1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the GNU runtime. The 10 // class in this file generates structures used by the GNU Objective-C runtime 11 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 12 // the GNU runtime distribution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenTypes.h" 22 #include "SanitizerMetadata.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/CodeGen/ConstantInitBuilder.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include <cctype> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 namespace { 46 47 /// Class that lazily initialises the runtime function. Avoids inserting the 48 /// types and the function declaration into a module if they're not used, and 49 /// avoids constructing the type more than once if it's used more than once. 50 class LazyRuntimeFunction { 51 CodeGenModule *CGM = nullptr; 52 llvm::FunctionType *FTy = nullptr; 53 const char *FunctionName = nullptr; 54 llvm::FunctionCallee Function = nullptr; 55 56 public: 57 LazyRuntimeFunction() = default; 58 59 /// Initialises the lazy function with the name, return type, and the types 60 /// of the arguments. 61 template <typename... Tys> 62 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, 63 Tys *... Types) { 64 CGM = Mod; 65 FunctionName = name; 66 Function = nullptr; 67 if(sizeof...(Tys)) { 68 SmallVector<llvm::Type *, 8> ArgTys({Types...}); 69 FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 70 } 71 else { 72 FTy = llvm::FunctionType::get(RetTy, std::nullopt, false); 73 } 74 } 75 76 llvm::FunctionType *getType() { return FTy; } 77 78 /// Overloaded cast operator, allows the class to be implicitly cast to an 79 /// LLVM constant. 80 operator llvm::FunctionCallee() { 81 if (!Function) { 82 if (!FunctionName) 83 return nullptr; 84 Function = CGM->CreateRuntimeFunction(FTy, FunctionName); 85 } 86 return Function; 87 } 88 }; 89 90 91 /// GNU Objective-C runtime code generation. This class implements the parts of 92 /// Objective-C support that are specific to the GNU family of runtimes (GCC, 93 /// GNUstep and ObjFW). 94 class CGObjCGNU : public CGObjCRuntime { 95 protected: 96 /// The LLVM module into which output is inserted 97 llvm::Module &TheModule; 98 /// strut objc_super. Used for sending messages to super. This structure 99 /// contains the receiver (object) and the expected class. 100 llvm::StructType *ObjCSuperTy; 101 /// struct objc_super*. The type of the argument to the superclass message 102 /// lookup functions. 103 llvm::PointerType *PtrToObjCSuperTy; 104 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 105 /// SEL is included in a header somewhere, in which case it will be whatever 106 /// type is declared in that header, most likely {i8*, i8*}. 107 llvm::PointerType *SelectorTy; 108 /// Element type of SelectorTy. 109 llvm::Type *SelectorElemTy; 110 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 111 /// places where it's used 112 llvm::IntegerType *Int8Ty; 113 /// Pointer to i8 - LLVM type of char*, for all of the places where the 114 /// runtime needs to deal with C strings. 115 llvm::PointerType *PtrToInt8Ty; 116 /// struct objc_protocol type 117 llvm::StructType *ProtocolTy; 118 /// Protocol * type. 119 llvm::PointerType *ProtocolPtrTy; 120 /// Instance Method Pointer type. This is a pointer to a function that takes, 121 /// at a minimum, an object and a selector, and is the generic type for 122 /// Objective-C methods. Due to differences between variadic / non-variadic 123 /// calling conventions, it must always be cast to the correct type before 124 /// actually being used. 125 llvm::PointerType *IMPTy; 126 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 127 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 128 /// but if the runtime header declaring it is included then it may be a 129 /// pointer to a structure. 130 llvm::PointerType *IdTy; 131 /// Element type of IdTy. 132 llvm::Type *IdElemTy; 133 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 134 /// message lookup function and some GC-related functions. 135 llvm::PointerType *PtrToIdTy; 136 /// The clang type of id. Used when using the clang CGCall infrastructure to 137 /// call Objective-C methods. 138 CanQualType ASTIdTy; 139 /// LLVM type for C int type. 140 llvm::IntegerType *IntTy; 141 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 142 /// used in the code to document the difference between i8* meaning a pointer 143 /// to a C string and i8* meaning a pointer to some opaque type. 144 llvm::PointerType *PtrTy; 145 /// LLVM type for C long type. The runtime uses this in a lot of places where 146 /// it should be using intptr_t, but we can't fix this without breaking 147 /// compatibility with GCC... 148 llvm::IntegerType *LongTy; 149 /// LLVM type for C size_t. Used in various runtime data structures. 150 llvm::IntegerType *SizeTy; 151 /// LLVM type for C intptr_t. 152 llvm::IntegerType *IntPtrTy; 153 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 154 llvm::IntegerType *PtrDiffTy; 155 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 156 /// variables. 157 llvm::PointerType *PtrToIntTy; 158 /// LLVM type for Objective-C BOOL type. 159 llvm::Type *BoolTy; 160 /// 32-bit integer type, to save us needing to look it up every time it's used. 161 llvm::IntegerType *Int32Ty; 162 /// 64-bit integer type, to save us needing to look it up every time it's used. 163 llvm::IntegerType *Int64Ty; 164 /// The type of struct objc_property. 165 llvm::StructType *PropertyMetadataTy; 166 /// Metadata kind used to tie method lookups to message sends. The GNUstep 167 /// runtime provides some LLVM passes that can use this to do things like 168 /// automatic IMP caching and speculative inlining. 169 unsigned msgSendMDKind; 170 /// Does the current target use SEH-based exceptions? False implies 171 /// Itanium-style DWARF unwinding. 172 bool usesSEHExceptions; 173 /// Does the current target uses C++-based exceptions? 174 bool usesCxxExceptions; 175 176 /// Helper to check if we are targeting a specific runtime version or later. 177 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) { 178 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 179 return (R.getKind() == kind) && 180 (R.getVersion() >= VersionTuple(major, minor)); 181 } 182 183 std::string ManglePublicSymbol(StringRef Name) { 184 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str(); 185 } 186 187 std::string SymbolForProtocol(Twine Name) { 188 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str(); 189 } 190 191 std::string SymbolForProtocolRef(StringRef Name) { 192 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str(); 193 } 194 195 196 /// Helper function that generates a constant string and returns a pointer to 197 /// the start of the string. The result of this function can be used anywhere 198 /// where the C code specifies const char*. 199 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") { 200 ConstantAddress Array = 201 CGM.GetAddrOfConstantCString(std::string(Str), Name); 202 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(), 203 Array.getPointer(), Zeros); 204 } 205 206 /// Emits a linkonce_odr string, whose name is the prefix followed by the 207 /// string value. This allows the linker to combine the strings between 208 /// different modules. Used for EH typeinfo names, selector strings, and a 209 /// few other things. 210 llvm::Constant *ExportUniqueString(const std::string &Str, 211 const std::string &prefix, 212 bool Private=false) { 213 std::string name = prefix + Str; 214 auto *ConstStr = TheModule.getGlobalVariable(name); 215 if (!ConstStr) { 216 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 217 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true, 218 llvm::GlobalValue::LinkOnceODRLinkage, value, name); 219 GV->setComdat(TheModule.getOrInsertComdat(name)); 220 if (Private) 221 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 222 ConstStr = GV; 223 } 224 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(), 225 ConstStr, Zeros); 226 } 227 228 /// Returns a property name and encoding string. 229 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, 230 const Decl *Container) { 231 assert(!isRuntime(ObjCRuntime::GNUstep, 2)); 232 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) { 233 std::string NameAndAttributes; 234 std::string TypeStr = 235 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 236 NameAndAttributes += '\0'; 237 NameAndAttributes += TypeStr.length() + 3; 238 NameAndAttributes += TypeStr; 239 NameAndAttributes += '\0'; 240 NameAndAttributes += PD->getNameAsString(); 241 return MakeConstantString(NameAndAttributes); 242 } 243 return MakeConstantString(PD->getNameAsString()); 244 } 245 246 /// Push the property attributes into two structure fields. 247 void PushPropertyAttributes(ConstantStructBuilder &Fields, 248 const ObjCPropertyDecl *property, bool isSynthesized=true, bool 249 isDynamic=true) { 250 int attrs = property->getPropertyAttributes(); 251 // For read-only properties, clear the copy and retain flags 252 if (attrs & ObjCPropertyAttribute::kind_readonly) { 253 attrs &= ~ObjCPropertyAttribute::kind_copy; 254 attrs &= ~ObjCPropertyAttribute::kind_retain; 255 attrs &= ~ObjCPropertyAttribute::kind_weak; 256 attrs &= ~ObjCPropertyAttribute::kind_strong; 257 } 258 // The first flags field has the same attribute values as clang uses internally 259 Fields.addInt(Int8Ty, attrs & 0xff); 260 attrs >>= 8; 261 attrs <<= 2; 262 // For protocol properties, synthesized and dynamic have no meaning, so we 263 // reuse these flags to indicate that this is a protocol property (both set 264 // has no meaning, as a property can't be both synthesized and dynamic) 265 attrs |= isSynthesized ? (1<<0) : 0; 266 attrs |= isDynamic ? (1<<1) : 0; 267 // The second field is the next four fields left shifted by two, with the 268 // low bit set to indicate whether the field is synthesized or dynamic. 269 Fields.addInt(Int8Ty, attrs & 0xff); 270 // Two padding fields 271 Fields.addInt(Int8Ty, 0); 272 Fields.addInt(Int8Ty, 0); 273 } 274 275 virtual llvm::Constant *GenerateCategoryProtocolList(const 276 ObjCCategoryDecl *OCD); 277 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields, 278 int count) { 279 // int count; 280 Fields.addInt(IntTy, count); 281 // int size; (only in GNUstep v2 ABI. 282 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 283 llvm::DataLayout td(&TheModule); 284 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) / 285 CGM.getContext().getCharWidth()); 286 } 287 // struct objc_property_list *next; 288 Fields.add(NULLPtr); 289 // struct objc_property properties[] 290 return Fields.beginArray(PropertyMetadataTy); 291 } 292 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray, 293 const ObjCPropertyDecl *property, 294 const Decl *OCD, 295 bool isSynthesized=true, bool 296 isDynamic=true) { 297 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 298 ASTContext &Context = CGM.getContext(); 299 Fields.add(MakePropertyEncodingString(property, OCD)); 300 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); 301 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 302 if (accessor) { 303 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 304 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 305 Fields.add(MakeConstantString(accessor->getSelector().getAsString())); 306 Fields.add(TypeEncoding); 307 } else { 308 Fields.add(NULLPtr); 309 Fields.add(NULLPtr); 310 } 311 }; 312 addPropertyMethod(property->getGetterMethodDecl()); 313 addPropertyMethod(property->getSetterMethodDecl()); 314 Fields.finishAndAddTo(PropertiesArray); 315 } 316 317 /// Ensures that the value has the required type, by inserting a bitcast if 318 /// required. This function lets us avoid inserting bitcasts that are 319 /// redundant. 320 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { 321 if (V->getType() == Ty) 322 return V; 323 return B.CreateBitCast(V, Ty); 324 } 325 326 // Some zeros used for GEPs in lots of places. 327 llvm::Constant *Zeros[2]; 328 /// Null pointer value. Mainly used as a terminator in various arrays. 329 llvm::Constant *NULLPtr; 330 /// LLVM context. 331 llvm::LLVMContext &VMContext; 332 333 protected: 334 335 /// Placeholder for the class. Lots of things refer to the class before we've 336 /// actually emitted it. We use this alias as a placeholder, and then replace 337 /// it with a pointer to the class structure before finally emitting the 338 /// module. 339 llvm::GlobalAlias *ClassPtrAlias; 340 /// Placeholder for the metaclass. Lots of things refer to the class before 341 /// we've / actually emitted it. We use this alias as a placeholder, and then 342 /// replace / it with a pointer to the metaclass structure before finally 343 /// emitting the / module. 344 llvm::GlobalAlias *MetaClassPtrAlias; 345 /// All of the classes that have been generated for this compilation units. 346 std::vector<llvm::Constant*> Classes; 347 /// All of the categories that have been generated for this compilation units. 348 std::vector<llvm::Constant*> Categories; 349 /// All of the Objective-C constant strings that have been generated for this 350 /// compilation units. 351 std::vector<llvm::Constant*> ConstantStrings; 352 /// Map from string values to Objective-C constant strings in the output. 353 /// Used to prevent emitting Objective-C strings more than once. This should 354 /// not be required at all - CodeGenModule should manage this list. 355 llvm::StringMap<llvm::Constant*> ObjCStrings; 356 /// All of the protocols that have been declared. 357 llvm::StringMap<llvm::Constant*> ExistingProtocols; 358 /// For each variant of a selector, we store the type encoding and a 359 /// placeholder value. For an untyped selector, the type will be the empty 360 /// string. Selector references are all done via the module's selector table, 361 /// so we create an alias as a placeholder and then replace it with the real 362 /// value later. 363 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 364 /// Type of the selector map. This is roughly equivalent to the structure 365 /// used in the GNUstep runtime, which maintains a list of all of the valid 366 /// types for a selector in a table. 367 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 368 SelectorMap; 369 /// A map from selectors to selector types. This allows us to emit all 370 /// selectors of the same name and type together. 371 SelectorMap SelectorTable; 372 373 /// Selectors related to memory management. When compiling in GC mode, we 374 /// omit these. 375 Selector RetainSel, ReleaseSel, AutoreleaseSel; 376 /// Runtime functions used for memory management in GC mode. Note that clang 377 /// supports code generation for calling these functions, but neither GNU 378 /// runtime actually supports this API properly yet. 379 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 380 WeakAssignFn, GlobalAssignFn; 381 382 typedef std::pair<std::string, std::string> ClassAliasPair; 383 /// All classes that have aliases set for them. 384 std::vector<ClassAliasPair> ClassAliases; 385 386 protected: 387 /// Function used for throwing Objective-C exceptions. 388 LazyRuntimeFunction ExceptionThrowFn; 389 /// Function used for rethrowing exceptions, used at the end of \@finally or 390 /// \@synchronize blocks. 391 LazyRuntimeFunction ExceptionReThrowFn; 392 /// Function called when entering a catch function. This is required for 393 /// differentiating Objective-C exceptions and foreign exceptions. 394 LazyRuntimeFunction EnterCatchFn; 395 /// Function called when exiting from a catch block. Used to do exception 396 /// cleanup. 397 LazyRuntimeFunction ExitCatchFn; 398 /// Function called when entering an \@synchronize block. Acquires the lock. 399 LazyRuntimeFunction SyncEnterFn; 400 /// Function called when exiting an \@synchronize block. Releases the lock. 401 LazyRuntimeFunction SyncExitFn; 402 403 private: 404 /// Function called if fast enumeration detects that the collection is 405 /// modified during the update. 406 LazyRuntimeFunction EnumerationMutationFn; 407 /// Function for implementing synthesized property getters that return an 408 /// object. 409 LazyRuntimeFunction GetPropertyFn; 410 /// Function for implementing synthesized property setters that return an 411 /// object. 412 LazyRuntimeFunction SetPropertyFn; 413 /// Function used for non-object declared property getters. 414 LazyRuntimeFunction GetStructPropertyFn; 415 /// Function used for non-object declared property setters. 416 LazyRuntimeFunction SetStructPropertyFn; 417 418 protected: 419 /// The version of the runtime that this class targets. Must match the 420 /// version in the runtime. 421 int RuntimeVersion; 422 /// The version of the protocol class. Used to differentiate between ObjC1 423 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 424 /// components and can not contain declared properties. We always emit 425 /// Objective-C 2 property structures, but we have to pretend that they're 426 /// Objective-C 1 property structures when targeting the GCC runtime or it 427 /// will abort. 428 const int ProtocolVersion; 429 /// The version of the class ABI. This value is used in the class structure 430 /// and indicates how various fields should be interpreted. 431 const int ClassABIVersion; 432 /// Generates an instance variable list structure. This is a structure 433 /// containing a size and an array of structures containing instance variable 434 /// metadata. This is used purely for introspection in the fragile ABI. In 435 /// the non-fragile ABI, it's used for instance variable fixup. 436 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 437 ArrayRef<llvm::Constant *> IvarTypes, 438 ArrayRef<llvm::Constant *> IvarOffsets, 439 ArrayRef<llvm::Constant *> IvarAlign, 440 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership); 441 442 /// Generates a method list structure. This is a structure containing a size 443 /// and an array of structures containing method metadata. 444 /// 445 /// This structure is used by both classes and categories, and contains a next 446 /// pointer allowing them to be chained together in a linked list. 447 llvm::Constant *GenerateMethodList(StringRef ClassName, 448 StringRef CategoryName, 449 ArrayRef<const ObjCMethodDecl*> Methods, 450 bool isClassMethodList); 451 452 /// Emits an empty protocol. This is used for \@protocol() where no protocol 453 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 454 /// real protocol. 455 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName); 456 457 /// Generates a list of property metadata structures. This follows the same 458 /// pattern as method and instance variable metadata lists. 459 llvm::Constant *GeneratePropertyList(const Decl *Container, 460 const ObjCContainerDecl *OCD, 461 bool isClassProperty=false, 462 bool protocolOptionalProperties=false); 463 464 /// Generates a list of referenced protocols. Classes, categories, and 465 /// protocols all use this structure. 466 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 467 468 /// To ensure that all protocols are seen by the runtime, we add a category on 469 /// a class defined in the runtime, declaring no methods, but adopting the 470 /// protocols. This is a horribly ugly hack, but it allows us to collect all 471 /// of the protocols without changing the ABI. 472 void GenerateProtocolHolderCategory(); 473 474 /// Generates a class structure. 475 llvm::Constant *GenerateClassStructure( 476 llvm::Constant *MetaClass, 477 llvm::Constant *SuperClass, 478 unsigned info, 479 const char *Name, 480 llvm::Constant *Version, 481 llvm::Constant *InstanceSize, 482 llvm::Constant *IVars, 483 llvm::Constant *Methods, 484 llvm::Constant *Protocols, 485 llvm::Constant *IvarOffsets, 486 llvm::Constant *Properties, 487 llvm::Constant *StrongIvarBitmap, 488 llvm::Constant *WeakIvarBitmap, 489 bool isMeta=false); 490 491 /// Generates a method list. This is used by protocols to define the required 492 /// and optional methods. 493 virtual llvm::Constant *GenerateProtocolMethodList( 494 ArrayRef<const ObjCMethodDecl*> Methods); 495 /// Emits optional and required method lists. 496 template<class T> 497 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required, 498 llvm::Constant *&Optional) { 499 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods; 500 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods; 501 for (const auto *I : Methods) 502 if (I->isOptional()) 503 OptionalMethods.push_back(I); 504 else 505 RequiredMethods.push_back(I); 506 Required = GenerateProtocolMethodList(RequiredMethods); 507 Optional = GenerateProtocolMethodList(OptionalMethods); 508 } 509 510 /// Returns a selector with the specified type encoding. An empty string is 511 /// used to return an untyped selector (with the types field set to NULL). 512 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 513 const std::string &TypeEncoding); 514 515 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this 516 /// contains the class and ivar names, in the v2 ABI this contains the type 517 /// encoding as well. 518 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 519 const ObjCIvarDecl *Ivar) { 520 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 521 + '.' + Ivar->getNameAsString(); 522 return Name; 523 } 524 /// Returns the variable used to store the offset of an instance variable. 525 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 526 const ObjCIvarDecl *Ivar); 527 /// Emits a reference to a class. This allows the linker to object if there 528 /// is no class of the matching name. 529 void EmitClassRef(const std::string &className); 530 531 /// Emits a pointer to the named class 532 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 533 const std::string &Name, bool isWeak); 534 535 /// Looks up the method for sending a message to the specified object. This 536 /// mechanism differs between the GCC and GNU runtimes, so this method must be 537 /// overridden in subclasses. 538 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 539 llvm::Value *&Receiver, 540 llvm::Value *cmd, 541 llvm::MDNode *node, 542 MessageSendInfo &MSI) = 0; 543 544 /// Looks up the method for sending a message to a superclass. This 545 /// mechanism differs between the GCC and GNU runtimes, so this method must 546 /// be overridden in subclasses. 547 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 548 Address ObjCSuper, 549 llvm::Value *cmd, 550 MessageSendInfo &MSI) = 0; 551 552 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 553 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 554 /// bits set to their values, LSB first, while larger ones are stored in a 555 /// structure of this / form: 556 /// 557 /// struct { int32_t length; int32_t values[length]; }; 558 /// 559 /// The values in the array are stored in host-endian format, with the least 560 /// significant bit being assumed to come first in the bitfield. Therefore, 561 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 562 /// while a bitfield / with the 63rd bit set will be 1<<64. 563 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 564 565 public: 566 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 567 unsigned protocolClassVersion, unsigned classABI=1); 568 569 ConstantAddress GenerateConstantString(const StringLiteral *) override; 570 571 RValue 572 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, 573 QualType ResultType, Selector Sel, 574 llvm::Value *Receiver, const CallArgList &CallArgs, 575 const ObjCInterfaceDecl *Class, 576 const ObjCMethodDecl *Method) override; 577 RValue 578 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, 579 QualType ResultType, Selector Sel, 580 const ObjCInterfaceDecl *Class, 581 bool isCategoryImpl, llvm::Value *Receiver, 582 bool IsClassMessage, const CallArgList &CallArgs, 583 const ObjCMethodDecl *Method) override; 584 llvm::Value *GetClass(CodeGenFunction &CGF, 585 const ObjCInterfaceDecl *OID) override; 586 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 587 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 588 llvm::Value *GetSelector(CodeGenFunction &CGF, 589 const ObjCMethodDecl *Method) override; 590 virtual llvm::Constant *GetConstantSelector(Selector Sel, 591 const std::string &TypeEncoding) { 592 llvm_unreachable("Runtime unable to generate constant selector"); 593 } 594 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) { 595 return GetConstantSelector(M->getSelector(), 596 CGM.getContext().getObjCEncodingForMethodDecl(M)); 597 } 598 llvm::Constant *GetEHType(QualType T) override; 599 600 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 601 const ObjCContainerDecl *CD) override; 602 603 // Map to unify direct method definitions. 604 llvm::DenseMap<const ObjCMethodDecl *, llvm::Function *> 605 DirectMethodDefinitions; 606 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 607 const ObjCMethodDecl *OMD, 608 const ObjCContainerDecl *CD) override; 609 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 610 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 611 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override; 612 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 613 const ObjCProtocolDecl *PD) override; 614 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 615 616 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD); 617 618 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override { 619 return GenerateProtocolRef(PD); 620 } 621 622 llvm::Function *ModuleInitFunction() override; 623 llvm::FunctionCallee GetPropertyGetFunction() override; 624 llvm::FunctionCallee GetPropertySetFunction() override; 625 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 626 bool copy) override; 627 llvm::FunctionCallee GetSetStructFunction() override; 628 llvm::FunctionCallee GetGetStructFunction() override; 629 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 630 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 631 llvm::FunctionCallee EnumerationMutationFunction() override; 632 633 void EmitTryStmt(CodeGenFunction &CGF, 634 const ObjCAtTryStmt &S) override; 635 void EmitSynchronizedStmt(CodeGenFunction &CGF, 636 const ObjCAtSynchronizedStmt &S) override; 637 void EmitThrowStmt(CodeGenFunction &CGF, 638 const ObjCAtThrowStmt &S, 639 bool ClearInsertionPoint=true) override; 640 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 641 Address AddrWeakObj) override; 642 void EmitObjCWeakAssign(CodeGenFunction &CGF, 643 llvm::Value *src, Address dst) override; 644 void EmitObjCGlobalAssign(CodeGenFunction &CGF, 645 llvm::Value *src, Address dest, 646 bool threadlocal=false) override; 647 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, 648 Address dest, llvm::Value *ivarOffset) override; 649 void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 650 llvm::Value *src, Address dest) override; 651 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, 652 Address SrcPtr, 653 llvm::Value *Size) override; 654 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, 655 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 656 unsigned CVRQualifiers) override; 657 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 658 const ObjCInterfaceDecl *Interface, 659 const ObjCIvarDecl *Ivar) override; 660 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 661 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 662 const CGBlockInfo &blockInfo) override { 663 return NULLPtr; 664 } 665 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, 666 const CGBlockInfo &blockInfo) override { 667 return NULLPtr; 668 } 669 670 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override { 671 return NULLPtr; 672 } 673 }; 674 675 /// Class representing the legacy GCC Objective-C ABI. This is the default when 676 /// -fobjc-nonfragile-abi is not specified. 677 /// 678 /// The GCC ABI target actually generates code that is approximately compatible 679 /// with the new GNUstep runtime ABI, but refrains from using any features that 680 /// would not work with the GCC runtime. For example, clang always generates 681 /// the extended form of the class structure, and the extra fields are simply 682 /// ignored by GCC libobjc. 683 class CGObjCGCC : public CGObjCGNU { 684 /// The GCC ABI message lookup function. Returns an IMP pointing to the 685 /// method implementation for this message. 686 LazyRuntimeFunction MsgLookupFn; 687 /// The GCC ABI superclass message lookup function. Takes a pointer to a 688 /// structure describing the receiver and the class, and a selector as 689 /// arguments. Returns the IMP for the corresponding method. 690 LazyRuntimeFunction MsgLookupSuperFn; 691 692 protected: 693 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 694 llvm::Value *cmd, llvm::MDNode *node, 695 MessageSendInfo &MSI) override { 696 CGBuilderTy &Builder = CGF.Builder; 697 llvm::Value *args[] = { 698 EnforceType(Builder, Receiver, IdTy), 699 EnforceType(Builder, cmd, SelectorTy) }; 700 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 701 imp->setMetadata(msgSendMDKind, node); 702 return imp; 703 } 704 705 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 706 llvm::Value *cmd, MessageSendInfo &MSI) override { 707 CGBuilderTy &Builder = CGF.Builder; 708 llvm::Value *lookupArgs[] = { 709 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd}; 710 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 711 } 712 713 public: 714 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 715 // IMP objc_msg_lookup(id, SEL); 716 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 717 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 718 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 719 PtrToObjCSuperTy, SelectorTy); 720 } 721 }; 722 723 /// Class used when targeting the new GNUstep runtime ABI. 724 class CGObjCGNUstep : public CGObjCGNU { 725 /// The slot lookup function. Returns a pointer to a cacheable structure 726 /// that contains (among other things) the IMP. 727 LazyRuntimeFunction SlotLookupFn; 728 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 729 /// a structure describing the receiver and the class, and a selector as 730 /// arguments. Returns the slot for the corresponding method. Superclass 731 /// message lookup rarely changes, so this is a good caching opportunity. 732 LazyRuntimeFunction SlotLookupSuperFn; 733 /// Specialised function for setting atomic retain properties 734 LazyRuntimeFunction SetPropertyAtomic; 735 /// Specialised function for setting atomic copy properties 736 LazyRuntimeFunction SetPropertyAtomicCopy; 737 /// Specialised function for setting nonatomic retain properties 738 LazyRuntimeFunction SetPropertyNonAtomic; 739 /// Specialised function for setting nonatomic copy properties 740 LazyRuntimeFunction SetPropertyNonAtomicCopy; 741 /// Function to perform atomic copies of C++ objects with nontrivial copy 742 /// constructors from Objective-C ivars. 743 LazyRuntimeFunction CxxAtomicObjectGetFn; 744 /// Function to perform atomic copies of C++ objects with nontrivial copy 745 /// constructors to Objective-C ivars. 746 LazyRuntimeFunction CxxAtomicObjectSetFn; 747 /// Type of a slot structure pointer. This is returned by the various 748 /// lookup functions. 749 llvm::Type *SlotTy; 750 /// Type of a slot structure. 751 llvm::Type *SlotStructTy; 752 753 public: 754 llvm::Constant *GetEHType(QualType T) override; 755 756 protected: 757 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 758 llvm::Value *cmd, llvm::MDNode *node, 759 MessageSendInfo &MSI) override { 760 CGBuilderTy &Builder = CGF.Builder; 761 llvm::FunctionCallee LookupFn = SlotLookupFn; 762 763 // Store the receiver on the stack so that we can reload it later 764 Address ReceiverPtr = 765 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign()); 766 Builder.CreateStore(Receiver, ReceiverPtr); 767 768 llvm::Value *self; 769 770 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 771 self = CGF.LoadObjCSelf(); 772 } else { 773 self = llvm::ConstantPointerNull::get(IdTy); 774 } 775 776 // The lookup function is guaranteed not to capture the receiver pointer. 777 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee())) 778 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture); 779 780 llvm::Value *args[] = { 781 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy), 782 EnforceType(Builder, cmd, SelectorTy), 783 EnforceType(Builder, self, IdTy) }; 784 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); 785 slot->setOnlyReadsMemory(); 786 slot->setMetadata(msgSendMDKind, node); 787 788 // Load the imp from the slot 789 llvm::Value *imp = Builder.CreateAlignedLoad( 790 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 791 CGF.getPointerAlign()); 792 793 // The lookup function may have changed the receiver, so make sure we use 794 // the new one. 795 Receiver = Builder.CreateLoad(ReceiverPtr, true); 796 return imp; 797 } 798 799 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 800 llvm::Value *cmd, 801 MessageSendInfo &MSI) override { 802 CGBuilderTy &Builder = CGF.Builder; 803 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd}; 804 805 llvm::CallInst *slot = 806 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); 807 slot->setOnlyReadsMemory(); 808 809 return Builder.CreateAlignedLoad( 810 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 811 CGF.getPointerAlign()); 812 } 813 814 public: 815 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {} 816 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI, 817 unsigned ClassABI) : 818 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) { 819 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 820 821 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy); 822 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 823 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 824 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 825 SelectorTy, IdTy); 826 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL); 827 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 828 PtrToObjCSuperTy, SelectorTy); 829 // If we're in ObjC++ mode, then we want to make 830 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 831 if (usesCxxExceptions) { 832 // void *__cxa_begin_catch(void *e) 833 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 834 // void __cxa_end_catch(void) 835 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 836 // void objc_exception_rethrow(void*) 837 ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy); 838 } else if (usesSEHExceptions) { 839 // void objc_exception_rethrow(void) 840 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy); 841 } else if (CGM.getLangOpts().CPlusPlus) { 842 // void *__cxa_begin_catch(void *e) 843 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 844 // void __cxa_end_catch(void) 845 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 846 // void _Unwind_Resume_or_Rethrow(void*) 847 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, 848 PtrTy); 849 } else if (R.getVersion() >= VersionTuple(1, 7)) { 850 // id objc_begin_catch(void *e) 851 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy); 852 // void objc_end_catch(void) 853 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy); 854 // void _Unwind_Resume_or_Rethrow(void*) 855 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy); 856 } 857 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, 858 SelectorTy, IdTy, PtrDiffTy); 859 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, 860 IdTy, SelectorTy, IdTy, PtrDiffTy); 861 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, 862 IdTy, SelectorTy, IdTy, PtrDiffTy); 863 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", 864 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); 865 // void objc_setCppObjectAtomic(void *dest, const void *src, void 866 // *helper); 867 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, 868 PtrTy, PtrTy); 869 // void objc_getCppObjectAtomic(void *dest, const void *src, void 870 // *helper); 871 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, 872 PtrTy, PtrTy); 873 } 874 875 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 876 // The optimised functions were added in version 1.7 of the GNUstep 877 // runtime. 878 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 879 VersionTuple(1, 7)); 880 return CxxAtomicObjectGetFn; 881 } 882 883 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 884 // The optimised functions were added in version 1.7 of the GNUstep 885 // runtime. 886 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 887 VersionTuple(1, 7)); 888 return CxxAtomicObjectSetFn; 889 } 890 891 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 892 bool copy) override { 893 // The optimised property functions omit the GC check, and so are not 894 // safe to use in GC mode. The standard functions are fast in GC mode, 895 // so there is less advantage in using them. 896 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); 897 // The optimised functions were added in version 1.7 of the GNUstep 898 // runtime. 899 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 900 VersionTuple(1, 7)); 901 902 if (atomic) { 903 if (copy) return SetPropertyAtomicCopy; 904 return SetPropertyAtomic; 905 } 906 907 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic; 908 } 909 }; 910 911 /// GNUstep Objective-C ABI version 2 implementation. 912 /// This is the ABI that provides a clean break with the legacy GCC ABI and 913 /// cleans up a number of things that were added to work around 1980s linkers. 914 class CGObjCGNUstep2 : public CGObjCGNUstep { 915 enum SectionKind 916 { 917 SelectorSection = 0, 918 ClassSection, 919 ClassReferenceSection, 920 CategorySection, 921 ProtocolSection, 922 ProtocolReferenceSection, 923 ClassAliasSection, 924 ConstantStringSection 925 }; 926 /// The subset of `objc_class_flags` used at compile time. 927 enum ClassFlags { 928 /// This is a metaclass 929 ClassFlagMeta = (1 << 0), 930 /// This class has been initialised by the runtime (+initialize has been 931 /// sent if necessary). 932 ClassFlagInitialized = (1 << 8), 933 }; 934 static const char *const SectionsBaseNames[8]; 935 static const char *const PECOFFSectionsBaseNames[8]; 936 template<SectionKind K> 937 std::string sectionName() { 938 if (CGM.getTriple().isOSBinFormatCOFF()) { 939 std::string name(PECOFFSectionsBaseNames[K]); 940 name += "$m"; 941 return name; 942 } 943 return SectionsBaseNames[K]; 944 } 945 /// The GCC ABI superclass message lookup function. Takes a pointer to a 946 /// structure describing the receiver and the class, and a selector as 947 /// arguments. Returns the IMP for the corresponding method. 948 LazyRuntimeFunction MsgLookupSuperFn; 949 /// Function to ensure that +initialize is sent to a class. 950 LazyRuntimeFunction SentInitializeFn; 951 /// A flag indicating if we've emitted at least one protocol. 952 /// If we haven't, then we need to emit an empty protocol, to ensure that the 953 /// __start__objc_protocols and __stop__objc_protocols sections exist. 954 bool EmittedProtocol = false; 955 /// A flag indicating if we've emitted at least one protocol reference. 956 /// If we haven't, then we need to emit an empty protocol, to ensure that the 957 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections 958 /// exist. 959 bool EmittedProtocolRef = false; 960 /// A flag indicating if we've emitted at least one class. 961 /// If we haven't, then we need to emit an empty protocol, to ensure that the 962 /// __start__objc_classes and __stop__objc_classes sections / exist. 963 bool EmittedClass = false; 964 /// Generate the name of a symbol for a reference to a class. Accesses to 965 /// classes should be indirected via this. 966 967 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>> 968 EarlyInitPair; 969 std::vector<EarlyInitPair> EarlyInitList; 970 971 std::string SymbolForClassRef(StringRef Name, bool isWeak) { 972 if (isWeak) 973 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str(); 974 else 975 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str(); 976 } 977 /// Generate the name of a class symbol. 978 std::string SymbolForClass(StringRef Name) { 979 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str(); 980 } 981 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName, 982 ArrayRef<llvm::Value*> Args) { 983 SmallVector<llvm::Type *,8> Types; 984 for (auto *Arg : Args) 985 Types.push_back(Arg->getType()); 986 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types, 987 false); 988 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName); 989 B.CreateCall(Fn, Args); 990 } 991 992 ConstantAddress GenerateConstantString(const StringLiteral *SL) override { 993 994 auto Str = SL->getString(); 995 CharUnits Align = CGM.getPointerAlign(); 996 997 // Look for an existing one 998 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 999 if (old != ObjCStrings.end()) 1000 return ConstantAddress(old->getValue(), IdElemTy, Align); 1001 1002 bool isNonASCII = SL->containsNonAscii(); 1003 1004 auto LiteralLength = SL->getLength(); 1005 1006 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) && 1007 (LiteralLength < 9) && !isNonASCII) { 1008 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit 1009 // ASCII characters in the high 56 bits, followed by a 4-bit length and a 1010 // 3-bit tag (which is always 4). 1011 uint64_t str = 0; 1012 // Fill in the characters 1013 for (unsigned i=0 ; i<LiteralLength ; i++) 1014 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7)); 1015 // Fill in the length 1016 str |= LiteralLength << 3; 1017 // Set the tag 1018 str |= 4; 1019 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr( 1020 llvm::ConstantInt::get(Int64Ty, str), IdTy); 1021 ObjCStrings[Str] = ObjCStr; 1022 return ConstantAddress(ObjCStr, IdElemTy, Align); 1023 } 1024 1025 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1026 1027 if (StringClass.empty()) StringClass = "NSConstantString"; 1028 1029 std::string Sym = SymbolForClass(StringClass); 1030 1031 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 1032 1033 if (!isa) { 1034 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 1035 llvm::GlobalValue::ExternalLinkage, nullptr, Sym); 1036 if (CGM.getTriple().isOSBinFormatCOFF()) { 1037 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1038 } 1039 } 1040 1041 // struct 1042 // { 1043 // Class isa; 1044 // uint32_t flags; 1045 // uint32_t length; // Number of codepoints 1046 // uint32_t size; // Number of bytes 1047 // uint32_t hash; 1048 // const char *data; 1049 // }; 1050 1051 ConstantInitBuilder Builder(CGM); 1052 auto Fields = Builder.beginStruct(); 1053 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1054 Fields.add(isa); 1055 } else { 1056 Fields.addNullPointer(PtrTy); 1057 } 1058 // For now, all non-ASCII strings are represented as UTF-16. As such, the 1059 // number of bytes is simply double the number of UTF-16 codepoints. In 1060 // ASCII strings, the number of bytes is equal to the number of non-ASCII 1061 // codepoints. 1062 if (isNonASCII) { 1063 unsigned NumU8CodeUnits = Str.size(); 1064 // A UTF-16 representation of a unicode string contains at most the same 1065 // number of code units as a UTF-8 representation. Allocate that much 1066 // space, plus one for the final null character. 1067 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1); 1068 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data(); 1069 llvm::UTF16 *ToPtr = &ToBuf[0]; 1070 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits, 1071 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion); 1072 uint32_t StringLength = ToPtr - &ToBuf[0]; 1073 // Add null terminator 1074 *ToPtr = 0; 1075 // Flags: 2 indicates UTF-16 encoding 1076 Fields.addInt(Int32Ty, 2); 1077 // Number of UTF-16 codepoints 1078 Fields.addInt(Int32Ty, StringLength); 1079 // Number of bytes 1080 Fields.addInt(Int32Ty, StringLength * 2); 1081 // Hash. Not currently initialised by the compiler. 1082 Fields.addInt(Int32Ty, 0); 1083 // pointer to the data string. 1084 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1); 1085 auto *C = llvm::ConstantDataArray::get(VMContext, Arr); 1086 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(), 1087 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); 1088 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1089 Fields.add(Buffer); 1090 } else { 1091 // Flags: 0 indicates ASCII encoding 1092 Fields.addInt(Int32Ty, 0); 1093 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint 1094 Fields.addInt(Int32Ty, Str.size()); 1095 // Number of bytes 1096 Fields.addInt(Int32Ty, Str.size()); 1097 // Hash. Not currently initialised by the compiler. 1098 Fields.addInt(Int32Ty, 0); 1099 // Data pointer 1100 Fields.add(MakeConstantString(Str)); 1101 } 1102 std::string StringName; 1103 bool isNamed = !isNonASCII; 1104 if (isNamed) { 1105 StringName = ".objc_str_"; 1106 for (int i=0,e=Str.size() ; i<e ; ++i) { 1107 unsigned char c = Str[i]; 1108 if (isalnum(c)) 1109 StringName += c; 1110 else if (c == ' ') 1111 StringName += '_'; 1112 else { 1113 isNamed = false; 1114 break; 1115 } 1116 } 1117 } 1118 llvm::GlobalVariable *ObjCStrGV = 1119 Fields.finishAndCreateGlobal( 1120 isNamed ? StringRef(StringName) : ".objc_string", 1121 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage 1122 : llvm::GlobalValue::PrivateLinkage); 1123 ObjCStrGV->setSection(sectionName<ConstantStringSection>()); 1124 if (isNamed) { 1125 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName)); 1126 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1127 } 1128 if (CGM.getTriple().isOSBinFormatCOFF()) { 1129 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0}; 1130 EarlyInitList.emplace_back(Sym, v); 1131 } 1132 ObjCStrings[Str] = ObjCStrGV; 1133 ConstantStrings.push_back(ObjCStrGV); 1134 return ConstantAddress(ObjCStrGV, IdElemTy, Align); 1135 } 1136 1137 void PushProperty(ConstantArrayBuilder &PropertiesArray, 1138 const ObjCPropertyDecl *property, 1139 const Decl *OCD, 1140 bool isSynthesized=true, bool 1141 isDynamic=true) override { 1142 // struct objc_property 1143 // { 1144 // const char *name; 1145 // const char *attributes; 1146 // const char *type; 1147 // SEL getter; 1148 // SEL setter; 1149 // }; 1150 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 1151 ASTContext &Context = CGM.getContext(); 1152 Fields.add(MakeConstantString(property->getNameAsString())); 1153 std::string TypeStr = 1154 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD); 1155 Fields.add(MakeConstantString(TypeStr)); 1156 std::string typeStr; 1157 Context.getObjCEncodingForType(property->getType(), typeStr); 1158 Fields.add(MakeConstantString(typeStr)); 1159 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 1160 if (accessor) { 1161 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 1162 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr)); 1163 } else { 1164 Fields.add(NULLPtr); 1165 } 1166 }; 1167 addPropertyMethod(property->getGetterMethodDecl()); 1168 addPropertyMethod(property->getSetterMethodDecl()); 1169 Fields.finishAndAddTo(PropertiesArray); 1170 } 1171 1172 llvm::Constant * 1173 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override { 1174 // struct objc_protocol_method_description 1175 // { 1176 // SEL selector; 1177 // const char *types; 1178 // }; 1179 llvm::StructType *ObjCMethodDescTy = 1180 llvm::StructType::get(CGM.getLLVMContext(), 1181 { PtrToInt8Ty, PtrToInt8Ty }); 1182 ASTContext &Context = CGM.getContext(); 1183 ConstantInitBuilder Builder(CGM); 1184 // struct objc_protocol_method_description_list 1185 // { 1186 // int count; 1187 // int size; 1188 // struct objc_protocol_method_description methods[]; 1189 // }; 1190 auto MethodList = Builder.beginStruct(); 1191 // int count; 1192 MethodList.addInt(IntTy, Methods.size()); 1193 // int size; // sizeof(struct objc_method_description) 1194 llvm::DataLayout td(&TheModule); 1195 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) / 1196 CGM.getContext().getCharWidth()); 1197 // struct objc_method_description[] 1198 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 1199 for (auto *M : Methods) { 1200 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 1201 Method.add(CGObjCGNU::GetConstantSelector(M)); 1202 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true))); 1203 Method.finishAndAddTo(MethodArray); 1204 } 1205 MethodArray.finishAndAddTo(MethodList); 1206 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list", 1207 CGM.getPointerAlign()); 1208 } 1209 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD) 1210 override { 1211 const auto &ReferencedProtocols = OCD->getReferencedProtocols(); 1212 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(), 1213 ReferencedProtocols.end()); 1214 SmallVector<llvm::Constant *, 16> Protocols; 1215 for (const auto *PI : RuntimeProtocols) 1216 Protocols.push_back(GenerateProtocolRef(PI)); 1217 return GenerateProtocolList(Protocols); 1218 } 1219 1220 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 1221 llvm::Value *cmd, MessageSendInfo &MSI) override { 1222 // Don't access the slot unless we're trying to cache the result. 1223 CGBuilderTy &Builder = CGF.Builder; 1224 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, 1225 ObjCSuper.getPointer(), 1226 PtrToObjCSuperTy), 1227 cmd}; 1228 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 1229 } 1230 1231 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) { 1232 std::string SymbolName = SymbolForClassRef(Name, isWeak); 1233 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName); 1234 if (ClassSymbol) 1235 return ClassSymbol; 1236 ClassSymbol = new llvm::GlobalVariable(TheModule, 1237 IdTy, false, llvm::GlobalValue::ExternalLinkage, 1238 nullptr, SymbolName); 1239 // If this is a weak symbol, then we are creating a valid definition for 1240 // the symbol, pointing to a weak definition of the real class pointer. If 1241 // this is not a weak reference, then we are expecting another compilation 1242 // unit to provide the real indirection symbol. 1243 if (isWeak) 1244 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule, 1245 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage, 1246 nullptr, SymbolForClass(Name))); 1247 else { 1248 if (CGM.getTriple().isOSBinFormatCOFF()) { 1249 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 1250 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 1251 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 1252 1253 const ObjCInterfaceDecl *OID = nullptr; 1254 for (const auto *Result : DC->lookup(&II)) 1255 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result))) 1256 break; 1257 1258 // The first Interface we find may be a @class, 1259 // which should only be treated as the source of 1260 // truth in the absence of a true declaration. 1261 assert(OID && "Failed to find ObjCInterfaceDecl"); 1262 const ObjCInterfaceDecl *OIDDef = OID->getDefinition(); 1263 if (OIDDef != nullptr) 1264 OID = OIDDef; 1265 1266 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1267 if (OID->hasAttr<DLLImportAttr>()) 1268 Storage = llvm::GlobalValue::DLLImportStorageClass; 1269 else if (OID->hasAttr<DLLExportAttr>()) 1270 Storage = llvm::GlobalValue::DLLExportStorageClass; 1271 1272 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage); 1273 } 1274 } 1275 assert(ClassSymbol->getName() == SymbolName); 1276 return ClassSymbol; 1277 } 1278 llvm::Value *GetClassNamed(CodeGenFunction &CGF, 1279 const std::string &Name, 1280 bool isWeak) override { 1281 return CGF.Builder.CreateLoad( 1282 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign())); 1283 } 1284 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) { 1285 // typedef enum { 1286 // ownership_invalid = 0, 1287 // ownership_strong = 1, 1288 // ownership_weak = 2, 1289 // ownership_unsafe = 3 1290 // } ivar_ownership; 1291 int Flag; 1292 switch (Ownership) { 1293 case Qualifiers::OCL_Strong: 1294 Flag = 1; 1295 break; 1296 case Qualifiers::OCL_Weak: 1297 Flag = 2; 1298 break; 1299 case Qualifiers::OCL_ExplicitNone: 1300 Flag = 3; 1301 break; 1302 case Qualifiers::OCL_None: 1303 case Qualifiers::OCL_Autoreleasing: 1304 assert(Ownership != Qualifiers::OCL_Autoreleasing); 1305 Flag = 0; 1306 } 1307 return Flag; 1308 } 1309 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1310 ArrayRef<llvm::Constant *> IvarTypes, 1311 ArrayRef<llvm::Constant *> IvarOffsets, 1312 ArrayRef<llvm::Constant *> IvarAlign, 1313 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override { 1314 llvm_unreachable("Method should not be called!"); 1315 } 1316 1317 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override { 1318 std::string Name = SymbolForProtocol(ProtocolName); 1319 auto *GV = TheModule.getGlobalVariable(Name); 1320 if (!GV) { 1321 // Emit a placeholder symbol. 1322 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false, 1323 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1324 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1325 } 1326 return GV; 1327 } 1328 1329 /// Existing protocol references. 1330 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs; 1331 1332 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1333 const ObjCProtocolDecl *PD) override { 1334 auto Name = PD->getNameAsString(); 1335 auto *&Ref = ExistingProtocolRefs[Name]; 1336 if (!Ref) { 1337 auto *&Protocol = ExistingProtocols[Name]; 1338 if (!Protocol) 1339 Protocol = GenerateProtocolRef(PD); 1340 std::string RefName = SymbolForProtocolRef(Name); 1341 assert(!TheModule.getGlobalVariable(RefName)); 1342 // Emit a reference symbol. 1343 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false, 1344 llvm::GlobalValue::LinkOnceODRLinkage, 1345 Protocol, RefName); 1346 GV->setComdat(TheModule.getOrInsertComdat(RefName)); 1347 GV->setSection(sectionName<ProtocolReferenceSection>()); 1348 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1349 Ref = GV; 1350 } 1351 EmittedProtocolRef = true; 1352 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref, 1353 CGM.getPointerAlign()); 1354 } 1355 1356 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) { 1357 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy, 1358 Protocols.size()); 1359 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1360 Protocols); 1361 ConstantInitBuilder builder(CGM); 1362 auto ProtocolBuilder = builder.beginStruct(); 1363 ProtocolBuilder.addNullPointer(PtrTy); 1364 ProtocolBuilder.addInt(SizeTy, Protocols.size()); 1365 ProtocolBuilder.add(ProtocolArray); 1366 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list", 1367 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage); 1368 } 1369 1370 void GenerateProtocol(const ObjCProtocolDecl *PD) override { 1371 // Do nothing - we only emit referenced protocols. 1372 } 1373 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override { 1374 std::string ProtocolName = PD->getNameAsString(); 1375 auto *&Protocol = ExistingProtocols[ProtocolName]; 1376 if (Protocol) 1377 return Protocol; 1378 1379 EmittedProtocol = true; 1380 1381 auto SymName = SymbolForProtocol(ProtocolName); 1382 auto *OldGV = TheModule.getGlobalVariable(SymName); 1383 1384 // Use the protocol definition, if there is one. 1385 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1386 PD = Def; 1387 else { 1388 // If there is no definition, then create an external linkage symbol and 1389 // hope that someone else fills it in for us (and fail to link if they 1390 // don't). 1391 assert(!OldGV); 1392 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy, 1393 /*isConstant*/false, 1394 llvm::GlobalValue::ExternalLinkage, nullptr, SymName); 1395 return Protocol; 1396 } 1397 1398 SmallVector<llvm::Constant*, 16> Protocols; 1399 auto RuntimeProtocols = 1400 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end()); 1401 for (const auto *PI : RuntimeProtocols) 1402 Protocols.push_back(GenerateProtocolRef(PI)); 1403 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1404 1405 // Collect information about methods 1406 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList; 1407 llvm::Constant *ClassMethodList, *OptionalClassMethodList; 1408 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList, 1409 OptionalInstanceMethodList); 1410 EmitProtocolMethodList(PD->class_methods(), ClassMethodList, 1411 OptionalClassMethodList); 1412 1413 // The isa pointer must be set to a magic number so the runtime knows it's 1414 // the correct layout. 1415 ConstantInitBuilder builder(CGM); 1416 auto ProtocolBuilder = builder.beginStruct(); 1417 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr( 1418 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1419 ProtocolBuilder.add(MakeConstantString(ProtocolName)); 1420 ProtocolBuilder.add(ProtocolList); 1421 ProtocolBuilder.add(InstanceMethodList); 1422 ProtocolBuilder.add(ClassMethodList); 1423 ProtocolBuilder.add(OptionalInstanceMethodList); 1424 ProtocolBuilder.add(OptionalClassMethodList); 1425 // Required instance properties 1426 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false)); 1427 // Optional instance properties 1428 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true)); 1429 // Required class properties 1430 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false)); 1431 // Optional class properties 1432 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true)); 1433 1434 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName, 1435 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1436 GV->setSection(sectionName<ProtocolSection>()); 1437 GV->setComdat(TheModule.getOrInsertComdat(SymName)); 1438 if (OldGV) { 1439 OldGV->replaceAllUsesWith(GV); 1440 OldGV->removeFromParent(); 1441 GV->setName(SymName); 1442 } 1443 Protocol = GV; 1444 return GV; 1445 } 1446 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 1447 const std::string &TypeEncoding) override { 1448 return GetConstantSelector(Sel, TypeEncoding); 1449 } 1450 std::string GetSymbolNameForTypeEncoding(const std::string &TypeEncoding) { 1451 std::string MangledTypes = std::string(TypeEncoding); 1452 // @ is used as a special character in ELF symbol names (used for symbol 1453 // versioning), so mangle the name to not include it. Replace it with a 1454 // character that is not a valid type encoding character (and, being 1455 // non-printable, never will be!) 1456 if (CGM.getTriple().isOSBinFormatELF()) 1457 std::replace(MangledTypes.begin(), MangledTypes.end(), '@', '\1'); 1458 // = in dll exported names causes lld to fail when linking on Windows. 1459 if (CGM.getTriple().isOSWindows()) 1460 std::replace(MangledTypes.begin(), MangledTypes.end(), '=', '\2'); 1461 return MangledTypes; 1462 } 1463 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) { 1464 if (TypeEncoding.empty()) 1465 return NULLPtr; 1466 std::string MangledTypes = 1467 GetSymbolNameForTypeEncoding(std::string(TypeEncoding)); 1468 std::string TypesVarName = ".objc_sel_types_" + MangledTypes; 1469 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName); 1470 if (!TypesGlobal) { 1471 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, 1472 TypeEncoding); 1473 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(), 1474 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName); 1475 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName)); 1476 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1477 TypesGlobal = GV; 1478 } 1479 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(), 1480 TypesGlobal, Zeros); 1481 } 1482 llvm::Constant *GetConstantSelector(Selector Sel, 1483 const std::string &TypeEncoding) override { 1484 std::string MangledTypes = GetSymbolNameForTypeEncoding(TypeEncoding); 1485 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" + 1486 MangledTypes).str(); 1487 if (auto *GV = TheModule.getNamedGlobal(SelVarName)) 1488 return GV; 1489 ConstantInitBuilder builder(CGM); 1490 auto SelBuilder = builder.beginStruct(); 1491 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_", 1492 true)); 1493 SelBuilder.add(GetTypeString(TypeEncoding)); 1494 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName, 1495 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1496 GV->setComdat(TheModule.getOrInsertComdat(SelVarName)); 1497 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1498 GV->setSection(sectionName<SelectorSection>()); 1499 return GV; 1500 } 1501 llvm::StructType *emptyStruct = nullptr; 1502 1503 /// Return pointers to the start and end of a section. On ELF platforms, we 1504 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set 1505 /// to the start and end of section names, as long as those section names are 1506 /// valid identifiers and the symbols are referenced but not defined. On 1507 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort 1508 /// by subsections and place everything that we want to reference in a middle 1509 /// subsection and then insert zero-sized symbols in subsections a and z. 1510 std::pair<llvm::Constant*,llvm::Constant*> 1511 GetSectionBounds(StringRef Section) { 1512 if (CGM.getTriple().isOSBinFormatCOFF()) { 1513 if (emptyStruct == nullptr) { 1514 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel"); 1515 emptyStruct->setBody({}, /*isPacked*/true); 1516 } 1517 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct); 1518 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) { 1519 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct, 1520 /*isConstant*/false, 1521 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix + 1522 Section); 1523 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility); 1524 Sym->setSection((Section + SecSuffix).str()); 1525 Sym->setComdat(TheModule.getOrInsertComdat((Prefix + 1526 Section).str())); 1527 Sym->setAlignment(CGM.getPointerAlign().getAsAlign()); 1528 return Sym; 1529 }; 1530 return { Sym("__start_", "$a"), Sym("__stop", "$z") }; 1531 } 1532 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy, 1533 /*isConstant*/false, 1534 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") + 1535 Section); 1536 Start->setVisibility(llvm::GlobalValue::HiddenVisibility); 1537 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy, 1538 /*isConstant*/false, 1539 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") + 1540 Section); 1541 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility); 1542 return { Start, Stop }; 1543 } 1544 CatchTypeInfo getCatchAllTypeInfo() override { 1545 return CGM.getCXXABI().getCatchAllTypeInfo(); 1546 } 1547 llvm::Function *ModuleInitFunction() override { 1548 llvm::Function *LoadFunction = llvm::Function::Create( 1549 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 1550 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function", 1551 &TheModule); 1552 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility); 1553 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function")); 1554 1555 llvm::BasicBlock *EntryBB = 1556 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 1557 CGBuilderTy B(CGM, VMContext); 1558 B.SetInsertPoint(EntryBB); 1559 ConstantInitBuilder builder(CGM); 1560 auto InitStructBuilder = builder.beginStruct(); 1561 InitStructBuilder.addInt(Int64Ty, 0); 1562 auto §ionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames; 1563 for (auto *s : sectionVec) { 1564 auto bounds = GetSectionBounds(s); 1565 InitStructBuilder.add(bounds.first); 1566 InitStructBuilder.add(bounds.second); 1567 } 1568 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init", 1569 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1570 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility); 1571 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init")); 1572 1573 CallRuntimeFunction(B, "__objc_load", {InitStruct});; 1574 B.CreateRetVoid(); 1575 // Make sure that the optimisers don't delete this function. 1576 CGM.addCompilerUsedGlobal(LoadFunction); 1577 // FIXME: Currently ELF only! 1578 // We have to do this by hand, rather than with @llvm.ctors, so that the 1579 // linker can remove the duplicate invocations. 1580 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(), 1581 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage, 1582 LoadFunction, ".objc_ctor"); 1583 // Check that this hasn't been renamed. This shouldn't happen, because 1584 // this function should be called precisely once. 1585 assert(InitVar->getName() == ".objc_ctor"); 1586 // In Windows, initialisers are sorted by the suffix. XCL is for library 1587 // initialisers, which run before user initialisers. We are running 1588 // Objective-C loads at the end of library load. This means +load methods 1589 // will run before any other static constructors, but that static 1590 // constructors can see a fully initialised Objective-C state. 1591 if (CGM.getTriple().isOSBinFormatCOFF()) 1592 InitVar->setSection(".CRT$XCLz"); 1593 else 1594 { 1595 if (CGM.getCodeGenOpts().UseInitArray) 1596 InitVar->setSection(".init_array"); 1597 else 1598 InitVar->setSection(".ctors"); 1599 } 1600 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility); 1601 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor")); 1602 CGM.addUsedGlobal(InitVar); 1603 for (auto *C : Categories) { 1604 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts()); 1605 Cat->setSection(sectionName<CategorySection>()); 1606 CGM.addUsedGlobal(Cat); 1607 } 1608 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init, 1609 StringRef Section) { 1610 auto nullBuilder = builder.beginStruct(); 1611 for (auto *F : Init) 1612 nullBuilder.add(F); 1613 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 1614 false, llvm::GlobalValue::LinkOnceODRLinkage); 1615 GV->setSection(Section); 1616 GV->setComdat(TheModule.getOrInsertComdat(Name)); 1617 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1618 CGM.addUsedGlobal(GV); 1619 return GV; 1620 }; 1621 for (auto clsAlias : ClassAliases) 1622 createNullGlobal(std::string(".objc_class_alias") + 1623 clsAlias.second, { MakeConstantString(clsAlias.second), 1624 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>()); 1625 // On ELF platforms, add a null value for each special section so that we 1626 // can always guarantee that the _start and _stop symbols will exist and be 1627 // meaningful. This is not required on COFF platforms, where our start and 1628 // stop symbols will create the section. 1629 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1630 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr}, 1631 sectionName<SelectorSection>()); 1632 if (Categories.empty()) 1633 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr, 1634 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, 1635 sectionName<CategorySection>()); 1636 if (!EmittedClass) { 1637 createNullGlobal(".objc_null_cls_init_ref", NULLPtr, 1638 sectionName<ClassSection>()); 1639 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr }, 1640 sectionName<ClassReferenceSection>()); 1641 } 1642 if (!EmittedProtocol) 1643 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr, 1644 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, 1645 NULLPtr}, sectionName<ProtocolSection>()); 1646 if (!EmittedProtocolRef) 1647 createNullGlobal(".objc_null_protocol_ref", {NULLPtr}, 1648 sectionName<ProtocolReferenceSection>()); 1649 if (ClassAliases.empty()) 1650 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr }, 1651 sectionName<ClassAliasSection>()); 1652 if (ConstantStrings.empty()) { 1653 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0); 1654 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero, 1655 i32Zero, i32Zero, i32Zero, NULLPtr }, 1656 sectionName<ConstantStringSection>()); 1657 } 1658 } 1659 ConstantStrings.clear(); 1660 Categories.clear(); 1661 Classes.clear(); 1662 1663 if (EarlyInitList.size() > 0) { 1664 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, 1665 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init", 1666 &CGM.getModule()); 1667 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", 1668 Init)); 1669 for (const auto &lateInit : EarlyInitList) { 1670 auto *global = TheModule.getGlobalVariable(lateInit.first); 1671 if (global) { 1672 llvm::GlobalVariable *GV = lateInit.second.first; 1673 b.CreateAlignedStore( 1674 global, 1675 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second), 1676 CGM.getPointerAlign().getAsAlign()); 1677 } 1678 } 1679 b.CreateRetVoid(); 1680 // We can't use the normal LLVM global initialisation array, because we 1681 // need to specify that this runs early in library initialisation. 1682 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 1683 /*isConstant*/true, llvm::GlobalValue::InternalLinkage, 1684 Init, ".objc_early_init_ptr"); 1685 InitVar->setSection(".CRT$XCLb"); 1686 CGM.addUsedGlobal(InitVar); 1687 } 1688 return nullptr; 1689 } 1690 /// In the v2 ABI, ivar offset variables use the type encoding in their name 1691 /// to trigger linker failures if the types don't match. 1692 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 1693 const ObjCIvarDecl *Ivar) override { 1694 std::string TypeEncoding; 1695 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding); 1696 TypeEncoding = GetSymbolNameForTypeEncoding(TypeEncoding); 1697 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 1698 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding; 1699 return Name; 1700 } 1701 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 1702 const ObjCInterfaceDecl *Interface, 1703 const ObjCIvarDecl *Ivar) override { 1704 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar); 1705 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 1706 if (!IvarOffsetPointer) 1707 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false, 1708 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1709 CharUnits Align = CGM.getIntAlign(); 1710 llvm::Value *Offset = 1711 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align); 1712 if (Offset->getType() != PtrDiffTy) 1713 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 1714 return Offset; 1715 } 1716 void GenerateClass(const ObjCImplementationDecl *OID) override { 1717 ASTContext &Context = CGM.getContext(); 1718 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF(); 1719 1720 // Get the class name 1721 ObjCInterfaceDecl *classDecl = 1722 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 1723 std::string className = classDecl->getNameAsString(); 1724 auto *classNameConstant = MakeConstantString(className); 1725 1726 ConstantInitBuilder builder(CGM); 1727 auto metaclassFields = builder.beginStruct(); 1728 // struct objc_class *isa; 1729 metaclassFields.addNullPointer(PtrTy); 1730 // struct objc_class *super_class; 1731 metaclassFields.addNullPointer(PtrTy); 1732 // const char *name; 1733 metaclassFields.add(classNameConstant); 1734 // long version; 1735 metaclassFields.addInt(LongTy, 0); 1736 // unsigned long info; 1737 // objc_class_flag_meta 1738 metaclassFields.addInt(LongTy, ClassFlags::ClassFlagMeta); 1739 // long instance_size; 1740 // Setting this to zero is consistent with the older ABI, but it might be 1741 // more sensible to set this to sizeof(struct objc_class) 1742 metaclassFields.addInt(LongTy, 0); 1743 // struct objc_ivar_list *ivars; 1744 metaclassFields.addNullPointer(PtrTy); 1745 // struct objc_method_list *methods 1746 // FIXME: Almost identical code is copied and pasted below for the 1747 // class, but refactoring it cleanly requires C++14 generic lambdas. 1748 if (OID->classmeth_begin() == OID->classmeth_end()) 1749 metaclassFields.addNullPointer(PtrTy); 1750 else { 1751 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 1752 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 1753 OID->classmeth_end()); 1754 metaclassFields.add( 1755 GenerateMethodList(className, "", ClassMethods, true)); 1756 } 1757 // void *dtable; 1758 metaclassFields.addNullPointer(PtrTy); 1759 // IMP cxx_construct; 1760 metaclassFields.addNullPointer(PtrTy); 1761 // IMP cxx_destruct; 1762 metaclassFields.addNullPointer(PtrTy); 1763 // struct objc_class *subclass_list 1764 metaclassFields.addNullPointer(PtrTy); 1765 // struct objc_class *sibling_class 1766 metaclassFields.addNullPointer(PtrTy); 1767 // struct objc_protocol_list *protocols; 1768 metaclassFields.addNullPointer(PtrTy); 1769 // struct reference_list *extra_data; 1770 metaclassFields.addNullPointer(PtrTy); 1771 // long abi_version; 1772 metaclassFields.addInt(LongTy, 0); 1773 // struct objc_property_list *properties 1774 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true)); 1775 1776 auto *metaclass = metaclassFields.finishAndCreateGlobal( 1777 ManglePublicSymbol("OBJC_METACLASS_") + className, 1778 CGM.getPointerAlign()); 1779 1780 auto classFields = builder.beginStruct(); 1781 // struct objc_class *isa; 1782 classFields.add(metaclass); 1783 // struct objc_class *super_class; 1784 // Get the superclass name. 1785 const ObjCInterfaceDecl * SuperClassDecl = 1786 OID->getClassInterface()->getSuperClass(); 1787 llvm::Constant *SuperClass = nullptr; 1788 if (SuperClassDecl) { 1789 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString()); 1790 SuperClass = TheModule.getNamedGlobal(SuperClassName); 1791 if (!SuperClass) 1792 { 1793 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false, 1794 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName); 1795 if (IsCOFF) { 1796 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1797 if (SuperClassDecl->hasAttr<DLLImportAttr>()) 1798 Storage = llvm::GlobalValue::DLLImportStorageClass; 1799 else if (SuperClassDecl->hasAttr<DLLExportAttr>()) 1800 Storage = llvm::GlobalValue::DLLExportStorageClass; 1801 1802 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage); 1803 } 1804 } 1805 if (!IsCOFF) 1806 classFields.add(SuperClass); 1807 else 1808 classFields.addNullPointer(PtrTy); 1809 } else 1810 classFields.addNullPointer(PtrTy); 1811 // const char *name; 1812 classFields.add(classNameConstant); 1813 // long version; 1814 classFields.addInt(LongTy, 0); 1815 // unsigned long info; 1816 // !objc_class_flag_meta 1817 classFields.addInt(LongTy, 0); 1818 // long instance_size; 1819 int superInstanceSize = !SuperClassDecl ? 0 : 1820 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 1821 // Instance size is negative for classes that have not yet had their ivar 1822 // layout calculated. 1823 classFields.addInt(LongTy, 1824 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() - 1825 superInstanceSize)); 1826 1827 if (classDecl->all_declared_ivar_begin() == nullptr) 1828 classFields.addNullPointer(PtrTy); 1829 else { 1830 int ivar_count = 0; 1831 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1832 IVD = IVD->getNextIvar()) ivar_count++; 1833 llvm::DataLayout td(&TheModule); 1834 // struct objc_ivar_list *ivars; 1835 ConstantInitBuilder b(CGM); 1836 auto ivarListBuilder = b.beginStruct(); 1837 // int count; 1838 ivarListBuilder.addInt(IntTy, ivar_count); 1839 // size_t size; 1840 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1841 PtrToInt8Ty, 1842 PtrToInt8Ty, 1843 PtrToInt8Ty, 1844 Int32Ty, 1845 Int32Ty); 1846 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) / 1847 CGM.getContext().getCharWidth()); 1848 // struct objc_ivar ivars[] 1849 auto ivarArrayBuilder = ivarListBuilder.beginArray(); 1850 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1851 IVD = IVD->getNextIvar()) { 1852 auto ivarTy = IVD->getType(); 1853 auto ivarBuilder = ivarArrayBuilder.beginStruct(); 1854 // const char *name; 1855 ivarBuilder.add(MakeConstantString(IVD->getNameAsString())); 1856 // const char *type; 1857 std::string TypeStr; 1858 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true); 1859 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true); 1860 ivarBuilder.add(MakeConstantString(TypeStr)); 1861 // int *offset; 1862 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 1863 uint64_t Offset = BaseOffset - superInstanceSize; 1864 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 1865 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD); 1866 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 1867 if (OffsetVar) 1868 OffsetVar->setInitializer(OffsetValue); 1869 else 1870 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 1871 false, llvm::GlobalValue::ExternalLinkage, 1872 OffsetValue, OffsetName); 1873 auto ivarVisibility = 1874 (IVD->getAccessControl() == ObjCIvarDecl::Private || 1875 IVD->getAccessControl() == ObjCIvarDecl::Package || 1876 classDecl->getVisibility() == HiddenVisibility) ? 1877 llvm::GlobalValue::HiddenVisibility : 1878 llvm::GlobalValue::DefaultVisibility; 1879 OffsetVar->setVisibility(ivarVisibility); 1880 if (ivarVisibility != llvm::GlobalValue::HiddenVisibility) 1881 CGM.setGVProperties(OffsetVar, OID->getClassInterface()); 1882 ivarBuilder.add(OffsetVar); 1883 // Ivar size 1884 ivarBuilder.addInt(Int32Ty, 1885 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity()); 1886 // Alignment will be stored as a base-2 log of the alignment. 1887 unsigned align = 1888 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity()); 1889 // Objects that require more than 2^64-byte alignment should be impossible! 1890 assert(align < 64); 1891 // uint32_t flags; 1892 // Bits 0-1 are ownership. 1893 // Bit 2 indicates an extended type encoding 1894 // Bits 3-8 contain log2(aligment) 1895 ivarBuilder.addInt(Int32Ty, 1896 (align << 3) | (1<<2) | 1897 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime())); 1898 ivarBuilder.finishAndAddTo(ivarArrayBuilder); 1899 } 1900 ivarArrayBuilder.finishAndAddTo(ivarListBuilder); 1901 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list", 1902 CGM.getPointerAlign(), /*constant*/ false, 1903 llvm::GlobalValue::PrivateLinkage); 1904 classFields.add(ivarList); 1905 } 1906 // struct objc_method_list *methods 1907 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 1908 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 1909 OID->instmeth_end()); 1910 for (auto *propImpl : OID->property_impls()) 1911 if (propImpl->getPropertyImplementation() == 1912 ObjCPropertyImplDecl::Synthesize) { 1913 auto addIfExists = [&](const ObjCMethodDecl *OMD) { 1914 if (OMD && OMD->hasBody()) 1915 InstanceMethods.push_back(OMD); 1916 }; 1917 addIfExists(propImpl->getGetterMethodDecl()); 1918 addIfExists(propImpl->getSetterMethodDecl()); 1919 } 1920 1921 if (InstanceMethods.size() == 0) 1922 classFields.addNullPointer(PtrTy); 1923 else 1924 classFields.add( 1925 GenerateMethodList(className, "", InstanceMethods, false)); 1926 1927 // void *dtable; 1928 classFields.addNullPointer(PtrTy); 1929 // IMP cxx_construct; 1930 classFields.addNullPointer(PtrTy); 1931 // IMP cxx_destruct; 1932 classFields.addNullPointer(PtrTy); 1933 // struct objc_class *subclass_list 1934 classFields.addNullPointer(PtrTy); 1935 // struct objc_class *sibling_class 1936 classFields.addNullPointer(PtrTy); 1937 // struct objc_protocol_list *protocols; 1938 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(), 1939 classDecl->protocol_end()); 1940 SmallVector<llvm::Constant *, 16> Protocols; 1941 for (const auto *I : RuntimeProtocols) 1942 Protocols.push_back(GenerateProtocolRef(I)); 1943 1944 if (Protocols.empty()) 1945 classFields.addNullPointer(PtrTy); 1946 else 1947 classFields.add(GenerateProtocolList(Protocols)); 1948 // struct reference_list *extra_data; 1949 classFields.addNullPointer(PtrTy); 1950 // long abi_version; 1951 classFields.addInt(LongTy, 0); 1952 // struct objc_property_list *properties 1953 classFields.add(GeneratePropertyList(OID, classDecl)); 1954 1955 llvm::GlobalVariable *classStruct = 1956 classFields.finishAndCreateGlobal(SymbolForClass(className), 1957 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1958 1959 auto *classRefSymbol = GetClassVar(className); 1960 classRefSymbol->setSection(sectionName<ClassReferenceSection>()); 1961 classRefSymbol->setInitializer(classStruct); 1962 1963 if (IsCOFF) { 1964 // we can't import a class struct. 1965 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) { 1966 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1967 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1968 } 1969 1970 if (SuperClass) { 1971 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1}; 1972 EarlyInitList.emplace_back(std::string(SuperClass->getName()), 1973 std::move(v)); 1974 } 1975 1976 } 1977 1978 1979 // Resolve the class aliases, if they exist. 1980 // FIXME: Class pointer aliases shouldn't exist! 1981 if (ClassPtrAlias) { 1982 ClassPtrAlias->replaceAllUsesWith(classStruct); 1983 ClassPtrAlias->eraseFromParent(); 1984 ClassPtrAlias = nullptr; 1985 } 1986 if (auto Placeholder = 1987 TheModule.getNamedGlobal(SymbolForClass(className))) 1988 if (Placeholder != classStruct) { 1989 Placeholder->replaceAllUsesWith(classStruct); 1990 Placeholder->eraseFromParent(); 1991 classStruct->setName(SymbolForClass(className)); 1992 } 1993 if (MetaClassPtrAlias) { 1994 MetaClassPtrAlias->replaceAllUsesWith(metaclass); 1995 MetaClassPtrAlias->eraseFromParent(); 1996 MetaClassPtrAlias = nullptr; 1997 } 1998 assert(classStruct->getName() == SymbolForClass(className)); 1999 2000 auto classInitRef = new llvm::GlobalVariable(TheModule, 2001 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage, 2002 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className); 2003 classInitRef->setSection(sectionName<ClassSection>()); 2004 CGM.addUsedGlobal(classInitRef); 2005 2006 EmittedClass = true; 2007 } 2008 public: 2009 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) { 2010 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2011 PtrToObjCSuperTy, SelectorTy); 2012 SentInitializeFn.init(&CGM, "objc_send_initialize", 2013 llvm::Type::getVoidTy(VMContext), IdTy); 2014 // struct objc_property 2015 // { 2016 // const char *name; 2017 // const char *attributes; 2018 // const char *type; 2019 // SEL getter; 2020 // SEL setter; 2021 // } 2022 PropertyMetadataTy = 2023 llvm::StructType::get(CGM.getLLVMContext(), 2024 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); 2025 } 2026 2027 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 2028 const ObjCMethodDecl *OMD, 2029 const ObjCContainerDecl *CD) override { 2030 auto &Builder = CGF.Builder; 2031 bool ReceiverCanBeNull = true; 2032 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 2033 auto selfValue = Builder.CreateLoad(selfAddr); 2034 2035 // Generate: 2036 // 2037 // /* unless the receiver is never NULL */ 2038 // if (self == nil) { 2039 // return (ReturnType){ }; 2040 // } 2041 // 2042 // /* for class methods only to force class lazy initialization */ 2043 // if (!__objc_{class}_initialized) 2044 // { 2045 // objc_send_initialize(class); 2046 // __objc_{class}_initialized = 1; 2047 // } 2048 // 2049 // _cmd = @selector(...) 2050 // ... 2051 2052 if (OMD->isClassMethod()) { 2053 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 2054 2055 // Nullable `Class` expressions cannot be messaged with a direct method 2056 // so the only reason why the receive can be null would be because 2057 // of weak linking. 2058 ReceiverCanBeNull = isWeakLinkedClass(OID); 2059 } 2060 2061 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2062 if (ReceiverCanBeNull) { 2063 llvm::BasicBlock *SelfIsNilBlock = 2064 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 2065 llvm::BasicBlock *ContBlock = 2066 CGF.createBasicBlock("objc_direct_method.cont"); 2067 2068 // if (self == nil) { 2069 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 2070 auto Zero = llvm::ConstantPointerNull::get(selfTy); 2071 2072 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), 2073 SelfIsNilBlock, ContBlock, 2074 MDHelper.createBranchWeights(1, 1 << 20)); 2075 2076 CGF.EmitBlock(SelfIsNilBlock); 2077 2078 // return (ReturnType){ }; 2079 auto retTy = OMD->getReturnType(); 2080 Builder.SetInsertPoint(SelfIsNilBlock); 2081 if (!retTy->isVoidType()) { 2082 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 2083 } 2084 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 2085 // } 2086 2087 // rest of the body 2088 CGF.EmitBlock(ContBlock); 2089 Builder.SetInsertPoint(ContBlock); 2090 } 2091 2092 if (OMD->isClassMethod()) { 2093 // Prefix of the class type. 2094 auto *classStart = 2095 llvm::StructType::get(PtrTy, PtrTy, PtrTy, LongTy, LongTy); 2096 auto &astContext = CGM.getContext(); 2097 auto flags = Builder.CreateLoad( 2098 Address{Builder.CreateStructGEP(classStart, selfValue, 4), LongTy, 2099 CharUnits::fromQuantity( 2100 astContext.getTypeAlign(astContext.UnsignedLongTy))}); 2101 auto isInitialized = 2102 Builder.CreateAnd(flags, ClassFlags::ClassFlagInitialized); 2103 llvm::BasicBlock *notInitializedBlock = 2104 CGF.createBasicBlock("objc_direct_method.class_uninitialized"); 2105 llvm::BasicBlock *initializedBlock = 2106 CGF.createBasicBlock("objc_direct_method.class_initialized"); 2107 Builder.CreateCondBr(Builder.CreateICmpEQ(isInitialized, Zeros[0]), 2108 notInitializedBlock, initializedBlock, 2109 MDHelper.createBranchWeights(1, 1 << 20)); 2110 CGF.EmitBlock(notInitializedBlock); 2111 Builder.SetInsertPoint(notInitializedBlock); 2112 CGF.EmitRuntimeCall(SentInitializeFn, selfValue); 2113 Builder.CreateBr(initializedBlock); 2114 CGF.EmitBlock(initializedBlock); 2115 Builder.SetInsertPoint(initializedBlock); 2116 } 2117 2118 // only synthesize _cmd if it's referenced 2119 if (OMD->getCmdDecl()->isUsed()) { 2120 // `_cmd` is not a parameter to direct methods, so storage must be 2121 // explicitly declared for it. 2122 CGF.EmitVarDecl(*OMD->getCmdDecl()); 2123 Builder.CreateStore(GetSelector(CGF, OMD), 2124 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 2125 } 2126 } 2127 }; 2128 2129 const char *const CGObjCGNUstep2::SectionsBaseNames[8] = 2130 { 2131 "__objc_selectors", 2132 "__objc_classes", 2133 "__objc_class_refs", 2134 "__objc_cats", 2135 "__objc_protocols", 2136 "__objc_protocol_refs", 2137 "__objc_class_aliases", 2138 "__objc_constant_string" 2139 }; 2140 2141 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] = 2142 { 2143 ".objcrt$SEL", 2144 ".objcrt$CLS", 2145 ".objcrt$CLR", 2146 ".objcrt$CAT", 2147 ".objcrt$PCL", 2148 ".objcrt$PCR", 2149 ".objcrt$CAL", 2150 ".objcrt$STR" 2151 }; 2152 2153 /// Support for the ObjFW runtime. 2154 class CGObjCObjFW: public CGObjCGNU { 2155 protected: 2156 /// The GCC ABI message lookup function. Returns an IMP pointing to the 2157 /// method implementation for this message. 2158 LazyRuntimeFunction MsgLookupFn; 2159 /// stret lookup function. While this does not seem to make sense at the 2160 /// first look, this is required to call the correct forwarding function. 2161 LazyRuntimeFunction MsgLookupFnSRet; 2162 /// The GCC ABI superclass message lookup function. Takes a pointer to a 2163 /// structure describing the receiver and the class, and a selector as 2164 /// arguments. Returns the IMP for the corresponding method. 2165 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; 2166 2167 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 2168 llvm::Value *cmd, llvm::MDNode *node, 2169 MessageSendInfo &MSI) override { 2170 CGBuilderTy &Builder = CGF.Builder; 2171 llvm::Value *args[] = { 2172 EnforceType(Builder, Receiver, IdTy), 2173 EnforceType(Builder, cmd, SelectorTy) }; 2174 2175 llvm::CallBase *imp; 2176 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2177 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); 2178 else 2179 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 2180 2181 imp->setMetadata(msgSendMDKind, node); 2182 return imp; 2183 } 2184 2185 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 2186 llvm::Value *cmd, MessageSendInfo &MSI) override { 2187 CGBuilderTy &Builder = CGF.Builder; 2188 llvm::Value *lookupArgs[] = { 2189 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd, 2190 }; 2191 2192 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2193 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); 2194 else 2195 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 2196 } 2197 2198 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, 2199 bool isWeak) override { 2200 if (isWeak) 2201 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); 2202 2203 EmitClassRef(Name); 2204 std::string SymbolName = "_OBJC_CLASS_" + Name; 2205 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); 2206 if (!ClassSymbol) 2207 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2208 llvm::GlobalValue::ExternalLinkage, 2209 nullptr, SymbolName); 2210 return ClassSymbol; 2211 } 2212 2213 public: 2214 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { 2215 // IMP objc_msg_lookup(id, SEL); 2216 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 2217 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, 2218 SelectorTy); 2219 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 2220 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2221 PtrToObjCSuperTy, SelectorTy); 2222 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, 2223 PtrToObjCSuperTy, SelectorTy); 2224 } 2225 }; 2226 } // end anonymous namespace 2227 2228 /// Emits a reference to a dummy variable which is emitted with each class. 2229 /// This ensures that a linker error will be generated when trying to link 2230 /// together modules where a referenced class is not defined. 2231 void CGObjCGNU::EmitClassRef(const std::string &className) { 2232 std::string symbolRef = "__objc_class_ref_" + className; 2233 // Don't emit two copies of the same symbol 2234 if (TheModule.getGlobalVariable(symbolRef)) 2235 return; 2236 std::string symbolName = "__objc_class_name_" + className; 2237 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 2238 if (!ClassSymbol) { 2239 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2240 llvm::GlobalValue::ExternalLinkage, 2241 nullptr, symbolName); 2242 } 2243 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 2244 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 2245 } 2246 2247 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 2248 unsigned protocolClassVersion, unsigned classABI) 2249 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 2250 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr), 2251 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion), 2252 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) { 2253 2254 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 2255 usesSEHExceptions = 2256 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment(); 2257 usesCxxExceptions = 2258 cgm.getContext().getTargetInfo().getTriple().isOSCygMing() && 2259 isRuntime(ObjCRuntime::GNUstep, 2); 2260 2261 CodeGenTypes &Types = CGM.getTypes(); 2262 IntTy = cast<llvm::IntegerType>( 2263 Types.ConvertType(CGM.getContext().IntTy)); 2264 LongTy = cast<llvm::IntegerType>( 2265 Types.ConvertType(CGM.getContext().LongTy)); 2266 SizeTy = cast<llvm::IntegerType>( 2267 Types.ConvertType(CGM.getContext().getSizeType())); 2268 PtrDiffTy = cast<llvm::IntegerType>( 2269 Types.ConvertType(CGM.getContext().getPointerDiffType())); 2270 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 2271 2272 Int8Ty = llvm::Type::getInt8Ty(VMContext); 2273 // C string type. Used in lots of places. 2274 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 2275 ProtocolPtrTy = llvm::PointerType::getUnqual( 2276 Types.ConvertType(CGM.getContext().getObjCProtoType())); 2277 2278 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 2279 Zeros[1] = Zeros[0]; 2280 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2281 // Get the selector Type. 2282 QualType selTy = CGM.getContext().getObjCSelType(); 2283 if (QualType() == selTy) { 2284 SelectorTy = PtrToInt8Ty; 2285 SelectorElemTy = Int8Ty; 2286 } else { 2287 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 2288 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType()); 2289 } 2290 2291 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 2292 PtrTy = PtrToInt8Ty; 2293 2294 Int32Ty = llvm::Type::getInt32Ty(VMContext); 2295 Int64Ty = llvm::Type::getInt64Ty(VMContext); 2296 2297 IntPtrTy = 2298 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty; 2299 2300 // Object type 2301 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 2302 ASTIdTy = CanQualType(); 2303 if (UnqualIdTy != QualType()) { 2304 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 2305 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2306 IdElemTy = CGM.getTypes().ConvertTypeForMem( 2307 ASTIdTy.getTypePtr()->getPointeeType()); 2308 } else { 2309 IdTy = PtrToInt8Ty; 2310 IdElemTy = Int8Ty; 2311 } 2312 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 2313 ProtocolTy = llvm::StructType::get(IdTy, 2314 PtrToInt8Ty, // name 2315 PtrToInt8Ty, // protocols 2316 PtrToInt8Ty, // instance methods 2317 PtrToInt8Ty, // class methods 2318 PtrToInt8Ty, // optional instance methods 2319 PtrToInt8Ty, // optional class methods 2320 PtrToInt8Ty, // properties 2321 PtrToInt8Ty);// optional properties 2322 2323 // struct objc_property_gsv1 2324 // { 2325 // const char *name; 2326 // char attributes; 2327 // char attributes2; 2328 // char unused1; 2329 // char unused2; 2330 // const char *getter_name; 2331 // const char *getter_types; 2332 // const char *setter_name; 2333 // const char *setter_types; 2334 // } 2335 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { 2336 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, 2337 PtrToInt8Ty, PtrToInt8Ty }); 2338 2339 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy); 2340 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 2341 2342 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 2343 2344 // void objc_exception_throw(id); 2345 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2346 ExceptionReThrowFn.init(&CGM, 2347 usesCxxExceptions ? "objc_exception_rethrow" 2348 : "objc_exception_throw", 2349 VoidTy, IdTy); 2350 // int objc_sync_enter(id); 2351 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy); 2352 // int objc_sync_exit(id); 2353 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy); 2354 2355 // void objc_enumerationMutation (id) 2356 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy); 2357 2358 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 2359 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 2360 PtrDiffTy, BoolTy); 2361 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 2362 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 2363 PtrDiffTy, IdTy, BoolTy, BoolTy); 2364 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2365 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 2366 PtrDiffTy, BoolTy, BoolTy); 2367 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2368 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 2369 PtrDiffTy, BoolTy, BoolTy); 2370 2371 // IMP type 2372 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 2373 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 2374 true)); 2375 2376 const LangOptions &Opts = CGM.getLangOpts(); 2377 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 2378 RuntimeVersion = 10; 2379 2380 // Don't bother initialising the GC stuff unless we're compiling in GC mode 2381 if (Opts.getGC() != LangOptions::NonGC) { 2382 // This is a bit of an hack. We should sort this out by having a proper 2383 // CGObjCGNUstep subclass for GC, but we may want to really support the old 2384 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 2385 // Get selectors needed in GC mode 2386 RetainSel = GetNullarySelector("retain", CGM.getContext()); 2387 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 2388 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 2389 2390 // Get functions needed in GC mode 2391 2392 // id objc_assign_ivar(id, id, ptrdiff_t); 2393 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy); 2394 // id objc_assign_strongCast (id, id*) 2395 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 2396 PtrToIdTy); 2397 // id objc_assign_global(id, id*); 2398 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy); 2399 // id objc_assign_weak(id, id*); 2400 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy); 2401 // id objc_read_weak(id*); 2402 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy); 2403 // void *objc_memmove_collectable(void*, void *, size_t); 2404 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 2405 SizeTy); 2406 } 2407 } 2408 2409 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, 2410 const std::string &Name, bool isWeak) { 2411 llvm::Constant *ClassName = MakeConstantString(Name); 2412 // With the incompatible ABI, this will need to be replaced with a direct 2413 // reference to the class symbol. For the compatible nonfragile ABI we are 2414 // still performing this lookup at run time but emitting the symbol for the 2415 // class externally so that we can make the switch later. 2416 // 2417 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 2418 // with memoized versions or with static references if it's safe to do so. 2419 if (!isWeak) 2420 EmitClassRef(Name); 2421 2422 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction( 2423 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class"); 2424 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); 2425 } 2426 2427 // This has to perform the lookup every time, since posing and related 2428 // techniques can modify the name -> class mapping. 2429 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, 2430 const ObjCInterfaceDecl *OID) { 2431 auto *Value = 2432 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); 2433 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) 2434 CGM.setGVProperties(ClassSymbol, OID); 2435 return Value; 2436 } 2437 2438 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 2439 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false); 2440 if (CGM.getTriple().isOSBinFormatCOFF()) { 2441 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) { 2442 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool"); 2443 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 2444 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2445 2446 const VarDecl *VD = nullptr; 2447 for (const auto *Result : DC->lookup(&II)) 2448 if ((VD = dyn_cast<VarDecl>(Result))) 2449 break; 2450 2451 CGM.setGVProperties(ClassSymbol, VD); 2452 } 2453 } 2454 return Value; 2455 } 2456 2457 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 2458 const std::string &TypeEncoding) { 2459 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel]; 2460 llvm::GlobalAlias *SelValue = nullptr; 2461 2462 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2463 e = Types.end() ; i!=e ; i++) { 2464 if (i->first == TypeEncoding) { 2465 SelValue = i->second; 2466 break; 2467 } 2468 } 2469 if (!SelValue) { 2470 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0, 2471 llvm::GlobalValue::PrivateLinkage, 2472 ".objc_selector_" + Sel.getAsString(), 2473 &TheModule); 2474 Types.emplace_back(TypeEncoding, SelValue); 2475 } 2476 2477 return SelValue; 2478 } 2479 2480 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 2481 llvm::Value *SelValue = GetSelector(CGF, Sel); 2482 2483 // Store it to a temporary. Does this satisfy the semantics of 2484 // GetAddrOfSelector? Hopefully. 2485 Address tmp = CGF.CreateTempAlloca(SelValue->getType(), 2486 CGF.getPointerAlign()); 2487 CGF.Builder.CreateStore(SelValue, tmp); 2488 return tmp; 2489 } 2490 2491 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) { 2492 return GetTypedSelector(CGF, Sel, std::string()); 2493 } 2494 2495 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, 2496 const ObjCMethodDecl *Method) { 2497 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method); 2498 return GetTypedSelector(CGF, Method->getSelector(), SelTypes); 2499 } 2500 2501 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 2502 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 2503 // With the old ABI, there was only one kind of catchall, which broke 2504 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 2505 // a pointer indicating object catchalls, and NULL to indicate real 2506 // catchalls 2507 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2508 return MakeConstantString("@id"); 2509 } else { 2510 return nullptr; 2511 } 2512 } 2513 2514 // All other types should be Objective-C interface pointer types. 2515 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>(); 2516 assert(OPT && "Invalid @catch type."); 2517 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); 2518 assert(IDecl && "Invalid @catch type."); 2519 return MakeConstantString(IDecl->getIdentifier()->getName()); 2520 } 2521 2522 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { 2523 if (usesSEHExceptions) 2524 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T); 2525 2526 if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions) 2527 return CGObjCGNU::GetEHType(T); 2528 2529 // For Objective-C++, we want to provide the ability to catch both C++ and 2530 // Objective-C objects in the same function. 2531 2532 // There's a particular fixed type info for 'id'. 2533 if (T->isObjCIdType() || 2534 T->isObjCQualifiedIdType()) { 2535 llvm::Constant *IDEHType = 2536 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 2537 if (!IDEHType) 2538 IDEHType = 2539 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 2540 false, 2541 llvm::GlobalValue::ExternalLinkage, 2542 nullptr, "__objc_id_type_info"); 2543 return IDEHType; 2544 } 2545 2546 const ObjCObjectPointerType *PT = 2547 T->getAs<ObjCObjectPointerType>(); 2548 assert(PT && "Invalid @catch type."); 2549 const ObjCInterfaceType *IT = PT->getInterfaceType(); 2550 assert(IT && "Invalid @catch type."); 2551 std::string className = 2552 std::string(IT->getDecl()->getIdentifier()->getName()); 2553 2554 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 2555 2556 // Return the existing typeinfo if it exists 2557 if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName)) 2558 return typeinfo; 2559 2560 // Otherwise create it. 2561 2562 // vtable for gnustep::libobjc::__objc_class_type_info 2563 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 2564 // platform's name mangling. 2565 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 2566 auto *Vtable = TheModule.getGlobalVariable(vtableName); 2567 if (!Vtable) { 2568 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 2569 llvm::GlobalValue::ExternalLinkage, 2570 nullptr, vtableName); 2571 } 2572 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 2573 auto *BVtable = 2574 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two); 2575 2576 llvm::Constant *typeName = 2577 ExportUniqueString(className, "__objc_eh_typename_"); 2578 2579 ConstantInitBuilder builder(CGM); 2580 auto fields = builder.beginStruct(); 2581 fields.add(BVtable); 2582 fields.add(typeName); 2583 llvm::Constant *TI = 2584 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className, 2585 CGM.getPointerAlign(), 2586 /*constant*/ false, 2587 llvm::GlobalValue::LinkOnceODRLinkage); 2588 return TI; 2589 } 2590 2591 /// Generate an NSConstantString object. 2592 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 2593 2594 std::string Str = SL->getString().str(); 2595 CharUnits Align = CGM.getPointerAlign(); 2596 2597 // Look for an existing one 2598 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 2599 if (old != ObjCStrings.end()) 2600 return ConstantAddress(old->getValue(), Int8Ty, Align); 2601 2602 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2603 2604 if (StringClass.empty()) StringClass = "NSConstantString"; 2605 2606 std::string Sym = "_OBJC_CLASS_"; 2607 Sym += StringClass; 2608 2609 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 2610 2611 if (!isa) 2612 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false, 2613 llvm::GlobalValue::ExternalWeakLinkage, 2614 nullptr, Sym); 2615 2616 ConstantInitBuilder Builder(CGM); 2617 auto Fields = Builder.beginStruct(); 2618 Fields.add(isa); 2619 Fields.add(MakeConstantString(Str)); 2620 Fields.addInt(IntTy, Str.size()); 2621 llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align); 2622 ObjCStrings[Str] = ObjCStr; 2623 ConstantStrings.push_back(ObjCStr); 2624 return ConstantAddress(ObjCStr, Int8Ty, Align); 2625 } 2626 2627 ///Generates a message send where the super is the receiver. This is a message 2628 ///send to self with special delivery semantics indicating which class's method 2629 ///should be called. 2630 RValue 2631 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 2632 ReturnValueSlot Return, 2633 QualType ResultType, 2634 Selector Sel, 2635 const ObjCInterfaceDecl *Class, 2636 bool isCategoryImpl, 2637 llvm::Value *Receiver, 2638 bool IsClassMessage, 2639 const CallArgList &CallArgs, 2640 const ObjCMethodDecl *Method) { 2641 CGBuilderTy &Builder = CGF.Builder; 2642 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2643 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2644 return RValue::get(EnforceType(Builder, Receiver, 2645 CGM.getTypes().ConvertType(ResultType))); 2646 } 2647 if (Sel == ReleaseSel) { 2648 return RValue::get(nullptr); 2649 } 2650 } 2651 2652 llvm::Value *cmd = GetSelector(CGF, Sel); 2653 CallArgList ActualArgs; 2654 2655 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 2656 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2657 ActualArgs.addFrom(CallArgs); 2658 2659 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2660 2661 llvm::Value *ReceiverClass = nullptr; 2662 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2663 if (isV2ABI) { 2664 ReceiverClass = GetClassNamed(CGF, 2665 Class->getSuperClass()->getNameAsString(), /*isWeak*/false); 2666 if (IsClassMessage) { 2667 // Load the isa pointer of the superclass is this is a class method. 2668 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2669 llvm::PointerType::getUnqual(IdTy)); 2670 ReceiverClass = 2671 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2672 } 2673 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy); 2674 } else { 2675 if (isCategoryImpl) { 2676 llvm::FunctionCallee classLookupFunction = nullptr; 2677 if (IsClassMessage) { 2678 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2679 IdTy, PtrTy, true), "objc_get_meta_class"); 2680 } else { 2681 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2682 IdTy, PtrTy, true), "objc_get_class"); 2683 } 2684 ReceiverClass = Builder.CreateCall(classLookupFunction, 2685 MakeConstantString(Class->getNameAsString())); 2686 } else { 2687 // Set up global aliases for the metaclass or class pointer if they do not 2688 // already exist. These will are forward-references which will be set to 2689 // pointers to the class and metaclass structure created for the runtime 2690 // load function. To send a message to super, we look up the value of the 2691 // super_class pointer from either the class or metaclass structure. 2692 if (IsClassMessage) { 2693 if (!MetaClassPtrAlias) { 2694 MetaClassPtrAlias = llvm::GlobalAlias::create( 2695 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2696 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule); 2697 } 2698 ReceiverClass = MetaClassPtrAlias; 2699 } else { 2700 if (!ClassPtrAlias) { 2701 ClassPtrAlias = llvm::GlobalAlias::create( 2702 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2703 ".objc_class_ref" + Class->getNameAsString(), &TheModule); 2704 } 2705 ReceiverClass = ClassPtrAlias; 2706 } 2707 } 2708 // Cast the pointer to a simplified version of the class structure 2709 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy); 2710 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2711 llvm::PointerType::getUnqual(CastTy)); 2712 // Get the superclass pointer 2713 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1); 2714 // Load the superclass pointer 2715 ReceiverClass = 2716 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2717 } 2718 // Construct the structure used to look up the IMP 2719 llvm::StructType *ObjCSuperTy = 2720 llvm::StructType::get(Receiver->getType(), IdTy); 2721 2722 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy, 2723 CGF.getPointerAlign()); 2724 2725 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 2726 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 2727 2728 // Get the IMP 2729 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); 2730 imp = EnforceType(Builder, imp, MSI.MessengerType); 2731 2732 llvm::Metadata *impMD[] = { 2733 llvm::MDString::get(VMContext, Sel.getAsString()), 2734 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 2735 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2736 llvm::Type::getInt1Ty(VMContext), IsClassMessage))}; 2737 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2738 2739 CGCallee callee(CGCalleeInfo(), imp); 2740 2741 llvm::CallBase *call; 2742 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2743 call->setMetadata(msgSendMDKind, node); 2744 return msgRet; 2745 } 2746 2747 /// Generate code for a message send expression. 2748 RValue 2749 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 2750 ReturnValueSlot Return, 2751 QualType ResultType, 2752 Selector Sel, 2753 llvm::Value *Receiver, 2754 const CallArgList &CallArgs, 2755 const ObjCInterfaceDecl *Class, 2756 const ObjCMethodDecl *Method) { 2757 CGBuilderTy &Builder = CGF.Builder; 2758 2759 // Strip out message sends to retain / release in GC mode 2760 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2761 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2762 return RValue::get(EnforceType(Builder, Receiver, 2763 CGM.getTypes().ConvertType(ResultType))); 2764 } 2765 if (Sel == ReleaseSel) { 2766 return RValue::get(nullptr); 2767 } 2768 } 2769 2770 bool isDirect = Method && Method->isDirectMethod(); 2771 2772 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2773 llvm::Value *cmd; 2774 if (!isDirect) { 2775 if (Method) 2776 cmd = GetSelector(CGF, Method); 2777 else 2778 cmd = GetSelector(CGF, Sel); 2779 cmd = EnforceType(Builder, cmd, SelectorTy); 2780 } 2781 2782 Receiver = EnforceType(Builder, Receiver, IdTy); 2783 2784 llvm::Metadata *impMD[] = { 2785 llvm::MDString::get(VMContext, Sel.getAsString()), 2786 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""), 2787 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2788 llvm::Type::getInt1Ty(VMContext), Class != nullptr))}; 2789 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2790 2791 CallArgList ActualArgs; 2792 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 2793 if (!isDirect) 2794 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2795 ActualArgs.addFrom(CallArgs); 2796 2797 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2798 2799 // Message sends are expected to return a zero value when the 2800 // receiver is nil. At one point, this was only guaranteed for 2801 // simple integer and pointer types, but expectations have grown 2802 // over time. 2803 // 2804 // Given a nil receiver, the GNU runtime's message lookup will 2805 // return a stub function that simply sets various return-value 2806 // registers to zero and then returns. That's good enough for us 2807 // if and only if (1) the calling conventions of that stub are 2808 // compatible with the signature we're using and (2) the registers 2809 // it sets are sufficient to produce a zero value of the return type. 2810 // Rather than doing a whole target-specific analysis, we assume it 2811 // only works for void, integer, and pointer types, and in all 2812 // other cases we do an explicit nil check is emitted code. In 2813 // addition to ensuring we produce a zero value for other types, this 2814 // sidesteps the few outright CC incompatibilities we know about that 2815 // could otherwise lead to crashes, like when a method is expected to 2816 // return on the x87 floating point stack or adjust the stack pointer 2817 // because of an indirect return. 2818 bool hasParamDestroyedInCallee = false; 2819 bool requiresExplicitZeroResult = false; 2820 bool requiresNilReceiverCheck = [&] { 2821 // We never need a check if we statically know the receiver isn't nil. 2822 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false, 2823 Class, Receiver)) 2824 return false; 2825 2826 // If there's a consumed argument, we need a nil check. 2827 if (Method && Method->hasParamDestroyedInCallee()) { 2828 hasParamDestroyedInCallee = true; 2829 } 2830 2831 // If the return value isn't flagged as unused, and the result 2832 // type isn't in our narrow set where we assume compatibility, 2833 // we need a nil check to ensure a nil value. 2834 if (!Return.isUnused()) { 2835 if (ResultType->isVoidType()) { 2836 // void results are definitely okay. 2837 } else if (ResultType->hasPointerRepresentation() && 2838 CGM.getTypes().isZeroInitializable(ResultType)) { 2839 // Pointer types should be fine as long as they have 2840 // bitwise-zero null pointers. But do we need to worry 2841 // about unusual address spaces? 2842 } else if (ResultType->isIntegralOrEnumerationType()) { 2843 // Bitwise zero should always be zero for integral types. 2844 // FIXME: we probably need a size limit here, but we've 2845 // never imposed one before 2846 } else { 2847 // Otherwise, use an explicit check just to be sure, unless we're 2848 // calling a direct method, where the implementation does this for us. 2849 requiresExplicitZeroResult = !isDirect; 2850 } 2851 } 2852 2853 return hasParamDestroyedInCallee || requiresExplicitZeroResult; 2854 }(); 2855 2856 // We will need to explicitly zero-initialize an aggregate result slot 2857 // if we generally require explicit zeroing and we have an aggregate 2858 // result. 2859 bool requiresExplicitAggZeroing = 2860 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType); 2861 2862 // The block we're going to end up in after any message send or nil path. 2863 llvm::BasicBlock *continueBB = nullptr; 2864 // The block that eventually branched to continueBB along the nil path. 2865 llvm::BasicBlock *nilPathBB = nullptr; 2866 // The block to do explicit work in along the nil path, if necessary. 2867 llvm::BasicBlock *nilCleanupBB = nullptr; 2868 2869 // Emit the nil-receiver check. 2870 if (requiresNilReceiverCheck) { 2871 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend"); 2872 continueBB = CGF.createBasicBlock("continue"); 2873 2874 // If we need to zero-initialize an aggregate result or destroy 2875 // consumed arguments, we'll need a separate cleanup block. 2876 // Otherwise we can just branch directly to the continuation block. 2877 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) { 2878 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup"); 2879 } else { 2880 nilPathBB = Builder.GetInsertBlock(); 2881 } 2882 2883 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 2884 llvm::Constant::getNullValue(Receiver->getType())); 2885 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB, 2886 messageBB); 2887 CGF.EmitBlock(messageBB); 2888 } 2889 2890 // Get the IMP to call 2891 llvm::Value *imp; 2892 2893 // If this is a direct method, just emit it here. 2894 if (isDirect) 2895 imp = GenerateMethod(Method, Method->getClassInterface()); 2896 else 2897 // If we have non-legacy dispatch specified, we try using the 2898 // objc_msgSend() functions. These are not supported on all platforms 2899 // (or all runtimes on a given platform), so we 2900 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 2901 case CodeGenOptions::Legacy: 2902 imp = LookupIMP(CGF, Receiver, cmd, node, MSI); 2903 break; 2904 case CodeGenOptions::Mixed: 2905 case CodeGenOptions::NonLegacy: 2906 StringRef name = "objc_msgSend"; 2907 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2908 name = "objc_msgSend_fpret"; 2909 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 2910 name = "objc_msgSend_stret"; 2911 2912 // The address of the memory block is be passed in x8 for POD type, 2913 // or in x0 for non-POD type (marked as inreg). 2914 bool shouldCheckForInReg = 2915 CGM.getContext() 2916 .getTargetInfo() 2917 .getTriple() 2918 .isWindowsMSVCEnvironment() && 2919 CGM.getContext().getTargetInfo().getTriple().isAArch64(); 2920 if (shouldCheckForInReg && CGM.ReturnTypeHasInReg(MSI.CallInfo)) { 2921 name = "objc_msgSend_stret2"; 2922 } 2923 } 2924 // The actual types here don't matter - we're going to bitcast the 2925 // function anyway 2926 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2927 name) 2928 .getCallee(); 2929 } 2930 2931 // Reset the receiver in case the lookup modified it 2932 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy); 2933 2934 imp = EnforceType(Builder, imp, MSI.MessengerType); 2935 2936 llvm::CallBase *call; 2937 CGCallee callee(CGCalleeInfo(), imp); 2938 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2939 if (!isDirect) 2940 call->setMetadata(msgSendMDKind, node); 2941 2942 if (requiresNilReceiverCheck) { 2943 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock(); 2944 CGF.Builder.CreateBr(continueBB); 2945 2946 // Emit the nil path if we decided it was necessary above. 2947 if (nilCleanupBB) { 2948 CGF.EmitBlock(nilCleanupBB); 2949 2950 if (hasParamDestroyedInCallee) { 2951 destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 2952 } 2953 2954 if (requiresExplicitAggZeroing) { 2955 assert(msgRet.isAggregate()); 2956 Address addr = msgRet.getAggregateAddress(); 2957 CGF.EmitNullInitialization(addr, ResultType); 2958 } 2959 2960 nilPathBB = CGF.Builder.GetInsertBlock(); 2961 CGF.Builder.CreateBr(continueBB); 2962 } 2963 2964 // Enter the continuation block and emit a phi if required. 2965 CGF.EmitBlock(continueBB); 2966 if (msgRet.isScalar()) { 2967 // If the return type is void, do nothing 2968 if (llvm::Value *v = msgRet.getScalarVal()) { 2969 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 2970 phi->addIncoming(v, nonNilPathBB); 2971 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB); 2972 msgRet = RValue::get(phi); 2973 } 2974 } else if (msgRet.isAggregate()) { 2975 // Aggregate zeroing is handled in nilCleanupBB when it's required. 2976 } else /* isComplex() */ { 2977 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 2978 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 2979 phi->addIncoming(v.first, nonNilPathBB); 2980 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 2981 nilPathBB); 2982 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 2983 phi2->addIncoming(v.second, nonNilPathBB); 2984 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 2985 nilPathBB); 2986 msgRet = RValue::getComplex(phi, phi2); 2987 } 2988 } 2989 return msgRet; 2990 } 2991 2992 /// Generates a MethodList. Used in construction of a objc_class and 2993 /// objc_category structures. 2994 llvm::Constant *CGObjCGNU:: 2995 GenerateMethodList(StringRef ClassName, 2996 StringRef CategoryName, 2997 ArrayRef<const ObjCMethodDecl*> Methods, 2998 bool isClassMethodList) { 2999 if (Methods.empty()) 3000 return NULLPtr; 3001 3002 ConstantInitBuilder Builder(CGM); 3003 3004 auto MethodList = Builder.beginStruct(); 3005 MethodList.addNullPointer(CGM.Int8PtrTy); 3006 MethodList.addInt(Int32Ty, Methods.size()); 3007 3008 // Get the method structure type. 3009 llvm::StructType *ObjCMethodTy = 3010 llvm::StructType::get(CGM.getLLVMContext(), { 3011 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 3012 PtrToInt8Ty, // Method types 3013 IMPTy // Method pointer 3014 }); 3015 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 3016 if (isV2ABI) { 3017 // size_t size; 3018 llvm::DataLayout td(&TheModule); 3019 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) / 3020 CGM.getContext().getCharWidth()); 3021 ObjCMethodTy = 3022 llvm::StructType::get(CGM.getLLVMContext(), { 3023 IMPTy, // Method pointer 3024 PtrToInt8Ty, // Selector 3025 PtrToInt8Ty // Extended type encoding 3026 }); 3027 } else { 3028 ObjCMethodTy = 3029 llvm::StructType::get(CGM.getLLVMContext(), { 3030 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 3031 PtrToInt8Ty, // Method types 3032 IMPTy // Method pointer 3033 }); 3034 } 3035 auto MethodArray = MethodList.beginArray(); 3036 ASTContext &Context = CGM.getContext(); 3037 for (const auto *OMD : Methods) { 3038 llvm::Constant *FnPtr = 3039 TheModule.getFunction(getSymbolNameForMethod(OMD)); 3040 assert(FnPtr && "Can't generate metadata for method that doesn't exist"); 3041 auto Method = MethodArray.beginStruct(ObjCMethodTy); 3042 if (isV2ABI) { 3043 Method.add(FnPtr); 3044 Method.add(GetConstantSelector(OMD->getSelector(), 3045 Context.getObjCEncodingForMethodDecl(OMD))); 3046 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true))); 3047 } else { 3048 Method.add(MakeConstantString(OMD->getSelector().getAsString())); 3049 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD))); 3050 Method.add(FnPtr); 3051 } 3052 Method.finishAndAddTo(MethodArray); 3053 } 3054 MethodArray.finishAndAddTo(MethodList); 3055 3056 // Create an instance of the structure 3057 return MethodList.finishAndCreateGlobal(".objc_method_list", 3058 CGM.getPointerAlign()); 3059 } 3060 3061 /// Generates an IvarList. Used in construction of a objc_class. 3062 llvm::Constant *CGObjCGNU:: 3063 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 3064 ArrayRef<llvm::Constant *> IvarTypes, 3065 ArrayRef<llvm::Constant *> IvarOffsets, 3066 ArrayRef<llvm::Constant *> IvarAlign, 3067 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) { 3068 if (IvarNames.empty()) 3069 return NULLPtr; 3070 3071 ConstantInitBuilder Builder(CGM); 3072 3073 // Structure containing array count followed by array. 3074 auto IvarList = Builder.beginStruct(); 3075 IvarList.addInt(IntTy, (int)IvarNames.size()); 3076 3077 // Get the ivar structure type. 3078 llvm::StructType *ObjCIvarTy = 3079 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy); 3080 3081 // Array of ivar structures. 3082 auto Ivars = IvarList.beginArray(ObjCIvarTy); 3083 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 3084 auto Ivar = Ivars.beginStruct(ObjCIvarTy); 3085 Ivar.add(IvarNames[i]); 3086 Ivar.add(IvarTypes[i]); 3087 Ivar.add(IvarOffsets[i]); 3088 Ivar.finishAndAddTo(Ivars); 3089 } 3090 Ivars.finishAndAddTo(IvarList); 3091 3092 // Create an instance of the structure 3093 return IvarList.finishAndCreateGlobal(".objc_ivar_list", 3094 CGM.getPointerAlign()); 3095 } 3096 3097 /// Generate a class structure 3098 llvm::Constant *CGObjCGNU::GenerateClassStructure( 3099 llvm::Constant *MetaClass, 3100 llvm::Constant *SuperClass, 3101 unsigned info, 3102 const char *Name, 3103 llvm::Constant *Version, 3104 llvm::Constant *InstanceSize, 3105 llvm::Constant *IVars, 3106 llvm::Constant *Methods, 3107 llvm::Constant *Protocols, 3108 llvm::Constant *IvarOffsets, 3109 llvm::Constant *Properties, 3110 llvm::Constant *StrongIvarBitmap, 3111 llvm::Constant *WeakIvarBitmap, 3112 bool isMeta) { 3113 // Set up the class structure 3114 // Note: Several of these are char*s when they should be ids. This is 3115 // because the runtime performs this translation on load. 3116 // 3117 // Fields marked New ABI are part of the GNUstep runtime. We emit them 3118 // anyway; the classes will still work with the GNU runtime, they will just 3119 // be ignored. 3120 llvm::StructType *ClassTy = llvm::StructType::get( 3121 PtrToInt8Ty, // isa 3122 PtrToInt8Ty, // super_class 3123 PtrToInt8Ty, // name 3124 LongTy, // version 3125 LongTy, // info 3126 LongTy, // instance_size 3127 IVars->getType(), // ivars 3128 Methods->getType(), // methods 3129 // These are all filled in by the runtime, so we pretend 3130 PtrTy, // dtable 3131 PtrTy, // subclass_list 3132 PtrTy, // sibling_class 3133 PtrTy, // protocols 3134 PtrTy, // gc_object_type 3135 // New ABI: 3136 LongTy, // abi_version 3137 IvarOffsets->getType(), // ivar_offsets 3138 Properties->getType(), // properties 3139 IntPtrTy, // strong_pointers 3140 IntPtrTy // weak_pointers 3141 ); 3142 3143 ConstantInitBuilder Builder(CGM); 3144 auto Elements = Builder.beginStruct(ClassTy); 3145 3146 // Fill in the structure 3147 3148 // isa 3149 Elements.add(MetaClass); 3150 // super_class 3151 Elements.add(SuperClass); 3152 // name 3153 Elements.add(MakeConstantString(Name, ".class_name")); 3154 // version 3155 Elements.addInt(LongTy, 0); 3156 // info 3157 Elements.addInt(LongTy, info); 3158 // instance_size 3159 if (isMeta) { 3160 llvm::DataLayout td(&TheModule); 3161 Elements.addInt(LongTy, 3162 td.getTypeSizeInBits(ClassTy) / 3163 CGM.getContext().getCharWidth()); 3164 } else 3165 Elements.add(InstanceSize); 3166 // ivars 3167 Elements.add(IVars); 3168 // methods 3169 Elements.add(Methods); 3170 // These are all filled in by the runtime, so we pretend 3171 // dtable 3172 Elements.add(NULLPtr); 3173 // subclass_list 3174 Elements.add(NULLPtr); 3175 // sibling_class 3176 Elements.add(NULLPtr); 3177 // protocols 3178 Elements.add(Protocols); 3179 // gc_object_type 3180 Elements.add(NULLPtr); 3181 // abi_version 3182 Elements.addInt(LongTy, ClassABIVersion); 3183 // ivar_offsets 3184 Elements.add(IvarOffsets); 3185 // properties 3186 Elements.add(Properties); 3187 // strong_pointers 3188 Elements.add(StrongIvarBitmap); 3189 // weak_pointers 3190 Elements.add(WeakIvarBitmap); 3191 // Create an instance of the structure 3192 // This is now an externally visible symbol, so that we can speed up class 3193 // messages in the next ABI. We may already have some weak references to 3194 // this, so check and fix them properly. 3195 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 3196 std::string(Name)); 3197 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 3198 llvm::Constant *Class = 3199 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false, 3200 llvm::GlobalValue::ExternalLinkage); 3201 if (ClassRef) { 3202 ClassRef->replaceAllUsesWith(Class); 3203 ClassRef->removeFromParent(); 3204 Class->setName(ClassSym); 3205 } 3206 return Class; 3207 } 3208 3209 llvm::Constant *CGObjCGNU:: 3210 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) { 3211 // Get the method structure type. 3212 llvm::StructType *ObjCMethodDescTy = 3213 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); 3214 ASTContext &Context = CGM.getContext(); 3215 ConstantInitBuilder Builder(CGM); 3216 auto MethodList = Builder.beginStruct(); 3217 MethodList.addInt(IntTy, Methods.size()); 3218 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 3219 for (auto *M : Methods) { 3220 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 3221 Method.add(MakeConstantString(M->getSelector().getAsString())); 3222 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M))); 3223 Method.finishAndAddTo(MethodArray); 3224 } 3225 MethodArray.finishAndAddTo(MethodList); 3226 return MethodList.finishAndCreateGlobal(".objc_method_list", 3227 CGM.getPointerAlign()); 3228 } 3229 3230 // Create the protocol list structure used in classes, categories and so on 3231 llvm::Constant * 3232 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) { 3233 3234 ConstantInitBuilder Builder(CGM); 3235 auto ProtocolList = Builder.beginStruct(); 3236 ProtocolList.add(NULLPtr); 3237 ProtocolList.addInt(LongTy, Protocols.size()); 3238 3239 auto Elements = ProtocolList.beginArray(PtrToInt8Ty); 3240 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 3241 iter != endIter ; iter++) { 3242 llvm::Constant *protocol = nullptr; 3243 llvm::StringMap<llvm::Constant*>::iterator value = 3244 ExistingProtocols.find(*iter); 3245 if (value == ExistingProtocols.end()) { 3246 protocol = GenerateEmptyProtocol(*iter); 3247 } else { 3248 protocol = value->getValue(); 3249 } 3250 Elements.add(protocol); 3251 } 3252 Elements.finishAndAddTo(ProtocolList); 3253 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3254 CGM.getPointerAlign()); 3255 } 3256 3257 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, 3258 const ObjCProtocolDecl *PD) { 3259 auto protocol = GenerateProtocolRef(PD); 3260 llvm::Type *T = 3261 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 3262 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 3263 } 3264 3265 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) { 3266 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()]; 3267 if (!protocol) 3268 GenerateProtocol(PD); 3269 assert(protocol && "Unknown protocol"); 3270 return protocol; 3271 } 3272 3273 llvm::Constant * 3274 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) { 3275 llvm::Constant *ProtocolList = GenerateProtocolList({}); 3276 llvm::Constant *MethodList = GenerateProtocolMethodList({}); 3277 // Protocols are objects containing lists of the methods implemented and 3278 // protocols adopted. 3279 ConstantInitBuilder Builder(CGM); 3280 auto Elements = Builder.beginStruct(); 3281 3282 // The isa pointer must be set to a magic number so the runtime knows it's 3283 // the correct layout. 3284 Elements.add(llvm::ConstantExpr::getIntToPtr( 3285 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3286 3287 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name")); 3288 Elements.add(ProtocolList); /* .protocol_list */ 3289 Elements.add(MethodList); /* .instance_methods */ 3290 Elements.add(MethodList); /* .class_methods */ 3291 Elements.add(MethodList); /* .optional_instance_methods */ 3292 Elements.add(MethodList); /* .optional_class_methods */ 3293 Elements.add(NULLPtr); /* .properties */ 3294 Elements.add(NULLPtr); /* .optional_properties */ 3295 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName), 3296 CGM.getPointerAlign()); 3297 } 3298 3299 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 3300 if (PD->isNonRuntimeProtocol()) 3301 return; 3302 3303 std::string ProtocolName = PD->getNameAsString(); 3304 3305 // Use the protocol definition, if there is one. 3306 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3307 PD = Def; 3308 3309 SmallVector<std::string, 16> Protocols; 3310 for (const auto *PI : PD->protocols()) 3311 Protocols.push_back(PI->getNameAsString()); 3312 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3313 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods; 3314 for (const auto *I : PD->instance_methods()) 3315 if (I->isOptional()) 3316 OptionalInstanceMethods.push_back(I); 3317 else 3318 InstanceMethods.push_back(I); 3319 // Collect information about class methods: 3320 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3321 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods; 3322 for (const auto *I : PD->class_methods()) 3323 if (I->isOptional()) 3324 OptionalClassMethods.push_back(I); 3325 else 3326 ClassMethods.push_back(I); 3327 3328 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 3329 llvm::Constant *InstanceMethodList = 3330 GenerateProtocolMethodList(InstanceMethods); 3331 llvm::Constant *ClassMethodList = 3332 GenerateProtocolMethodList(ClassMethods); 3333 llvm::Constant *OptionalInstanceMethodList = 3334 GenerateProtocolMethodList(OptionalInstanceMethods); 3335 llvm::Constant *OptionalClassMethodList = 3336 GenerateProtocolMethodList(OptionalClassMethods); 3337 3338 // Property metadata: name, attributes, isSynthesized, setter name, setter 3339 // types, getter name, getter types. 3340 // The isSynthesized value is always set to 0 in a protocol. It exists to 3341 // simplify the runtime library by allowing it to use the same data 3342 // structures for protocol metadata everywhere. 3343 3344 llvm::Constant *PropertyList = 3345 GeneratePropertyList(nullptr, PD, false, false); 3346 llvm::Constant *OptionalPropertyList = 3347 GeneratePropertyList(nullptr, PD, false, true); 3348 3349 // Protocols are objects containing lists of the methods implemented and 3350 // protocols adopted. 3351 // The isa pointer must be set to a magic number so the runtime knows it's 3352 // the correct layout. 3353 ConstantInitBuilder Builder(CGM); 3354 auto Elements = Builder.beginStruct(); 3355 Elements.add( 3356 llvm::ConstantExpr::getIntToPtr( 3357 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3358 Elements.add(MakeConstantString(ProtocolName)); 3359 Elements.add(ProtocolList); 3360 Elements.add(InstanceMethodList); 3361 Elements.add(ClassMethodList); 3362 Elements.add(OptionalInstanceMethodList); 3363 Elements.add(OptionalClassMethodList); 3364 Elements.add(PropertyList); 3365 Elements.add(OptionalPropertyList); 3366 ExistingProtocols[ProtocolName] = 3367 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()); 3368 } 3369 void CGObjCGNU::GenerateProtocolHolderCategory() { 3370 // Collect information about instance methods 3371 3372 ConstantInitBuilder Builder(CGM); 3373 auto Elements = Builder.beginStruct(); 3374 3375 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 3376 const std::string CategoryName = "AnotherHack"; 3377 Elements.add(MakeConstantString(CategoryName)); 3378 Elements.add(MakeConstantString(ClassName)); 3379 // Instance method list 3380 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false)); 3381 // Class method list 3382 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true)); 3383 3384 // Protocol list 3385 ConstantInitBuilder ProtocolListBuilder(CGM); 3386 auto ProtocolList = ProtocolListBuilder.beginStruct(); 3387 ProtocolList.add(NULLPtr); 3388 ProtocolList.addInt(LongTy, ExistingProtocols.size()); 3389 auto ProtocolElements = ProtocolList.beginArray(PtrTy); 3390 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 3391 iter != endIter ; iter++) { 3392 ProtocolElements.add(iter->getValue()); 3393 } 3394 ProtocolElements.finishAndAddTo(ProtocolList); 3395 Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3396 CGM.getPointerAlign())); 3397 Categories.push_back( 3398 Elements.finishAndCreateGlobal("", CGM.getPointerAlign())); 3399 } 3400 3401 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 3402 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 3403 /// bits set to their values, LSB first, while larger ones are stored in a 3404 /// structure of this / form: 3405 /// 3406 /// struct { int32_t length; int32_t values[length]; }; 3407 /// 3408 /// The values in the array are stored in host-endian format, with the least 3409 /// significant bit being assumed to come first in the bitfield. Therefore, a 3410 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 3411 /// bitfield / with the 63rd bit set will be 1<<64. 3412 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 3413 int bitCount = bits.size(); 3414 int ptrBits = CGM.getDataLayout().getPointerSizeInBits(); 3415 if (bitCount < ptrBits) { 3416 uint64_t val = 1; 3417 for (int i=0 ; i<bitCount ; ++i) { 3418 if (bits[i]) val |= 1ULL<<(i+1); 3419 } 3420 return llvm::ConstantInt::get(IntPtrTy, val); 3421 } 3422 SmallVector<llvm::Constant *, 8> values; 3423 int v=0; 3424 while (v < bitCount) { 3425 int32_t word = 0; 3426 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 3427 if (bits[v]) word |= 1<<i; 3428 v++; 3429 } 3430 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 3431 } 3432 3433 ConstantInitBuilder builder(CGM); 3434 auto fields = builder.beginStruct(); 3435 fields.addInt(Int32Ty, values.size()); 3436 auto array = fields.beginArray(); 3437 for (auto *v : values) array.add(v); 3438 array.finishAndAddTo(fields); 3439 3440 llvm::Constant *GS = 3441 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4)); 3442 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 3443 return ptr; 3444 } 3445 3446 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const 3447 ObjCCategoryDecl *OCD) { 3448 const auto &RefPro = OCD->getReferencedProtocols(); 3449 const auto RuntimeProtos = 3450 GetRuntimeProtocolList(RefPro.begin(), RefPro.end()); 3451 SmallVector<std::string, 16> Protocols; 3452 for (const auto *PD : RuntimeProtos) 3453 Protocols.push_back(PD->getNameAsString()); 3454 return GenerateProtocolList(Protocols); 3455 } 3456 3457 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3458 const ObjCInterfaceDecl *Class = OCD->getClassInterface(); 3459 std::string ClassName = Class->getNameAsString(); 3460 std::string CategoryName = OCD->getNameAsString(); 3461 3462 // Collect the names of referenced protocols 3463 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 3464 3465 ConstantInitBuilder Builder(CGM); 3466 auto Elements = Builder.beginStruct(); 3467 Elements.add(MakeConstantString(CategoryName)); 3468 Elements.add(MakeConstantString(ClassName)); 3469 // Instance method list 3470 SmallVector<ObjCMethodDecl*, 16> InstanceMethods; 3471 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(), 3472 OCD->instmeth_end()); 3473 Elements.add( 3474 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false)); 3475 3476 // Class method list 3477 3478 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 3479 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(), 3480 OCD->classmeth_end()); 3481 Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true)); 3482 3483 // Protocol list 3484 Elements.add(GenerateCategoryProtocolList(CatDecl)); 3485 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 3486 const ObjCCategoryDecl *Category = 3487 Class->FindCategoryDeclaration(OCD->getIdentifier()); 3488 if (Category) { 3489 // Instance properties 3490 Elements.add(GeneratePropertyList(OCD, Category, false)); 3491 // Class properties 3492 Elements.add(GeneratePropertyList(OCD, Category, true)); 3493 } else { 3494 Elements.addNullPointer(PtrTy); 3495 Elements.addNullPointer(PtrTy); 3496 } 3497 } 3498 3499 Categories.push_back(Elements.finishAndCreateGlobal( 3500 std::string(".objc_category_") + ClassName + CategoryName, 3501 CGM.getPointerAlign())); 3502 } 3503 3504 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container, 3505 const ObjCContainerDecl *OCD, 3506 bool isClassProperty, 3507 bool protocolOptionalProperties) { 3508 3509 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3510 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3511 bool isProtocol = isa<ObjCProtocolDecl>(OCD); 3512 ASTContext &Context = CGM.getContext(); 3513 3514 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties 3515 = [&](const ObjCProtocolDecl *Proto) { 3516 for (const auto *P : Proto->protocols()) 3517 collectProtocolProperties(P); 3518 for (const auto *PD : Proto->properties()) { 3519 if (isClassProperty != PD->isClassProperty()) 3520 continue; 3521 // Skip any properties that are declared in protocols that this class 3522 // conforms to but are not actually implemented by this class. 3523 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container)) 3524 continue; 3525 if (!PropertySet.insert(PD->getIdentifier()).second) 3526 continue; 3527 Properties.push_back(PD); 3528 } 3529 }; 3530 3531 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3532 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3533 for (auto *PD : ClassExt->properties()) { 3534 if (isClassProperty != PD->isClassProperty()) 3535 continue; 3536 PropertySet.insert(PD->getIdentifier()); 3537 Properties.push_back(PD); 3538 } 3539 3540 for (const auto *PD : OCD->properties()) { 3541 if (isClassProperty != PD->isClassProperty()) 3542 continue; 3543 // If we're generating a list for a protocol, skip optional / required ones 3544 // when generating the other list. 3545 if (isProtocol && (protocolOptionalProperties != PD->isOptional())) 3546 continue; 3547 // Don't emit duplicate metadata for properties that were already in a 3548 // class extension. 3549 if (!PropertySet.insert(PD->getIdentifier()).second) 3550 continue; 3551 3552 Properties.push_back(PD); 3553 } 3554 3555 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3556 for (const auto *P : OID->all_referenced_protocols()) 3557 collectProtocolProperties(P); 3558 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) 3559 for (const auto *P : CD->protocols()) 3560 collectProtocolProperties(P); 3561 3562 auto numProperties = Properties.size(); 3563 3564 if (numProperties == 0) 3565 return NULLPtr; 3566 3567 ConstantInitBuilder builder(CGM); 3568 auto propertyList = builder.beginStruct(); 3569 auto properties = PushPropertyListHeader(propertyList, numProperties); 3570 3571 // Add all of the property methods need adding to the method list and to the 3572 // property metadata list. 3573 for (auto *property : Properties) { 3574 bool isSynthesized = false; 3575 bool isDynamic = false; 3576 if (!isProtocol) { 3577 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container); 3578 if (propertyImpl) { 3579 isSynthesized = (propertyImpl->getPropertyImplementation() == 3580 ObjCPropertyImplDecl::Synthesize); 3581 isDynamic = (propertyImpl->getPropertyImplementation() == 3582 ObjCPropertyImplDecl::Dynamic); 3583 } 3584 } 3585 PushProperty(properties, property, Container, isSynthesized, isDynamic); 3586 } 3587 properties.finishAndAddTo(propertyList); 3588 3589 return propertyList.finishAndCreateGlobal(".objc_property_list", 3590 CGM.getPointerAlign()); 3591 } 3592 3593 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 3594 // Get the class declaration for which the alias is specified. 3595 ObjCInterfaceDecl *ClassDecl = 3596 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 3597 ClassAliases.emplace_back(ClassDecl->getNameAsString(), 3598 OAD->getNameAsString()); 3599 } 3600 3601 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 3602 ASTContext &Context = CGM.getContext(); 3603 3604 // Get the superclass name. 3605 const ObjCInterfaceDecl * SuperClassDecl = 3606 OID->getClassInterface()->getSuperClass(); 3607 std::string SuperClassName; 3608 if (SuperClassDecl) { 3609 SuperClassName = SuperClassDecl->getNameAsString(); 3610 EmitClassRef(SuperClassName); 3611 } 3612 3613 // Get the class name 3614 ObjCInterfaceDecl *ClassDecl = 3615 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 3616 std::string ClassName = ClassDecl->getNameAsString(); 3617 3618 // Emit the symbol that is used to generate linker errors if this class is 3619 // referenced in other modules but not declared. 3620 std::string classSymbolName = "__objc_class_name_" + ClassName; 3621 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) { 3622 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 3623 } else { 3624 new llvm::GlobalVariable(TheModule, LongTy, false, 3625 llvm::GlobalValue::ExternalLinkage, 3626 llvm::ConstantInt::get(LongTy, 0), 3627 classSymbolName); 3628 } 3629 3630 // Get the size of instances. 3631 int instanceSize = 3632 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 3633 3634 // Collect information about instance variables. 3635 SmallVector<llvm::Constant*, 16> IvarNames; 3636 SmallVector<llvm::Constant*, 16> IvarTypes; 3637 SmallVector<llvm::Constant*, 16> IvarOffsets; 3638 SmallVector<llvm::Constant*, 16> IvarAligns; 3639 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership; 3640 3641 ConstantInitBuilder IvarOffsetBuilder(CGM); 3642 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy); 3643 SmallVector<bool, 16> WeakIvars; 3644 SmallVector<bool, 16> StrongIvars; 3645 3646 int superInstanceSize = !SuperClassDecl ? 0 : 3647 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 3648 // For non-fragile ivars, set the instance size to 0 - {the size of just this 3649 // class}. The runtime will then set this to the correct value on load. 3650 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3651 instanceSize = 0 - (instanceSize - superInstanceSize); 3652 } 3653 3654 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3655 IVD = IVD->getNextIvar()) { 3656 // Store the name 3657 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 3658 // Get the type encoding for this ivar 3659 std::string TypeStr; 3660 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD); 3661 IvarTypes.push_back(MakeConstantString(TypeStr)); 3662 IvarAligns.push_back(llvm::ConstantInt::get(IntTy, 3663 Context.getTypeSize(IVD->getType()))); 3664 // Get the offset 3665 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 3666 uint64_t Offset = BaseOffset; 3667 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3668 Offset = BaseOffset - superInstanceSize; 3669 } 3670 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 3671 // Create the direct offset value 3672 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 3673 IVD->getNameAsString(); 3674 3675 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 3676 if (OffsetVar) { 3677 OffsetVar->setInitializer(OffsetValue); 3678 // If this is the real definition, change its linkage type so that 3679 // different modules will use this one, rather than their private 3680 // copy. 3681 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 3682 } else 3683 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty, 3684 false, llvm::GlobalValue::ExternalLinkage, 3685 OffsetValue, OffsetName); 3686 IvarOffsets.push_back(OffsetValue); 3687 IvarOffsetValues.add(OffsetVar); 3688 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 3689 IvarOwnership.push_back(lt); 3690 switch (lt) { 3691 case Qualifiers::OCL_Strong: 3692 StrongIvars.push_back(true); 3693 WeakIvars.push_back(false); 3694 break; 3695 case Qualifiers::OCL_Weak: 3696 StrongIvars.push_back(false); 3697 WeakIvars.push_back(true); 3698 break; 3699 default: 3700 StrongIvars.push_back(false); 3701 WeakIvars.push_back(false); 3702 } 3703 } 3704 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 3705 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 3706 llvm::GlobalVariable *IvarOffsetArray = 3707 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets", 3708 CGM.getPointerAlign()); 3709 3710 // Collect information about instance methods 3711 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3712 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 3713 OID->instmeth_end()); 3714 3715 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3716 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 3717 OID->classmeth_end()); 3718 3719 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl); 3720 3721 // Collect the names of referenced protocols 3722 auto RefProtocols = ClassDecl->protocols(); 3723 auto RuntimeProtocols = 3724 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end()); 3725 SmallVector<std::string, 16> Protocols; 3726 for (const auto *I : RuntimeProtocols) 3727 Protocols.push_back(I->getNameAsString()); 3728 3729 // Get the superclass pointer. 3730 llvm::Constant *SuperClass; 3731 if (!SuperClassName.empty()) { 3732 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 3733 } else { 3734 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 3735 } 3736 // Empty vector used to construct empty method lists 3737 SmallVector<llvm::Constant*, 1> empty; 3738 // Generate the method and instance variable lists 3739 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 3740 InstanceMethods, false); 3741 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 3742 ClassMethods, true); 3743 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 3744 IvarOffsets, IvarAligns, IvarOwnership); 3745 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 3746 // we emit a symbol containing the offset for each ivar in the class. This 3747 // allows code compiled for the non-Fragile ABI to inherit from code compiled 3748 // for the legacy ABI, without causing problems. The converse is also 3749 // possible, but causes all ivar accesses to be fragile. 3750 3751 // Offset pointer for getting at the correct field in the ivar list when 3752 // setting up the alias. These are: The base address for the global, the 3753 // ivar array (second field), the ivar in this list (set for each ivar), and 3754 // the offset (third field in ivar structure) 3755 llvm::Type *IndexTy = Int32Ty; 3756 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 3757 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr, 3758 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) }; 3759 3760 unsigned ivarIndex = 0; 3761 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3762 IVD = IVD->getNextIvar()) { 3763 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD); 3764 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 3765 // Get the correct ivar field 3766 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 3767 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList, 3768 offsetPointerIndexes); 3769 // Get the existing variable, if one exists. 3770 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 3771 if (offset) { 3772 offset->setInitializer(offsetValue); 3773 // If this is the real definition, change its linkage type so that 3774 // different modules will use this one, rather than their private 3775 // copy. 3776 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 3777 } else 3778 // Add a new alias if there isn't one already. 3779 new llvm::GlobalVariable(TheModule, offsetValue->getType(), 3780 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 3781 ++ivarIndex; 3782 } 3783 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 3784 3785 //Generate metaclass for class methods 3786 llvm::Constant *MetaClassStruct = GenerateClassStructure( 3787 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], 3788 NULLPtr, ClassMethodList, NULLPtr, NULLPtr, 3789 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true); 3790 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct), 3791 OID->getClassInterface()); 3792 3793 // Generate the class structure 3794 llvm::Constant *ClassStruct = GenerateClassStructure( 3795 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr, 3796 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList, 3797 GenerateProtocolList(Protocols), IvarOffsetArray, Properties, 3798 StrongIvarBitmap, WeakIvarBitmap); 3799 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct), 3800 OID->getClassInterface()); 3801 3802 // Resolve the class aliases, if they exist. 3803 if (ClassPtrAlias) { 3804 ClassPtrAlias->replaceAllUsesWith(ClassStruct); 3805 ClassPtrAlias->eraseFromParent(); 3806 ClassPtrAlias = nullptr; 3807 } 3808 if (MetaClassPtrAlias) { 3809 MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct); 3810 MetaClassPtrAlias->eraseFromParent(); 3811 MetaClassPtrAlias = nullptr; 3812 } 3813 3814 // Add class structure to list to be added to the symtab later 3815 Classes.push_back(ClassStruct); 3816 } 3817 3818 llvm::Function *CGObjCGNU::ModuleInitFunction() { 3819 // Only emit an ObjC load function if no Objective-C stuff has been called 3820 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 3821 ExistingProtocols.empty() && SelectorTable.empty()) 3822 return nullptr; 3823 3824 // Add all referenced protocols to a category. 3825 GenerateProtocolHolderCategory(); 3826 3827 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy); 3828 if (!selStructTy) { 3829 selStructTy = llvm::StructType::get(CGM.getLLVMContext(), 3830 { PtrToInt8Ty, PtrToInt8Ty }); 3831 } 3832 3833 // Generate statics list: 3834 llvm::Constant *statics = NULLPtr; 3835 if (!ConstantStrings.empty()) { 3836 llvm::GlobalVariable *fileStatics = [&] { 3837 ConstantInitBuilder builder(CGM); 3838 auto staticsStruct = builder.beginStruct(); 3839 3840 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass; 3841 if (stringClass.empty()) stringClass = "NXConstantString"; 3842 staticsStruct.add(MakeConstantString(stringClass, 3843 ".objc_static_class_name")); 3844 3845 auto array = staticsStruct.beginArray(); 3846 array.addAll(ConstantStrings); 3847 array.add(NULLPtr); 3848 array.finishAndAddTo(staticsStruct); 3849 3850 return staticsStruct.finishAndCreateGlobal(".objc_statics", 3851 CGM.getPointerAlign()); 3852 }(); 3853 3854 ConstantInitBuilder builder(CGM); 3855 auto allStaticsArray = builder.beginArray(fileStatics->getType()); 3856 allStaticsArray.add(fileStatics); 3857 allStaticsArray.addNullPointer(fileStatics->getType()); 3858 3859 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr", 3860 CGM.getPointerAlign()); 3861 } 3862 3863 // Array of classes, categories, and constant objects. 3864 3865 SmallVector<llvm::GlobalAlias*, 16> selectorAliases; 3866 unsigned selectorCount; 3867 3868 // Pointer to an array of selectors used in this module. 3869 llvm::GlobalVariable *selectorList = [&] { 3870 ConstantInitBuilder builder(CGM); 3871 auto selectors = builder.beginArray(selStructTy); 3872 auto &table = SelectorTable; // MSVC workaround 3873 std::vector<Selector> allSelectors; 3874 for (auto &entry : table) 3875 allSelectors.push_back(entry.first); 3876 llvm::sort(allSelectors); 3877 3878 for (auto &untypedSel : allSelectors) { 3879 std::string selNameStr = untypedSel.getAsString(); 3880 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name"); 3881 3882 for (TypedSelector &sel : table[untypedSel]) { 3883 llvm::Constant *selectorTypeEncoding = NULLPtr; 3884 if (!sel.first.empty()) 3885 selectorTypeEncoding = 3886 MakeConstantString(sel.first, ".objc_sel_types"); 3887 3888 auto selStruct = selectors.beginStruct(selStructTy); 3889 selStruct.add(selName); 3890 selStruct.add(selectorTypeEncoding); 3891 selStruct.finishAndAddTo(selectors); 3892 3893 // Store the selector alias for later replacement 3894 selectorAliases.push_back(sel.second); 3895 } 3896 } 3897 3898 // Remember the number of entries in the selector table. 3899 selectorCount = selectors.size(); 3900 3901 // NULL-terminate the selector list. This should not actually be required, 3902 // because the selector list has a length field. Unfortunately, the GCC 3903 // runtime decides to ignore the length field and expects a NULL terminator, 3904 // and GCC cooperates with this by always setting the length to 0. 3905 auto selStruct = selectors.beginStruct(selStructTy); 3906 selStruct.add(NULLPtr); 3907 selStruct.add(NULLPtr); 3908 selStruct.finishAndAddTo(selectors); 3909 3910 return selectors.finishAndCreateGlobal(".objc_selector_list", 3911 CGM.getPointerAlign()); 3912 }(); 3913 3914 // Now that all of the static selectors exist, create pointers to them. 3915 for (unsigned i = 0; i < selectorCount; ++i) { 3916 llvm::Constant *idxs[] = { 3917 Zeros[0], 3918 llvm::ConstantInt::get(Int32Ty, i) 3919 }; 3920 // FIXME: We're generating redundant loads and stores here! 3921 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr( 3922 selectorList->getValueType(), selectorList, idxs); 3923 selectorAliases[i]->replaceAllUsesWith(selPtr); 3924 selectorAliases[i]->eraseFromParent(); 3925 } 3926 3927 llvm::GlobalVariable *symtab = [&] { 3928 ConstantInitBuilder builder(CGM); 3929 auto symtab = builder.beginStruct(); 3930 3931 // Number of static selectors 3932 symtab.addInt(LongTy, selectorCount); 3933 3934 symtab.add(selectorList); 3935 3936 // Number of classes defined. 3937 symtab.addInt(CGM.Int16Ty, Classes.size()); 3938 // Number of categories defined 3939 symtab.addInt(CGM.Int16Ty, Categories.size()); 3940 3941 // Create an array of classes, then categories, then static object instances 3942 auto classList = symtab.beginArray(PtrToInt8Ty); 3943 classList.addAll(Classes); 3944 classList.addAll(Categories); 3945 // NULL-terminated list of static object instances (mainly constant strings) 3946 classList.add(statics); 3947 classList.add(NULLPtr); 3948 classList.finishAndAddTo(symtab); 3949 3950 // Construct the symbol table. 3951 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign()); 3952 }(); 3953 3954 // The symbol table is contained in a module which has some version-checking 3955 // constants 3956 llvm::Constant *module = [&] { 3957 llvm::Type *moduleEltTys[] = { 3958 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy 3959 }; 3960 llvm::StructType *moduleTy = llvm::StructType::get( 3961 CGM.getLLVMContext(), 3962 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10))); 3963 3964 ConstantInitBuilder builder(CGM); 3965 auto module = builder.beginStruct(moduleTy); 3966 // Runtime version, used for ABI compatibility checking. 3967 module.addInt(LongTy, RuntimeVersion); 3968 // sizeof(ModuleTy) 3969 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy)); 3970 3971 // The path to the source file where this module was declared 3972 SourceManager &SM = CGM.getContext().getSourceManager(); 3973 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID()); 3974 std::string path = 3975 (mainFile->getDir().getName() + "/" + mainFile->getName()).str(); 3976 module.add(MakeConstantString(path, ".objc_source_file_name")); 3977 module.add(symtab); 3978 3979 if (RuntimeVersion >= 10) { 3980 switch (CGM.getLangOpts().getGC()) { 3981 case LangOptions::GCOnly: 3982 module.addInt(IntTy, 2); 3983 break; 3984 case LangOptions::NonGC: 3985 if (CGM.getLangOpts().ObjCAutoRefCount) 3986 module.addInt(IntTy, 1); 3987 else 3988 module.addInt(IntTy, 0); 3989 break; 3990 case LangOptions::HybridGC: 3991 module.addInt(IntTy, 1); 3992 break; 3993 } 3994 } 3995 3996 return module.finishAndCreateGlobal("", CGM.getPointerAlign()); 3997 }(); 3998 3999 // Create the load function calling the runtime entry point with the module 4000 // structure 4001 llvm::Function * LoadFunction = llvm::Function::Create( 4002 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 4003 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 4004 &TheModule); 4005 llvm::BasicBlock *EntryBB = 4006 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 4007 CGBuilderTy Builder(CGM, VMContext); 4008 Builder.SetInsertPoint(EntryBB); 4009 4010 llvm::FunctionType *FT = 4011 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true); 4012 llvm::FunctionCallee Register = 4013 CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 4014 Builder.CreateCall(Register, module); 4015 4016 if (!ClassAliases.empty()) { 4017 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 4018 llvm::FunctionType *RegisterAliasTy = 4019 llvm::FunctionType::get(Builder.getVoidTy(), 4020 ArgTypes, false); 4021 llvm::Function *RegisterAlias = llvm::Function::Create( 4022 RegisterAliasTy, 4023 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 4024 &TheModule); 4025 llvm::BasicBlock *AliasBB = 4026 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 4027 llvm::BasicBlock *NoAliasBB = 4028 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 4029 4030 // Branch based on whether the runtime provided class_registerAlias_np() 4031 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 4032 llvm::Constant::getNullValue(RegisterAlias->getType())); 4033 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 4034 4035 // The true branch (has alias registration function): 4036 Builder.SetInsertPoint(AliasBB); 4037 // Emit alias registration calls: 4038 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 4039 iter != ClassAliases.end(); ++iter) { 4040 llvm::Constant *TheClass = 4041 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true); 4042 if (TheClass) { 4043 Builder.CreateCall(RegisterAlias, 4044 {TheClass, MakeConstantString(iter->second)}); 4045 } 4046 } 4047 // Jump to end: 4048 Builder.CreateBr(NoAliasBB); 4049 4050 // Missing alias registration function, just return from the function: 4051 Builder.SetInsertPoint(NoAliasBB); 4052 } 4053 Builder.CreateRetVoid(); 4054 4055 return LoadFunction; 4056 } 4057 4058 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 4059 const ObjCContainerDecl *CD) { 4060 CodeGenTypes &Types = CGM.getTypes(); 4061 llvm::FunctionType *MethodTy = 4062 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4063 4064 bool isDirect = OMD->isDirectMethod(); 4065 std::string FunctionName = 4066 getSymbolNameForMethod(OMD, /*include category*/ !isDirect); 4067 4068 if (!isDirect) 4069 return llvm::Function::Create(MethodTy, 4070 llvm::GlobalVariable::InternalLinkage, 4071 FunctionName, &TheModule); 4072 4073 auto *COMD = OMD->getCanonicalDecl(); 4074 auto I = DirectMethodDefinitions.find(COMD); 4075 llvm::Function *OldFn = nullptr, *Fn = nullptr; 4076 4077 if (I == DirectMethodDefinitions.end()) { 4078 auto *F = 4079 llvm::Function::Create(MethodTy, llvm::GlobalVariable::ExternalLinkage, 4080 FunctionName, &TheModule); 4081 DirectMethodDefinitions.insert(std::make_pair(COMD, F)); 4082 return F; 4083 } 4084 4085 // Objective-C allows for the declaration and implementation types 4086 // to differ slightly. 4087 // 4088 // If we're being asked for the Function associated for a method 4089 // implementation, a previous value might have been cached 4090 // based on the type of the canonical declaration. 4091 // 4092 // If these do not match, then we'll replace this function with 4093 // a new one that has the proper type below. 4094 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 4095 return I->second; 4096 4097 OldFn = I->second; 4098 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, "", 4099 &CGM.getModule()); 4100 Fn->takeName(OldFn); 4101 OldFn->replaceAllUsesWith(Fn); 4102 OldFn->eraseFromParent(); 4103 4104 // Replace the cached function in the map. 4105 I->second = Fn; 4106 return Fn; 4107 } 4108 4109 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF, 4110 llvm::Function *Fn, 4111 const ObjCMethodDecl *OMD, 4112 const ObjCContainerDecl *CD) { 4113 // GNU runtime doesn't support direct calls at this time 4114 } 4115 4116 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() { 4117 return GetPropertyFn; 4118 } 4119 4120 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() { 4121 return SetPropertyFn; 4122 } 4123 4124 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 4125 bool copy) { 4126 return nullptr; 4127 } 4128 4129 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() { 4130 return GetStructPropertyFn; 4131 } 4132 4133 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() { 4134 return SetStructPropertyFn; 4135 } 4136 4137 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() { 4138 return nullptr; 4139 } 4140 4141 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() { 4142 return nullptr; 4143 } 4144 4145 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() { 4146 return EnumerationMutationFn; 4147 } 4148 4149 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 4150 const ObjCAtSynchronizedStmt &S) { 4151 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 4152 } 4153 4154 4155 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 4156 const ObjCAtTryStmt &S) { 4157 // Unlike the Apple non-fragile runtimes, which also uses 4158 // unwind-based zero cost exceptions, the GNU Objective C runtime's 4159 // EH support isn't a veneer over C++ EH. Instead, exception 4160 // objects are created by objc_exception_throw and destroyed by 4161 // the personality function; this avoids the need for bracketing 4162 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 4163 // (or even _Unwind_DeleteException), but probably doesn't 4164 // interoperate very well with foreign exceptions. 4165 // 4166 // In Objective-C++ mode, we actually emit something equivalent to the C++ 4167 // exception handler. 4168 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 4169 } 4170 4171 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 4172 const ObjCAtThrowStmt &S, 4173 bool ClearInsertionPoint) { 4174 llvm::Value *ExceptionAsObject; 4175 bool isRethrow = false; 4176 4177 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4178 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4179 ExceptionAsObject = Exception; 4180 } else { 4181 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4182 "Unexpected rethrow outside @catch block."); 4183 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4184 isRethrow = true; 4185 } 4186 if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) { 4187 // For SEH, ExceptionAsObject may be undef, because the catch handler is 4188 // not passed it for catchalls and so it is not visible to the catch 4189 // funclet. The real thrown object will still be live on the stack at this 4190 // point and will be rethrown. If we are explicitly rethrowing the object 4191 // that was passed into the `@catch` block, then this code path is not 4192 // reached and we will instead call `objc_exception_throw` with an explicit 4193 // argument. 4194 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn); 4195 Throw->setDoesNotReturn(); 4196 } else { 4197 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 4198 llvm::CallBase *Throw = 4199 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); 4200 Throw->setDoesNotReturn(); 4201 } 4202 CGF.Builder.CreateUnreachable(); 4203 if (ClearInsertionPoint) 4204 CGF.Builder.ClearInsertionPoint(); 4205 } 4206 4207 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 4208 Address AddrWeakObj) { 4209 CGBuilderTy &B = CGF.Builder; 4210 return B.CreateCall(WeakReadFn, 4211 EnforceType(B, AddrWeakObj.getPointer(), PtrToIdTy)); 4212 } 4213 4214 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 4215 llvm::Value *src, Address dst) { 4216 CGBuilderTy &B = CGF.Builder; 4217 src = EnforceType(B, src, IdTy); 4218 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4219 B.CreateCall(WeakAssignFn, {src, dstVal}); 4220 } 4221 4222 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 4223 llvm::Value *src, Address dst, 4224 bool threadlocal) { 4225 CGBuilderTy &B = CGF.Builder; 4226 src = EnforceType(B, src, IdTy); 4227 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4228 // FIXME. Add threadloca assign API 4229 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"); 4230 B.CreateCall(GlobalAssignFn, {src, dstVal}); 4231 } 4232 4233 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 4234 llvm::Value *src, Address dst, 4235 llvm::Value *ivarOffset) { 4236 CGBuilderTy &B = CGF.Builder; 4237 src = EnforceType(B, src, IdTy); 4238 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), IdTy); 4239 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset}); 4240 } 4241 4242 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 4243 llvm::Value *src, Address dst) { 4244 CGBuilderTy &B = CGF.Builder; 4245 src = EnforceType(B, src, IdTy); 4246 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4247 B.CreateCall(StrongCastAssignFn, {src, dstVal}); 4248 } 4249 4250 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 4251 Address DestPtr, 4252 Address SrcPtr, 4253 llvm::Value *Size) { 4254 CGBuilderTy &B = CGF.Builder; 4255 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.getPointer(), PtrTy); 4256 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.getPointer(), PtrTy); 4257 4258 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size}); 4259 } 4260 4261 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 4262 const ObjCInterfaceDecl *ID, 4263 const ObjCIvarDecl *Ivar) { 4264 const std::string Name = GetIVarOffsetVariableName(ID, Ivar); 4265 // Emit the variable and initialize it with what we think the correct value 4266 // is. This allows code compiled with non-fragile ivars to work correctly 4267 // when linked against code which isn't (most of the time). 4268 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 4269 if (!IvarOffsetPointer) 4270 IvarOffsetPointer = new llvm::GlobalVariable( 4271 TheModule, llvm::PointerType::getUnqual(VMContext), false, 4272 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 4273 return IvarOffsetPointer; 4274 } 4275 4276 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 4277 QualType ObjectTy, 4278 llvm::Value *BaseValue, 4279 const ObjCIvarDecl *Ivar, 4280 unsigned CVRQualifiers) { 4281 const ObjCInterfaceDecl *ID = 4282 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 4283 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4284 EmitIvarOffset(CGF, ID, Ivar)); 4285 } 4286 4287 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 4288 const ObjCInterfaceDecl *OID, 4289 const ObjCIvarDecl *OIVD) { 4290 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 4291 next = next->getNextIvar()) { 4292 if (OIVD == next) 4293 return OID; 4294 } 4295 4296 // Otherwise check in the super class. 4297 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 4298 return FindIvarInterface(Context, Super, OIVD); 4299 4300 return nullptr; 4301 } 4302 4303 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 4304 const ObjCInterfaceDecl *Interface, 4305 const ObjCIvarDecl *Ivar) { 4306 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 4307 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 4308 4309 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage 4310 // and ExternalLinkage, so create a reference to the ivar global and rely on 4311 // the definition being created as part of GenerateClass. 4312 if (RuntimeVersion < 10 || 4313 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment()) 4314 return CGF.Builder.CreateZExtOrBitCast( 4315 CGF.Builder.CreateAlignedLoad( 4316 Int32Ty, 4317 CGF.Builder.CreateAlignedLoad( 4318 llvm::PointerType::getUnqual(VMContext), 4319 ObjCIvarOffsetVariable(Interface, Ivar), 4320 CGF.getPointerAlign(), "ivar"), 4321 CharUnits::fromQuantity(4)), 4322 PtrDiffTy); 4323 std::string name = "__objc_ivar_offset_value_" + 4324 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 4325 CharUnits Align = CGM.getIntAlign(); 4326 llvm::Value *Offset = TheModule.getGlobalVariable(name); 4327 if (!Offset) { 4328 auto GV = new llvm::GlobalVariable(TheModule, IntTy, 4329 false, llvm::GlobalValue::LinkOnceAnyLinkage, 4330 llvm::Constant::getNullValue(IntTy), name); 4331 GV->setAlignment(Align.getAsAlign()); 4332 Offset = GV; 4333 } 4334 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align); 4335 if (Offset->getType() != PtrDiffTy) 4336 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 4337 return Offset; 4338 } 4339 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 4340 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 4341 } 4342 4343 CGObjCRuntime * 4344 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 4345 auto Runtime = CGM.getLangOpts().ObjCRuntime; 4346 switch (Runtime.getKind()) { 4347 case ObjCRuntime::GNUstep: 4348 if (Runtime.getVersion() >= VersionTuple(2, 0)) 4349 return new CGObjCGNUstep2(CGM); 4350 return new CGObjCGNUstep(CGM); 4351 4352 case ObjCRuntime::GCC: 4353 return new CGObjCGCC(CGM); 4354 4355 case ObjCRuntime::ObjFW: 4356 return new CGObjCObjFW(CGM); 4357 4358 case ObjCRuntime::FragileMacOSX: 4359 case ObjCRuntime::MacOSX: 4360 case ObjCRuntime::iOS: 4361 case ObjCRuntime::WatchOS: 4362 llvm_unreachable("these runtimes are not GNU runtimes"); 4363 } 4364 llvm_unreachable("bad runtime"); 4365 } 4366