1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the GNU runtime. The 10 // class in this file generates structures used by the GNU Objective-C runtime 11 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 12 // the GNU runtime distribution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/StmtObjC.h" 27 #include "clang/Basic/FileManager.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/StringMap.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include <cctype> 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 namespace { 44 45 /// Class that lazily initialises the runtime function. Avoids inserting the 46 /// types and the function declaration into a module if they're not used, and 47 /// avoids constructing the type more than once if it's used more than once. 48 class LazyRuntimeFunction { 49 CodeGenModule *CGM; 50 llvm::FunctionType *FTy; 51 const char *FunctionName; 52 llvm::FunctionCallee Function; 53 54 public: 55 /// Constructor leaves this class uninitialized, because it is intended to 56 /// be used as a field in another class and not all of the types that are 57 /// used as arguments will necessarily be available at construction time. 58 LazyRuntimeFunction() 59 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {} 60 61 /// Initialises the lazy function with the name, return type, and the types 62 /// of the arguments. 63 template <typename... Tys> 64 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, 65 Tys *... Types) { 66 CGM = Mod; 67 FunctionName = name; 68 Function = nullptr; 69 if(sizeof...(Tys)) { 70 SmallVector<llvm::Type *, 8> ArgTys({Types...}); 71 FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 72 } 73 else { 74 FTy = llvm::FunctionType::get(RetTy, std::nullopt, false); 75 } 76 } 77 78 llvm::FunctionType *getType() { return FTy; } 79 80 /// Overloaded cast operator, allows the class to be implicitly cast to an 81 /// LLVM constant. 82 operator llvm::FunctionCallee() { 83 if (!Function) { 84 if (!FunctionName) 85 return nullptr; 86 Function = CGM->CreateRuntimeFunction(FTy, FunctionName); 87 } 88 return Function; 89 } 90 }; 91 92 93 /// GNU Objective-C runtime code generation. This class implements the parts of 94 /// Objective-C support that are specific to the GNU family of runtimes (GCC, 95 /// GNUstep and ObjFW). 96 class CGObjCGNU : public CGObjCRuntime { 97 protected: 98 /// The LLVM module into which output is inserted 99 llvm::Module &TheModule; 100 /// strut objc_super. Used for sending messages to super. This structure 101 /// contains the receiver (object) and the expected class. 102 llvm::StructType *ObjCSuperTy; 103 /// struct objc_super*. The type of the argument to the superclass message 104 /// lookup functions. 105 llvm::PointerType *PtrToObjCSuperTy; 106 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 107 /// SEL is included in a header somewhere, in which case it will be whatever 108 /// type is declared in that header, most likely {i8*, i8*}. 109 llvm::PointerType *SelectorTy; 110 /// Element type of SelectorTy. 111 llvm::Type *SelectorElemTy; 112 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 113 /// places where it's used 114 llvm::IntegerType *Int8Ty; 115 /// Pointer to i8 - LLVM type of char*, for all of the places where the 116 /// runtime needs to deal with C strings. 117 llvm::PointerType *PtrToInt8Ty; 118 /// struct objc_protocol type 119 llvm::StructType *ProtocolTy; 120 /// Protocol * type. 121 llvm::PointerType *ProtocolPtrTy; 122 /// Instance Method Pointer type. This is a pointer to a function that takes, 123 /// at a minimum, an object and a selector, and is the generic type for 124 /// Objective-C methods. Due to differences between variadic / non-variadic 125 /// calling conventions, it must always be cast to the correct type before 126 /// actually being used. 127 llvm::PointerType *IMPTy; 128 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 129 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 130 /// but if the runtime header declaring it is included then it may be a 131 /// pointer to a structure. 132 llvm::PointerType *IdTy; 133 /// Element type of IdTy. 134 llvm::Type *IdElemTy; 135 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 136 /// message lookup function and some GC-related functions. 137 llvm::PointerType *PtrToIdTy; 138 /// The clang type of id. Used when using the clang CGCall infrastructure to 139 /// call Objective-C methods. 140 CanQualType ASTIdTy; 141 /// LLVM type for C int type. 142 llvm::IntegerType *IntTy; 143 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 144 /// used in the code to document the difference between i8* meaning a pointer 145 /// to a C string and i8* meaning a pointer to some opaque type. 146 llvm::PointerType *PtrTy; 147 /// LLVM type for C long type. The runtime uses this in a lot of places where 148 /// it should be using intptr_t, but we can't fix this without breaking 149 /// compatibility with GCC... 150 llvm::IntegerType *LongTy; 151 /// LLVM type for C size_t. Used in various runtime data structures. 152 llvm::IntegerType *SizeTy; 153 /// LLVM type for C intptr_t. 154 llvm::IntegerType *IntPtrTy; 155 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 156 llvm::IntegerType *PtrDiffTy; 157 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 158 /// variables. 159 llvm::PointerType *PtrToIntTy; 160 /// LLVM type for Objective-C BOOL type. 161 llvm::Type *BoolTy; 162 /// 32-bit integer type, to save us needing to look it up every time it's used. 163 llvm::IntegerType *Int32Ty; 164 /// 64-bit integer type, to save us needing to look it up every time it's used. 165 llvm::IntegerType *Int64Ty; 166 /// The type of struct objc_property. 167 llvm::StructType *PropertyMetadataTy; 168 /// Metadata kind used to tie method lookups to message sends. The GNUstep 169 /// runtime provides some LLVM passes that can use this to do things like 170 /// automatic IMP caching and speculative inlining. 171 unsigned msgSendMDKind; 172 /// Does the current target use SEH-based exceptions? False implies 173 /// Itanium-style DWARF unwinding. 174 bool usesSEHExceptions; 175 176 /// Helper to check if we are targeting a specific runtime version or later. 177 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) { 178 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 179 return (R.getKind() == kind) && 180 (R.getVersion() >= VersionTuple(major, minor)); 181 } 182 183 std::string ManglePublicSymbol(StringRef Name) { 184 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str(); 185 } 186 187 std::string SymbolForProtocol(Twine Name) { 188 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str(); 189 } 190 191 std::string SymbolForProtocolRef(StringRef Name) { 192 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str(); 193 } 194 195 196 /// Helper function that generates a constant string and returns a pointer to 197 /// the start of the string. The result of this function can be used anywhere 198 /// where the C code specifies const char*. 199 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") { 200 ConstantAddress Array = 201 CGM.GetAddrOfConstantCString(std::string(Str), Name); 202 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(), 203 Array.getPointer(), Zeros); 204 } 205 206 /// Emits a linkonce_odr string, whose name is the prefix followed by the 207 /// string value. This allows the linker to combine the strings between 208 /// different modules. Used for EH typeinfo names, selector strings, and a 209 /// few other things. 210 llvm::Constant *ExportUniqueString(const std::string &Str, 211 const std::string &prefix, 212 bool Private=false) { 213 std::string name = prefix + Str; 214 auto *ConstStr = TheModule.getGlobalVariable(name); 215 if (!ConstStr) { 216 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 217 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true, 218 llvm::GlobalValue::LinkOnceODRLinkage, value, name); 219 GV->setComdat(TheModule.getOrInsertComdat(name)); 220 if (Private) 221 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 222 ConstStr = GV; 223 } 224 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(), 225 ConstStr, Zeros); 226 } 227 228 /// Returns a property name and encoding string. 229 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, 230 const Decl *Container) { 231 assert(!isRuntime(ObjCRuntime::GNUstep, 2)); 232 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) { 233 std::string NameAndAttributes; 234 std::string TypeStr = 235 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 236 NameAndAttributes += '\0'; 237 NameAndAttributes += TypeStr.length() + 3; 238 NameAndAttributes += TypeStr; 239 NameAndAttributes += '\0'; 240 NameAndAttributes += PD->getNameAsString(); 241 return MakeConstantString(NameAndAttributes); 242 } 243 return MakeConstantString(PD->getNameAsString()); 244 } 245 246 /// Push the property attributes into two structure fields. 247 void PushPropertyAttributes(ConstantStructBuilder &Fields, 248 const ObjCPropertyDecl *property, bool isSynthesized=true, bool 249 isDynamic=true) { 250 int attrs = property->getPropertyAttributes(); 251 // For read-only properties, clear the copy and retain flags 252 if (attrs & ObjCPropertyAttribute::kind_readonly) { 253 attrs &= ~ObjCPropertyAttribute::kind_copy; 254 attrs &= ~ObjCPropertyAttribute::kind_retain; 255 attrs &= ~ObjCPropertyAttribute::kind_weak; 256 attrs &= ~ObjCPropertyAttribute::kind_strong; 257 } 258 // The first flags field has the same attribute values as clang uses internally 259 Fields.addInt(Int8Ty, attrs & 0xff); 260 attrs >>= 8; 261 attrs <<= 2; 262 // For protocol properties, synthesized and dynamic have no meaning, so we 263 // reuse these flags to indicate that this is a protocol property (both set 264 // has no meaning, as a property can't be both synthesized and dynamic) 265 attrs |= isSynthesized ? (1<<0) : 0; 266 attrs |= isDynamic ? (1<<1) : 0; 267 // The second field is the next four fields left shifted by two, with the 268 // low bit set to indicate whether the field is synthesized or dynamic. 269 Fields.addInt(Int8Ty, attrs & 0xff); 270 // Two padding fields 271 Fields.addInt(Int8Ty, 0); 272 Fields.addInt(Int8Ty, 0); 273 } 274 275 virtual llvm::Constant *GenerateCategoryProtocolList(const 276 ObjCCategoryDecl *OCD); 277 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields, 278 int count) { 279 // int count; 280 Fields.addInt(IntTy, count); 281 // int size; (only in GNUstep v2 ABI. 282 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 283 llvm::DataLayout td(&TheModule); 284 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) / 285 CGM.getContext().getCharWidth()); 286 } 287 // struct objc_property_list *next; 288 Fields.add(NULLPtr); 289 // struct objc_property properties[] 290 return Fields.beginArray(PropertyMetadataTy); 291 } 292 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray, 293 const ObjCPropertyDecl *property, 294 const Decl *OCD, 295 bool isSynthesized=true, bool 296 isDynamic=true) { 297 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 298 ASTContext &Context = CGM.getContext(); 299 Fields.add(MakePropertyEncodingString(property, OCD)); 300 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); 301 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 302 if (accessor) { 303 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 304 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 305 Fields.add(MakeConstantString(accessor->getSelector().getAsString())); 306 Fields.add(TypeEncoding); 307 } else { 308 Fields.add(NULLPtr); 309 Fields.add(NULLPtr); 310 } 311 }; 312 addPropertyMethod(property->getGetterMethodDecl()); 313 addPropertyMethod(property->getSetterMethodDecl()); 314 Fields.finishAndAddTo(PropertiesArray); 315 } 316 317 /// Ensures that the value has the required type, by inserting a bitcast if 318 /// required. This function lets us avoid inserting bitcasts that are 319 /// redundant. 320 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { 321 if (V->getType() == Ty) 322 return V; 323 return B.CreateBitCast(V, Ty); 324 } 325 326 // Some zeros used for GEPs in lots of places. 327 llvm::Constant *Zeros[2]; 328 /// Null pointer value. Mainly used as a terminator in various arrays. 329 llvm::Constant *NULLPtr; 330 /// LLVM context. 331 llvm::LLVMContext &VMContext; 332 333 protected: 334 335 /// Placeholder for the class. Lots of things refer to the class before we've 336 /// actually emitted it. We use this alias as a placeholder, and then replace 337 /// it with a pointer to the class structure before finally emitting the 338 /// module. 339 llvm::GlobalAlias *ClassPtrAlias; 340 /// Placeholder for the metaclass. Lots of things refer to the class before 341 /// we've / actually emitted it. We use this alias as a placeholder, and then 342 /// replace / it with a pointer to the metaclass structure before finally 343 /// emitting the / module. 344 llvm::GlobalAlias *MetaClassPtrAlias; 345 /// All of the classes that have been generated for this compilation units. 346 std::vector<llvm::Constant*> Classes; 347 /// All of the categories that have been generated for this compilation units. 348 std::vector<llvm::Constant*> Categories; 349 /// All of the Objective-C constant strings that have been generated for this 350 /// compilation units. 351 std::vector<llvm::Constant*> ConstantStrings; 352 /// Map from string values to Objective-C constant strings in the output. 353 /// Used to prevent emitting Objective-C strings more than once. This should 354 /// not be required at all - CodeGenModule should manage this list. 355 llvm::StringMap<llvm::Constant*> ObjCStrings; 356 /// All of the protocols that have been declared. 357 llvm::StringMap<llvm::Constant*> ExistingProtocols; 358 /// For each variant of a selector, we store the type encoding and a 359 /// placeholder value. For an untyped selector, the type will be the empty 360 /// string. Selector references are all done via the module's selector table, 361 /// so we create an alias as a placeholder and then replace it with the real 362 /// value later. 363 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 364 /// Type of the selector map. This is roughly equivalent to the structure 365 /// used in the GNUstep runtime, which maintains a list of all of the valid 366 /// types for a selector in a table. 367 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 368 SelectorMap; 369 /// A map from selectors to selector types. This allows us to emit all 370 /// selectors of the same name and type together. 371 SelectorMap SelectorTable; 372 373 /// Selectors related to memory management. When compiling in GC mode, we 374 /// omit these. 375 Selector RetainSel, ReleaseSel, AutoreleaseSel; 376 /// Runtime functions used for memory management in GC mode. Note that clang 377 /// supports code generation for calling these functions, but neither GNU 378 /// runtime actually supports this API properly yet. 379 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 380 WeakAssignFn, GlobalAssignFn; 381 382 typedef std::pair<std::string, std::string> ClassAliasPair; 383 /// All classes that have aliases set for them. 384 std::vector<ClassAliasPair> ClassAliases; 385 386 protected: 387 /// Function used for throwing Objective-C exceptions. 388 LazyRuntimeFunction ExceptionThrowFn; 389 /// Function used for rethrowing exceptions, used at the end of \@finally or 390 /// \@synchronize blocks. 391 LazyRuntimeFunction ExceptionReThrowFn; 392 /// Function called when entering a catch function. This is required for 393 /// differentiating Objective-C exceptions and foreign exceptions. 394 LazyRuntimeFunction EnterCatchFn; 395 /// Function called when exiting from a catch block. Used to do exception 396 /// cleanup. 397 LazyRuntimeFunction ExitCatchFn; 398 /// Function called when entering an \@synchronize block. Acquires the lock. 399 LazyRuntimeFunction SyncEnterFn; 400 /// Function called when exiting an \@synchronize block. Releases the lock. 401 LazyRuntimeFunction SyncExitFn; 402 403 private: 404 /// Function called if fast enumeration detects that the collection is 405 /// modified during the update. 406 LazyRuntimeFunction EnumerationMutationFn; 407 /// Function for implementing synthesized property getters that return an 408 /// object. 409 LazyRuntimeFunction GetPropertyFn; 410 /// Function for implementing synthesized property setters that return an 411 /// object. 412 LazyRuntimeFunction SetPropertyFn; 413 /// Function used for non-object declared property getters. 414 LazyRuntimeFunction GetStructPropertyFn; 415 /// Function used for non-object declared property setters. 416 LazyRuntimeFunction SetStructPropertyFn; 417 418 protected: 419 /// The version of the runtime that this class targets. Must match the 420 /// version in the runtime. 421 int RuntimeVersion; 422 /// The version of the protocol class. Used to differentiate between ObjC1 423 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 424 /// components and can not contain declared properties. We always emit 425 /// Objective-C 2 property structures, but we have to pretend that they're 426 /// Objective-C 1 property structures when targeting the GCC runtime or it 427 /// will abort. 428 const int ProtocolVersion; 429 /// The version of the class ABI. This value is used in the class structure 430 /// and indicates how various fields should be interpreted. 431 const int ClassABIVersion; 432 /// Generates an instance variable list structure. This is a structure 433 /// containing a size and an array of structures containing instance variable 434 /// metadata. This is used purely for introspection in the fragile ABI. In 435 /// the non-fragile ABI, it's used for instance variable fixup. 436 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 437 ArrayRef<llvm::Constant *> IvarTypes, 438 ArrayRef<llvm::Constant *> IvarOffsets, 439 ArrayRef<llvm::Constant *> IvarAlign, 440 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership); 441 442 /// Generates a method list structure. This is a structure containing a size 443 /// and an array of structures containing method metadata. 444 /// 445 /// This structure is used by both classes and categories, and contains a next 446 /// pointer allowing them to be chained together in a linked list. 447 llvm::Constant *GenerateMethodList(StringRef ClassName, 448 StringRef CategoryName, 449 ArrayRef<const ObjCMethodDecl*> Methods, 450 bool isClassMethodList); 451 452 /// Emits an empty protocol. This is used for \@protocol() where no protocol 453 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 454 /// real protocol. 455 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName); 456 457 /// Generates a list of property metadata structures. This follows the same 458 /// pattern as method and instance variable metadata lists. 459 llvm::Constant *GeneratePropertyList(const Decl *Container, 460 const ObjCContainerDecl *OCD, 461 bool isClassProperty=false, 462 bool protocolOptionalProperties=false); 463 464 /// Generates a list of referenced protocols. Classes, categories, and 465 /// protocols all use this structure. 466 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 467 468 /// To ensure that all protocols are seen by the runtime, we add a category on 469 /// a class defined in the runtime, declaring no methods, but adopting the 470 /// protocols. This is a horribly ugly hack, but it allows us to collect all 471 /// of the protocols without changing the ABI. 472 void GenerateProtocolHolderCategory(); 473 474 /// Generates a class structure. 475 llvm::Constant *GenerateClassStructure( 476 llvm::Constant *MetaClass, 477 llvm::Constant *SuperClass, 478 unsigned info, 479 const char *Name, 480 llvm::Constant *Version, 481 llvm::Constant *InstanceSize, 482 llvm::Constant *IVars, 483 llvm::Constant *Methods, 484 llvm::Constant *Protocols, 485 llvm::Constant *IvarOffsets, 486 llvm::Constant *Properties, 487 llvm::Constant *StrongIvarBitmap, 488 llvm::Constant *WeakIvarBitmap, 489 bool isMeta=false); 490 491 /// Generates a method list. This is used by protocols to define the required 492 /// and optional methods. 493 virtual llvm::Constant *GenerateProtocolMethodList( 494 ArrayRef<const ObjCMethodDecl*> Methods); 495 /// Emits optional and required method lists. 496 template<class T> 497 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required, 498 llvm::Constant *&Optional) { 499 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods; 500 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods; 501 for (const auto *I : Methods) 502 if (I->isOptional()) 503 OptionalMethods.push_back(I); 504 else 505 RequiredMethods.push_back(I); 506 Required = GenerateProtocolMethodList(RequiredMethods); 507 Optional = GenerateProtocolMethodList(OptionalMethods); 508 } 509 510 /// Returns a selector with the specified type encoding. An empty string is 511 /// used to return an untyped selector (with the types field set to NULL). 512 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 513 const std::string &TypeEncoding); 514 515 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this 516 /// contains the class and ivar names, in the v2 ABI this contains the type 517 /// encoding as well. 518 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 519 const ObjCIvarDecl *Ivar) { 520 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 521 + '.' + Ivar->getNameAsString(); 522 return Name; 523 } 524 /// Returns the variable used to store the offset of an instance variable. 525 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 526 const ObjCIvarDecl *Ivar); 527 /// Emits a reference to a class. This allows the linker to object if there 528 /// is no class of the matching name. 529 void EmitClassRef(const std::string &className); 530 531 /// Emits a pointer to the named class 532 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 533 const std::string &Name, bool isWeak); 534 535 /// Looks up the method for sending a message to the specified object. This 536 /// mechanism differs between the GCC and GNU runtimes, so this method must be 537 /// overridden in subclasses. 538 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 539 llvm::Value *&Receiver, 540 llvm::Value *cmd, 541 llvm::MDNode *node, 542 MessageSendInfo &MSI) = 0; 543 544 /// Looks up the method for sending a message to a superclass. This 545 /// mechanism differs between the GCC and GNU runtimes, so this method must 546 /// be overridden in subclasses. 547 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 548 Address ObjCSuper, 549 llvm::Value *cmd, 550 MessageSendInfo &MSI) = 0; 551 552 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 553 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 554 /// bits set to their values, LSB first, while larger ones are stored in a 555 /// structure of this / form: 556 /// 557 /// struct { int32_t length; int32_t values[length]; }; 558 /// 559 /// The values in the array are stored in host-endian format, with the least 560 /// significant bit being assumed to come first in the bitfield. Therefore, 561 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 562 /// while a bitfield / with the 63rd bit set will be 1<<64. 563 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 564 565 public: 566 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 567 unsigned protocolClassVersion, unsigned classABI=1); 568 569 ConstantAddress GenerateConstantString(const StringLiteral *) override; 570 571 RValue 572 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, 573 QualType ResultType, Selector Sel, 574 llvm::Value *Receiver, const CallArgList &CallArgs, 575 const ObjCInterfaceDecl *Class, 576 const ObjCMethodDecl *Method) override; 577 RValue 578 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, 579 QualType ResultType, Selector Sel, 580 const ObjCInterfaceDecl *Class, 581 bool isCategoryImpl, llvm::Value *Receiver, 582 bool IsClassMessage, const CallArgList &CallArgs, 583 const ObjCMethodDecl *Method) override; 584 llvm::Value *GetClass(CodeGenFunction &CGF, 585 const ObjCInterfaceDecl *OID) override; 586 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 587 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 588 llvm::Value *GetSelector(CodeGenFunction &CGF, 589 const ObjCMethodDecl *Method) override; 590 virtual llvm::Constant *GetConstantSelector(Selector Sel, 591 const std::string &TypeEncoding) { 592 llvm_unreachable("Runtime unable to generate constant selector"); 593 } 594 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) { 595 return GetConstantSelector(M->getSelector(), 596 CGM.getContext().getObjCEncodingForMethodDecl(M)); 597 } 598 llvm::Constant *GetEHType(QualType T) override; 599 600 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 601 const ObjCContainerDecl *CD) override; 602 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 603 const ObjCMethodDecl *OMD, 604 const ObjCContainerDecl *CD) override; 605 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 606 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 607 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override; 608 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 609 const ObjCProtocolDecl *PD) override; 610 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 611 612 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD); 613 614 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override { 615 return GenerateProtocolRef(PD); 616 } 617 618 llvm::Function *ModuleInitFunction() override; 619 llvm::FunctionCallee GetPropertyGetFunction() override; 620 llvm::FunctionCallee GetPropertySetFunction() override; 621 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 622 bool copy) override; 623 llvm::FunctionCallee GetSetStructFunction() override; 624 llvm::FunctionCallee GetGetStructFunction() override; 625 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 626 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 627 llvm::FunctionCallee EnumerationMutationFunction() override; 628 629 void EmitTryStmt(CodeGenFunction &CGF, 630 const ObjCAtTryStmt &S) override; 631 void EmitSynchronizedStmt(CodeGenFunction &CGF, 632 const ObjCAtSynchronizedStmt &S) override; 633 void EmitThrowStmt(CodeGenFunction &CGF, 634 const ObjCAtThrowStmt &S, 635 bool ClearInsertionPoint=true) override; 636 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 637 Address AddrWeakObj) override; 638 void EmitObjCWeakAssign(CodeGenFunction &CGF, 639 llvm::Value *src, Address dst) override; 640 void EmitObjCGlobalAssign(CodeGenFunction &CGF, 641 llvm::Value *src, Address dest, 642 bool threadlocal=false) override; 643 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, 644 Address dest, llvm::Value *ivarOffset) override; 645 void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 646 llvm::Value *src, Address dest) override; 647 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, 648 Address SrcPtr, 649 llvm::Value *Size) override; 650 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, 651 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 652 unsigned CVRQualifiers) override; 653 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 654 const ObjCInterfaceDecl *Interface, 655 const ObjCIvarDecl *Ivar) override; 656 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 657 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 658 const CGBlockInfo &blockInfo) override { 659 return NULLPtr; 660 } 661 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, 662 const CGBlockInfo &blockInfo) override { 663 return NULLPtr; 664 } 665 666 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override { 667 return NULLPtr; 668 } 669 }; 670 671 /// Class representing the legacy GCC Objective-C ABI. This is the default when 672 /// -fobjc-nonfragile-abi is not specified. 673 /// 674 /// The GCC ABI target actually generates code that is approximately compatible 675 /// with the new GNUstep runtime ABI, but refrains from using any features that 676 /// would not work with the GCC runtime. For example, clang always generates 677 /// the extended form of the class structure, and the extra fields are simply 678 /// ignored by GCC libobjc. 679 class CGObjCGCC : public CGObjCGNU { 680 /// The GCC ABI message lookup function. Returns an IMP pointing to the 681 /// method implementation for this message. 682 LazyRuntimeFunction MsgLookupFn; 683 /// The GCC ABI superclass message lookup function. Takes a pointer to a 684 /// structure describing the receiver and the class, and a selector as 685 /// arguments. Returns the IMP for the corresponding method. 686 LazyRuntimeFunction MsgLookupSuperFn; 687 688 protected: 689 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 690 llvm::Value *cmd, llvm::MDNode *node, 691 MessageSendInfo &MSI) override { 692 CGBuilderTy &Builder = CGF.Builder; 693 llvm::Value *args[] = { 694 EnforceType(Builder, Receiver, IdTy), 695 EnforceType(Builder, cmd, SelectorTy) }; 696 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 697 imp->setMetadata(msgSendMDKind, node); 698 return imp; 699 } 700 701 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 702 llvm::Value *cmd, MessageSendInfo &MSI) override { 703 CGBuilderTy &Builder = CGF.Builder; 704 llvm::Value *lookupArgs[] = { 705 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd}; 706 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 707 } 708 709 public: 710 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 711 // IMP objc_msg_lookup(id, SEL); 712 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 713 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 714 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 715 PtrToObjCSuperTy, SelectorTy); 716 } 717 }; 718 719 /// Class used when targeting the new GNUstep runtime ABI. 720 class CGObjCGNUstep : public CGObjCGNU { 721 /// The slot lookup function. Returns a pointer to a cacheable structure 722 /// that contains (among other things) the IMP. 723 LazyRuntimeFunction SlotLookupFn; 724 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 725 /// a structure describing the receiver and the class, and a selector as 726 /// arguments. Returns the slot for the corresponding method. Superclass 727 /// message lookup rarely changes, so this is a good caching opportunity. 728 LazyRuntimeFunction SlotLookupSuperFn; 729 /// Specialised function for setting atomic retain properties 730 LazyRuntimeFunction SetPropertyAtomic; 731 /// Specialised function for setting atomic copy properties 732 LazyRuntimeFunction SetPropertyAtomicCopy; 733 /// Specialised function for setting nonatomic retain properties 734 LazyRuntimeFunction SetPropertyNonAtomic; 735 /// Specialised function for setting nonatomic copy properties 736 LazyRuntimeFunction SetPropertyNonAtomicCopy; 737 /// Function to perform atomic copies of C++ objects with nontrivial copy 738 /// constructors from Objective-C ivars. 739 LazyRuntimeFunction CxxAtomicObjectGetFn; 740 /// Function to perform atomic copies of C++ objects with nontrivial copy 741 /// constructors to Objective-C ivars. 742 LazyRuntimeFunction CxxAtomicObjectSetFn; 743 /// Type of a slot structure pointer. This is returned by the various 744 /// lookup functions. 745 llvm::Type *SlotTy; 746 /// Type of a slot structure. 747 llvm::Type *SlotStructTy; 748 749 public: 750 llvm::Constant *GetEHType(QualType T) override; 751 752 protected: 753 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 754 llvm::Value *cmd, llvm::MDNode *node, 755 MessageSendInfo &MSI) override { 756 CGBuilderTy &Builder = CGF.Builder; 757 llvm::FunctionCallee LookupFn = SlotLookupFn; 758 759 // Store the receiver on the stack so that we can reload it later 760 Address ReceiverPtr = 761 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign()); 762 Builder.CreateStore(Receiver, ReceiverPtr); 763 764 llvm::Value *self; 765 766 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 767 self = CGF.LoadObjCSelf(); 768 } else { 769 self = llvm::ConstantPointerNull::get(IdTy); 770 } 771 772 // The lookup function is guaranteed not to capture the receiver pointer. 773 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee())) 774 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture); 775 776 llvm::Value *args[] = { 777 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy), 778 EnforceType(Builder, cmd, SelectorTy), 779 EnforceType(Builder, self, IdTy) }; 780 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); 781 slot->setOnlyReadsMemory(); 782 slot->setMetadata(msgSendMDKind, node); 783 784 // Load the imp from the slot 785 llvm::Value *imp = Builder.CreateAlignedLoad( 786 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 787 CGF.getPointerAlign()); 788 789 // The lookup function may have changed the receiver, so make sure we use 790 // the new one. 791 Receiver = Builder.CreateLoad(ReceiverPtr, true); 792 return imp; 793 } 794 795 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 796 llvm::Value *cmd, 797 MessageSendInfo &MSI) override { 798 CGBuilderTy &Builder = CGF.Builder; 799 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd}; 800 801 llvm::CallInst *slot = 802 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); 803 slot->setOnlyReadsMemory(); 804 805 return Builder.CreateAlignedLoad( 806 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 807 CGF.getPointerAlign()); 808 } 809 810 public: 811 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {} 812 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI, 813 unsigned ClassABI) : 814 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) { 815 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 816 817 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy); 818 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 819 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 820 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 821 SelectorTy, IdTy); 822 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL); 823 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 824 PtrToObjCSuperTy, SelectorTy); 825 // If we're in ObjC++ mode, then we want to make 826 if (usesSEHExceptions) { 827 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 828 // void objc_exception_rethrow(void) 829 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy); 830 } else if (CGM.getLangOpts().CPlusPlus) { 831 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 832 // void *__cxa_begin_catch(void *e) 833 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 834 // void __cxa_end_catch(void) 835 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 836 // void _Unwind_Resume_or_Rethrow(void*) 837 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, 838 PtrTy); 839 } else if (R.getVersion() >= VersionTuple(1, 7)) { 840 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 841 // id objc_begin_catch(void *e) 842 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy); 843 // void objc_end_catch(void) 844 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy); 845 // void _Unwind_Resume_or_Rethrow(void*) 846 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy); 847 } 848 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 849 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, 850 SelectorTy, IdTy, PtrDiffTy); 851 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, 852 IdTy, SelectorTy, IdTy, PtrDiffTy); 853 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, 854 IdTy, SelectorTy, IdTy, PtrDiffTy); 855 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", 856 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); 857 // void objc_setCppObjectAtomic(void *dest, const void *src, void 858 // *helper); 859 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, 860 PtrTy, PtrTy); 861 // void objc_getCppObjectAtomic(void *dest, const void *src, void 862 // *helper); 863 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, 864 PtrTy, PtrTy); 865 } 866 867 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 868 // The optimised functions were added in version 1.7 of the GNUstep 869 // runtime. 870 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 871 VersionTuple(1, 7)); 872 return CxxAtomicObjectGetFn; 873 } 874 875 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 876 // The optimised functions were added in version 1.7 of the GNUstep 877 // runtime. 878 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 879 VersionTuple(1, 7)); 880 return CxxAtomicObjectSetFn; 881 } 882 883 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 884 bool copy) override { 885 // The optimised property functions omit the GC check, and so are not 886 // safe to use in GC mode. The standard functions are fast in GC mode, 887 // so there is less advantage in using them. 888 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); 889 // The optimised functions were added in version 1.7 of the GNUstep 890 // runtime. 891 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 892 VersionTuple(1, 7)); 893 894 if (atomic) { 895 if (copy) return SetPropertyAtomicCopy; 896 return SetPropertyAtomic; 897 } 898 899 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic; 900 } 901 }; 902 903 /// GNUstep Objective-C ABI version 2 implementation. 904 /// This is the ABI that provides a clean break with the legacy GCC ABI and 905 /// cleans up a number of things that were added to work around 1980s linkers. 906 class CGObjCGNUstep2 : public CGObjCGNUstep { 907 enum SectionKind 908 { 909 SelectorSection = 0, 910 ClassSection, 911 ClassReferenceSection, 912 CategorySection, 913 ProtocolSection, 914 ProtocolReferenceSection, 915 ClassAliasSection, 916 ConstantStringSection 917 }; 918 static const char *const SectionsBaseNames[8]; 919 static const char *const PECOFFSectionsBaseNames[8]; 920 template<SectionKind K> 921 std::string sectionName() { 922 if (CGM.getTriple().isOSBinFormatCOFF()) { 923 std::string name(PECOFFSectionsBaseNames[K]); 924 name += "$m"; 925 return name; 926 } 927 return SectionsBaseNames[K]; 928 } 929 /// The GCC ABI superclass message lookup function. Takes a pointer to a 930 /// structure describing the receiver and the class, and a selector as 931 /// arguments. Returns the IMP for the corresponding method. 932 LazyRuntimeFunction MsgLookupSuperFn; 933 /// A flag indicating if we've emitted at least one protocol. 934 /// If we haven't, then we need to emit an empty protocol, to ensure that the 935 /// __start__objc_protocols and __stop__objc_protocols sections exist. 936 bool EmittedProtocol = false; 937 /// A flag indicating if we've emitted at least one protocol reference. 938 /// If we haven't, then we need to emit an empty protocol, to ensure that the 939 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections 940 /// exist. 941 bool EmittedProtocolRef = false; 942 /// A flag indicating if we've emitted at least one class. 943 /// If we haven't, then we need to emit an empty protocol, to ensure that the 944 /// __start__objc_classes and __stop__objc_classes sections / exist. 945 bool EmittedClass = false; 946 /// Generate the name of a symbol for a reference to a class. Accesses to 947 /// classes should be indirected via this. 948 949 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>> 950 EarlyInitPair; 951 std::vector<EarlyInitPair> EarlyInitList; 952 953 std::string SymbolForClassRef(StringRef Name, bool isWeak) { 954 if (isWeak) 955 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str(); 956 else 957 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str(); 958 } 959 /// Generate the name of a class symbol. 960 std::string SymbolForClass(StringRef Name) { 961 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str(); 962 } 963 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName, 964 ArrayRef<llvm::Value*> Args) { 965 SmallVector<llvm::Type *,8> Types; 966 for (auto *Arg : Args) 967 Types.push_back(Arg->getType()); 968 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types, 969 false); 970 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName); 971 B.CreateCall(Fn, Args); 972 } 973 974 ConstantAddress GenerateConstantString(const StringLiteral *SL) override { 975 976 auto Str = SL->getString(); 977 CharUnits Align = CGM.getPointerAlign(); 978 979 // Look for an existing one 980 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 981 if (old != ObjCStrings.end()) 982 return ConstantAddress(old->getValue(), IdElemTy, Align); 983 984 bool isNonASCII = SL->containsNonAscii(); 985 986 auto LiteralLength = SL->getLength(); 987 988 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) && 989 (LiteralLength < 9) && !isNonASCII) { 990 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit 991 // ASCII characters in the high 56 bits, followed by a 4-bit length and a 992 // 3-bit tag (which is always 4). 993 uint64_t str = 0; 994 // Fill in the characters 995 for (unsigned i=0 ; i<LiteralLength ; i++) 996 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7)); 997 // Fill in the length 998 str |= LiteralLength << 3; 999 // Set the tag 1000 str |= 4; 1001 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr( 1002 llvm::ConstantInt::get(Int64Ty, str), IdTy); 1003 ObjCStrings[Str] = ObjCStr; 1004 return ConstantAddress(ObjCStr, IdElemTy, Align); 1005 } 1006 1007 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1008 1009 if (StringClass.empty()) StringClass = "NSConstantString"; 1010 1011 std::string Sym = SymbolForClass(StringClass); 1012 1013 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 1014 1015 if (!isa) { 1016 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 1017 llvm::GlobalValue::ExternalLinkage, nullptr, Sym); 1018 if (CGM.getTriple().isOSBinFormatCOFF()) { 1019 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1020 } 1021 } else if (isa->getType() != PtrToIdTy) 1022 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 1023 1024 // struct 1025 // { 1026 // Class isa; 1027 // uint32_t flags; 1028 // uint32_t length; // Number of codepoints 1029 // uint32_t size; // Number of bytes 1030 // uint32_t hash; 1031 // const char *data; 1032 // }; 1033 1034 ConstantInitBuilder Builder(CGM); 1035 auto Fields = Builder.beginStruct(); 1036 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1037 Fields.add(isa); 1038 } else { 1039 Fields.addNullPointer(PtrTy); 1040 } 1041 // For now, all non-ASCII strings are represented as UTF-16. As such, the 1042 // number of bytes is simply double the number of UTF-16 codepoints. In 1043 // ASCII strings, the number of bytes is equal to the number of non-ASCII 1044 // codepoints. 1045 if (isNonASCII) { 1046 unsigned NumU8CodeUnits = Str.size(); 1047 // A UTF-16 representation of a unicode string contains at most the same 1048 // number of code units as a UTF-8 representation. Allocate that much 1049 // space, plus one for the final null character. 1050 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1); 1051 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data(); 1052 llvm::UTF16 *ToPtr = &ToBuf[0]; 1053 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits, 1054 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion); 1055 uint32_t StringLength = ToPtr - &ToBuf[0]; 1056 // Add null terminator 1057 *ToPtr = 0; 1058 // Flags: 2 indicates UTF-16 encoding 1059 Fields.addInt(Int32Ty, 2); 1060 // Number of UTF-16 codepoints 1061 Fields.addInt(Int32Ty, StringLength); 1062 // Number of bytes 1063 Fields.addInt(Int32Ty, StringLength * 2); 1064 // Hash. Not currently initialised by the compiler. 1065 Fields.addInt(Int32Ty, 0); 1066 // pointer to the data string. 1067 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1); 1068 auto *C = llvm::ConstantDataArray::get(VMContext, Arr); 1069 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(), 1070 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); 1071 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1072 Fields.add(Buffer); 1073 } else { 1074 // Flags: 0 indicates ASCII encoding 1075 Fields.addInt(Int32Ty, 0); 1076 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint 1077 Fields.addInt(Int32Ty, Str.size()); 1078 // Number of bytes 1079 Fields.addInt(Int32Ty, Str.size()); 1080 // Hash. Not currently initialised by the compiler. 1081 Fields.addInt(Int32Ty, 0); 1082 // Data pointer 1083 Fields.add(MakeConstantString(Str)); 1084 } 1085 std::string StringName; 1086 bool isNamed = !isNonASCII; 1087 if (isNamed) { 1088 StringName = ".objc_str_"; 1089 for (int i=0,e=Str.size() ; i<e ; ++i) { 1090 unsigned char c = Str[i]; 1091 if (isalnum(c)) 1092 StringName += c; 1093 else if (c == ' ') 1094 StringName += '_'; 1095 else { 1096 isNamed = false; 1097 break; 1098 } 1099 } 1100 } 1101 llvm::GlobalVariable *ObjCStrGV = 1102 Fields.finishAndCreateGlobal( 1103 isNamed ? StringRef(StringName) : ".objc_string", 1104 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage 1105 : llvm::GlobalValue::PrivateLinkage); 1106 ObjCStrGV->setSection(sectionName<ConstantStringSection>()); 1107 if (isNamed) { 1108 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName)); 1109 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1110 } 1111 if (CGM.getTriple().isOSBinFormatCOFF()) { 1112 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0}; 1113 EarlyInitList.emplace_back(Sym, v); 1114 } 1115 llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy); 1116 ObjCStrings[Str] = ObjCStr; 1117 ConstantStrings.push_back(ObjCStr); 1118 return ConstantAddress(ObjCStr, IdElemTy, Align); 1119 } 1120 1121 void PushProperty(ConstantArrayBuilder &PropertiesArray, 1122 const ObjCPropertyDecl *property, 1123 const Decl *OCD, 1124 bool isSynthesized=true, bool 1125 isDynamic=true) override { 1126 // struct objc_property 1127 // { 1128 // const char *name; 1129 // const char *attributes; 1130 // const char *type; 1131 // SEL getter; 1132 // SEL setter; 1133 // }; 1134 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 1135 ASTContext &Context = CGM.getContext(); 1136 Fields.add(MakeConstantString(property->getNameAsString())); 1137 std::string TypeStr = 1138 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD); 1139 Fields.add(MakeConstantString(TypeStr)); 1140 std::string typeStr; 1141 Context.getObjCEncodingForType(property->getType(), typeStr); 1142 Fields.add(MakeConstantString(typeStr)); 1143 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 1144 if (accessor) { 1145 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 1146 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr)); 1147 } else { 1148 Fields.add(NULLPtr); 1149 } 1150 }; 1151 addPropertyMethod(property->getGetterMethodDecl()); 1152 addPropertyMethod(property->getSetterMethodDecl()); 1153 Fields.finishAndAddTo(PropertiesArray); 1154 } 1155 1156 llvm::Constant * 1157 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override { 1158 // struct objc_protocol_method_description 1159 // { 1160 // SEL selector; 1161 // const char *types; 1162 // }; 1163 llvm::StructType *ObjCMethodDescTy = 1164 llvm::StructType::get(CGM.getLLVMContext(), 1165 { PtrToInt8Ty, PtrToInt8Ty }); 1166 ASTContext &Context = CGM.getContext(); 1167 ConstantInitBuilder Builder(CGM); 1168 // struct objc_protocol_method_description_list 1169 // { 1170 // int count; 1171 // int size; 1172 // struct objc_protocol_method_description methods[]; 1173 // }; 1174 auto MethodList = Builder.beginStruct(); 1175 // int count; 1176 MethodList.addInt(IntTy, Methods.size()); 1177 // int size; // sizeof(struct objc_method_description) 1178 llvm::DataLayout td(&TheModule); 1179 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) / 1180 CGM.getContext().getCharWidth()); 1181 // struct objc_method_description[] 1182 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 1183 for (auto *M : Methods) { 1184 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 1185 Method.add(CGObjCGNU::GetConstantSelector(M)); 1186 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true))); 1187 Method.finishAndAddTo(MethodArray); 1188 } 1189 MethodArray.finishAndAddTo(MethodList); 1190 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list", 1191 CGM.getPointerAlign()); 1192 } 1193 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD) 1194 override { 1195 const auto &ReferencedProtocols = OCD->getReferencedProtocols(); 1196 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(), 1197 ReferencedProtocols.end()); 1198 SmallVector<llvm::Constant *, 16> Protocols; 1199 for (const auto *PI : RuntimeProtocols) 1200 Protocols.push_back( 1201 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI), 1202 ProtocolPtrTy)); 1203 return GenerateProtocolList(Protocols); 1204 } 1205 1206 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 1207 llvm::Value *cmd, MessageSendInfo &MSI) override { 1208 // Don't access the slot unless we're trying to cache the result. 1209 CGBuilderTy &Builder = CGF.Builder; 1210 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, 1211 ObjCSuper.getPointer(), 1212 PtrToObjCSuperTy), 1213 cmd}; 1214 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 1215 } 1216 1217 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) { 1218 std::string SymbolName = SymbolForClassRef(Name, isWeak); 1219 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName); 1220 if (ClassSymbol) 1221 return ClassSymbol; 1222 ClassSymbol = new llvm::GlobalVariable(TheModule, 1223 IdTy, false, llvm::GlobalValue::ExternalLinkage, 1224 nullptr, SymbolName); 1225 // If this is a weak symbol, then we are creating a valid definition for 1226 // the symbol, pointing to a weak definition of the real class pointer. If 1227 // this is not a weak reference, then we are expecting another compilation 1228 // unit to provide the real indirection symbol. 1229 if (isWeak) 1230 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule, 1231 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage, 1232 nullptr, SymbolForClass(Name))); 1233 else { 1234 if (CGM.getTriple().isOSBinFormatCOFF()) { 1235 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 1236 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 1237 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 1238 1239 const ObjCInterfaceDecl *OID = nullptr; 1240 for (const auto *Result : DC->lookup(&II)) 1241 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result))) 1242 break; 1243 1244 // The first Interface we find may be a @class, 1245 // which should only be treated as the source of 1246 // truth in the absence of a true declaration. 1247 assert(OID && "Failed to find ObjCInterfaceDecl"); 1248 const ObjCInterfaceDecl *OIDDef = OID->getDefinition(); 1249 if (OIDDef != nullptr) 1250 OID = OIDDef; 1251 1252 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1253 if (OID->hasAttr<DLLImportAttr>()) 1254 Storage = llvm::GlobalValue::DLLImportStorageClass; 1255 else if (OID->hasAttr<DLLExportAttr>()) 1256 Storage = llvm::GlobalValue::DLLExportStorageClass; 1257 1258 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage); 1259 } 1260 } 1261 assert(ClassSymbol->getName() == SymbolName); 1262 return ClassSymbol; 1263 } 1264 llvm::Value *GetClassNamed(CodeGenFunction &CGF, 1265 const std::string &Name, 1266 bool isWeak) override { 1267 return CGF.Builder.CreateLoad( 1268 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign())); 1269 } 1270 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) { 1271 // typedef enum { 1272 // ownership_invalid = 0, 1273 // ownership_strong = 1, 1274 // ownership_weak = 2, 1275 // ownership_unsafe = 3 1276 // } ivar_ownership; 1277 int Flag; 1278 switch (Ownership) { 1279 case Qualifiers::OCL_Strong: 1280 Flag = 1; 1281 break; 1282 case Qualifiers::OCL_Weak: 1283 Flag = 2; 1284 break; 1285 case Qualifiers::OCL_ExplicitNone: 1286 Flag = 3; 1287 break; 1288 case Qualifiers::OCL_None: 1289 case Qualifiers::OCL_Autoreleasing: 1290 assert(Ownership != Qualifiers::OCL_Autoreleasing); 1291 Flag = 0; 1292 } 1293 return Flag; 1294 } 1295 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1296 ArrayRef<llvm::Constant *> IvarTypes, 1297 ArrayRef<llvm::Constant *> IvarOffsets, 1298 ArrayRef<llvm::Constant *> IvarAlign, 1299 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override { 1300 llvm_unreachable("Method should not be called!"); 1301 } 1302 1303 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override { 1304 std::string Name = SymbolForProtocol(ProtocolName); 1305 auto *GV = TheModule.getGlobalVariable(Name); 1306 if (!GV) { 1307 // Emit a placeholder symbol. 1308 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false, 1309 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1310 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1311 } 1312 return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy); 1313 } 1314 1315 /// Existing protocol references. 1316 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs; 1317 1318 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1319 const ObjCProtocolDecl *PD) override { 1320 auto Name = PD->getNameAsString(); 1321 auto *&Ref = ExistingProtocolRefs[Name]; 1322 if (!Ref) { 1323 auto *&Protocol = ExistingProtocols[Name]; 1324 if (!Protocol) 1325 Protocol = GenerateProtocolRef(PD); 1326 std::string RefName = SymbolForProtocolRef(Name); 1327 assert(!TheModule.getGlobalVariable(RefName)); 1328 // Emit a reference symbol. 1329 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, 1330 false, llvm::GlobalValue::LinkOnceODRLinkage, 1331 llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName); 1332 GV->setComdat(TheModule.getOrInsertComdat(RefName)); 1333 GV->setSection(sectionName<ProtocolReferenceSection>()); 1334 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1335 Ref = GV; 1336 } 1337 EmittedProtocolRef = true; 1338 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref, 1339 CGM.getPointerAlign()); 1340 } 1341 1342 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) { 1343 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy, 1344 Protocols.size()); 1345 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1346 Protocols); 1347 ConstantInitBuilder builder(CGM); 1348 auto ProtocolBuilder = builder.beginStruct(); 1349 ProtocolBuilder.addNullPointer(PtrTy); 1350 ProtocolBuilder.addInt(SizeTy, Protocols.size()); 1351 ProtocolBuilder.add(ProtocolArray); 1352 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list", 1353 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage); 1354 } 1355 1356 void GenerateProtocol(const ObjCProtocolDecl *PD) override { 1357 // Do nothing - we only emit referenced protocols. 1358 } 1359 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override { 1360 std::string ProtocolName = PD->getNameAsString(); 1361 auto *&Protocol = ExistingProtocols[ProtocolName]; 1362 if (Protocol) 1363 return Protocol; 1364 1365 EmittedProtocol = true; 1366 1367 auto SymName = SymbolForProtocol(ProtocolName); 1368 auto *OldGV = TheModule.getGlobalVariable(SymName); 1369 1370 // Use the protocol definition, if there is one. 1371 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1372 PD = Def; 1373 else { 1374 // If there is no definition, then create an external linkage symbol and 1375 // hope that someone else fills it in for us (and fail to link if they 1376 // don't). 1377 assert(!OldGV); 1378 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy, 1379 /*isConstant*/false, 1380 llvm::GlobalValue::ExternalLinkage, nullptr, SymName); 1381 return Protocol; 1382 } 1383 1384 SmallVector<llvm::Constant*, 16> Protocols; 1385 auto RuntimeProtocols = 1386 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end()); 1387 for (const auto *PI : RuntimeProtocols) 1388 Protocols.push_back( 1389 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI), 1390 ProtocolPtrTy)); 1391 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1392 1393 // Collect information about methods 1394 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList; 1395 llvm::Constant *ClassMethodList, *OptionalClassMethodList; 1396 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList, 1397 OptionalInstanceMethodList); 1398 EmitProtocolMethodList(PD->class_methods(), ClassMethodList, 1399 OptionalClassMethodList); 1400 1401 // The isa pointer must be set to a magic number so the runtime knows it's 1402 // the correct layout. 1403 ConstantInitBuilder builder(CGM); 1404 auto ProtocolBuilder = builder.beginStruct(); 1405 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr( 1406 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1407 ProtocolBuilder.add(MakeConstantString(ProtocolName)); 1408 ProtocolBuilder.add(ProtocolList); 1409 ProtocolBuilder.add(InstanceMethodList); 1410 ProtocolBuilder.add(ClassMethodList); 1411 ProtocolBuilder.add(OptionalInstanceMethodList); 1412 ProtocolBuilder.add(OptionalClassMethodList); 1413 // Required instance properties 1414 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false)); 1415 // Optional instance properties 1416 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true)); 1417 // Required class properties 1418 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false)); 1419 // Optional class properties 1420 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true)); 1421 1422 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName, 1423 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1424 GV->setSection(sectionName<ProtocolSection>()); 1425 GV->setComdat(TheModule.getOrInsertComdat(SymName)); 1426 if (OldGV) { 1427 OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV, 1428 OldGV->getType())); 1429 OldGV->removeFromParent(); 1430 GV->setName(SymName); 1431 } 1432 Protocol = GV; 1433 return GV; 1434 } 1435 llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) { 1436 if (Val->getType() == Ty) 1437 return Val; 1438 return llvm::ConstantExpr::getBitCast(Val, Ty); 1439 } 1440 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 1441 const std::string &TypeEncoding) override { 1442 return GetConstantSelector(Sel, TypeEncoding); 1443 } 1444 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) { 1445 if (TypeEncoding.empty()) 1446 return NULLPtr; 1447 std::string MangledTypes = std::string(TypeEncoding); 1448 std::replace(MangledTypes.begin(), MangledTypes.end(), 1449 '@', '\1'); 1450 std::string TypesVarName = ".objc_sel_types_" + MangledTypes; 1451 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName); 1452 if (!TypesGlobal) { 1453 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, 1454 TypeEncoding); 1455 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(), 1456 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName); 1457 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName)); 1458 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1459 TypesGlobal = GV; 1460 } 1461 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(), 1462 TypesGlobal, Zeros); 1463 } 1464 llvm::Constant *GetConstantSelector(Selector Sel, 1465 const std::string &TypeEncoding) override { 1466 // @ is used as a special character in symbol names (used for symbol 1467 // versioning), so mangle the name to not include it. Replace it with a 1468 // character that is not a valid type encoding character (and, being 1469 // non-printable, never will be!) 1470 std::string MangledTypes = TypeEncoding; 1471 std::replace(MangledTypes.begin(), MangledTypes.end(), 1472 '@', '\1'); 1473 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" + 1474 MangledTypes).str(); 1475 if (auto *GV = TheModule.getNamedGlobal(SelVarName)) 1476 return EnforceType(GV, SelectorTy); 1477 ConstantInitBuilder builder(CGM); 1478 auto SelBuilder = builder.beginStruct(); 1479 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_", 1480 true)); 1481 SelBuilder.add(GetTypeString(TypeEncoding)); 1482 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName, 1483 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1484 GV->setComdat(TheModule.getOrInsertComdat(SelVarName)); 1485 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1486 GV->setSection(sectionName<SelectorSection>()); 1487 auto *SelVal = EnforceType(GV, SelectorTy); 1488 return SelVal; 1489 } 1490 llvm::StructType *emptyStruct = nullptr; 1491 1492 /// Return pointers to the start and end of a section. On ELF platforms, we 1493 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set 1494 /// to the start and end of section names, as long as those section names are 1495 /// valid identifiers and the symbols are referenced but not defined. On 1496 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort 1497 /// by subsections and place everything that we want to reference in a middle 1498 /// subsection and then insert zero-sized symbols in subsections a and z. 1499 std::pair<llvm::Constant*,llvm::Constant*> 1500 GetSectionBounds(StringRef Section) { 1501 if (CGM.getTriple().isOSBinFormatCOFF()) { 1502 if (emptyStruct == nullptr) { 1503 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel"); 1504 emptyStruct->setBody({}, /*isPacked*/true); 1505 } 1506 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct); 1507 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) { 1508 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct, 1509 /*isConstant*/false, 1510 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix + 1511 Section); 1512 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility); 1513 Sym->setSection((Section + SecSuffix).str()); 1514 Sym->setComdat(TheModule.getOrInsertComdat((Prefix + 1515 Section).str())); 1516 Sym->setAlignment(CGM.getPointerAlign().getAsAlign()); 1517 return Sym; 1518 }; 1519 return { Sym("__start_", "$a"), Sym("__stop", "$z") }; 1520 } 1521 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy, 1522 /*isConstant*/false, 1523 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") + 1524 Section); 1525 Start->setVisibility(llvm::GlobalValue::HiddenVisibility); 1526 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy, 1527 /*isConstant*/false, 1528 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") + 1529 Section); 1530 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility); 1531 return { Start, Stop }; 1532 } 1533 CatchTypeInfo getCatchAllTypeInfo() override { 1534 return CGM.getCXXABI().getCatchAllTypeInfo(); 1535 } 1536 llvm::Function *ModuleInitFunction() override { 1537 llvm::Function *LoadFunction = llvm::Function::Create( 1538 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 1539 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function", 1540 &TheModule); 1541 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility); 1542 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function")); 1543 1544 llvm::BasicBlock *EntryBB = 1545 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 1546 CGBuilderTy B(CGM, VMContext); 1547 B.SetInsertPoint(EntryBB); 1548 ConstantInitBuilder builder(CGM); 1549 auto InitStructBuilder = builder.beginStruct(); 1550 InitStructBuilder.addInt(Int64Ty, 0); 1551 auto §ionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames; 1552 for (auto *s : sectionVec) { 1553 auto bounds = GetSectionBounds(s); 1554 InitStructBuilder.add(bounds.first); 1555 InitStructBuilder.add(bounds.second); 1556 } 1557 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init", 1558 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1559 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility); 1560 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init")); 1561 1562 CallRuntimeFunction(B, "__objc_load", {InitStruct});; 1563 B.CreateRetVoid(); 1564 // Make sure that the optimisers don't delete this function. 1565 CGM.addCompilerUsedGlobal(LoadFunction); 1566 // FIXME: Currently ELF only! 1567 // We have to do this by hand, rather than with @llvm.ctors, so that the 1568 // linker can remove the duplicate invocations. 1569 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(), 1570 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage, 1571 LoadFunction, ".objc_ctor"); 1572 // Check that this hasn't been renamed. This shouldn't happen, because 1573 // this function should be called precisely once. 1574 assert(InitVar->getName() == ".objc_ctor"); 1575 // In Windows, initialisers are sorted by the suffix. XCL is for library 1576 // initialisers, which run before user initialisers. We are running 1577 // Objective-C loads at the end of library load. This means +load methods 1578 // will run before any other static constructors, but that static 1579 // constructors can see a fully initialised Objective-C state. 1580 if (CGM.getTriple().isOSBinFormatCOFF()) 1581 InitVar->setSection(".CRT$XCLz"); 1582 else 1583 { 1584 if (CGM.getCodeGenOpts().UseInitArray) 1585 InitVar->setSection(".init_array"); 1586 else 1587 InitVar->setSection(".ctors"); 1588 } 1589 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility); 1590 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor")); 1591 CGM.addUsedGlobal(InitVar); 1592 for (auto *C : Categories) { 1593 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts()); 1594 Cat->setSection(sectionName<CategorySection>()); 1595 CGM.addUsedGlobal(Cat); 1596 } 1597 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init, 1598 StringRef Section) { 1599 auto nullBuilder = builder.beginStruct(); 1600 for (auto *F : Init) 1601 nullBuilder.add(F); 1602 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 1603 false, llvm::GlobalValue::LinkOnceODRLinkage); 1604 GV->setSection(Section); 1605 GV->setComdat(TheModule.getOrInsertComdat(Name)); 1606 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1607 CGM.addUsedGlobal(GV); 1608 return GV; 1609 }; 1610 for (auto clsAlias : ClassAliases) 1611 createNullGlobal(std::string(".objc_class_alias") + 1612 clsAlias.second, { MakeConstantString(clsAlias.second), 1613 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>()); 1614 // On ELF platforms, add a null value for each special section so that we 1615 // can always guarantee that the _start and _stop symbols will exist and be 1616 // meaningful. This is not required on COFF platforms, where our start and 1617 // stop symbols will create the section. 1618 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1619 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr}, 1620 sectionName<SelectorSection>()); 1621 if (Categories.empty()) 1622 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr, 1623 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, 1624 sectionName<CategorySection>()); 1625 if (!EmittedClass) { 1626 createNullGlobal(".objc_null_cls_init_ref", NULLPtr, 1627 sectionName<ClassSection>()); 1628 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr }, 1629 sectionName<ClassReferenceSection>()); 1630 } 1631 if (!EmittedProtocol) 1632 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr, 1633 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, 1634 NULLPtr}, sectionName<ProtocolSection>()); 1635 if (!EmittedProtocolRef) 1636 createNullGlobal(".objc_null_protocol_ref", {NULLPtr}, 1637 sectionName<ProtocolReferenceSection>()); 1638 if (ClassAliases.empty()) 1639 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr }, 1640 sectionName<ClassAliasSection>()); 1641 if (ConstantStrings.empty()) { 1642 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0); 1643 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero, 1644 i32Zero, i32Zero, i32Zero, NULLPtr }, 1645 sectionName<ConstantStringSection>()); 1646 } 1647 } 1648 ConstantStrings.clear(); 1649 Categories.clear(); 1650 Classes.clear(); 1651 1652 if (EarlyInitList.size() > 0) { 1653 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, 1654 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init", 1655 &CGM.getModule()); 1656 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", 1657 Init)); 1658 for (const auto &lateInit : EarlyInitList) { 1659 auto *global = TheModule.getGlobalVariable(lateInit.first); 1660 if (global) { 1661 llvm::GlobalVariable *GV = lateInit.second.first; 1662 b.CreateAlignedStore( 1663 global, 1664 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second), 1665 CGM.getPointerAlign().getAsAlign()); 1666 } 1667 } 1668 b.CreateRetVoid(); 1669 // We can't use the normal LLVM global initialisation array, because we 1670 // need to specify that this runs early in library initialisation. 1671 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 1672 /*isConstant*/true, llvm::GlobalValue::InternalLinkage, 1673 Init, ".objc_early_init_ptr"); 1674 InitVar->setSection(".CRT$XCLb"); 1675 CGM.addUsedGlobal(InitVar); 1676 } 1677 return nullptr; 1678 } 1679 /// In the v2 ABI, ivar offset variables use the type encoding in their name 1680 /// to trigger linker failures if the types don't match. 1681 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 1682 const ObjCIvarDecl *Ivar) override { 1683 std::string TypeEncoding; 1684 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding); 1685 // Prevent the @ from being interpreted as a symbol version. 1686 std::replace(TypeEncoding.begin(), TypeEncoding.end(), 1687 '@', '\1'); 1688 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 1689 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding; 1690 return Name; 1691 } 1692 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 1693 const ObjCInterfaceDecl *Interface, 1694 const ObjCIvarDecl *Ivar) override { 1695 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar); 1696 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 1697 if (!IvarOffsetPointer) 1698 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false, 1699 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1700 CharUnits Align = CGM.getIntAlign(); 1701 llvm::Value *Offset = 1702 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align); 1703 if (Offset->getType() != PtrDiffTy) 1704 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 1705 return Offset; 1706 } 1707 void GenerateClass(const ObjCImplementationDecl *OID) override { 1708 ASTContext &Context = CGM.getContext(); 1709 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF(); 1710 1711 // Get the class name 1712 ObjCInterfaceDecl *classDecl = 1713 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 1714 std::string className = classDecl->getNameAsString(); 1715 auto *classNameConstant = MakeConstantString(className); 1716 1717 ConstantInitBuilder builder(CGM); 1718 auto metaclassFields = builder.beginStruct(); 1719 // struct objc_class *isa; 1720 metaclassFields.addNullPointer(PtrTy); 1721 // struct objc_class *super_class; 1722 metaclassFields.addNullPointer(PtrTy); 1723 // const char *name; 1724 metaclassFields.add(classNameConstant); 1725 // long version; 1726 metaclassFields.addInt(LongTy, 0); 1727 // unsigned long info; 1728 // objc_class_flag_meta 1729 metaclassFields.addInt(LongTy, 1); 1730 // long instance_size; 1731 // Setting this to zero is consistent with the older ABI, but it might be 1732 // more sensible to set this to sizeof(struct objc_class) 1733 metaclassFields.addInt(LongTy, 0); 1734 // struct objc_ivar_list *ivars; 1735 metaclassFields.addNullPointer(PtrTy); 1736 // struct objc_method_list *methods 1737 // FIXME: Almost identical code is copied and pasted below for the 1738 // class, but refactoring it cleanly requires C++14 generic lambdas. 1739 if (OID->classmeth_begin() == OID->classmeth_end()) 1740 metaclassFields.addNullPointer(PtrTy); 1741 else { 1742 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 1743 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 1744 OID->classmeth_end()); 1745 metaclassFields.addBitCast( 1746 GenerateMethodList(className, "", ClassMethods, true), 1747 PtrTy); 1748 } 1749 // void *dtable; 1750 metaclassFields.addNullPointer(PtrTy); 1751 // IMP cxx_construct; 1752 metaclassFields.addNullPointer(PtrTy); 1753 // IMP cxx_destruct; 1754 metaclassFields.addNullPointer(PtrTy); 1755 // struct objc_class *subclass_list 1756 metaclassFields.addNullPointer(PtrTy); 1757 // struct objc_class *sibling_class 1758 metaclassFields.addNullPointer(PtrTy); 1759 // struct objc_protocol_list *protocols; 1760 metaclassFields.addNullPointer(PtrTy); 1761 // struct reference_list *extra_data; 1762 metaclassFields.addNullPointer(PtrTy); 1763 // long abi_version; 1764 metaclassFields.addInt(LongTy, 0); 1765 // struct objc_property_list *properties 1766 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true)); 1767 1768 auto *metaclass = metaclassFields.finishAndCreateGlobal( 1769 ManglePublicSymbol("OBJC_METACLASS_") + className, 1770 CGM.getPointerAlign()); 1771 1772 auto classFields = builder.beginStruct(); 1773 // struct objc_class *isa; 1774 classFields.add(metaclass); 1775 // struct objc_class *super_class; 1776 // Get the superclass name. 1777 const ObjCInterfaceDecl * SuperClassDecl = 1778 OID->getClassInterface()->getSuperClass(); 1779 llvm::Constant *SuperClass = nullptr; 1780 if (SuperClassDecl) { 1781 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString()); 1782 SuperClass = TheModule.getNamedGlobal(SuperClassName); 1783 if (!SuperClass) 1784 { 1785 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false, 1786 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName); 1787 if (IsCOFF) { 1788 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1789 if (SuperClassDecl->hasAttr<DLLImportAttr>()) 1790 Storage = llvm::GlobalValue::DLLImportStorageClass; 1791 else if (SuperClassDecl->hasAttr<DLLExportAttr>()) 1792 Storage = llvm::GlobalValue::DLLExportStorageClass; 1793 1794 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage); 1795 } 1796 } 1797 if (!IsCOFF) 1798 classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy)); 1799 else 1800 classFields.addNullPointer(PtrTy); 1801 } else 1802 classFields.addNullPointer(PtrTy); 1803 // const char *name; 1804 classFields.add(classNameConstant); 1805 // long version; 1806 classFields.addInt(LongTy, 0); 1807 // unsigned long info; 1808 // !objc_class_flag_meta 1809 classFields.addInt(LongTy, 0); 1810 // long instance_size; 1811 int superInstanceSize = !SuperClassDecl ? 0 : 1812 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 1813 // Instance size is negative for classes that have not yet had their ivar 1814 // layout calculated. 1815 classFields.addInt(LongTy, 1816 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() - 1817 superInstanceSize)); 1818 1819 if (classDecl->all_declared_ivar_begin() == nullptr) 1820 classFields.addNullPointer(PtrTy); 1821 else { 1822 int ivar_count = 0; 1823 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1824 IVD = IVD->getNextIvar()) ivar_count++; 1825 llvm::DataLayout td(&TheModule); 1826 // struct objc_ivar_list *ivars; 1827 ConstantInitBuilder b(CGM); 1828 auto ivarListBuilder = b.beginStruct(); 1829 // int count; 1830 ivarListBuilder.addInt(IntTy, ivar_count); 1831 // size_t size; 1832 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1833 PtrToInt8Ty, 1834 PtrToInt8Ty, 1835 PtrToInt8Ty, 1836 Int32Ty, 1837 Int32Ty); 1838 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) / 1839 CGM.getContext().getCharWidth()); 1840 // struct objc_ivar ivars[] 1841 auto ivarArrayBuilder = ivarListBuilder.beginArray(); 1842 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1843 IVD = IVD->getNextIvar()) { 1844 auto ivarTy = IVD->getType(); 1845 auto ivarBuilder = ivarArrayBuilder.beginStruct(); 1846 // const char *name; 1847 ivarBuilder.add(MakeConstantString(IVD->getNameAsString())); 1848 // const char *type; 1849 std::string TypeStr; 1850 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true); 1851 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true); 1852 ivarBuilder.add(MakeConstantString(TypeStr)); 1853 // int *offset; 1854 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 1855 uint64_t Offset = BaseOffset - superInstanceSize; 1856 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 1857 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD); 1858 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 1859 if (OffsetVar) 1860 OffsetVar->setInitializer(OffsetValue); 1861 else 1862 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 1863 false, llvm::GlobalValue::ExternalLinkage, 1864 OffsetValue, OffsetName); 1865 auto ivarVisibility = 1866 (IVD->getAccessControl() == ObjCIvarDecl::Private || 1867 IVD->getAccessControl() == ObjCIvarDecl::Package || 1868 classDecl->getVisibility() == HiddenVisibility) ? 1869 llvm::GlobalValue::HiddenVisibility : 1870 llvm::GlobalValue::DefaultVisibility; 1871 OffsetVar->setVisibility(ivarVisibility); 1872 ivarBuilder.add(OffsetVar); 1873 // Ivar size 1874 ivarBuilder.addInt(Int32Ty, 1875 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity()); 1876 // Alignment will be stored as a base-2 log of the alignment. 1877 unsigned align = 1878 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity()); 1879 // Objects that require more than 2^64-byte alignment should be impossible! 1880 assert(align < 64); 1881 // uint32_t flags; 1882 // Bits 0-1 are ownership. 1883 // Bit 2 indicates an extended type encoding 1884 // Bits 3-8 contain log2(aligment) 1885 ivarBuilder.addInt(Int32Ty, 1886 (align << 3) | (1<<2) | 1887 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime())); 1888 ivarBuilder.finishAndAddTo(ivarArrayBuilder); 1889 } 1890 ivarArrayBuilder.finishAndAddTo(ivarListBuilder); 1891 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list", 1892 CGM.getPointerAlign(), /*constant*/ false, 1893 llvm::GlobalValue::PrivateLinkage); 1894 classFields.add(ivarList); 1895 } 1896 // struct objc_method_list *methods 1897 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 1898 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 1899 OID->instmeth_end()); 1900 for (auto *propImpl : OID->property_impls()) 1901 if (propImpl->getPropertyImplementation() == 1902 ObjCPropertyImplDecl::Synthesize) { 1903 auto addIfExists = [&](const ObjCMethodDecl *OMD) { 1904 if (OMD && OMD->hasBody()) 1905 InstanceMethods.push_back(OMD); 1906 }; 1907 addIfExists(propImpl->getGetterMethodDecl()); 1908 addIfExists(propImpl->getSetterMethodDecl()); 1909 } 1910 1911 if (InstanceMethods.size() == 0) 1912 classFields.addNullPointer(PtrTy); 1913 else 1914 classFields.addBitCast( 1915 GenerateMethodList(className, "", InstanceMethods, false), 1916 PtrTy); 1917 // void *dtable; 1918 classFields.addNullPointer(PtrTy); 1919 // IMP cxx_construct; 1920 classFields.addNullPointer(PtrTy); 1921 // IMP cxx_destruct; 1922 classFields.addNullPointer(PtrTy); 1923 // struct objc_class *subclass_list 1924 classFields.addNullPointer(PtrTy); 1925 // struct objc_class *sibling_class 1926 classFields.addNullPointer(PtrTy); 1927 // struct objc_protocol_list *protocols; 1928 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(), 1929 classDecl->protocol_end()); 1930 SmallVector<llvm::Constant *, 16> Protocols; 1931 for (const auto *I : RuntimeProtocols) 1932 Protocols.push_back( 1933 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I), 1934 ProtocolPtrTy)); 1935 if (Protocols.empty()) 1936 classFields.addNullPointer(PtrTy); 1937 else 1938 classFields.add(GenerateProtocolList(Protocols)); 1939 // struct reference_list *extra_data; 1940 classFields.addNullPointer(PtrTy); 1941 // long abi_version; 1942 classFields.addInt(LongTy, 0); 1943 // struct objc_property_list *properties 1944 classFields.add(GeneratePropertyList(OID, classDecl)); 1945 1946 llvm::GlobalVariable *classStruct = 1947 classFields.finishAndCreateGlobal(SymbolForClass(className), 1948 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1949 1950 auto *classRefSymbol = GetClassVar(className); 1951 classRefSymbol->setSection(sectionName<ClassReferenceSection>()); 1952 classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy)); 1953 1954 if (IsCOFF) { 1955 // we can't import a class struct. 1956 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) { 1957 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1958 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1959 } 1960 1961 if (SuperClass) { 1962 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1}; 1963 EarlyInitList.emplace_back(std::string(SuperClass->getName()), 1964 std::move(v)); 1965 } 1966 1967 } 1968 1969 1970 // Resolve the class aliases, if they exist. 1971 // FIXME: Class pointer aliases shouldn't exist! 1972 if (ClassPtrAlias) { 1973 ClassPtrAlias->replaceAllUsesWith( 1974 llvm::ConstantExpr::getBitCast(classStruct, IdTy)); 1975 ClassPtrAlias->eraseFromParent(); 1976 ClassPtrAlias = nullptr; 1977 } 1978 if (auto Placeholder = 1979 TheModule.getNamedGlobal(SymbolForClass(className))) 1980 if (Placeholder != classStruct) { 1981 Placeholder->replaceAllUsesWith( 1982 llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType())); 1983 Placeholder->eraseFromParent(); 1984 classStruct->setName(SymbolForClass(className)); 1985 } 1986 if (MetaClassPtrAlias) { 1987 MetaClassPtrAlias->replaceAllUsesWith( 1988 llvm::ConstantExpr::getBitCast(metaclass, IdTy)); 1989 MetaClassPtrAlias->eraseFromParent(); 1990 MetaClassPtrAlias = nullptr; 1991 } 1992 assert(classStruct->getName() == SymbolForClass(className)); 1993 1994 auto classInitRef = new llvm::GlobalVariable(TheModule, 1995 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage, 1996 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className); 1997 classInitRef->setSection(sectionName<ClassSection>()); 1998 CGM.addUsedGlobal(classInitRef); 1999 2000 EmittedClass = true; 2001 } 2002 public: 2003 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) { 2004 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2005 PtrToObjCSuperTy, SelectorTy); 2006 // struct objc_property 2007 // { 2008 // const char *name; 2009 // const char *attributes; 2010 // const char *type; 2011 // SEL getter; 2012 // SEL setter; 2013 // } 2014 PropertyMetadataTy = 2015 llvm::StructType::get(CGM.getLLVMContext(), 2016 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); 2017 } 2018 2019 }; 2020 2021 const char *const CGObjCGNUstep2::SectionsBaseNames[8] = 2022 { 2023 "__objc_selectors", 2024 "__objc_classes", 2025 "__objc_class_refs", 2026 "__objc_cats", 2027 "__objc_protocols", 2028 "__objc_protocol_refs", 2029 "__objc_class_aliases", 2030 "__objc_constant_string" 2031 }; 2032 2033 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] = 2034 { 2035 ".objcrt$SEL", 2036 ".objcrt$CLS", 2037 ".objcrt$CLR", 2038 ".objcrt$CAT", 2039 ".objcrt$PCL", 2040 ".objcrt$PCR", 2041 ".objcrt$CAL", 2042 ".objcrt$STR" 2043 }; 2044 2045 /// Support for the ObjFW runtime. 2046 class CGObjCObjFW: public CGObjCGNU { 2047 protected: 2048 /// The GCC ABI message lookup function. Returns an IMP pointing to the 2049 /// method implementation for this message. 2050 LazyRuntimeFunction MsgLookupFn; 2051 /// stret lookup function. While this does not seem to make sense at the 2052 /// first look, this is required to call the correct forwarding function. 2053 LazyRuntimeFunction MsgLookupFnSRet; 2054 /// The GCC ABI superclass message lookup function. Takes a pointer to a 2055 /// structure describing the receiver and the class, and a selector as 2056 /// arguments. Returns the IMP for the corresponding method. 2057 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; 2058 2059 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 2060 llvm::Value *cmd, llvm::MDNode *node, 2061 MessageSendInfo &MSI) override { 2062 CGBuilderTy &Builder = CGF.Builder; 2063 llvm::Value *args[] = { 2064 EnforceType(Builder, Receiver, IdTy), 2065 EnforceType(Builder, cmd, SelectorTy) }; 2066 2067 llvm::CallBase *imp; 2068 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2069 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); 2070 else 2071 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 2072 2073 imp->setMetadata(msgSendMDKind, node); 2074 return imp; 2075 } 2076 2077 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 2078 llvm::Value *cmd, MessageSendInfo &MSI) override { 2079 CGBuilderTy &Builder = CGF.Builder; 2080 llvm::Value *lookupArgs[] = { 2081 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd, 2082 }; 2083 2084 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2085 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); 2086 else 2087 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 2088 } 2089 2090 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, 2091 bool isWeak) override { 2092 if (isWeak) 2093 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); 2094 2095 EmitClassRef(Name); 2096 std::string SymbolName = "_OBJC_CLASS_" + Name; 2097 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); 2098 if (!ClassSymbol) 2099 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2100 llvm::GlobalValue::ExternalLinkage, 2101 nullptr, SymbolName); 2102 return ClassSymbol; 2103 } 2104 2105 public: 2106 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { 2107 // IMP objc_msg_lookup(id, SEL); 2108 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 2109 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, 2110 SelectorTy); 2111 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 2112 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2113 PtrToObjCSuperTy, SelectorTy); 2114 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, 2115 PtrToObjCSuperTy, SelectorTy); 2116 } 2117 }; 2118 } // end anonymous namespace 2119 2120 /// Emits a reference to a dummy variable which is emitted with each class. 2121 /// This ensures that a linker error will be generated when trying to link 2122 /// together modules where a referenced class is not defined. 2123 void CGObjCGNU::EmitClassRef(const std::string &className) { 2124 std::string symbolRef = "__objc_class_ref_" + className; 2125 // Don't emit two copies of the same symbol 2126 if (TheModule.getGlobalVariable(symbolRef)) 2127 return; 2128 std::string symbolName = "__objc_class_name_" + className; 2129 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 2130 if (!ClassSymbol) { 2131 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2132 llvm::GlobalValue::ExternalLinkage, 2133 nullptr, symbolName); 2134 } 2135 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 2136 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 2137 } 2138 2139 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 2140 unsigned protocolClassVersion, unsigned classABI) 2141 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 2142 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr), 2143 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion), 2144 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) { 2145 2146 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 2147 usesSEHExceptions = 2148 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment(); 2149 2150 CodeGenTypes &Types = CGM.getTypes(); 2151 IntTy = cast<llvm::IntegerType>( 2152 Types.ConvertType(CGM.getContext().IntTy)); 2153 LongTy = cast<llvm::IntegerType>( 2154 Types.ConvertType(CGM.getContext().LongTy)); 2155 SizeTy = cast<llvm::IntegerType>( 2156 Types.ConvertType(CGM.getContext().getSizeType())); 2157 PtrDiffTy = cast<llvm::IntegerType>( 2158 Types.ConvertType(CGM.getContext().getPointerDiffType())); 2159 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 2160 2161 Int8Ty = llvm::Type::getInt8Ty(VMContext); 2162 // C string type. Used in lots of places. 2163 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 2164 ProtocolPtrTy = llvm::PointerType::getUnqual( 2165 Types.ConvertType(CGM.getContext().getObjCProtoType())); 2166 2167 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 2168 Zeros[1] = Zeros[0]; 2169 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2170 // Get the selector Type. 2171 QualType selTy = CGM.getContext().getObjCSelType(); 2172 if (QualType() == selTy) { 2173 SelectorTy = PtrToInt8Ty; 2174 SelectorElemTy = Int8Ty; 2175 } else { 2176 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 2177 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType()); 2178 } 2179 2180 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 2181 PtrTy = PtrToInt8Ty; 2182 2183 Int32Ty = llvm::Type::getInt32Ty(VMContext); 2184 Int64Ty = llvm::Type::getInt64Ty(VMContext); 2185 2186 IntPtrTy = 2187 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty; 2188 2189 // Object type 2190 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 2191 ASTIdTy = CanQualType(); 2192 if (UnqualIdTy != QualType()) { 2193 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 2194 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2195 IdElemTy = CGM.getTypes().ConvertTypeForMem( 2196 ASTIdTy.getTypePtr()->getPointeeType()); 2197 } else { 2198 IdTy = PtrToInt8Ty; 2199 IdElemTy = Int8Ty; 2200 } 2201 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 2202 ProtocolTy = llvm::StructType::get(IdTy, 2203 PtrToInt8Ty, // name 2204 PtrToInt8Ty, // protocols 2205 PtrToInt8Ty, // instance methods 2206 PtrToInt8Ty, // class methods 2207 PtrToInt8Ty, // optional instance methods 2208 PtrToInt8Ty, // optional class methods 2209 PtrToInt8Ty, // properties 2210 PtrToInt8Ty);// optional properties 2211 2212 // struct objc_property_gsv1 2213 // { 2214 // const char *name; 2215 // char attributes; 2216 // char attributes2; 2217 // char unused1; 2218 // char unused2; 2219 // const char *getter_name; 2220 // const char *getter_types; 2221 // const char *setter_name; 2222 // const char *setter_types; 2223 // } 2224 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { 2225 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, 2226 PtrToInt8Ty, PtrToInt8Ty }); 2227 2228 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy); 2229 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 2230 2231 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 2232 2233 // void objc_exception_throw(id); 2234 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2235 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2236 // int objc_sync_enter(id); 2237 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy); 2238 // int objc_sync_exit(id); 2239 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy); 2240 2241 // void objc_enumerationMutation (id) 2242 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy); 2243 2244 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 2245 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 2246 PtrDiffTy, BoolTy); 2247 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 2248 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 2249 PtrDiffTy, IdTy, BoolTy, BoolTy); 2250 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2251 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 2252 PtrDiffTy, BoolTy, BoolTy); 2253 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2254 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 2255 PtrDiffTy, BoolTy, BoolTy); 2256 2257 // IMP type 2258 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 2259 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 2260 true)); 2261 2262 const LangOptions &Opts = CGM.getLangOpts(); 2263 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 2264 RuntimeVersion = 10; 2265 2266 // Don't bother initialising the GC stuff unless we're compiling in GC mode 2267 if (Opts.getGC() != LangOptions::NonGC) { 2268 // This is a bit of an hack. We should sort this out by having a proper 2269 // CGObjCGNUstep subclass for GC, but we may want to really support the old 2270 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 2271 // Get selectors needed in GC mode 2272 RetainSel = GetNullarySelector("retain", CGM.getContext()); 2273 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 2274 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 2275 2276 // Get functions needed in GC mode 2277 2278 // id objc_assign_ivar(id, id, ptrdiff_t); 2279 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy); 2280 // id objc_assign_strongCast (id, id*) 2281 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 2282 PtrToIdTy); 2283 // id objc_assign_global(id, id*); 2284 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy); 2285 // id objc_assign_weak(id, id*); 2286 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy); 2287 // id objc_read_weak(id*); 2288 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy); 2289 // void *objc_memmove_collectable(void*, void *, size_t); 2290 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 2291 SizeTy); 2292 } 2293 } 2294 2295 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, 2296 const std::string &Name, bool isWeak) { 2297 llvm::Constant *ClassName = MakeConstantString(Name); 2298 // With the incompatible ABI, this will need to be replaced with a direct 2299 // reference to the class symbol. For the compatible nonfragile ABI we are 2300 // still performing this lookup at run time but emitting the symbol for the 2301 // class externally so that we can make the switch later. 2302 // 2303 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 2304 // with memoized versions or with static references if it's safe to do so. 2305 if (!isWeak) 2306 EmitClassRef(Name); 2307 2308 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction( 2309 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class"); 2310 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); 2311 } 2312 2313 // This has to perform the lookup every time, since posing and related 2314 // techniques can modify the name -> class mapping. 2315 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, 2316 const ObjCInterfaceDecl *OID) { 2317 auto *Value = 2318 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); 2319 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) 2320 CGM.setGVProperties(ClassSymbol, OID); 2321 return Value; 2322 } 2323 2324 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 2325 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false); 2326 if (CGM.getTriple().isOSBinFormatCOFF()) { 2327 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) { 2328 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool"); 2329 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 2330 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2331 2332 const VarDecl *VD = nullptr; 2333 for (const auto *Result : DC->lookup(&II)) 2334 if ((VD = dyn_cast<VarDecl>(Result))) 2335 break; 2336 2337 CGM.setGVProperties(ClassSymbol, VD); 2338 } 2339 } 2340 return Value; 2341 } 2342 2343 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 2344 const std::string &TypeEncoding) { 2345 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel]; 2346 llvm::GlobalAlias *SelValue = nullptr; 2347 2348 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2349 e = Types.end() ; i!=e ; i++) { 2350 if (i->first == TypeEncoding) { 2351 SelValue = i->second; 2352 break; 2353 } 2354 } 2355 if (!SelValue) { 2356 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0, 2357 llvm::GlobalValue::PrivateLinkage, 2358 ".objc_selector_" + Sel.getAsString(), 2359 &TheModule); 2360 Types.emplace_back(TypeEncoding, SelValue); 2361 } 2362 2363 return SelValue; 2364 } 2365 2366 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 2367 llvm::Value *SelValue = GetSelector(CGF, Sel); 2368 2369 // Store it to a temporary. Does this satisfy the semantics of 2370 // GetAddrOfSelector? Hopefully. 2371 Address tmp = CGF.CreateTempAlloca(SelValue->getType(), 2372 CGF.getPointerAlign()); 2373 CGF.Builder.CreateStore(SelValue, tmp); 2374 return tmp; 2375 } 2376 2377 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) { 2378 return GetTypedSelector(CGF, Sel, std::string()); 2379 } 2380 2381 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, 2382 const ObjCMethodDecl *Method) { 2383 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method); 2384 return GetTypedSelector(CGF, Method->getSelector(), SelTypes); 2385 } 2386 2387 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 2388 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 2389 // With the old ABI, there was only one kind of catchall, which broke 2390 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 2391 // a pointer indicating object catchalls, and NULL to indicate real 2392 // catchalls 2393 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2394 return MakeConstantString("@id"); 2395 } else { 2396 return nullptr; 2397 } 2398 } 2399 2400 // All other types should be Objective-C interface pointer types. 2401 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>(); 2402 assert(OPT && "Invalid @catch type."); 2403 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); 2404 assert(IDecl && "Invalid @catch type."); 2405 return MakeConstantString(IDecl->getIdentifier()->getName()); 2406 } 2407 2408 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { 2409 if (usesSEHExceptions) 2410 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T); 2411 2412 if (!CGM.getLangOpts().CPlusPlus) 2413 return CGObjCGNU::GetEHType(T); 2414 2415 // For Objective-C++, we want to provide the ability to catch both C++ and 2416 // Objective-C objects in the same function. 2417 2418 // There's a particular fixed type info for 'id'. 2419 if (T->isObjCIdType() || 2420 T->isObjCQualifiedIdType()) { 2421 llvm::Constant *IDEHType = 2422 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 2423 if (!IDEHType) 2424 IDEHType = 2425 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 2426 false, 2427 llvm::GlobalValue::ExternalLinkage, 2428 nullptr, "__objc_id_type_info"); 2429 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty); 2430 } 2431 2432 const ObjCObjectPointerType *PT = 2433 T->getAs<ObjCObjectPointerType>(); 2434 assert(PT && "Invalid @catch type."); 2435 const ObjCInterfaceType *IT = PT->getInterfaceType(); 2436 assert(IT && "Invalid @catch type."); 2437 std::string className = 2438 std::string(IT->getDecl()->getIdentifier()->getName()); 2439 2440 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 2441 2442 // Return the existing typeinfo if it exists 2443 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName); 2444 if (typeinfo) 2445 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty); 2446 2447 // Otherwise create it. 2448 2449 // vtable for gnustep::libobjc::__objc_class_type_info 2450 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 2451 // platform's name mangling. 2452 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 2453 auto *Vtable = TheModule.getGlobalVariable(vtableName); 2454 if (!Vtable) { 2455 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 2456 llvm::GlobalValue::ExternalLinkage, 2457 nullptr, vtableName); 2458 } 2459 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 2460 auto *BVtable = llvm::ConstantExpr::getBitCast( 2461 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two), 2462 PtrToInt8Ty); 2463 2464 llvm::Constant *typeName = 2465 ExportUniqueString(className, "__objc_eh_typename_"); 2466 2467 ConstantInitBuilder builder(CGM); 2468 auto fields = builder.beginStruct(); 2469 fields.add(BVtable); 2470 fields.add(typeName); 2471 llvm::Constant *TI = 2472 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className, 2473 CGM.getPointerAlign(), 2474 /*constant*/ false, 2475 llvm::GlobalValue::LinkOnceODRLinkage); 2476 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty); 2477 } 2478 2479 /// Generate an NSConstantString object. 2480 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 2481 2482 std::string Str = SL->getString().str(); 2483 CharUnits Align = CGM.getPointerAlign(); 2484 2485 // Look for an existing one 2486 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 2487 if (old != ObjCStrings.end()) 2488 return ConstantAddress(old->getValue(), Int8Ty, Align); 2489 2490 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2491 2492 if (StringClass.empty()) StringClass = "NSConstantString"; 2493 2494 std::string Sym = "_OBJC_CLASS_"; 2495 Sym += StringClass; 2496 2497 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 2498 2499 if (!isa) 2500 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 2501 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym); 2502 else if (isa->getType() != PtrToIdTy) 2503 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 2504 2505 ConstantInitBuilder Builder(CGM); 2506 auto Fields = Builder.beginStruct(); 2507 Fields.add(isa); 2508 Fields.add(MakeConstantString(Str)); 2509 Fields.addInt(IntTy, Str.size()); 2510 llvm::Constant *ObjCStr = 2511 Fields.finishAndCreateGlobal(".objc_str", Align); 2512 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty); 2513 ObjCStrings[Str] = ObjCStr; 2514 ConstantStrings.push_back(ObjCStr); 2515 return ConstantAddress(ObjCStr, Int8Ty, Align); 2516 } 2517 2518 ///Generates a message send where the super is the receiver. This is a message 2519 ///send to self with special delivery semantics indicating which class's method 2520 ///should be called. 2521 RValue 2522 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 2523 ReturnValueSlot Return, 2524 QualType ResultType, 2525 Selector Sel, 2526 const ObjCInterfaceDecl *Class, 2527 bool isCategoryImpl, 2528 llvm::Value *Receiver, 2529 bool IsClassMessage, 2530 const CallArgList &CallArgs, 2531 const ObjCMethodDecl *Method) { 2532 CGBuilderTy &Builder = CGF.Builder; 2533 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2534 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2535 return RValue::get(EnforceType(Builder, Receiver, 2536 CGM.getTypes().ConvertType(ResultType))); 2537 } 2538 if (Sel == ReleaseSel) { 2539 return RValue::get(nullptr); 2540 } 2541 } 2542 2543 llvm::Value *cmd = GetSelector(CGF, Sel); 2544 CallArgList ActualArgs; 2545 2546 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 2547 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2548 ActualArgs.addFrom(CallArgs); 2549 2550 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2551 2552 llvm::Value *ReceiverClass = nullptr; 2553 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2554 if (isV2ABI) { 2555 ReceiverClass = GetClassNamed(CGF, 2556 Class->getSuperClass()->getNameAsString(), /*isWeak*/false); 2557 if (IsClassMessage) { 2558 // Load the isa pointer of the superclass is this is a class method. 2559 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2560 llvm::PointerType::getUnqual(IdTy)); 2561 ReceiverClass = 2562 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2563 } 2564 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy); 2565 } else { 2566 if (isCategoryImpl) { 2567 llvm::FunctionCallee classLookupFunction = nullptr; 2568 if (IsClassMessage) { 2569 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2570 IdTy, PtrTy, true), "objc_get_meta_class"); 2571 } else { 2572 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2573 IdTy, PtrTy, true), "objc_get_class"); 2574 } 2575 ReceiverClass = Builder.CreateCall(classLookupFunction, 2576 MakeConstantString(Class->getNameAsString())); 2577 } else { 2578 // Set up global aliases for the metaclass or class pointer if they do not 2579 // already exist. These will are forward-references which will be set to 2580 // pointers to the class and metaclass structure created for the runtime 2581 // load function. To send a message to super, we look up the value of the 2582 // super_class pointer from either the class or metaclass structure. 2583 if (IsClassMessage) { 2584 if (!MetaClassPtrAlias) { 2585 MetaClassPtrAlias = llvm::GlobalAlias::create( 2586 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2587 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule); 2588 } 2589 ReceiverClass = MetaClassPtrAlias; 2590 } else { 2591 if (!ClassPtrAlias) { 2592 ClassPtrAlias = llvm::GlobalAlias::create( 2593 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2594 ".objc_class_ref" + Class->getNameAsString(), &TheModule); 2595 } 2596 ReceiverClass = ClassPtrAlias; 2597 } 2598 } 2599 // Cast the pointer to a simplified version of the class structure 2600 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy); 2601 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2602 llvm::PointerType::getUnqual(CastTy)); 2603 // Get the superclass pointer 2604 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1); 2605 // Load the superclass pointer 2606 ReceiverClass = 2607 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2608 } 2609 // Construct the structure used to look up the IMP 2610 llvm::StructType *ObjCSuperTy = 2611 llvm::StructType::get(Receiver->getType(), IdTy); 2612 2613 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy, 2614 CGF.getPointerAlign()); 2615 2616 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 2617 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 2618 2619 // Get the IMP 2620 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); 2621 imp = EnforceType(Builder, imp, MSI.MessengerType); 2622 2623 llvm::Metadata *impMD[] = { 2624 llvm::MDString::get(VMContext, Sel.getAsString()), 2625 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 2626 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2627 llvm::Type::getInt1Ty(VMContext), IsClassMessage))}; 2628 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2629 2630 CGCallee callee(CGCalleeInfo(), imp); 2631 2632 llvm::CallBase *call; 2633 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2634 call->setMetadata(msgSendMDKind, node); 2635 return msgRet; 2636 } 2637 2638 /// Generate code for a message send expression. 2639 RValue 2640 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 2641 ReturnValueSlot Return, 2642 QualType ResultType, 2643 Selector Sel, 2644 llvm::Value *Receiver, 2645 const CallArgList &CallArgs, 2646 const ObjCInterfaceDecl *Class, 2647 const ObjCMethodDecl *Method) { 2648 CGBuilderTy &Builder = CGF.Builder; 2649 2650 // Strip out message sends to retain / release in GC mode 2651 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2652 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2653 return RValue::get(EnforceType(Builder, Receiver, 2654 CGM.getTypes().ConvertType(ResultType))); 2655 } 2656 if (Sel == ReleaseSel) { 2657 return RValue::get(nullptr); 2658 } 2659 } 2660 2661 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2662 llvm::Value *cmd; 2663 if (Method) 2664 cmd = GetSelector(CGF, Method); 2665 else 2666 cmd = GetSelector(CGF, Sel); 2667 cmd = EnforceType(Builder, cmd, SelectorTy); 2668 Receiver = EnforceType(Builder, Receiver, IdTy); 2669 2670 llvm::Metadata *impMD[] = { 2671 llvm::MDString::get(VMContext, Sel.getAsString()), 2672 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""), 2673 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2674 llvm::Type::getInt1Ty(VMContext), Class != nullptr))}; 2675 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2676 2677 CallArgList ActualArgs; 2678 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 2679 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2680 ActualArgs.addFrom(CallArgs); 2681 2682 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2683 2684 // Message sends are expected to return a zero value when the 2685 // receiver is nil. At one point, this was only guaranteed for 2686 // simple integer and pointer types, but expectations have grown 2687 // over time. 2688 // 2689 // Given a nil receiver, the GNU runtime's message lookup will 2690 // return a stub function that simply sets various return-value 2691 // registers to zero and then returns. That's good enough for us 2692 // if and only if (1) the calling conventions of that stub are 2693 // compatible with the signature we're using and (2) the registers 2694 // it sets are sufficient to produce a zero value of the return type. 2695 // Rather than doing a whole target-specific analysis, we assume it 2696 // only works for void, integer, and pointer types, and in all 2697 // other cases we do an explicit nil check is emitted code. In 2698 // addition to ensuring we produe a zero value for other types, this 2699 // sidesteps the few outright CC incompatibilities we know about that 2700 // could otherwise lead to crashes, like when a method is expected to 2701 // return on the x87 floating point stack or adjust the stack pointer 2702 // because of an indirect return. 2703 bool hasParamDestroyedInCallee = false; 2704 bool requiresExplicitZeroResult = false; 2705 bool requiresNilReceiverCheck = [&] { 2706 // We never need a check if we statically know the receiver isn't nil. 2707 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false, 2708 Class, Receiver)) 2709 return false; 2710 2711 // If there's a consumed argument, we need a nil check. 2712 if (Method && Method->hasParamDestroyedInCallee()) { 2713 hasParamDestroyedInCallee = true; 2714 } 2715 2716 // If the return value isn't flagged as unused, and the result 2717 // type isn't in our narrow set where we assume compatibility, 2718 // we need a nil check to ensure a nil value. 2719 if (!Return.isUnused()) { 2720 if (ResultType->isVoidType()) { 2721 // void results are definitely okay. 2722 } else if (ResultType->hasPointerRepresentation() && 2723 CGM.getTypes().isZeroInitializable(ResultType)) { 2724 // Pointer types should be fine as long as they have 2725 // bitwise-zero null pointers. But do we need to worry 2726 // about unusual address spaces? 2727 } else if (ResultType->isIntegralOrEnumerationType()) { 2728 // Bitwise zero should always be zero for integral types. 2729 // FIXME: we probably need a size limit here, but we've 2730 // never imposed one before 2731 } else { 2732 // Otherwise, use an explicit check just to be sure. 2733 requiresExplicitZeroResult = true; 2734 } 2735 } 2736 2737 return hasParamDestroyedInCallee || requiresExplicitZeroResult; 2738 }(); 2739 2740 // We will need to explicitly zero-initialize an aggregate result slot 2741 // if we generally require explicit zeroing and we have an aggregate 2742 // result. 2743 bool requiresExplicitAggZeroing = 2744 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType); 2745 2746 // The block we're going to end up in after any message send or nil path. 2747 llvm::BasicBlock *continueBB = nullptr; 2748 // The block that eventually branched to continueBB along the nil path. 2749 llvm::BasicBlock *nilPathBB = nullptr; 2750 // The block to do explicit work in along the nil path, if necessary. 2751 llvm::BasicBlock *nilCleanupBB = nullptr; 2752 2753 // Emit the nil-receiver check. 2754 if (requiresNilReceiverCheck) { 2755 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend"); 2756 continueBB = CGF.createBasicBlock("continue"); 2757 2758 // If we need to zero-initialize an aggregate result or destroy 2759 // consumed arguments, we'll need a separate cleanup block. 2760 // Otherwise we can just branch directly to the continuation block. 2761 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) { 2762 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup"); 2763 } else { 2764 nilPathBB = Builder.GetInsertBlock(); 2765 } 2766 2767 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 2768 llvm::Constant::getNullValue(Receiver->getType())); 2769 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB, 2770 messageBB); 2771 CGF.EmitBlock(messageBB); 2772 } 2773 2774 // Get the IMP to call 2775 llvm::Value *imp; 2776 2777 // If we have non-legacy dispatch specified, we try using the objc_msgSend() 2778 // functions. These are not supported on all platforms (or all runtimes on a 2779 // given platform), so we 2780 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 2781 case CodeGenOptions::Legacy: 2782 imp = LookupIMP(CGF, Receiver, cmd, node, MSI); 2783 break; 2784 case CodeGenOptions::Mixed: 2785 case CodeGenOptions::NonLegacy: 2786 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2787 imp = 2788 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2789 "objc_msgSend_fpret") 2790 .getCallee(); 2791 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 2792 // The actual types here don't matter - we're going to bitcast the 2793 // function anyway 2794 imp = 2795 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2796 "objc_msgSend_stret") 2797 .getCallee(); 2798 } else { 2799 imp = CGM.CreateRuntimeFunction( 2800 llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend") 2801 .getCallee(); 2802 } 2803 } 2804 2805 // Reset the receiver in case the lookup modified it 2806 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy); 2807 2808 imp = EnforceType(Builder, imp, MSI.MessengerType); 2809 2810 llvm::CallBase *call; 2811 CGCallee callee(CGCalleeInfo(), imp); 2812 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2813 call->setMetadata(msgSendMDKind, node); 2814 2815 if (requiresNilReceiverCheck) { 2816 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock(); 2817 CGF.Builder.CreateBr(continueBB); 2818 2819 // Emit the nil path if we decided it was necessary above. 2820 if (nilCleanupBB) { 2821 CGF.EmitBlock(nilCleanupBB); 2822 2823 if (hasParamDestroyedInCallee) { 2824 destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 2825 } 2826 2827 if (requiresExplicitAggZeroing) { 2828 assert(msgRet.isAggregate()); 2829 Address addr = msgRet.getAggregateAddress(); 2830 CGF.EmitNullInitialization(addr, ResultType); 2831 } 2832 2833 nilPathBB = CGF.Builder.GetInsertBlock(); 2834 CGF.Builder.CreateBr(continueBB); 2835 } 2836 2837 // Enter the continuation block and emit a phi if required. 2838 CGF.EmitBlock(continueBB); 2839 if (msgRet.isScalar()) { 2840 // If the return type is void, do nothing 2841 if (llvm::Value *v = msgRet.getScalarVal()) { 2842 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 2843 phi->addIncoming(v, nonNilPathBB); 2844 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB); 2845 msgRet = RValue::get(phi); 2846 } 2847 } else if (msgRet.isAggregate()) { 2848 // Aggregate zeroing is handled in nilCleanupBB when it's required. 2849 } else /* isComplex() */ { 2850 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 2851 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 2852 phi->addIncoming(v.first, nonNilPathBB); 2853 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 2854 nilPathBB); 2855 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 2856 phi2->addIncoming(v.second, nonNilPathBB); 2857 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 2858 nilPathBB); 2859 msgRet = RValue::getComplex(phi, phi2); 2860 } 2861 } 2862 return msgRet; 2863 } 2864 2865 /// Generates a MethodList. Used in construction of a objc_class and 2866 /// objc_category structures. 2867 llvm::Constant *CGObjCGNU:: 2868 GenerateMethodList(StringRef ClassName, 2869 StringRef CategoryName, 2870 ArrayRef<const ObjCMethodDecl*> Methods, 2871 bool isClassMethodList) { 2872 if (Methods.empty()) 2873 return NULLPtr; 2874 2875 ConstantInitBuilder Builder(CGM); 2876 2877 auto MethodList = Builder.beginStruct(); 2878 MethodList.addNullPointer(CGM.Int8PtrTy); 2879 MethodList.addInt(Int32Ty, Methods.size()); 2880 2881 // Get the method structure type. 2882 llvm::StructType *ObjCMethodTy = 2883 llvm::StructType::get(CGM.getLLVMContext(), { 2884 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2885 PtrToInt8Ty, // Method types 2886 IMPTy // Method pointer 2887 }); 2888 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2889 if (isV2ABI) { 2890 // size_t size; 2891 llvm::DataLayout td(&TheModule); 2892 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) / 2893 CGM.getContext().getCharWidth()); 2894 ObjCMethodTy = 2895 llvm::StructType::get(CGM.getLLVMContext(), { 2896 IMPTy, // Method pointer 2897 PtrToInt8Ty, // Selector 2898 PtrToInt8Ty // Extended type encoding 2899 }); 2900 } else { 2901 ObjCMethodTy = 2902 llvm::StructType::get(CGM.getLLVMContext(), { 2903 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2904 PtrToInt8Ty, // Method types 2905 IMPTy // Method pointer 2906 }); 2907 } 2908 auto MethodArray = MethodList.beginArray(); 2909 ASTContext &Context = CGM.getContext(); 2910 for (const auto *OMD : Methods) { 2911 llvm::Constant *FnPtr = 2912 TheModule.getFunction(getSymbolNameForMethod(OMD)); 2913 assert(FnPtr && "Can't generate metadata for method that doesn't exist"); 2914 auto Method = MethodArray.beginStruct(ObjCMethodTy); 2915 if (isV2ABI) { 2916 Method.addBitCast(FnPtr, IMPTy); 2917 Method.add(GetConstantSelector(OMD->getSelector(), 2918 Context.getObjCEncodingForMethodDecl(OMD))); 2919 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true))); 2920 } else { 2921 Method.add(MakeConstantString(OMD->getSelector().getAsString())); 2922 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD))); 2923 Method.addBitCast(FnPtr, IMPTy); 2924 } 2925 Method.finishAndAddTo(MethodArray); 2926 } 2927 MethodArray.finishAndAddTo(MethodList); 2928 2929 // Create an instance of the structure 2930 return MethodList.finishAndCreateGlobal(".objc_method_list", 2931 CGM.getPointerAlign()); 2932 } 2933 2934 /// Generates an IvarList. Used in construction of a objc_class. 2935 llvm::Constant *CGObjCGNU:: 2936 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 2937 ArrayRef<llvm::Constant *> IvarTypes, 2938 ArrayRef<llvm::Constant *> IvarOffsets, 2939 ArrayRef<llvm::Constant *> IvarAlign, 2940 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) { 2941 if (IvarNames.empty()) 2942 return NULLPtr; 2943 2944 ConstantInitBuilder Builder(CGM); 2945 2946 // Structure containing array count followed by array. 2947 auto IvarList = Builder.beginStruct(); 2948 IvarList.addInt(IntTy, (int)IvarNames.size()); 2949 2950 // Get the ivar structure type. 2951 llvm::StructType *ObjCIvarTy = 2952 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy); 2953 2954 // Array of ivar structures. 2955 auto Ivars = IvarList.beginArray(ObjCIvarTy); 2956 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 2957 auto Ivar = Ivars.beginStruct(ObjCIvarTy); 2958 Ivar.add(IvarNames[i]); 2959 Ivar.add(IvarTypes[i]); 2960 Ivar.add(IvarOffsets[i]); 2961 Ivar.finishAndAddTo(Ivars); 2962 } 2963 Ivars.finishAndAddTo(IvarList); 2964 2965 // Create an instance of the structure 2966 return IvarList.finishAndCreateGlobal(".objc_ivar_list", 2967 CGM.getPointerAlign()); 2968 } 2969 2970 /// Generate a class structure 2971 llvm::Constant *CGObjCGNU::GenerateClassStructure( 2972 llvm::Constant *MetaClass, 2973 llvm::Constant *SuperClass, 2974 unsigned info, 2975 const char *Name, 2976 llvm::Constant *Version, 2977 llvm::Constant *InstanceSize, 2978 llvm::Constant *IVars, 2979 llvm::Constant *Methods, 2980 llvm::Constant *Protocols, 2981 llvm::Constant *IvarOffsets, 2982 llvm::Constant *Properties, 2983 llvm::Constant *StrongIvarBitmap, 2984 llvm::Constant *WeakIvarBitmap, 2985 bool isMeta) { 2986 // Set up the class structure 2987 // Note: Several of these are char*s when they should be ids. This is 2988 // because the runtime performs this translation on load. 2989 // 2990 // Fields marked New ABI are part of the GNUstep runtime. We emit them 2991 // anyway; the classes will still work with the GNU runtime, they will just 2992 // be ignored. 2993 llvm::StructType *ClassTy = llvm::StructType::get( 2994 PtrToInt8Ty, // isa 2995 PtrToInt8Ty, // super_class 2996 PtrToInt8Ty, // name 2997 LongTy, // version 2998 LongTy, // info 2999 LongTy, // instance_size 3000 IVars->getType(), // ivars 3001 Methods->getType(), // methods 3002 // These are all filled in by the runtime, so we pretend 3003 PtrTy, // dtable 3004 PtrTy, // subclass_list 3005 PtrTy, // sibling_class 3006 PtrTy, // protocols 3007 PtrTy, // gc_object_type 3008 // New ABI: 3009 LongTy, // abi_version 3010 IvarOffsets->getType(), // ivar_offsets 3011 Properties->getType(), // properties 3012 IntPtrTy, // strong_pointers 3013 IntPtrTy // weak_pointers 3014 ); 3015 3016 ConstantInitBuilder Builder(CGM); 3017 auto Elements = Builder.beginStruct(ClassTy); 3018 3019 // Fill in the structure 3020 3021 // isa 3022 Elements.addBitCast(MetaClass, PtrToInt8Ty); 3023 // super_class 3024 Elements.add(SuperClass); 3025 // name 3026 Elements.add(MakeConstantString(Name, ".class_name")); 3027 // version 3028 Elements.addInt(LongTy, 0); 3029 // info 3030 Elements.addInt(LongTy, info); 3031 // instance_size 3032 if (isMeta) { 3033 llvm::DataLayout td(&TheModule); 3034 Elements.addInt(LongTy, 3035 td.getTypeSizeInBits(ClassTy) / 3036 CGM.getContext().getCharWidth()); 3037 } else 3038 Elements.add(InstanceSize); 3039 // ivars 3040 Elements.add(IVars); 3041 // methods 3042 Elements.add(Methods); 3043 // These are all filled in by the runtime, so we pretend 3044 // dtable 3045 Elements.add(NULLPtr); 3046 // subclass_list 3047 Elements.add(NULLPtr); 3048 // sibling_class 3049 Elements.add(NULLPtr); 3050 // protocols 3051 Elements.addBitCast(Protocols, PtrTy); 3052 // gc_object_type 3053 Elements.add(NULLPtr); 3054 // abi_version 3055 Elements.addInt(LongTy, ClassABIVersion); 3056 // ivar_offsets 3057 Elements.add(IvarOffsets); 3058 // properties 3059 Elements.add(Properties); 3060 // strong_pointers 3061 Elements.add(StrongIvarBitmap); 3062 // weak_pointers 3063 Elements.add(WeakIvarBitmap); 3064 // Create an instance of the structure 3065 // This is now an externally visible symbol, so that we can speed up class 3066 // messages in the next ABI. We may already have some weak references to 3067 // this, so check and fix them properly. 3068 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 3069 std::string(Name)); 3070 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 3071 llvm::Constant *Class = 3072 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false, 3073 llvm::GlobalValue::ExternalLinkage); 3074 if (ClassRef) { 3075 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class, 3076 ClassRef->getType())); 3077 ClassRef->removeFromParent(); 3078 Class->setName(ClassSym); 3079 } 3080 return Class; 3081 } 3082 3083 llvm::Constant *CGObjCGNU:: 3084 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) { 3085 // Get the method structure type. 3086 llvm::StructType *ObjCMethodDescTy = 3087 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); 3088 ASTContext &Context = CGM.getContext(); 3089 ConstantInitBuilder Builder(CGM); 3090 auto MethodList = Builder.beginStruct(); 3091 MethodList.addInt(IntTy, Methods.size()); 3092 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 3093 for (auto *M : Methods) { 3094 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 3095 Method.add(MakeConstantString(M->getSelector().getAsString())); 3096 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M))); 3097 Method.finishAndAddTo(MethodArray); 3098 } 3099 MethodArray.finishAndAddTo(MethodList); 3100 return MethodList.finishAndCreateGlobal(".objc_method_list", 3101 CGM.getPointerAlign()); 3102 } 3103 3104 // Create the protocol list structure used in classes, categories and so on 3105 llvm::Constant * 3106 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) { 3107 3108 ConstantInitBuilder Builder(CGM); 3109 auto ProtocolList = Builder.beginStruct(); 3110 ProtocolList.add(NULLPtr); 3111 ProtocolList.addInt(LongTy, Protocols.size()); 3112 3113 auto Elements = ProtocolList.beginArray(PtrToInt8Ty); 3114 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 3115 iter != endIter ; iter++) { 3116 llvm::Constant *protocol = nullptr; 3117 llvm::StringMap<llvm::Constant*>::iterator value = 3118 ExistingProtocols.find(*iter); 3119 if (value == ExistingProtocols.end()) { 3120 protocol = GenerateEmptyProtocol(*iter); 3121 } else { 3122 protocol = value->getValue(); 3123 } 3124 Elements.addBitCast(protocol, PtrToInt8Ty); 3125 } 3126 Elements.finishAndAddTo(ProtocolList); 3127 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3128 CGM.getPointerAlign()); 3129 } 3130 3131 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, 3132 const ObjCProtocolDecl *PD) { 3133 auto protocol = GenerateProtocolRef(PD); 3134 llvm::Type *T = 3135 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 3136 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 3137 } 3138 3139 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) { 3140 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()]; 3141 if (!protocol) 3142 GenerateProtocol(PD); 3143 assert(protocol && "Unknown protocol"); 3144 return protocol; 3145 } 3146 3147 llvm::Constant * 3148 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) { 3149 llvm::Constant *ProtocolList = GenerateProtocolList({}); 3150 llvm::Constant *MethodList = GenerateProtocolMethodList({}); 3151 MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty); 3152 // Protocols are objects containing lists of the methods implemented and 3153 // protocols adopted. 3154 ConstantInitBuilder Builder(CGM); 3155 auto Elements = Builder.beginStruct(); 3156 3157 // The isa pointer must be set to a magic number so the runtime knows it's 3158 // the correct layout. 3159 Elements.add(llvm::ConstantExpr::getIntToPtr( 3160 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3161 3162 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name")); 3163 Elements.add(ProtocolList); /* .protocol_list */ 3164 Elements.add(MethodList); /* .instance_methods */ 3165 Elements.add(MethodList); /* .class_methods */ 3166 Elements.add(MethodList); /* .optional_instance_methods */ 3167 Elements.add(MethodList); /* .optional_class_methods */ 3168 Elements.add(NULLPtr); /* .properties */ 3169 Elements.add(NULLPtr); /* .optional_properties */ 3170 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName), 3171 CGM.getPointerAlign()); 3172 } 3173 3174 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 3175 if (PD->isNonRuntimeProtocol()) 3176 return; 3177 3178 std::string ProtocolName = PD->getNameAsString(); 3179 3180 // Use the protocol definition, if there is one. 3181 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3182 PD = Def; 3183 3184 SmallVector<std::string, 16> Protocols; 3185 for (const auto *PI : PD->protocols()) 3186 Protocols.push_back(PI->getNameAsString()); 3187 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3188 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods; 3189 for (const auto *I : PD->instance_methods()) 3190 if (I->isOptional()) 3191 OptionalInstanceMethods.push_back(I); 3192 else 3193 InstanceMethods.push_back(I); 3194 // Collect information about class methods: 3195 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3196 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods; 3197 for (const auto *I : PD->class_methods()) 3198 if (I->isOptional()) 3199 OptionalClassMethods.push_back(I); 3200 else 3201 ClassMethods.push_back(I); 3202 3203 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 3204 llvm::Constant *InstanceMethodList = 3205 GenerateProtocolMethodList(InstanceMethods); 3206 llvm::Constant *ClassMethodList = 3207 GenerateProtocolMethodList(ClassMethods); 3208 llvm::Constant *OptionalInstanceMethodList = 3209 GenerateProtocolMethodList(OptionalInstanceMethods); 3210 llvm::Constant *OptionalClassMethodList = 3211 GenerateProtocolMethodList(OptionalClassMethods); 3212 3213 // Property metadata: name, attributes, isSynthesized, setter name, setter 3214 // types, getter name, getter types. 3215 // The isSynthesized value is always set to 0 in a protocol. It exists to 3216 // simplify the runtime library by allowing it to use the same data 3217 // structures for protocol metadata everywhere. 3218 3219 llvm::Constant *PropertyList = 3220 GeneratePropertyList(nullptr, PD, false, false); 3221 llvm::Constant *OptionalPropertyList = 3222 GeneratePropertyList(nullptr, PD, false, true); 3223 3224 // Protocols are objects containing lists of the methods implemented and 3225 // protocols adopted. 3226 // The isa pointer must be set to a magic number so the runtime knows it's 3227 // the correct layout. 3228 ConstantInitBuilder Builder(CGM); 3229 auto Elements = Builder.beginStruct(); 3230 Elements.add( 3231 llvm::ConstantExpr::getIntToPtr( 3232 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3233 Elements.add(MakeConstantString(ProtocolName)); 3234 Elements.add(ProtocolList); 3235 Elements.add(InstanceMethodList); 3236 Elements.add(ClassMethodList); 3237 Elements.add(OptionalInstanceMethodList); 3238 Elements.add(OptionalClassMethodList); 3239 Elements.add(PropertyList); 3240 Elements.add(OptionalPropertyList); 3241 ExistingProtocols[ProtocolName] = 3242 llvm::ConstantExpr::getBitCast( 3243 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()), 3244 IdTy); 3245 } 3246 void CGObjCGNU::GenerateProtocolHolderCategory() { 3247 // Collect information about instance methods 3248 3249 ConstantInitBuilder Builder(CGM); 3250 auto Elements = Builder.beginStruct(); 3251 3252 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 3253 const std::string CategoryName = "AnotherHack"; 3254 Elements.add(MakeConstantString(CategoryName)); 3255 Elements.add(MakeConstantString(ClassName)); 3256 // Instance method list 3257 Elements.addBitCast(GenerateMethodList( 3258 ClassName, CategoryName, {}, false), PtrTy); 3259 // Class method list 3260 Elements.addBitCast(GenerateMethodList( 3261 ClassName, CategoryName, {}, true), PtrTy); 3262 3263 // Protocol list 3264 ConstantInitBuilder ProtocolListBuilder(CGM); 3265 auto ProtocolList = ProtocolListBuilder.beginStruct(); 3266 ProtocolList.add(NULLPtr); 3267 ProtocolList.addInt(LongTy, ExistingProtocols.size()); 3268 auto ProtocolElements = ProtocolList.beginArray(PtrTy); 3269 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 3270 iter != endIter ; iter++) { 3271 ProtocolElements.addBitCast(iter->getValue(), PtrTy); 3272 } 3273 ProtocolElements.finishAndAddTo(ProtocolList); 3274 Elements.addBitCast( 3275 ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3276 CGM.getPointerAlign()), 3277 PtrTy); 3278 Categories.push_back(llvm::ConstantExpr::getBitCast( 3279 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()), 3280 PtrTy)); 3281 } 3282 3283 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 3284 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 3285 /// bits set to their values, LSB first, while larger ones are stored in a 3286 /// structure of this / form: 3287 /// 3288 /// struct { int32_t length; int32_t values[length]; }; 3289 /// 3290 /// The values in the array are stored in host-endian format, with the least 3291 /// significant bit being assumed to come first in the bitfield. Therefore, a 3292 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 3293 /// bitfield / with the 63rd bit set will be 1<<64. 3294 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 3295 int bitCount = bits.size(); 3296 int ptrBits = CGM.getDataLayout().getPointerSizeInBits(); 3297 if (bitCount < ptrBits) { 3298 uint64_t val = 1; 3299 for (int i=0 ; i<bitCount ; ++i) { 3300 if (bits[i]) val |= 1ULL<<(i+1); 3301 } 3302 return llvm::ConstantInt::get(IntPtrTy, val); 3303 } 3304 SmallVector<llvm::Constant *, 8> values; 3305 int v=0; 3306 while (v < bitCount) { 3307 int32_t word = 0; 3308 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 3309 if (bits[v]) word |= 1<<i; 3310 v++; 3311 } 3312 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 3313 } 3314 3315 ConstantInitBuilder builder(CGM); 3316 auto fields = builder.beginStruct(); 3317 fields.addInt(Int32Ty, values.size()); 3318 auto array = fields.beginArray(); 3319 for (auto *v : values) array.add(v); 3320 array.finishAndAddTo(fields); 3321 3322 llvm::Constant *GS = 3323 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4)); 3324 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 3325 return ptr; 3326 } 3327 3328 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const 3329 ObjCCategoryDecl *OCD) { 3330 const auto &RefPro = OCD->getReferencedProtocols(); 3331 const auto RuntimeProtos = 3332 GetRuntimeProtocolList(RefPro.begin(), RefPro.end()); 3333 SmallVector<std::string, 16> Protocols; 3334 for (const auto *PD : RuntimeProtos) 3335 Protocols.push_back(PD->getNameAsString()); 3336 return GenerateProtocolList(Protocols); 3337 } 3338 3339 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3340 const ObjCInterfaceDecl *Class = OCD->getClassInterface(); 3341 std::string ClassName = Class->getNameAsString(); 3342 std::string CategoryName = OCD->getNameAsString(); 3343 3344 // Collect the names of referenced protocols 3345 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 3346 3347 ConstantInitBuilder Builder(CGM); 3348 auto Elements = Builder.beginStruct(); 3349 Elements.add(MakeConstantString(CategoryName)); 3350 Elements.add(MakeConstantString(ClassName)); 3351 // Instance method list 3352 SmallVector<ObjCMethodDecl*, 16> InstanceMethods; 3353 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(), 3354 OCD->instmeth_end()); 3355 Elements.addBitCast( 3356 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false), 3357 PtrTy); 3358 // Class method list 3359 3360 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 3361 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(), 3362 OCD->classmeth_end()); 3363 Elements.addBitCast( 3364 GenerateMethodList(ClassName, CategoryName, ClassMethods, true), 3365 PtrTy); 3366 // Protocol list 3367 Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy); 3368 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 3369 const ObjCCategoryDecl *Category = 3370 Class->FindCategoryDeclaration(OCD->getIdentifier()); 3371 if (Category) { 3372 // Instance properties 3373 Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy); 3374 // Class properties 3375 Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy); 3376 } else { 3377 Elements.addNullPointer(PtrTy); 3378 Elements.addNullPointer(PtrTy); 3379 } 3380 } 3381 3382 Categories.push_back(llvm::ConstantExpr::getBitCast( 3383 Elements.finishAndCreateGlobal( 3384 std::string(".objc_category_")+ClassName+CategoryName, 3385 CGM.getPointerAlign()), 3386 PtrTy)); 3387 } 3388 3389 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container, 3390 const ObjCContainerDecl *OCD, 3391 bool isClassProperty, 3392 bool protocolOptionalProperties) { 3393 3394 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3395 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3396 bool isProtocol = isa<ObjCProtocolDecl>(OCD); 3397 ASTContext &Context = CGM.getContext(); 3398 3399 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties 3400 = [&](const ObjCProtocolDecl *Proto) { 3401 for (const auto *P : Proto->protocols()) 3402 collectProtocolProperties(P); 3403 for (const auto *PD : Proto->properties()) { 3404 if (isClassProperty != PD->isClassProperty()) 3405 continue; 3406 // Skip any properties that are declared in protocols that this class 3407 // conforms to but are not actually implemented by this class. 3408 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container)) 3409 continue; 3410 if (!PropertySet.insert(PD->getIdentifier()).second) 3411 continue; 3412 Properties.push_back(PD); 3413 } 3414 }; 3415 3416 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3417 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3418 for (auto *PD : ClassExt->properties()) { 3419 if (isClassProperty != PD->isClassProperty()) 3420 continue; 3421 PropertySet.insert(PD->getIdentifier()); 3422 Properties.push_back(PD); 3423 } 3424 3425 for (const auto *PD : OCD->properties()) { 3426 if (isClassProperty != PD->isClassProperty()) 3427 continue; 3428 // If we're generating a list for a protocol, skip optional / required ones 3429 // when generating the other list. 3430 if (isProtocol && (protocolOptionalProperties != PD->isOptional())) 3431 continue; 3432 // Don't emit duplicate metadata for properties that were already in a 3433 // class extension. 3434 if (!PropertySet.insert(PD->getIdentifier()).second) 3435 continue; 3436 3437 Properties.push_back(PD); 3438 } 3439 3440 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3441 for (const auto *P : OID->all_referenced_protocols()) 3442 collectProtocolProperties(P); 3443 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) 3444 for (const auto *P : CD->protocols()) 3445 collectProtocolProperties(P); 3446 3447 auto numProperties = Properties.size(); 3448 3449 if (numProperties == 0) 3450 return NULLPtr; 3451 3452 ConstantInitBuilder builder(CGM); 3453 auto propertyList = builder.beginStruct(); 3454 auto properties = PushPropertyListHeader(propertyList, numProperties); 3455 3456 // Add all of the property methods need adding to the method list and to the 3457 // property metadata list. 3458 for (auto *property : Properties) { 3459 bool isSynthesized = false; 3460 bool isDynamic = false; 3461 if (!isProtocol) { 3462 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container); 3463 if (propertyImpl) { 3464 isSynthesized = (propertyImpl->getPropertyImplementation() == 3465 ObjCPropertyImplDecl::Synthesize); 3466 isDynamic = (propertyImpl->getPropertyImplementation() == 3467 ObjCPropertyImplDecl::Dynamic); 3468 } 3469 } 3470 PushProperty(properties, property, Container, isSynthesized, isDynamic); 3471 } 3472 properties.finishAndAddTo(propertyList); 3473 3474 return propertyList.finishAndCreateGlobal(".objc_property_list", 3475 CGM.getPointerAlign()); 3476 } 3477 3478 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 3479 // Get the class declaration for which the alias is specified. 3480 ObjCInterfaceDecl *ClassDecl = 3481 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 3482 ClassAliases.emplace_back(ClassDecl->getNameAsString(), 3483 OAD->getNameAsString()); 3484 } 3485 3486 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 3487 ASTContext &Context = CGM.getContext(); 3488 3489 // Get the superclass name. 3490 const ObjCInterfaceDecl * SuperClassDecl = 3491 OID->getClassInterface()->getSuperClass(); 3492 std::string SuperClassName; 3493 if (SuperClassDecl) { 3494 SuperClassName = SuperClassDecl->getNameAsString(); 3495 EmitClassRef(SuperClassName); 3496 } 3497 3498 // Get the class name 3499 ObjCInterfaceDecl *ClassDecl = 3500 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 3501 std::string ClassName = ClassDecl->getNameAsString(); 3502 3503 // Emit the symbol that is used to generate linker errors if this class is 3504 // referenced in other modules but not declared. 3505 std::string classSymbolName = "__objc_class_name_" + ClassName; 3506 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) { 3507 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 3508 } else { 3509 new llvm::GlobalVariable(TheModule, LongTy, false, 3510 llvm::GlobalValue::ExternalLinkage, 3511 llvm::ConstantInt::get(LongTy, 0), 3512 classSymbolName); 3513 } 3514 3515 // Get the size of instances. 3516 int instanceSize = 3517 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 3518 3519 // Collect information about instance variables. 3520 SmallVector<llvm::Constant*, 16> IvarNames; 3521 SmallVector<llvm::Constant*, 16> IvarTypes; 3522 SmallVector<llvm::Constant*, 16> IvarOffsets; 3523 SmallVector<llvm::Constant*, 16> IvarAligns; 3524 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership; 3525 3526 ConstantInitBuilder IvarOffsetBuilder(CGM); 3527 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy); 3528 SmallVector<bool, 16> WeakIvars; 3529 SmallVector<bool, 16> StrongIvars; 3530 3531 int superInstanceSize = !SuperClassDecl ? 0 : 3532 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 3533 // For non-fragile ivars, set the instance size to 0 - {the size of just this 3534 // class}. The runtime will then set this to the correct value on load. 3535 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3536 instanceSize = 0 - (instanceSize - superInstanceSize); 3537 } 3538 3539 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3540 IVD = IVD->getNextIvar()) { 3541 // Store the name 3542 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 3543 // Get the type encoding for this ivar 3544 std::string TypeStr; 3545 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD); 3546 IvarTypes.push_back(MakeConstantString(TypeStr)); 3547 IvarAligns.push_back(llvm::ConstantInt::get(IntTy, 3548 Context.getTypeSize(IVD->getType()))); 3549 // Get the offset 3550 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 3551 uint64_t Offset = BaseOffset; 3552 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3553 Offset = BaseOffset - superInstanceSize; 3554 } 3555 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 3556 // Create the direct offset value 3557 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 3558 IVD->getNameAsString(); 3559 3560 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 3561 if (OffsetVar) { 3562 OffsetVar->setInitializer(OffsetValue); 3563 // If this is the real definition, change its linkage type so that 3564 // different modules will use this one, rather than their private 3565 // copy. 3566 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 3567 } else 3568 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty, 3569 false, llvm::GlobalValue::ExternalLinkage, 3570 OffsetValue, OffsetName); 3571 IvarOffsets.push_back(OffsetValue); 3572 IvarOffsetValues.add(OffsetVar); 3573 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 3574 IvarOwnership.push_back(lt); 3575 switch (lt) { 3576 case Qualifiers::OCL_Strong: 3577 StrongIvars.push_back(true); 3578 WeakIvars.push_back(false); 3579 break; 3580 case Qualifiers::OCL_Weak: 3581 StrongIvars.push_back(false); 3582 WeakIvars.push_back(true); 3583 break; 3584 default: 3585 StrongIvars.push_back(false); 3586 WeakIvars.push_back(false); 3587 } 3588 } 3589 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 3590 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 3591 llvm::GlobalVariable *IvarOffsetArray = 3592 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets", 3593 CGM.getPointerAlign()); 3594 3595 // Collect information about instance methods 3596 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3597 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 3598 OID->instmeth_end()); 3599 3600 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3601 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 3602 OID->classmeth_end()); 3603 3604 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl); 3605 3606 // Collect the names of referenced protocols 3607 auto RefProtocols = ClassDecl->protocols(); 3608 auto RuntimeProtocols = 3609 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end()); 3610 SmallVector<std::string, 16> Protocols; 3611 for (const auto *I : RuntimeProtocols) 3612 Protocols.push_back(I->getNameAsString()); 3613 3614 // Get the superclass pointer. 3615 llvm::Constant *SuperClass; 3616 if (!SuperClassName.empty()) { 3617 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 3618 } else { 3619 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 3620 } 3621 // Empty vector used to construct empty method lists 3622 SmallVector<llvm::Constant*, 1> empty; 3623 // Generate the method and instance variable lists 3624 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 3625 InstanceMethods, false); 3626 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 3627 ClassMethods, true); 3628 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 3629 IvarOffsets, IvarAligns, IvarOwnership); 3630 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 3631 // we emit a symbol containing the offset for each ivar in the class. This 3632 // allows code compiled for the non-Fragile ABI to inherit from code compiled 3633 // for the legacy ABI, without causing problems. The converse is also 3634 // possible, but causes all ivar accesses to be fragile. 3635 3636 // Offset pointer for getting at the correct field in the ivar list when 3637 // setting up the alias. These are: The base address for the global, the 3638 // ivar array (second field), the ivar in this list (set for each ivar), and 3639 // the offset (third field in ivar structure) 3640 llvm::Type *IndexTy = Int32Ty; 3641 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 3642 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr, 3643 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) }; 3644 3645 unsigned ivarIndex = 0; 3646 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3647 IVD = IVD->getNextIvar()) { 3648 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD); 3649 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 3650 // Get the correct ivar field 3651 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 3652 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList, 3653 offsetPointerIndexes); 3654 // Get the existing variable, if one exists. 3655 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 3656 if (offset) { 3657 offset->setInitializer(offsetValue); 3658 // If this is the real definition, change its linkage type so that 3659 // different modules will use this one, rather than their private 3660 // copy. 3661 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 3662 } else 3663 // Add a new alias if there isn't one already. 3664 new llvm::GlobalVariable(TheModule, offsetValue->getType(), 3665 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 3666 ++ivarIndex; 3667 } 3668 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 3669 3670 //Generate metaclass for class methods 3671 llvm::Constant *MetaClassStruct = GenerateClassStructure( 3672 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], 3673 NULLPtr, ClassMethodList, NULLPtr, NULLPtr, 3674 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true); 3675 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct), 3676 OID->getClassInterface()); 3677 3678 // Generate the class structure 3679 llvm::Constant *ClassStruct = GenerateClassStructure( 3680 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr, 3681 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList, 3682 GenerateProtocolList(Protocols), IvarOffsetArray, Properties, 3683 StrongIvarBitmap, WeakIvarBitmap); 3684 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct), 3685 OID->getClassInterface()); 3686 3687 // Resolve the class aliases, if they exist. 3688 if (ClassPtrAlias) { 3689 ClassPtrAlias->replaceAllUsesWith( 3690 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy)); 3691 ClassPtrAlias->eraseFromParent(); 3692 ClassPtrAlias = nullptr; 3693 } 3694 if (MetaClassPtrAlias) { 3695 MetaClassPtrAlias->replaceAllUsesWith( 3696 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy)); 3697 MetaClassPtrAlias->eraseFromParent(); 3698 MetaClassPtrAlias = nullptr; 3699 } 3700 3701 // Add class structure to list to be added to the symtab later 3702 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty); 3703 Classes.push_back(ClassStruct); 3704 } 3705 3706 llvm::Function *CGObjCGNU::ModuleInitFunction() { 3707 // Only emit an ObjC load function if no Objective-C stuff has been called 3708 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 3709 ExistingProtocols.empty() && SelectorTable.empty()) 3710 return nullptr; 3711 3712 // Add all referenced protocols to a category. 3713 GenerateProtocolHolderCategory(); 3714 3715 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy); 3716 llvm::Type *selStructPtrTy = SelectorTy; 3717 if (!selStructTy) { 3718 selStructTy = llvm::StructType::get(CGM.getLLVMContext(), 3719 { PtrToInt8Ty, PtrToInt8Ty }); 3720 selStructPtrTy = llvm::PointerType::getUnqual(selStructTy); 3721 } 3722 3723 // Generate statics list: 3724 llvm::Constant *statics = NULLPtr; 3725 if (!ConstantStrings.empty()) { 3726 llvm::GlobalVariable *fileStatics = [&] { 3727 ConstantInitBuilder builder(CGM); 3728 auto staticsStruct = builder.beginStruct(); 3729 3730 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass; 3731 if (stringClass.empty()) stringClass = "NXConstantString"; 3732 staticsStruct.add(MakeConstantString(stringClass, 3733 ".objc_static_class_name")); 3734 3735 auto array = staticsStruct.beginArray(); 3736 array.addAll(ConstantStrings); 3737 array.add(NULLPtr); 3738 array.finishAndAddTo(staticsStruct); 3739 3740 return staticsStruct.finishAndCreateGlobal(".objc_statics", 3741 CGM.getPointerAlign()); 3742 }(); 3743 3744 ConstantInitBuilder builder(CGM); 3745 auto allStaticsArray = builder.beginArray(fileStatics->getType()); 3746 allStaticsArray.add(fileStatics); 3747 allStaticsArray.addNullPointer(fileStatics->getType()); 3748 3749 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr", 3750 CGM.getPointerAlign()); 3751 statics = llvm::ConstantExpr::getBitCast(statics, PtrTy); 3752 } 3753 3754 // Array of classes, categories, and constant objects. 3755 3756 SmallVector<llvm::GlobalAlias*, 16> selectorAliases; 3757 unsigned selectorCount; 3758 3759 // Pointer to an array of selectors used in this module. 3760 llvm::GlobalVariable *selectorList = [&] { 3761 ConstantInitBuilder builder(CGM); 3762 auto selectors = builder.beginArray(selStructTy); 3763 auto &table = SelectorTable; // MSVC workaround 3764 std::vector<Selector> allSelectors; 3765 for (auto &entry : table) 3766 allSelectors.push_back(entry.first); 3767 llvm::sort(allSelectors); 3768 3769 for (auto &untypedSel : allSelectors) { 3770 std::string selNameStr = untypedSel.getAsString(); 3771 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name"); 3772 3773 for (TypedSelector &sel : table[untypedSel]) { 3774 llvm::Constant *selectorTypeEncoding = NULLPtr; 3775 if (!sel.first.empty()) 3776 selectorTypeEncoding = 3777 MakeConstantString(sel.first, ".objc_sel_types"); 3778 3779 auto selStruct = selectors.beginStruct(selStructTy); 3780 selStruct.add(selName); 3781 selStruct.add(selectorTypeEncoding); 3782 selStruct.finishAndAddTo(selectors); 3783 3784 // Store the selector alias for later replacement 3785 selectorAliases.push_back(sel.second); 3786 } 3787 } 3788 3789 // Remember the number of entries in the selector table. 3790 selectorCount = selectors.size(); 3791 3792 // NULL-terminate the selector list. This should not actually be required, 3793 // because the selector list has a length field. Unfortunately, the GCC 3794 // runtime decides to ignore the length field and expects a NULL terminator, 3795 // and GCC cooperates with this by always setting the length to 0. 3796 auto selStruct = selectors.beginStruct(selStructTy); 3797 selStruct.add(NULLPtr); 3798 selStruct.add(NULLPtr); 3799 selStruct.finishAndAddTo(selectors); 3800 3801 return selectors.finishAndCreateGlobal(".objc_selector_list", 3802 CGM.getPointerAlign()); 3803 }(); 3804 3805 // Now that all of the static selectors exist, create pointers to them. 3806 for (unsigned i = 0; i < selectorCount; ++i) { 3807 llvm::Constant *idxs[] = { 3808 Zeros[0], 3809 llvm::ConstantInt::get(Int32Ty, i) 3810 }; 3811 // FIXME: We're generating redundant loads and stores here! 3812 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr( 3813 selectorList->getValueType(), selectorList, idxs); 3814 // If selectors are defined as an opaque type, cast the pointer to this 3815 // type. 3816 selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy); 3817 selectorAliases[i]->replaceAllUsesWith(selPtr); 3818 selectorAliases[i]->eraseFromParent(); 3819 } 3820 3821 llvm::GlobalVariable *symtab = [&] { 3822 ConstantInitBuilder builder(CGM); 3823 auto symtab = builder.beginStruct(); 3824 3825 // Number of static selectors 3826 symtab.addInt(LongTy, selectorCount); 3827 3828 symtab.addBitCast(selectorList, selStructPtrTy); 3829 3830 // Number of classes defined. 3831 symtab.addInt(CGM.Int16Ty, Classes.size()); 3832 // Number of categories defined 3833 symtab.addInt(CGM.Int16Ty, Categories.size()); 3834 3835 // Create an array of classes, then categories, then static object instances 3836 auto classList = symtab.beginArray(PtrToInt8Ty); 3837 classList.addAll(Classes); 3838 classList.addAll(Categories); 3839 // NULL-terminated list of static object instances (mainly constant strings) 3840 classList.add(statics); 3841 classList.add(NULLPtr); 3842 classList.finishAndAddTo(symtab); 3843 3844 // Construct the symbol table. 3845 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign()); 3846 }(); 3847 3848 // The symbol table is contained in a module which has some version-checking 3849 // constants 3850 llvm::Constant *module = [&] { 3851 llvm::Type *moduleEltTys[] = { 3852 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy 3853 }; 3854 llvm::StructType *moduleTy = llvm::StructType::get( 3855 CGM.getLLVMContext(), 3856 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10))); 3857 3858 ConstantInitBuilder builder(CGM); 3859 auto module = builder.beginStruct(moduleTy); 3860 // Runtime version, used for ABI compatibility checking. 3861 module.addInt(LongTy, RuntimeVersion); 3862 // sizeof(ModuleTy) 3863 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy)); 3864 3865 // The path to the source file where this module was declared 3866 SourceManager &SM = CGM.getContext().getSourceManager(); 3867 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID()); 3868 std::string path = 3869 (mainFile->getDir().getName() + "/" + mainFile->getName()).str(); 3870 module.add(MakeConstantString(path, ".objc_source_file_name")); 3871 module.add(symtab); 3872 3873 if (RuntimeVersion >= 10) { 3874 switch (CGM.getLangOpts().getGC()) { 3875 case LangOptions::GCOnly: 3876 module.addInt(IntTy, 2); 3877 break; 3878 case LangOptions::NonGC: 3879 if (CGM.getLangOpts().ObjCAutoRefCount) 3880 module.addInt(IntTy, 1); 3881 else 3882 module.addInt(IntTy, 0); 3883 break; 3884 case LangOptions::HybridGC: 3885 module.addInt(IntTy, 1); 3886 break; 3887 } 3888 } 3889 3890 return module.finishAndCreateGlobal("", CGM.getPointerAlign()); 3891 }(); 3892 3893 // Create the load function calling the runtime entry point with the module 3894 // structure 3895 llvm::Function * LoadFunction = llvm::Function::Create( 3896 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 3897 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 3898 &TheModule); 3899 llvm::BasicBlock *EntryBB = 3900 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 3901 CGBuilderTy Builder(CGM, VMContext); 3902 Builder.SetInsertPoint(EntryBB); 3903 3904 llvm::FunctionType *FT = 3905 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true); 3906 llvm::FunctionCallee Register = 3907 CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 3908 Builder.CreateCall(Register, module); 3909 3910 if (!ClassAliases.empty()) { 3911 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 3912 llvm::FunctionType *RegisterAliasTy = 3913 llvm::FunctionType::get(Builder.getVoidTy(), 3914 ArgTypes, false); 3915 llvm::Function *RegisterAlias = llvm::Function::Create( 3916 RegisterAliasTy, 3917 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 3918 &TheModule); 3919 llvm::BasicBlock *AliasBB = 3920 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 3921 llvm::BasicBlock *NoAliasBB = 3922 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 3923 3924 // Branch based on whether the runtime provided class_registerAlias_np() 3925 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 3926 llvm::Constant::getNullValue(RegisterAlias->getType())); 3927 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 3928 3929 // The true branch (has alias registration function): 3930 Builder.SetInsertPoint(AliasBB); 3931 // Emit alias registration calls: 3932 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 3933 iter != ClassAliases.end(); ++iter) { 3934 llvm::Constant *TheClass = 3935 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true); 3936 if (TheClass) { 3937 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy); 3938 Builder.CreateCall(RegisterAlias, 3939 {TheClass, MakeConstantString(iter->second)}); 3940 } 3941 } 3942 // Jump to end: 3943 Builder.CreateBr(NoAliasBB); 3944 3945 // Missing alias registration function, just return from the function: 3946 Builder.SetInsertPoint(NoAliasBB); 3947 } 3948 Builder.CreateRetVoid(); 3949 3950 return LoadFunction; 3951 } 3952 3953 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 3954 const ObjCContainerDecl *CD) { 3955 CodeGenTypes &Types = CGM.getTypes(); 3956 llvm::FunctionType *MethodTy = 3957 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3958 std::string FunctionName = getSymbolNameForMethod(OMD); 3959 3960 llvm::Function *Method 3961 = llvm::Function::Create(MethodTy, 3962 llvm::GlobalValue::InternalLinkage, 3963 FunctionName, 3964 &TheModule); 3965 return Method; 3966 } 3967 3968 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF, 3969 llvm::Function *Fn, 3970 const ObjCMethodDecl *OMD, 3971 const ObjCContainerDecl *CD) { 3972 // GNU runtime doesn't support direct calls at this time 3973 } 3974 3975 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() { 3976 return GetPropertyFn; 3977 } 3978 3979 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() { 3980 return SetPropertyFn; 3981 } 3982 3983 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 3984 bool copy) { 3985 return nullptr; 3986 } 3987 3988 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() { 3989 return GetStructPropertyFn; 3990 } 3991 3992 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() { 3993 return SetStructPropertyFn; 3994 } 3995 3996 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() { 3997 return nullptr; 3998 } 3999 4000 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() { 4001 return nullptr; 4002 } 4003 4004 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() { 4005 return EnumerationMutationFn; 4006 } 4007 4008 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 4009 const ObjCAtSynchronizedStmt &S) { 4010 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 4011 } 4012 4013 4014 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 4015 const ObjCAtTryStmt &S) { 4016 // Unlike the Apple non-fragile runtimes, which also uses 4017 // unwind-based zero cost exceptions, the GNU Objective C runtime's 4018 // EH support isn't a veneer over C++ EH. Instead, exception 4019 // objects are created by objc_exception_throw and destroyed by 4020 // the personality function; this avoids the need for bracketing 4021 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 4022 // (or even _Unwind_DeleteException), but probably doesn't 4023 // interoperate very well with foreign exceptions. 4024 // 4025 // In Objective-C++ mode, we actually emit something equivalent to the C++ 4026 // exception handler. 4027 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 4028 } 4029 4030 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 4031 const ObjCAtThrowStmt &S, 4032 bool ClearInsertionPoint) { 4033 llvm::Value *ExceptionAsObject; 4034 bool isRethrow = false; 4035 4036 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4037 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4038 ExceptionAsObject = Exception; 4039 } else { 4040 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4041 "Unexpected rethrow outside @catch block."); 4042 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4043 isRethrow = true; 4044 } 4045 if (isRethrow && usesSEHExceptions) { 4046 // For SEH, ExceptionAsObject may be undef, because the catch handler is 4047 // not passed it for catchalls and so it is not visible to the catch 4048 // funclet. The real thrown object will still be live on the stack at this 4049 // point and will be rethrown. If we are explicitly rethrowing the object 4050 // that was passed into the `@catch` block, then this code path is not 4051 // reached and we will instead call `objc_exception_throw` with an explicit 4052 // argument. 4053 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn); 4054 Throw->setDoesNotReturn(); 4055 } 4056 else { 4057 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 4058 llvm::CallBase *Throw = 4059 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); 4060 Throw->setDoesNotReturn(); 4061 } 4062 CGF.Builder.CreateUnreachable(); 4063 if (ClearInsertionPoint) 4064 CGF.Builder.ClearInsertionPoint(); 4065 } 4066 4067 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 4068 Address AddrWeakObj) { 4069 CGBuilderTy &B = CGF.Builder; 4070 return B.CreateCall(WeakReadFn, 4071 EnforceType(B, AddrWeakObj.getPointer(), PtrToIdTy)); 4072 } 4073 4074 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 4075 llvm::Value *src, Address dst) { 4076 CGBuilderTy &B = CGF.Builder; 4077 src = EnforceType(B, src, IdTy); 4078 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4079 B.CreateCall(WeakAssignFn, {src, dstVal}); 4080 } 4081 4082 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 4083 llvm::Value *src, Address dst, 4084 bool threadlocal) { 4085 CGBuilderTy &B = CGF.Builder; 4086 src = EnforceType(B, src, IdTy); 4087 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4088 // FIXME. Add threadloca assign API 4089 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"); 4090 B.CreateCall(GlobalAssignFn, {src, dstVal}); 4091 } 4092 4093 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 4094 llvm::Value *src, Address dst, 4095 llvm::Value *ivarOffset) { 4096 CGBuilderTy &B = CGF.Builder; 4097 src = EnforceType(B, src, IdTy); 4098 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), IdTy); 4099 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset}); 4100 } 4101 4102 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 4103 llvm::Value *src, Address dst) { 4104 CGBuilderTy &B = CGF.Builder; 4105 src = EnforceType(B, src, IdTy); 4106 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4107 B.CreateCall(StrongCastAssignFn, {src, dstVal}); 4108 } 4109 4110 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 4111 Address DestPtr, 4112 Address SrcPtr, 4113 llvm::Value *Size) { 4114 CGBuilderTy &B = CGF.Builder; 4115 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.getPointer(), PtrTy); 4116 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.getPointer(), PtrTy); 4117 4118 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size}); 4119 } 4120 4121 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 4122 const ObjCInterfaceDecl *ID, 4123 const ObjCIvarDecl *Ivar) { 4124 const std::string Name = GetIVarOffsetVariableName(ID, Ivar); 4125 // Emit the variable and initialize it with what we think the correct value 4126 // is. This allows code compiled with non-fragile ivars to work correctly 4127 // when linked against code which isn't (most of the time). 4128 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 4129 if (!IvarOffsetPointer) 4130 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, 4131 llvm::Type::getInt32PtrTy(VMContext), false, 4132 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 4133 return IvarOffsetPointer; 4134 } 4135 4136 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 4137 QualType ObjectTy, 4138 llvm::Value *BaseValue, 4139 const ObjCIvarDecl *Ivar, 4140 unsigned CVRQualifiers) { 4141 const ObjCInterfaceDecl *ID = 4142 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 4143 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4144 EmitIvarOffset(CGF, ID, Ivar)); 4145 } 4146 4147 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 4148 const ObjCInterfaceDecl *OID, 4149 const ObjCIvarDecl *OIVD) { 4150 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 4151 next = next->getNextIvar()) { 4152 if (OIVD == next) 4153 return OID; 4154 } 4155 4156 // Otherwise check in the super class. 4157 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 4158 return FindIvarInterface(Context, Super, OIVD); 4159 4160 return nullptr; 4161 } 4162 4163 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 4164 const ObjCInterfaceDecl *Interface, 4165 const ObjCIvarDecl *Ivar) { 4166 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 4167 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 4168 4169 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage 4170 // and ExternalLinkage, so create a reference to the ivar global and rely on 4171 // the definition being created as part of GenerateClass. 4172 if (RuntimeVersion < 10 || 4173 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment()) 4174 return CGF.Builder.CreateZExtOrBitCast( 4175 CGF.Builder.CreateAlignedLoad( 4176 Int32Ty, CGF.Builder.CreateAlignedLoad( 4177 llvm::Type::getInt32PtrTy(VMContext), 4178 ObjCIvarOffsetVariable(Interface, Ivar), 4179 CGF.getPointerAlign(), "ivar"), 4180 CharUnits::fromQuantity(4)), 4181 PtrDiffTy); 4182 std::string name = "__objc_ivar_offset_value_" + 4183 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 4184 CharUnits Align = CGM.getIntAlign(); 4185 llvm::Value *Offset = TheModule.getGlobalVariable(name); 4186 if (!Offset) { 4187 auto GV = new llvm::GlobalVariable(TheModule, IntTy, 4188 false, llvm::GlobalValue::LinkOnceAnyLinkage, 4189 llvm::Constant::getNullValue(IntTy), name); 4190 GV->setAlignment(Align.getAsAlign()); 4191 Offset = GV; 4192 } 4193 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align); 4194 if (Offset->getType() != PtrDiffTy) 4195 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 4196 return Offset; 4197 } 4198 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 4199 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 4200 } 4201 4202 CGObjCRuntime * 4203 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 4204 auto Runtime = CGM.getLangOpts().ObjCRuntime; 4205 switch (Runtime.getKind()) { 4206 case ObjCRuntime::GNUstep: 4207 if (Runtime.getVersion() >= VersionTuple(2, 0)) 4208 return new CGObjCGNUstep2(CGM); 4209 return new CGObjCGNUstep(CGM); 4210 4211 case ObjCRuntime::GCC: 4212 return new CGObjCGCC(CGM); 4213 4214 case ObjCRuntime::ObjFW: 4215 return new CGObjCObjFW(CGM); 4216 4217 case ObjCRuntime::FragileMacOSX: 4218 case ObjCRuntime::MacOSX: 4219 case ObjCRuntime::iOS: 4220 case ObjCRuntime::WatchOS: 4221 llvm_unreachable("these runtimes are not GNU runtimes"); 4222 } 4223 llvm_unreachable("bad runtime"); 4224 } 4225