyedInCallee()) 2206 RequiresNullCheck = true; 2207 2208 NullReturnState nullReturn; 2209 if (RequiresNullCheck) { 2210 nullReturn.init(CGF, Arg0); 2211 } 2212 2213 // If a selector value needs to be passed, emit the load before the call. 2214 if (RequiresSelValue) { 2215 SelValue = GetSelector(CGF, Sel); 2216 ActualArgs[1] = CallArg(RValue::get(SelValue), selTy); 2217 } 2218 2219 llvm::CallBase *CallSite; 2220 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2221 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2222 &CallSite); 2223 2224 // Mark the call as noreturn if the method is marked noreturn and the 2225 // receiver cannot be null. 2226 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2227 CallSite->setDoesNotReturn(); 2228 } 2229 2230 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2231 RequiresNullCheck ? Method : nullptr); 2232 } 2233 2234 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2235 bool pointee = false) { 2236 // Note that GC qualification applies recursively to C pointer types 2237 // that aren't otherwise decorated. This is weird, but it's probably 2238 // an intentional workaround to the unreliable placement of GC qualifiers. 2239 if (FQT.isObjCGCStrong()) 2240 return Qualifiers::Strong; 2241 2242 if (FQT.isObjCGCWeak()) 2243 return Qualifiers::Weak; 2244 2245 if (auto ownership = FQT.getObjCLifetime()) { 2246 // Ownership does not apply recursively to C pointer types. 2247 if (pointee) return Qualifiers::GCNone; 2248 switch (ownership) { 2249 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2250 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2251 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2252 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2253 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2254 } 2255 llvm_unreachable("bad objc ownership"); 2256 } 2257 2258 // Treat unqualified retainable pointers as strong. 2259 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2260 return Qualifiers::Strong; 2261 2262 // Walk into C pointer types, but only in GC. 2263 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2264 if (const PointerType *PT = FQT->getAs<PointerType>()) 2265 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2266 } 2267 2268 return Qualifiers::GCNone; 2269 } 2270 2271 namespace { 2272 struct IvarInfo { 2273 CharUnits Offset; 2274 uint64_t SizeInWords; 2275 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2276 : Offset(offset), SizeInWords(sizeInWords) {} 2277 2278 // Allow sorting based on byte pos. 2279 bool operator<(const IvarInfo &other) const { 2280 return Offset < other.Offset; 2281 } 2282 }; 2283 2284 /// A helper class for building GC layout strings. 2285 class IvarLayoutBuilder { 2286 CodeGenModule &CGM; 2287 2288 /// The start of the layout. Offsets will be relative to this value, 2289 /// and entries less than this value will be silently discarded. 2290 CharUnits InstanceBegin; 2291 2292 /// The end of the layout. Offsets will never exceed this value. 2293 CharUnits InstanceEnd; 2294 2295 /// Whether we're generating the strong layout or the weak layout. 2296 bool ForStrongLayout; 2297 2298 /// Whether the offsets in IvarsInfo might be out-of-order. 2299 bool IsDisordered = false; 2300 2301 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2302 2303 public: 2304 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2305 CharUnits instanceEnd, bool forStrongLayout) 2306 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2307 ForStrongLayout(forStrongLayout) { 2308 } 2309 2310 void visitRecord(const RecordType *RT, CharUnits offset); 2311 2312 template <class Iterator, class GetOffsetFn> 2313 void visitAggregate(Iterator begin, Iterator end, 2314 CharUnits aggrOffset, 2315 const GetOffsetFn &getOffset); 2316 2317 void visitField(const FieldDecl *field, CharUnits offset); 2318 2319 /// Add the layout of a block implementation. 2320 void visitBlock(const CGBlockInfo &blockInfo); 2321 2322 /// Is there any information for an interesting bitmap? 2323 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2324 2325 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2326 llvm::SmallVectorImpl<unsigned char> &buffer); 2327 2328 static void dump(ArrayRef<unsigned char> buffer) { 2329 const unsigned char *s = buffer.data(); 2330 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2331 if (!(s[i] & 0xf0)) 2332 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2333 else 2334 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2335 printf("\n"); 2336 } 2337 }; 2338 } // end anonymous namespace 2339 2340 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2341 const CGBlockInfo &blockInfo) { 2342 2343 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2344 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2345 return nullPtr; 2346 2347 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2348 /*for strong layout*/ true); 2349 2350 builder.visitBlock(blockInfo); 2351 2352 if (!builder.hasBitmapData()) 2353 return nullPtr; 2354 2355 llvm::SmallVector<unsigned char, 32> buffer; 2356 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2357 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2358 printf("\n block variable layout for block: "); 2359 builder.dump(buffer); 2360 } 2361 2362 return C; 2363 } 2364 2365 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2366 // __isa is the first field in block descriptor and must assume by runtime's 2367 // convention that it is GC'able. 2368 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2369 2370 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2371 2372 // Ignore the optional 'this' capture: C++ objects are not assumed 2373 // to be GC'ed. 2374 2375 CharUnits lastFieldOffset; 2376 2377 // Walk the captured variables. 2378 for (const auto &CI : blockDecl->captures()) { 2379 const VarDecl *variable = CI.getVariable(); 2380 QualType type = variable->getType(); 2381 2382 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2383 2384 // Ignore constant captures. 2385 if (capture.isConstant()) continue; 2386 2387 CharUnits fieldOffset = capture.getOffset(); 2388 2389 // Block fields are not necessarily ordered; if we detect that we're 2390 // adding them out-of-order, make sure we sort later. 2391 if (fieldOffset < lastFieldOffset) 2392 IsDisordered = true; 2393 lastFieldOffset = fieldOffset; 2394 2395 // __block variables are passed by their descriptor address. 2396 if (CI.isByRef()) { 2397 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2398 continue; 2399 } 2400 2401 assert(!type->isArrayType() && "array variable should not be caught"); 2402 if (const RecordType *record = type->getAs<RecordType>()) { 2403 visitRecord(record, fieldOffset); 2404 continue; 2405 } 2406 2407 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2408 2409 if (GCAttr == Qualifiers::Strong) { 2410 assert(CGM.getContext().getTypeSize(type) == 2411 CGM.getTarget().getPointerWidth(LangAS::Default)); 2412 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2413 } 2414 } 2415 } 2416 2417 /// getBlockCaptureLifetime - This routine returns life time of the captured 2418 /// block variable for the purpose of block layout meta-data generation. FQT is 2419 /// the type of the variable captured in the block. 2420 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2421 bool ByrefLayout) { 2422 // If it has an ownership qualifier, we're done. 2423 if (auto lifetime = FQT.getObjCLifetime()) 2424 return lifetime; 2425 2426 // If it doesn't, and this is ARC, it has no ownership. 2427 if (CGM.getLangOpts().ObjCAutoRefCount) 2428 return Qualifiers::OCL_None; 2429 2430 // In MRC, retainable pointers are owned by non-__block variables. 2431 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2432 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2433 2434 return Qualifiers::OCL_None; 2435 } 2436 2437 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2438 Qualifiers::ObjCLifetime LifeTime, 2439 CharUnits FieldOffset, 2440 CharUnits FieldSize) { 2441 // __block variables are passed by their descriptor address. 2442 if (IsByref) 2443 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2444 FieldSize)); 2445 else if (LifeTime == Qualifiers::OCL_Strong) 2446 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2447 FieldSize)); 2448 else if (LifeTime == Qualifiers::OCL_Weak) 2449 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2450 FieldSize)); 2451 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2452 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2453 FieldSize)); 2454 else 2455 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2456 FieldOffset, 2457 FieldSize)); 2458 } 2459 2460 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2461 const RecordDecl *RD, 2462 ArrayRef<const FieldDecl*> RecFields, 2463 CharUnits BytePos, bool &HasUnion, 2464 bool ByrefLayout) { 2465 bool IsUnion = (RD && RD->isUnion()); 2466 CharUnits MaxUnionSize = CharUnits::Zero(); 2467 const FieldDecl *MaxField = nullptr; 2468 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2469 CharUnits MaxFieldOffset = CharUnits::Zero(); 2470 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2471 2472 if (RecFields.empty()) 2473 return; 2474 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2475 2476 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2477 const FieldDecl *Field = RecFields[i]; 2478 // Note that 'i' here is actually the field index inside RD of Field, 2479 // although this dependency is hidden. 2480 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2481 CharUnits FieldOffset = 2482 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2483 2484 // Skip over unnamed or bitfields 2485 if (!Field->getIdentifier() || Field->isBitField()) { 2486 LastFieldBitfieldOrUnnamed = Field; 2487 LastBitfieldOrUnnamedOffset = FieldOffset; 2488 continue; 2489 } 2490 2491 LastFieldBitfieldOrUnnamed = nullptr; 2492 QualType FQT = Field->getType(); 2493 if (FQT->isRecordType() || FQT->isUnionType()) { 2494 if (FQT->isUnionType()) 2495 HasUnion = true; 2496 2497 BuildRCBlockVarRecordLayout(FQT->castAs<RecordType>(), 2498 BytePos + FieldOffset, HasUnion); 2499 continue; 2500 } 2501 2502 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2503 auto *CArray = cast<ConstantArrayType>(Array); 2504 uint64_t ElCount = CArray->getSize().getZExtValue(); 2505 assert(CArray && "only array with known element size is supported"); 2506 FQT = CArray->getElementType(); 2507 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2508 auto *CArray = cast<ConstantArrayType>(Array); 2509 ElCount *= CArray->getSize().getZExtValue(); 2510 FQT = CArray->getElementType(); 2511 } 2512 if (FQT->isRecordType() && ElCount) { 2513 int OldIndex = RunSkipBlockVars.size() - 1; 2514 auto *RT = FQT->castAs<RecordType>(); 2515 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion); 2516 2517 // Replicate layout information for each array element. Note that 2518 // one element is already done. 2519 uint64_t ElIx = 1; 2520 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2521 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2522 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2523 RunSkipBlockVars.push_back( 2524 RUN_SKIP(RunSkipBlockVars[i].opcode, 2525 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2526 RunSkipBlockVars[i].block_var_size)); 2527 } 2528 continue; 2529 } 2530 } 2531 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2532 if (IsUnion) { 2533 CharUnits UnionIvarSize = FieldSize; 2534 if (UnionIvarSize > MaxUnionSize) { 2535 MaxUnionSize = UnionIvarSize; 2536 MaxField = Field; 2537 MaxFieldOffset = FieldOffset; 2538 } 2539 } else { 2540 UpdateRunSkipBlockVars(false, 2541 getBlockCaptureLifetime(FQT, ByrefLayout), 2542 BytePos + FieldOffset, 2543 FieldSize); 2544 } 2545 } 2546 2547 if (LastFieldBitfieldOrUnnamed) { 2548 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2549 // Last field was a bitfield. Must update the info. 2550 uint64_t BitFieldSize 2551 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2552 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2553 ((BitFieldSize % ByteSizeInBits) != 0); 2554 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2555 Size += LastBitfieldOrUnnamedOffset; 2556 UpdateRunSkipBlockVars(false, 2557 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2558 ByrefLayout), 2559 BytePos + LastBitfieldOrUnnamedOffset, 2560 Size); 2561 } else { 2562 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2563 // Last field was unnamed. Must update skip info. 2564 CharUnits FieldSize 2565 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2566 UpdateRunSkipBlockVars(false, 2567 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2568 ByrefLayout), 2569 BytePos + LastBitfieldOrUnnamedOffset, 2570 FieldSize); 2571 } 2572 } 2573 2574 if (MaxField) 2575 UpdateRunSkipBlockVars(false, 2576 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2577 BytePos + MaxFieldOffset, 2578 MaxUnionSize); 2579 } 2580 2581 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2582 CharUnits BytePos, 2583 bool &HasUnion, 2584 bool ByrefLayout) { 2585 const RecordDecl *RD = RT->getDecl(); 2586 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2587 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2588 const llvm::StructLayout *RecLayout = 2589 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2590 2591 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2592 } 2593 2594 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2595 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2596 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2597 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2598 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2599 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2600 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2601 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2602 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2603 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2604 SmallVectorImpl<unsigned char> &Layout) { 2605 uint64_t Result = 0; 2606 if (Layout.size() <= 3) { 2607 unsigned size = Layout.size(); 2608 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2609 unsigned char inst; 2610 enum BLOCK_LAYOUT_OPCODE opcode ; 2611 switch (size) { 2612 case 3: 2613 inst = Layout[0]; 2614 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2615 if (opcode == BLOCK_LAYOUT_STRONG) 2616 strong_word_count = (inst & 0xF)+1; 2617 else 2618 return 0; 2619 inst = Layout[1]; 2620 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2621 if (opcode == BLOCK_LAYOUT_BYREF) 2622 byref_word_count = (inst & 0xF)+1; 2623 else 2624 return 0; 2625 inst = Layout[2]; 2626 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2627 if (opcode == BLOCK_LAYOUT_WEAK) 2628 weak_word_count = (inst & 0xF)+1; 2629 else 2630 return 0; 2631 break; 2632 2633 case 2: 2634 inst = Layout[0]; 2635 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2636 if (opcode == BLOCK_LAYOUT_STRONG) { 2637 strong_word_count = (inst & 0xF)+1; 2638 inst = Layout[1]; 2639 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2640 if (opcode == BLOCK_LAYOUT_BYREF) 2641 byref_word_count = (inst & 0xF)+1; 2642 else if (opcode == BLOCK_LAYOUT_WEAK) 2643 weak_word_count = (inst & 0xF)+1; 2644 else 2645 return 0; 2646 } 2647 else if (opcode == BLOCK_LAYOUT_BYREF) { 2648 byref_word_count = (inst & 0xF)+1; 2649 inst = Layout[1]; 2650 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2651 if (opcode == BLOCK_LAYOUT_WEAK) 2652 weak_word_count = (inst & 0xF)+1; 2653 else 2654 return 0; 2655 } 2656 else 2657 return 0; 2658 break; 2659 2660 case 1: 2661 inst = Layout[0]; 2662 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2663 if (opcode == BLOCK_LAYOUT_STRONG) 2664 strong_word_count = (inst & 0xF)+1; 2665 else if (opcode == BLOCK_LAYOUT_BYREF) 2666 byref_word_count = (inst & 0xF)+1; 2667 else if (opcode == BLOCK_LAYOUT_WEAK) 2668 weak_word_count = (inst & 0xF)+1; 2669 else 2670 return 0; 2671 break; 2672 2673 default: 2674 return 0; 2675 } 2676 2677 // Cannot inline when any of the word counts is 15. Because this is one less 2678 // than the actual work count (so 15 means 16 actual word counts), 2679 // and we can only display 0 thru 15 word counts. 2680 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2681 return 0; 2682 2683 unsigned count = 2684 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2685 2686 if (size == count) { 2687 if (strong_word_count) 2688 Result = strong_word_count; 2689 Result <<= 4; 2690 if (byref_word_count) 2691 Result += byref_word_count; 2692 Result <<= 4; 2693 if (weak_word_count) 2694 Result += weak_word_count; 2695 } 2696 } 2697 return Result; 2698 } 2699 2700 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2701 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2702 if (RunSkipBlockVars.empty()) 2703 return nullPtr; 2704 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(LangAS::Default); 2705 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2706 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2707 2708 // Sort on byte position; captures might not be allocated in order, 2709 // and unions can do funny things. 2710 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2711 SmallVector<unsigned char, 16> Layout; 2712 2713 unsigned size = RunSkipBlockVars.size(); 2714 for (unsigned i = 0; i < size; i++) { 2715 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2716 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2717 CharUnits end_byte_pos = start_byte_pos; 2718 unsigned j = i+1; 2719 while (j < size) { 2720 if (opcode == RunSkipBlockVars[j].opcode) { 2721 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2722 i++; 2723 } 2724 else 2725 break; 2726 } 2727 CharUnits size_in_bytes = 2728 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2729 if (j < size) { 2730 CharUnits gap = 2731 RunSkipBlockVars[j].block_var_bytepos - 2732 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2733 size_in_bytes += gap; 2734 } 2735 CharUnits residue_in_bytes = CharUnits::Zero(); 2736 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2737 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2738 size_in_bytes -= residue_in_bytes; 2739 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2740 } 2741 2742 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2743 while (size_in_words >= 16) { 2744 // Note that value in imm. is one less that the actual 2745 // value. So, 0xf means 16 words follow! 2746 unsigned char inst = (opcode << 4) | 0xf; 2747 Layout.push_back(inst); 2748 size_in_words -= 16; 2749 } 2750 if (size_in_words > 0) { 2751 // Note that value in imm. is one less that the actual 2752 // value. So, we subtract 1 away! 2753 unsigned char inst = (opcode << 4) | (size_in_words-1); 2754 Layout.push_back(inst); 2755 } 2756 if (residue_in_bytes > CharUnits::Zero()) { 2757 unsigned char inst = 2758 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2759 Layout.push_back(inst); 2760 } 2761 } 2762 2763 while (!Layout.empty()) { 2764 unsigned char inst = Layout.back(); 2765 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2766 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2767 Layout.pop_back(); 2768 else 2769 break; 2770 } 2771 2772 uint64_t Result = InlineLayoutInstruction(Layout); 2773 if (Result != 0) { 2774 // Block variable layout instruction has been inlined. 2775 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2776 if (ComputeByrefLayout) 2777 printf("\n Inline BYREF variable layout: "); 2778 else 2779 printf("\n Inline block variable layout: "); 2780 printf("0x0%" PRIx64 "", Result); 2781 if (auto numStrong = (Result & 0xF00) >> 8) 2782 printf(", BL_STRONG:%d", (int) numStrong); 2783 if (auto numByref = (Result & 0x0F0) >> 4) 2784 printf(", BL_BYREF:%d", (int) numByref); 2785 if (auto numWeak = (Result & 0x00F) >> 0) 2786 printf(", BL_WEAK:%d", (int) numWeak); 2787 printf(", BL_OPERATOR:0\n"); 2788 } 2789 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2790 } 2791 2792 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2793 Layout.push_back(inst); 2794 std::string BitMap; 2795 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2796 BitMap += Layout[i]; 2797 2798 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2799 if (ComputeByrefLayout) 2800 printf("\n Byref variable layout: "); 2801 else 2802 printf("\n Block variable layout: "); 2803 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2804 unsigned char inst = BitMap[i]; 2805 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2806 unsigned delta = 1; 2807 switch (opcode) { 2808 case BLOCK_LAYOUT_OPERATOR: 2809 printf("BL_OPERATOR:"); 2810 delta = 0; 2811 break; 2812 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2813 printf("BL_NON_OBJECT_BYTES:"); 2814 break; 2815 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2816 printf("BL_NON_OBJECT_WORD:"); 2817 break; 2818 case BLOCK_LAYOUT_STRONG: 2819 printf("BL_STRONG:"); 2820 break; 2821 case BLOCK_LAYOUT_BYREF: 2822 printf("BL_BYREF:"); 2823 break; 2824 case BLOCK_LAYOUT_WEAK: 2825 printf("BL_WEAK:"); 2826 break; 2827 case BLOCK_LAYOUT_UNRETAINED: 2828 printf("BL_UNRETAINED:"); 2829 break; 2830 } 2831 // Actual value of word count is one more that what is in the imm. 2832 // field of the instruction 2833 printf("%d", (inst & 0xf) + delta); 2834 if (i < e-1) 2835 printf(", "); 2836 else 2837 printf("\n"); 2838 } 2839 } 2840 2841 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2842 /*ForceNonFragileABI=*/true, 2843 /*NullTerminate=*/false); 2844 return getConstantGEP(VMContext, Entry, 0, 0); 2845 } 2846 2847 static std::string getBlockLayoutInfoString( 2848 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2849 bool HasCopyDisposeHelpers) { 2850 std::string Str; 2851 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2852 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2853 // Copy/dispose helpers don't have any information about 2854 // __unsafe_unretained captures, so unconditionally concatenate a string. 2855 Str += "u"; 2856 } else if (HasCopyDisposeHelpers) { 2857 // Information about __strong, __weak, or byref captures has already been 2858 // encoded into the names of the copy/dispose helpers. We have to add a 2859 // string here only when the copy/dispose helpers aren't generated (which 2860 // happens when the block is non-escaping). 2861 continue; 2862 } else { 2863 switch (R.opcode) { 2864 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2865 Str += "s"; 2866 break; 2867 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2868 Str += "r"; 2869 break; 2870 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2871 Str += "w"; 2872 break; 2873 default: 2874 continue; 2875 } 2876 } 2877 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2878 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2879 } 2880 return Str; 2881 } 2882 2883 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2884 const CGBlockInfo &blockInfo) { 2885 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2886 2887 RunSkipBlockVars.clear(); 2888 bool hasUnion = false; 2889 2890 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(LangAS::Default); 2891 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2892 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2893 2894 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2895 2896 // Calculate the basic layout of the block structure. 2897 const llvm::StructLayout *layout = 2898 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2899 2900 // Ignore the optional 'this' capture: C++ objects are not assumed 2901 // to be GC'ed. 2902 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2903 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2904 blockInfo.BlockHeaderForcedGapOffset, 2905 blockInfo.BlockHeaderForcedGapSize); 2906 // Walk the captured variables. 2907 for (const auto &CI : blockDecl->captures()) { 2908 const VarDecl *variable = CI.getVariable(); 2909 QualType type = variable->getType(); 2910 2911 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2912 2913 // Ignore constant captures. 2914 if (capture.isConstant()) continue; 2915 2916 CharUnits fieldOffset = 2917 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2918 2919 assert(!type->isArrayType() && "array variable should not be caught"); 2920 if (!CI.isByRef()) 2921 if (const RecordType *record = type->getAs<RecordType>()) { 2922 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2923 continue; 2924 } 2925 CharUnits fieldSize; 2926 if (CI.isByRef()) 2927 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2928 else 2929 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2930 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2931 fieldOffset, fieldSize); 2932 } 2933 } 2934 2935 llvm::Constant * 2936 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2937 const CGBlockInfo &blockInfo) { 2938 fillRunSkipBlockVars(CGM, blockInfo); 2939 return getBitmapBlockLayout(false); 2940 } 2941 2942 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2943 const CGBlockInfo &blockInfo) { 2944 fillRunSkipBlockVars(CGM, blockInfo); 2945 return getBlockLayoutInfoString(RunSkipBlockVars, blockInfo.NeedsCopyDispose); 2946 } 2947 2948 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2949 QualType T) { 2950 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2951 assert(!T->isArrayType() && "__block array variable should not be caught"); 2952 CharUnits fieldOffset; 2953 RunSkipBlockVars.clear(); 2954 bool hasUnion = false; 2955 if (const RecordType *record = T->getAs<RecordType>()) { 2956 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2957 llvm::Constant *Result = getBitmapBlockLayout(true); 2958 if (isa<llvm::ConstantInt>(Result)) 2959 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2960 return Result; 2961 } 2962 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2963 return nullPtr; 2964 } 2965 2966 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2967 const ObjCProtocolDecl *PD) { 2968 // FIXME: I don't understand why gcc generates this, or where it is 2969 // resolved. Investigate. Its also wasteful to look this up over and over. 2970 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2971 2972 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2973 ObjCTypes.getExternalProtocolPtrTy()); 2974 } 2975 2976 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2977 // FIXME: We shouldn't need this, the protocol decl should contain enough 2978 // information to tell us whether this was a declaration or a definition. 2979 DefinedProtocols.insert(PD->getIdentifier()); 2980 2981 // If we have generated a forward reference to this protocol, emit 2982 // it now. Otherwise do nothing, the protocol objects are lazily 2983 // emitted. 2984 if (Protocols.count(PD->getIdentifier())) 2985 GetOrEmitProtocol(PD); 2986 } 2987 2988 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2989 if (DefinedProtocols.count(PD->getIdentifier())) 2990 return GetOrEmitProtocol(PD); 2991 2992 return GetOrEmitProtocolRef(PD); 2993 } 2994 2995 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2996 CodeGenFunction &CGF, 2997 const ObjCInterfaceDecl *ID, 2998 ObjCCommonTypesHelper &ObjCTypes) { 2999 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 3000 3001 llvm::Value *className = CGF.CGM 3002 .GetAddrOfConstantCString(std::string( 3003 ID->getObjCRuntimeNameAsString())) 3004 .getPointer(); 3005 ASTContext &ctx = CGF.CGM.getContext(); 3006 className = 3007 CGF.Builder.CreateBitCast(className, 3008 CGF.ConvertType( 3009 ctx.getPointerType(ctx.CharTy.withConst()))); 3010 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3011 call->setDoesNotThrow(); 3012 return call; 3013 } 3014 3015 /* 3016 // Objective-C 1.0 extensions 3017 struct _objc_protocol { 3018 struct _objc_protocol_extension *isa; 3019 char *protocol_name; 3020 struct _objc_protocol_list *protocol_list; 3021 struct _objc__method_prototype_list *instance_methods; 3022 struct _objc__method_prototype_list *class_methods 3023 }; 3024 3025 See EmitProtocolExtension(). 3026 */ 3027 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3028 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3029 3030 // Early exit if a defining object has already been generated. 3031 if (Entry && Entry->hasInitializer()) 3032 return Entry; 3033 3034 // Use the protocol definition, if there is one. 3035 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3036 PD = Def; 3037 3038 // FIXME: I don't understand why gcc generates this, or where it is 3039 // resolved. Investigate. Its also wasteful to look this up over and over. 3040 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3041 3042 // Construct method lists. 3043 auto methodLists = ProtocolMethodLists::get(PD); 3044 3045 ConstantInitBuilder builder(CGM); 3046 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3047 values.add(EmitProtocolExtension(PD, methodLists)); 3048 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3049 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3050 PD->protocol_begin(), PD->protocol_end())); 3051 values.add(methodLists.emitMethodList(this, PD, 3052 ProtocolMethodLists::RequiredInstanceMethods)); 3053 values.add(methodLists.emitMethodList(this, PD, 3054 ProtocolMethodLists::RequiredClassMethods)); 3055 3056 if (Entry) { 3057 // Already created, update the initializer. 3058 assert(Entry->hasPrivateLinkage()); 3059 values.finishAndSetAsInitializer(Entry); 3060 } else { 3061 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3062 CGM.getPointerAlign(), 3063 /*constant*/ false, 3064 llvm::GlobalValue::PrivateLinkage); 3065 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3066 3067 Protocols[PD->getIdentifier()] = Entry; 3068 } 3069 CGM.addCompilerUsedGlobal(Entry); 3070 3071 return Entry; 3072 } 3073 3074 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3075 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3076 3077 if (!Entry) { 3078 // We use the initializer as a marker of whether this is a forward 3079 // reference or not. At module finalization we add the empty 3080 // contents for protocols which were referenced but never defined. 3081 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3082 false, llvm::GlobalValue::PrivateLinkage, 3083 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3084 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3085 // FIXME: Is this necessary? Why only for protocol? 3086 Entry->setAlignment(llvm::Align(4)); 3087 } 3088 3089 return Entry; 3090 } 3091 3092 /* 3093 struct _objc_protocol_extension { 3094 uint32_t size; 3095 struct objc_method_description_list *optional_instance_methods; 3096 struct objc_method_description_list *optional_class_methods; 3097 struct objc_property_list *instance_properties; 3098 const char ** extendedMethodTypes; 3099 struct objc_property_list *class_properties; 3100 }; 3101 */ 3102 llvm::Constant * 3103 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3104 const ProtocolMethodLists &methodLists) { 3105 auto optInstanceMethods = 3106 methodLists.emitMethodList(this, PD, 3107 ProtocolMethodLists::OptionalInstanceMethods); 3108 auto optClassMethods = 3109 methodLists.emitMethodList(this, PD, 3110 ProtocolMethodLists::OptionalClassMethods); 3111 3112 auto extendedMethodTypes = 3113 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3114 methodLists.emitExtendedTypesArray(this), 3115 ObjCTypes); 3116 3117 auto instanceProperties = 3118 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3119 ObjCTypes, false); 3120 auto classProperties = 3121 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3122 PD, ObjCTypes, true); 3123 3124 // Return null if no extension bits are used. 3125 if (optInstanceMethods->isNullValue() && 3126 optClassMethods->isNullValue() && 3127 extendedMethodTypes->isNullValue() && 3128 instanceProperties->isNullValue() && 3129 classProperties->isNullValue()) { 3130 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3131 } 3132 3133 uint64_t size = 3134 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3135 3136 ConstantInitBuilder builder(CGM); 3137 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3138 values.addInt(ObjCTypes.IntTy, size); 3139 values.add(optInstanceMethods); 3140 values.add(optClassMethods); 3141 values.add(instanceProperties); 3142 values.add(extendedMethodTypes); 3143 values.add(classProperties); 3144 3145 // No special section, but goes in llvm.used 3146 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3147 StringRef(), CGM.getPointerAlign(), true); 3148 } 3149 3150 /* 3151 struct objc_protocol_list { 3152 struct objc_protocol_list *next; 3153 long count; 3154 Protocol *list[]; 3155 }; 3156 */ 3157 llvm::Constant * 3158 CGObjCMac::EmitProtocolList(Twine name, 3159 ObjCProtocolDecl::protocol_iterator begin, 3160 ObjCProtocolDecl::protocol_iterator end) { 3161 // Just return null for empty protocol lists 3162 auto PDs = GetRuntimeProtocolList(begin, end); 3163 if (PDs.empty()) 3164 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3165 3166 ConstantInitBuilder builder(CGM); 3167 auto values = builder.beginStruct(); 3168 3169 // This field is only used by the runtime. 3170 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3171 3172 // Reserve a slot for the count. 3173 auto countSlot = values.addPlaceholder(); 3174 3175 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3176 for (const auto *Proto : PDs) 3177 refsArray.add(GetProtocolRef(Proto)); 3178 3179 auto count = refsArray.size(); 3180 3181 // This list is null terminated. 3182 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3183 3184 refsArray.finishAndAddTo(values); 3185 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3186 3187 StringRef section; 3188 if (CGM.getTriple().isOSBinFormatMachO()) 3189 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3190 3191 llvm::GlobalVariable *GV = 3192 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3193 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3194 } 3195 3196 static void 3197 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3198 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3199 const ObjCProtocolDecl *Proto, 3200 bool IsClassProperty) { 3201 for (const auto *PD : Proto->properties()) { 3202 if (IsClassProperty != PD->isClassProperty()) 3203 continue; 3204 if (!PropertySet.insert(PD->getIdentifier()).second) 3205 continue; 3206 Properties.push_back(PD); 3207 } 3208 3209 for (const auto *P : Proto->protocols()) 3210 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3211 } 3212 3213 /* 3214 struct _objc_property { 3215 const char * const name; 3216 const char * const attributes; 3217 }; 3218 3219 struct _objc_property_list { 3220 uint32_t entsize; // sizeof (struct _objc_property) 3221 uint32_t prop_count; 3222 struct _objc_property[prop_count]; 3223 }; 3224 */ 3225 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3226 const Decl *Container, 3227 const ObjCContainerDecl *OCD, 3228 const ObjCCommonTypesHelper &ObjCTypes, 3229 bool IsClassProperty) { 3230 if (IsClassProperty) { 3231 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3232 // with deployment target < 9.0. 3233 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3234 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3235 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3236 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3237 } 3238 3239 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3240 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3241 3242 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3243 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3244 for (auto *PD : ClassExt->properties()) { 3245 if (IsClassProperty != PD->isClassProperty()) 3246 continue; 3247 if (PD->isDirectProperty()) 3248 continue; 3249 PropertySet.insert(PD->getIdentifier()); 3250 Properties.push_back(PD); 3251 } 3252 3253 for (const auto *PD : OCD->properties()) { 3254 if (IsClassProperty != PD->isClassProperty()) 3255 continue; 3256 // Don't emit duplicate metadata for properties that were already in a 3257 // class extension. 3258 if (!PropertySet.insert(PD->getIdentifier()).second) 3259 continue; 3260 if (PD->isDirectProperty()) 3261 continue; 3262 Properties.push_back(PD); 3263 } 3264 3265 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3266 for (const auto *P : OID->all_referenced_protocols()) 3267 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3268 } 3269 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3270 for (const auto *P : CD->protocols()) 3271 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3272 } 3273 3274 // Return null for empty list. 3275 if (Properties.empty()) 3276 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3277 3278 unsigned propertySize = 3279 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3280 3281 ConstantInitBuilder builder(CGM); 3282 auto values = builder.beginStruct(); 3283 values.addInt(ObjCTypes.IntTy, propertySize); 3284 values.addInt(ObjCTypes.IntTy, Properties.size()); 3285 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3286 for (auto PD : Properties) { 3287 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3288 property.add(GetPropertyName(PD->getIdentifier())); 3289 property.add(GetPropertyTypeString(PD, Container)); 3290 property.finishAndAddTo(propertiesArray); 3291 } 3292 propertiesArray.finishAndAddTo(values); 3293 3294 StringRef Section; 3295 if (CGM.getTriple().isOSBinFormatMachO()) 3296 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3297 : "__OBJC,__property,regular,no_dead_strip"; 3298 3299 llvm::GlobalVariable *GV = 3300 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3301 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3302 } 3303 3304 llvm::Constant * 3305 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3306 ArrayRef<llvm::Constant*> MethodTypes, 3307 const ObjCCommonTypesHelper &ObjCTypes) { 3308 // Return null for empty list. 3309 if (MethodTypes.empty()) 3310 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3311 3312 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3313 MethodTypes.size()); 3314 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3315 3316 StringRef Section; 3317 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3318 Section = "__DATA, __objc_const"; 3319 3320 llvm::GlobalVariable *GV = 3321 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3322 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3323 } 3324 3325 /* 3326 struct _objc_category { 3327 char *category_name; 3328 char *class_name; 3329 struct _objc_method_list *instance_methods; 3330 struct _objc_method_list *class_methods; 3331 struct _objc_protocol_list *protocols; 3332 uint32_t size; // <rdar://4585769> 3333 struct _objc_property_list *instance_properties; 3334 struct _objc_property_list *class_properties; 3335 }; 3336 */ 3337 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3338 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3339 3340 // FIXME: This is poor design, the OCD should have a pointer to the category 3341 // decl. Additionally, note that Category can be null for the @implementation 3342 // w/o an @interface case. Sema should just create one for us as it does for 3343 // @implementation so everyone else can live life under a clear blue sky. 3344 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3345 const ObjCCategoryDecl *Category = 3346 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3347 3348 SmallString<256> ExtName; 3349 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3350 << OCD->getName(); 3351 3352 ConstantInitBuilder Builder(CGM); 3353 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3354 3355 enum { 3356 InstanceMethods, 3357 ClassMethods, 3358 NumMethodLists 3359 }; 3360 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3361 for (const auto *MD : OCD->methods()) { 3362 if (!MD->isDirectMethod()) 3363 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3364 } 3365 3366 Values.add(GetClassName(OCD->getName())); 3367 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3368 LazySymbols.insert(Interface->getIdentifier()); 3369 3370 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3371 Methods[InstanceMethods])); 3372 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3373 Methods[ClassMethods])); 3374 if (Category) { 3375 Values.add( 3376 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3377 Category->protocol_begin(), Category->protocol_end())); 3378 } else { 3379 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3380 } 3381 Values.addInt(ObjCTypes.IntTy, Size); 3382 3383 // If there is no category @interface then there can be no properties. 3384 if (Category) { 3385 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3386 OCD, Category, ObjCTypes, false)); 3387 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3388 OCD, Category, ObjCTypes, true)); 3389 } else { 3390 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3391 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3392 } 3393 3394 llvm::GlobalVariable *GV = 3395 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3396 "__OBJC,__category,regular,no_dead_strip", 3397 CGM.getPointerAlign(), true); 3398 DefinedCategories.push_back(GV); 3399 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3400 // method definition entries must be clear for next implementation. 3401 MethodDefinitions.clear(); 3402 } 3403 3404 enum FragileClassFlags { 3405 /// Apparently: is not a meta-class. 3406 FragileABI_Class_Factory = 0x00001, 3407 3408 /// Is a meta-class. 3409 FragileABI_Class_Meta = 0x00002, 3410 3411 /// Has a non-trivial constructor or destructor. 3412 FragileABI_Class_HasCXXStructors = 0x02000, 3413 3414 /// Has hidden visibility. 3415 FragileABI_Class_Hidden = 0x20000, 3416 3417 /// Class implementation was compiled under ARC. 3418 FragileABI_Class_CompiledByARC = 0x04000000, 3419 3420 /// Class implementation was compiled under MRC and has MRC weak ivars. 3421 /// Exclusive with CompiledByARC. 3422 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3423 }; 3424 3425 enum NonFragileClassFlags { 3426 /// Is a meta-class. 3427 NonFragileABI_Class_Meta = 0x00001, 3428 3429 /// Is a root class. 3430 NonFragileABI_Class_Root = 0x00002, 3431 3432 /// Has a non-trivial constructor or destructor. 3433 NonFragileABI_Class_HasCXXStructors = 0x00004, 3434 3435 /// Has hidden visibility. 3436 NonFragileABI_Class_Hidden = 0x00010, 3437 3438 /// Has the exception attribute. 3439 NonFragileABI_Class_Exception = 0x00020, 3440 3441 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3442 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3443 3444 /// Class implementation was compiled under ARC. 3445 NonFragileABI_Class_CompiledByARC = 0x00080, 3446 3447 /// Class has non-trivial destructors, but zero-initialization is okay. 3448 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3449 3450 /// Class implementation was compiled under MRC and has MRC weak ivars. 3451 /// Exclusive with CompiledByARC. 3452 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3453 }; 3454 3455 static bool hasWeakMember(QualType type) { 3456 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3457 return true; 3458 } 3459 3460 if (auto recType = type->getAs<RecordType>()) { 3461 for (auto *field : recType->getDecl()->fields()) { 3462 if (hasWeakMember(field->getType())) 3463 return true; 3464 } 3465 } 3466 3467 return false; 3468 } 3469 3470 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3471 /// (and actually fill in a layout string) if we really do have any 3472 /// __weak ivars. 3473 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3474 const ObjCImplementationDecl *ID) { 3475 if (!CGM.getLangOpts().ObjCWeak) return false; 3476 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3477 3478 for (const ObjCIvarDecl *ivar = 3479 ID->getClassInterface()->all_declared_ivar_begin(); 3480 ivar; ivar = ivar->getNextIvar()) { 3481 if (hasWeakMember(ivar->getType())) 3482 return true; 3483 } 3484 3485 return false; 3486 } 3487 3488 /* 3489 struct _objc_class { 3490 Class isa; 3491 Class super_class; 3492 const char *name; 3493 long version; 3494 long info; 3495 long instance_size; 3496 struct _objc_ivar_list *ivars; 3497 struct _objc_method_list *methods; 3498 struct _objc_cache *cache; 3499 struct _objc_protocol_list *protocols; 3500 // Objective-C 1.0 extensions (<rdr://4585769>) 3501 const char *ivar_layout; 3502 struct _objc_class_ext *ext; 3503 }; 3504 3505 See EmitClassExtension(); 3506 */ 3507 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3508 IdentifierInfo *RuntimeName = 3509 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3510 DefinedSymbols.insert(RuntimeName); 3511 3512 std::string ClassName = ID->getNameAsString(); 3513 // FIXME: Gross 3514 ObjCInterfaceDecl *Interface = 3515 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3516 llvm::Constant *Protocols = 3517 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3518 Interface->all_referenced_protocol_begin(), 3519 Interface->all_referenced_protocol_end()); 3520 unsigned Flags = FragileABI_Class_Factory; 3521 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3522 Flags |= FragileABI_Class_HasCXXStructors; 3523 3524 bool hasMRCWeak = false; 3525 3526 if (CGM.getLangOpts().ObjCAutoRefCount) 3527 Flags |= FragileABI_Class_CompiledByARC; 3528 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3529 Flags |= FragileABI_Class_HasMRCWeakIvars; 3530 3531 CharUnits Size = 3532 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3533 3534 // FIXME: Set CXX-structors flag. 3535 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3536 Flags |= FragileABI_Class_Hidden; 3537 3538 enum { 3539 InstanceMethods, 3540 ClassMethods, 3541 NumMethodLists 3542 }; 3543 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3544 for (const auto *MD : ID->methods()) { 3545 if (!MD->isDirectMethod()) 3546 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3547 } 3548 3549 for (const auto *PID : ID->property_impls()) { 3550 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3551 if (PID->getPropertyDecl()->isDirectProperty()) 3552 continue; 3553 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3554 if (GetMethodDefinition(MD)) 3555 Methods[InstanceMethods].push_back(MD); 3556 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3557 if (GetMethodDefinition(MD)) 3558 Methods[InstanceMethods].push_back(MD); 3559 } 3560 } 3561 3562 ConstantInitBuilder builder(CGM); 3563 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3564 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3565 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3566 // Record a reference to the super class. 3567 LazySymbols.insert(Super->getIdentifier()); 3568 3569 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3570 ObjCTypes.ClassPtrTy); 3571 } else { 3572 values.addNullPointer(ObjCTypes.ClassPtrTy); 3573 } 3574 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3575 // Version is always 0. 3576 values.addInt(ObjCTypes.LongTy, 0); 3577 values.addInt(ObjCTypes.LongTy, Flags); 3578 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3579 values.add(EmitIvarList(ID, false)); 3580 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3581 Methods[InstanceMethods])); 3582 // cache is always NULL. 3583 values.addNullPointer(ObjCTypes.CachePtrTy); 3584 values.add(Protocols); 3585 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3586 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3587 /*isMetaclass*/ false)); 3588 3589 std::string Name("OBJC_CLASS_"); 3590 Name += ClassName; 3591 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3592 // Check for a forward reference. 3593 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3594 if (GV) { 3595 assert(GV->getValueType() == ObjCTypes.ClassTy && 3596 "Forward metaclass reference has incorrect type."); 3597 values.finishAndSetAsInitializer(GV); 3598 GV->setSection(Section); 3599 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3600 CGM.addCompilerUsedGlobal(GV); 3601 } else 3602 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3603 DefinedClasses.push_back(GV); 3604 ImplementedClasses.push_back(Interface); 3605 // method definition entries must be clear for next implementation. 3606 MethodDefinitions.clear(); 3607 } 3608 3609 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3610 llvm::Constant *Protocols, 3611 ArrayRef<const ObjCMethodDecl*> Methods) { 3612 unsigned Flags = FragileABI_Class_Meta; 3613 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3614 3615 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3616 Flags |= FragileABI_Class_Hidden; 3617 3618 ConstantInitBuilder builder(CGM); 3619 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3620 // The isa for the metaclass is the root of the hierarchy. 3621 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3622 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3623 Root = Super; 3624 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3625 ObjCTypes.ClassPtrTy); 3626 // The super class for the metaclass is emitted as the name of the 3627 // super class. The runtime fixes this up to point to the 3628 // *metaclass* for the super class. 3629 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3630 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3631 ObjCTypes.ClassPtrTy); 3632 } else { 3633 values.addNullPointer(ObjCTypes.ClassPtrTy); 3634 } 3635 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3636 // Version is always 0. 3637 values.addInt(ObjCTypes.LongTy, 0); 3638 values.addInt(ObjCTypes.LongTy, Flags); 3639 values.addInt(ObjCTypes.LongTy, Size); 3640 values.add(EmitIvarList(ID, true)); 3641 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3642 Methods)); 3643 // cache is always NULL. 3644 values.addNullPointer(ObjCTypes.CachePtrTy); 3645 values.add(Protocols); 3646 // ivar_layout for metaclass is always NULL. 3647 values.addNullPointer(ObjCTypes.Int8PtrTy); 3648 // The class extension is used to store class properties for metaclasses. 3649 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3650 /*isMetaclass*/true)); 3651 3652 std::string Name("OBJC_METACLASS_"); 3653 Name += ID->getName(); 3654 3655 // Check for a forward reference. 3656 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3657 if (GV) { 3658 assert(GV->getValueType() == ObjCTypes.ClassTy && 3659 "Forward metaclass reference has incorrect type."); 3660 values.finishAndSetAsInitializer(GV); 3661 } else { 3662 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3663 /*constant*/ false, 3664 llvm::GlobalValue::PrivateLinkage); 3665 } 3666 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3667 CGM.addCompilerUsedGlobal(GV); 3668 3669 return GV; 3670 } 3671 3672 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3673 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3674 3675 // FIXME: Should we look these up somewhere other than the module. Its a bit 3676 // silly since we only generate these while processing an implementation, so 3677 // exactly one pointer would work if know when we entered/exitted an 3678 // implementation block. 3679 3680 // Check for an existing forward reference. 3681 // Previously, metaclass with internal linkage may have been defined. 3682 // pass 'true' as 2nd argument so it is returned. 3683 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3684 if (!GV) 3685 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3686 llvm::GlobalValue::PrivateLinkage, nullptr, 3687 Name); 3688 3689 assert(GV->getValueType() == ObjCTypes.ClassTy && 3690 "Forward metaclass reference has incorrect type."); 3691 return GV; 3692 } 3693 3694 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3695 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3696 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3697 3698 if (!GV) 3699 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3700 llvm::GlobalValue::PrivateLinkage, nullptr, 3701 Name); 3702 3703 assert(GV->getValueType() == ObjCTypes.ClassTy && 3704 "Forward class metadata reference has incorrect type."); 3705 return GV; 3706 } 3707 3708 /* 3709 Emit a "class extension", which in this specific context means extra 3710 data that doesn't fit in the normal fragile-ABI class structure, and 3711 has nothing to do with the language concept of a class extension. 3712 3713 struct objc_class_ext { 3714 uint32_t size; 3715 const char *weak_ivar_layout; 3716 struct _objc_property_list *properties; 3717 }; 3718 */ 3719 llvm::Constant * 3720 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3721 CharUnits InstanceSize, bool hasMRCWeakIvars, 3722 bool isMetaclass) { 3723 // Weak ivar layout. 3724 llvm::Constant *layout; 3725 if (isMetaclass) { 3726 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3727 } else { 3728 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3729 hasMRCWeakIvars); 3730 } 3731 3732 // Properties. 3733 llvm::Constant *propertyList = 3734 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3735 : Twine("_OBJC_$_PROP_LIST_")) 3736 + ID->getName(), 3737 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3738 3739 // Return null if no extension bits are used. 3740 if (layout->isNullValue() && propertyList->isNullValue()) { 3741 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3742 } 3743 3744 uint64_t size = 3745 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3746 3747 ConstantInitBuilder builder(CGM); 3748 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3749 values.addInt(ObjCTypes.IntTy, size); 3750 values.add(layout); 3751 values.add(propertyList); 3752 3753 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3754 "__OBJC,__class_ext,regular,no_dead_strip", 3755 CGM.getPointerAlign(), true); 3756 } 3757 3758 /* 3759 struct objc_ivar { 3760 char *ivar_name; 3761 char *ivar_type; 3762 int ivar_offset; 3763 }; 3764 3765 struct objc_ivar_list { 3766 int ivar_count; 3767 struct objc_ivar list[count]; 3768 }; 3769 */ 3770 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3771 bool ForClass) { 3772 // When emitting the root class GCC emits ivar entries for the 3773 // actual class structure. It is not clear if we need to follow this 3774 // behavior; for now lets try and get away with not doing it. If so, 3775 // the cleanest solution would be to make up an ObjCInterfaceDecl 3776 // for the class. 3777 if (ForClass) 3778 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3779 3780 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3781 3782 ConstantInitBuilder builder(CGM); 3783 auto ivarList = builder.beginStruct(); 3784 auto countSlot = ivarList.addPlaceholder(); 3785 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3786 3787 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3788 IVD; IVD = IVD->getNextIvar()) { 3789 // Ignore unnamed bit-fields. 3790 if (!IVD->getDeclName()) 3791 continue; 3792 3793 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3794 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3795 ivar.add(GetMethodVarType(IVD)); 3796 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3797 ivar.finishAndAddTo(ivars); 3798 } 3799 3800 // Return null for empty list. 3801 auto count = ivars.size(); 3802 if (count == 0) { 3803 ivars.abandon(); 3804 ivarList.abandon(); 3805 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3806 } 3807 3808 ivars.finishAndAddTo(ivarList); 3809 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3810 3811 llvm::GlobalVariable *GV; 3812 if (ForClass) 3813 GV = 3814 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3815 "__OBJC,__class_vars,regular,no_dead_strip", 3816 CGM.getPointerAlign(), true); 3817 else 3818 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3819 "__OBJC,__instance_vars,regular,no_dead_strip", 3820 CGM.getPointerAlign(), true); 3821 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3822 } 3823 3824 /// Build a struct objc_method_description constant for the given method. 3825 /// 3826 /// struct objc_method_description { 3827 /// SEL method_name; 3828 /// char *method_types; 3829 /// }; 3830 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3831 const ObjCMethodDecl *MD) { 3832 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3833 description.addBitCast(GetMethodVarName(MD->getSelector()), 3834 ObjCTypes.SelectorPtrTy); 3835 description.add(GetMethodVarType(MD)); 3836 description.finishAndAddTo(builder); 3837 } 3838 3839 /// Build a struct objc_method constant for the given method. 3840 /// 3841 /// struct objc_method { 3842 /// SEL method_name; 3843 /// char *method_types; 3844 /// void *method; 3845 /// }; 3846 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3847 const ObjCMethodDecl *MD) { 3848 llvm::Function *fn = GetMethodDefinition(MD); 3849 assert(fn && "no definition registered for method"); 3850 3851 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3852 method.addBitCast(GetMethodVarName(MD->getSelector()), 3853 ObjCTypes.SelectorPtrTy); 3854 method.add(GetMethodVarType(MD)); 3855 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3856 method.finishAndAddTo(builder); 3857 } 3858 3859 /// Build a struct objc_method_list or struct objc_method_description_list, 3860 /// as appropriate. 3861 /// 3862 /// struct objc_method_list { 3863 /// struct objc_method_list *obsolete; 3864 /// int count; 3865 /// struct objc_method methods_list[count]; 3866 /// }; 3867 /// 3868 /// struct objc_method_description_list { 3869 /// int count; 3870 /// struct objc_method_description list[count]; 3871 /// }; 3872 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3873 ArrayRef<const ObjCMethodDecl *> methods) { 3874 StringRef prefix; 3875 StringRef section; 3876 bool forProtocol = false; 3877 switch (MLT) { 3878 case MethodListType::CategoryInstanceMethods: 3879 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3880 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3881 forProtocol = false; 3882 break; 3883 case MethodListType::CategoryClassMethods: 3884 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3885 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3886 forProtocol = false; 3887 break; 3888 case MethodListType::InstanceMethods: 3889 prefix = "OBJC_INSTANCE_METHODS_"; 3890 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3891 forProtocol = false; 3892 break; 3893 case MethodListType::ClassMethods: 3894 prefix = "OBJC_CLASS_METHODS_"; 3895 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3896 forProtocol = false; 3897 break; 3898 case MethodListType::ProtocolInstanceMethods: 3899 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3900 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3901 forProtocol = true; 3902 break; 3903 case MethodListType::ProtocolClassMethods: 3904 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3905 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3906 forProtocol = true; 3907 break; 3908 case MethodListType::OptionalProtocolInstanceMethods: 3909 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3910 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3911 forProtocol = true; 3912 break; 3913 case MethodListType::OptionalProtocolClassMethods: 3914 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3915 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3916 forProtocol = true; 3917 break; 3918 } 3919 3920 // Return null for empty list. 3921 if (methods.empty()) 3922 return llvm::Constant::getNullValue(forProtocol 3923 ? ObjCTypes.MethodDescriptionListPtrTy 3924 : ObjCTypes.MethodListPtrTy); 3925 3926 // For protocols, this is an objc_method_description_list, which has 3927 // a slightly different structure. 3928 if (forProtocol) { 3929 ConstantInitBuilder builder(CGM); 3930 auto values = builder.beginStruct(); 3931 values.addInt(ObjCTypes.IntTy, methods.size()); 3932 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3933 for (auto MD : methods) { 3934 emitMethodDescriptionConstant(methodArray, MD); 3935 } 3936 methodArray.finishAndAddTo(values); 3937 3938 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3939 CGM.getPointerAlign(), true); 3940 return llvm::ConstantExpr::getBitCast(GV, 3941 ObjCTypes.MethodDescriptionListPtrTy); 3942 } 3943 3944 // Otherwise, it's an objc_method_list. 3945 ConstantInitBuilder builder(CGM); 3946 auto values = builder.beginStruct(); 3947 values.addNullPointer(ObjCTypes.Int8PtrTy); 3948 values.addInt(ObjCTypes.IntTy, methods.size()); 3949 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3950 for (auto MD : methods) { 3951 if (!MD->isDirectMethod()) 3952 emitMethodConstant(methodArray, MD); 3953 } 3954 methodArray.finishAndAddTo(values); 3955 3956 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3957 CGM.getPointerAlign(), true); 3958 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3959 } 3960 3961 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3962 const ObjCContainerDecl *CD) { 3963 llvm::Function *Method; 3964 3965 if (OMD->isDirectMethod()) { 3966 Method = GenerateDirectMethod(OMD, CD); 3967 } else { 3968 auto Name = getSymbolNameForMethod(OMD); 3969 3970 CodeGenTypes &Types = CGM.getTypes(); 3971 llvm::FunctionType *MethodTy = 3972 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3973 Method = 3974 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 3975 Name, &CGM.getModule()); 3976 } 3977 3978 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3979 3980 return Method; 3981 } 3982 3983 llvm::Function * 3984 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 3985 const ObjCContainerDecl *CD) { 3986 auto *COMD = OMD->getCanonicalDecl(); 3987 auto I = DirectMethodDefinitions.find(COMD); 3988 llvm::Function *OldFn = nullptr, *Fn = nullptr; 3989 3990 if (I != DirectMethodDefinitions.end()) { 3991 // Objective-C allows for the declaration and implementation types 3992 // to differ slightly. 3993 // 3994 // If we're being asked for the Function associated for a method 3995 // implementation, a previous value might have been cached 3996 // based on the type of the canonical declaration. 3997 // 3998 // If these do not match, then we'll replace this function with 3999 // a new one that has the proper type below. 4000 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 4001 return I->second; 4002 OldFn = I->second; 4003 } 4004 4005 CodeGenTypes &Types = CGM.getTypes(); 4006 llvm::FunctionType *MethodTy = 4007 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4008 4009 if (OldFn) { 4010 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4011 "", &CGM.getModule()); 4012 Fn->takeName(OldFn); 4013 OldFn->replaceAllUsesWith( 4014 llvm::ConstantExpr::getBitCast(Fn, OldFn->getType())); 4015 OldFn->eraseFromParent(); 4016 4017 // Replace the cached function in the map. 4018 I->second = Fn; 4019 } else { 4020 auto Name = getSymbolNameForMethod(OMD, /*include category*/ false); 4021 4022 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4023 Name, &CGM.getModule()); 4024 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn)); 4025 } 4026 4027 return Fn; 4028 } 4029 4030 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4031 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4032 const ObjCContainerDecl *CD) { 4033 auto &Builder = CGF.Builder; 4034 bool ReceiverCanBeNull = true; 4035 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4036 auto selfValue = Builder.CreateLoad(selfAddr); 4037 4038 // Generate: 4039 // 4040 // /* for class methods only to force class lazy initialization */ 4041 // self = [self self]; 4042 // 4043 // /* unless the receiver is never NULL */ 4044 // if (self == nil) { 4045 // return (ReturnType){ }; 4046 // } 4047 // 4048 // _cmd = @selector(...) 4049 // ... 4050 4051 if (OMD->isClassMethod()) { 4052 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4053 assert(OID && 4054 "GenerateDirectMethod() should be called with the Class Interface"); 4055 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4056 auto ResultType = CGF.getContext().getObjCIdType(); 4057 RValue result; 4058 CallArgList Args; 4059 4060 // TODO: If this method is inlined, the caller might know that `self` is 4061 // already initialized; for example, it might be an ordinary Objective-C 4062 // method which always receives an initialized `self`, or it might have just 4063 // forced initialization on its own. 4064 // 4065 // We should find a way to eliminate this unnecessary initialization in such 4066 // cases in LLVM. 4067 result = GeneratePossiblySpecializedMessageSend( 4068 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4069 nullptr, true); 4070 Builder.CreateStore(result.getScalarVal(), selfAddr); 4071 4072 // Nullable `Class` expressions cannot be messaged with a direct method 4073 // so the only reason why the receive can be null would be because 4074 // of weak linking. 4075 ReceiverCanBeNull = isWeakLinkedClass(OID); 4076 } 4077 4078 if (ReceiverCanBeNull) { 4079 llvm::BasicBlock *SelfIsNilBlock = 4080 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4081 llvm::BasicBlock *ContBlock = 4082 CGF.createBasicBlock("objc_direct_method.cont"); 4083 4084 // if (self == nil) { 4085 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4086 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4087 4088 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4089 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4090 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4091 4092 CGF.EmitBlock(SelfIsNilBlock); 4093 4094 // return (ReturnType){ }; 4095 auto retTy = OMD->getReturnType(); 4096 Builder.SetInsertPoint(SelfIsNilBlock); 4097 if (!retTy->isVoidType()) { 4098 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4099 } 4100 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4101 // } 4102 4103 // rest of the body 4104 CGF.EmitBlock(ContBlock); 4105 Builder.SetInsertPoint(ContBlock); 4106 } 4107 4108 // only synthesize _cmd if it's referenced 4109 if (OMD->getCmdDecl()->isUsed()) { 4110 // `_cmd` is not a parameter to direct methods, so storage must be 4111 // explicitly declared for it. 4112 CGF.EmitVarDecl(*OMD->getCmdDecl()); 4113 Builder.CreateStore(GetSelector(CGF, OMD), 4114 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4115 } 4116 } 4117 4118 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4119 ConstantStructBuilder &Init, 4120 StringRef Section, 4121 CharUnits Align, 4122 bool AddToUsed) { 4123 llvm::GlobalValue::LinkageTypes LT = 4124 getLinkageTypeForObjCMetadata(CGM, Section); 4125 llvm::GlobalVariable *GV = 4126 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4127 if (!Section.empty()) 4128 GV->setSection(Section); 4129 if (AddToUsed) 4130 CGM.addCompilerUsedGlobal(GV); 4131 return GV; 4132 } 4133 4134 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4135 llvm::Constant *Init, 4136 StringRef Section, 4137 CharUnits Align, 4138 bool AddToUsed) { 4139 llvm::Type *Ty = Init->getType(); 4140 llvm::GlobalValue::LinkageTypes LT = 4141 getLinkageTypeForObjCMetadata(CGM, Section); 4142 llvm::GlobalVariable *GV = 4143 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4144 if (!Section.empty()) 4145 GV->setSection(Section); 4146 GV->setAlignment(Align.getAsAlign()); 4147 if (AddToUsed) 4148 CGM.addCompilerUsedGlobal(GV); 4149 return GV; 4150 } 4151 4152 llvm::GlobalVariable * 4153 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4154 bool ForceNonFragileABI, 4155 bool NullTerminate) { 4156 StringRef Label; 4157 switch (Type) { 4158 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4159 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4160 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4161 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4162 } 4163 4164 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4165 4166 StringRef Section; 4167 switch (Type) { 4168 case ObjCLabelType::ClassName: 4169 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4170 : "__TEXT,__cstring,cstring_literals"; 4171 break; 4172 case ObjCLabelType::MethodVarName: 4173 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4174 : "__TEXT,__cstring,cstring_literals"; 4175 break; 4176 case ObjCLabelType::MethodVarType: 4177 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4178 : "__TEXT,__cstring,cstring_literals"; 4179 break; 4180 case ObjCLabelType::PropertyName: 4181 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4182 : "__TEXT,__cstring,cstring_literals"; 4183 break; 4184 } 4185 4186 llvm::Constant *Value = 4187 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4188 llvm::GlobalVariable *GV = 4189 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4190 /*isConstant=*/true, 4191 llvm::GlobalValue::PrivateLinkage, Value, Label); 4192 if (CGM.getTriple().isOSBinFormatMachO()) 4193 GV->setSection(Section); 4194 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4195 GV->setAlignment(CharUnits::One().getAsAlign()); 4196 CGM.addCompilerUsedGlobal(GV); 4197 4198 return GV; 4199 } 4200 4201 llvm::Function *CGObjCMac::ModuleInitFunction() { 4202 // Abuse this interface function as a place to finalize. 4203 FinishModule(); 4204 return nullptr; 4205 } 4206 4207 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4208 return ObjCTypes.getGetPropertyFn(); 4209 } 4210 4211 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4212 return ObjCTypes.getSetPropertyFn(); 4213 } 4214 4215 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4216 bool copy) { 4217 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4218 } 4219 4220 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4221 return ObjCTypes.getCopyStructFn(); 4222 } 4223 4224 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4225 return ObjCTypes.getCopyStructFn(); 4226 } 4227 4228 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4229 return ObjCTypes.getCppAtomicObjectFunction(); 4230 } 4231 4232 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4233 return ObjCTypes.getCppAtomicObjectFunction(); 4234 } 4235 4236 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4237 return ObjCTypes.getEnumerationMutationFn(); 4238 } 4239 4240 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4241 return EmitTryOrSynchronizedStmt(CGF, S); 4242 } 4243 4244 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4245 const ObjCAtSynchronizedStmt &S) { 4246 return EmitTryOrSynchronizedStmt(CGF, S); 4247 } 4248 4249 namespace { 4250 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4251 const Stmt &S; 4252 Address SyncArgSlot; 4253 Address CallTryExitVar; 4254 Address ExceptionData; 4255 ObjCTypesHelper &ObjCTypes; 4256 PerformFragileFinally(const Stmt *S, 4257 Address SyncArgSlot, 4258 Address CallTryExitVar, 4259 Address ExceptionData, 4260 ObjCTypesHelper *ObjCTypes) 4261 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4262 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4263 4264 void Emit(CodeGenFunction &CGF, Flags flags) override { 4265 // Check whether we need to call objc_exception_try_exit. 4266 // In optimized code, this branch will always be folded. 4267 llvm::BasicBlock *FinallyCallExit = 4268 CGF.createBasicBlock("finally.call_exit"); 4269 llvm::BasicBlock *FinallyNoCallExit = 4270 CGF.createBasicBlock("finally.no_call_exit"); 4271 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4272 FinallyCallExit, FinallyNoCallExit); 4273 4274 CGF.EmitBlock(FinallyCallExit); 4275 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4276 ExceptionData.getPointer()); 4277 4278 CGF.EmitBlock(FinallyNoCallExit); 4279 4280 if (isa<ObjCAtTryStmt>(S)) { 4281 if (const ObjCAtFinallyStmt* FinallyStmt = 4282 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4283 // Don't try to do the @finally if this is an EH cleanup. 4284 if (flags.isForEHCleanup()) return; 4285 4286 // Save the current cleanup destination in case there's 4287 // control flow inside the finally statement. 4288 llvm::Value *CurCleanupDest = 4289 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4290 4291 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4292 4293 if (CGF.HaveInsertPoint()) { 4294 CGF.Builder.CreateStore(CurCleanupDest, 4295 CGF.getNormalCleanupDestSlot()); 4296 } else { 4297 // Currently, the end of the cleanup must always exist. 4298 CGF.EnsureInsertPoint(); 4299 } 4300 } 4301 } else { 4302 // Emit objc_sync_exit(expr); as finally's sole statement for 4303 // @synchronized. 4304 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4305 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4306 } 4307 } 4308 }; 4309 4310 class FragileHazards { 4311 CodeGenFunction &CGF; 4312 SmallVector<llvm::Value*, 20> Locals; 4313 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4314 4315 llvm::InlineAsm *ReadHazard; 4316 llvm::InlineAsm *WriteHazard; 4317 4318 llvm::FunctionType *GetAsmFnType(); 4319 4320 void collectLocals(); 4321 void emitReadHazard(CGBuilderTy &Builder); 4322 4323 public: 4324 FragileHazards(CodeGenFunction &CGF); 4325 4326 void emitWriteHazard(); 4327 void emitHazardsInNewBlocks(); 4328 }; 4329 } // end anonymous namespace 4330 4331 /// Create the fragile-ABI read and write hazards based on the current 4332 /// state of the function, which is presumed to be immediately prior 4333 /// to a @try block. These hazards are used to maintain correct 4334 /// semantics in the face of optimization and the fragile ABI's 4335 /// cavalier use of setjmp/longjmp. 4336 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4337 collectLocals(); 4338 4339 if (Locals.empty()) return; 4340 4341 // Collect all the blocks in the function. 4342 for (llvm::Function::iterator 4343 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4344 BlocksBeforeTry.insert(&*I); 4345 4346 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4347 4348 // Create a read hazard for the allocas. This inhibits dead-store 4349 // optimizations and forces the values to memory. This hazard is 4350 // inserted before any 'throwing' calls in the protected scope to 4351 // reflect the possibility that the variables might be read from the 4352 // catch block if the call throws. 4353 { 4354 std::string Constraint; 4355 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4356 if (I) Constraint += ','; 4357 Constraint += "*m"; 4358 } 4359 4360 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4361 } 4362 4363 // Create a write hazard for the allocas. This inhibits folding 4364 // loads across the hazard. This hazard is inserted at the 4365 // beginning of the catch path to reflect the possibility that the 4366 // variables might have been written within the protected scope. 4367 { 4368 std::string Constraint; 4369 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4370 if (I) Constraint += ','; 4371 Constraint += "=*m"; 4372 } 4373 4374 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4375 } 4376 } 4377 4378 /// Emit a write hazard at the current location. 4379 void FragileHazards::emitWriteHazard() { 4380 if (Locals.empty()) return; 4381 4382 llvm::CallInst *Call = CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4383 for (auto Pair : llvm::enumerate(Locals)) 4384 Call->addParamAttr(Pair.index(), llvm::Attribute::get( 4385 CGF.getLLVMContext(), llvm::Attribute::ElementType, 4386 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType())); 4387 } 4388 4389 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4390 assert(!Locals.empty()); 4391 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4392 call->setDoesNotThrow(); 4393 call->setCallingConv(CGF.getRuntimeCC()); 4394 for (auto Pair : llvm::enumerate(Locals)) 4395 call->addParamAttr(Pair.index(), llvm::Attribute::get( 4396 Builder.getContext(), llvm::Attribute::ElementType, 4397 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType())); 4398 } 4399 4400 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4401 /// which have been inserted since the beginning of the try. 4402 void FragileHazards::emitHazardsInNewBlocks() { 4403 if (Locals.empty()) return; 4404 4405 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4406 4407 // Iterate through all blocks, skipping those prior to the try. 4408 for (llvm::Function::iterator 4409 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4410 llvm::BasicBlock &BB = *FI; 4411 if (BlocksBeforeTry.count(&BB)) continue; 4412 4413 // Walk through all the calls in the block. 4414 for (llvm::BasicBlock::iterator 4415 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4416 llvm::Instruction &I = *BI; 4417 4418 // Ignore instructions that aren't non-intrinsic calls. 4419 // These are the only calls that can possibly call longjmp. 4420 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4421 continue; 4422 if (isa<llvm::IntrinsicInst>(I)) 4423 continue; 4424 4425 // Ignore call sites marked nounwind. This may be questionable, 4426 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4427 if (cast<llvm::CallBase>(I).doesNotThrow()) 4428 continue; 4429 4430 // Insert a read hazard before the call. This will ensure that 4431 // any writes to the locals are performed before making the 4432 // call. If the call throws, then this is sufficient to 4433 // guarantee correctness as long as it doesn't also write to any 4434 // locals. 4435 Builder.SetInsertPoint(&BB, BI); 4436 emitReadHazard(Builder); 4437 } 4438 } 4439 } 4440 4441 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4442 if (V.isValid()) S.insert(V.getPointer()); 4443 } 4444 4445 void FragileHazards::collectLocals() { 4446 // Compute a set of allocas to ignore. 4447 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4448 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4449 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4450 4451 // Collect all the allocas currently in the function. This is 4452 // probably way too aggressive. 4453 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4454 for (llvm::BasicBlock::iterator 4455 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4456 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4457 Locals.push_back(&*I); 4458 } 4459 4460 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4461 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4462 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4463 tys[i] = Locals[i]->getType(); 4464 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4465 } 4466 4467 /* 4468 4469 Objective-C setjmp-longjmp (sjlj) Exception Handling 4470 -- 4471 4472 A catch buffer is a setjmp buffer plus: 4473 - a pointer to the exception that was caught 4474 - a pointer to the previous exception data buffer 4475 - two pointers of reserved storage 4476 Therefore catch buffers form a stack, with a pointer to the top 4477 of the stack kept in thread-local storage. 4478 4479 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4480 objc_exception_try_exit pops the given catch buffer, which is 4481 required to be the top of the EH stack. 4482 objc_exception_throw pops the top of the EH stack, writes the 4483 thrown exception into the appropriate field, and longjmps 4484 to the setjmp buffer. It crashes the process (with a printf 4485 and an abort()) if there are no catch buffers on the stack. 4486 objc_exception_extract just reads the exception pointer out of the 4487 catch buffer. 4488 4489 There's no reason an implementation couldn't use a light-weight 4490 setjmp here --- something like __builtin_setjmp, but API-compatible 4491 with the heavyweight setjmp. This will be more important if we ever 4492 want to implement correct ObjC/C++ exception interactions for the 4493 fragile ABI. 4494 4495 Note that for this use of setjmp/longjmp to be correct, we may need 4496 to mark some local variables volatile: if a non-volatile local 4497 variable is modified between the setjmp and the longjmp, it has 4498 indeterminate value. For the purposes of LLVM IR, it may be 4499 sufficient to make loads and stores within the @try (to variables 4500 declared outside the @try) volatile. This is necessary for 4501 optimized correctness, but is not currently being done; this is 4502 being tracked as rdar://problem/8160285 4503 4504 The basic framework for a @try-catch-finally is as follows: 4505 { 4506 objc_exception_data d; 4507 id _rethrow = null; 4508 bool _call_try_exit = true; 4509 4510 objc_exception_try_enter(&d); 4511 if (!setjmp(d.jmp_buf)) { 4512 ... try body ... 4513 } else { 4514 // exception path 4515 id _caught = objc_exception_extract(&d); 4516 4517 // enter new try scope for handlers 4518 if (!setjmp(d.jmp_buf)) { 4519 ... match exception and execute catch blocks ... 4520 4521 // fell off end, rethrow. 4522 _rethrow = _caught; 4523 ... jump-through-finally to finally_rethrow ... 4524 } else { 4525 // exception in catch block 4526 _rethrow = objc_exception_extract(&d); 4527 _call_try_exit = false; 4528 ... jump-through-finally to finally_rethrow ... 4529 } 4530 } 4531 ... jump-through-finally to finally_end ... 4532 4533 finally: 4534 if (_call_try_exit) 4535 objc_exception_try_exit(&d); 4536 4537 ... finally block .... 4538 ... dispatch to finally destination ... 4539 4540 finally_rethrow: 4541 objc_exception_throw(_rethrow); 4542 4543 finally_end: 4544 } 4545 4546 This framework differs slightly from the one gcc uses, in that gcc 4547 uses _rethrow to determine if objc_exception_try_exit should be called 4548 and if the object should be rethrown. This breaks in the face of 4549 throwing nil and introduces unnecessary branches. 4550 4551 We specialize this framework for a few particular circumstances: 4552 4553 - If there are no catch blocks, then we avoid emitting the second 4554 exception handling context. 4555 4556 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4557 e)) we avoid emitting the code to rethrow an uncaught exception. 4558 4559 - FIXME: If there is no @finally block we can do a few more 4560 simplifications. 4561 4562 Rethrows and Jumps-Through-Finally 4563 -- 4564 4565 '@throw;' is supported by pushing the currently-caught exception 4566 onto ObjCEHStack while the @catch blocks are emitted. 4567 4568 Branches through the @finally block are handled with an ordinary 4569 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4570 exceptions are not compatible with C++ exceptions, and this is 4571 hardly the only place where this will go wrong. 4572 4573 @synchronized(expr) { stmt; } is emitted as if it were: 4574 id synch_value = expr; 4575 objc_sync_enter(synch_value); 4576 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4577 */ 4578 4579 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4580 const Stmt &S) { 4581 bool isTry = isa<ObjCAtTryStmt>(S); 4582 4583 // A destination for the fall-through edges of the catch handlers to 4584 // jump to. 4585 CodeGenFunction::JumpDest FinallyEnd = 4586 CGF.getJumpDestInCurrentScope("finally.end"); 4587 4588 // A destination for the rethrow edge of the catch handlers to jump 4589 // to. 4590 CodeGenFunction::JumpDest FinallyRethrow = 4591 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4592 4593 // For @synchronized, call objc_sync_enter(sync.expr). The 4594 // evaluation of the expression must occur before we enter the 4595 // @synchronized. We can't avoid a temp here because we need the 4596 // value to be preserved. If the backend ever does liveness 4597 // correctly after setjmp, this will be unnecessary. 4598 Address SyncArgSlot = Address::invalid(); 4599 if (!isTry) { 4600 llvm::Value *SyncArg = 4601 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4602 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4603 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4604 4605 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4606 CGF.getPointerAlign(), "sync.arg"); 4607 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4608 } 4609 4610 // Allocate memory for the setjmp buffer. This needs to be kept 4611 // live throughout the try and catch blocks. 4612 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4613 CGF.getPointerAlign(), 4614 "exceptiondata.ptr"); 4615 4616 // Create the fragile hazards. Note that this will not capture any 4617 // of the allocas required for exception processing, but will 4618 // capture the current basic block (which extends all the way to the 4619 // setjmp call) as "before the @try". 4620 FragileHazards Hazards(CGF); 4621 4622 // Create a flag indicating whether the cleanup needs to call 4623 // objc_exception_try_exit. This is true except when 4624 // - no catches match and we're branching through the cleanup 4625 // just to rethrow the exception, or 4626 // - a catch matched and we're falling out of the catch handler. 4627 // The setjmp-safety rule here is that we should always store to this 4628 // variable in a place that dominates the branch through the cleanup 4629 // without passing through any setjmps. 4630 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4631 CharUnits::One(), 4632 "_call_try_exit"); 4633 4634 // A slot containing the exception to rethrow. Only needed when we 4635 // have both a @catch and a @finally. 4636 Address PropagatingExnVar = Address::invalid(); 4637 4638 // Push a normal cleanup to leave the try scope. 4639 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4640 SyncArgSlot, 4641 CallTryExitVar, 4642 ExceptionData, 4643 &ObjCTypes); 4644 4645 // Enter a try block: 4646 // - Call objc_exception_try_enter to push ExceptionData on top of 4647 // the EH stack. 4648 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4649 ExceptionData.getPointer()); 4650 4651 // - Call setjmp on the exception data buffer. 4652 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4653 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4654 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4655 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4656 "setjmp_buffer"); 4657 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4658 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4659 SetJmpResult->setCanReturnTwice(); 4660 4661 // If setjmp returned 0, enter the protected block; otherwise, 4662 // branch to the handler. 4663 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4664 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4665 llvm::Value *DidCatch = 4666 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4667 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4668 4669 // Emit the protected block. 4670 CGF.EmitBlock(TryBlock); 4671 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4672 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4673 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4674 4675 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4676 4677 // Emit the exception handler block. 4678 CGF.EmitBlock(TryHandler); 4679 4680 // Don't optimize loads of the in-scope locals across this point. 4681 Hazards.emitWriteHazard(); 4682 4683 // For a @synchronized (or a @try with no catches), just branch 4684 // through the cleanup to the rethrow block. 4685 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4686 // Tell the cleanup not to re-pop the exit. 4687 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4688 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4689 4690 // Otherwise, we have to match against the caught exceptions. 4691 } else { 4692 // Retrieve the exception object. We may emit multiple blocks but 4693 // nothing can cross this so the value is already in SSA form. 4694 llvm::CallInst *Caught = 4695 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4696 ExceptionData.getPointer(), "caught"); 4697 4698 // Push the exception to rethrow onto the EH value stack for the 4699 // benefit of any @throws in the handlers. 4700 CGF.ObjCEHValueStack.push_back(Caught); 4701 4702 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4703 4704 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4705 4706 llvm::BasicBlock *CatchBlock = nullptr; 4707 llvm::BasicBlock *CatchHandler = nullptr; 4708 if (HasFinally) { 4709 // Save the currently-propagating exception before 4710 // objc_exception_try_enter clears the exception slot. 4711 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4712 CGF.getPointerAlign(), 4713 "propagating_exception"); 4714 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4715 4716 // Enter a new exception try block (in case a @catch block 4717 // throws an exception). 4718 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4719 ExceptionData.getPointer()); 4720 4721 llvm::CallInst *SetJmpResult = 4722 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4723 SetJmpBuffer, "setjmp.result"); 4724 SetJmpResult->setCanReturnTwice(); 4725 4726 llvm::Value *Threw = 4727 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4728 4729 CatchBlock = CGF.createBasicBlock("catch"); 4730 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4731 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4732 4733 CGF.EmitBlock(CatchBlock); 4734 } 4735 4736 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4737 4738 // Handle catch list. As a special case we check if everything is 4739 // matched and avoid generating code for falling off the end if 4740 // so. 4741 bool AllMatched = false; 4742 for (const ObjCAtCatchStmt *CatchStmt : AtTryStmt->catch_stmts()) { 4743 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4744 const ObjCObjectPointerType *OPT = nullptr; 4745 4746 // catch(...) always matches. 4747 if (!CatchParam) { 4748 AllMatched = true; 4749 } else { 4750 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4751 4752 // catch(id e) always matches under this ABI, since only 4753 // ObjC exceptions end up here in the first place. 4754 // FIXME: For the time being we also match id<X>; this should 4755 // be rejected by Sema instead. 4756 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4757 AllMatched = true; 4758 } 4759 4760 // If this is a catch-all, we don't need to test anything. 4761 if (AllMatched) { 4762 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4763 4764 if (CatchParam) { 4765 CGF.EmitAutoVarDecl(*CatchParam); 4766 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4767 4768 // These types work out because ConvertType(id) == i8*. 4769 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4770 } 4771 4772 CGF.EmitStmt(CatchStmt->getCatchBody()); 4773 4774 // The scope of the catch variable ends right here. 4775 CatchVarCleanups.ForceCleanup(); 4776 4777 CGF.EmitBranchThroughCleanup(FinallyEnd); 4778 break; 4779 } 4780 4781 assert(OPT && "Unexpected non-object pointer type in @catch"); 4782 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4783 4784 // FIXME: @catch (Class c) ? 4785 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4786 assert(IDecl && "Catch parameter must have Objective-C type!"); 4787 4788 // Check if the @catch block matches the exception object. 4789 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4790 4791 llvm::Value *matchArgs[] = { Class, Caught }; 4792 llvm::CallInst *Match = 4793 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4794 matchArgs, "match"); 4795 4796 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4797 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4798 4799 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4800 MatchedBlock, NextCatchBlock); 4801 4802 // Emit the @catch block. 4803 CGF.EmitBlock(MatchedBlock); 4804 4805 // Collect any cleanups for the catch variable. The scope lasts until 4806 // the end of the catch body. 4807 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4808 4809 CGF.EmitAutoVarDecl(*CatchParam); 4810 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4811 4812 // Initialize the catch variable. 4813 llvm::Value *Tmp = 4814 CGF.Builder.CreateBitCast(Caught, 4815 CGF.ConvertType(CatchParam->getType())); 4816 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4817 4818 CGF.EmitStmt(CatchStmt->getCatchBody()); 4819 4820 // We're done with the catch variable. 4821 CatchVarCleanups.ForceCleanup(); 4822 4823 CGF.EmitBranchThroughCleanup(FinallyEnd); 4824 4825 CGF.EmitBlock(NextCatchBlock); 4826 } 4827 4828 CGF.ObjCEHValueStack.pop_back(); 4829 4830 // If nothing wanted anything to do with the caught exception, 4831 // kill the extract call. 4832 if (Caught->use_empty()) 4833 Caught->eraseFromParent(); 4834 4835 if (!AllMatched) 4836 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4837 4838 if (HasFinally) { 4839 // Emit the exception handler for the @catch blocks. 4840 CGF.EmitBlock(CatchHandler); 4841 4842 // In theory we might now need a write hazard, but actually it's 4843 // unnecessary because there's no local-accessing code between 4844 // the try's write hazard and here. 4845 //Hazards.emitWriteHazard(); 4846 4847 // Extract the new exception and save it to the 4848 // propagating-exception slot. 4849 assert(PropagatingExnVar.isValid()); 4850 llvm::CallInst *NewCaught = 4851 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4852 ExceptionData.getPointer(), "caught"); 4853 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4854 4855 // Don't pop the catch handler; the throw already did. 4856 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4857 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4858 } 4859 } 4860 4861 // Insert read hazards as required in the new blocks. 4862 Hazards.emitHazardsInNewBlocks(); 4863 4864 // Pop the cleanup. 4865 CGF.Builder.restoreIP(TryFallthroughIP); 4866 if (CGF.HaveInsertPoint()) 4867 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4868 CGF.PopCleanupBlock(); 4869 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4870 4871 // Emit the rethrow block. 4872 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4873 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4874 if (CGF.HaveInsertPoint()) { 4875 // If we have a propagating-exception variable, check it. 4876 llvm::Value *PropagatingExn; 4877 if (PropagatingExnVar.isValid()) { 4878 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4879 4880 // Otherwise, just look in the buffer for the exception to throw. 4881 } else { 4882 llvm::CallInst *Caught = 4883 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4884 ExceptionData.getPointer()); 4885 PropagatingExn = Caught; 4886 } 4887 4888 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4889 PropagatingExn); 4890 CGF.Builder.CreateUnreachable(); 4891 } 4892 4893 CGF.Builder.restoreIP(SavedIP); 4894 } 4895 4896 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4897 const ObjCAtThrowStmt &S, 4898 bool ClearInsertionPoint) { 4899 llvm::Value *ExceptionAsObject; 4900 4901 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4902 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4903 ExceptionAsObject = 4904 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4905 } else { 4906 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4907 "Unexpected rethrow outside @catch block."); 4908 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4909 } 4910 4911 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4912 ->setDoesNotReturn(); 4913 CGF.Builder.CreateUnreachable(); 4914 4915 // Clear the insertion point to indicate we are in unreachable code. 4916 if (ClearInsertionPoint) 4917 CGF.Builder.ClearInsertionPoint(); 4918 } 4919 4920 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4921 /// object: objc_read_weak (id *src) 4922 /// 4923 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4924 Address AddrWeakObj) { 4925 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4926 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast( 4927 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy); 4928 llvm::Value *read_weak = 4929 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4930 AddrWeakObjVal, "weakread"); 4931 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4932 return read_weak; 4933 } 4934 4935 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4936 /// objc_assign_weak (id src, id *dst) 4937 /// 4938 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4939 llvm::Value *src, Address dst) { 4940 llvm::Type * SrcTy = src->getType(); 4941 if (!isa<llvm::PointerType>(SrcTy)) { 4942 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4943 assert(Size <= 8 && "does not support size > 8"); 4944 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4945 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4946 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4947 } 4948 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4949 llvm::Value *dstVal = 4950 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 4951 llvm::Value *args[] = { src, dstVal }; 4952 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4953 args, "weakassign"); 4954 } 4955 4956 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4957 /// objc_assign_global (id src, id *dst) 4958 /// 4959 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4960 llvm::Value *src, Address dst, 4961 bool threadlocal) { 4962 llvm::Type * SrcTy = src->getType(); 4963 if (!isa<llvm::PointerType>(SrcTy)) { 4964 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4965 assert(Size <= 8 && "does not support size > 8"); 4966 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4967 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4968 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4969 } 4970 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4971 llvm::Value *dstVal = 4972 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 4973 llvm::Value *args[] = {src, dstVal}; 4974 if (!threadlocal) 4975 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4976 args, "globalassign"); 4977 else 4978 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4979 args, "threadlocalassign"); 4980 } 4981 4982 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4983 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4984 /// 4985 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4986 llvm::Value *src, Address dst, 4987 llvm::Value *ivarOffset) { 4988 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4989 llvm::Type * SrcTy = src->getType(); 4990 if (!isa<llvm::PointerType>(SrcTy)) { 4991 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4992 assert(Size <= 8 && "does not support size > 8"); 4993 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4994 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4995 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4996 } 4997 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4998 llvm::Value *dstVal = 4999 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 5000 llvm::Value *args[] = {src, dstVal, ivarOffset}; 5001 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 5002 } 5003 5004 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 5005 /// objc_assign_strongCast (id src, id *dst) 5006 /// 5007 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 5008 llvm::Value *src, Address dst) { 5009 llvm::Type * SrcTy = src->getType(); 5010 if (!isa<llvm::PointerType>(SrcTy)) { 5011 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5012 assert(Size <= 8 && "does not support size > 8"); 5013 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5014 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5015 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5016 } 5017 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5018 llvm::Value *dstVal = 5019 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 5020 llvm::Value *args[] = {src, dstVal}; 5021 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5022 args, "strongassign"); 5023 } 5024 5025 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5026 Address DestPtr, 5027 Address SrcPtr, 5028 llvm::Value *size) { 5029 SrcPtr = CGF.Builder.CreateElementBitCast(SrcPtr, CGF.Int8Ty); 5030 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 5031 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5032 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5033 } 5034 5035 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5036 /// 5037 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5038 QualType ObjectTy, 5039 llvm::Value *BaseValue, 5040 const ObjCIvarDecl *Ivar, 5041 unsigned CVRQualifiers) { 5042 const ObjCInterfaceDecl *ID = 5043 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5044 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5045 EmitIvarOffset(CGF, ID, Ivar)); 5046 } 5047 5048 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5049 const ObjCInterfaceDecl *Interface, 5050 const ObjCIvarDecl *Ivar) { 5051 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5052 return llvm::ConstantInt::get( 5053 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5054 Offset); 5055 } 5056 5057 /* *** Private Interface *** */ 5058 5059 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5060 StringRef MachOAttributes) { 5061 switch (CGM.getTriple().getObjectFormat()) { 5062 case llvm::Triple::UnknownObjectFormat: 5063 llvm_unreachable("unexpected object file format"); 5064 case llvm::Triple::MachO: { 5065 if (MachOAttributes.empty()) 5066 return ("__DATA," + Section).str(); 5067 return ("__DATA," + Section + "," + MachOAttributes).str(); 5068 } 5069 case llvm::Triple::ELF: 5070 assert(Section.substr(0, 2) == "__" && 5071 "expected the name to begin with __"); 5072 return Section.substr(2).str(); 5073 case llvm::Triple::COFF: 5074 assert(Section.substr(0, 2) == "__" && 5075 "expected the name to begin with __"); 5076 return ("." + Section.substr(2) + "$B").str(); 5077 case llvm::Triple::Wasm: 5078 case llvm::Triple::GOFF: 5079 case llvm::Triple::SPIRV: 5080 case llvm::Triple::XCOFF: 5081 case llvm::Triple::DXContainer: 5082 llvm::report_fatal_error( 5083 "Objective-C support is unimplemented for object file format"); 5084 } 5085 5086 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5087 } 5088 5089 /// EmitImageInfo - Emit the image info marker used to encode some module 5090 /// level information. 5091 /// 5092 /// See: <rdr://4810609&4810587&4810587> 5093 /// struct IMAGE_INFO { 5094 /// unsigned version; 5095 /// unsigned flags; 5096 /// }; 5097 enum ImageInfoFlags { 5098 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5099 eImageInfo_GarbageCollected = (1 << 1), 5100 eImageInfo_GCOnly = (1 << 2), 5101 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5102 5103 // A flag indicating that the module has no instances of a @synthesize of a 5104 // superclass variable. <rdar://problem/6803242> 5105 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5106 eImageInfo_ImageIsSimulated = (1 << 5), 5107 eImageInfo_ClassProperties = (1 << 6) 5108 }; 5109 5110 void CGObjCCommonMac::EmitImageInfo() { 5111 unsigned version = 0; // Version is unused? 5112 std::string Section = 5113 (ObjCABI == 1) 5114 ? "__OBJC,__image_info,regular" 5115 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5116 5117 // Generate module-level named metadata to convey this information to the 5118 // linker and code-gen. 5119 llvm::Module &Mod = CGM.getModule(); 5120 5121 // Add the ObjC ABI version to the module flags. 5122 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5123 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5124 version); 5125 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5126 llvm::MDString::get(VMContext, Section)); 5127 5128 auto Int8Ty = llvm::Type::getInt8Ty(VMContext); 5129 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5130 // Non-GC overrides those files which specify GC. 5131 Mod.addModuleFlag(llvm::Module::Error, 5132 "Objective-C Garbage Collection", 5133 llvm::ConstantInt::get(Int8Ty,0)); 5134 } else { 5135 // Add the ObjC garbage collection value. 5136 Mod.addModuleFlag(llvm::Module::Error, 5137 "Objective-C Garbage Collection", 5138 llvm::ConstantInt::get(Int8Ty, 5139 (uint8_t)eImageInfo_GarbageCollected)); 5140 5141 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5142 // Add the ObjC GC Only value. 5143 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5144 eImageInfo_GCOnly); 5145 5146 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5147 llvm::Metadata *Ops[2] = { 5148 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5149 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5150 Int8Ty, eImageInfo_GarbageCollected))}; 5151 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5152 llvm::MDNode::get(VMContext, Ops)); 5153 } 5154 } 5155 5156 // Indicate whether we're compiling this to run on a simulator. 5157 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5158 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5159 eImageInfo_ImageIsSimulated); 5160 5161 // Indicate whether we are generating class properties. 5162 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5163 eImageInfo_ClassProperties); 5164 } 5165 5166 // struct objc_module { 5167 // unsigned long version; 5168 // unsigned long size; 5169 // const char *name; 5170 // Symtab symtab; 5171 // }; 5172 5173 // FIXME: Get from somewhere 5174 static const int ModuleVersion = 7; 5175 5176 void CGObjCMac::EmitModuleInfo() { 5177 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5178 5179 ConstantInitBuilder builder(CGM); 5180 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5181 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5182 values.addInt(ObjCTypes.LongTy, Size); 5183 // This used to be the filename, now it is unused. <rdr://4327263> 5184 values.add(GetClassName(StringRef(""))); 5185 values.add(EmitModuleSymbols()); 5186 CreateMetadataVar("OBJC_MODULES", values, 5187 "__OBJC,__module_info,regular,no_dead_strip", 5188 CGM.getPointerAlign(), true); 5189 } 5190 5191 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5192 unsigned NumClasses = DefinedClasses.size(); 5193 unsigned NumCategories = DefinedCategories.size(); 5194 5195 // Return null if no symbols were defined. 5196 if (!NumClasses && !NumCategories) 5197 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5198 5199 ConstantInitBuilder builder(CGM); 5200 auto values = builder.beginStruct(); 5201 values.addInt(ObjCTypes.LongTy, 0); 5202 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5203 values.addInt(ObjCTypes.ShortTy, NumClasses); 5204 values.addInt(ObjCTypes.ShortTy, NumCategories); 5205 5206 // The runtime expects exactly the list of defined classes followed 5207 // by the list of defined categories, in a single array. 5208 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5209 for (unsigned i=0; i<NumClasses; i++) { 5210 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5211 assert(ID); 5212 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5213 // We are implementing a weak imported interface. Give it external linkage 5214 if (ID->isWeakImported() && !IMP->isWeakImported()) 5215 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5216 5217 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5218 } 5219 for (unsigned i=0; i<NumCategories; i++) 5220 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5221 5222 array.finishAndAddTo(values); 5223 5224 llvm::GlobalVariable *GV = CreateMetadataVar( 5225 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5226 CGM.getPointerAlign(), true); 5227 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5228 } 5229 5230 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5231 IdentifierInfo *II) { 5232 LazySymbols.insert(II); 5233 5234 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5235 5236 if (!Entry) { 5237 llvm::Constant *Casted = 5238 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5239 ObjCTypes.ClassPtrTy); 5240 Entry = CreateMetadataVar( 5241 "OBJC_CLASS_REFERENCES_", Casted, 5242 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5243 CGM.getPointerAlign(), true); 5244 } 5245 5246 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, 5247 CGF.getPointerAlign()); 5248 } 5249 5250 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5251 const ObjCInterfaceDecl *ID) { 5252 // If the class has the objc_runtime_visible attribute, we need to 5253 // use the Objective-C runtime to get the class. 5254 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5255 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5256 5257 IdentifierInfo *RuntimeName = 5258 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5259 return EmitClassRefFromId(CGF, RuntimeName); 5260 } 5261 5262 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5263 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5264 return EmitClassRefFromId(CGF, II); 5265 } 5266 5267 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5268 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5269 } 5270 5271 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5272 CharUnits Align = CGM.getPointerAlign(); 5273 5274 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5275 if (!Entry) { 5276 llvm::Constant *Casted = 5277 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5278 ObjCTypes.SelectorPtrTy); 5279 Entry = CreateMetadataVar( 5280 "OBJC_SELECTOR_REFERENCES_", Casted, 5281 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5282 Entry->setExternallyInitialized(true); 5283 } 5284 5285 return Address(Entry, ObjCTypes.SelectorPtrTy, Align); 5286 } 5287 5288 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5289 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5290 if (!Entry) 5291 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5292 return getConstantGEP(VMContext, Entry, 0, 0); 5293 } 5294 5295 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5296 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5297 I = MethodDefinitions.find(MD); 5298 if (I != MethodDefinitions.end()) 5299 return I->second; 5300 5301 return nullptr; 5302 } 5303 5304 /// GetIvarLayoutName - Returns a unique constant for the given 5305 /// ivar layout bitmap. 5306 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5307 const ObjCCommonTypesHelper &ObjCTypes) { 5308 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5309 } 5310 5311 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5312 CharUnits offset) { 5313 const RecordDecl *RD = RT->getDecl(); 5314 5315 // If this is a union, remember that we had one, because it might mess 5316 // up the ordering of layout entries. 5317 if (RD->isUnion()) 5318 IsDisordered = true; 5319 5320 const ASTRecordLayout *recLayout = nullptr; 5321 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5322 [&](const FieldDecl *field) -> CharUnits { 5323 if (!recLayout) 5324 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5325 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5326 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5327 }); 5328 } 5329 5330 template <class Iterator, class GetOffsetFn> 5331 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5332 CharUnits aggregateOffset, 5333 const GetOffsetFn &getOffset) { 5334 for (; begin != end; ++begin) { 5335 auto field = *begin; 5336 5337 // Skip over bitfields. 5338 if (field->isBitField()) { 5339 continue; 5340 } 5341 5342 // Compute the offset of the field within the aggregate. 5343 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5344 5345 visitField(field, fieldOffset); 5346 } 5347 } 5348 5349 /// Collect layout information for the given fields into IvarsInfo. 5350 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5351 CharUnits fieldOffset) { 5352 QualType fieldType = field->getType(); 5353 5354 // Drill down into arrays. 5355 uint64_t numElts = 1; 5356 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5357 numElts = 0; 5358 fieldType = arrayType->getElementType(); 5359 } 5360 // Unlike incomplete arrays, constant arrays can be nested. 5361 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5362 numElts *= arrayType->getSize().getZExtValue(); 5363 fieldType = arrayType->getElementType(); 5364 } 5365 5366 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5367 5368 // If we ended up with a zero-sized array, we've done what we can do within 5369 // the limits of this layout encoding. 5370 if (numElts == 0) return; 5371 5372 // Recurse if the base element type is a record type. 5373 if (auto recType = fieldType->getAs<RecordType>()) { 5374 size_t oldEnd = IvarsInfo.size(); 5375 5376 visitRecord(recType, fieldOffset); 5377 5378 // If we have an array, replicate the first entry's layout information. 5379 auto numEltEntries = IvarsInfo.size() - oldEnd; 5380 if (numElts != 1 && numEltEntries != 0) { 5381 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5382 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5383 // Copy the last numEltEntries onto the end of the array, adjusting 5384 // each for the element size. 5385 for (size_t i = 0; i != numEltEntries; ++i) { 5386 auto firstEntry = IvarsInfo[oldEnd + i]; 5387 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5388 firstEntry.SizeInWords)); 5389 } 5390 } 5391 } 5392 5393 return; 5394 } 5395 5396 // Classify the element type. 5397 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5398 5399 // If it matches what we're looking for, add an entry. 5400 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5401 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5402 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5403 == CGM.getPointerSize()); 5404 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5405 } 5406 } 5407 5408 /// buildBitmap - This routine does the horsework of taking the offsets of 5409 /// strong/weak references and creating a bitmap. The bitmap is also 5410 /// returned in the given buffer, suitable for being passed to \c dump(). 5411 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5412 llvm::SmallVectorImpl<unsigned char> &buffer) { 5413 // The bitmap is a series of skip/scan instructions, aligned to word 5414 // boundaries. The skip is performed first. 5415 const unsigned char MaxNibble = 0xF; 5416 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5417 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5418 5419 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5420 5421 // Sort the ivar info on byte position in case we encounterred a 5422 // union nested in the ivar list. 5423 if (IsDisordered) { 5424 // This isn't a stable sort, but our algorithm should handle it fine. 5425 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5426 } else { 5427 assert(llvm::is_sorted(IvarsInfo)); 5428 } 5429 assert(IvarsInfo.back().Offset < InstanceEnd); 5430 5431 assert(buffer.empty()); 5432 5433 // Skip the next N words. 5434 auto skip = [&](unsigned numWords) { 5435 assert(numWords > 0); 5436 5437 // Try to merge into the previous byte. Since scans happen second, we 5438 // can't do this if it includes a scan. 5439 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5440 unsigned lastSkip = buffer.back() >> SkipShift; 5441 if (lastSkip < MaxNibble) { 5442 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5443 numWords -= claimed; 5444 lastSkip += claimed; 5445 buffer.back() = (lastSkip << SkipShift); 5446 } 5447 } 5448 5449 while (numWords >= MaxNibble) { 5450 buffer.push_back(MaxNibble << SkipShift); 5451 numWords -= MaxNibble; 5452 } 5453 if (numWords) { 5454 buffer.push_back(numWords << SkipShift); 5455 } 5456 }; 5457 5458 // Scan the next N words. 5459 auto scan = [&](unsigned numWords) { 5460 assert(numWords > 0); 5461 5462 // Try to merge into the previous byte. Since scans happen second, we can 5463 // do this even if it includes a skip. 5464 if (!buffer.empty()) { 5465 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5466 if (lastScan < MaxNibble) { 5467 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5468 numWords -= claimed; 5469 lastScan += claimed; 5470 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5471 } 5472 } 5473 5474 while (numWords >= MaxNibble) { 5475 buffer.push_back(MaxNibble << ScanShift); 5476 numWords -= MaxNibble; 5477 } 5478 if (numWords) { 5479 buffer.push_back(numWords << ScanShift); 5480 } 5481 }; 5482 5483 // One past the end of the last scan. 5484 unsigned endOfLastScanInWords = 0; 5485 const CharUnits WordSize = CGM.getPointerSize(); 5486 5487 // Consider all the scan requests. 5488 for (auto &request : IvarsInfo) { 5489 CharUnits beginOfScan = request.Offset - InstanceBegin; 5490 5491 // Ignore scan requests that don't start at an even multiple of the 5492 // word size. We can't encode them. 5493 if ((beginOfScan % WordSize) != 0) continue; 5494 5495 // Ignore scan requests that start before the instance start. 5496 // This assumes that scans never span that boundary. The boundary 5497 // isn't the true start of the ivars, because in the fragile-ARC case 5498 // it's rounded up to word alignment, but the test above should leave 5499 // us ignoring that possibility. 5500 if (beginOfScan.isNegative()) { 5501 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5502 continue; 5503 } 5504 5505 unsigned beginOfScanInWords = beginOfScan / WordSize; 5506 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5507 5508 // If the scan starts some number of words after the last one ended, 5509 // skip forward. 5510 if (beginOfScanInWords > endOfLastScanInWords) { 5511 skip(beginOfScanInWords - endOfLastScanInWords); 5512 5513 // Otherwise, start scanning where the last left off. 5514 } else { 5515 beginOfScanInWords = endOfLastScanInWords; 5516 5517 // If that leaves us with nothing to scan, ignore this request. 5518 if (beginOfScanInWords >= endOfScanInWords) continue; 5519 } 5520 5521 // Scan to the end of the request. 5522 assert(beginOfScanInWords < endOfScanInWords); 5523 scan(endOfScanInWords - beginOfScanInWords); 5524 endOfLastScanInWords = endOfScanInWords; 5525 } 5526 5527 if (buffer.empty()) 5528 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5529 5530 // For GC layouts, emit a skip to the end of the allocation so that we 5531 // have precise information about the entire thing. This isn't useful 5532 // or necessary for the ARC-style layout strings. 5533 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5534 unsigned lastOffsetInWords = 5535 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5536 if (lastOffsetInWords > endOfLastScanInWords) { 5537 skip(lastOffsetInWords - endOfLastScanInWords); 5538 } 5539 } 5540 5541 // Null terminate the string. 5542 buffer.push_back(0); 5543 5544 auto *Entry = CGObjC.CreateCStringLiteral( 5545 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5546 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5547 } 5548 5549 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5550 /// implementation for the __strong or __weak case. 5551 /// The layout map displays which words in ivar list must be skipped 5552 /// and which must be scanned by GC (see below). String is built of bytes. 5553 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5554 /// of words to skip and right nibble is count of words to scan. So, each 5555 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5556 /// represented by a 0x00 byte which also ends the string. 5557 /// 1. when ForStrongLayout is true, following ivars are scanned: 5558 /// - id, Class 5559 /// - object * 5560 /// - __strong anything 5561 /// 5562 /// 2. When ForStrongLayout is false, following ivars are scanned: 5563 /// - __weak anything 5564 /// 5565 llvm::Constant * 5566 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5567 CharUnits beginOffset, CharUnits endOffset, 5568 bool ForStrongLayout, bool HasMRCWeakIvars) { 5569 // If this is MRC, and we're either building a strong layout or there 5570 // are no weak ivars, bail out early. 5571 llvm::Type *PtrTy = CGM.Int8PtrTy; 5572 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5573 !CGM.getLangOpts().ObjCAutoRefCount && 5574 (ForStrongLayout || !HasMRCWeakIvars)) 5575 return llvm::Constant::getNullValue(PtrTy); 5576 5577 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5578 SmallVector<const ObjCIvarDecl*, 32> ivars; 5579 5580 // GC layout strings include the complete object layout, possibly 5581 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5582 // up. 5583 // 5584 // ARC layout strings only include the class's ivars. In non-fragile 5585 // runtimes, that means starting at InstanceStart, rounded up to word 5586 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5587 // starting at the offset of the first ivar, rounded up to word alignment. 5588 // 5589 // MRC weak layout strings follow the ARC style. 5590 CharUnits baseOffset; 5591 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5592 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5593 IVD; IVD = IVD->getNextIvar()) 5594 ivars.push_back(IVD); 5595 5596 if (isNonFragileABI()) { 5597 baseOffset = beginOffset; // InstanceStart 5598 } else if (!ivars.empty()) { 5599 baseOffset = 5600 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5601 } else { 5602 baseOffset = CharUnits::Zero(); 5603 } 5604 5605 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5606 } 5607 else { 5608 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5609 5610 baseOffset = CharUnits::Zero(); 5611 } 5612 5613 if (ivars.empty()) 5614 return llvm::Constant::getNullValue(PtrTy); 5615 5616 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5617 5618 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5619 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5620 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5621 }); 5622 5623 if (!builder.hasBitmapData()) 5624 return llvm::Constant::getNullValue(PtrTy); 5625 5626 llvm::SmallVector<unsigned char, 4> buffer; 5627 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5628 5629 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5630 printf("\n%s ivar layout for class '%s': ", 5631 ForStrongLayout ? "strong" : "weak", 5632 OMD->getClassInterface()->getName().str().c_str()); 5633 builder.dump(buffer); 5634 } 5635 return C; 5636 } 5637 5638 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5639 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5640 // FIXME: Avoid std::string in "Sel.getAsString()" 5641 if (!Entry) 5642 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5643 return getConstantGEP(VMContext, Entry, 0, 0); 5644 } 5645 5646 // FIXME: Merge into a single cstring creation function. 5647 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5648 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5649 } 5650 5651 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5652 std::string TypeStr; 5653 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5654 5655 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5656 if (!Entry) 5657 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5658 return getConstantGEP(VMContext, Entry, 0, 0); 5659 } 5660 5661 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5662 bool Extended) { 5663 std::string TypeStr = 5664 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5665 5666 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5667 if (!Entry) 5668 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5669 return getConstantGEP(VMContext, Entry, 0, 0); 5670 } 5671 5672 // FIXME: Merge into a single cstring creation function. 5673 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5674 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5675 if (!Entry) 5676 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5677 return getConstantGEP(VMContext, Entry, 0, 0); 5678 } 5679 5680 // FIXME: Merge into a single cstring creation function. 5681 // FIXME: This Decl should be more precise. 5682 llvm::Constant * 5683 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5684 const Decl *Container) { 5685 std::string TypeStr = 5686 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5687 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5688 } 5689 5690 void CGObjCMac::FinishModule() { 5691 EmitModuleInfo(); 5692 5693 // Emit the dummy bodies for any protocols which were referenced but 5694 // never defined. 5695 for (auto &entry : Protocols) { 5696 llvm::GlobalVariable *global = entry.second; 5697 if (global->hasInitializer()) 5698 continue; 5699 5700 ConstantInitBuilder builder(CGM); 5701 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5702 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5703 values.add(GetClassName(entry.first->getName())); 5704 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5705 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5706 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5707 values.finishAndSetAsInitializer(global); 5708 CGM.addCompilerUsedGlobal(global); 5709 } 5710 5711 // Add assembler directives to add lazy undefined symbol references 5712 // for classes which are referenced but not defined. This is 5713 // important for correct linker interaction. 5714 // 5715 // FIXME: It would be nice if we had an LLVM construct for this. 5716 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5717 CGM.getTriple().isOSBinFormatMachO()) { 5718 SmallString<256> Asm; 5719 Asm += CGM.getModule().getModuleInlineAsm(); 5720 if (!Asm.empty() && Asm.back() != '\n') 5721 Asm += '\n'; 5722 5723 llvm::raw_svector_ostream OS(Asm); 5724 for (const auto *Sym : DefinedSymbols) 5725 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5726 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5727 for (const auto *Sym : LazySymbols) 5728 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5729 for (const auto &Category : DefinedCategoryNames) 5730 OS << "\t.objc_category_name_" << Category << "=0\n" 5731 << "\t.globl .objc_category_name_" << Category << "\n"; 5732 5733 CGM.getModule().setModuleInlineAsm(OS.str()); 5734 } 5735 } 5736 5737 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5738 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5739 ObjCEmptyVtableVar(nullptr) { 5740 ObjCABI = 2; 5741 } 5742 5743 /* *** */ 5744 5745 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5746 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5747 { 5748 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5749 ASTContext &Ctx = CGM.getContext(); 5750 unsigned ProgramAS = CGM.getDataLayout().getProgramAddressSpace(); 5751 5752 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5753 IntTy = CGM.IntTy; 5754 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5755 Int8PtrTy = CGM.Int8PtrTy; 5756 Int8PtrProgramASTy = llvm::PointerType::get(CGM.Int8Ty, ProgramAS); 5757 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5758 5759 // arm64 targets use "int" ivar offset variables. All others, 5760 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5761 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5762 IvarOffsetVarTy = IntTy; 5763 else 5764 IvarOffsetVarTy = LongTy; 5765 5766 ObjectPtrTy = 5767 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5768 PtrObjectPtrTy = 5769 llvm::PointerType::getUnqual(ObjectPtrTy); 5770 SelectorPtrTy = 5771 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5772 5773 // I'm not sure I like this. The implicit coordination is a bit 5774 // gross. We should solve this in a reasonable fashion because this 5775 // is a pretty common task (match some runtime data structure with 5776 // an LLVM data structure). 5777 5778 // FIXME: This is leaked. 5779 // FIXME: Merge with rewriter code? 5780 5781 // struct _objc_super { 5782 // id self; 5783 // Class cls; 5784 // } 5785 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5786 Ctx.getTranslationUnitDecl(), 5787 SourceLocation(), SourceLocation(), 5788 &Ctx.Idents.get("_objc_super")); 5789 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5790 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5791 false, ICIS_NoInit)); 5792 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5793 nullptr, Ctx.getObjCClassType(), nullptr, 5794 nullptr, false, ICIS_NoInit)); 5795 RD->completeDefinition(); 5796 5797 SuperCTy = Ctx.getTagDeclType(RD); 5798 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5799 5800 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5801 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5802 5803 // struct _prop_t { 5804 // char *name; 5805 // char *attributes; 5806 // } 5807 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5808 5809 // struct _prop_list_t { 5810 // uint32_t entsize; // sizeof(struct _prop_t) 5811 // uint32_t count_of_properties; 5812 // struct _prop_t prop_list[count_of_properties]; 5813 // } 5814 PropertyListTy = llvm::StructType::create( 5815 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5816 // struct _prop_list_t * 5817 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5818 5819 // struct _objc_method { 5820 // SEL _cmd; 5821 // char *method_type; 5822 // char *_imp; 5823 // } 5824 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5825 Int8PtrTy, Int8PtrProgramASTy); 5826 5827 // struct _objc_cache * 5828 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5829 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5830 } 5831 5832 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5833 : ObjCCommonTypesHelper(cgm) { 5834 // struct _objc_method_description { 5835 // SEL name; 5836 // char *types; 5837 // } 5838 MethodDescriptionTy = llvm::StructType::create( 5839 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5840 5841 // struct _objc_method_description_list { 5842 // int count; 5843 // struct _objc_method_description[1]; 5844 // } 5845 MethodDescriptionListTy = 5846 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5847 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5848 5849 // struct _objc_method_description_list * 5850 MethodDescriptionListPtrTy = 5851 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5852 5853 // Protocol description structures 5854 5855 // struct _objc_protocol_extension { 5856 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5857 // struct _objc_method_description_list *optional_instance_methods; 5858 // struct _objc_method_description_list *optional_class_methods; 5859 // struct _objc_property_list *instance_properties; 5860 // const char ** extendedMethodTypes; 5861 // struct _objc_property_list *class_properties; 5862 // } 5863 ProtocolExtensionTy = llvm::StructType::create( 5864 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5865 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5866 PropertyListPtrTy); 5867 5868 // struct _objc_protocol_extension * 5869 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5870 5871 // Handle recursive construction of Protocol and ProtocolList types 5872 5873 ProtocolTy = 5874 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5875 5876 ProtocolListTy = 5877 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5878 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5879 llvm::ArrayType::get(ProtocolTy, 0)); 5880 5881 // struct _objc_protocol { 5882 // struct _objc_protocol_extension *isa; 5883 // char *protocol_name; 5884 // struct _objc_protocol **_objc_protocol_list; 5885 // struct _objc_method_description_list *instance_methods; 5886 // struct _objc_method_description_list *class_methods; 5887 // } 5888 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5889 llvm::PointerType::getUnqual(ProtocolListTy), 5890 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5891 5892 // struct _objc_protocol_list * 5893 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5894 5895 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5896 5897 // Class description structures 5898 5899 // struct _objc_ivar { 5900 // char *ivar_name; 5901 // char *ivar_type; 5902 // int ivar_offset; 5903 // } 5904 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5905 IntTy); 5906 5907 // struct _objc_ivar_list * 5908 IvarListTy = 5909 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5910 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5911 5912 // struct _objc_method_list * 5913 MethodListTy = 5914 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5915 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5916 5917 // struct _objc_class_extension * 5918 ClassExtensionTy = llvm::StructType::create( 5919 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5920 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5921 5922 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5923 5924 // struct _objc_class { 5925 // Class isa; 5926 // Class super_class; 5927 // char *name; 5928 // long version; 5929 // long info; 5930 // long instance_size; 5931 // struct _objc_ivar_list *ivars; 5932 // struct _objc_method_list *methods; 5933 // struct _objc_cache *cache; 5934 // struct _objc_protocol_list *protocols; 5935 // char *ivar_layout; 5936 // struct _objc_class_ext *ext; 5937 // }; 5938 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5939 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5940 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5941 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5942 5943 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5944 5945 // struct _objc_category { 5946 // char *category_name; 5947 // char *class_name; 5948 // struct _objc_method_list *instance_method; 5949 // struct _objc_method_list *class_method; 5950 // struct _objc_protocol_list *protocols; 5951 // uint32_t size; // sizeof(struct _objc_category) 5952 // struct _objc_property_list *instance_properties;// category's @property 5953 // struct _objc_property_list *class_properties; 5954 // } 5955 CategoryTy = llvm::StructType::create( 5956 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5957 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5958 PropertyListPtrTy); 5959 5960 // Global metadata structures 5961 5962 // struct _objc_symtab { 5963 // long sel_ref_cnt; 5964 // SEL *refs; 5965 // short cls_def_cnt; 5966 // short cat_def_cnt; 5967 // char *defs[cls_def_cnt + cat_def_cnt]; 5968 // } 5969 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5970 SelectorPtrTy, ShortTy, ShortTy, 5971 llvm::ArrayType::get(Int8PtrTy, 0)); 5972 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5973 5974 // struct _objc_module { 5975 // long version; 5976 // long size; // sizeof(struct _objc_module) 5977 // char *name; 5978 // struct _objc_symtab* symtab; 5979 // } 5980 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5981 Int8PtrTy, SymtabPtrTy); 5982 5983 // FIXME: This is the size of the setjmp buffer and should be target 5984 // specific. 18 is what's used on 32-bit X86. 5985 uint64_t SetJmpBufferSize = 18; 5986 5987 // Exceptions 5988 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5989 5990 ExceptionDataTy = llvm::StructType::create( 5991 "struct._objc_exception_data", 5992 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 5993 } 5994 5995 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5996 : ObjCCommonTypesHelper(cgm) { 5997 // struct _method_list_t { 5998 // uint32_t entsize; // sizeof(struct _objc_method) 5999 // uint32_t method_count; 6000 // struct _objc_method method_list[method_count]; 6001 // } 6002 MethodListnfABITy = 6003 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 6004 llvm::ArrayType::get(MethodTy, 0)); 6005 // struct method_list_t * 6006 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 6007 6008 // struct _protocol_t { 6009 // id isa; // NULL 6010 // const char * const protocol_name; 6011 // const struct _protocol_list_t * protocol_list; // super protocols 6012 // const struct method_list_t * const instance_methods; 6013 // const struct method_list_t * const class_methods; 6014 // const struct method_list_t *optionalInstanceMethods; 6015 // const struct method_list_t *optionalClassMethods; 6016 // const struct _prop_list_t * properties; 6017 // const uint32_t size; // sizeof(struct _protocol_t) 6018 // const uint32_t flags; // = 0 6019 // const char ** extendedMethodTypes; 6020 // const char *demangledName; 6021 // const struct _prop_list_t * class_properties; 6022 // } 6023 6024 // Holder for struct _protocol_list_t * 6025 ProtocolListnfABITy = 6026 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6027 6028 ProtocolnfABITy = llvm::StructType::create( 6029 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6030 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6031 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6032 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6033 PropertyListPtrTy); 6034 6035 // struct _protocol_t* 6036 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6037 6038 // struct _protocol_list_t { 6039 // long protocol_count; // Note, this is 32/64 bit 6040 // struct _protocol_t *[protocol_count]; 6041 // } 6042 ProtocolListnfABITy->setBody(LongTy, 6043 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6044 6045 // struct _objc_protocol_list* 6046 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6047 6048 // struct _ivar_t { 6049 // unsigned [long] int *offset; // pointer to ivar offset location 6050 // char *name; 6051 // char *type; 6052 // uint32_t alignment; 6053 // uint32_t size; 6054 // } 6055 IvarnfABITy = llvm::StructType::create( 6056 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6057 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6058 6059 // struct _ivar_list_t { 6060 // uint32 entsize; // sizeof(struct _ivar_t) 6061 // uint32 count; 6062 // struct _iver_t list[count]; 6063 // } 6064 IvarListnfABITy = 6065 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6066 llvm::ArrayType::get(IvarnfABITy, 0)); 6067 6068 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6069 6070 // struct _class_ro_t { 6071 // uint32_t const flags; 6072 // uint32_t const instanceStart; 6073 // uint32_t const instanceSize; 6074 // uint32_t const reserved; // only when building for 64bit targets 6075 // const uint8_t * const ivarLayout; 6076 // const char *const name; 6077 // const struct _method_list_t * const baseMethods; 6078 // const struct _objc_protocol_list *const baseProtocols; 6079 // const struct _ivar_list_t *const ivars; 6080 // const uint8_t * const weakIvarLayout; 6081 // const struct _prop_list_t * const properties; 6082 // } 6083 6084 // FIXME. Add 'reserved' field in 64bit abi mode! 6085 ClassRonfABITy = llvm::StructType::create( 6086 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6087 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6088 Int8PtrTy, PropertyListPtrTy); 6089 6090 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6091 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6092 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6093 ->getPointerTo(); 6094 6095 // struct _class_t { 6096 // struct _class_t *isa; 6097 // struct _class_t * const superclass; 6098 // void *cache; 6099 // IMP *vtable; 6100 // struct class_ro_t *ro; 6101 // } 6102 6103 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6104 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6105 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6106 llvm::PointerType::getUnqual(ImpnfABITy), 6107 llvm::PointerType::getUnqual(ClassRonfABITy)); 6108 6109 // LLVM for struct _class_t * 6110 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6111 6112 // struct _category_t { 6113 // const char * const name; 6114 // struct _class_t *const cls; 6115 // const struct _method_list_t * const instance_methods; 6116 // const struct _method_list_t * const class_methods; 6117 // const struct _protocol_list_t * const protocols; 6118 // const struct _prop_list_t * const properties; 6119 // const struct _prop_list_t * const class_properties; 6120 // const uint32_t size; 6121 // } 6122 CategorynfABITy = llvm::StructType::create( 6123 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6124 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6125 PropertyListPtrTy, IntTy); 6126 6127 // New types for nonfragile abi messaging. 6128 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6129 ASTContext &Ctx = CGM.getContext(); 6130 6131 // MessageRefTy - LLVM for: 6132 // struct _message_ref_t { 6133 // IMP messenger; 6134 // SEL name; 6135 // }; 6136 6137 // First the clang type for struct _message_ref_t 6138 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6139 Ctx.getTranslationUnitDecl(), 6140 SourceLocation(), SourceLocation(), 6141 &Ctx.Idents.get("_message_ref_t")); 6142 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6143 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6144 ICIS_NoInit)); 6145 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6146 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6147 false, ICIS_NoInit)); 6148 RD->completeDefinition(); 6149 6150 MessageRefCTy = Ctx.getTagDeclType(RD); 6151 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6152 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6153 6154 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6155 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6156 6157 // SuperMessageRefTy - LLVM for: 6158 // struct _super_message_ref_t { 6159 // SUPER_IMP messenger; 6160 // SEL name; 6161 // }; 6162 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6163 ImpnfABITy, SelectorPtrTy); 6164 6165 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6166 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6167 6168 6169 // struct objc_typeinfo { 6170 // const void** vtable; // objc_ehtype_vtable + 2 6171 // const char* name; // c++ typeinfo string 6172 // Class cls; 6173 // }; 6174 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6175 llvm::PointerType::getUnqual(Int8PtrTy), 6176 Int8PtrTy, ClassnfABIPtrTy); 6177 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6178 } 6179 6180 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6181 FinishNonFragileABIModule(); 6182 6183 return nullptr; 6184 } 6185 6186 void CGObjCNonFragileABIMac::AddModuleClassList( 6187 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6188 StringRef SectionName) { 6189 unsigned NumClasses = Container.size(); 6190 6191 if (!NumClasses) 6192 return; 6193 6194 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6195 for (unsigned i=0; i<NumClasses; i++) 6196 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6197 ObjCTypes.Int8PtrTy); 6198 llvm::Constant *Init = 6199 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6200 Symbols.size()), 6201 Symbols); 6202 6203 // Section name is obtained by calling GetSectionName, which returns 6204 // sections in the __DATA segment on MachO. 6205 assert((!CGM.getTriple().isOSBinFormatMachO() || 6206 SectionName.startswith("__DATA")) && 6207 "SectionName expected to start with __DATA on MachO"); 6208 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 6209 CGM.getModule(), Init->getType(), false, 6210 llvm::GlobalValue::PrivateLinkage, Init, SymbolName); 6211 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(Init->getType())); 6212 GV->setSection(SectionName); 6213 CGM.addCompilerUsedGlobal(GV); 6214 } 6215 6216 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6217 // nonfragile abi has no module definition. 6218 6219 // Build list of all implemented class addresses in array 6220 // L_OBJC_LABEL_CLASS_$. 6221 6222 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6223 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6224 assert(ID); 6225 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6226 // We are implementing a weak imported interface. Give it external linkage 6227 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6228 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6229 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6230 } 6231 } 6232 6233 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6234 GetSectionName("__objc_classlist", 6235 "regular,no_dead_strip")); 6236 6237 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6238 GetSectionName("__objc_nlclslist", 6239 "regular,no_dead_strip")); 6240 6241 // Build list of all implemented category addresses in array 6242 // L_OBJC_LABEL_CATEGORY_$. 6243 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6244 GetSectionName("__objc_catlist", 6245 "regular,no_dead_strip")); 6246 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6247 GetSectionName("__objc_catlist2", 6248 "regular,no_dead_strip")); 6249 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6250 GetSectionName("__objc_nlcatlist", 6251 "regular,no_dead_strip")); 6252 6253 EmitImageInfo(); 6254 } 6255 6256 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6257 /// VTableDispatchMethods; false otherwise. What this means is that 6258 /// except for the 19 selectors in the list, we generate 32bit-style 6259 /// message dispatch call for all the rest. 6260 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6261 // At various points we've experimented with using vtable-based 6262 // dispatch for all methods. 6263 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6264 case CodeGenOptions::Legacy: 6265 return false; 6266 case CodeGenOptions::NonLegacy: 6267 return true; 6268 case CodeGenOptions::Mixed: 6269 break; 6270 } 6271 6272 // If so, see whether this selector is in the white-list of things which must 6273 // use the new dispatch convention. We lazily build a dense set for this. 6274 if (VTableDispatchMethods.empty()) { 6275 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6276 VTableDispatchMethods.insert(GetNullarySelector("class")); 6277 VTableDispatchMethods.insert(GetNullarySelector("self")); 6278 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6279 VTableDispatchMethods.insert(GetNullarySelector("length")); 6280 VTableDispatchMethods.insert(GetNullarySelector("count")); 6281 6282 // These are vtable-based if GC is disabled. 6283 // Optimistically use vtable dispatch for hybrid compiles. 6284 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6285 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6286 VTableDispatchMethods.insert(GetNullarySelector("release")); 6287 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6288 } 6289 6290 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6291 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6292 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6293 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6294 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6295 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6296 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6297 6298 // These are vtable-based if GC is enabled. 6299 // Optimistically use vtable dispatch for hybrid compiles. 6300 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6301 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6302 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6303 6304 // "countByEnumeratingWithState:objects:count" 6305 IdentifierInfo *KeyIdents[] = { 6306 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6307 &CGM.getContext().Idents.get("objects"), 6308 &CGM.getContext().Idents.get("count") 6309 }; 6310 VTableDispatchMethods.insert( 6311 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6312 } 6313 } 6314 6315 return VTableDispatchMethods.count(Sel); 6316 } 6317 6318 /// BuildClassRoTInitializer - generate meta-data for: 6319 /// struct _class_ro_t { 6320 /// uint32_t const flags; 6321 /// uint32_t const instanceStart; 6322 /// uint32_t const instanceSize; 6323 /// uint32_t const reserved; // only when building for 64bit targets 6324 /// const uint8_t * const ivarLayout; 6325 /// const char *const name; 6326 /// const struct _method_list_t * const baseMethods; 6327 /// const struct _protocol_list_t *const baseProtocols; 6328 /// const struct _ivar_list_t *const ivars; 6329 /// const uint8_t * const weakIvarLayout; 6330 /// const struct _prop_list_t * const properties; 6331 /// } 6332 /// 6333 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6334 unsigned flags, 6335 unsigned InstanceStart, 6336 unsigned InstanceSize, 6337 const ObjCImplementationDecl *ID) { 6338 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString()); 6339 6340 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6341 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6342 6343 bool hasMRCWeak = false; 6344 if (CGM.getLangOpts().ObjCAutoRefCount) 6345 flags |= NonFragileABI_Class_CompiledByARC; 6346 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6347 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6348 6349 ConstantInitBuilder builder(CGM); 6350 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6351 6352 values.addInt(ObjCTypes.IntTy, flags); 6353 values.addInt(ObjCTypes.IntTy, InstanceStart); 6354 values.addInt(ObjCTypes.IntTy, InstanceSize); 6355 values.add((flags & NonFragileABI_Class_Meta) 6356 ? GetIvarLayoutName(nullptr, ObjCTypes) 6357 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6358 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6359 6360 // const struct _method_list_t * const baseMethods; 6361 SmallVector<const ObjCMethodDecl*, 16> methods; 6362 if (flags & NonFragileABI_Class_Meta) { 6363 for (const auto *MD : ID->class_methods()) 6364 if (!MD->isDirectMethod()) 6365 methods.push_back(MD); 6366 } else { 6367 for (const auto *MD : ID->instance_methods()) 6368 if (!MD->isDirectMethod()) 6369 methods.push_back(MD); 6370 } 6371 6372 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6373 (flags & NonFragileABI_Class_Meta) 6374 ? MethodListType::ClassMethods 6375 : MethodListType::InstanceMethods, 6376 methods)); 6377 6378 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6379 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6380 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6381 + OID->getObjCRuntimeNameAsString(), 6382 OID->all_referenced_protocol_begin(), 6383 OID->all_referenced_protocol_end())); 6384 6385 if (flags & NonFragileABI_Class_Meta) { 6386 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6387 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6388 values.add(EmitPropertyList( 6389 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6390 ID, ID->getClassInterface(), ObjCTypes, true)); 6391 } else { 6392 values.add(EmitIvarList(ID)); 6393 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6394 values.add(EmitPropertyList( 6395 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6396 ID, ID->getClassInterface(), ObjCTypes, false)); 6397 } 6398 6399 llvm::SmallString<64> roLabel; 6400 llvm::raw_svector_ostream(roLabel) 6401 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6402 : "_OBJC_CLASS_RO_$_") 6403 << ClassName; 6404 6405 return finishAndCreateGlobal(values, roLabel, CGM); 6406 } 6407 6408 /// Build the metaclass object for a class. 6409 /// 6410 /// struct _class_t { 6411 /// struct _class_t *isa; 6412 /// struct _class_t * const superclass; 6413 /// void *cache; 6414 /// IMP *vtable; 6415 /// struct class_ro_t *ro; 6416 /// } 6417 /// 6418 llvm::GlobalVariable * 6419 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6420 bool isMetaclass, 6421 llvm::Constant *IsAGV, 6422 llvm::Constant *SuperClassGV, 6423 llvm::Constant *ClassRoGV, 6424 bool HiddenVisibility) { 6425 ConstantInitBuilder builder(CGM); 6426 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6427 values.add(IsAGV); 6428 if (SuperClassGV) { 6429 values.add(SuperClassGV); 6430 } else { 6431 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6432 } 6433 values.add(ObjCEmptyCacheVar); 6434 values.add(ObjCEmptyVtableVar); 6435 values.add(ClassRoGV); 6436 6437 llvm::GlobalVariable *GV = 6438 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6439 values.finishAndSetAsInitializer(GV); 6440 6441 if (CGM.getTriple().isOSBinFormatMachO()) 6442 GV->setSection("__DATA, __objc_data"); 6443 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(ObjCTypes.ClassnfABITy)); 6444 if (!CGM.getTriple().isOSBinFormatCOFF()) 6445 if (HiddenVisibility) 6446 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6447 return GV; 6448 } 6449 6450 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6451 const ObjCImplDecl *OD) const { 6452 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6453 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6454 OD->hasAttr<ObjCNonLazyClassAttr>(); 6455 } 6456 6457 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6458 uint32_t &InstanceStart, 6459 uint32_t &InstanceSize) { 6460 const ASTRecordLayout &RL = 6461 CGM.getContext().getASTObjCImplementationLayout(OID); 6462 6463 // InstanceSize is really instance end. 6464 InstanceSize = RL.getDataSize().getQuantity(); 6465 6466 // If there are no fields, the start is the same as the end. 6467 if (!RL.getFieldCount()) 6468 InstanceStart = InstanceSize; 6469 else 6470 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6471 } 6472 6473 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6474 StringRef Name) { 6475 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6476 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6477 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6478 6479 const VarDecl *VD = nullptr; 6480 for (const auto *Result : DC->lookup(&II)) 6481 if ((VD = dyn_cast<VarDecl>(Result))) 6482 break; 6483 6484 if (!VD) 6485 return llvm::GlobalValue::DLLImportStorageClass; 6486 if (VD->hasAttr<DLLExportAttr>()) 6487 return llvm::GlobalValue::DLLExportStorageClass; 6488 if (VD->hasAttr<DLLImportAttr>()) 6489 return llvm::GlobalValue::DLLImportStorageClass; 6490 return llvm::GlobalValue::DefaultStorageClass; 6491 } 6492 6493 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6494 if (!ObjCEmptyCacheVar) { 6495 ObjCEmptyCacheVar = 6496 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6497 llvm::GlobalValue::ExternalLinkage, nullptr, 6498 "_objc_empty_cache"); 6499 if (CGM.getTriple().isOSBinFormatCOFF()) 6500 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6501 6502 // Only OS X with deployment version <10.9 use the empty vtable symbol 6503 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6504 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6505 ObjCEmptyVtableVar = 6506 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6507 llvm::GlobalValue::ExternalLinkage, nullptr, 6508 "_objc_empty_vtable"); 6509 else 6510 ObjCEmptyVtableVar = 6511 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6512 } 6513 6514 // FIXME: Is this correct (that meta class size is never computed)? 6515 uint32_t InstanceStart = 6516 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6517 uint32_t InstanceSize = InstanceStart; 6518 uint32_t flags = NonFragileABI_Class_Meta; 6519 6520 llvm::Constant *SuperClassGV, *IsAGV; 6521 6522 const auto *CI = ID->getClassInterface(); 6523 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6524 6525 // Build the flags for the metaclass. 6526 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6527 ? !CI->hasAttr<DLLExportAttr>() 6528 : CI->getVisibility() == HiddenVisibility; 6529 if (classIsHidden) 6530 flags |= NonFragileABI_Class_Hidden; 6531 6532 // FIXME: why is this flag set on the metaclass? 6533 // ObjC metaclasses have no fields and don't really get constructed. 6534 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6535 flags |= NonFragileABI_Class_HasCXXStructors; 6536 if (!ID->hasNonZeroConstructors()) 6537 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6538 } 6539 6540 if (!CI->getSuperClass()) { 6541 // class is root 6542 flags |= NonFragileABI_Class_Root; 6543 6544 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6545 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6546 } else { 6547 // Has a root. Current class is not a root. 6548 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6549 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6550 Root = Super; 6551 6552 const auto *Super = CI->getSuperClass(); 6553 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6554 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6555 } 6556 6557 llvm::GlobalVariable *CLASS_RO_GV = 6558 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6559 6560 llvm::GlobalVariable *MetaTClass = 6561 BuildClassObject(CI, /*metaclass*/ true, 6562 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6563 CGM.setGVProperties(MetaTClass, CI); 6564 DefinedMetaClasses.push_back(MetaTClass); 6565 6566 // Metadata for the class 6567 flags = 0; 6568 if (classIsHidden) 6569 flags |= NonFragileABI_Class_Hidden; 6570 6571 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6572 flags |= NonFragileABI_Class_HasCXXStructors; 6573 6574 // Set a flag to enable a runtime optimization when a class has 6575 // fields that require destruction but which don't require 6576 // anything except zero-initialization during construction. This 6577 // is most notably true of __strong and __weak types, but you can 6578 // also imagine there being C++ types with non-trivial default 6579 // constructors that merely set all fields to null. 6580 if (!ID->hasNonZeroConstructors()) 6581 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6582 } 6583 6584 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6585 flags |= NonFragileABI_Class_Exception; 6586 6587 if (!CI->getSuperClass()) { 6588 flags |= NonFragileABI_Class_Root; 6589 SuperClassGV = nullptr; 6590 } else { 6591 // Has a root. Current class is not a root. 6592 const auto *Super = CI->getSuperClass(); 6593 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6594 } 6595 6596 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6597 CLASS_RO_GV = 6598 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6599 6600 llvm::GlobalVariable *ClassMD = 6601 BuildClassObject(CI, /*metaclass*/ false, 6602 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6603 CGM.setGVProperties(ClassMD, CI); 6604 DefinedClasses.push_back(ClassMD); 6605 ImplementedClasses.push_back(CI); 6606 6607 // Determine if this class is also "non-lazy". 6608 if (ImplementationIsNonLazy(ID)) 6609 DefinedNonLazyClasses.push_back(ClassMD); 6610 6611 // Force the definition of the EHType if necessary. 6612 if (flags & NonFragileABI_Class_Exception) 6613 (void) GetInterfaceEHType(CI, ForDefinition); 6614 // Make sure method definition entries are all clear for next implementation. 6615 MethodDefinitions.clear(); 6616 } 6617 6618 /// GenerateProtocolRef - This routine is called to generate code for 6619 /// a protocol reference expression; as in: 6620 /// @code 6621 /// @protocol(Proto1); 6622 /// @endcode 6623 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6624 /// which will hold address of the protocol meta-data. 6625 /// 6626 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6627 const ObjCProtocolDecl *PD) { 6628 6629 // This routine is called for @protocol only. So, we must build definition 6630 // of protocol's meta-data (not a reference to it!) 6631 assert(!PD->isNonRuntimeProtocol() && 6632 "attempting to get a protocol ref to a static protocol."); 6633 llvm::Constant *Init = 6634 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6635 ObjCTypes.getExternalProtocolPtrTy()); 6636 6637 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6638 ProtocolName += PD->getObjCRuntimeNameAsString(); 6639 6640 CharUnits Align = CGF.getPointerAlign(); 6641 6642 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6643 if (PTGV) 6644 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6645 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6646 llvm::GlobalValue::WeakAnyLinkage, Init, 6647 ProtocolName); 6648 PTGV->setSection(GetSectionName("__objc_protorefs", 6649 "coalesced,no_dead_strip")); 6650 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6651 PTGV->setAlignment(Align.getAsAlign()); 6652 if (!CGM.getTriple().isOSBinFormatMachO()) 6653 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6654 CGM.addUsedGlobal(PTGV); 6655 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align); 6656 } 6657 6658 /// GenerateCategory - Build metadata for a category implementation. 6659 /// struct _category_t { 6660 /// const char * const name; 6661 /// struct _class_t *const cls; 6662 /// const struct _method_list_t * const instance_methods; 6663 /// const struct _method_list_t * const class_methods; 6664 /// const struct _protocol_list_t * const protocols; 6665 /// const struct _prop_list_t * const properties; 6666 /// const struct _prop_list_t * const class_properties; 6667 /// const uint32_t size; 6668 /// } 6669 /// 6670 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6671 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6672 const char *Prefix = "_OBJC_$_CATEGORY_"; 6673 6674 llvm::SmallString<64> ExtCatName(Prefix); 6675 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6676 ExtCatName += "_$_"; 6677 ExtCatName += OCD->getNameAsString(); 6678 6679 ConstantInitBuilder builder(CGM); 6680 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6681 values.add(GetClassName(OCD->getIdentifier()->getName())); 6682 // meta-class entry symbol 6683 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6684 std::string listName = 6685 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6686 6687 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6688 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6689 for (const auto *MD : OCD->methods()) { 6690 if (MD->isDirectMethod()) 6691 continue; 6692 if (MD->isInstanceMethod()) { 6693 instanceMethods.push_back(MD); 6694 } else { 6695 classMethods.push_back(MD); 6696 } 6697 } 6698 6699 auto instanceMethodList = emitMethodList( 6700 listName, MethodListType::CategoryInstanceMethods, instanceMethods); 6701 auto classMethodList = emitMethodList( 6702 listName, MethodListType::CategoryClassMethods, classMethods); 6703 values.add(instanceMethodList); 6704 values.add(classMethodList); 6705 // Keep track of whether we have actual metadata to emit. 6706 bool isEmptyCategory = 6707 instanceMethodList->isNullValue() && classMethodList->isNullValue(); 6708 6709 const ObjCCategoryDecl *Category = 6710 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6711 if (Category) { 6712 SmallString<256> ExtName; 6713 llvm::raw_svector_ostream(ExtName) 6714 << Interface->getObjCRuntimeNameAsString() << "_$_" << OCD->getName(); 6715 auto protocolList = 6716 EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" + 6717 Interface->getObjCRuntimeNameAsString() + "_$_" + 6718 Category->getName(), 6719 Category->protocol_begin(), Category->protocol_end()); 6720 auto propertyList = EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6721 OCD, Category, ObjCTypes, false); 6722 auto classPropertyList = 6723 EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), OCD, 6724 Category, ObjCTypes, true); 6725 values.add(protocolList); 6726 values.add(propertyList); 6727 values.add(classPropertyList); 6728 isEmptyCategory &= protocolList->isNullValue() && 6729 propertyList->isNullValue() && 6730 classPropertyList->isNullValue(); 6731 } else { 6732 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6733 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6734 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6735 } 6736 6737 if (isEmptyCategory) { 6738 // Empty category, don't emit any metadata. 6739 values.abandon(); 6740 MethodDefinitions.clear(); 6741 return; 6742 } 6743 6744 unsigned Size = 6745 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6746 values.addInt(ObjCTypes.IntTy, Size); 6747 6748 llvm::GlobalVariable *GCATV = 6749 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6750 CGM.addCompilerUsedGlobal(GCATV); 6751 if (Interface->hasAttr<ObjCClassStubAttr>()) 6752 DefinedStubCategories.push_back(GCATV); 6753 else 6754 DefinedCategories.push_back(GCATV); 6755 6756 // Determine if this category is also "non-lazy". 6757 if (ImplementationIsNonLazy(OCD)) 6758 DefinedNonLazyCategories.push_back(GCATV); 6759 // method definition entries must be clear for next implementation. 6760 MethodDefinitions.clear(); 6761 } 6762 6763 /// emitMethodConstant - Return a struct objc_method constant. If 6764 /// forProtocol is true, the implementation will be null; otherwise, 6765 /// the method must have a definition registered with the runtime. 6766 /// 6767 /// struct _objc_method { 6768 /// SEL _cmd; 6769 /// char *method_type; 6770 /// char *_imp; 6771 /// } 6772 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6773 const ObjCMethodDecl *MD, 6774 bool forProtocol) { 6775 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6776 method.addBitCast(GetMethodVarName(MD->getSelector()), 6777 ObjCTypes.SelectorPtrTy); 6778 method.add(GetMethodVarType(MD)); 6779 6780 if (forProtocol) { 6781 // Protocol methods have no implementation. So, this entry is always NULL. 6782 method.addNullPointer(ObjCTypes.Int8PtrProgramASTy); 6783 } else { 6784 llvm::Function *fn = GetMethodDefinition(MD); 6785 assert(fn && "no definition for method?"); 6786 method.addBitCast(fn, ObjCTypes.Int8PtrProgramASTy); 6787 } 6788 6789 method.finishAndAddTo(builder); 6790 } 6791 6792 /// Build meta-data for method declarations. 6793 /// 6794 /// struct _method_list_t { 6795 /// uint32_t entsize; // sizeof(struct _objc_method) 6796 /// uint32_t method_count; 6797 /// struct _objc_method method_list[method_count]; 6798 /// } 6799 /// 6800 llvm::Constant * 6801 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6802 ArrayRef<const ObjCMethodDecl *> methods) { 6803 // Return null for empty list. 6804 if (methods.empty()) 6805 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6806 6807 StringRef prefix; 6808 bool forProtocol; 6809 switch (kind) { 6810 case MethodListType::CategoryInstanceMethods: 6811 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6812 forProtocol = false; 6813 break; 6814 case MethodListType::CategoryClassMethods: 6815 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6816 forProtocol = false; 6817 break; 6818 case MethodListType::InstanceMethods: 6819 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6820 forProtocol = false; 6821 break; 6822 case MethodListType::ClassMethods: 6823 prefix = "_OBJC_$_CLASS_METHODS_"; 6824 forProtocol = false; 6825 break; 6826 6827 case MethodListType::ProtocolInstanceMethods: 6828 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6829 forProtocol = true; 6830 break; 6831 case MethodListType::ProtocolClassMethods: 6832 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6833 forProtocol = true; 6834 break; 6835 case MethodListType::OptionalProtocolInstanceMethods: 6836 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6837 forProtocol = true; 6838 break; 6839 case MethodListType::OptionalProtocolClassMethods: 6840 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6841 forProtocol = true; 6842 break; 6843 } 6844 6845 ConstantInitBuilder builder(CGM); 6846 auto values = builder.beginStruct(); 6847 6848 // sizeof(struct _objc_method) 6849 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6850 values.addInt(ObjCTypes.IntTy, Size); 6851 // method_count 6852 values.addInt(ObjCTypes.IntTy, methods.size()); 6853 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6854 for (auto MD : methods) 6855 emitMethodConstant(methodArray, MD, forProtocol); 6856 methodArray.finishAndAddTo(values); 6857 6858 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6859 CGM.addCompilerUsedGlobal(GV); 6860 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6861 } 6862 6863 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6864 /// the given ivar. 6865 llvm::GlobalVariable * 6866 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6867 const ObjCIvarDecl *Ivar) { 6868 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6869 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6870 Name += Container->getObjCRuntimeNameAsString(); 6871 Name += "."; 6872 Name += Ivar->getName(); 6873 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6874 if (!IvarOffsetGV) { 6875 IvarOffsetGV = 6876 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6877 false, llvm::GlobalValue::ExternalLinkage, 6878 nullptr, Name.str()); 6879 if (CGM.getTriple().isOSBinFormatCOFF()) { 6880 bool IsPrivateOrPackage = 6881 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6882 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6883 6884 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6885 6886 if (ContainingID->hasAttr<DLLImportAttr>()) 6887 IvarOffsetGV 6888 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6889 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6890 IvarOffsetGV 6891 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6892 } 6893 } 6894 return IvarOffsetGV; 6895 } 6896 6897 llvm::Constant * 6898 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6899 const ObjCIvarDecl *Ivar, 6900 unsigned long int Offset) { 6901 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6902 IvarOffsetGV->setInitializer( 6903 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6904 IvarOffsetGV->setAlignment( 6905 CGM.getDataLayout().getABITypeAlign(ObjCTypes.IvarOffsetVarTy)); 6906 6907 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6908 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6909 // as well (i.e., in ObjCIvarOffsetVariable). 6910 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6911 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6912 ID->getVisibility() == HiddenVisibility) 6913 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6914 else 6915 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6916 } 6917 6918 // If ID's layout is known, then make the global constant. This serves as a 6919 // useful assertion: we'll never use this variable to calculate ivar offsets, 6920 // so if the runtime tries to patch it then we should crash. 6921 if (isClassLayoutKnownStatically(ID)) 6922 IvarOffsetGV->setConstant(true); 6923 6924 if (CGM.getTriple().isOSBinFormatMachO()) 6925 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6926 return IvarOffsetGV; 6927 } 6928 6929 /// EmitIvarList - Emit the ivar list for the given 6930 /// implementation. The return value has type 6931 /// IvarListnfABIPtrTy. 6932 /// struct _ivar_t { 6933 /// unsigned [long] int *offset; // pointer to ivar offset location 6934 /// char *name; 6935 /// char *type; 6936 /// uint32_t alignment; 6937 /// uint32_t size; 6938 /// } 6939 /// struct _ivar_list_t { 6940 /// uint32 entsize; // sizeof(struct _ivar_t) 6941 /// uint32 count; 6942 /// struct _iver_t list[count]; 6943 /// } 6944 /// 6945 6946 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6947 const ObjCImplementationDecl *ID) { 6948 6949 ConstantInitBuilder builder(CGM); 6950 auto ivarList = builder.beginStruct(); 6951 ivarList.addInt(ObjCTypes.IntTy, 6952 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6953 auto ivarCountSlot = ivarList.addPlaceholder(); 6954 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6955 6956 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6957 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6958 6959 // FIXME. Consolidate this with similar code in GenerateClass. 6960 6961 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6962 IVD; IVD = IVD->getNextIvar()) { 6963 // Ignore unnamed bit-fields. 6964 if (!IVD->getDeclName()) 6965 continue; 6966 6967 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6968 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6969 ComputeIvarBaseOffset(CGM, ID, IVD))); 6970 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6971 ivar.add(GetMethodVarType(IVD)); 6972 llvm::Type *FieldTy = 6973 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6974 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6975 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6976 IVD->getType().getTypePtr()) >> 3; 6977 Align = llvm::Log2_32(Align); 6978 ivar.addInt(ObjCTypes.IntTy, Align); 6979 // NOTE. Size of a bitfield does not match gcc's, because of the 6980 // way bitfields are treated special in each. But I am told that 6981 // 'size' for bitfield ivars is ignored by the runtime so it does 6982 // not matter. If it matters, there is enough info to get the 6983 // bitfield right! 6984 ivar.addInt(ObjCTypes.IntTy, Size); 6985 ivar.finishAndAddTo(ivars); 6986 } 6987 // Return null for empty list. 6988 if (ivars.empty()) { 6989 ivars.abandon(); 6990 ivarList.abandon(); 6991 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6992 } 6993 6994 auto ivarCount = ivars.size(); 6995 ivars.finishAndAddTo(ivarList); 6996 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6997 6998 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 6999 llvm::GlobalVariable *GV = finishAndCreateGlobal( 7000 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 7001 CGM.addCompilerUsedGlobal(GV); 7002 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 7003 } 7004 7005 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 7006 const ObjCProtocolDecl *PD) { 7007 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 7008 7009 assert(!PD->isNonRuntimeProtocol() && 7010 "attempting to GetOrEmit a non-runtime protocol"); 7011 if (!Entry) { 7012 // We use the initializer as a marker of whether this is a forward 7013 // reference or not. At module finalization we add the empty 7014 // contents for protocols which were referenced but never defined. 7015 llvm::SmallString<64> Protocol; 7016 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 7017 << PD->getObjCRuntimeNameAsString(); 7018 7019 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 7020 false, llvm::GlobalValue::ExternalLinkage, 7021 nullptr, Protocol); 7022 if (!CGM.getTriple().isOSBinFormatMachO()) 7023 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 7024 } 7025 7026 return Entry; 7027 } 7028 7029 /// GetOrEmitProtocol - Generate the protocol meta-data: 7030 /// @code 7031 /// struct _protocol_t { 7032 /// id isa; // NULL 7033 /// const char * const protocol_name; 7034 /// const struct _protocol_list_t * protocol_list; // super protocols 7035 /// const struct method_list_t * const instance_methods; 7036 /// const struct method_list_t * const class_methods; 7037 /// const struct method_list_t *optionalInstanceMethods; 7038 /// const struct method_list_t *optionalClassMethods; 7039 /// const struct _prop_list_t * properties; 7040 /// const uint32_t size; // sizeof(struct _protocol_t) 7041 /// const uint32_t flags; // = 0 7042 /// const char ** extendedMethodTypes; 7043 /// const char *demangledName; 7044 /// const struct _prop_list_t * class_properties; 7045 /// } 7046 /// @endcode 7047 /// 7048 7049 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7050 const ObjCProtocolDecl *PD) { 7051 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7052 7053 // Early exit if a defining object has already been generated. 7054 if (Entry && Entry->hasInitializer()) 7055 return Entry; 7056 7057 // Use the protocol definition, if there is one. 7058 assert(PD->hasDefinition() && 7059 "emitting protocol metadata without definition"); 7060 PD = PD->getDefinition(); 7061 7062 auto methodLists = ProtocolMethodLists::get(PD); 7063 7064 ConstantInitBuilder builder(CGM); 7065 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7066 7067 // isa is NULL 7068 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7069 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7070 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7071 + PD->getObjCRuntimeNameAsString(), 7072 PD->protocol_begin(), 7073 PD->protocol_end())); 7074 values.add(methodLists.emitMethodList(this, PD, 7075 ProtocolMethodLists::RequiredInstanceMethods)); 7076 values.add(methodLists.emitMethodList(this, PD, 7077 ProtocolMethodLists::RequiredClassMethods)); 7078 values.add(methodLists.emitMethodList(this, PD, 7079 ProtocolMethodLists::OptionalInstanceMethods)); 7080 values.add(methodLists.emitMethodList(this, PD, 7081 ProtocolMethodLists::OptionalClassMethods)); 7082 values.add(EmitPropertyList( 7083 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7084 nullptr, PD, ObjCTypes, false)); 7085 uint32_t Size = 7086 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7087 values.addInt(ObjCTypes.IntTy, Size); 7088 values.addInt(ObjCTypes.IntTy, 0); 7089 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7090 + PD->getObjCRuntimeNameAsString(), 7091 methodLists.emitExtendedTypesArray(this), 7092 ObjCTypes)); 7093 7094 // const char *demangledName; 7095 values.addNullPointer(ObjCTypes.Int8PtrTy); 7096 7097 values.add(EmitPropertyList( 7098 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7099 nullptr, PD, ObjCTypes, true)); 7100 7101 if (Entry) { 7102 // Already created, fix the linkage and update the initializer. 7103 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7104 values.finishAndSetAsInitializer(Entry); 7105 } else { 7106 llvm::SmallString<64> symbolName; 7107 llvm::raw_svector_ostream(symbolName) 7108 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7109 7110 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7111 /*constant*/ false, 7112 llvm::GlobalValue::WeakAnyLinkage); 7113 if (!CGM.getTriple().isOSBinFormatMachO()) 7114 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7115 7116 Protocols[PD->getIdentifier()] = Entry; 7117 } 7118 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7119 CGM.addUsedGlobal(Entry); 7120 7121 // Use this protocol meta-data to build protocol list table in section 7122 // __DATA, __objc_protolist 7123 llvm::SmallString<64> ProtocolRef; 7124 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7125 << PD->getObjCRuntimeNameAsString(); 7126 7127 llvm::GlobalVariable *PTGV = 7128 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7129 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7130 ProtocolRef); 7131 if (!CGM.getTriple().isOSBinFormatMachO()) 7132 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7133 PTGV->setAlignment( 7134 CGM.getDataLayout().getABITypeAlign(ObjCTypes.ProtocolnfABIPtrTy)); 7135 PTGV->setSection(GetSectionName("__objc_protolist", 7136 "coalesced,no_dead_strip")); 7137 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7138 CGM.addUsedGlobal(PTGV); 7139 return Entry; 7140 } 7141 7142 /// EmitProtocolList - Generate protocol list meta-data: 7143 /// @code 7144 /// struct _protocol_list_t { 7145 /// long protocol_count; // Note, this is 32/64 bit 7146 /// struct _protocol_t[protocol_count]; 7147 /// } 7148 /// @endcode 7149 /// 7150 llvm::Constant * 7151 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7152 ObjCProtocolDecl::protocol_iterator begin, 7153 ObjCProtocolDecl::protocol_iterator end) { 7154 // Just return null for empty protocol lists 7155 auto Protocols = GetRuntimeProtocolList(begin, end); 7156 if (Protocols.empty()) 7157 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7158 7159 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7160 ProtocolRefs.reserve(Protocols.size()); 7161 7162 for (const auto *PD : Protocols) 7163 ProtocolRefs.push_back(GetProtocolRef(PD)); 7164 7165 // If all of the protocols in the protocol list are objc_non_runtime_protocol 7166 // just return null 7167 if (ProtocolRefs.size() == 0) 7168 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7169 7170 // FIXME: We shouldn't need to do this lookup here, should we? 7171 SmallString<256> TmpName; 7172 Name.toVector(TmpName); 7173 llvm::GlobalVariable *GV = 7174 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7175 if (GV) 7176 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7177 7178 ConstantInitBuilder builder(CGM); 7179 auto values = builder.beginStruct(); 7180 auto countSlot = values.addPlaceholder(); 7181 7182 // A null-terminated array of protocols. 7183 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7184 for (auto const &proto : ProtocolRefs) 7185 array.add(proto); 7186 auto count = array.size(); 7187 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7188 7189 array.finishAndAddTo(values); 7190 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7191 7192 GV = finishAndCreateGlobal(values, Name, CGM); 7193 CGM.addCompilerUsedGlobal(GV); 7194 return llvm::ConstantExpr::getBitCast(GV, 7195 ObjCTypes.ProtocolListnfABIPtrTy); 7196 } 7197 7198 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7199 /// This code gen. amounts to generating code for: 7200 /// @code 7201 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7202 /// @encode 7203 /// 7204 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7205 CodeGen::CodeGenFunction &CGF, 7206 QualType ObjectTy, 7207 llvm::Value *BaseValue, 7208 const ObjCIvarDecl *Ivar, 7209 unsigned CVRQualifiers) { 7210 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7211 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7212 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7213 Offset); 7214 } 7215 7216 llvm::Value * 7217 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7218 const ObjCInterfaceDecl *Interface, 7219 const ObjCIvarDecl *Ivar) { 7220 llvm::Value *IvarOffsetValue; 7221 if (isClassLayoutKnownStatically(Interface)) { 7222 IvarOffsetValue = llvm::ConstantInt::get( 7223 ObjCTypes.IvarOffsetVarTy, 7224 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7225 } else { 7226 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7227 IvarOffsetValue = 7228 CGF.Builder.CreateAlignedLoad(GV->getValueType(), GV, 7229 CGF.getSizeAlign(), "ivar"); 7230 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7231 cast<llvm::LoadInst>(IvarOffsetValue) 7232 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7233 llvm::MDNode::get(VMContext, std::nullopt)); 7234 } 7235 7236 // This could be 32bit int or 64bit integer depending on the architecture. 7237 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7238 // as this is what caller always expects. 7239 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7240 IvarOffsetValue = CGF.Builder.CreateIntCast( 7241 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7242 return IvarOffsetValue; 7243 } 7244 7245 static void appendSelectorForMessageRefTable(std::string &buffer, 7246 Selector selector) { 7247 if (selector.isUnarySelector()) { 7248 buffer += selector.getNameForSlot(0); 7249 return; 7250 } 7251 7252 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7253 buffer += selector.getNameForSlot(i); 7254 buffer += '_'; 7255 } 7256 } 7257 7258 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7259 /// struct, initially containing the selector pointer and a pointer to 7260 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7261 /// load and call the function pointer, passing the address of the 7262 /// struct as the second parameter. The runtime determines whether 7263 /// the selector is currently emitted using vtable dispatch; if so, it 7264 /// substitutes a stub function which simply tail-calls through the 7265 /// appropriate vtable slot, and if not, it substitues a stub function 7266 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7267 /// argument to correctly point to the selector. 7268 RValue 7269 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7270 ReturnValueSlot returnSlot, 7271 QualType resultType, 7272 Selector selector, 7273 llvm::Value *arg0, 7274 QualType arg0Type, 7275 bool isSuper, 7276 const CallArgList &formalArgs, 7277 const ObjCMethodDecl *method) { 7278 // Compute the actual arguments. 7279 CallArgList args; 7280 7281 // First argument: the receiver / super-call structure. 7282 if (!isSuper) 7283 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7284 args.add(RValue::get(arg0), arg0Type); 7285 7286 // Second argument: a pointer to the message ref structure. Leave 7287 // the actual argument value blank for now. 7288 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7289 7290 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7291 7292 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7293 7294 NullReturnState nullReturn; 7295 7296 // Find the function to call and the mangled name for the message 7297 // ref structure. Using a different mangled name wouldn't actually 7298 // be a problem; it would just be a waste. 7299 // 7300 // The runtime currently never uses vtable dispatch for anything 7301 // except normal, non-super message-sends. 7302 // FIXME: don't use this for that. 7303 llvm::FunctionCallee fn = nullptr; 7304 std::string messageRefName("_"); 7305 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7306 if (isSuper) { 7307 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7308 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7309 } else { 7310 nullReturn.init(CGF, arg0); 7311 fn = ObjCTypes.getMessageSendStretFixupFn(); 7312 messageRefName += "objc_msgSend_stret_fixup"; 7313 } 7314 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7315 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7316 messageRefName += "objc_msgSend_fpret_fixup"; 7317 } else { 7318 if (isSuper) { 7319 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7320 messageRefName += "objc_msgSendSuper2_fixup"; 7321 } else { 7322 fn = ObjCTypes.getMessageSendFixupFn(); 7323 messageRefName += "objc_msgSend_fixup"; 7324 } 7325 } 7326 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7327 messageRefName += '_'; 7328 7329 // Append the selector name, except use underscores anywhere we 7330 // would have used colons. 7331 appendSelectorForMessageRefTable(messageRefName, selector); 7332 7333 llvm::GlobalVariable *messageRef 7334 = CGM.getModule().getGlobalVariable(messageRefName); 7335 if (!messageRef) { 7336 // Build the message ref structure. 7337 ConstantInitBuilder builder(CGM); 7338 auto values = builder.beginStruct(); 7339 values.add(cast<llvm::Constant>(fn.getCallee())); 7340 values.add(GetMethodVarName(selector)); 7341 messageRef = values.finishAndCreateGlobal(messageRefName, 7342 CharUnits::fromQuantity(16), 7343 /*constant*/ false, 7344 llvm::GlobalValue::WeakAnyLinkage); 7345 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7346 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7347 } 7348 7349 bool requiresnullCheck = false; 7350 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7351 for (const auto *ParamDecl : method->parameters()) { 7352 if (ParamDecl->isDestroyedInCallee()) { 7353 if (!nullReturn.NullBB) 7354 nullReturn.init(CGF, arg0); 7355 requiresnullCheck = true; 7356 break; 7357 } 7358 } 7359 7360 Address mref = 7361 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7362 ObjCTypes.MessageRefTy, CGF.getPointerAlign()); 7363 7364 // Update the message ref argument. 7365 args[1].setRValue(RValue::get(mref.getPointer())); 7366 7367 // Load the function to call from the message ref table. 7368 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7369 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7370 7371 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7372 CGCallee callee(CGCalleeInfo(), calleePtr); 7373 7374 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7375 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7376 requiresnullCheck ? method : nullptr); 7377 } 7378 7379 /// Generate code for a message send expression in the nonfragile abi. 7380 CodeGen::RValue 7381 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7382 ReturnValueSlot Return, 7383 QualType ResultType, 7384 Selector Sel, 7385 llvm::Value *Receiver, 7386 const CallArgList &CallArgs, 7387 const ObjCInterfaceDecl *Class, 7388 const ObjCMethodDecl *Method) { 7389 return isVTableDispatchedSelector(Sel) 7390 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7391 Receiver, CGF.getContext().getObjCIdType(), 7392 false, CallArgs, Method) 7393 : EmitMessageSend(CGF, Return, ResultType, Sel, 7394 Receiver, CGF.getContext().getObjCIdType(), 7395 false, CallArgs, Method, Class, ObjCTypes); 7396 } 7397 7398 llvm::Constant * 7399 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7400 bool metaclass, 7401 ForDefinition_t isForDefinition) { 7402 auto prefix = 7403 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7404 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7405 isForDefinition, 7406 ID->isWeakImported(), 7407 !isForDefinition 7408 && CGM.getTriple().isOSBinFormatCOFF() 7409 && ID->hasAttr<DLLImportAttr>()); 7410 } 7411 7412 llvm::Constant * 7413 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7414 ForDefinition_t IsForDefinition, 7415 bool Weak, bool DLLImport) { 7416 llvm::GlobalValue::LinkageTypes L = 7417 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7418 : llvm::GlobalValue::ExternalLinkage; 7419 7420 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7421 if (!GV || GV->getValueType() != ObjCTypes.ClassnfABITy) { 7422 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7423 nullptr, Name); 7424 7425 if (DLLImport) 7426 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7427 7428 if (GV) { 7429 GV->replaceAllUsesWith( 7430 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7431 GV->eraseFromParent(); 7432 } 7433 GV = NewGV; 7434 CGM.getModule().getGlobalList().push_back(GV); 7435 } 7436 7437 assert(GV->getLinkage() == L); 7438 return GV; 7439 } 7440 7441 llvm::Constant * 7442 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7443 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7444 NotForDefinition); 7445 7446 if (!ID->hasAttr<ObjCClassStubAttr>()) 7447 return ClassGV; 7448 7449 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7450 7451 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7452 // must set the least significant bit set to 1. 7453 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7454 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7455 } 7456 7457 llvm::Value * 7458 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7459 const ObjCInterfaceDecl *ID, 7460 llvm::GlobalVariable *Entry) { 7461 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7462 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7463 // a special runtime function. 7464 return CGF.EmitRuntimeCall( 7465 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7466 } 7467 7468 CharUnits Align = CGF.getPointerAlign(); 7469 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, Align); 7470 } 7471 7472 llvm::Value * 7473 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7474 IdentifierInfo *II, 7475 const ObjCInterfaceDecl *ID) { 7476 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7477 7478 if (!Entry) { 7479 llvm::Constant *ClassGV; 7480 if (ID) { 7481 ClassGV = GetClassGlobalForClassRef(ID); 7482 } else { 7483 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7484 NotForDefinition); 7485 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7486 "classref was emitted with the wrong type?"); 7487 } 7488 7489 std::string SectionName = 7490 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7491 Entry = new llvm::GlobalVariable( 7492 CGM.getModule(), ClassGV->getType(), false, 7493 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7494 "OBJC_CLASSLIST_REFERENCES_$_"); 7495 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7496 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7497 Entry->setSection(SectionName); 7498 7499 CGM.addCompilerUsedGlobal(Entry); 7500 } 7501 7502 return EmitLoadOfClassRef(CGF, ID, Entry); 7503 } 7504 7505 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7506 const ObjCInterfaceDecl *ID) { 7507 // If the class has the objc_runtime_visible attribute, we need to 7508 // use the Objective-C runtime to get the class. 7509 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7510 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7511 7512 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7513 } 7514 7515 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7516 CodeGenFunction &CGF) { 7517 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7518 return EmitClassRefFromId(CGF, II, nullptr); 7519 } 7520 7521 llvm::Value * 7522 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7523 const ObjCInterfaceDecl *ID) { 7524 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7525 7526 if (!Entry) { 7527 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7528 std::string SectionName = 7529 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7530 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false, 7531 llvm::GlobalValue::PrivateLinkage, ClassGV, 7532 "OBJC_CLASSLIST_SUP_REFS_$_"); 7533 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7534 Entry->setSection(SectionName); 7535 CGM.addCompilerUsedGlobal(Entry); 7536 } 7537 7538 return EmitLoadOfClassRef(CGF, ID, Entry); 7539 } 7540 7541 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7542 /// meta-data 7543 /// 7544 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7545 const ObjCInterfaceDecl *ID, 7546 bool Weak) { 7547 CharUnits Align = CGF.getPointerAlign(); 7548 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7549 if (!Entry) { 7550 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7551 std::string SectionName = 7552 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7553 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 7554 false, llvm::GlobalValue::PrivateLinkage, 7555 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 7556 Entry->setAlignment(Align.getAsAlign()); 7557 Entry->setSection(SectionName); 7558 CGM.addCompilerUsedGlobal(Entry); 7559 } 7560 7561 return CGF.Builder.CreateAlignedLoad(ObjCTypes.ClassnfABIPtrTy, Entry, Align); 7562 } 7563 7564 /// GetClass - Return a reference to the class for the given interface 7565 /// decl. 7566 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7567 const ObjCInterfaceDecl *ID) { 7568 if (ID->isWeakImported()) { 7569 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7570 (void)ClassGV; 7571 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7572 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7573 } 7574 7575 return EmitClassRef(CGF, ID); 7576 } 7577 7578 /// Generates a message send where the super is the receiver. This is 7579 /// a message send to self with special delivery semantics indicating 7580 /// which class's method should be called. 7581 CodeGen::RValue 7582 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7583 ReturnValueSlot Return, 7584 QualType ResultType, 7585 Selector Sel, 7586 const ObjCInterfaceDecl *Class, 7587 bool isCategoryImpl, 7588 llvm::Value *Receiver, 7589 bool IsClassMessage, 7590 const CodeGen::CallArgList &CallArgs, 7591 const ObjCMethodDecl *Method) { 7592 // ... 7593 // Create and init a super structure; this is a (receiver, class) 7594 // pair we will pass to objc_msgSendSuper. 7595 Address ObjCSuper = 7596 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7597 "objc_super"); 7598 7599 llvm::Value *ReceiverAsObject = 7600 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7601 CGF.Builder.CreateStore(ReceiverAsObject, 7602 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7603 7604 // If this is a class message the metaclass is passed as the target. 7605 llvm::Value *Target; 7606 if (IsClassMessage) 7607 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7608 else 7609 Target = EmitSuperClassRef(CGF, Class); 7610 7611 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7612 // ObjCTypes types. 7613 llvm::Type *ClassTy = 7614 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7615 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7616 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7617 7618 return (isVTableDispatchedSelector(Sel)) 7619 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7620 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7621 true, CallArgs, Method) 7622 : EmitMessageSend(CGF, Return, ResultType, Sel, 7623 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7624 true, CallArgs, Method, Class, ObjCTypes); 7625 } 7626 7627 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7628 Selector Sel) { 7629 Address Addr = EmitSelectorAddr(Sel); 7630 7631 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7632 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7633 llvm::MDNode::get(VMContext, std::nullopt)); 7634 return LI; 7635 } 7636 7637 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7638 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7639 CharUnits Align = CGM.getPointerAlign(); 7640 if (!Entry) { 7641 llvm::Constant *Casted = 7642 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7643 ObjCTypes.SelectorPtrTy); 7644 std::string SectionName = 7645 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7646 Entry = new llvm::GlobalVariable( 7647 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7648 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7649 "OBJC_SELECTOR_REFERENCES_"); 7650 Entry->setExternallyInitialized(true); 7651 Entry->setSection(SectionName); 7652 Entry->setAlignment(Align.getAsAlign()); 7653 CGM.addCompilerUsedGlobal(Entry); 7654 } 7655 7656 return Address(Entry, ObjCTypes.SelectorPtrTy, Align); 7657 } 7658 7659 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7660 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7661 /// 7662 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7663 llvm::Value *src, 7664 Address dst, 7665 llvm::Value *ivarOffset) { 7666 llvm::Type * SrcTy = src->getType(); 7667 if (!isa<llvm::PointerType>(SrcTy)) { 7668 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7669 assert(Size <= 8 && "does not support size > 8"); 7670 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7671 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7672 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7673 } 7674 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7675 llvm::Value *dstVal = 7676 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7677 llvm::Value *args[] = {src, dstVal, ivarOffset}; 7678 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7679 } 7680 7681 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7682 /// objc_assign_strongCast (id src, id *dst) 7683 /// 7684 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7685 CodeGen::CodeGenFunction &CGF, 7686 llvm::Value *src, Address dst) { 7687 llvm::Type * SrcTy = src->getType(); 7688 if (!isa<llvm::PointerType>(SrcTy)) { 7689 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7690 assert(Size <= 8 && "does not support size > 8"); 7691 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7692 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7693 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7694 } 7695 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7696 llvm::Value *dstVal = 7697 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7698 llvm::Value *args[] = {src, dstVal}; 7699 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7700 args, "weakassign"); 7701 } 7702 7703 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7704 CodeGen::CodeGenFunction &CGF, 7705 Address DestPtr, 7706 Address SrcPtr, 7707 llvm::Value *Size) { 7708 SrcPtr = CGF.Builder.CreateElementBitCast(SrcPtr, CGF.Int8Ty); 7709 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 7710 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7711 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7712 } 7713 7714 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7715 /// object: objc_read_weak (id *src) 7716 /// 7717 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7718 CodeGen::CodeGenFunction &CGF, 7719 Address AddrWeakObj) { 7720 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7721 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast( 7722 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy); 7723 llvm::Value *read_weak = 7724 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7725 AddrWeakObjVal, "weakread"); 7726 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7727 return read_weak; 7728 } 7729 7730 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7731 /// objc_assign_weak (id src, id *dst) 7732 /// 7733 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7734 llvm::Value *src, Address dst) { 7735 llvm::Type * SrcTy = src->getType(); 7736 if (!isa<llvm::PointerType>(SrcTy)) { 7737 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7738 assert(Size <= 8 && "does not support size > 8"); 7739 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7740 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7741 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7742 } 7743 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7744 llvm::Value *dstVal = 7745 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7746 llvm::Value *args[] = {src, dstVal}; 7747 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7748 args, "weakassign"); 7749 } 7750 7751 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7752 /// objc_assign_global (id src, id *dst) 7753 /// 7754 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7755 llvm::Value *src, Address dst, 7756 bool threadlocal) { 7757 llvm::Type * SrcTy = src->getType(); 7758 if (!isa<llvm::PointerType>(SrcTy)) { 7759 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7760 assert(Size <= 8 && "does not support size > 8"); 7761 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7762 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7763 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7764 } 7765 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7766 llvm::Value *dstVal = 7767 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy); 7768 llvm::Value *args[] = {src, dstVal}; 7769 if (!threadlocal) 7770 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7771 args, "globalassign"); 7772 else 7773 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7774 args, "threadlocalassign"); 7775 } 7776 7777 void 7778 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7779 const ObjCAtSynchronizedStmt &S) { 7780 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7781 ObjCTypes.getSyncExitFn()); 7782 } 7783 7784 llvm::Constant * 7785 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7786 // There's a particular fixed type info for 'id'. 7787 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7788 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7789 if (!IDEHType) { 7790 IDEHType = 7791 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7792 llvm::GlobalValue::ExternalLinkage, nullptr, 7793 "OBJC_EHTYPE_id"); 7794 if (CGM.getTriple().isOSBinFormatCOFF()) 7795 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7796 } 7797 return IDEHType; 7798 } 7799 7800 // All other types should be Objective-C interface pointer types. 7801 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7802 assert(PT && "Invalid @catch type."); 7803 7804 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7805 assert(IT && "Invalid @catch type."); 7806 7807 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7808 } 7809 7810 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7811 const ObjCAtTryStmt &S) { 7812 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7813 ObjCTypes.getObjCEndCatchFn(), 7814 ObjCTypes.getExceptionRethrowFn()); 7815 } 7816 7817 /// EmitThrowStmt - Generate code for a throw statement. 7818 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7819 const ObjCAtThrowStmt &S, 7820 bool ClearInsertionPoint) { 7821 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7822 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7823 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7824 llvm::CallBase *Call = 7825 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7826 Call->setDoesNotReturn(); 7827 } else { 7828 llvm::CallBase *Call = 7829 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7830 Call->setDoesNotReturn(); 7831 } 7832 7833 CGF.Builder.CreateUnreachable(); 7834 if (ClearInsertionPoint) 7835 CGF.Builder.ClearInsertionPoint(); 7836 } 7837 7838 llvm::Constant * 7839 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7840 ForDefinition_t IsForDefinition) { 7841 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7842 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7843 7844 // If we don't need a definition, return the entry if found or check 7845 // if we use an external reference. 7846 if (!IsForDefinition) { 7847 if (Entry) 7848 return Entry; 7849 7850 // If this type (or a super class) has the __objc_exception__ 7851 // attribute, emit an external reference. 7852 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7853 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7854 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7855 false, llvm::GlobalValue::ExternalLinkage, 7856 nullptr, EHTypeName); 7857 CGM.setGVProperties(Entry, ID); 7858 return Entry; 7859 } 7860 } 7861 7862 // Otherwise we need to either make a new entry or fill in the initializer. 7863 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7864 7865 std::string VTableName = "objc_ehtype_vtable"; 7866 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7867 if (!VTableGV) { 7868 VTableGV = 7869 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7870 llvm::GlobalValue::ExternalLinkage, nullptr, 7871 VTableName); 7872 if (CGM.getTriple().isOSBinFormatCOFF()) 7873 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7874 } 7875 7876 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7877 ConstantInitBuilder builder(CGM); 7878 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7879 values.add( 7880 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7881 VTableGV, VTableIdx)); 7882 values.add(GetClassName(ClassName)); 7883 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7884 7885 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7886 ? llvm::GlobalValue::ExternalLinkage 7887 : llvm::GlobalValue::WeakAnyLinkage; 7888 if (Entry) { 7889 values.finishAndSetAsInitializer(Entry); 7890 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7891 } else { 7892 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7893 CGM.getPointerAlign(), 7894 /*constant*/ false, 7895 L); 7896 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7897 CGM.setGVProperties(Entry, ID); 7898 } 7899 assert(Entry->getLinkage() == L); 7900 7901 if (!CGM.getTriple().isOSBinFormatCOFF()) 7902 if (ID->getVisibility() == HiddenVisibility) 7903 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7904 7905 if (IsForDefinition) 7906 if (CGM.getTriple().isOSBinFormatMachO()) 7907 Entry->setSection("__DATA,__objc_const"); 7908 7909 return Entry; 7910 } 7911 7912 /* *** */ 7913 7914 CodeGen::CGObjCRuntime * 7915 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7916 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7917 case ObjCRuntime::FragileMacOSX: 7918 return new CGObjCMac(CGM); 7919 7920 case ObjCRuntime::MacOSX: 7921 case ObjCRuntime::iOS: 7922 case ObjCRuntime::WatchOS: 7923 return new CGObjCNonFragileABIMac(CGM); 7924 7925 case ObjCRuntime::GNUstep: 7926 case ObjCRuntime::GCC: 7927 case ObjCRuntime::ObjFW: 7928 llvm_unreachable("these runtimes are not Mac runtimes"); 7929 } 7930 llvm_unreachable("bad runtime"); 7931 } 7932