1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the GNU runtime. The 10 // class in this file generates structures used by the GNU Objective-C runtime 11 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 12 // the GNU runtime distribution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/StmtObjC.h" 27 #include "clang/Basic/FileManager.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/StringMap.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include <cctype> 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 namespace { 44 45 /// Class that lazily initialises the runtime function. Avoids inserting the 46 /// types and the function declaration into a module if they're not used, and 47 /// avoids constructing the type more than once if it's used more than once. 48 class LazyRuntimeFunction { 49 CodeGenModule *CGM; 50 llvm::FunctionType *FTy; 51 const char *FunctionName; 52 llvm::FunctionCallee Function; 53 54 public: 55 /// Constructor leaves this class uninitialized, because it is intended to 56 /// be used as a field in another class and not all of the types that are 57 /// used as arguments will necessarily be available at construction time. 58 LazyRuntimeFunction() 59 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {} 60 61 /// Initialises the lazy function with the name, return type, and the types 62 /// of the arguments. 63 template <typename... Tys> 64 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, 65 Tys *... Types) { 66 CGM = Mod; 67 FunctionName = name; 68 Function = nullptr; 69 if(sizeof...(Tys)) { 70 SmallVector<llvm::Type *, 8> ArgTys({Types...}); 71 FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 72 } 73 else { 74 FTy = llvm::FunctionType::get(RetTy, None, false); 75 } 76 } 77 78 llvm::FunctionType *getType() { return FTy; } 79 80 /// Overloaded cast operator, allows the class to be implicitly cast to an 81 /// LLVM constant. 82 operator llvm::FunctionCallee() { 83 if (!Function) { 84 if (!FunctionName) 85 return nullptr; 86 Function = CGM->CreateRuntimeFunction(FTy, FunctionName); 87 } 88 return Function; 89 } 90 }; 91 92 93 /// GNU Objective-C runtime code generation. This class implements the parts of 94 /// Objective-C support that are specific to the GNU family of runtimes (GCC, 95 /// GNUstep and ObjFW). 96 class CGObjCGNU : public CGObjCRuntime { 97 protected: 98 /// The LLVM module into which output is inserted 99 llvm::Module &TheModule; 100 /// strut objc_super. Used for sending messages to super. This structure 101 /// contains the receiver (object) and the expected class. 102 llvm::StructType *ObjCSuperTy; 103 /// struct objc_super*. The type of the argument to the superclass message 104 /// lookup functions. 105 llvm::PointerType *PtrToObjCSuperTy; 106 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 107 /// SEL is included in a header somewhere, in which case it will be whatever 108 /// type is declared in that header, most likely {i8*, i8*}. 109 llvm::PointerType *SelectorTy; 110 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 111 /// places where it's used 112 llvm::IntegerType *Int8Ty; 113 /// Pointer to i8 - LLVM type of char*, for all of the places where the 114 /// runtime needs to deal with C strings. 115 llvm::PointerType *PtrToInt8Ty; 116 /// struct objc_protocol type 117 llvm::StructType *ProtocolTy; 118 /// Protocol * type. 119 llvm::PointerType *ProtocolPtrTy; 120 /// Instance Method Pointer type. This is a pointer to a function that takes, 121 /// at a minimum, an object and a selector, and is the generic type for 122 /// Objective-C methods. Due to differences between variadic / non-variadic 123 /// calling conventions, it must always be cast to the correct type before 124 /// actually being used. 125 llvm::PointerType *IMPTy; 126 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 127 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 128 /// but if the runtime header declaring it is included then it may be a 129 /// pointer to a structure. 130 llvm::PointerType *IdTy; 131 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 132 /// message lookup function and some GC-related functions. 133 llvm::PointerType *PtrToIdTy; 134 /// The clang type of id. Used when using the clang CGCall infrastructure to 135 /// call Objective-C methods. 136 CanQualType ASTIdTy; 137 /// LLVM type for C int type. 138 llvm::IntegerType *IntTy; 139 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 140 /// used in the code to document the difference between i8* meaning a pointer 141 /// to a C string and i8* meaning a pointer to some opaque type. 142 llvm::PointerType *PtrTy; 143 /// LLVM type for C long type. The runtime uses this in a lot of places where 144 /// it should be using intptr_t, but we can't fix this without breaking 145 /// compatibility with GCC... 146 llvm::IntegerType *LongTy; 147 /// LLVM type for C size_t. Used in various runtime data structures. 148 llvm::IntegerType *SizeTy; 149 /// LLVM type for C intptr_t. 150 llvm::IntegerType *IntPtrTy; 151 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 152 llvm::IntegerType *PtrDiffTy; 153 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 154 /// variables. 155 llvm::PointerType *PtrToIntTy; 156 /// LLVM type for Objective-C BOOL type. 157 llvm::Type *BoolTy; 158 /// 32-bit integer type, to save us needing to look it up every time it's used. 159 llvm::IntegerType *Int32Ty; 160 /// 64-bit integer type, to save us needing to look it up every time it's used. 161 llvm::IntegerType *Int64Ty; 162 /// The type of struct objc_property. 163 llvm::StructType *PropertyMetadataTy; 164 /// Metadata kind used to tie method lookups to message sends. The GNUstep 165 /// runtime provides some LLVM passes that can use this to do things like 166 /// automatic IMP caching and speculative inlining. 167 unsigned msgSendMDKind; 168 /// Does the current target use SEH-based exceptions? False implies 169 /// Itanium-style DWARF unwinding. 170 bool usesSEHExceptions; 171 172 /// Helper to check if we are targeting a specific runtime version or later. 173 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) { 174 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 175 return (R.getKind() == kind) && 176 (R.getVersion() >= VersionTuple(major, minor)); 177 } 178 179 std::string ManglePublicSymbol(StringRef Name) { 180 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str(); 181 } 182 183 std::string SymbolForProtocol(Twine Name) { 184 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str(); 185 } 186 187 std::string SymbolForProtocolRef(StringRef Name) { 188 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str(); 189 } 190 191 192 /// Helper function that generates a constant string and returns a pointer to 193 /// the start of the string. The result of this function can be used anywhere 194 /// where the C code specifies const char*. 195 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") { 196 ConstantAddress Array = 197 CGM.GetAddrOfConstantCString(std::string(Str), Name); 198 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(), 199 Array.getPointer(), Zeros); 200 } 201 202 /// Emits a linkonce_odr string, whose name is the prefix followed by the 203 /// string value. This allows the linker to combine the strings between 204 /// different modules. Used for EH typeinfo names, selector strings, and a 205 /// few other things. 206 llvm::Constant *ExportUniqueString(const std::string &Str, 207 const std::string &prefix, 208 bool Private=false) { 209 std::string name = prefix + Str; 210 auto *ConstStr = TheModule.getGlobalVariable(name); 211 if (!ConstStr) { 212 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 213 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true, 214 llvm::GlobalValue::LinkOnceODRLinkage, value, name); 215 GV->setComdat(TheModule.getOrInsertComdat(name)); 216 if (Private) 217 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 218 ConstStr = GV; 219 } 220 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(), 221 ConstStr, Zeros); 222 } 223 224 /// Returns a property name and encoding string. 225 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, 226 const Decl *Container) { 227 assert(!isRuntime(ObjCRuntime::GNUstep, 2)); 228 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) { 229 std::string NameAndAttributes; 230 std::string TypeStr = 231 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 232 NameAndAttributes += '\0'; 233 NameAndAttributes += TypeStr.length() + 3; 234 NameAndAttributes += TypeStr; 235 NameAndAttributes += '\0'; 236 NameAndAttributes += PD->getNameAsString(); 237 return MakeConstantString(NameAndAttributes); 238 } 239 return MakeConstantString(PD->getNameAsString()); 240 } 241 242 /// Push the property attributes into two structure fields. 243 void PushPropertyAttributes(ConstantStructBuilder &Fields, 244 const ObjCPropertyDecl *property, bool isSynthesized=true, bool 245 isDynamic=true) { 246 int attrs = property->getPropertyAttributes(); 247 // For read-only properties, clear the copy and retain flags 248 if (attrs & ObjCPropertyAttribute::kind_readonly) { 249 attrs &= ~ObjCPropertyAttribute::kind_copy; 250 attrs &= ~ObjCPropertyAttribute::kind_retain; 251 attrs &= ~ObjCPropertyAttribute::kind_weak; 252 attrs &= ~ObjCPropertyAttribute::kind_strong; 253 } 254 // The first flags field has the same attribute values as clang uses internally 255 Fields.addInt(Int8Ty, attrs & 0xff); 256 attrs >>= 8; 257 attrs <<= 2; 258 // For protocol properties, synthesized and dynamic have no meaning, so we 259 // reuse these flags to indicate that this is a protocol property (both set 260 // has no meaning, as a property can't be both synthesized and dynamic) 261 attrs |= isSynthesized ? (1<<0) : 0; 262 attrs |= isDynamic ? (1<<1) : 0; 263 // The second field is the next four fields left shifted by two, with the 264 // low bit set to indicate whether the field is synthesized or dynamic. 265 Fields.addInt(Int8Ty, attrs & 0xff); 266 // Two padding fields 267 Fields.addInt(Int8Ty, 0); 268 Fields.addInt(Int8Ty, 0); 269 } 270 271 virtual llvm::Constant *GenerateCategoryProtocolList(const 272 ObjCCategoryDecl *OCD); 273 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields, 274 int count) { 275 // int count; 276 Fields.addInt(IntTy, count); 277 // int size; (only in GNUstep v2 ABI. 278 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 279 llvm::DataLayout td(&TheModule); 280 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) / 281 CGM.getContext().getCharWidth()); 282 } 283 // struct objc_property_list *next; 284 Fields.add(NULLPtr); 285 // struct objc_property properties[] 286 return Fields.beginArray(PropertyMetadataTy); 287 } 288 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray, 289 const ObjCPropertyDecl *property, 290 const Decl *OCD, 291 bool isSynthesized=true, bool 292 isDynamic=true) { 293 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 294 ASTContext &Context = CGM.getContext(); 295 Fields.add(MakePropertyEncodingString(property, OCD)); 296 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); 297 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 298 if (accessor) { 299 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 300 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 301 Fields.add(MakeConstantString(accessor->getSelector().getAsString())); 302 Fields.add(TypeEncoding); 303 } else { 304 Fields.add(NULLPtr); 305 Fields.add(NULLPtr); 306 } 307 }; 308 addPropertyMethod(property->getGetterMethodDecl()); 309 addPropertyMethod(property->getSetterMethodDecl()); 310 Fields.finishAndAddTo(PropertiesArray); 311 } 312 313 /// Ensures that the value has the required type, by inserting a bitcast if 314 /// required. This function lets us avoid inserting bitcasts that are 315 /// redundant. 316 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { 317 if (V->getType() == Ty) return V; 318 return B.CreateBitCast(V, Ty); 319 } 320 Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) { 321 if (V.getType() == Ty) return V; 322 return B.CreateBitCast(V, Ty); 323 } 324 325 // Some zeros used for GEPs in lots of places. 326 llvm::Constant *Zeros[2]; 327 /// Null pointer value. Mainly used as a terminator in various arrays. 328 llvm::Constant *NULLPtr; 329 /// LLVM context. 330 llvm::LLVMContext &VMContext; 331 332 protected: 333 334 /// Placeholder for the class. Lots of things refer to the class before we've 335 /// actually emitted it. We use this alias as a placeholder, and then replace 336 /// it with a pointer to the class structure before finally emitting the 337 /// module. 338 llvm::GlobalAlias *ClassPtrAlias; 339 /// Placeholder for the metaclass. Lots of things refer to the class before 340 /// we've / actually emitted it. We use this alias as a placeholder, and then 341 /// replace / it with a pointer to the metaclass structure before finally 342 /// emitting the / module. 343 llvm::GlobalAlias *MetaClassPtrAlias; 344 /// All of the classes that have been generated for this compilation units. 345 std::vector<llvm::Constant*> Classes; 346 /// All of the categories that have been generated for this compilation units. 347 std::vector<llvm::Constant*> Categories; 348 /// All of the Objective-C constant strings that have been generated for this 349 /// compilation units. 350 std::vector<llvm::Constant*> ConstantStrings; 351 /// Map from string values to Objective-C constant strings in the output. 352 /// Used to prevent emitting Objective-C strings more than once. This should 353 /// not be required at all - CodeGenModule should manage this list. 354 llvm::StringMap<llvm::Constant*> ObjCStrings; 355 /// All of the protocols that have been declared. 356 llvm::StringMap<llvm::Constant*> ExistingProtocols; 357 /// For each variant of a selector, we store the type encoding and a 358 /// placeholder value. For an untyped selector, the type will be the empty 359 /// string. Selector references are all done via the module's selector table, 360 /// so we create an alias as a placeholder and then replace it with the real 361 /// value later. 362 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 363 /// Type of the selector map. This is roughly equivalent to the structure 364 /// used in the GNUstep runtime, which maintains a list of all of the valid 365 /// types for a selector in a table. 366 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 367 SelectorMap; 368 /// A map from selectors to selector types. This allows us to emit all 369 /// selectors of the same name and type together. 370 SelectorMap SelectorTable; 371 372 /// Selectors related to memory management. When compiling in GC mode, we 373 /// omit these. 374 Selector RetainSel, ReleaseSel, AutoreleaseSel; 375 /// Runtime functions used for memory management in GC mode. Note that clang 376 /// supports code generation for calling these functions, but neither GNU 377 /// runtime actually supports this API properly yet. 378 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 379 WeakAssignFn, GlobalAssignFn; 380 381 typedef std::pair<std::string, std::string> ClassAliasPair; 382 /// All classes that have aliases set for them. 383 std::vector<ClassAliasPair> ClassAliases; 384 385 protected: 386 /// Function used for throwing Objective-C exceptions. 387 LazyRuntimeFunction ExceptionThrowFn; 388 /// Function used for rethrowing exceptions, used at the end of \@finally or 389 /// \@synchronize blocks. 390 LazyRuntimeFunction ExceptionReThrowFn; 391 /// Function called when entering a catch function. This is required for 392 /// differentiating Objective-C exceptions and foreign exceptions. 393 LazyRuntimeFunction EnterCatchFn; 394 /// Function called when exiting from a catch block. Used to do exception 395 /// cleanup. 396 LazyRuntimeFunction ExitCatchFn; 397 /// Function called when entering an \@synchronize block. Acquires the lock. 398 LazyRuntimeFunction SyncEnterFn; 399 /// Function called when exiting an \@synchronize block. Releases the lock. 400 LazyRuntimeFunction SyncExitFn; 401 402 private: 403 /// Function called if fast enumeration detects that the collection is 404 /// modified during the update. 405 LazyRuntimeFunction EnumerationMutationFn; 406 /// Function for implementing synthesized property getters that return an 407 /// object. 408 LazyRuntimeFunction GetPropertyFn; 409 /// Function for implementing synthesized property setters that return an 410 /// object. 411 LazyRuntimeFunction SetPropertyFn; 412 /// Function used for non-object declared property getters. 413 LazyRuntimeFunction GetStructPropertyFn; 414 /// Function used for non-object declared property setters. 415 LazyRuntimeFunction SetStructPropertyFn; 416 417 protected: 418 /// The version of the runtime that this class targets. Must match the 419 /// version in the runtime. 420 int RuntimeVersion; 421 /// The version of the protocol class. Used to differentiate between ObjC1 422 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 423 /// components and can not contain declared properties. We always emit 424 /// Objective-C 2 property structures, but we have to pretend that they're 425 /// Objective-C 1 property structures when targeting the GCC runtime or it 426 /// will abort. 427 const int ProtocolVersion; 428 /// The version of the class ABI. This value is used in the class structure 429 /// and indicates how various fields should be interpreted. 430 const int ClassABIVersion; 431 /// Generates an instance variable list structure. This is a structure 432 /// containing a size and an array of structures containing instance variable 433 /// metadata. This is used purely for introspection in the fragile ABI. In 434 /// the non-fragile ABI, it's used for instance variable fixup. 435 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 436 ArrayRef<llvm::Constant *> IvarTypes, 437 ArrayRef<llvm::Constant *> IvarOffsets, 438 ArrayRef<llvm::Constant *> IvarAlign, 439 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership); 440 441 /// Generates a method list structure. This is a structure containing a size 442 /// and an array of structures containing method metadata. 443 /// 444 /// This structure is used by both classes and categories, and contains a next 445 /// pointer allowing them to be chained together in a linked list. 446 llvm::Constant *GenerateMethodList(StringRef ClassName, 447 StringRef CategoryName, 448 ArrayRef<const ObjCMethodDecl*> Methods, 449 bool isClassMethodList); 450 451 /// Emits an empty protocol. This is used for \@protocol() where no protocol 452 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 453 /// real protocol. 454 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName); 455 456 /// Generates a list of property metadata structures. This follows the same 457 /// pattern as method and instance variable metadata lists. 458 llvm::Constant *GeneratePropertyList(const Decl *Container, 459 const ObjCContainerDecl *OCD, 460 bool isClassProperty=false, 461 bool protocolOptionalProperties=false); 462 463 /// Generates a list of referenced protocols. Classes, categories, and 464 /// protocols all use this structure. 465 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 466 467 /// To ensure that all protocols are seen by the runtime, we add a category on 468 /// a class defined in the runtime, declaring no methods, but adopting the 469 /// protocols. This is a horribly ugly hack, but it allows us to collect all 470 /// of the protocols without changing the ABI. 471 void GenerateProtocolHolderCategory(); 472 473 /// Generates a class structure. 474 llvm::Constant *GenerateClassStructure( 475 llvm::Constant *MetaClass, 476 llvm::Constant *SuperClass, 477 unsigned info, 478 const char *Name, 479 llvm::Constant *Version, 480 llvm::Constant *InstanceSize, 481 llvm::Constant *IVars, 482 llvm::Constant *Methods, 483 llvm::Constant *Protocols, 484 llvm::Constant *IvarOffsets, 485 llvm::Constant *Properties, 486 llvm::Constant *StrongIvarBitmap, 487 llvm::Constant *WeakIvarBitmap, 488 bool isMeta=false); 489 490 /// Generates a method list. This is used by protocols to define the required 491 /// and optional methods. 492 virtual llvm::Constant *GenerateProtocolMethodList( 493 ArrayRef<const ObjCMethodDecl*> Methods); 494 /// Emits optional and required method lists. 495 template<class T> 496 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required, 497 llvm::Constant *&Optional) { 498 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods; 499 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods; 500 for (const auto *I : Methods) 501 if (I->isOptional()) 502 OptionalMethods.push_back(I); 503 else 504 RequiredMethods.push_back(I); 505 Required = GenerateProtocolMethodList(RequiredMethods); 506 Optional = GenerateProtocolMethodList(OptionalMethods); 507 } 508 509 /// Returns a selector with the specified type encoding. An empty string is 510 /// used to return an untyped selector (with the types field set to NULL). 511 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 512 const std::string &TypeEncoding); 513 514 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this 515 /// contains the class and ivar names, in the v2 ABI this contains the type 516 /// encoding as well. 517 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 518 const ObjCIvarDecl *Ivar) { 519 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 520 + '.' + Ivar->getNameAsString(); 521 return Name; 522 } 523 /// Returns the variable used to store the offset of an instance variable. 524 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 525 const ObjCIvarDecl *Ivar); 526 /// Emits a reference to a class. This allows the linker to object if there 527 /// is no class of the matching name. 528 void EmitClassRef(const std::string &className); 529 530 /// Emits a pointer to the named class 531 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 532 const std::string &Name, bool isWeak); 533 534 /// Looks up the method for sending a message to the specified object. This 535 /// mechanism differs between the GCC and GNU runtimes, so this method must be 536 /// overridden in subclasses. 537 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 538 llvm::Value *&Receiver, 539 llvm::Value *cmd, 540 llvm::MDNode *node, 541 MessageSendInfo &MSI) = 0; 542 543 /// Looks up the method for sending a message to a superclass. This 544 /// mechanism differs between the GCC and GNU runtimes, so this method must 545 /// be overridden in subclasses. 546 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 547 Address ObjCSuper, 548 llvm::Value *cmd, 549 MessageSendInfo &MSI) = 0; 550 551 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 552 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 553 /// bits set to their values, LSB first, while larger ones are stored in a 554 /// structure of this / form: 555 /// 556 /// struct { int32_t length; int32_t values[length]; }; 557 /// 558 /// The values in the array are stored in host-endian format, with the least 559 /// significant bit being assumed to come first in the bitfield. Therefore, 560 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 561 /// while a bitfield / with the 63rd bit set will be 1<<64. 562 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 563 564 public: 565 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 566 unsigned protocolClassVersion, unsigned classABI=1); 567 568 ConstantAddress GenerateConstantString(const StringLiteral *) override; 569 570 RValue 571 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, 572 QualType ResultType, Selector Sel, 573 llvm::Value *Receiver, const CallArgList &CallArgs, 574 const ObjCInterfaceDecl *Class, 575 const ObjCMethodDecl *Method) override; 576 RValue 577 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, 578 QualType ResultType, Selector Sel, 579 const ObjCInterfaceDecl *Class, 580 bool isCategoryImpl, llvm::Value *Receiver, 581 bool IsClassMessage, const CallArgList &CallArgs, 582 const ObjCMethodDecl *Method) override; 583 llvm::Value *GetClass(CodeGenFunction &CGF, 584 const ObjCInterfaceDecl *OID) override; 585 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 586 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 587 llvm::Value *GetSelector(CodeGenFunction &CGF, 588 const ObjCMethodDecl *Method) override; 589 virtual llvm::Constant *GetConstantSelector(Selector Sel, 590 const std::string &TypeEncoding) { 591 llvm_unreachable("Runtime unable to generate constant selector"); 592 } 593 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) { 594 return GetConstantSelector(M->getSelector(), 595 CGM.getContext().getObjCEncodingForMethodDecl(M)); 596 } 597 llvm::Constant *GetEHType(QualType T) override; 598 599 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 600 const ObjCContainerDecl *CD) override; 601 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 602 const ObjCMethodDecl *OMD, 603 const ObjCContainerDecl *CD) override; 604 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 605 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 606 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override; 607 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 608 const ObjCProtocolDecl *PD) override; 609 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 610 611 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD); 612 613 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override { 614 return GenerateProtocolRef(PD); 615 } 616 617 llvm::Function *ModuleInitFunction() override; 618 llvm::FunctionCallee GetPropertyGetFunction() override; 619 llvm::FunctionCallee GetPropertySetFunction() override; 620 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 621 bool copy) override; 622 llvm::FunctionCallee GetSetStructFunction() override; 623 llvm::FunctionCallee GetGetStructFunction() override; 624 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 625 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 626 llvm::FunctionCallee EnumerationMutationFunction() override; 627 628 void EmitTryStmt(CodeGenFunction &CGF, 629 const ObjCAtTryStmt &S) override; 630 void EmitSynchronizedStmt(CodeGenFunction &CGF, 631 const ObjCAtSynchronizedStmt &S) override; 632 void EmitThrowStmt(CodeGenFunction &CGF, 633 const ObjCAtThrowStmt &S, 634 bool ClearInsertionPoint=true) override; 635 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 636 Address AddrWeakObj) override; 637 void EmitObjCWeakAssign(CodeGenFunction &CGF, 638 llvm::Value *src, Address dst) override; 639 void EmitObjCGlobalAssign(CodeGenFunction &CGF, 640 llvm::Value *src, Address dest, 641 bool threadlocal=false) override; 642 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, 643 Address dest, llvm::Value *ivarOffset) override; 644 void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 645 llvm::Value *src, Address dest) override; 646 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, 647 Address SrcPtr, 648 llvm::Value *Size) override; 649 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, 650 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 651 unsigned CVRQualifiers) override; 652 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 653 const ObjCInterfaceDecl *Interface, 654 const ObjCIvarDecl *Ivar) override; 655 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 656 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 657 const CGBlockInfo &blockInfo) override { 658 return NULLPtr; 659 } 660 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, 661 const CGBlockInfo &blockInfo) override { 662 return NULLPtr; 663 } 664 665 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override { 666 return NULLPtr; 667 } 668 }; 669 670 /// Class representing the legacy GCC Objective-C ABI. This is the default when 671 /// -fobjc-nonfragile-abi is not specified. 672 /// 673 /// The GCC ABI target actually generates code that is approximately compatible 674 /// with the new GNUstep runtime ABI, but refrains from using any features that 675 /// would not work with the GCC runtime. For example, clang always generates 676 /// the extended form of the class structure, and the extra fields are simply 677 /// ignored by GCC libobjc. 678 class CGObjCGCC : public CGObjCGNU { 679 /// The GCC ABI message lookup function. Returns an IMP pointing to the 680 /// method implementation for this message. 681 LazyRuntimeFunction MsgLookupFn; 682 /// The GCC ABI superclass message lookup function. Takes a pointer to a 683 /// structure describing the receiver and the class, and a selector as 684 /// arguments. Returns the IMP for the corresponding method. 685 LazyRuntimeFunction MsgLookupSuperFn; 686 687 protected: 688 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 689 llvm::Value *cmd, llvm::MDNode *node, 690 MessageSendInfo &MSI) override { 691 CGBuilderTy &Builder = CGF.Builder; 692 llvm::Value *args[] = { 693 EnforceType(Builder, Receiver, IdTy), 694 EnforceType(Builder, cmd, SelectorTy) }; 695 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 696 imp->setMetadata(msgSendMDKind, node); 697 return imp; 698 } 699 700 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 701 llvm::Value *cmd, MessageSendInfo &MSI) override { 702 CGBuilderTy &Builder = CGF.Builder; 703 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper, 704 PtrToObjCSuperTy).getPointer(), cmd}; 705 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 706 } 707 708 public: 709 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 710 // IMP objc_msg_lookup(id, SEL); 711 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 712 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 713 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 714 PtrToObjCSuperTy, SelectorTy); 715 } 716 }; 717 718 /// Class used when targeting the new GNUstep runtime ABI. 719 class CGObjCGNUstep : public CGObjCGNU { 720 /// The slot lookup function. Returns a pointer to a cacheable structure 721 /// that contains (among other things) the IMP. 722 LazyRuntimeFunction SlotLookupFn; 723 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 724 /// a structure describing the receiver and the class, and a selector as 725 /// arguments. Returns the slot for the corresponding method. Superclass 726 /// message lookup rarely changes, so this is a good caching opportunity. 727 LazyRuntimeFunction SlotLookupSuperFn; 728 /// Specialised function for setting atomic retain properties 729 LazyRuntimeFunction SetPropertyAtomic; 730 /// Specialised function for setting atomic copy properties 731 LazyRuntimeFunction SetPropertyAtomicCopy; 732 /// Specialised function for setting nonatomic retain properties 733 LazyRuntimeFunction SetPropertyNonAtomic; 734 /// Specialised function for setting nonatomic copy properties 735 LazyRuntimeFunction SetPropertyNonAtomicCopy; 736 /// Function to perform atomic copies of C++ objects with nontrivial copy 737 /// constructors from Objective-C ivars. 738 LazyRuntimeFunction CxxAtomicObjectGetFn; 739 /// Function to perform atomic copies of C++ objects with nontrivial copy 740 /// constructors to Objective-C ivars. 741 LazyRuntimeFunction CxxAtomicObjectSetFn; 742 /// Type of a slot structure pointer. This is returned by the various 743 /// lookup functions. 744 llvm::Type *SlotTy; 745 /// Type of a slot structure. 746 llvm::Type *SlotStructTy; 747 748 public: 749 llvm::Constant *GetEHType(QualType T) override; 750 751 protected: 752 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 753 llvm::Value *cmd, llvm::MDNode *node, 754 MessageSendInfo &MSI) override { 755 CGBuilderTy &Builder = CGF.Builder; 756 llvm::FunctionCallee LookupFn = SlotLookupFn; 757 758 // Store the receiver on the stack so that we can reload it later 759 Address ReceiverPtr = 760 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign()); 761 Builder.CreateStore(Receiver, ReceiverPtr); 762 763 llvm::Value *self; 764 765 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 766 self = CGF.LoadObjCSelf(); 767 } else { 768 self = llvm::ConstantPointerNull::get(IdTy); 769 } 770 771 // The lookup function is guaranteed not to capture the receiver pointer. 772 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee())) 773 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture); 774 775 llvm::Value *args[] = { 776 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy), 777 EnforceType(Builder, cmd, SelectorTy), 778 EnforceType(Builder, self, IdTy) }; 779 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); 780 slot->setOnlyReadsMemory(); 781 slot->setMetadata(msgSendMDKind, node); 782 783 // Load the imp from the slot 784 llvm::Value *imp = Builder.CreateAlignedLoad( 785 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 786 CGF.getPointerAlign()); 787 788 // The lookup function may have changed the receiver, so make sure we use 789 // the new one. 790 Receiver = Builder.CreateLoad(ReceiverPtr, true); 791 return imp; 792 } 793 794 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 795 llvm::Value *cmd, 796 MessageSendInfo &MSI) override { 797 CGBuilderTy &Builder = CGF.Builder; 798 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd}; 799 800 llvm::CallInst *slot = 801 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); 802 slot->setOnlyReadsMemory(); 803 804 return Builder.CreateAlignedLoad( 805 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 806 CGF.getPointerAlign()); 807 } 808 809 public: 810 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {} 811 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI, 812 unsigned ClassABI) : 813 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) { 814 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 815 816 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy); 817 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 818 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 819 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 820 SelectorTy, IdTy); 821 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL); 822 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 823 PtrToObjCSuperTy, SelectorTy); 824 // If we're in ObjC++ mode, then we want to make 825 if (usesSEHExceptions) { 826 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 827 // void objc_exception_rethrow(void) 828 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy); 829 } else if (CGM.getLangOpts().CPlusPlus) { 830 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 831 // void *__cxa_begin_catch(void *e) 832 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 833 // void __cxa_end_catch(void) 834 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 835 // void _Unwind_Resume_or_Rethrow(void*) 836 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, 837 PtrTy); 838 } else if (R.getVersion() >= VersionTuple(1, 7)) { 839 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 840 // id objc_begin_catch(void *e) 841 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy); 842 // void objc_end_catch(void) 843 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy); 844 // void _Unwind_Resume_or_Rethrow(void*) 845 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy); 846 } 847 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 848 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, 849 SelectorTy, IdTy, PtrDiffTy); 850 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, 851 IdTy, SelectorTy, IdTy, PtrDiffTy); 852 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, 853 IdTy, SelectorTy, IdTy, PtrDiffTy); 854 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", 855 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); 856 // void objc_setCppObjectAtomic(void *dest, const void *src, void 857 // *helper); 858 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, 859 PtrTy, PtrTy); 860 // void objc_getCppObjectAtomic(void *dest, const void *src, void 861 // *helper); 862 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, 863 PtrTy, PtrTy); 864 } 865 866 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 867 // The optimised functions were added in version 1.7 of the GNUstep 868 // runtime. 869 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 870 VersionTuple(1, 7)); 871 return CxxAtomicObjectGetFn; 872 } 873 874 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 875 // The optimised functions were added in version 1.7 of the GNUstep 876 // runtime. 877 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 878 VersionTuple(1, 7)); 879 return CxxAtomicObjectSetFn; 880 } 881 882 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 883 bool copy) override { 884 // The optimised property functions omit the GC check, and so are not 885 // safe to use in GC mode. The standard functions are fast in GC mode, 886 // so there is less advantage in using them. 887 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); 888 // The optimised functions were added in version 1.7 of the GNUstep 889 // runtime. 890 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 891 VersionTuple(1, 7)); 892 893 if (atomic) { 894 if (copy) return SetPropertyAtomicCopy; 895 return SetPropertyAtomic; 896 } 897 898 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic; 899 } 900 }; 901 902 /// GNUstep Objective-C ABI version 2 implementation. 903 /// This is the ABI that provides a clean break with the legacy GCC ABI and 904 /// cleans up a number of things that were added to work around 1980s linkers. 905 class CGObjCGNUstep2 : public CGObjCGNUstep { 906 enum SectionKind 907 { 908 SelectorSection = 0, 909 ClassSection, 910 ClassReferenceSection, 911 CategorySection, 912 ProtocolSection, 913 ProtocolReferenceSection, 914 ClassAliasSection, 915 ConstantStringSection 916 }; 917 static const char *const SectionsBaseNames[8]; 918 static const char *const PECOFFSectionsBaseNames[8]; 919 template<SectionKind K> 920 std::string sectionName() { 921 if (CGM.getTriple().isOSBinFormatCOFF()) { 922 std::string name(PECOFFSectionsBaseNames[K]); 923 name += "$m"; 924 return name; 925 } 926 return SectionsBaseNames[K]; 927 } 928 /// The GCC ABI superclass message lookup function. Takes a pointer to a 929 /// structure describing the receiver and the class, and a selector as 930 /// arguments. Returns the IMP for the corresponding method. 931 LazyRuntimeFunction MsgLookupSuperFn; 932 /// A flag indicating if we've emitted at least one protocol. 933 /// If we haven't, then we need to emit an empty protocol, to ensure that the 934 /// __start__objc_protocols and __stop__objc_protocols sections exist. 935 bool EmittedProtocol = false; 936 /// A flag indicating if we've emitted at least one protocol reference. 937 /// If we haven't, then we need to emit an empty protocol, to ensure that the 938 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections 939 /// exist. 940 bool EmittedProtocolRef = false; 941 /// A flag indicating if we've emitted at least one class. 942 /// If we haven't, then we need to emit an empty protocol, to ensure that the 943 /// __start__objc_classes and __stop__objc_classes sections / exist. 944 bool EmittedClass = false; 945 /// Generate the name of a symbol for a reference to a class. Accesses to 946 /// classes should be indirected via this. 947 948 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>> 949 EarlyInitPair; 950 std::vector<EarlyInitPair> EarlyInitList; 951 952 std::string SymbolForClassRef(StringRef Name, bool isWeak) { 953 if (isWeak) 954 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str(); 955 else 956 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str(); 957 } 958 /// Generate the name of a class symbol. 959 std::string SymbolForClass(StringRef Name) { 960 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str(); 961 } 962 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName, 963 ArrayRef<llvm::Value*> Args) { 964 SmallVector<llvm::Type *,8> Types; 965 for (auto *Arg : Args) 966 Types.push_back(Arg->getType()); 967 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types, 968 false); 969 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName); 970 B.CreateCall(Fn, Args); 971 } 972 973 ConstantAddress GenerateConstantString(const StringLiteral *SL) override { 974 975 auto Str = SL->getString(); 976 CharUnits Align = CGM.getPointerAlign(); 977 978 // Look for an existing one 979 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 980 if (old != ObjCStrings.end()) 981 return ConstantAddress( 982 old->getValue(), old->getValue()->getType()->getPointerElementType(), 983 Align); 984 985 bool isNonASCII = SL->containsNonAscii(); 986 987 auto LiteralLength = SL->getLength(); 988 989 if ((CGM.getTarget().getPointerWidth(0) == 64) && 990 (LiteralLength < 9) && !isNonASCII) { 991 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit 992 // ASCII characters in the high 56 bits, followed by a 4-bit length and a 993 // 3-bit tag (which is always 4). 994 uint64_t str = 0; 995 // Fill in the characters 996 for (unsigned i=0 ; i<LiteralLength ; i++) 997 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7)); 998 // Fill in the length 999 str |= LiteralLength << 3; 1000 // Set the tag 1001 str |= 4; 1002 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr( 1003 llvm::ConstantInt::get(Int64Ty, str), IdTy); 1004 ObjCStrings[Str] = ObjCStr; 1005 return ConstantAddress(ObjCStr, IdTy->getPointerElementType(), Align); 1006 } 1007 1008 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1009 1010 if (StringClass.empty()) StringClass = "NSConstantString"; 1011 1012 std::string Sym = SymbolForClass(StringClass); 1013 1014 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 1015 1016 if (!isa) { 1017 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 1018 llvm::GlobalValue::ExternalLinkage, nullptr, Sym); 1019 if (CGM.getTriple().isOSBinFormatCOFF()) { 1020 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1021 } 1022 } else if (isa->getType() != PtrToIdTy) 1023 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 1024 1025 // struct 1026 // { 1027 // Class isa; 1028 // uint32_t flags; 1029 // uint32_t length; // Number of codepoints 1030 // uint32_t size; // Number of bytes 1031 // uint32_t hash; 1032 // const char *data; 1033 // }; 1034 1035 ConstantInitBuilder Builder(CGM); 1036 auto Fields = Builder.beginStruct(); 1037 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1038 Fields.add(isa); 1039 } else { 1040 Fields.addNullPointer(PtrTy); 1041 } 1042 // For now, all non-ASCII strings are represented as UTF-16. As such, the 1043 // number of bytes is simply double the number of UTF-16 codepoints. In 1044 // ASCII strings, the number of bytes is equal to the number of non-ASCII 1045 // codepoints. 1046 if (isNonASCII) { 1047 unsigned NumU8CodeUnits = Str.size(); 1048 // A UTF-16 representation of a unicode string contains at most the same 1049 // number of code units as a UTF-8 representation. Allocate that much 1050 // space, plus one for the final null character. 1051 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1); 1052 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data(); 1053 llvm::UTF16 *ToPtr = &ToBuf[0]; 1054 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits, 1055 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion); 1056 uint32_t StringLength = ToPtr - &ToBuf[0]; 1057 // Add null terminator 1058 *ToPtr = 0; 1059 // Flags: 2 indicates UTF-16 encoding 1060 Fields.addInt(Int32Ty, 2); 1061 // Number of UTF-16 codepoints 1062 Fields.addInt(Int32Ty, StringLength); 1063 // Number of bytes 1064 Fields.addInt(Int32Ty, StringLength * 2); 1065 // Hash. Not currently initialised by the compiler. 1066 Fields.addInt(Int32Ty, 0); 1067 // pointer to the data string. 1068 auto Arr = llvm::makeArrayRef(&ToBuf[0], ToPtr+1); 1069 auto *C = llvm::ConstantDataArray::get(VMContext, Arr); 1070 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(), 1071 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); 1072 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1073 Fields.add(Buffer); 1074 } else { 1075 // Flags: 0 indicates ASCII encoding 1076 Fields.addInt(Int32Ty, 0); 1077 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint 1078 Fields.addInt(Int32Ty, Str.size()); 1079 // Number of bytes 1080 Fields.addInt(Int32Ty, Str.size()); 1081 // Hash. Not currently initialised by the compiler. 1082 Fields.addInt(Int32Ty, 0); 1083 // Data pointer 1084 Fields.add(MakeConstantString(Str)); 1085 } 1086 std::string StringName; 1087 bool isNamed = !isNonASCII; 1088 if (isNamed) { 1089 StringName = ".objc_str_"; 1090 for (int i=0,e=Str.size() ; i<e ; ++i) { 1091 unsigned char c = Str[i]; 1092 if (isalnum(c)) 1093 StringName += c; 1094 else if (c == ' ') 1095 StringName += '_'; 1096 else { 1097 isNamed = false; 1098 break; 1099 } 1100 } 1101 } 1102 llvm::GlobalVariable *ObjCStrGV = 1103 Fields.finishAndCreateGlobal( 1104 isNamed ? StringRef(StringName) : ".objc_string", 1105 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage 1106 : llvm::GlobalValue::PrivateLinkage); 1107 ObjCStrGV->setSection(sectionName<ConstantStringSection>()); 1108 if (isNamed) { 1109 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName)); 1110 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1111 } 1112 if (CGM.getTriple().isOSBinFormatCOFF()) { 1113 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0}; 1114 EarlyInitList.emplace_back(Sym, v); 1115 } 1116 llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy); 1117 ObjCStrings[Str] = ObjCStr; 1118 ConstantStrings.push_back(ObjCStr); 1119 return ConstantAddress(ObjCStr, IdTy->getPointerElementType(), Align); 1120 } 1121 1122 void PushProperty(ConstantArrayBuilder &PropertiesArray, 1123 const ObjCPropertyDecl *property, 1124 const Decl *OCD, 1125 bool isSynthesized=true, bool 1126 isDynamic=true) override { 1127 // struct objc_property 1128 // { 1129 // const char *name; 1130 // const char *attributes; 1131 // const char *type; 1132 // SEL getter; 1133 // SEL setter; 1134 // }; 1135 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 1136 ASTContext &Context = CGM.getContext(); 1137 Fields.add(MakeConstantString(property->getNameAsString())); 1138 std::string TypeStr = 1139 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD); 1140 Fields.add(MakeConstantString(TypeStr)); 1141 std::string typeStr; 1142 Context.getObjCEncodingForType(property->getType(), typeStr); 1143 Fields.add(MakeConstantString(typeStr)); 1144 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 1145 if (accessor) { 1146 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 1147 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr)); 1148 } else { 1149 Fields.add(NULLPtr); 1150 } 1151 }; 1152 addPropertyMethod(property->getGetterMethodDecl()); 1153 addPropertyMethod(property->getSetterMethodDecl()); 1154 Fields.finishAndAddTo(PropertiesArray); 1155 } 1156 1157 llvm::Constant * 1158 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override { 1159 // struct objc_protocol_method_description 1160 // { 1161 // SEL selector; 1162 // const char *types; 1163 // }; 1164 llvm::StructType *ObjCMethodDescTy = 1165 llvm::StructType::get(CGM.getLLVMContext(), 1166 { PtrToInt8Ty, PtrToInt8Ty }); 1167 ASTContext &Context = CGM.getContext(); 1168 ConstantInitBuilder Builder(CGM); 1169 // struct objc_protocol_method_description_list 1170 // { 1171 // int count; 1172 // int size; 1173 // struct objc_protocol_method_description methods[]; 1174 // }; 1175 auto MethodList = Builder.beginStruct(); 1176 // int count; 1177 MethodList.addInt(IntTy, Methods.size()); 1178 // int size; // sizeof(struct objc_method_description) 1179 llvm::DataLayout td(&TheModule); 1180 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) / 1181 CGM.getContext().getCharWidth()); 1182 // struct objc_method_description[] 1183 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 1184 for (auto *M : Methods) { 1185 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 1186 Method.add(CGObjCGNU::GetConstantSelector(M)); 1187 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true))); 1188 Method.finishAndAddTo(MethodArray); 1189 } 1190 MethodArray.finishAndAddTo(MethodList); 1191 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list", 1192 CGM.getPointerAlign()); 1193 } 1194 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD) 1195 override { 1196 const auto &ReferencedProtocols = OCD->getReferencedProtocols(); 1197 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(), 1198 ReferencedProtocols.end()); 1199 SmallVector<llvm::Constant *, 16> Protocols; 1200 for (const auto *PI : RuntimeProtocols) 1201 Protocols.push_back( 1202 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI), 1203 ProtocolPtrTy)); 1204 return GenerateProtocolList(Protocols); 1205 } 1206 1207 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 1208 llvm::Value *cmd, MessageSendInfo &MSI) override { 1209 // Don't access the slot unless we're trying to cache the result. 1210 CGBuilderTy &Builder = CGF.Builder; 1211 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, ObjCSuper, 1212 PtrToObjCSuperTy).getPointer(), cmd}; 1213 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 1214 } 1215 1216 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) { 1217 std::string SymbolName = SymbolForClassRef(Name, isWeak); 1218 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName); 1219 if (ClassSymbol) 1220 return ClassSymbol; 1221 ClassSymbol = new llvm::GlobalVariable(TheModule, 1222 IdTy, false, llvm::GlobalValue::ExternalLinkage, 1223 nullptr, SymbolName); 1224 // If this is a weak symbol, then we are creating a valid definition for 1225 // the symbol, pointing to a weak definition of the real class pointer. If 1226 // this is not a weak reference, then we are expecting another compilation 1227 // unit to provide the real indirection symbol. 1228 if (isWeak) 1229 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule, 1230 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage, 1231 nullptr, SymbolForClass(Name))); 1232 else { 1233 if (CGM.getTriple().isOSBinFormatCOFF()) { 1234 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 1235 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 1236 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 1237 1238 const ObjCInterfaceDecl *OID = nullptr; 1239 for (const auto *Result : DC->lookup(&II)) 1240 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result))) 1241 break; 1242 1243 // The first Interface we find may be a @class, 1244 // which should only be treated as the source of 1245 // truth in the absence of a true declaration. 1246 assert(OID && "Failed to find ObjCInterfaceDecl"); 1247 const ObjCInterfaceDecl *OIDDef = OID->getDefinition(); 1248 if (OIDDef != nullptr) 1249 OID = OIDDef; 1250 1251 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1252 if (OID->hasAttr<DLLImportAttr>()) 1253 Storage = llvm::GlobalValue::DLLImportStorageClass; 1254 else if (OID->hasAttr<DLLExportAttr>()) 1255 Storage = llvm::GlobalValue::DLLExportStorageClass; 1256 1257 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage); 1258 } 1259 } 1260 assert(ClassSymbol->getName() == SymbolName); 1261 return ClassSymbol; 1262 } 1263 llvm::Value *GetClassNamed(CodeGenFunction &CGF, 1264 const std::string &Name, 1265 bool isWeak) override { 1266 return CGF.Builder.CreateLoad(Address(GetClassVar(Name, isWeak), 1267 CGM.getPointerAlign())); 1268 } 1269 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) { 1270 // typedef enum { 1271 // ownership_invalid = 0, 1272 // ownership_strong = 1, 1273 // ownership_weak = 2, 1274 // ownership_unsafe = 3 1275 // } ivar_ownership; 1276 int Flag; 1277 switch (Ownership) { 1278 case Qualifiers::OCL_Strong: 1279 Flag = 1; 1280 break; 1281 case Qualifiers::OCL_Weak: 1282 Flag = 2; 1283 break; 1284 case Qualifiers::OCL_ExplicitNone: 1285 Flag = 3; 1286 break; 1287 case Qualifiers::OCL_None: 1288 case Qualifiers::OCL_Autoreleasing: 1289 assert(Ownership != Qualifiers::OCL_Autoreleasing); 1290 Flag = 0; 1291 } 1292 return Flag; 1293 } 1294 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1295 ArrayRef<llvm::Constant *> IvarTypes, 1296 ArrayRef<llvm::Constant *> IvarOffsets, 1297 ArrayRef<llvm::Constant *> IvarAlign, 1298 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override { 1299 llvm_unreachable("Method should not be called!"); 1300 } 1301 1302 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override { 1303 std::string Name = SymbolForProtocol(ProtocolName); 1304 auto *GV = TheModule.getGlobalVariable(Name); 1305 if (!GV) { 1306 // Emit a placeholder symbol. 1307 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false, 1308 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1309 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1310 } 1311 return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy); 1312 } 1313 1314 /// Existing protocol references. 1315 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs; 1316 1317 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1318 const ObjCProtocolDecl *PD) override { 1319 auto Name = PD->getNameAsString(); 1320 auto *&Ref = ExistingProtocolRefs[Name]; 1321 if (!Ref) { 1322 auto *&Protocol = ExistingProtocols[Name]; 1323 if (!Protocol) 1324 Protocol = GenerateProtocolRef(PD); 1325 std::string RefName = SymbolForProtocolRef(Name); 1326 assert(!TheModule.getGlobalVariable(RefName)); 1327 // Emit a reference symbol. 1328 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, 1329 false, llvm::GlobalValue::LinkOnceODRLinkage, 1330 llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName); 1331 GV->setComdat(TheModule.getOrInsertComdat(RefName)); 1332 GV->setSection(sectionName<ProtocolReferenceSection>()); 1333 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1334 Ref = GV; 1335 } 1336 EmittedProtocolRef = true; 1337 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref, 1338 CGM.getPointerAlign()); 1339 } 1340 1341 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) { 1342 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy, 1343 Protocols.size()); 1344 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1345 Protocols); 1346 ConstantInitBuilder builder(CGM); 1347 auto ProtocolBuilder = builder.beginStruct(); 1348 ProtocolBuilder.addNullPointer(PtrTy); 1349 ProtocolBuilder.addInt(SizeTy, Protocols.size()); 1350 ProtocolBuilder.add(ProtocolArray); 1351 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list", 1352 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage); 1353 } 1354 1355 void GenerateProtocol(const ObjCProtocolDecl *PD) override { 1356 // Do nothing - we only emit referenced protocols. 1357 } 1358 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override { 1359 std::string ProtocolName = PD->getNameAsString(); 1360 auto *&Protocol = ExistingProtocols[ProtocolName]; 1361 if (Protocol) 1362 return Protocol; 1363 1364 EmittedProtocol = true; 1365 1366 auto SymName = SymbolForProtocol(ProtocolName); 1367 auto *OldGV = TheModule.getGlobalVariable(SymName); 1368 1369 // Use the protocol definition, if there is one. 1370 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1371 PD = Def; 1372 else { 1373 // If there is no definition, then create an external linkage symbol and 1374 // hope that someone else fills it in for us (and fail to link if they 1375 // don't). 1376 assert(!OldGV); 1377 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy, 1378 /*isConstant*/false, 1379 llvm::GlobalValue::ExternalLinkage, nullptr, SymName); 1380 return Protocol; 1381 } 1382 1383 SmallVector<llvm::Constant*, 16> Protocols; 1384 auto RuntimeProtocols = 1385 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end()); 1386 for (const auto *PI : RuntimeProtocols) 1387 Protocols.push_back( 1388 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI), 1389 ProtocolPtrTy)); 1390 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1391 1392 // Collect information about methods 1393 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList; 1394 llvm::Constant *ClassMethodList, *OptionalClassMethodList; 1395 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList, 1396 OptionalInstanceMethodList); 1397 EmitProtocolMethodList(PD->class_methods(), ClassMethodList, 1398 OptionalClassMethodList); 1399 1400 // The isa pointer must be set to a magic number so the runtime knows it's 1401 // the correct layout. 1402 ConstantInitBuilder builder(CGM); 1403 auto ProtocolBuilder = builder.beginStruct(); 1404 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr( 1405 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1406 ProtocolBuilder.add(MakeConstantString(ProtocolName)); 1407 ProtocolBuilder.add(ProtocolList); 1408 ProtocolBuilder.add(InstanceMethodList); 1409 ProtocolBuilder.add(ClassMethodList); 1410 ProtocolBuilder.add(OptionalInstanceMethodList); 1411 ProtocolBuilder.add(OptionalClassMethodList); 1412 // Required instance properties 1413 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false)); 1414 // Optional instance properties 1415 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true)); 1416 // Required class properties 1417 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false)); 1418 // Optional class properties 1419 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true)); 1420 1421 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName, 1422 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1423 GV->setSection(sectionName<ProtocolSection>()); 1424 GV->setComdat(TheModule.getOrInsertComdat(SymName)); 1425 if (OldGV) { 1426 OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV, 1427 OldGV->getType())); 1428 OldGV->removeFromParent(); 1429 GV->setName(SymName); 1430 } 1431 Protocol = GV; 1432 return GV; 1433 } 1434 llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) { 1435 if (Val->getType() == Ty) 1436 return Val; 1437 return llvm::ConstantExpr::getBitCast(Val, Ty); 1438 } 1439 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 1440 const std::string &TypeEncoding) override { 1441 return GetConstantSelector(Sel, TypeEncoding); 1442 } 1443 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) { 1444 if (TypeEncoding.empty()) 1445 return NULLPtr; 1446 std::string MangledTypes = std::string(TypeEncoding); 1447 std::replace(MangledTypes.begin(), MangledTypes.end(), 1448 '@', '\1'); 1449 std::string TypesVarName = ".objc_sel_types_" + MangledTypes; 1450 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName); 1451 if (!TypesGlobal) { 1452 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, 1453 TypeEncoding); 1454 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(), 1455 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName); 1456 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName)); 1457 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1458 TypesGlobal = GV; 1459 } 1460 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(), 1461 TypesGlobal, Zeros); 1462 } 1463 llvm::Constant *GetConstantSelector(Selector Sel, 1464 const std::string &TypeEncoding) override { 1465 // @ is used as a special character in symbol names (used for symbol 1466 // versioning), so mangle the name to not include it. Replace it with a 1467 // character that is not a valid type encoding character (and, being 1468 // non-printable, never will be!) 1469 std::string MangledTypes = TypeEncoding; 1470 std::replace(MangledTypes.begin(), MangledTypes.end(), 1471 '@', '\1'); 1472 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" + 1473 MangledTypes).str(); 1474 if (auto *GV = TheModule.getNamedGlobal(SelVarName)) 1475 return EnforceType(GV, SelectorTy); 1476 ConstantInitBuilder builder(CGM); 1477 auto SelBuilder = builder.beginStruct(); 1478 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_", 1479 true)); 1480 SelBuilder.add(GetTypeString(TypeEncoding)); 1481 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName, 1482 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1483 GV->setComdat(TheModule.getOrInsertComdat(SelVarName)); 1484 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1485 GV->setSection(sectionName<SelectorSection>()); 1486 auto *SelVal = EnforceType(GV, SelectorTy); 1487 return SelVal; 1488 } 1489 llvm::StructType *emptyStruct = nullptr; 1490 1491 /// Return pointers to the start and end of a section. On ELF platforms, we 1492 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set 1493 /// to the start and end of section names, as long as those section names are 1494 /// valid identifiers and the symbols are referenced but not defined. On 1495 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort 1496 /// by subsections and place everything that we want to reference in a middle 1497 /// subsection and then insert zero-sized symbols in subsections a and z. 1498 std::pair<llvm::Constant*,llvm::Constant*> 1499 GetSectionBounds(StringRef Section) { 1500 if (CGM.getTriple().isOSBinFormatCOFF()) { 1501 if (emptyStruct == nullptr) { 1502 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel"); 1503 emptyStruct->setBody({}, /*isPacked*/true); 1504 } 1505 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct); 1506 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) { 1507 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct, 1508 /*isConstant*/false, 1509 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix + 1510 Section); 1511 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility); 1512 Sym->setSection((Section + SecSuffix).str()); 1513 Sym->setComdat(TheModule.getOrInsertComdat((Prefix + 1514 Section).str())); 1515 Sym->setAlignment(CGM.getPointerAlign().getAsAlign()); 1516 return Sym; 1517 }; 1518 return { Sym("__start_", "$a"), Sym("__stop", "$z") }; 1519 } 1520 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy, 1521 /*isConstant*/false, 1522 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") + 1523 Section); 1524 Start->setVisibility(llvm::GlobalValue::HiddenVisibility); 1525 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy, 1526 /*isConstant*/false, 1527 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") + 1528 Section); 1529 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility); 1530 return { Start, Stop }; 1531 } 1532 CatchTypeInfo getCatchAllTypeInfo() override { 1533 return CGM.getCXXABI().getCatchAllTypeInfo(); 1534 } 1535 llvm::Function *ModuleInitFunction() override { 1536 llvm::Function *LoadFunction = llvm::Function::Create( 1537 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 1538 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function", 1539 &TheModule); 1540 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility); 1541 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function")); 1542 1543 llvm::BasicBlock *EntryBB = 1544 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 1545 CGBuilderTy B(CGM, VMContext); 1546 B.SetInsertPoint(EntryBB); 1547 ConstantInitBuilder builder(CGM); 1548 auto InitStructBuilder = builder.beginStruct(); 1549 InitStructBuilder.addInt(Int64Ty, 0); 1550 auto §ionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames; 1551 for (auto *s : sectionVec) { 1552 auto bounds = GetSectionBounds(s); 1553 InitStructBuilder.add(bounds.first); 1554 InitStructBuilder.add(bounds.second); 1555 } 1556 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init", 1557 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1558 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility); 1559 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init")); 1560 1561 CallRuntimeFunction(B, "__objc_load", {InitStruct});; 1562 B.CreateRetVoid(); 1563 // Make sure that the optimisers don't delete this function. 1564 CGM.addCompilerUsedGlobal(LoadFunction); 1565 // FIXME: Currently ELF only! 1566 // We have to do this by hand, rather than with @llvm.ctors, so that the 1567 // linker can remove the duplicate invocations. 1568 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(), 1569 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage, 1570 LoadFunction, ".objc_ctor"); 1571 // Check that this hasn't been renamed. This shouldn't happen, because 1572 // this function should be called precisely once. 1573 assert(InitVar->getName() == ".objc_ctor"); 1574 // In Windows, initialisers are sorted by the suffix. XCL is for library 1575 // initialisers, which run before user initialisers. We are running 1576 // Objective-C loads at the end of library load. This means +load methods 1577 // will run before any other static constructors, but that static 1578 // constructors can see a fully initialised Objective-C state. 1579 if (CGM.getTriple().isOSBinFormatCOFF()) 1580 InitVar->setSection(".CRT$XCLz"); 1581 else 1582 { 1583 if (CGM.getCodeGenOpts().UseInitArray) 1584 InitVar->setSection(".init_array"); 1585 else 1586 InitVar->setSection(".ctors"); 1587 } 1588 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility); 1589 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor")); 1590 CGM.addUsedGlobal(InitVar); 1591 for (auto *C : Categories) { 1592 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts()); 1593 Cat->setSection(sectionName<CategorySection>()); 1594 CGM.addUsedGlobal(Cat); 1595 } 1596 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init, 1597 StringRef Section) { 1598 auto nullBuilder = builder.beginStruct(); 1599 for (auto *F : Init) 1600 nullBuilder.add(F); 1601 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 1602 false, llvm::GlobalValue::LinkOnceODRLinkage); 1603 GV->setSection(Section); 1604 GV->setComdat(TheModule.getOrInsertComdat(Name)); 1605 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1606 CGM.addUsedGlobal(GV); 1607 return GV; 1608 }; 1609 for (auto clsAlias : ClassAliases) 1610 createNullGlobal(std::string(".objc_class_alias") + 1611 clsAlias.second, { MakeConstantString(clsAlias.second), 1612 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>()); 1613 // On ELF platforms, add a null value for each special section so that we 1614 // can always guarantee that the _start and _stop symbols will exist and be 1615 // meaningful. This is not required on COFF platforms, where our start and 1616 // stop symbols will create the section. 1617 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1618 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr}, 1619 sectionName<SelectorSection>()); 1620 if (Categories.empty()) 1621 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr, 1622 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, 1623 sectionName<CategorySection>()); 1624 if (!EmittedClass) { 1625 createNullGlobal(".objc_null_cls_init_ref", NULLPtr, 1626 sectionName<ClassSection>()); 1627 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr }, 1628 sectionName<ClassReferenceSection>()); 1629 } 1630 if (!EmittedProtocol) 1631 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr, 1632 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, 1633 NULLPtr}, sectionName<ProtocolSection>()); 1634 if (!EmittedProtocolRef) 1635 createNullGlobal(".objc_null_protocol_ref", {NULLPtr}, 1636 sectionName<ProtocolReferenceSection>()); 1637 if (ClassAliases.empty()) 1638 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr }, 1639 sectionName<ClassAliasSection>()); 1640 if (ConstantStrings.empty()) { 1641 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0); 1642 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero, 1643 i32Zero, i32Zero, i32Zero, NULLPtr }, 1644 sectionName<ConstantStringSection>()); 1645 } 1646 } 1647 ConstantStrings.clear(); 1648 Categories.clear(); 1649 Classes.clear(); 1650 1651 if (EarlyInitList.size() > 0) { 1652 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, 1653 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init", 1654 &CGM.getModule()); 1655 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", 1656 Init)); 1657 for (const auto &lateInit : EarlyInitList) { 1658 auto *global = TheModule.getGlobalVariable(lateInit.first); 1659 if (global) { 1660 llvm::GlobalVariable *GV = lateInit.second.first; 1661 b.CreateAlignedStore( 1662 global, 1663 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second), 1664 CGM.getPointerAlign().getAsAlign()); 1665 } 1666 } 1667 b.CreateRetVoid(); 1668 // We can't use the normal LLVM global initialisation array, because we 1669 // need to specify that this runs early in library initialisation. 1670 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 1671 /*isConstant*/true, llvm::GlobalValue::InternalLinkage, 1672 Init, ".objc_early_init_ptr"); 1673 InitVar->setSection(".CRT$XCLb"); 1674 CGM.addUsedGlobal(InitVar); 1675 } 1676 return nullptr; 1677 } 1678 /// In the v2 ABI, ivar offset variables use the type encoding in their name 1679 /// to trigger linker failures if the types don't match. 1680 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 1681 const ObjCIvarDecl *Ivar) override { 1682 std::string TypeEncoding; 1683 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding); 1684 // Prevent the @ from being interpreted as a symbol version. 1685 std::replace(TypeEncoding.begin(), TypeEncoding.end(), 1686 '@', '\1'); 1687 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 1688 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding; 1689 return Name; 1690 } 1691 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 1692 const ObjCInterfaceDecl *Interface, 1693 const ObjCIvarDecl *Ivar) override { 1694 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar); 1695 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 1696 if (!IvarOffsetPointer) 1697 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false, 1698 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1699 CharUnits Align = CGM.getIntAlign(); 1700 llvm::Value *Offset = 1701 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align); 1702 if (Offset->getType() != PtrDiffTy) 1703 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 1704 return Offset; 1705 } 1706 void GenerateClass(const ObjCImplementationDecl *OID) override { 1707 ASTContext &Context = CGM.getContext(); 1708 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF(); 1709 1710 // Get the class name 1711 ObjCInterfaceDecl *classDecl = 1712 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 1713 std::string className = classDecl->getNameAsString(); 1714 auto *classNameConstant = MakeConstantString(className); 1715 1716 ConstantInitBuilder builder(CGM); 1717 auto metaclassFields = builder.beginStruct(); 1718 // struct objc_class *isa; 1719 metaclassFields.addNullPointer(PtrTy); 1720 // struct objc_class *super_class; 1721 metaclassFields.addNullPointer(PtrTy); 1722 // const char *name; 1723 metaclassFields.add(classNameConstant); 1724 // long version; 1725 metaclassFields.addInt(LongTy, 0); 1726 // unsigned long info; 1727 // objc_class_flag_meta 1728 metaclassFields.addInt(LongTy, 1); 1729 // long instance_size; 1730 // Setting this to zero is consistent with the older ABI, but it might be 1731 // more sensible to set this to sizeof(struct objc_class) 1732 metaclassFields.addInt(LongTy, 0); 1733 // struct objc_ivar_list *ivars; 1734 metaclassFields.addNullPointer(PtrTy); 1735 // struct objc_method_list *methods 1736 // FIXME: Almost identical code is copied and pasted below for the 1737 // class, but refactoring it cleanly requires C++14 generic lambdas. 1738 if (OID->classmeth_begin() == OID->classmeth_end()) 1739 metaclassFields.addNullPointer(PtrTy); 1740 else { 1741 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 1742 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 1743 OID->classmeth_end()); 1744 metaclassFields.addBitCast( 1745 GenerateMethodList(className, "", ClassMethods, true), 1746 PtrTy); 1747 } 1748 // void *dtable; 1749 metaclassFields.addNullPointer(PtrTy); 1750 // IMP cxx_construct; 1751 metaclassFields.addNullPointer(PtrTy); 1752 // IMP cxx_destruct; 1753 metaclassFields.addNullPointer(PtrTy); 1754 // struct objc_class *subclass_list 1755 metaclassFields.addNullPointer(PtrTy); 1756 // struct objc_class *sibling_class 1757 metaclassFields.addNullPointer(PtrTy); 1758 // struct objc_protocol_list *protocols; 1759 metaclassFields.addNullPointer(PtrTy); 1760 // struct reference_list *extra_data; 1761 metaclassFields.addNullPointer(PtrTy); 1762 // long abi_version; 1763 metaclassFields.addInt(LongTy, 0); 1764 // struct objc_property_list *properties 1765 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true)); 1766 1767 auto *metaclass = metaclassFields.finishAndCreateGlobal( 1768 ManglePublicSymbol("OBJC_METACLASS_") + className, 1769 CGM.getPointerAlign()); 1770 1771 auto classFields = builder.beginStruct(); 1772 // struct objc_class *isa; 1773 classFields.add(metaclass); 1774 // struct objc_class *super_class; 1775 // Get the superclass name. 1776 const ObjCInterfaceDecl * SuperClassDecl = 1777 OID->getClassInterface()->getSuperClass(); 1778 llvm::Constant *SuperClass = nullptr; 1779 if (SuperClassDecl) { 1780 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString()); 1781 SuperClass = TheModule.getNamedGlobal(SuperClassName); 1782 if (!SuperClass) 1783 { 1784 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false, 1785 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName); 1786 if (IsCOFF) { 1787 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1788 if (SuperClassDecl->hasAttr<DLLImportAttr>()) 1789 Storage = llvm::GlobalValue::DLLImportStorageClass; 1790 else if (SuperClassDecl->hasAttr<DLLExportAttr>()) 1791 Storage = llvm::GlobalValue::DLLExportStorageClass; 1792 1793 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage); 1794 } 1795 } 1796 if (!IsCOFF) 1797 classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy)); 1798 else 1799 classFields.addNullPointer(PtrTy); 1800 } else 1801 classFields.addNullPointer(PtrTy); 1802 // const char *name; 1803 classFields.add(classNameConstant); 1804 // long version; 1805 classFields.addInt(LongTy, 0); 1806 // unsigned long info; 1807 // !objc_class_flag_meta 1808 classFields.addInt(LongTy, 0); 1809 // long instance_size; 1810 int superInstanceSize = !SuperClassDecl ? 0 : 1811 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 1812 // Instance size is negative for classes that have not yet had their ivar 1813 // layout calculated. 1814 classFields.addInt(LongTy, 1815 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() - 1816 superInstanceSize)); 1817 1818 if (classDecl->all_declared_ivar_begin() == nullptr) 1819 classFields.addNullPointer(PtrTy); 1820 else { 1821 int ivar_count = 0; 1822 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1823 IVD = IVD->getNextIvar()) ivar_count++; 1824 llvm::DataLayout td(&TheModule); 1825 // struct objc_ivar_list *ivars; 1826 ConstantInitBuilder b(CGM); 1827 auto ivarListBuilder = b.beginStruct(); 1828 // int count; 1829 ivarListBuilder.addInt(IntTy, ivar_count); 1830 // size_t size; 1831 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1832 PtrToInt8Ty, 1833 PtrToInt8Ty, 1834 PtrToInt8Ty, 1835 Int32Ty, 1836 Int32Ty); 1837 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) / 1838 CGM.getContext().getCharWidth()); 1839 // struct objc_ivar ivars[] 1840 auto ivarArrayBuilder = ivarListBuilder.beginArray(); 1841 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1842 IVD = IVD->getNextIvar()) { 1843 auto ivarTy = IVD->getType(); 1844 auto ivarBuilder = ivarArrayBuilder.beginStruct(); 1845 // const char *name; 1846 ivarBuilder.add(MakeConstantString(IVD->getNameAsString())); 1847 // const char *type; 1848 std::string TypeStr; 1849 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true); 1850 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true); 1851 ivarBuilder.add(MakeConstantString(TypeStr)); 1852 // int *offset; 1853 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 1854 uint64_t Offset = BaseOffset - superInstanceSize; 1855 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 1856 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD); 1857 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 1858 if (OffsetVar) 1859 OffsetVar->setInitializer(OffsetValue); 1860 else 1861 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 1862 false, llvm::GlobalValue::ExternalLinkage, 1863 OffsetValue, OffsetName); 1864 auto ivarVisibility = 1865 (IVD->getAccessControl() == ObjCIvarDecl::Private || 1866 IVD->getAccessControl() == ObjCIvarDecl::Package || 1867 classDecl->getVisibility() == HiddenVisibility) ? 1868 llvm::GlobalValue::HiddenVisibility : 1869 llvm::GlobalValue::DefaultVisibility; 1870 OffsetVar->setVisibility(ivarVisibility); 1871 ivarBuilder.add(OffsetVar); 1872 // Ivar size 1873 ivarBuilder.addInt(Int32Ty, 1874 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity()); 1875 // Alignment will be stored as a base-2 log of the alignment. 1876 unsigned align = 1877 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity()); 1878 // Objects that require more than 2^64-byte alignment should be impossible! 1879 assert(align < 64); 1880 // uint32_t flags; 1881 // Bits 0-1 are ownership. 1882 // Bit 2 indicates an extended type encoding 1883 // Bits 3-8 contain log2(aligment) 1884 ivarBuilder.addInt(Int32Ty, 1885 (align << 3) | (1<<2) | 1886 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime())); 1887 ivarBuilder.finishAndAddTo(ivarArrayBuilder); 1888 } 1889 ivarArrayBuilder.finishAndAddTo(ivarListBuilder); 1890 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list", 1891 CGM.getPointerAlign(), /*constant*/ false, 1892 llvm::GlobalValue::PrivateLinkage); 1893 classFields.add(ivarList); 1894 } 1895 // struct objc_method_list *methods 1896 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 1897 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 1898 OID->instmeth_end()); 1899 for (auto *propImpl : OID->property_impls()) 1900 if (propImpl->getPropertyImplementation() == 1901 ObjCPropertyImplDecl::Synthesize) { 1902 auto addIfExists = [&](const ObjCMethodDecl *OMD) { 1903 if (OMD && OMD->hasBody()) 1904 InstanceMethods.push_back(OMD); 1905 }; 1906 addIfExists(propImpl->getGetterMethodDecl()); 1907 addIfExists(propImpl->getSetterMethodDecl()); 1908 } 1909 1910 if (InstanceMethods.size() == 0) 1911 classFields.addNullPointer(PtrTy); 1912 else 1913 classFields.addBitCast( 1914 GenerateMethodList(className, "", InstanceMethods, false), 1915 PtrTy); 1916 // void *dtable; 1917 classFields.addNullPointer(PtrTy); 1918 // IMP cxx_construct; 1919 classFields.addNullPointer(PtrTy); 1920 // IMP cxx_destruct; 1921 classFields.addNullPointer(PtrTy); 1922 // struct objc_class *subclass_list 1923 classFields.addNullPointer(PtrTy); 1924 // struct objc_class *sibling_class 1925 classFields.addNullPointer(PtrTy); 1926 // struct objc_protocol_list *protocols; 1927 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(), 1928 classDecl->protocol_end()); 1929 SmallVector<llvm::Constant *, 16> Protocols; 1930 for (const auto *I : RuntimeProtocols) 1931 Protocols.push_back( 1932 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I), 1933 ProtocolPtrTy)); 1934 if (Protocols.empty()) 1935 classFields.addNullPointer(PtrTy); 1936 else 1937 classFields.add(GenerateProtocolList(Protocols)); 1938 // struct reference_list *extra_data; 1939 classFields.addNullPointer(PtrTy); 1940 // long abi_version; 1941 classFields.addInt(LongTy, 0); 1942 // struct objc_property_list *properties 1943 classFields.add(GeneratePropertyList(OID, classDecl)); 1944 1945 llvm::GlobalVariable *classStruct = 1946 classFields.finishAndCreateGlobal(SymbolForClass(className), 1947 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1948 1949 auto *classRefSymbol = GetClassVar(className); 1950 classRefSymbol->setSection(sectionName<ClassReferenceSection>()); 1951 classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy)); 1952 1953 if (IsCOFF) { 1954 // we can't import a class struct. 1955 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) { 1956 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1957 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1958 } 1959 1960 if (SuperClass) { 1961 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1}; 1962 EarlyInitList.emplace_back(std::string(SuperClass->getName()), 1963 std::move(v)); 1964 } 1965 1966 } 1967 1968 1969 // Resolve the class aliases, if they exist. 1970 // FIXME: Class pointer aliases shouldn't exist! 1971 if (ClassPtrAlias) { 1972 ClassPtrAlias->replaceAllUsesWith( 1973 llvm::ConstantExpr::getBitCast(classStruct, IdTy)); 1974 ClassPtrAlias->eraseFromParent(); 1975 ClassPtrAlias = nullptr; 1976 } 1977 if (auto Placeholder = 1978 TheModule.getNamedGlobal(SymbolForClass(className))) 1979 if (Placeholder != classStruct) { 1980 Placeholder->replaceAllUsesWith( 1981 llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType())); 1982 Placeholder->eraseFromParent(); 1983 classStruct->setName(SymbolForClass(className)); 1984 } 1985 if (MetaClassPtrAlias) { 1986 MetaClassPtrAlias->replaceAllUsesWith( 1987 llvm::ConstantExpr::getBitCast(metaclass, IdTy)); 1988 MetaClassPtrAlias->eraseFromParent(); 1989 MetaClassPtrAlias = nullptr; 1990 } 1991 assert(classStruct->getName() == SymbolForClass(className)); 1992 1993 auto classInitRef = new llvm::GlobalVariable(TheModule, 1994 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage, 1995 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className); 1996 classInitRef->setSection(sectionName<ClassSection>()); 1997 CGM.addUsedGlobal(classInitRef); 1998 1999 EmittedClass = true; 2000 } 2001 public: 2002 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) { 2003 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2004 PtrToObjCSuperTy, SelectorTy); 2005 // struct objc_property 2006 // { 2007 // const char *name; 2008 // const char *attributes; 2009 // const char *type; 2010 // SEL getter; 2011 // SEL setter; 2012 // } 2013 PropertyMetadataTy = 2014 llvm::StructType::get(CGM.getLLVMContext(), 2015 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); 2016 } 2017 2018 }; 2019 2020 const char *const CGObjCGNUstep2::SectionsBaseNames[8] = 2021 { 2022 "__objc_selectors", 2023 "__objc_classes", 2024 "__objc_class_refs", 2025 "__objc_cats", 2026 "__objc_protocols", 2027 "__objc_protocol_refs", 2028 "__objc_class_aliases", 2029 "__objc_constant_string" 2030 }; 2031 2032 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] = 2033 { 2034 ".objcrt$SEL", 2035 ".objcrt$CLS", 2036 ".objcrt$CLR", 2037 ".objcrt$CAT", 2038 ".objcrt$PCL", 2039 ".objcrt$PCR", 2040 ".objcrt$CAL", 2041 ".objcrt$STR" 2042 }; 2043 2044 /// Support for the ObjFW runtime. 2045 class CGObjCObjFW: public CGObjCGNU { 2046 protected: 2047 /// The GCC ABI message lookup function. Returns an IMP pointing to the 2048 /// method implementation for this message. 2049 LazyRuntimeFunction MsgLookupFn; 2050 /// stret lookup function. While this does not seem to make sense at the 2051 /// first look, this is required to call the correct forwarding function. 2052 LazyRuntimeFunction MsgLookupFnSRet; 2053 /// The GCC ABI superclass message lookup function. Takes a pointer to a 2054 /// structure describing the receiver and the class, and a selector as 2055 /// arguments. Returns the IMP for the corresponding method. 2056 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; 2057 2058 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 2059 llvm::Value *cmd, llvm::MDNode *node, 2060 MessageSendInfo &MSI) override { 2061 CGBuilderTy &Builder = CGF.Builder; 2062 llvm::Value *args[] = { 2063 EnforceType(Builder, Receiver, IdTy), 2064 EnforceType(Builder, cmd, SelectorTy) }; 2065 2066 llvm::CallBase *imp; 2067 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2068 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); 2069 else 2070 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 2071 2072 imp->setMetadata(msgSendMDKind, node); 2073 return imp; 2074 } 2075 2076 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 2077 llvm::Value *cmd, MessageSendInfo &MSI) override { 2078 CGBuilderTy &Builder = CGF.Builder; 2079 llvm::Value *lookupArgs[] = { 2080 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd, 2081 }; 2082 2083 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2084 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); 2085 else 2086 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 2087 } 2088 2089 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, 2090 bool isWeak) override { 2091 if (isWeak) 2092 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); 2093 2094 EmitClassRef(Name); 2095 std::string SymbolName = "_OBJC_CLASS_" + Name; 2096 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); 2097 if (!ClassSymbol) 2098 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2099 llvm::GlobalValue::ExternalLinkage, 2100 nullptr, SymbolName); 2101 return ClassSymbol; 2102 } 2103 2104 public: 2105 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { 2106 // IMP objc_msg_lookup(id, SEL); 2107 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 2108 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, 2109 SelectorTy); 2110 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 2111 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2112 PtrToObjCSuperTy, SelectorTy); 2113 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, 2114 PtrToObjCSuperTy, SelectorTy); 2115 } 2116 }; 2117 } // end anonymous namespace 2118 2119 /// Emits a reference to a dummy variable which is emitted with each class. 2120 /// This ensures that a linker error will be generated when trying to link 2121 /// together modules where a referenced class is not defined. 2122 void CGObjCGNU::EmitClassRef(const std::string &className) { 2123 std::string symbolRef = "__objc_class_ref_" + className; 2124 // Don't emit two copies of the same symbol 2125 if (TheModule.getGlobalVariable(symbolRef)) 2126 return; 2127 std::string symbolName = "__objc_class_name_" + className; 2128 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 2129 if (!ClassSymbol) { 2130 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2131 llvm::GlobalValue::ExternalLinkage, 2132 nullptr, symbolName); 2133 } 2134 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 2135 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 2136 } 2137 2138 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 2139 unsigned protocolClassVersion, unsigned classABI) 2140 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 2141 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr), 2142 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion), 2143 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) { 2144 2145 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 2146 usesSEHExceptions = 2147 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment(); 2148 2149 CodeGenTypes &Types = CGM.getTypes(); 2150 IntTy = cast<llvm::IntegerType>( 2151 Types.ConvertType(CGM.getContext().IntTy)); 2152 LongTy = cast<llvm::IntegerType>( 2153 Types.ConvertType(CGM.getContext().LongTy)); 2154 SizeTy = cast<llvm::IntegerType>( 2155 Types.ConvertType(CGM.getContext().getSizeType())); 2156 PtrDiffTy = cast<llvm::IntegerType>( 2157 Types.ConvertType(CGM.getContext().getPointerDiffType())); 2158 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 2159 2160 Int8Ty = llvm::Type::getInt8Ty(VMContext); 2161 // C string type. Used in lots of places. 2162 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 2163 ProtocolPtrTy = llvm::PointerType::getUnqual( 2164 Types.ConvertType(CGM.getContext().getObjCProtoType())); 2165 2166 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 2167 Zeros[1] = Zeros[0]; 2168 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2169 // Get the selector Type. 2170 QualType selTy = CGM.getContext().getObjCSelType(); 2171 if (QualType() == selTy) { 2172 SelectorTy = PtrToInt8Ty; 2173 } else { 2174 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 2175 } 2176 2177 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 2178 PtrTy = PtrToInt8Ty; 2179 2180 Int32Ty = llvm::Type::getInt32Ty(VMContext); 2181 Int64Ty = llvm::Type::getInt64Ty(VMContext); 2182 2183 IntPtrTy = 2184 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty; 2185 2186 // Object type 2187 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 2188 ASTIdTy = CanQualType(); 2189 if (UnqualIdTy != QualType()) { 2190 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 2191 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2192 } else { 2193 IdTy = PtrToInt8Ty; 2194 } 2195 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 2196 ProtocolTy = llvm::StructType::get(IdTy, 2197 PtrToInt8Ty, // name 2198 PtrToInt8Ty, // protocols 2199 PtrToInt8Ty, // instance methods 2200 PtrToInt8Ty, // class methods 2201 PtrToInt8Ty, // optional instance methods 2202 PtrToInt8Ty, // optional class methods 2203 PtrToInt8Ty, // properties 2204 PtrToInt8Ty);// optional properties 2205 2206 // struct objc_property_gsv1 2207 // { 2208 // const char *name; 2209 // char attributes; 2210 // char attributes2; 2211 // char unused1; 2212 // char unused2; 2213 // const char *getter_name; 2214 // const char *getter_types; 2215 // const char *setter_name; 2216 // const char *setter_types; 2217 // } 2218 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { 2219 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, 2220 PtrToInt8Ty, PtrToInt8Ty }); 2221 2222 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy); 2223 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 2224 2225 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 2226 2227 // void objc_exception_throw(id); 2228 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2229 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2230 // int objc_sync_enter(id); 2231 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy); 2232 // int objc_sync_exit(id); 2233 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy); 2234 2235 // void objc_enumerationMutation (id) 2236 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy); 2237 2238 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 2239 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 2240 PtrDiffTy, BoolTy); 2241 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 2242 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 2243 PtrDiffTy, IdTy, BoolTy, BoolTy); 2244 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2245 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 2246 PtrDiffTy, BoolTy, BoolTy); 2247 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2248 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 2249 PtrDiffTy, BoolTy, BoolTy); 2250 2251 // IMP type 2252 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 2253 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 2254 true)); 2255 2256 const LangOptions &Opts = CGM.getLangOpts(); 2257 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 2258 RuntimeVersion = 10; 2259 2260 // Don't bother initialising the GC stuff unless we're compiling in GC mode 2261 if (Opts.getGC() != LangOptions::NonGC) { 2262 // This is a bit of an hack. We should sort this out by having a proper 2263 // CGObjCGNUstep subclass for GC, but we may want to really support the old 2264 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 2265 // Get selectors needed in GC mode 2266 RetainSel = GetNullarySelector("retain", CGM.getContext()); 2267 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 2268 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 2269 2270 // Get functions needed in GC mode 2271 2272 // id objc_assign_ivar(id, id, ptrdiff_t); 2273 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy); 2274 // id objc_assign_strongCast (id, id*) 2275 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 2276 PtrToIdTy); 2277 // id objc_assign_global(id, id*); 2278 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy); 2279 // id objc_assign_weak(id, id*); 2280 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy); 2281 // id objc_read_weak(id*); 2282 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy); 2283 // void *objc_memmove_collectable(void*, void *, size_t); 2284 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 2285 SizeTy); 2286 } 2287 } 2288 2289 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, 2290 const std::string &Name, bool isWeak) { 2291 llvm::Constant *ClassName = MakeConstantString(Name); 2292 // With the incompatible ABI, this will need to be replaced with a direct 2293 // reference to the class symbol. For the compatible nonfragile ABI we are 2294 // still performing this lookup at run time but emitting the symbol for the 2295 // class externally so that we can make the switch later. 2296 // 2297 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 2298 // with memoized versions or with static references if it's safe to do so. 2299 if (!isWeak) 2300 EmitClassRef(Name); 2301 2302 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction( 2303 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class"); 2304 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); 2305 } 2306 2307 // This has to perform the lookup every time, since posing and related 2308 // techniques can modify the name -> class mapping. 2309 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, 2310 const ObjCInterfaceDecl *OID) { 2311 auto *Value = 2312 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); 2313 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) 2314 CGM.setGVProperties(ClassSymbol, OID); 2315 return Value; 2316 } 2317 2318 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 2319 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false); 2320 if (CGM.getTriple().isOSBinFormatCOFF()) { 2321 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) { 2322 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool"); 2323 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 2324 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2325 2326 const VarDecl *VD = nullptr; 2327 for (const auto *Result : DC->lookup(&II)) 2328 if ((VD = dyn_cast<VarDecl>(Result))) 2329 break; 2330 2331 CGM.setGVProperties(ClassSymbol, VD); 2332 } 2333 } 2334 return Value; 2335 } 2336 2337 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 2338 const std::string &TypeEncoding) { 2339 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel]; 2340 llvm::GlobalAlias *SelValue = nullptr; 2341 2342 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2343 e = Types.end() ; i!=e ; i++) { 2344 if (i->first == TypeEncoding) { 2345 SelValue = i->second; 2346 break; 2347 } 2348 } 2349 if (!SelValue) { 2350 SelValue = llvm::GlobalAlias::create(SelectorTy->getPointerElementType(), 0, 2351 llvm::GlobalValue::PrivateLinkage, 2352 ".objc_selector_" + Sel.getAsString(), 2353 &TheModule); 2354 Types.emplace_back(TypeEncoding, SelValue); 2355 } 2356 2357 return SelValue; 2358 } 2359 2360 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 2361 llvm::Value *SelValue = GetSelector(CGF, Sel); 2362 2363 // Store it to a temporary. Does this satisfy the semantics of 2364 // GetAddrOfSelector? Hopefully. 2365 Address tmp = CGF.CreateTempAlloca(SelValue->getType(), 2366 CGF.getPointerAlign()); 2367 CGF.Builder.CreateStore(SelValue, tmp); 2368 return tmp; 2369 } 2370 2371 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) { 2372 return GetTypedSelector(CGF, Sel, std::string()); 2373 } 2374 2375 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, 2376 const ObjCMethodDecl *Method) { 2377 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method); 2378 return GetTypedSelector(CGF, Method->getSelector(), SelTypes); 2379 } 2380 2381 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 2382 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 2383 // With the old ABI, there was only one kind of catchall, which broke 2384 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 2385 // a pointer indicating object catchalls, and NULL to indicate real 2386 // catchalls 2387 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2388 return MakeConstantString("@id"); 2389 } else { 2390 return nullptr; 2391 } 2392 } 2393 2394 // All other types should be Objective-C interface pointer types. 2395 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>(); 2396 assert(OPT && "Invalid @catch type."); 2397 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); 2398 assert(IDecl && "Invalid @catch type."); 2399 return MakeConstantString(IDecl->getIdentifier()->getName()); 2400 } 2401 2402 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { 2403 if (usesSEHExceptions) 2404 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T); 2405 2406 if (!CGM.getLangOpts().CPlusPlus) 2407 return CGObjCGNU::GetEHType(T); 2408 2409 // For Objective-C++, we want to provide the ability to catch both C++ and 2410 // Objective-C objects in the same function. 2411 2412 // There's a particular fixed type info for 'id'. 2413 if (T->isObjCIdType() || 2414 T->isObjCQualifiedIdType()) { 2415 llvm::Constant *IDEHType = 2416 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 2417 if (!IDEHType) 2418 IDEHType = 2419 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 2420 false, 2421 llvm::GlobalValue::ExternalLinkage, 2422 nullptr, "__objc_id_type_info"); 2423 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty); 2424 } 2425 2426 const ObjCObjectPointerType *PT = 2427 T->getAs<ObjCObjectPointerType>(); 2428 assert(PT && "Invalid @catch type."); 2429 const ObjCInterfaceType *IT = PT->getInterfaceType(); 2430 assert(IT && "Invalid @catch type."); 2431 std::string className = 2432 std::string(IT->getDecl()->getIdentifier()->getName()); 2433 2434 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 2435 2436 // Return the existing typeinfo if it exists 2437 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName); 2438 if (typeinfo) 2439 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty); 2440 2441 // Otherwise create it. 2442 2443 // vtable for gnustep::libobjc::__objc_class_type_info 2444 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 2445 // platform's name mangling. 2446 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 2447 auto *Vtable = TheModule.getGlobalVariable(vtableName); 2448 if (!Vtable) { 2449 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 2450 llvm::GlobalValue::ExternalLinkage, 2451 nullptr, vtableName); 2452 } 2453 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 2454 auto *BVtable = llvm::ConstantExpr::getBitCast( 2455 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two), 2456 PtrToInt8Ty); 2457 2458 llvm::Constant *typeName = 2459 ExportUniqueString(className, "__objc_eh_typename_"); 2460 2461 ConstantInitBuilder builder(CGM); 2462 auto fields = builder.beginStruct(); 2463 fields.add(BVtable); 2464 fields.add(typeName); 2465 llvm::Constant *TI = 2466 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className, 2467 CGM.getPointerAlign(), 2468 /*constant*/ false, 2469 llvm::GlobalValue::LinkOnceODRLinkage); 2470 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty); 2471 } 2472 2473 /// Generate an NSConstantString object. 2474 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 2475 2476 std::string Str = SL->getString().str(); 2477 CharUnits Align = CGM.getPointerAlign(); 2478 2479 // Look for an existing one 2480 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 2481 if (old != ObjCStrings.end()) 2482 return ConstantAddress(old->getValue(), Int8Ty, Align); 2483 2484 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2485 2486 if (StringClass.empty()) StringClass = "NSConstantString"; 2487 2488 std::string Sym = "_OBJC_CLASS_"; 2489 Sym += StringClass; 2490 2491 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 2492 2493 if (!isa) 2494 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 2495 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym); 2496 else if (isa->getType() != PtrToIdTy) 2497 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 2498 2499 ConstantInitBuilder Builder(CGM); 2500 auto Fields = Builder.beginStruct(); 2501 Fields.add(isa); 2502 Fields.add(MakeConstantString(Str)); 2503 Fields.addInt(IntTy, Str.size()); 2504 llvm::Constant *ObjCStr = 2505 Fields.finishAndCreateGlobal(".objc_str", Align); 2506 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty); 2507 ObjCStrings[Str] = ObjCStr; 2508 ConstantStrings.push_back(ObjCStr); 2509 return ConstantAddress(ObjCStr, Int8Ty, Align); 2510 } 2511 2512 ///Generates a message send where the super is the receiver. This is a message 2513 ///send to self with special delivery semantics indicating which class's method 2514 ///should be called. 2515 RValue 2516 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 2517 ReturnValueSlot Return, 2518 QualType ResultType, 2519 Selector Sel, 2520 const ObjCInterfaceDecl *Class, 2521 bool isCategoryImpl, 2522 llvm::Value *Receiver, 2523 bool IsClassMessage, 2524 const CallArgList &CallArgs, 2525 const ObjCMethodDecl *Method) { 2526 CGBuilderTy &Builder = CGF.Builder; 2527 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2528 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2529 return RValue::get(EnforceType(Builder, Receiver, 2530 CGM.getTypes().ConvertType(ResultType))); 2531 } 2532 if (Sel == ReleaseSel) { 2533 return RValue::get(nullptr); 2534 } 2535 } 2536 2537 llvm::Value *cmd = GetSelector(CGF, Sel); 2538 CallArgList ActualArgs; 2539 2540 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 2541 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2542 ActualArgs.addFrom(CallArgs); 2543 2544 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2545 2546 llvm::Value *ReceiverClass = nullptr; 2547 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2548 if (isV2ABI) { 2549 ReceiverClass = GetClassNamed(CGF, 2550 Class->getSuperClass()->getNameAsString(), /*isWeak*/false); 2551 if (IsClassMessage) { 2552 // Load the isa pointer of the superclass is this is a class method. 2553 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2554 llvm::PointerType::getUnqual(IdTy)); 2555 ReceiverClass = 2556 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2557 } 2558 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy); 2559 } else { 2560 if (isCategoryImpl) { 2561 llvm::FunctionCallee classLookupFunction = nullptr; 2562 if (IsClassMessage) { 2563 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2564 IdTy, PtrTy, true), "objc_get_meta_class"); 2565 } else { 2566 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2567 IdTy, PtrTy, true), "objc_get_class"); 2568 } 2569 ReceiverClass = Builder.CreateCall(classLookupFunction, 2570 MakeConstantString(Class->getNameAsString())); 2571 } else { 2572 // Set up global aliases for the metaclass or class pointer if they do not 2573 // already exist. These will are forward-references which will be set to 2574 // pointers to the class and metaclass structure created for the runtime 2575 // load function. To send a message to super, we look up the value of the 2576 // super_class pointer from either the class or metaclass structure. 2577 if (IsClassMessage) { 2578 if (!MetaClassPtrAlias) { 2579 MetaClassPtrAlias = llvm::GlobalAlias::create( 2580 IdTy->getPointerElementType(), 0, 2581 llvm::GlobalValue::InternalLinkage, 2582 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule); 2583 } 2584 ReceiverClass = MetaClassPtrAlias; 2585 } else { 2586 if (!ClassPtrAlias) { 2587 ClassPtrAlias = llvm::GlobalAlias::create( 2588 IdTy->getPointerElementType(), 0, 2589 llvm::GlobalValue::InternalLinkage, 2590 ".objc_class_ref" + Class->getNameAsString(), &TheModule); 2591 } 2592 ReceiverClass = ClassPtrAlias; 2593 } 2594 } 2595 // Cast the pointer to a simplified version of the class structure 2596 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy); 2597 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2598 llvm::PointerType::getUnqual(CastTy)); 2599 // Get the superclass pointer 2600 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1); 2601 // Load the superclass pointer 2602 ReceiverClass = 2603 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2604 } 2605 // Construct the structure used to look up the IMP 2606 llvm::StructType *ObjCSuperTy = 2607 llvm::StructType::get(Receiver->getType(), IdTy); 2608 2609 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy, 2610 CGF.getPointerAlign()); 2611 2612 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 2613 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 2614 2615 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy); 2616 2617 // Get the IMP 2618 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); 2619 imp = EnforceType(Builder, imp, MSI.MessengerType); 2620 2621 llvm::Metadata *impMD[] = { 2622 llvm::MDString::get(VMContext, Sel.getAsString()), 2623 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 2624 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2625 llvm::Type::getInt1Ty(VMContext), IsClassMessage))}; 2626 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2627 2628 CGCallee callee(CGCalleeInfo(), imp); 2629 2630 llvm::CallBase *call; 2631 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2632 call->setMetadata(msgSendMDKind, node); 2633 return msgRet; 2634 } 2635 2636 /// Generate code for a message send expression. 2637 RValue 2638 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 2639 ReturnValueSlot Return, 2640 QualType ResultType, 2641 Selector Sel, 2642 llvm::Value *Receiver, 2643 const CallArgList &CallArgs, 2644 const ObjCInterfaceDecl *Class, 2645 const ObjCMethodDecl *Method) { 2646 CGBuilderTy &Builder = CGF.Builder; 2647 2648 // Strip out message sends to retain / release in GC mode 2649 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2650 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2651 return RValue::get(EnforceType(Builder, Receiver, 2652 CGM.getTypes().ConvertType(ResultType))); 2653 } 2654 if (Sel == ReleaseSel) { 2655 return RValue::get(nullptr); 2656 } 2657 } 2658 2659 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2660 llvm::Value *cmd; 2661 if (Method) 2662 cmd = GetSelector(CGF, Method); 2663 else 2664 cmd = GetSelector(CGF, Sel); 2665 cmd = EnforceType(Builder, cmd, SelectorTy); 2666 Receiver = EnforceType(Builder, Receiver, IdTy); 2667 2668 llvm::Metadata *impMD[] = { 2669 llvm::MDString::get(VMContext, Sel.getAsString()), 2670 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""), 2671 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2672 llvm::Type::getInt1Ty(VMContext), Class != nullptr))}; 2673 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2674 2675 CallArgList ActualArgs; 2676 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 2677 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2678 ActualArgs.addFrom(CallArgs); 2679 2680 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2681 2682 // Message sends are expected to return a zero value when the 2683 // receiver is nil. At one point, this was only guaranteed for 2684 // simple integer and pointer types, but expectations have grown 2685 // over time. 2686 // 2687 // Given a nil receiver, the GNU runtime's message lookup will 2688 // return a stub function that simply sets various return-value 2689 // registers to zero and then returns. That's good enough for us 2690 // if and only if (1) the calling conventions of that stub are 2691 // compatible with the signature we're using and (2) the registers 2692 // it sets are sufficient to produce a zero value of the return type. 2693 // Rather than doing a whole target-specific analysis, we assume it 2694 // only works for void, integer, and pointer types, and in all 2695 // other cases we do an explicit nil check is emitted code. In 2696 // addition to ensuring we produe a zero value for other types, this 2697 // sidesteps the few outright CC incompatibilities we know about that 2698 // could otherwise lead to crashes, like when a method is expected to 2699 // return on the x87 floating point stack or adjust the stack pointer 2700 // because of an indirect return. 2701 bool hasParamDestroyedInCallee = false; 2702 bool requiresExplicitZeroResult = false; 2703 bool requiresNilReceiverCheck = [&] { 2704 // We never need a check if we statically know the receiver isn't nil. 2705 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false, 2706 Class, Receiver)) 2707 return false; 2708 2709 // If there's a consumed argument, we need a nil check. 2710 if (Method && Method->hasParamDestroyedInCallee()) { 2711 hasParamDestroyedInCallee = true; 2712 } 2713 2714 // If the return value isn't flagged as unused, and the result 2715 // type isn't in our narrow set where we assume compatibility, 2716 // we need a nil check to ensure a nil value. 2717 if (!Return.isUnused()) { 2718 if (ResultType->isVoidType()) { 2719 // void results are definitely okay. 2720 } else if (ResultType->hasPointerRepresentation() && 2721 CGM.getTypes().isZeroInitializable(ResultType)) { 2722 // Pointer types should be fine as long as they have 2723 // bitwise-zero null pointers. But do we need to worry 2724 // about unusual address spaces? 2725 } else if (ResultType->isIntegralOrEnumerationType()) { 2726 // Bitwise zero should always be zero for integral types. 2727 // FIXME: we probably need a size limit here, but we've 2728 // never imposed one before 2729 } else { 2730 // Otherwise, use an explicit check just to be sure. 2731 requiresExplicitZeroResult = true; 2732 } 2733 } 2734 2735 return hasParamDestroyedInCallee || requiresExplicitZeroResult; 2736 }(); 2737 2738 // We will need to explicitly zero-initialize an aggregate result slot 2739 // if we generally require explicit zeroing and we have an aggregate 2740 // result. 2741 bool requiresExplicitAggZeroing = 2742 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType); 2743 2744 // The block we're going to end up in after any message send or nil path. 2745 llvm::BasicBlock *continueBB = nullptr; 2746 // The block that eventually branched to continueBB along the nil path. 2747 llvm::BasicBlock *nilPathBB = nullptr; 2748 // The block to do explicit work in along the nil path, if necessary. 2749 llvm::BasicBlock *nilCleanupBB = nullptr; 2750 2751 // Emit the nil-receiver check. 2752 if (requiresNilReceiverCheck) { 2753 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend"); 2754 continueBB = CGF.createBasicBlock("continue"); 2755 2756 // If we need to zero-initialize an aggregate result or destroy 2757 // consumed arguments, we'll need a separate cleanup block. 2758 // Otherwise we can just branch directly to the continuation block. 2759 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) { 2760 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup"); 2761 } else { 2762 nilPathBB = Builder.GetInsertBlock(); 2763 } 2764 2765 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 2766 llvm::Constant::getNullValue(Receiver->getType())); 2767 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB, 2768 messageBB); 2769 CGF.EmitBlock(messageBB); 2770 } 2771 2772 // Get the IMP to call 2773 llvm::Value *imp; 2774 2775 // If we have non-legacy dispatch specified, we try using the objc_msgSend() 2776 // functions. These are not supported on all platforms (or all runtimes on a 2777 // given platform), so we 2778 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 2779 case CodeGenOptions::Legacy: 2780 imp = LookupIMP(CGF, Receiver, cmd, node, MSI); 2781 break; 2782 case CodeGenOptions::Mixed: 2783 case CodeGenOptions::NonLegacy: 2784 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2785 imp = 2786 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2787 "objc_msgSend_fpret") 2788 .getCallee(); 2789 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 2790 // The actual types here don't matter - we're going to bitcast the 2791 // function anyway 2792 imp = 2793 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2794 "objc_msgSend_stret") 2795 .getCallee(); 2796 } else { 2797 imp = CGM.CreateRuntimeFunction( 2798 llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend") 2799 .getCallee(); 2800 } 2801 } 2802 2803 // Reset the receiver in case the lookup modified it 2804 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy); 2805 2806 imp = EnforceType(Builder, imp, MSI.MessengerType); 2807 2808 llvm::CallBase *call; 2809 CGCallee callee(CGCalleeInfo(), imp); 2810 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2811 call->setMetadata(msgSendMDKind, node); 2812 2813 if (requiresNilReceiverCheck) { 2814 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock(); 2815 CGF.Builder.CreateBr(continueBB); 2816 2817 // Emit the nil path if we decided it was necessary above. 2818 if (nilCleanupBB) { 2819 CGF.EmitBlock(nilCleanupBB); 2820 2821 if (hasParamDestroyedInCallee) { 2822 destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 2823 } 2824 2825 if (requiresExplicitAggZeroing) { 2826 assert(msgRet.isAggregate()); 2827 Address addr = msgRet.getAggregateAddress(); 2828 CGF.EmitNullInitialization(addr, ResultType); 2829 } 2830 2831 nilPathBB = CGF.Builder.GetInsertBlock(); 2832 CGF.Builder.CreateBr(continueBB); 2833 } 2834 2835 // Enter the continuation block and emit a phi if required. 2836 CGF.EmitBlock(continueBB); 2837 if (msgRet.isScalar()) { 2838 llvm::Value *v = msgRet.getScalarVal(); 2839 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 2840 phi->addIncoming(v, nonNilPathBB); 2841 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB); 2842 msgRet = RValue::get(phi); 2843 } else if (msgRet.isAggregate()) { 2844 // Aggregate zeroing is handled in nilCleanupBB when it's required. 2845 } else /* isComplex() */ { 2846 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 2847 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 2848 phi->addIncoming(v.first, nonNilPathBB); 2849 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 2850 nilPathBB); 2851 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 2852 phi2->addIncoming(v.second, nonNilPathBB); 2853 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 2854 nilPathBB); 2855 msgRet = RValue::getComplex(phi, phi2); 2856 } 2857 } 2858 return msgRet; 2859 } 2860 2861 /// Generates a MethodList. Used in construction of a objc_class and 2862 /// objc_category structures. 2863 llvm::Constant *CGObjCGNU:: 2864 GenerateMethodList(StringRef ClassName, 2865 StringRef CategoryName, 2866 ArrayRef<const ObjCMethodDecl*> Methods, 2867 bool isClassMethodList) { 2868 if (Methods.empty()) 2869 return NULLPtr; 2870 2871 ConstantInitBuilder Builder(CGM); 2872 2873 auto MethodList = Builder.beginStruct(); 2874 MethodList.addNullPointer(CGM.Int8PtrTy); 2875 MethodList.addInt(Int32Ty, Methods.size()); 2876 2877 // Get the method structure type. 2878 llvm::StructType *ObjCMethodTy = 2879 llvm::StructType::get(CGM.getLLVMContext(), { 2880 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2881 PtrToInt8Ty, // Method types 2882 IMPTy // Method pointer 2883 }); 2884 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2885 if (isV2ABI) { 2886 // size_t size; 2887 llvm::DataLayout td(&TheModule); 2888 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) / 2889 CGM.getContext().getCharWidth()); 2890 ObjCMethodTy = 2891 llvm::StructType::get(CGM.getLLVMContext(), { 2892 IMPTy, // Method pointer 2893 PtrToInt8Ty, // Selector 2894 PtrToInt8Ty // Extended type encoding 2895 }); 2896 } else { 2897 ObjCMethodTy = 2898 llvm::StructType::get(CGM.getLLVMContext(), { 2899 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2900 PtrToInt8Ty, // Method types 2901 IMPTy // Method pointer 2902 }); 2903 } 2904 auto MethodArray = MethodList.beginArray(); 2905 ASTContext &Context = CGM.getContext(); 2906 for (const auto *OMD : Methods) { 2907 llvm::Constant *FnPtr = 2908 TheModule.getFunction(getSymbolNameForMethod(OMD)); 2909 assert(FnPtr && "Can't generate metadata for method that doesn't exist"); 2910 auto Method = MethodArray.beginStruct(ObjCMethodTy); 2911 if (isV2ABI) { 2912 Method.addBitCast(FnPtr, IMPTy); 2913 Method.add(GetConstantSelector(OMD->getSelector(), 2914 Context.getObjCEncodingForMethodDecl(OMD))); 2915 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true))); 2916 } else { 2917 Method.add(MakeConstantString(OMD->getSelector().getAsString())); 2918 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD))); 2919 Method.addBitCast(FnPtr, IMPTy); 2920 } 2921 Method.finishAndAddTo(MethodArray); 2922 } 2923 MethodArray.finishAndAddTo(MethodList); 2924 2925 // Create an instance of the structure 2926 return MethodList.finishAndCreateGlobal(".objc_method_list", 2927 CGM.getPointerAlign()); 2928 } 2929 2930 /// Generates an IvarList. Used in construction of a objc_class. 2931 llvm::Constant *CGObjCGNU:: 2932 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 2933 ArrayRef<llvm::Constant *> IvarTypes, 2934 ArrayRef<llvm::Constant *> IvarOffsets, 2935 ArrayRef<llvm::Constant *> IvarAlign, 2936 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) { 2937 if (IvarNames.empty()) 2938 return NULLPtr; 2939 2940 ConstantInitBuilder Builder(CGM); 2941 2942 // Structure containing array count followed by array. 2943 auto IvarList = Builder.beginStruct(); 2944 IvarList.addInt(IntTy, (int)IvarNames.size()); 2945 2946 // Get the ivar structure type. 2947 llvm::StructType *ObjCIvarTy = 2948 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy); 2949 2950 // Array of ivar structures. 2951 auto Ivars = IvarList.beginArray(ObjCIvarTy); 2952 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 2953 auto Ivar = Ivars.beginStruct(ObjCIvarTy); 2954 Ivar.add(IvarNames[i]); 2955 Ivar.add(IvarTypes[i]); 2956 Ivar.add(IvarOffsets[i]); 2957 Ivar.finishAndAddTo(Ivars); 2958 } 2959 Ivars.finishAndAddTo(IvarList); 2960 2961 // Create an instance of the structure 2962 return IvarList.finishAndCreateGlobal(".objc_ivar_list", 2963 CGM.getPointerAlign()); 2964 } 2965 2966 /// Generate a class structure 2967 llvm::Constant *CGObjCGNU::GenerateClassStructure( 2968 llvm::Constant *MetaClass, 2969 llvm::Constant *SuperClass, 2970 unsigned info, 2971 const char *Name, 2972 llvm::Constant *Version, 2973 llvm::Constant *InstanceSize, 2974 llvm::Constant *IVars, 2975 llvm::Constant *Methods, 2976 llvm::Constant *Protocols, 2977 llvm::Constant *IvarOffsets, 2978 llvm::Constant *Properties, 2979 llvm::Constant *StrongIvarBitmap, 2980 llvm::Constant *WeakIvarBitmap, 2981 bool isMeta) { 2982 // Set up the class structure 2983 // Note: Several of these are char*s when they should be ids. This is 2984 // because the runtime performs this translation on load. 2985 // 2986 // Fields marked New ABI are part of the GNUstep runtime. We emit them 2987 // anyway; the classes will still work with the GNU runtime, they will just 2988 // be ignored. 2989 llvm::StructType *ClassTy = llvm::StructType::get( 2990 PtrToInt8Ty, // isa 2991 PtrToInt8Ty, // super_class 2992 PtrToInt8Ty, // name 2993 LongTy, // version 2994 LongTy, // info 2995 LongTy, // instance_size 2996 IVars->getType(), // ivars 2997 Methods->getType(), // methods 2998 // These are all filled in by the runtime, so we pretend 2999 PtrTy, // dtable 3000 PtrTy, // subclass_list 3001 PtrTy, // sibling_class 3002 PtrTy, // protocols 3003 PtrTy, // gc_object_type 3004 // New ABI: 3005 LongTy, // abi_version 3006 IvarOffsets->getType(), // ivar_offsets 3007 Properties->getType(), // properties 3008 IntPtrTy, // strong_pointers 3009 IntPtrTy // weak_pointers 3010 ); 3011 3012 ConstantInitBuilder Builder(CGM); 3013 auto Elements = Builder.beginStruct(ClassTy); 3014 3015 // Fill in the structure 3016 3017 // isa 3018 Elements.addBitCast(MetaClass, PtrToInt8Ty); 3019 // super_class 3020 Elements.add(SuperClass); 3021 // name 3022 Elements.add(MakeConstantString(Name, ".class_name")); 3023 // version 3024 Elements.addInt(LongTy, 0); 3025 // info 3026 Elements.addInt(LongTy, info); 3027 // instance_size 3028 if (isMeta) { 3029 llvm::DataLayout td(&TheModule); 3030 Elements.addInt(LongTy, 3031 td.getTypeSizeInBits(ClassTy) / 3032 CGM.getContext().getCharWidth()); 3033 } else 3034 Elements.add(InstanceSize); 3035 // ivars 3036 Elements.add(IVars); 3037 // methods 3038 Elements.add(Methods); 3039 // These are all filled in by the runtime, so we pretend 3040 // dtable 3041 Elements.add(NULLPtr); 3042 // subclass_list 3043 Elements.add(NULLPtr); 3044 // sibling_class 3045 Elements.add(NULLPtr); 3046 // protocols 3047 Elements.addBitCast(Protocols, PtrTy); 3048 // gc_object_type 3049 Elements.add(NULLPtr); 3050 // abi_version 3051 Elements.addInt(LongTy, ClassABIVersion); 3052 // ivar_offsets 3053 Elements.add(IvarOffsets); 3054 // properties 3055 Elements.add(Properties); 3056 // strong_pointers 3057 Elements.add(StrongIvarBitmap); 3058 // weak_pointers 3059 Elements.add(WeakIvarBitmap); 3060 // Create an instance of the structure 3061 // This is now an externally visible symbol, so that we can speed up class 3062 // messages in the next ABI. We may already have some weak references to 3063 // this, so check and fix them properly. 3064 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 3065 std::string(Name)); 3066 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 3067 llvm::Constant *Class = 3068 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false, 3069 llvm::GlobalValue::ExternalLinkage); 3070 if (ClassRef) { 3071 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class, 3072 ClassRef->getType())); 3073 ClassRef->removeFromParent(); 3074 Class->setName(ClassSym); 3075 } 3076 return Class; 3077 } 3078 3079 llvm::Constant *CGObjCGNU:: 3080 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) { 3081 // Get the method structure type. 3082 llvm::StructType *ObjCMethodDescTy = 3083 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); 3084 ASTContext &Context = CGM.getContext(); 3085 ConstantInitBuilder Builder(CGM); 3086 auto MethodList = Builder.beginStruct(); 3087 MethodList.addInt(IntTy, Methods.size()); 3088 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 3089 for (auto *M : Methods) { 3090 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 3091 Method.add(MakeConstantString(M->getSelector().getAsString())); 3092 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M))); 3093 Method.finishAndAddTo(MethodArray); 3094 } 3095 MethodArray.finishAndAddTo(MethodList); 3096 return MethodList.finishAndCreateGlobal(".objc_method_list", 3097 CGM.getPointerAlign()); 3098 } 3099 3100 // Create the protocol list structure used in classes, categories and so on 3101 llvm::Constant * 3102 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) { 3103 3104 ConstantInitBuilder Builder(CGM); 3105 auto ProtocolList = Builder.beginStruct(); 3106 ProtocolList.add(NULLPtr); 3107 ProtocolList.addInt(LongTy, Protocols.size()); 3108 3109 auto Elements = ProtocolList.beginArray(PtrToInt8Ty); 3110 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 3111 iter != endIter ; iter++) { 3112 llvm::Constant *protocol = nullptr; 3113 llvm::StringMap<llvm::Constant*>::iterator value = 3114 ExistingProtocols.find(*iter); 3115 if (value == ExistingProtocols.end()) { 3116 protocol = GenerateEmptyProtocol(*iter); 3117 } else { 3118 protocol = value->getValue(); 3119 } 3120 Elements.addBitCast(protocol, PtrToInt8Ty); 3121 } 3122 Elements.finishAndAddTo(ProtocolList); 3123 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3124 CGM.getPointerAlign()); 3125 } 3126 3127 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, 3128 const ObjCProtocolDecl *PD) { 3129 auto protocol = GenerateProtocolRef(PD); 3130 llvm::Type *T = 3131 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 3132 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 3133 } 3134 3135 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) { 3136 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()]; 3137 if (!protocol) 3138 GenerateProtocol(PD); 3139 assert(protocol && "Unknown protocol"); 3140 return protocol; 3141 } 3142 3143 llvm::Constant * 3144 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) { 3145 llvm::Constant *ProtocolList = GenerateProtocolList({}); 3146 llvm::Constant *MethodList = GenerateProtocolMethodList({}); 3147 MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty); 3148 // Protocols are objects containing lists of the methods implemented and 3149 // protocols adopted. 3150 ConstantInitBuilder Builder(CGM); 3151 auto Elements = Builder.beginStruct(); 3152 3153 // The isa pointer must be set to a magic number so the runtime knows it's 3154 // the correct layout. 3155 Elements.add(llvm::ConstantExpr::getIntToPtr( 3156 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3157 3158 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name")); 3159 Elements.add(ProtocolList); /* .protocol_list */ 3160 Elements.add(MethodList); /* .instance_methods */ 3161 Elements.add(MethodList); /* .class_methods */ 3162 Elements.add(MethodList); /* .optional_instance_methods */ 3163 Elements.add(MethodList); /* .optional_class_methods */ 3164 Elements.add(NULLPtr); /* .properties */ 3165 Elements.add(NULLPtr); /* .optional_properties */ 3166 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName), 3167 CGM.getPointerAlign()); 3168 } 3169 3170 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 3171 if (PD->isNonRuntimeProtocol()) 3172 return; 3173 3174 std::string ProtocolName = PD->getNameAsString(); 3175 3176 // Use the protocol definition, if there is one. 3177 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3178 PD = Def; 3179 3180 SmallVector<std::string, 16> Protocols; 3181 for (const auto *PI : PD->protocols()) 3182 Protocols.push_back(PI->getNameAsString()); 3183 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3184 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods; 3185 for (const auto *I : PD->instance_methods()) 3186 if (I->isOptional()) 3187 OptionalInstanceMethods.push_back(I); 3188 else 3189 InstanceMethods.push_back(I); 3190 // Collect information about class methods: 3191 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3192 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods; 3193 for (const auto *I : PD->class_methods()) 3194 if (I->isOptional()) 3195 OptionalClassMethods.push_back(I); 3196 else 3197 ClassMethods.push_back(I); 3198 3199 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 3200 llvm::Constant *InstanceMethodList = 3201 GenerateProtocolMethodList(InstanceMethods); 3202 llvm::Constant *ClassMethodList = 3203 GenerateProtocolMethodList(ClassMethods); 3204 llvm::Constant *OptionalInstanceMethodList = 3205 GenerateProtocolMethodList(OptionalInstanceMethods); 3206 llvm::Constant *OptionalClassMethodList = 3207 GenerateProtocolMethodList(OptionalClassMethods); 3208 3209 // Property metadata: name, attributes, isSynthesized, setter name, setter 3210 // types, getter name, getter types. 3211 // The isSynthesized value is always set to 0 in a protocol. It exists to 3212 // simplify the runtime library by allowing it to use the same data 3213 // structures for protocol metadata everywhere. 3214 3215 llvm::Constant *PropertyList = 3216 GeneratePropertyList(nullptr, PD, false, false); 3217 llvm::Constant *OptionalPropertyList = 3218 GeneratePropertyList(nullptr, PD, false, true); 3219 3220 // Protocols are objects containing lists of the methods implemented and 3221 // protocols adopted. 3222 // The isa pointer must be set to a magic number so the runtime knows it's 3223 // the correct layout. 3224 ConstantInitBuilder Builder(CGM); 3225 auto Elements = Builder.beginStruct(); 3226 Elements.add( 3227 llvm::ConstantExpr::getIntToPtr( 3228 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3229 Elements.add(MakeConstantString(ProtocolName)); 3230 Elements.add(ProtocolList); 3231 Elements.add(InstanceMethodList); 3232 Elements.add(ClassMethodList); 3233 Elements.add(OptionalInstanceMethodList); 3234 Elements.add(OptionalClassMethodList); 3235 Elements.add(PropertyList); 3236 Elements.add(OptionalPropertyList); 3237 ExistingProtocols[ProtocolName] = 3238 llvm::ConstantExpr::getBitCast( 3239 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()), 3240 IdTy); 3241 } 3242 void CGObjCGNU::GenerateProtocolHolderCategory() { 3243 // Collect information about instance methods 3244 3245 ConstantInitBuilder Builder(CGM); 3246 auto Elements = Builder.beginStruct(); 3247 3248 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 3249 const std::string CategoryName = "AnotherHack"; 3250 Elements.add(MakeConstantString(CategoryName)); 3251 Elements.add(MakeConstantString(ClassName)); 3252 // Instance method list 3253 Elements.addBitCast(GenerateMethodList( 3254 ClassName, CategoryName, {}, false), PtrTy); 3255 // Class method list 3256 Elements.addBitCast(GenerateMethodList( 3257 ClassName, CategoryName, {}, true), PtrTy); 3258 3259 // Protocol list 3260 ConstantInitBuilder ProtocolListBuilder(CGM); 3261 auto ProtocolList = ProtocolListBuilder.beginStruct(); 3262 ProtocolList.add(NULLPtr); 3263 ProtocolList.addInt(LongTy, ExistingProtocols.size()); 3264 auto ProtocolElements = ProtocolList.beginArray(PtrTy); 3265 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 3266 iter != endIter ; iter++) { 3267 ProtocolElements.addBitCast(iter->getValue(), PtrTy); 3268 } 3269 ProtocolElements.finishAndAddTo(ProtocolList); 3270 Elements.addBitCast( 3271 ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3272 CGM.getPointerAlign()), 3273 PtrTy); 3274 Categories.push_back(llvm::ConstantExpr::getBitCast( 3275 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()), 3276 PtrTy)); 3277 } 3278 3279 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 3280 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 3281 /// bits set to their values, LSB first, while larger ones are stored in a 3282 /// structure of this / form: 3283 /// 3284 /// struct { int32_t length; int32_t values[length]; }; 3285 /// 3286 /// The values in the array are stored in host-endian format, with the least 3287 /// significant bit being assumed to come first in the bitfield. Therefore, a 3288 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 3289 /// bitfield / with the 63rd bit set will be 1<<64. 3290 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 3291 int bitCount = bits.size(); 3292 int ptrBits = CGM.getDataLayout().getPointerSizeInBits(); 3293 if (bitCount < ptrBits) { 3294 uint64_t val = 1; 3295 for (int i=0 ; i<bitCount ; ++i) { 3296 if (bits[i]) val |= 1ULL<<(i+1); 3297 } 3298 return llvm::ConstantInt::get(IntPtrTy, val); 3299 } 3300 SmallVector<llvm::Constant *, 8> values; 3301 int v=0; 3302 while (v < bitCount) { 3303 int32_t word = 0; 3304 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 3305 if (bits[v]) word |= 1<<i; 3306 v++; 3307 } 3308 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 3309 } 3310 3311 ConstantInitBuilder builder(CGM); 3312 auto fields = builder.beginStruct(); 3313 fields.addInt(Int32Ty, values.size()); 3314 auto array = fields.beginArray(); 3315 for (auto v : values) array.add(v); 3316 array.finishAndAddTo(fields); 3317 3318 llvm::Constant *GS = 3319 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4)); 3320 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 3321 return ptr; 3322 } 3323 3324 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const 3325 ObjCCategoryDecl *OCD) { 3326 const auto &RefPro = OCD->getReferencedProtocols(); 3327 const auto RuntimeProtos = 3328 GetRuntimeProtocolList(RefPro.begin(), RefPro.end()); 3329 SmallVector<std::string, 16> Protocols; 3330 for (const auto *PD : RuntimeProtos) 3331 Protocols.push_back(PD->getNameAsString()); 3332 return GenerateProtocolList(Protocols); 3333 } 3334 3335 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3336 const ObjCInterfaceDecl *Class = OCD->getClassInterface(); 3337 std::string ClassName = Class->getNameAsString(); 3338 std::string CategoryName = OCD->getNameAsString(); 3339 3340 // Collect the names of referenced protocols 3341 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 3342 3343 ConstantInitBuilder Builder(CGM); 3344 auto Elements = Builder.beginStruct(); 3345 Elements.add(MakeConstantString(CategoryName)); 3346 Elements.add(MakeConstantString(ClassName)); 3347 // Instance method list 3348 SmallVector<ObjCMethodDecl*, 16> InstanceMethods; 3349 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(), 3350 OCD->instmeth_end()); 3351 Elements.addBitCast( 3352 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false), 3353 PtrTy); 3354 // Class method list 3355 3356 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 3357 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(), 3358 OCD->classmeth_end()); 3359 Elements.addBitCast( 3360 GenerateMethodList(ClassName, CategoryName, ClassMethods, true), 3361 PtrTy); 3362 // Protocol list 3363 Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy); 3364 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 3365 const ObjCCategoryDecl *Category = 3366 Class->FindCategoryDeclaration(OCD->getIdentifier()); 3367 if (Category) { 3368 // Instance properties 3369 Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy); 3370 // Class properties 3371 Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy); 3372 } else { 3373 Elements.addNullPointer(PtrTy); 3374 Elements.addNullPointer(PtrTy); 3375 } 3376 } 3377 3378 Categories.push_back(llvm::ConstantExpr::getBitCast( 3379 Elements.finishAndCreateGlobal( 3380 std::string(".objc_category_")+ClassName+CategoryName, 3381 CGM.getPointerAlign()), 3382 PtrTy)); 3383 } 3384 3385 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container, 3386 const ObjCContainerDecl *OCD, 3387 bool isClassProperty, 3388 bool protocolOptionalProperties) { 3389 3390 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3391 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3392 bool isProtocol = isa<ObjCProtocolDecl>(OCD); 3393 ASTContext &Context = CGM.getContext(); 3394 3395 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties 3396 = [&](const ObjCProtocolDecl *Proto) { 3397 for (const auto *P : Proto->protocols()) 3398 collectProtocolProperties(P); 3399 for (const auto *PD : Proto->properties()) { 3400 if (isClassProperty != PD->isClassProperty()) 3401 continue; 3402 // Skip any properties that are declared in protocols that this class 3403 // conforms to but are not actually implemented by this class. 3404 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container)) 3405 continue; 3406 if (!PropertySet.insert(PD->getIdentifier()).second) 3407 continue; 3408 Properties.push_back(PD); 3409 } 3410 }; 3411 3412 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3413 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3414 for (auto *PD : ClassExt->properties()) { 3415 if (isClassProperty != PD->isClassProperty()) 3416 continue; 3417 PropertySet.insert(PD->getIdentifier()); 3418 Properties.push_back(PD); 3419 } 3420 3421 for (const auto *PD : OCD->properties()) { 3422 if (isClassProperty != PD->isClassProperty()) 3423 continue; 3424 // If we're generating a list for a protocol, skip optional / required ones 3425 // when generating the other list. 3426 if (isProtocol && (protocolOptionalProperties != PD->isOptional())) 3427 continue; 3428 // Don't emit duplicate metadata for properties that were already in a 3429 // class extension. 3430 if (!PropertySet.insert(PD->getIdentifier()).second) 3431 continue; 3432 3433 Properties.push_back(PD); 3434 } 3435 3436 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3437 for (const auto *P : OID->all_referenced_protocols()) 3438 collectProtocolProperties(P); 3439 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) 3440 for (const auto *P : CD->protocols()) 3441 collectProtocolProperties(P); 3442 3443 auto numProperties = Properties.size(); 3444 3445 if (numProperties == 0) 3446 return NULLPtr; 3447 3448 ConstantInitBuilder builder(CGM); 3449 auto propertyList = builder.beginStruct(); 3450 auto properties = PushPropertyListHeader(propertyList, numProperties); 3451 3452 // Add all of the property methods need adding to the method list and to the 3453 // property metadata list. 3454 for (auto *property : Properties) { 3455 bool isSynthesized = false; 3456 bool isDynamic = false; 3457 if (!isProtocol) { 3458 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container); 3459 if (propertyImpl) { 3460 isSynthesized = (propertyImpl->getPropertyImplementation() == 3461 ObjCPropertyImplDecl::Synthesize); 3462 isDynamic = (propertyImpl->getPropertyImplementation() == 3463 ObjCPropertyImplDecl::Dynamic); 3464 } 3465 } 3466 PushProperty(properties, property, Container, isSynthesized, isDynamic); 3467 } 3468 properties.finishAndAddTo(propertyList); 3469 3470 return propertyList.finishAndCreateGlobal(".objc_property_list", 3471 CGM.getPointerAlign()); 3472 } 3473 3474 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 3475 // Get the class declaration for which the alias is specified. 3476 ObjCInterfaceDecl *ClassDecl = 3477 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 3478 ClassAliases.emplace_back(ClassDecl->getNameAsString(), 3479 OAD->getNameAsString()); 3480 } 3481 3482 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 3483 ASTContext &Context = CGM.getContext(); 3484 3485 // Get the superclass name. 3486 const ObjCInterfaceDecl * SuperClassDecl = 3487 OID->getClassInterface()->getSuperClass(); 3488 std::string SuperClassName; 3489 if (SuperClassDecl) { 3490 SuperClassName = SuperClassDecl->getNameAsString(); 3491 EmitClassRef(SuperClassName); 3492 } 3493 3494 // Get the class name 3495 ObjCInterfaceDecl *ClassDecl = 3496 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 3497 std::string ClassName = ClassDecl->getNameAsString(); 3498 3499 // Emit the symbol that is used to generate linker errors if this class is 3500 // referenced in other modules but not declared. 3501 std::string classSymbolName = "__objc_class_name_" + ClassName; 3502 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) { 3503 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 3504 } else { 3505 new llvm::GlobalVariable(TheModule, LongTy, false, 3506 llvm::GlobalValue::ExternalLinkage, 3507 llvm::ConstantInt::get(LongTy, 0), 3508 classSymbolName); 3509 } 3510 3511 // Get the size of instances. 3512 int instanceSize = 3513 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 3514 3515 // Collect information about instance variables. 3516 SmallVector<llvm::Constant*, 16> IvarNames; 3517 SmallVector<llvm::Constant*, 16> IvarTypes; 3518 SmallVector<llvm::Constant*, 16> IvarOffsets; 3519 SmallVector<llvm::Constant*, 16> IvarAligns; 3520 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership; 3521 3522 ConstantInitBuilder IvarOffsetBuilder(CGM); 3523 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy); 3524 SmallVector<bool, 16> WeakIvars; 3525 SmallVector<bool, 16> StrongIvars; 3526 3527 int superInstanceSize = !SuperClassDecl ? 0 : 3528 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 3529 // For non-fragile ivars, set the instance size to 0 - {the size of just this 3530 // class}. The runtime will then set this to the correct value on load. 3531 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3532 instanceSize = 0 - (instanceSize - superInstanceSize); 3533 } 3534 3535 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3536 IVD = IVD->getNextIvar()) { 3537 // Store the name 3538 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 3539 // Get the type encoding for this ivar 3540 std::string TypeStr; 3541 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD); 3542 IvarTypes.push_back(MakeConstantString(TypeStr)); 3543 IvarAligns.push_back(llvm::ConstantInt::get(IntTy, 3544 Context.getTypeSize(IVD->getType()))); 3545 // Get the offset 3546 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 3547 uint64_t Offset = BaseOffset; 3548 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3549 Offset = BaseOffset - superInstanceSize; 3550 } 3551 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 3552 // Create the direct offset value 3553 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 3554 IVD->getNameAsString(); 3555 3556 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 3557 if (OffsetVar) { 3558 OffsetVar->setInitializer(OffsetValue); 3559 // If this is the real definition, change its linkage type so that 3560 // different modules will use this one, rather than their private 3561 // copy. 3562 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 3563 } else 3564 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty, 3565 false, llvm::GlobalValue::ExternalLinkage, 3566 OffsetValue, OffsetName); 3567 IvarOffsets.push_back(OffsetValue); 3568 IvarOffsetValues.add(OffsetVar); 3569 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 3570 IvarOwnership.push_back(lt); 3571 switch (lt) { 3572 case Qualifiers::OCL_Strong: 3573 StrongIvars.push_back(true); 3574 WeakIvars.push_back(false); 3575 break; 3576 case Qualifiers::OCL_Weak: 3577 StrongIvars.push_back(false); 3578 WeakIvars.push_back(true); 3579 break; 3580 default: 3581 StrongIvars.push_back(false); 3582 WeakIvars.push_back(false); 3583 } 3584 } 3585 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 3586 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 3587 llvm::GlobalVariable *IvarOffsetArray = 3588 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets", 3589 CGM.getPointerAlign()); 3590 3591 // Collect information about instance methods 3592 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3593 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 3594 OID->instmeth_end()); 3595 3596 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3597 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 3598 OID->classmeth_end()); 3599 3600 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl); 3601 3602 // Collect the names of referenced protocols 3603 auto RefProtocols = ClassDecl->protocols(); 3604 auto RuntimeProtocols = 3605 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end()); 3606 SmallVector<std::string, 16> Protocols; 3607 for (const auto *I : RuntimeProtocols) 3608 Protocols.push_back(I->getNameAsString()); 3609 3610 // Get the superclass pointer. 3611 llvm::Constant *SuperClass; 3612 if (!SuperClassName.empty()) { 3613 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 3614 } else { 3615 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 3616 } 3617 // Empty vector used to construct empty method lists 3618 SmallVector<llvm::Constant*, 1> empty; 3619 // Generate the method and instance variable lists 3620 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 3621 InstanceMethods, false); 3622 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 3623 ClassMethods, true); 3624 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 3625 IvarOffsets, IvarAligns, IvarOwnership); 3626 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 3627 // we emit a symbol containing the offset for each ivar in the class. This 3628 // allows code compiled for the non-Fragile ABI to inherit from code compiled 3629 // for the legacy ABI, without causing problems. The converse is also 3630 // possible, but causes all ivar accesses to be fragile. 3631 3632 // Offset pointer for getting at the correct field in the ivar list when 3633 // setting up the alias. These are: The base address for the global, the 3634 // ivar array (second field), the ivar in this list (set for each ivar), and 3635 // the offset (third field in ivar structure) 3636 llvm::Type *IndexTy = Int32Ty; 3637 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 3638 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr, 3639 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) }; 3640 3641 unsigned ivarIndex = 0; 3642 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3643 IVD = IVD->getNextIvar()) { 3644 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD); 3645 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 3646 // Get the correct ivar field 3647 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 3648 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList, 3649 offsetPointerIndexes); 3650 // Get the existing variable, if one exists. 3651 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 3652 if (offset) { 3653 offset->setInitializer(offsetValue); 3654 // If this is the real definition, change its linkage type so that 3655 // different modules will use this one, rather than their private 3656 // copy. 3657 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 3658 } else 3659 // Add a new alias if there isn't one already. 3660 new llvm::GlobalVariable(TheModule, offsetValue->getType(), 3661 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 3662 ++ivarIndex; 3663 } 3664 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 3665 3666 //Generate metaclass for class methods 3667 llvm::Constant *MetaClassStruct = GenerateClassStructure( 3668 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], 3669 NULLPtr, ClassMethodList, NULLPtr, NULLPtr, 3670 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true); 3671 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct), 3672 OID->getClassInterface()); 3673 3674 // Generate the class structure 3675 llvm::Constant *ClassStruct = GenerateClassStructure( 3676 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr, 3677 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList, 3678 GenerateProtocolList(Protocols), IvarOffsetArray, Properties, 3679 StrongIvarBitmap, WeakIvarBitmap); 3680 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct), 3681 OID->getClassInterface()); 3682 3683 // Resolve the class aliases, if they exist. 3684 if (ClassPtrAlias) { 3685 ClassPtrAlias->replaceAllUsesWith( 3686 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy)); 3687 ClassPtrAlias->eraseFromParent(); 3688 ClassPtrAlias = nullptr; 3689 } 3690 if (MetaClassPtrAlias) { 3691 MetaClassPtrAlias->replaceAllUsesWith( 3692 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy)); 3693 MetaClassPtrAlias->eraseFromParent(); 3694 MetaClassPtrAlias = nullptr; 3695 } 3696 3697 // Add class structure to list to be added to the symtab later 3698 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty); 3699 Classes.push_back(ClassStruct); 3700 } 3701 3702 llvm::Function *CGObjCGNU::ModuleInitFunction() { 3703 // Only emit an ObjC load function if no Objective-C stuff has been called 3704 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 3705 ExistingProtocols.empty() && SelectorTable.empty()) 3706 return nullptr; 3707 3708 // Add all referenced protocols to a category. 3709 GenerateProtocolHolderCategory(); 3710 3711 llvm::StructType *selStructTy = 3712 dyn_cast<llvm::StructType>(SelectorTy->getPointerElementType()); 3713 llvm::Type *selStructPtrTy = SelectorTy; 3714 if (!selStructTy) { 3715 selStructTy = llvm::StructType::get(CGM.getLLVMContext(), 3716 { PtrToInt8Ty, PtrToInt8Ty }); 3717 selStructPtrTy = llvm::PointerType::getUnqual(selStructTy); 3718 } 3719 3720 // Generate statics list: 3721 llvm::Constant *statics = NULLPtr; 3722 if (!ConstantStrings.empty()) { 3723 llvm::GlobalVariable *fileStatics = [&] { 3724 ConstantInitBuilder builder(CGM); 3725 auto staticsStruct = builder.beginStruct(); 3726 3727 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass; 3728 if (stringClass.empty()) stringClass = "NXConstantString"; 3729 staticsStruct.add(MakeConstantString(stringClass, 3730 ".objc_static_class_name")); 3731 3732 auto array = staticsStruct.beginArray(); 3733 array.addAll(ConstantStrings); 3734 array.add(NULLPtr); 3735 array.finishAndAddTo(staticsStruct); 3736 3737 return staticsStruct.finishAndCreateGlobal(".objc_statics", 3738 CGM.getPointerAlign()); 3739 }(); 3740 3741 ConstantInitBuilder builder(CGM); 3742 auto allStaticsArray = builder.beginArray(fileStatics->getType()); 3743 allStaticsArray.add(fileStatics); 3744 allStaticsArray.addNullPointer(fileStatics->getType()); 3745 3746 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr", 3747 CGM.getPointerAlign()); 3748 statics = llvm::ConstantExpr::getBitCast(statics, PtrTy); 3749 } 3750 3751 // Array of classes, categories, and constant objects. 3752 3753 SmallVector<llvm::GlobalAlias*, 16> selectorAliases; 3754 unsigned selectorCount; 3755 3756 // Pointer to an array of selectors used in this module. 3757 llvm::GlobalVariable *selectorList = [&] { 3758 ConstantInitBuilder builder(CGM); 3759 auto selectors = builder.beginArray(selStructTy); 3760 auto &table = SelectorTable; // MSVC workaround 3761 std::vector<Selector> allSelectors; 3762 for (auto &entry : table) 3763 allSelectors.push_back(entry.first); 3764 llvm::sort(allSelectors); 3765 3766 for (auto &untypedSel : allSelectors) { 3767 std::string selNameStr = untypedSel.getAsString(); 3768 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name"); 3769 3770 for (TypedSelector &sel : table[untypedSel]) { 3771 llvm::Constant *selectorTypeEncoding = NULLPtr; 3772 if (!sel.first.empty()) 3773 selectorTypeEncoding = 3774 MakeConstantString(sel.first, ".objc_sel_types"); 3775 3776 auto selStruct = selectors.beginStruct(selStructTy); 3777 selStruct.add(selName); 3778 selStruct.add(selectorTypeEncoding); 3779 selStruct.finishAndAddTo(selectors); 3780 3781 // Store the selector alias for later replacement 3782 selectorAliases.push_back(sel.second); 3783 } 3784 } 3785 3786 // Remember the number of entries in the selector table. 3787 selectorCount = selectors.size(); 3788 3789 // NULL-terminate the selector list. This should not actually be required, 3790 // because the selector list has a length field. Unfortunately, the GCC 3791 // runtime decides to ignore the length field and expects a NULL terminator, 3792 // and GCC cooperates with this by always setting the length to 0. 3793 auto selStruct = selectors.beginStruct(selStructTy); 3794 selStruct.add(NULLPtr); 3795 selStruct.add(NULLPtr); 3796 selStruct.finishAndAddTo(selectors); 3797 3798 return selectors.finishAndCreateGlobal(".objc_selector_list", 3799 CGM.getPointerAlign()); 3800 }(); 3801 3802 // Now that all of the static selectors exist, create pointers to them. 3803 for (unsigned i = 0; i < selectorCount; ++i) { 3804 llvm::Constant *idxs[] = { 3805 Zeros[0], 3806 llvm::ConstantInt::get(Int32Ty, i) 3807 }; 3808 // FIXME: We're generating redundant loads and stores here! 3809 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr( 3810 selectorList->getValueType(), selectorList, idxs); 3811 // If selectors are defined as an opaque type, cast the pointer to this 3812 // type. 3813 selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy); 3814 selectorAliases[i]->replaceAllUsesWith(selPtr); 3815 selectorAliases[i]->eraseFromParent(); 3816 } 3817 3818 llvm::GlobalVariable *symtab = [&] { 3819 ConstantInitBuilder builder(CGM); 3820 auto symtab = builder.beginStruct(); 3821 3822 // Number of static selectors 3823 symtab.addInt(LongTy, selectorCount); 3824 3825 symtab.addBitCast(selectorList, selStructPtrTy); 3826 3827 // Number of classes defined. 3828 symtab.addInt(CGM.Int16Ty, Classes.size()); 3829 // Number of categories defined 3830 symtab.addInt(CGM.Int16Ty, Categories.size()); 3831 3832 // Create an array of classes, then categories, then static object instances 3833 auto classList = symtab.beginArray(PtrToInt8Ty); 3834 classList.addAll(Classes); 3835 classList.addAll(Categories); 3836 // NULL-terminated list of static object instances (mainly constant strings) 3837 classList.add(statics); 3838 classList.add(NULLPtr); 3839 classList.finishAndAddTo(symtab); 3840 3841 // Construct the symbol table. 3842 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign()); 3843 }(); 3844 3845 // The symbol table is contained in a module which has some version-checking 3846 // constants 3847 llvm::Constant *module = [&] { 3848 llvm::Type *moduleEltTys[] = { 3849 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy 3850 }; 3851 llvm::StructType *moduleTy = 3852 llvm::StructType::get(CGM.getLLVMContext(), 3853 makeArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10))); 3854 3855 ConstantInitBuilder builder(CGM); 3856 auto module = builder.beginStruct(moduleTy); 3857 // Runtime version, used for ABI compatibility checking. 3858 module.addInt(LongTy, RuntimeVersion); 3859 // sizeof(ModuleTy) 3860 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy)); 3861 3862 // The path to the source file where this module was declared 3863 SourceManager &SM = CGM.getContext().getSourceManager(); 3864 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID()); 3865 std::string path = 3866 (Twine(mainFile->getDir()->getName()) + "/" + mainFile->getName()).str(); 3867 module.add(MakeConstantString(path, ".objc_source_file_name")); 3868 module.add(symtab); 3869 3870 if (RuntimeVersion >= 10) { 3871 switch (CGM.getLangOpts().getGC()) { 3872 case LangOptions::GCOnly: 3873 module.addInt(IntTy, 2); 3874 break; 3875 case LangOptions::NonGC: 3876 if (CGM.getLangOpts().ObjCAutoRefCount) 3877 module.addInt(IntTy, 1); 3878 else 3879 module.addInt(IntTy, 0); 3880 break; 3881 case LangOptions::HybridGC: 3882 module.addInt(IntTy, 1); 3883 break; 3884 } 3885 } 3886 3887 return module.finishAndCreateGlobal("", CGM.getPointerAlign()); 3888 }(); 3889 3890 // Create the load function calling the runtime entry point with the module 3891 // structure 3892 llvm::Function * LoadFunction = llvm::Function::Create( 3893 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 3894 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 3895 &TheModule); 3896 llvm::BasicBlock *EntryBB = 3897 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 3898 CGBuilderTy Builder(CGM, VMContext); 3899 Builder.SetInsertPoint(EntryBB); 3900 3901 llvm::FunctionType *FT = 3902 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true); 3903 llvm::FunctionCallee Register = 3904 CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 3905 Builder.CreateCall(Register, module); 3906 3907 if (!ClassAliases.empty()) { 3908 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 3909 llvm::FunctionType *RegisterAliasTy = 3910 llvm::FunctionType::get(Builder.getVoidTy(), 3911 ArgTypes, false); 3912 llvm::Function *RegisterAlias = llvm::Function::Create( 3913 RegisterAliasTy, 3914 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 3915 &TheModule); 3916 llvm::BasicBlock *AliasBB = 3917 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 3918 llvm::BasicBlock *NoAliasBB = 3919 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 3920 3921 // Branch based on whether the runtime provided class_registerAlias_np() 3922 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 3923 llvm::Constant::getNullValue(RegisterAlias->getType())); 3924 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 3925 3926 // The true branch (has alias registration function): 3927 Builder.SetInsertPoint(AliasBB); 3928 // Emit alias registration calls: 3929 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 3930 iter != ClassAliases.end(); ++iter) { 3931 llvm::Constant *TheClass = 3932 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true); 3933 if (TheClass) { 3934 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy); 3935 Builder.CreateCall(RegisterAlias, 3936 {TheClass, MakeConstantString(iter->second)}); 3937 } 3938 } 3939 // Jump to end: 3940 Builder.CreateBr(NoAliasBB); 3941 3942 // Missing alias registration function, just return from the function: 3943 Builder.SetInsertPoint(NoAliasBB); 3944 } 3945 Builder.CreateRetVoid(); 3946 3947 return LoadFunction; 3948 } 3949 3950 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 3951 const ObjCContainerDecl *CD) { 3952 CodeGenTypes &Types = CGM.getTypes(); 3953 llvm::FunctionType *MethodTy = 3954 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3955 std::string FunctionName = getSymbolNameForMethod(OMD); 3956 3957 llvm::Function *Method 3958 = llvm::Function::Create(MethodTy, 3959 llvm::GlobalValue::InternalLinkage, 3960 FunctionName, 3961 &TheModule); 3962 return Method; 3963 } 3964 3965 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF, 3966 llvm::Function *Fn, 3967 const ObjCMethodDecl *OMD, 3968 const ObjCContainerDecl *CD) { 3969 // GNU runtime doesn't support direct calls at this time 3970 } 3971 3972 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() { 3973 return GetPropertyFn; 3974 } 3975 3976 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() { 3977 return SetPropertyFn; 3978 } 3979 3980 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 3981 bool copy) { 3982 return nullptr; 3983 } 3984 3985 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() { 3986 return GetStructPropertyFn; 3987 } 3988 3989 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() { 3990 return SetStructPropertyFn; 3991 } 3992 3993 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() { 3994 return nullptr; 3995 } 3996 3997 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() { 3998 return nullptr; 3999 } 4000 4001 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() { 4002 return EnumerationMutationFn; 4003 } 4004 4005 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 4006 const ObjCAtSynchronizedStmt &S) { 4007 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 4008 } 4009 4010 4011 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 4012 const ObjCAtTryStmt &S) { 4013 // Unlike the Apple non-fragile runtimes, which also uses 4014 // unwind-based zero cost exceptions, the GNU Objective C runtime's 4015 // EH support isn't a veneer over C++ EH. Instead, exception 4016 // objects are created by objc_exception_throw and destroyed by 4017 // the personality function; this avoids the need for bracketing 4018 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 4019 // (or even _Unwind_DeleteException), but probably doesn't 4020 // interoperate very well with foreign exceptions. 4021 // 4022 // In Objective-C++ mode, we actually emit something equivalent to the C++ 4023 // exception handler. 4024 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 4025 } 4026 4027 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 4028 const ObjCAtThrowStmt &S, 4029 bool ClearInsertionPoint) { 4030 llvm::Value *ExceptionAsObject; 4031 bool isRethrow = false; 4032 4033 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4034 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4035 ExceptionAsObject = Exception; 4036 } else { 4037 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4038 "Unexpected rethrow outside @catch block."); 4039 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4040 isRethrow = true; 4041 } 4042 if (isRethrow && usesSEHExceptions) { 4043 // For SEH, ExceptionAsObject may be undef, because the catch handler is 4044 // not passed it for catchalls and so it is not visible to the catch 4045 // funclet. The real thrown object will still be live on the stack at this 4046 // point and will be rethrown. If we are explicitly rethrowing the object 4047 // that was passed into the `@catch` block, then this code path is not 4048 // reached and we will instead call `objc_exception_throw` with an explicit 4049 // argument. 4050 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn); 4051 Throw->setDoesNotReturn(); 4052 } 4053 else { 4054 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 4055 llvm::CallBase *Throw = 4056 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); 4057 Throw->setDoesNotReturn(); 4058 } 4059 CGF.Builder.CreateUnreachable(); 4060 if (ClearInsertionPoint) 4061 CGF.Builder.ClearInsertionPoint(); 4062 } 4063 4064 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 4065 Address AddrWeakObj) { 4066 CGBuilderTy &B = CGF.Builder; 4067 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy); 4068 return B.CreateCall(WeakReadFn, AddrWeakObj.getPointer()); 4069 } 4070 4071 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 4072 llvm::Value *src, Address dst) { 4073 CGBuilderTy &B = CGF.Builder; 4074 src = EnforceType(B, src, IdTy); 4075 dst = EnforceType(B, dst, PtrToIdTy); 4076 B.CreateCall(WeakAssignFn, {src, dst.getPointer()}); 4077 } 4078 4079 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 4080 llvm::Value *src, Address dst, 4081 bool threadlocal) { 4082 CGBuilderTy &B = CGF.Builder; 4083 src = EnforceType(B, src, IdTy); 4084 dst = EnforceType(B, dst, PtrToIdTy); 4085 // FIXME. Add threadloca assign API 4086 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"); 4087 B.CreateCall(GlobalAssignFn, {src, dst.getPointer()}); 4088 } 4089 4090 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 4091 llvm::Value *src, Address dst, 4092 llvm::Value *ivarOffset) { 4093 CGBuilderTy &B = CGF.Builder; 4094 src = EnforceType(B, src, IdTy); 4095 dst = EnforceType(B, dst, IdTy); 4096 B.CreateCall(IvarAssignFn, {src, dst.getPointer(), ivarOffset}); 4097 } 4098 4099 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 4100 llvm::Value *src, Address dst) { 4101 CGBuilderTy &B = CGF.Builder; 4102 src = EnforceType(B, src, IdTy); 4103 dst = EnforceType(B, dst, PtrToIdTy); 4104 B.CreateCall(StrongCastAssignFn, {src, dst.getPointer()}); 4105 } 4106 4107 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 4108 Address DestPtr, 4109 Address SrcPtr, 4110 llvm::Value *Size) { 4111 CGBuilderTy &B = CGF.Builder; 4112 DestPtr = EnforceType(B, DestPtr, PtrTy); 4113 SrcPtr = EnforceType(B, SrcPtr, PtrTy); 4114 4115 B.CreateCall(MemMoveFn, {DestPtr.getPointer(), SrcPtr.getPointer(), Size}); 4116 } 4117 4118 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 4119 const ObjCInterfaceDecl *ID, 4120 const ObjCIvarDecl *Ivar) { 4121 const std::string Name = GetIVarOffsetVariableName(ID, Ivar); 4122 // Emit the variable and initialize it with what we think the correct value 4123 // is. This allows code compiled with non-fragile ivars to work correctly 4124 // when linked against code which isn't (most of the time). 4125 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 4126 if (!IvarOffsetPointer) 4127 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, 4128 llvm::Type::getInt32PtrTy(VMContext), false, 4129 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 4130 return IvarOffsetPointer; 4131 } 4132 4133 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 4134 QualType ObjectTy, 4135 llvm::Value *BaseValue, 4136 const ObjCIvarDecl *Ivar, 4137 unsigned CVRQualifiers) { 4138 const ObjCInterfaceDecl *ID = 4139 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 4140 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4141 EmitIvarOffset(CGF, ID, Ivar)); 4142 } 4143 4144 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 4145 const ObjCInterfaceDecl *OID, 4146 const ObjCIvarDecl *OIVD) { 4147 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 4148 next = next->getNextIvar()) { 4149 if (OIVD == next) 4150 return OID; 4151 } 4152 4153 // Otherwise check in the super class. 4154 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 4155 return FindIvarInterface(Context, Super, OIVD); 4156 4157 return nullptr; 4158 } 4159 4160 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 4161 const ObjCInterfaceDecl *Interface, 4162 const ObjCIvarDecl *Ivar) { 4163 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 4164 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 4165 4166 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage 4167 // and ExternalLinkage, so create a reference to the ivar global and rely on 4168 // the definition being created as part of GenerateClass. 4169 if (RuntimeVersion < 10 || 4170 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment()) 4171 return CGF.Builder.CreateZExtOrBitCast( 4172 CGF.Builder.CreateAlignedLoad( 4173 Int32Ty, CGF.Builder.CreateAlignedLoad( 4174 llvm::Type::getInt32PtrTy(VMContext), 4175 ObjCIvarOffsetVariable(Interface, Ivar), 4176 CGF.getPointerAlign(), "ivar"), 4177 CharUnits::fromQuantity(4)), 4178 PtrDiffTy); 4179 std::string name = "__objc_ivar_offset_value_" + 4180 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 4181 CharUnits Align = CGM.getIntAlign(); 4182 llvm::Value *Offset = TheModule.getGlobalVariable(name); 4183 if (!Offset) { 4184 auto GV = new llvm::GlobalVariable(TheModule, IntTy, 4185 false, llvm::GlobalValue::LinkOnceAnyLinkage, 4186 llvm::Constant::getNullValue(IntTy), name); 4187 GV->setAlignment(Align.getAsAlign()); 4188 Offset = GV; 4189 } 4190 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align); 4191 if (Offset->getType() != PtrDiffTy) 4192 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 4193 return Offset; 4194 } 4195 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 4196 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 4197 } 4198 4199 CGObjCRuntime * 4200 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 4201 auto Runtime = CGM.getLangOpts().ObjCRuntime; 4202 switch (Runtime.getKind()) { 4203 case ObjCRuntime::GNUstep: 4204 if (Runtime.getVersion() >= VersionTuple(2, 0)) 4205 return new CGObjCGNUstep2(CGM); 4206 return new CGObjCGNUstep(CGM); 4207 4208 case ObjCRuntime::GCC: 4209 return new CGObjCGCC(CGM); 4210 4211 case ObjCRuntime::ObjFW: 4212 return new CGObjCObjFW(CGM); 4213 4214 case ObjCRuntime::FragileMacOSX: 4215 case ObjCRuntime::MacOSX: 4216 case ObjCRuntime::iOS: 4217 case ObjCRuntime::WatchOS: 4218 llvm_unreachable("these runtimes are not GNU runtimes"); 4219 } 4220 llvm_unreachable("bad runtime"); 4221 } 4222