1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the GNU runtime. The 10 // class in this file generates structures used by the GNU Objective-C runtime 11 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 12 // the GNU runtime distribution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/StmtObjC.h" 27 #include "clang/Basic/FileManager.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/StringMap.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include <cctype> 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 namespace { 44 45 std::string SymbolNameForMethod( StringRef ClassName, 46 StringRef CategoryName, const Selector MethodName, 47 bool isClassMethod) { 48 std::string MethodNameColonStripped = MethodName.getAsString(); 49 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(), 50 ':', '_'); 51 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" + 52 CategoryName + "_" + MethodNameColonStripped).str(); 53 } 54 55 /// Class that lazily initialises the runtime function. Avoids inserting the 56 /// types and the function declaration into a module if they're not used, and 57 /// avoids constructing the type more than once if it's used more than once. 58 class LazyRuntimeFunction { 59 CodeGenModule *CGM; 60 llvm::FunctionType *FTy; 61 const char *FunctionName; 62 llvm::FunctionCallee Function; 63 64 public: 65 /// Constructor leaves this class uninitialized, because it is intended to 66 /// be used as a field in another class and not all of the types that are 67 /// used as arguments will necessarily be available at construction time. 68 LazyRuntimeFunction() 69 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {} 70 71 /// Initialises the lazy function with the name, return type, and the types 72 /// of the arguments. 73 template <typename... Tys> 74 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, 75 Tys *... Types) { 76 CGM = Mod; 77 FunctionName = name; 78 Function = nullptr; 79 if(sizeof...(Tys)) { 80 SmallVector<llvm::Type *, 8> ArgTys({Types...}); 81 FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 82 } 83 else { 84 FTy = llvm::FunctionType::get(RetTy, None, false); 85 } 86 } 87 88 llvm::FunctionType *getType() { return FTy; } 89 90 /// Overloaded cast operator, allows the class to be implicitly cast to an 91 /// LLVM constant. 92 operator llvm::FunctionCallee() { 93 if (!Function) { 94 if (!FunctionName) 95 return nullptr; 96 Function = CGM->CreateRuntimeFunction(FTy, FunctionName); 97 } 98 return Function; 99 } 100 }; 101 102 103 /// GNU Objective-C runtime code generation. This class implements the parts of 104 /// Objective-C support that are specific to the GNU family of runtimes (GCC, 105 /// GNUstep and ObjFW). 106 class CGObjCGNU : public CGObjCRuntime { 107 protected: 108 /// The LLVM module into which output is inserted 109 llvm::Module &TheModule; 110 /// strut objc_super. Used for sending messages to super. This structure 111 /// contains the receiver (object) and the expected class. 112 llvm::StructType *ObjCSuperTy; 113 /// struct objc_super*. The type of the argument to the superclass message 114 /// lookup functions. 115 llvm::PointerType *PtrToObjCSuperTy; 116 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 117 /// SEL is included in a header somewhere, in which case it will be whatever 118 /// type is declared in that header, most likely {i8*, i8*}. 119 llvm::PointerType *SelectorTy; 120 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 121 /// places where it's used 122 llvm::IntegerType *Int8Ty; 123 /// Pointer to i8 - LLVM type of char*, for all of the places where the 124 /// runtime needs to deal with C strings. 125 llvm::PointerType *PtrToInt8Ty; 126 /// struct objc_protocol type 127 llvm::StructType *ProtocolTy; 128 /// Protocol * type. 129 llvm::PointerType *ProtocolPtrTy; 130 /// Instance Method Pointer type. This is a pointer to a function that takes, 131 /// at a minimum, an object and a selector, and is the generic type for 132 /// Objective-C methods. Due to differences between variadic / non-variadic 133 /// calling conventions, it must always be cast to the correct type before 134 /// actually being used. 135 llvm::PointerType *IMPTy; 136 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 137 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 138 /// but if the runtime header declaring it is included then it may be a 139 /// pointer to a structure. 140 llvm::PointerType *IdTy; 141 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 142 /// message lookup function and some GC-related functions. 143 llvm::PointerType *PtrToIdTy; 144 /// The clang type of id. Used when using the clang CGCall infrastructure to 145 /// call Objective-C methods. 146 CanQualType ASTIdTy; 147 /// LLVM type for C int type. 148 llvm::IntegerType *IntTy; 149 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 150 /// used in the code to document the difference between i8* meaning a pointer 151 /// to a C string and i8* meaning a pointer to some opaque type. 152 llvm::PointerType *PtrTy; 153 /// LLVM type for C long type. The runtime uses this in a lot of places where 154 /// it should be using intptr_t, but we can't fix this without breaking 155 /// compatibility with GCC... 156 llvm::IntegerType *LongTy; 157 /// LLVM type for C size_t. Used in various runtime data structures. 158 llvm::IntegerType *SizeTy; 159 /// LLVM type for C intptr_t. 160 llvm::IntegerType *IntPtrTy; 161 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 162 llvm::IntegerType *PtrDiffTy; 163 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 164 /// variables. 165 llvm::PointerType *PtrToIntTy; 166 /// LLVM type for Objective-C BOOL type. 167 llvm::Type *BoolTy; 168 /// 32-bit integer type, to save us needing to look it up every time it's used. 169 llvm::IntegerType *Int32Ty; 170 /// 64-bit integer type, to save us needing to look it up every time it's used. 171 llvm::IntegerType *Int64Ty; 172 /// The type of struct objc_property. 173 llvm::StructType *PropertyMetadataTy; 174 /// Metadata kind used to tie method lookups to message sends. The GNUstep 175 /// runtime provides some LLVM passes that can use this to do things like 176 /// automatic IMP caching and speculative inlining. 177 unsigned msgSendMDKind; 178 /// Does the current target use SEH-based exceptions? False implies 179 /// Itanium-style DWARF unwinding. 180 bool usesSEHExceptions; 181 182 /// Helper to check if we are targeting a specific runtime version or later. 183 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) { 184 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 185 return (R.getKind() == kind) && 186 (R.getVersion() >= VersionTuple(major, minor)); 187 } 188 189 std::string ManglePublicSymbol(StringRef Name) { 190 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str(); 191 } 192 193 std::string SymbolForProtocol(Twine Name) { 194 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str(); 195 } 196 197 std::string SymbolForProtocolRef(StringRef Name) { 198 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str(); 199 } 200 201 202 /// Helper function that generates a constant string and returns a pointer to 203 /// the start of the string. The result of this function can be used anywhere 204 /// where the C code specifies const char*. 205 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") { 206 ConstantAddress Array = 207 CGM.GetAddrOfConstantCString(std::string(Str), Name); 208 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(), 209 Array.getPointer(), Zeros); 210 } 211 212 /// Emits a linkonce_odr string, whose name is the prefix followed by the 213 /// string value. This allows the linker to combine the strings between 214 /// different modules. Used for EH typeinfo names, selector strings, and a 215 /// few other things. 216 llvm::Constant *ExportUniqueString(const std::string &Str, 217 const std::string &prefix, 218 bool Private=false) { 219 std::string name = prefix + Str; 220 auto *ConstStr = TheModule.getGlobalVariable(name); 221 if (!ConstStr) { 222 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 223 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true, 224 llvm::GlobalValue::LinkOnceODRLinkage, value, name); 225 GV->setComdat(TheModule.getOrInsertComdat(name)); 226 if (Private) 227 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 228 ConstStr = GV; 229 } 230 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(), 231 ConstStr, Zeros); 232 } 233 234 /// Returns a property name and encoding string. 235 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, 236 const Decl *Container) { 237 assert(!isRuntime(ObjCRuntime::GNUstep, 2)); 238 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) { 239 std::string NameAndAttributes; 240 std::string TypeStr = 241 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 242 NameAndAttributes += '\0'; 243 NameAndAttributes += TypeStr.length() + 3; 244 NameAndAttributes += TypeStr; 245 NameAndAttributes += '\0'; 246 NameAndAttributes += PD->getNameAsString(); 247 return MakeConstantString(NameAndAttributes); 248 } 249 return MakeConstantString(PD->getNameAsString()); 250 } 251 252 /// Push the property attributes into two structure fields. 253 void PushPropertyAttributes(ConstantStructBuilder &Fields, 254 const ObjCPropertyDecl *property, bool isSynthesized=true, bool 255 isDynamic=true) { 256 int attrs = property->getPropertyAttributes(); 257 // For read-only properties, clear the copy and retain flags 258 if (attrs & ObjCPropertyAttribute::kind_readonly) { 259 attrs &= ~ObjCPropertyAttribute::kind_copy; 260 attrs &= ~ObjCPropertyAttribute::kind_retain; 261 attrs &= ~ObjCPropertyAttribute::kind_weak; 262 attrs &= ~ObjCPropertyAttribute::kind_strong; 263 } 264 // The first flags field has the same attribute values as clang uses internally 265 Fields.addInt(Int8Ty, attrs & 0xff); 266 attrs >>= 8; 267 attrs <<= 2; 268 // For protocol properties, synthesized and dynamic have no meaning, so we 269 // reuse these flags to indicate that this is a protocol property (both set 270 // has no meaning, as a property can't be both synthesized and dynamic) 271 attrs |= isSynthesized ? (1<<0) : 0; 272 attrs |= isDynamic ? (1<<1) : 0; 273 // The second field is the next four fields left shifted by two, with the 274 // low bit set to indicate whether the field is synthesized or dynamic. 275 Fields.addInt(Int8Ty, attrs & 0xff); 276 // Two padding fields 277 Fields.addInt(Int8Ty, 0); 278 Fields.addInt(Int8Ty, 0); 279 } 280 281 virtual llvm::Constant *GenerateCategoryProtocolList(const 282 ObjCCategoryDecl *OCD); 283 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields, 284 int count) { 285 // int count; 286 Fields.addInt(IntTy, count); 287 // int size; (only in GNUstep v2 ABI. 288 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 289 llvm::DataLayout td(&TheModule); 290 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) / 291 CGM.getContext().getCharWidth()); 292 } 293 // struct objc_property_list *next; 294 Fields.add(NULLPtr); 295 // struct objc_property properties[] 296 return Fields.beginArray(PropertyMetadataTy); 297 } 298 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray, 299 const ObjCPropertyDecl *property, 300 const Decl *OCD, 301 bool isSynthesized=true, bool 302 isDynamic=true) { 303 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 304 ASTContext &Context = CGM.getContext(); 305 Fields.add(MakePropertyEncodingString(property, OCD)); 306 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); 307 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 308 if (accessor) { 309 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 310 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 311 Fields.add(MakeConstantString(accessor->getSelector().getAsString())); 312 Fields.add(TypeEncoding); 313 } else { 314 Fields.add(NULLPtr); 315 Fields.add(NULLPtr); 316 } 317 }; 318 addPropertyMethod(property->getGetterMethodDecl()); 319 addPropertyMethod(property->getSetterMethodDecl()); 320 Fields.finishAndAddTo(PropertiesArray); 321 } 322 323 /// Ensures that the value has the required type, by inserting a bitcast if 324 /// required. This function lets us avoid inserting bitcasts that are 325 /// redundant. 326 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { 327 if (V->getType() == Ty) return V; 328 return B.CreateBitCast(V, Ty); 329 } 330 Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) { 331 if (V.getType() == Ty) return V; 332 return B.CreateBitCast(V, Ty); 333 } 334 335 // Some zeros used for GEPs in lots of places. 336 llvm::Constant *Zeros[2]; 337 /// Null pointer value. Mainly used as a terminator in various arrays. 338 llvm::Constant *NULLPtr; 339 /// LLVM context. 340 llvm::LLVMContext &VMContext; 341 342 protected: 343 344 /// Placeholder for the class. Lots of things refer to the class before we've 345 /// actually emitted it. We use this alias as a placeholder, and then replace 346 /// it with a pointer to the class structure before finally emitting the 347 /// module. 348 llvm::GlobalAlias *ClassPtrAlias; 349 /// Placeholder for the metaclass. Lots of things refer to the class before 350 /// we've / actually emitted it. We use this alias as a placeholder, and then 351 /// replace / it with a pointer to the metaclass structure before finally 352 /// emitting the / module. 353 llvm::GlobalAlias *MetaClassPtrAlias; 354 /// All of the classes that have been generated for this compilation units. 355 std::vector<llvm::Constant*> Classes; 356 /// All of the categories that have been generated for this compilation units. 357 std::vector<llvm::Constant*> Categories; 358 /// All of the Objective-C constant strings that have been generated for this 359 /// compilation units. 360 std::vector<llvm::Constant*> ConstantStrings; 361 /// Map from string values to Objective-C constant strings in the output. 362 /// Used to prevent emitting Objective-C strings more than once. This should 363 /// not be required at all - CodeGenModule should manage this list. 364 llvm::StringMap<llvm::Constant*> ObjCStrings; 365 /// All of the protocols that have been declared. 366 llvm::StringMap<llvm::Constant*> ExistingProtocols; 367 /// For each variant of a selector, we store the type encoding and a 368 /// placeholder value. For an untyped selector, the type will be the empty 369 /// string. Selector references are all done via the module's selector table, 370 /// so we create an alias as a placeholder and then replace it with the real 371 /// value later. 372 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 373 /// Type of the selector map. This is roughly equivalent to the structure 374 /// used in the GNUstep runtime, which maintains a list of all of the valid 375 /// types for a selector in a table. 376 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 377 SelectorMap; 378 /// A map from selectors to selector types. This allows us to emit all 379 /// selectors of the same name and type together. 380 SelectorMap SelectorTable; 381 382 /// Selectors related to memory management. When compiling in GC mode, we 383 /// omit these. 384 Selector RetainSel, ReleaseSel, AutoreleaseSel; 385 /// Runtime functions used for memory management in GC mode. Note that clang 386 /// supports code generation for calling these functions, but neither GNU 387 /// runtime actually supports this API properly yet. 388 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 389 WeakAssignFn, GlobalAssignFn; 390 391 typedef std::pair<std::string, std::string> ClassAliasPair; 392 /// All classes that have aliases set for them. 393 std::vector<ClassAliasPair> ClassAliases; 394 395 protected: 396 /// Function used for throwing Objective-C exceptions. 397 LazyRuntimeFunction ExceptionThrowFn; 398 /// Function used for rethrowing exceptions, used at the end of \@finally or 399 /// \@synchronize blocks. 400 LazyRuntimeFunction ExceptionReThrowFn; 401 /// Function called when entering a catch function. This is required for 402 /// differentiating Objective-C exceptions and foreign exceptions. 403 LazyRuntimeFunction EnterCatchFn; 404 /// Function called when exiting from a catch block. Used to do exception 405 /// cleanup. 406 LazyRuntimeFunction ExitCatchFn; 407 /// Function called when entering an \@synchronize block. Acquires the lock. 408 LazyRuntimeFunction SyncEnterFn; 409 /// Function called when exiting an \@synchronize block. Releases the lock. 410 LazyRuntimeFunction SyncExitFn; 411 412 private: 413 /// Function called if fast enumeration detects that the collection is 414 /// modified during the update. 415 LazyRuntimeFunction EnumerationMutationFn; 416 /// Function for implementing synthesized property getters that return an 417 /// object. 418 LazyRuntimeFunction GetPropertyFn; 419 /// Function for implementing synthesized property setters that return an 420 /// object. 421 LazyRuntimeFunction SetPropertyFn; 422 /// Function used for non-object declared property getters. 423 LazyRuntimeFunction GetStructPropertyFn; 424 /// Function used for non-object declared property setters. 425 LazyRuntimeFunction SetStructPropertyFn; 426 427 protected: 428 /// The version of the runtime that this class targets. Must match the 429 /// version in the runtime. 430 int RuntimeVersion; 431 /// The version of the protocol class. Used to differentiate between ObjC1 432 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 433 /// components and can not contain declared properties. We always emit 434 /// Objective-C 2 property structures, but we have to pretend that they're 435 /// Objective-C 1 property structures when targeting the GCC runtime or it 436 /// will abort. 437 const int ProtocolVersion; 438 /// The version of the class ABI. This value is used in the class structure 439 /// and indicates how various fields should be interpreted. 440 const int ClassABIVersion; 441 /// Generates an instance variable list structure. This is a structure 442 /// containing a size and an array of structures containing instance variable 443 /// metadata. This is used purely for introspection in the fragile ABI. In 444 /// the non-fragile ABI, it's used for instance variable fixup. 445 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 446 ArrayRef<llvm::Constant *> IvarTypes, 447 ArrayRef<llvm::Constant *> IvarOffsets, 448 ArrayRef<llvm::Constant *> IvarAlign, 449 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership); 450 451 /// Generates a method list structure. This is a structure containing a size 452 /// and an array of structures containing method metadata. 453 /// 454 /// This structure is used by both classes and categories, and contains a next 455 /// pointer allowing them to be chained together in a linked list. 456 llvm::Constant *GenerateMethodList(StringRef ClassName, 457 StringRef CategoryName, 458 ArrayRef<const ObjCMethodDecl*> Methods, 459 bool isClassMethodList); 460 461 /// Emits an empty protocol. This is used for \@protocol() where no protocol 462 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 463 /// real protocol. 464 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName); 465 466 /// Generates a list of property metadata structures. This follows the same 467 /// pattern as method and instance variable metadata lists. 468 llvm::Constant *GeneratePropertyList(const Decl *Container, 469 const ObjCContainerDecl *OCD, 470 bool isClassProperty=false, 471 bool protocolOptionalProperties=false); 472 473 /// Generates a list of referenced protocols. Classes, categories, and 474 /// protocols all use this structure. 475 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 476 477 /// To ensure that all protocols are seen by the runtime, we add a category on 478 /// a class defined in the runtime, declaring no methods, but adopting the 479 /// protocols. This is a horribly ugly hack, but it allows us to collect all 480 /// of the protocols without changing the ABI. 481 void GenerateProtocolHolderCategory(); 482 483 /// Generates a class structure. 484 llvm::Constant *GenerateClassStructure( 485 llvm::Constant *MetaClass, 486 llvm::Constant *SuperClass, 487 unsigned info, 488 const char *Name, 489 llvm::Constant *Version, 490 llvm::Constant *InstanceSize, 491 llvm::Constant *IVars, 492 llvm::Constant *Methods, 493 llvm::Constant *Protocols, 494 llvm::Constant *IvarOffsets, 495 llvm::Constant *Properties, 496 llvm::Constant *StrongIvarBitmap, 497 llvm::Constant *WeakIvarBitmap, 498 bool isMeta=false); 499 500 /// Generates a method list. This is used by protocols to define the required 501 /// and optional methods. 502 virtual llvm::Constant *GenerateProtocolMethodList( 503 ArrayRef<const ObjCMethodDecl*> Methods); 504 /// Emits optional and required method lists. 505 template<class T> 506 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required, 507 llvm::Constant *&Optional) { 508 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods; 509 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods; 510 for (const auto *I : Methods) 511 if (I->isOptional()) 512 OptionalMethods.push_back(I); 513 else 514 RequiredMethods.push_back(I); 515 Required = GenerateProtocolMethodList(RequiredMethods); 516 Optional = GenerateProtocolMethodList(OptionalMethods); 517 } 518 519 /// Returns a selector with the specified type encoding. An empty string is 520 /// used to return an untyped selector (with the types field set to NULL). 521 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 522 const std::string &TypeEncoding); 523 524 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this 525 /// contains the class and ivar names, in the v2 ABI this contains the type 526 /// encoding as well. 527 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 528 const ObjCIvarDecl *Ivar) { 529 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 530 + '.' + Ivar->getNameAsString(); 531 return Name; 532 } 533 /// Returns the variable used to store the offset of an instance variable. 534 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 535 const ObjCIvarDecl *Ivar); 536 /// Emits a reference to a class. This allows the linker to object if there 537 /// is no class of the matching name. 538 void EmitClassRef(const std::string &className); 539 540 /// Emits a pointer to the named class 541 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 542 const std::string &Name, bool isWeak); 543 544 /// Looks up the method for sending a message to the specified object. This 545 /// mechanism differs between the GCC and GNU runtimes, so this method must be 546 /// overridden in subclasses. 547 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 548 llvm::Value *&Receiver, 549 llvm::Value *cmd, 550 llvm::MDNode *node, 551 MessageSendInfo &MSI) = 0; 552 553 /// Looks up the method for sending a message to a superclass. This 554 /// mechanism differs between the GCC and GNU runtimes, so this method must 555 /// be overridden in subclasses. 556 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 557 Address ObjCSuper, 558 llvm::Value *cmd, 559 MessageSendInfo &MSI) = 0; 560 561 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 562 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 563 /// bits set to their values, LSB first, while larger ones are stored in a 564 /// structure of this / form: 565 /// 566 /// struct { int32_t length; int32_t values[length]; }; 567 /// 568 /// The values in the array are stored in host-endian format, with the least 569 /// significant bit being assumed to come first in the bitfield. Therefore, 570 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 571 /// while a bitfield / with the 63rd bit set will be 1<<64. 572 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 573 574 public: 575 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 576 unsigned protocolClassVersion, unsigned classABI=1); 577 578 ConstantAddress GenerateConstantString(const StringLiteral *) override; 579 580 RValue 581 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, 582 QualType ResultType, Selector Sel, 583 llvm::Value *Receiver, const CallArgList &CallArgs, 584 const ObjCInterfaceDecl *Class, 585 const ObjCMethodDecl *Method) override; 586 RValue 587 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, 588 QualType ResultType, Selector Sel, 589 const ObjCInterfaceDecl *Class, 590 bool isCategoryImpl, llvm::Value *Receiver, 591 bool IsClassMessage, const CallArgList &CallArgs, 592 const ObjCMethodDecl *Method) override; 593 llvm::Value *GetClass(CodeGenFunction &CGF, 594 const ObjCInterfaceDecl *OID) override; 595 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 596 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 597 llvm::Value *GetSelector(CodeGenFunction &CGF, 598 const ObjCMethodDecl *Method) override; 599 virtual llvm::Constant *GetConstantSelector(Selector Sel, 600 const std::string &TypeEncoding) { 601 llvm_unreachable("Runtime unable to generate constant selector"); 602 } 603 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) { 604 return GetConstantSelector(M->getSelector(), 605 CGM.getContext().getObjCEncodingForMethodDecl(M)); 606 } 607 llvm::Constant *GetEHType(QualType T) override; 608 609 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 610 const ObjCContainerDecl *CD) override; 611 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 612 const ObjCMethodDecl *OMD, 613 const ObjCContainerDecl *CD) override; 614 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 615 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 616 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override; 617 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 618 const ObjCProtocolDecl *PD) override; 619 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 620 621 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD); 622 623 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override { 624 return GenerateProtocolRef(PD); 625 } 626 627 llvm::Function *ModuleInitFunction() override; 628 llvm::FunctionCallee GetPropertyGetFunction() override; 629 llvm::FunctionCallee GetPropertySetFunction() override; 630 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 631 bool copy) override; 632 llvm::FunctionCallee GetSetStructFunction() override; 633 llvm::FunctionCallee GetGetStructFunction() override; 634 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 635 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 636 llvm::FunctionCallee EnumerationMutationFunction() override; 637 638 void EmitTryStmt(CodeGenFunction &CGF, 639 const ObjCAtTryStmt &S) override; 640 void EmitSynchronizedStmt(CodeGenFunction &CGF, 641 const ObjCAtSynchronizedStmt &S) override; 642 void EmitThrowStmt(CodeGenFunction &CGF, 643 const ObjCAtThrowStmt &S, 644 bool ClearInsertionPoint=true) override; 645 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 646 Address AddrWeakObj) override; 647 void EmitObjCWeakAssign(CodeGenFunction &CGF, 648 llvm::Value *src, Address dst) override; 649 void EmitObjCGlobalAssign(CodeGenFunction &CGF, 650 llvm::Value *src, Address dest, 651 bool threadlocal=false) override; 652 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, 653 Address dest, llvm::Value *ivarOffset) override; 654 void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 655 llvm::Value *src, Address dest) override; 656 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, 657 Address SrcPtr, 658 llvm::Value *Size) override; 659 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, 660 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 661 unsigned CVRQualifiers) override; 662 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 663 const ObjCInterfaceDecl *Interface, 664 const ObjCIvarDecl *Ivar) override; 665 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 666 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 667 const CGBlockInfo &blockInfo) override { 668 return NULLPtr; 669 } 670 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, 671 const CGBlockInfo &blockInfo) override { 672 return NULLPtr; 673 } 674 675 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override { 676 return NULLPtr; 677 } 678 }; 679 680 /// Class representing the legacy GCC Objective-C ABI. This is the default when 681 /// -fobjc-nonfragile-abi is not specified. 682 /// 683 /// The GCC ABI target actually generates code that is approximately compatible 684 /// with the new GNUstep runtime ABI, but refrains from using any features that 685 /// would not work with the GCC runtime. For example, clang always generates 686 /// the extended form of the class structure, and the extra fields are simply 687 /// ignored by GCC libobjc. 688 class CGObjCGCC : public CGObjCGNU { 689 /// The GCC ABI message lookup function. Returns an IMP pointing to the 690 /// method implementation for this message. 691 LazyRuntimeFunction MsgLookupFn; 692 /// The GCC ABI superclass message lookup function. Takes a pointer to a 693 /// structure describing the receiver and the class, and a selector as 694 /// arguments. Returns the IMP for the corresponding method. 695 LazyRuntimeFunction MsgLookupSuperFn; 696 697 protected: 698 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 699 llvm::Value *cmd, llvm::MDNode *node, 700 MessageSendInfo &MSI) override { 701 CGBuilderTy &Builder = CGF.Builder; 702 llvm::Value *args[] = { 703 EnforceType(Builder, Receiver, IdTy), 704 EnforceType(Builder, cmd, SelectorTy) }; 705 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 706 imp->setMetadata(msgSendMDKind, node); 707 return imp; 708 } 709 710 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 711 llvm::Value *cmd, MessageSendInfo &MSI) override { 712 CGBuilderTy &Builder = CGF.Builder; 713 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper, 714 PtrToObjCSuperTy).getPointer(), cmd}; 715 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 716 } 717 718 public: 719 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 720 // IMP objc_msg_lookup(id, SEL); 721 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 722 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 723 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 724 PtrToObjCSuperTy, SelectorTy); 725 } 726 }; 727 728 /// Class used when targeting the new GNUstep runtime ABI. 729 class CGObjCGNUstep : public CGObjCGNU { 730 /// The slot lookup function. Returns a pointer to a cacheable structure 731 /// that contains (among other things) the IMP. 732 LazyRuntimeFunction SlotLookupFn; 733 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 734 /// a structure describing the receiver and the class, and a selector as 735 /// arguments. Returns the slot for the corresponding method. Superclass 736 /// message lookup rarely changes, so this is a good caching opportunity. 737 LazyRuntimeFunction SlotLookupSuperFn; 738 /// Specialised function for setting atomic retain properties 739 LazyRuntimeFunction SetPropertyAtomic; 740 /// Specialised function for setting atomic copy properties 741 LazyRuntimeFunction SetPropertyAtomicCopy; 742 /// Specialised function for setting nonatomic retain properties 743 LazyRuntimeFunction SetPropertyNonAtomic; 744 /// Specialised function for setting nonatomic copy properties 745 LazyRuntimeFunction SetPropertyNonAtomicCopy; 746 /// Function to perform atomic copies of C++ objects with nontrivial copy 747 /// constructors from Objective-C ivars. 748 LazyRuntimeFunction CxxAtomicObjectGetFn; 749 /// Function to perform atomic copies of C++ objects with nontrivial copy 750 /// constructors to Objective-C ivars. 751 LazyRuntimeFunction CxxAtomicObjectSetFn; 752 /// Type of an slot structure pointer. This is returned by the various 753 /// lookup functions. 754 llvm::Type *SlotTy; 755 756 public: 757 llvm::Constant *GetEHType(QualType T) override; 758 759 protected: 760 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 761 llvm::Value *cmd, llvm::MDNode *node, 762 MessageSendInfo &MSI) override { 763 CGBuilderTy &Builder = CGF.Builder; 764 llvm::FunctionCallee LookupFn = SlotLookupFn; 765 766 // Store the receiver on the stack so that we can reload it later 767 Address ReceiverPtr = 768 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign()); 769 Builder.CreateStore(Receiver, ReceiverPtr); 770 771 llvm::Value *self; 772 773 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 774 self = CGF.LoadObjCSelf(); 775 } else { 776 self = llvm::ConstantPointerNull::get(IdTy); 777 } 778 779 // The lookup function is guaranteed not to capture the receiver pointer. 780 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee())) 781 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture); 782 783 llvm::Value *args[] = { 784 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy), 785 EnforceType(Builder, cmd, SelectorTy), 786 EnforceType(Builder, self, IdTy) }; 787 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); 788 slot->setOnlyReadsMemory(); 789 slot->setMetadata(msgSendMDKind, node); 790 791 // Load the imp from the slot 792 llvm::Value *imp = Builder.CreateAlignedLoad( 793 Builder.CreateStructGEP(nullptr, slot, 4), CGF.getPointerAlign()); 794 795 // The lookup function may have changed the receiver, so make sure we use 796 // the new one. 797 Receiver = Builder.CreateLoad(ReceiverPtr, true); 798 return imp; 799 } 800 801 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 802 llvm::Value *cmd, 803 MessageSendInfo &MSI) override { 804 CGBuilderTy &Builder = CGF.Builder; 805 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd}; 806 807 llvm::CallInst *slot = 808 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); 809 slot->setOnlyReadsMemory(); 810 811 return Builder.CreateAlignedLoad(Builder.CreateStructGEP(nullptr, slot, 4), 812 CGF.getPointerAlign()); 813 } 814 815 public: 816 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {} 817 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI, 818 unsigned ClassABI) : 819 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) { 820 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 821 822 llvm::StructType *SlotStructTy = 823 llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy); 824 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 825 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 826 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 827 SelectorTy, IdTy); 828 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL); 829 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 830 PtrToObjCSuperTy, SelectorTy); 831 // If we're in ObjC++ mode, then we want to make 832 if (usesSEHExceptions) { 833 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 834 // void objc_exception_rethrow(void) 835 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy); 836 } else if (CGM.getLangOpts().CPlusPlus) { 837 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 838 // void *__cxa_begin_catch(void *e) 839 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 840 // void __cxa_end_catch(void) 841 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 842 // void _Unwind_Resume_or_Rethrow(void*) 843 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, 844 PtrTy); 845 } else if (R.getVersion() >= VersionTuple(1, 7)) { 846 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 847 // id objc_begin_catch(void *e) 848 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy); 849 // void objc_end_catch(void) 850 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy); 851 // void _Unwind_Resume_or_Rethrow(void*) 852 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy); 853 } 854 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 855 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, 856 SelectorTy, IdTy, PtrDiffTy); 857 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, 858 IdTy, SelectorTy, IdTy, PtrDiffTy); 859 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, 860 IdTy, SelectorTy, IdTy, PtrDiffTy); 861 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", 862 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); 863 // void objc_setCppObjectAtomic(void *dest, const void *src, void 864 // *helper); 865 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, 866 PtrTy, PtrTy); 867 // void objc_getCppObjectAtomic(void *dest, const void *src, void 868 // *helper); 869 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, 870 PtrTy, PtrTy); 871 } 872 873 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 874 // The optimised functions were added in version 1.7 of the GNUstep 875 // runtime. 876 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 877 VersionTuple(1, 7)); 878 return CxxAtomicObjectGetFn; 879 } 880 881 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 882 // The optimised functions were added in version 1.7 of the GNUstep 883 // runtime. 884 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 885 VersionTuple(1, 7)); 886 return CxxAtomicObjectSetFn; 887 } 888 889 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 890 bool copy) override { 891 // The optimised property functions omit the GC check, and so are not 892 // safe to use in GC mode. The standard functions are fast in GC mode, 893 // so there is less advantage in using them. 894 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); 895 // The optimised functions were added in version 1.7 of the GNUstep 896 // runtime. 897 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 898 VersionTuple(1, 7)); 899 900 if (atomic) { 901 if (copy) return SetPropertyAtomicCopy; 902 return SetPropertyAtomic; 903 } 904 905 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic; 906 } 907 }; 908 909 /// GNUstep Objective-C ABI version 2 implementation. 910 /// This is the ABI that provides a clean break with the legacy GCC ABI and 911 /// cleans up a number of things that were added to work around 1980s linkers. 912 class CGObjCGNUstep2 : public CGObjCGNUstep { 913 enum SectionKind 914 { 915 SelectorSection = 0, 916 ClassSection, 917 ClassReferenceSection, 918 CategorySection, 919 ProtocolSection, 920 ProtocolReferenceSection, 921 ClassAliasSection, 922 ConstantStringSection 923 }; 924 static const char *const SectionsBaseNames[8]; 925 static const char *const PECOFFSectionsBaseNames[8]; 926 template<SectionKind K> 927 std::string sectionName() { 928 if (CGM.getTriple().isOSBinFormatCOFF()) { 929 std::string name(PECOFFSectionsBaseNames[K]); 930 name += "$m"; 931 return name; 932 } 933 return SectionsBaseNames[K]; 934 } 935 /// The GCC ABI superclass message lookup function. Takes a pointer to a 936 /// structure describing the receiver and the class, and a selector as 937 /// arguments. Returns the IMP for the corresponding method. 938 LazyRuntimeFunction MsgLookupSuperFn; 939 /// A flag indicating if we've emitted at least one protocol. 940 /// If we haven't, then we need to emit an empty protocol, to ensure that the 941 /// __start__objc_protocols and __stop__objc_protocols sections exist. 942 bool EmittedProtocol = false; 943 /// A flag indicating if we've emitted at least one protocol reference. 944 /// If we haven't, then we need to emit an empty protocol, to ensure that the 945 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections 946 /// exist. 947 bool EmittedProtocolRef = false; 948 /// A flag indicating if we've emitted at least one class. 949 /// If we haven't, then we need to emit an empty protocol, to ensure that the 950 /// __start__objc_classes and __stop__objc_classes sections / exist. 951 bool EmittedClass = false; 952 /// Generate the name of a symbol for a reference to a class. Accesses to 953 /// classes should be indirected via this. 954 955 typedef std::pair<std::string, std::pair<llvm::Constant*, int>> EarlyInitPair; 956 std::vector<EarlyInitPair> EarlyInitList; 957 958 std::string SymbolForClassRef(StringRef Name, bool isWeak) { 959 if (isWeak) 960 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str(); 961 else 962 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str(); 963 } 964 /// Generate the name of a class symbol. 965 std::string SymbolForClass(StringRef Name) { 966 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str(); 967 } 968 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName, 969 ArrayRef<llvm::Value*> Args) { 970 SmallVector<llvm::Type *,8> Types; 971 for (auto *Arg : Args) 972 Types.push_back(Arg->getType()); 973 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types, 974 false); 975 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName); 976 B.CreateCall(Fn, Args); 977 } 978 979 ConstantAddress GenerateConstantString(const StringLiteral *SL) override { 980 981 auto Str = SL->getString(); 982 CharUnits Align = CGM.getPointerAlign(); 983 984 // Look for an existing one 985 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 986 if (old != ObjCStrings.end()) 987 return ConstantAddress(old->getValue(), Align); 988 989 bool isNonASCII = SL->containsNonAscii(); 990 991 auto LiteralLength = SL->getLength(); 992 993 if ((CGM.getTarget().getPointerWidth(0) == 64) && 994 (LiteralLength < 9) && !isNonASCII) { 995 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit 996 // ASCII characters in the high 56 bits, followed by a 4-bit length and a 997 // 3-bit tag (which is always 4). 998 uint64_t str = 0; 999 // Fill in the characters 1000 for (unsigned i=0 ; i<LiteralLength ; i++) 1001 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7)); 1002 // Fill in the length 1003 str |= LiteralLength << 3; 1004 // Set the tag 1005 str |= 4; 1006 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr( 1007 llvm::ConstantInt::get(Int64Ty, str), IdTy); 1008 ObjCStrings[Str] = ObjCStr; 1009 return ConstantAddress(ObjCStr, Align); 1010 } 1011 1012 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1013 1014 if (StringClass.empty()) StringClass = "NSConstantString"; 1015 1016 std::string Sym = SymbolForClass(StringClass); 1017 1018 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 1019 1020 if (!isa) { 1021 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 1022 llvm::GlobalValue::ExternalLinkage, nullptr, Sym); 1023 if (CGM.getTriple().isOSBinFormatCOFF()) { 1024 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1025 } 1026 } else if (isa->getType() != PtrToIdTy) 1027 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 1028 1029 // struct 1030 // { 1031 // Class isa; 1032 // uint32_t flags; 1033 // uint32_t length; // Number of codepoints 1034 // uint32_t size; // Number of bytes 1035 // uint32_t hash; 1036 // const char *data; 1037 // }; 1038 1039 ConstantInitBuilder Builder(CGM); 1040 auto Fields = Builder.beginStruct(); 1041 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1042 Fields.add(isa); 1043 } else { 1044 Fields.addNullPointer(PtrTy); 1045 } 1046 // For now, all non-ASCII strings are represented as UTF-16. As such, the 1047 // number of bytes is simply double the number of UTF-16 codepoints. In 1048 // ASCII strings, the number of bytes is equal to the number of non-ASCII 1049 // codepoints. 1050 if (isNonASCII) { 1051 unsigned NumU8CodeUnits = Str.size(); 1052 // A UTF-16 representation of a unicode string contains at most the same 1053 // number of code units as a UTF-8 representation. Allocate that much 1054 // space, plus one for the final null character. 1055 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1); 1056 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data(); 1057 llvm::UTF16 *ToPtr = &ToBuf[0]; 1058 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits, 1059 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion); 1060 uint32_t StringLength = ToPtr - &ToBuf[0]; 1061 // Add null terminator 1062 *ToPtr = 0; 1063 // Flags: 2 indicates UTF-16 encoding 1064 Fields.addInt(Int32Ty, 2); 1065 // Number of UTF-16 codepoints 1066 Fields.addInt(Int32Ty, StringLength); 1067 // Number of bytes 1068 Fields.addInt(Int32Ty, StringLength * 2); 1069 // Hash. Not currently initialised by the compiler. 1070 Fields.addInt(Int32Ty, 0); 1071 // pointer to the data string. 1072 auto Arr = llvm::makeArrayRef(&ToBuf[0], ToPtr+1); 1073 auto *C = llvm::ConstantDataArray::get(VMContext, Arr); 1074 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(), 1075 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); 1076 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1077 Fields.add(Buffer); 1078 } else { 1079 // Flags: 0 indicates ASCII encoding 1080 Fields.addInt(Int32Ty, 0); 1081 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint 1082 Fields.addInt(Int32Ty, Str.size()); 1083 // Number of bytes 1084 Fields.addInt(Int32Ty, Str.size()); 1085 // Hash. Not currently initialised by the compiler. 1086 Fields.addInt(Int32Ty, 0); 1087 // Data pointer 1088 Fields.add(MakeConstantString(Str)); 1089 } 1090 std::string StringName; 1091 bool isNamed = !isNonASCII; 1092 if (isNamed) { 1093 StringName = ".objc_str_"; 1094 for (int i=0,e=Str.size() ; i<e ; ++i) { 1095 unsigned char c = Str[i]; 1096 if (isalnum(c)) 1097 StringName += c; 1098 else if (c == ' ') 1099 StringName += '_'; 1100 else { 1101 isNamed = false; 1102 break; 1103 } 1104 } 1105 } 1106 auto *ObjCStrGV = 1107 Fields.finishAndCreateGlobal( 1108 isNamed ? StringRef(StringName) : ".objc_string", 1109 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage 1110 : llvm::GlobalValue::PrivateLinkage); 1111 ObjCStrGV->setSection(sectionName<ConstantStringSection>()); 1112 if (isNamed) { 1113 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName)); 1114 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1115 } 1116 if (CGM.getTriple().isOSBinFormatCOFF()) { 1117 std::pair<llvm::Constant*, int> v{ObjCStrGV, 0}; 1118 EarlyInitList.emplace_back(Sym, v); 1119 } 1120 llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy); 1121 ObjCStrings[Str] = ObjCStr; 1122 ConstantStrings.push_back(ObjCStr); 1123 return ConstantAddress(ObjCStr, Align); 1124 } 1125 1126 void PushProperty(ConstantArrayBuilder &PropertiesArray, 1127 const ObjCPropertyDecl *property, 1128 const Decl *OCD, 1129 bool isSynthesized=true, bool 1130 isDynamic=true) override { 1131 // struct objc_property 1132 // { 1133 // const char *name; 1134 // const char *attributes; 1135 // const char *type; 1136 // SEL getter; 1137 // SEL setter; 1138 // }; 1139 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 1140 ASTContext &Context = CGM.getContext(); 1141 Fields.add(MakeConstantString(property->getNameAsString())); 1142 std::string TypeStr = 1143 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD); 1144 Fields.add(MakeConstantString(TypeStr)); 1145 std::string typeStr; 1146 Context.getObjCEncodingForType(property->getType(), typeStr); 1147 Fields.add(MakeConstantString(typeStr)); 1148 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 1149 if (accessor) { 1150 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 1151 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr)); 1152 } else { 1153 Fields.add(NULLPtr); 1154 } 1155 }; 1156 addPropertyMethod(property->getGetterMethodDecl()); 1157 addPropertyMethod(property->getSetterMethodDecl()); 1158 Fields.finishAndAddTo(PropertiesArray); 1159 } 1160 1161 llvm::Constant * 1162 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override { 1163 // struct objc_protocol_method_description 1164 // { 1165 // SEL selector; 1166 // const char *types; 1167 // }; 1168 llvm::StructType *ObjCMethodDescTy = 1169 llvm::StructType::get(CGM.getLLVMContext(), 1170 { PtrToInt8Ty, PtrToInt8Ty }); 1171 ASTContext &Context = CGM.getContext(); 1172 ConstantInitBuilder Builder(CGM); 1173 // struct objc_protocol_method_description_list 1174 // { 1175 // int count; 1176 // int size; 1177 // struct objc_protocol_method_description methods[]; 1178 // }; 1179 auto MethodList = Builder.beginStruct(); 1180 // int count; 1181 MethodList.addInt(IntTy, Methods.size()); 1182 // int size; // sizeof(struct objc_method_description) 1183 llvm::DataLayout td(&TheModule); 1184 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) / 1185 CGM.getContext().getCharWidth()); 1186 // struct objc_method_description[] 1187 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 1188 for (auto *M : Methods) { 1189 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 1190 Method.add(CGObjCGNU::GetConstantSelector(M)); 1191 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true))); 1192 Method.finishAndAddTo(MethodArray); 1193 } 1194 MethodArray.finishAndAddTo(MethodList); 1195 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list", 1196 CGM.getPointerAlign()); 1197 } 1198 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD) 1199 override { 1200 SmallVector<llvm::Constant*, 16> Protocols; 1201 for (const auto *PI : OCD->getReferencedProtocols()) 1202 Protocols.push_back( 1203 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI), 1204 ProtocolPtrTy)); 1205 return GenerateProtocolList(Protocols); 1206 } 1207 1208 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 1209 llvm::Value *cmd, MessageSendInfo &MSI) override { 1210 // Don't access the slot unless we're trying to cache the result. 1211 CGBuilderTy &Builder = CGF.Builder; 1212 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, ObjCSuper, 1213 PtrToObjCSuperTy).getPointer(), cmd}; 1214 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 1215 } 1216 1217 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) { 1218 std::string SymbolName = SymbolForClassRef(Name, isWeak); 1219 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName); 1220 if (ClassSymbol) 1221 return ClassSymbol; 1222 ClassSymbol = new llvm::GlobalVariable(TheModule, 1223 IdTy, false, llvm::GlobalValue::ExternalLinkage, 1224 nullptr, SymbolName); 1225 // If this is a weak symbol, then we are creating a valid definition for 1226 // the symbol, pointing to a weak definition of the real class pointer. If 1227 // this is not a weak reference, then we are expecting another compilation 1228 // unit to provide the real indirection symbol. 1229 if (isWeak) 1230 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule, 1231 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage, 1232 nullptr, SymbolForClass(Name))); 1233 else { 1234 if (CGM.getTriple().isOSBinFormatCOFF()) { 1235 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 1236 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 1237 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 1238 1239 const ObjCInterfaceDecl *OID = nullptr; 1240 for (const auto &Result : DC->lookup(&II)) 1241 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result))) 1242 break; 1243 1244 // The first Interface we find may be a @class, 1245 // which should only be treated as the source of 1246 // truth in the absence of a true declaration. 1247 assert(OID && "Failed to find ObjCInterfaceDecl"); 1248 const ObjCInterfaceDecl *OIDDef = OID->getDefinition(); 1249 if (OIDDef != nullptr) 1250 OID = OIDDef; 1251 1252 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1253 if (OID->hasAttr<DLLImportAttr>()) 1254 Storage = llvm::GlobalValue::DLLImportStorageClass; 1255 else if (OID->hasAttr<DLLExportAttr>()) 1256 Storage = llvm::GlobalValue::DLLExportStorageClass; 1257 1258 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage); 1259 } 1260 } 1261 assert(ClassSymbol->getName() == SymbolName); 1262 return ClassSymbol; 1263 } 1264 llvm::Value *GetClassNamed(CodeGenFunction &CGF, 1265 const std::string &Name, 1266 bool isWeak) override { 1267 return CGF.Builder.CreateLoad(Address(GetClassVar(Name, isWeak), 1268 CGM.getPointerAlign())); 1269 } 1270 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) { 1271 // typedef enum { 1272 // ownership_invalid = 0, 1273 // ownership_strong = 1, 1274 // ownership_weak = 2, 1275 // ownership_unsafe = 3 1276 // } ivar_ownership; 1277 int Flag; 1278 switch (Ownership) { 1279 case Qualifiers::OCL_Strong: 1280 Flag = 1; 1281 break; 1282 case Qualifiers::OCL_Weak: 1283 Flag = 2; 1284 break; 1285 case Qualifiers::OCL_ExplicitNone: 1286 Flag = 3; 1287 break; 1288 case Qualifiers::OCL_None: 1289 case Qualifiers::OCL_Autoreleasing: 1290 assert(Ownership != Qualifiers::OCL_Autoreleasing); 1291 Flag = 0; 1292 } 1293 return Flag; 1294 } 1295 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1296 ArrayRef<llvm::Constant *> IvarTypes, 1297 ArrayRef<llvm::Constant *> IvarOffsets, 1298 ArrayRef<llvm::Constant *> IvarAlign, 1299 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override { 1300 llvm_unreachable("Method should not be called!"); 1301 } 1302 1303 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override { 1304 std::string Name = SymbolForProtocol(ProtocolName); 1305 auto *GV = TheModule.getGlobalVariable(Name); 1306 if (!GV) { 1307 // Emit a placeholder symbol. 1308 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false, 1309 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1310 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1311 } 1312 return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy); 1313 } 1314 1315 /// Existing protocol references. 1316 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs; 1317 1318 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1319 const ObjCProtocolDecl *PD) override { 1320 auto Name = PD->getNameAsString(); 1321 auto *&Ref = ExistingProtocolRefs[Name]; 1322 if (!Ref) { 1323 auto *&Protocol = ExistingProtocols[Name]; 1324 if (!Protocol) 1325 Protocol = GenerateProtocolRef(PD); 1326 std::string RefName = SymbolForProtocolRef(Name); 1327 assert(!TheModule.getGlobalVariable(RefName)); 1328 // Emit a reference symbol. 1329 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, 1330 false, llvm::GlobalValue::LinkOnceODRLinkage, 1331 llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName); 1332 GV->setComdat(TheModule.getOrInsertComdat(RefName)); 1333 GV->setSection(sectionName<ProtocolReferenceSection>()); 1334 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1335 Ref = GV; 1336 } 1337 EmittedProtocolRef = true; 1338 return CGF.Builder.CreateAlignedLoad(Ref, CGM.getPointerAlign()); 1339 } 1340 1341 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) { 1342 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy, 1343 Protocols.size()); 1344 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1345 Protocols); 1346 ConstantInitBuilder builder(CGM); 1347 auto ProtocolBuilder = builder.beginStruct(); 1348 ProtocolBuilder.addNullPointer(PtrTy); 1349 ProtocolBuilder.addInt(SizeTy, Protocols.size()); 1350 ProtocolBuilder.add(ProtocolArray); 1351 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list", 1352 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage); 1353 } 1354 1355 void GenerateProtocol(const ObjCProtocolDecl *PD) override { 1356 // Do nothing - we only emit referenced protocols. 1357 } 1358 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override { 1359 std::string ProtocolName = PD->getNameAsString(); 1360 auto *&Protocol = ExistingProtocols[ProtocolName]; 1361 if (Protocol) 1362 return Protocol; 1363 1364 EmittedProtocol = true; 1365 1366 auto SymName = SymbolForProtocol(ProtocolName); 1367 auto *OldGV = TheModule.getGlobalVariable(SymName); 1368 1369 // Use the protocol definition, if there is one. 1370 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1371 PD = Def; 1372 else { 1373 // If there is no definition, then create an external linkage symbol and 1374 // hope that someone else fills it in for us (and fail to link if they 1375 // don't). 1376 assert(!OldGV); 1377 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy, 1378 /*isConstant*/false, 1379 llvm::GlobalValue::ExternalLinkage, nullptr, SymName); 1380 return Protocol; 1381 } 1382 1383 SmallVector<llvm::Constant*, 16> Protocols; 1384 for (const auto *PI : PD->protocols()) 1385 Protocols.push_back( 1386 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI), 1387 ProtocolPtrTy)); 1388 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1389 1390 // Collect information about methods 1391 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList; 1392 llvm::Constant *ClassMethodList, *OptionalClassMethodList; 1393 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList, 1394 OptionalInstanceMethodList); 1395 EmitProtocolMethodList(PD->class_methods(), ClassMethodList, 1396 OptionalClassMethodList); 1397 1398 // The isa pointer must be set to a magic number so the runtime knows it's 1399 // the correct layout. 1400 ConstantInitBuilder builder(CGM); 1401 auto ProtocolBuilder = builder.beginStruct(); 1402 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr( 1403 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1404 ProtocolBuilder.add(MakeConstantString(ProtocolName)); 1405 ProtocolBuilder.add(ProtocolList); 1406 ProtocolBuilder.add(InstanceMethodList); 1407 ProtocolBuilder.add(ClassMethodList); 1408 ProtocolBuilder.add(OptionalInstanceMethodList); 1409 ProtocolBuilder.add(OptionalClassMethodList); 1410 // Required instance properties 1411 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false)); 1412 // Optional instance properties 1413 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true)); 1414 // Required class properties 1415 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false)); 1416 // Optional class properties 1417 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true)); 1418 1419 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName, 1420 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1421 GV->setSection(sectionName<ProtocolSection>()); 1422 GV->setComdat(TheModule.getOrInsertComdat(SymName)); 1423 if (OldGV) { 1424 OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV, 1425 OldGV->getType())); 1426 OldGV->removeFromParent(); 1427 GV->setName(SymName); 1428 } 1429 Protocol = GV; 1430 return GV; 1431 } 1432 llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) { 1433 if (Val->getType() == Ty) 1434 return Val; 1435 return llvm::ConstantExpr::getBitCast(Val, Ty); 1436 } 1437 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 1438 const std::string &TypeEncoding) override { 1439 return GetConstantSelector(Sel, TypeEncoding); 1440 } 1441 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) { 1442 if (TypeEncoding.empty()) 1443 return NULLPtr; 1444 std::string MangledTypes = std::string(TypeEncoding); 1445 std::replace(MangledTypes.begin(), MangledTypes.end(), 1446 '@', '\1'); 1447 std::string TypesVarName = ".objc_sel_types_" + MangledTypes; 1448 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName); 1449 if (!TypesGlobal) { 1450 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, 1451 TypeEncoding); 1452 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(), 1453 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName); 1454 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName)); 1455 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1456 TypesGlobal = GV; 1457 } 1458 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(), 1459 TypesGlobal, Zeros); 1460 } 1461 llvm::Constant *GetConstantSelector(Selector Sel, 1462 const std::string &TypeEncoding) override { 1463 // @ is used as a special character in symbol names (used for symbol 1464 // versioning), so mangle the name to not include it. Replace it with a 1465 // character that is not a valid type encoding character (and, being 1466 // non-printable, never will be!) 1467 std::string MangledTypes = TypeEncoding; 1468 std::replace(MangledTypes.begin(), MangledTypes.end(), 1469 '@', '\1'); 1470 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" + 1471 MangledTypes).str(); 1472 if (auto *GV = TheModule.getNamedGlobal(SelVarName)) 1473 return EnforceType(GV, SelectorTy); 1474 ConstantInitBuilder builder(CGM); 1475 auto SelBuilder = builder.beginStruct(); 1476 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_", 1477 true)); 1478 SelBuilder.add(GetTypeString(TypeEncoding)); 1479 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName, 1480 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1481 GV->setComdat(TheModule.getOrInsertComdat(SelVarName)); 1482 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1483 GV->setSection(sectionName<SelectorSection>()); 1484 auto *SelVal = EnforceType(GV, SelectorTy); 1485 return SelVal; 1486 } 1487 llvm::StructType *emptyStruct = nullptr; 1488 1489 /// Return pointers to the start and end of a section. On ELF platforms, we 1490 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set 1491 /// to the start and end of section names, as long as those section names are 1492 /// valid identifiers and the symbols are referenced but not defined. On 1493 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort 1494 /// by subsections and place everything that we want to reference in a middle 1495 /// subsection and then insert zero-sized symbols in subsections a and z. 1496 std::pair<llvm::Constant*,llvm::Constant*> 1497 GetSectionBounds(StringRef Section) { 1498 if (CGM.getTriple().isOSBinFormatCOFF()) { 1499 if (emptyStruct == nullptr) { 1500 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel"); 1501 emptyStruct->setBody({}, /*isPacked*/true); 1502 } 1503 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct); 1504 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) { 1505 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct, 1506 /*isConstant*/false, 1507 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix + 1508 Section); 1509 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility); 1510 Sym->setSection((Section + SecSuffix).str()); 1511 Sym->setComdat(TheModule.getOrInsertComdat((Prefix + 1512 Section).str())); 1513 Sym->setAlignment(CGM.getPointerAlign().getAsAlign()); 1514 return Sym; 1515 }; 1516 return { Sym("__start_", "$a"), Sym("__stop", "$z") }; 1517 } 1518 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy, 1519 /*isConstant*/false, 1520 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") + 1521 Section); 1522 Start->setVisibility(llvm::GlobalValue::HiddenVisibility); 1523 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy, 1524 /*isConstant*/false, 1525 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") + 1526 Section); 1527 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility); 1528 return { Start, Stop }; 1529 } 1530 CatchTypeInfo getCatchAllTypeInfo() override { 1531 return CGM.getCXXABI().getCatchAllTypeInfo(); 1532 } 1533 llvm::Function *ModuleInitFunction() override { 1534 llvm::Function *LoadFunction = llvm::Function::Create( 1535 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 1536 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function", 1537 &TheModule); 1538 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility); 1539 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function")); 1540 1541 llvm::BasicBlock *EntryBB = 1542 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 1543 CGBuilderTy B(CGM, VMContext); 1544 B.SetInsertPoint(EntryBB); 1545 ConstantInitBuilder builder(CGM); 1546 auto InitStructBuilder = builder.beginStruct(); 1547 InitStructBuilder.addInt(Int64Ty, 0); 1548 auto §ionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames; 1549 for (auto *s : sectionVec) { 1550 auto bounds = GetSectionBounds(s); 1551 InitStructBuilder.add(bounds.first); 1552 InitStructBuilder.add(bounds.second); 1553 } 1554 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init", 1555 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1556 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility); 1557 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init")); 1558 1559 CallRuntimeFunction(B, "__objc_load", {InitStruct});; 1560 B.CreateRetVoid(); 1561 // Make sure that the optimisers don't delete this function. 1562 CGM.addCompilerUsedGlobal(LoadFunction); 1563 // FIXME: Currently ELF only! 1564 // We have to do this by hand, rather than with @llvm.ctors, so that the 1565 // linker can remove the duplicate invocations. 1566 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(), 1567 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage, 1568 LoadFunction, ".objc_ctor"); 1569 // Check that this hasn't been renamed. This shouldn't happen, because 1570 // this function should be called precisely once. 1571 assert(InitVar->getName() == ".objc_ctor"); 1572 // In Windows, initialisers are sorted by the suffix. XCL is for library 1573 // initialisers, which run before user initialisers. We are running 1574 // Objective-C loads at the end of library load. This means +load methods 1575 // will run before any other static constructors, but that static 1576 // constructors can see a fully initialised Objective-C state. 1577 if (CGM.getTriple().isOSBinFormatCOFF()) 1578 InitVar->setSection(".CRT$XCLz"); 1579 else 1580 { 1581 if (CGM.getCodeGenOpts().UseInitArray) 1582 InitVar->setSection(".init_array"); 1583 else 1584 InitVar->setSection(".ctors"); 1585 } 1586 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility); 1587 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor")); 1588 CGM.addUsedGlobal(InitVar); 1589 for (auto *C : Categories) { 1590 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts()); 1591 Cat->setSection(sectionName<CategorySection>()); 1592 CGM.addUsedGlobal(Cat); 1593 } 1594 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init, 1595 StringRef Section) { 1596 auto nullBuilder = builder.beginStruct(); 1597 for (auto *F : Init) 1598 nullBuilder.add(F); 1599 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 1600 false, llvm::GlobalValue::LinkOnceODRLinkage); 1601 GV->setSection(Section); 1602 GV->setComdat(TheModule.getOrInsertComdat(Name)); 1603 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1604 CGM.addUsedGlobal(GV); 1605 return GV; 1606 }; 1607 for (auto clsAlias : ClassAliases) 1608 createNullGlobal(std::string(".objc_class_alias") + 1609 clsAlias.second, { MakeConstantString(clsAlias.second), 1610 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>()); 1611 // On ELF platforms, add a null value for each special section so that we 1612 // can always guarantee that the _start and _stop symbols will exist and be 1613 // meaningful. This is not required on COFF platforms, where our start and 1614 // stop symbols will create the section. 1615 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1616 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr}, 1617 sectionName<SelectorSection>()); 1618 if (Categories.empty()) 1619 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr, 1620 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, 1621 sectionName<CategorySection>()); 1622 if (!EmittedClass) { 1623 createNullGlobal(".objc_null_cls_init_ref", NULLPtr, 1624 sectionName<ClassSection>()); 1625 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr }, 1626 sectionName<ClassReferenceSection>()); 1627 } 1628 if (!EmittedProtocol) 1629 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr, 1630 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, 1631 NULLPtr}, sectionName<ProtocolSection>()); 1632 if (!EmittedProtocolRef) 1633 createNullGlobal(".objc_null_protocol_ref", {NULLPtr}, 1634 sectionName<ProtocolReferenceSection>()); 1635 if (ClassAliases.empty()) 1636 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr }, 1637 sectionName<ClassAliasSection>()); 1638 if (ConstantStrings.empty()) { 1639 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0); 1640 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero, 1641 i32Zero, i32Zero, i32Zero, NULLPtr }, 1642 sectionName<ConstantStringSection>()); 1643 } 1644 } 1645 ConstantStrings.clear(); 1646 Categories.clear(); 1647 Classes.clear(); 1648 1649 if (EarlyInitList.size() > 0) { 1650 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, 1651 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init", 1652 &CGM.getModule()); 1653 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", 1654 Init)); 1655 for (const auto &lateInit : EarlyInitList) { 1656 auto *global = TheModule.getGlobalVariable(lateInit.first); 1657 if (global) { 1658 b.CreateAlignedStore( 1659 global, 1660 b.CreateStructGEP(lateInit.second.first, lateInit.second.second), 1661 CGM.getPointerAlign().getAsAlign()); 1662 } 1663 } 1664 b.CreateRetVoid(); 1665 // We can't use the normal LLVM global initialisation array, because we 1666 // need to specify that this runs early in library initialisation. 1667 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 1668 /*isConstant*/true, llvm::GlobalValue::InternalLinkage, 1669 Init, ".objc_early_init_ptr"); 1670 InitVar->setSection(".CRT$XCLb"); 1671 CGM.addUsedGlobal(InitVar); 1672 } 1673 return nullptr; 1674 } 1675 /// In the v2 ABI, ivar offset variables use the type encoding in their name 1676 /// to trigger linker failures if the types don't match. 1677 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 1678 const ObjCIvarDecl *Ivar) override { 1679 std::string TypeEncoding; 1680 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding); 1681 // Prevent the @ from being interpreted as a symbol version. 1682 std::replace(TypeEncoding.begin(), TypeEncoding.end(), 1683 '@', '\1'); 1684 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 1685 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding; 1686 return Name; 1687 } 1688 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 1689 const ObjCInterfaceDecl *Interface, 1690 const ObjCIvarDecl *Ivar) override { 1691 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar); 1692 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 1693 if (!IvarOffsetPointer) 1694 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false, 1695 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1696 CharUnits Align = CGM.getIntAlign(); 1697 llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(IvarOffsetPointer, Align); 1698 if (Offset->getType() != PtrDiffTy) 1699 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 1700 return Offset; 1701 } 1702 void GenerateClass(const ObjCImplementationDecl *OID) override { 1703 ASTContext &Context = CGM.getContext(); 1704 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF(); 1705 1706 // Get the class name 1707 ObjCInterfaceDecl *classDecl = 1708 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 1709 std::string className = classDecl->getNameAsString(); 1710 auto *classNameConstant = MakeConstantString(className); 1711 1712 ConstantInitBuilder builder(CGM); 1713 auto metaclassFields = builder.beginStruct(); 1714 // struct objc_class *isa; 1715 metaclassFields.addNullPointer(PtrTy); 1716 // struct objc_class *super_class; 1717 metaclassFields.addNullPointer(PtrTy); 1718 // const char *name; 1719 metaclassFields.add(classNameConstant); 1720 // long version; 1721 metaclassFields.addInt(LongTy, 0); 1722 // unsigned long info; 1723 // objc_class_flag_meta 1724 metaclassFields.addInt(LongTy, 1); 1725 // long instance_size; 1726 // Setting this to zero is consistent with the older ABI, but it might be 1727 // more sensible to set this to sizeof(struct objc_class) 1728 metaclassFields.addInt(LongTy, 0); 1729 // struct objc_ivar_list *ivars; 1730 metaclassFields.addNullPointer(PtrTy); 1731 // struct objc_method_list *methods 1732 // FIXME: Almost identical code is copied and pasted below for the 1733 // class, but refactoring it cleanly requires C++14 generic lambdas. 1734 if (OID->classmeth_begin() == OID->classmeth_end()) 1735 metaclassFields.addNullPointer(PtrTy); 1736 else { 1737 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 1738 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 1739 OID->classmeth_end()); 1740 metaclassFields.addBitCast( 1741 GenerateMethodList(className, "", ClassMethods, true), 1742 PtrTy); 1743 } 1744 // void *dtable; 1745 metaclassFields.addNullPointer(PtrTy); 1746 // IMP cxx_construct; 1747 metaclassFields.addNullPointer(PtrTy); 1748 // IMP cxx_destruct; 1749 metaclassFields.addNullPointer(PtrTy); 1750 // struct objc_class *subclass_list 1751 metaclassFields.addNullPointer(PtrTy); 1752 // struct objc_class *sibling_class 1753 metaclassFields.addNullPointer(PtrTy); 1754 // struct objc_protocol_list *protocols; 1755 metaclassFields.addNullPointer(PtrTy); 1756 // struct reference_list *extra_data; 1757 metaclassFields.addNullPointer(PtrTy); 1758 // long abi_version; 1759 metaclassFields.addInt(LongTy, 0); 1760 // struct objc_property_list *properties 1761 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true)); 1762 1763 auto *metaclass = metaclassFields.finishAndCreateGlobal( 1764 ManglePublicSymbol("OBJC_METACLASS_") + className, 1765 CGM.getPointerAlign()); 1766 1767 auto classFields = builder.beginStruct(); 1768 // struct objc_class *isa; 1769 classFields.add(metaclass); 1770 // struct objc_class *super_class; 1771 // Get the superclass name. 1772 const ObjCInterfaceDecl * SuperClassDecl = 1773 OID->getClassInterface()->getSuperClass(); 1774 llvm::Constant *SuperClass = nullptr; 1775 if (SuperClassDecl) { 1776 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString()); 1777 SuperClass = TheModule.getNamedGlobal(SuperClassName); 1778 if (!SuperClass) 1779 { 1780 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false, 1781 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName); 1782 if (IsCOFF) { 1783 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1784 if (SuperClassDecl->hasAttr<DLLImportAttr>()) 1785 Storage = llvm::GlobalValue::DLLImportStorageClass; 1786 else if (SuperClassDecl->hasAttr<DLLExportAttr>()) 1787 Storage = llvm::GlobalValue::DLLExportStorageClass; 1788 1789 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage); 1790 } 1791 } 1792 if (!IsCOFF) 1793 classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy)); 1794 else 1795 classFields.addNullPointer(PtrTy); 1796 } else 1797 classFields.addNullPointer(PtrTy); 1798 // const char *name; 1799 classFields.add(classNameConstant); 1800 // long version; 1801 classFields.addInt(LongTy, 0); 1802 // unsigned long info; 1803 // !objc_class_flag_meta 1804 classFields.addInt(LongTy, 0); 1805 // long instance_size; 1806 int superInstanceSize = !SuperClassDecl ? 0 : 1807 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 1808 // Instance size is negative for classes that have not yet had their ivar 1809 // layout calculated. 1810 classFields.addInt(LongTy, 1811 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() - 1812 superInstanceSize)); 1813 1814 if (classDecl->all_declared_ivar_begin() == nullptr) 1815 classFields.addNullPointer(PtrTy); 1816 else { 1817 int ivar_count = 0; 1818 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1819 IVD = IVD->getNextIvar()) ivar_count++; 1820 llvm::DataLayout td(&TheModule); 1821 // struct objc_ivar_list *ivars; 1822 ConstantInitBuilder b(CGM); 1823 auto ivarListBuilder = b.beginStruct(); 1824 // int count; 1825 ivarListBuilder.addInt(IntTy, ivar_count); 1826 // size_t size; 1827 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1828 PtrToInt8Ty, 1829 PtrToInt8Ty, 1830 PtrToInt8Ty, 1831 Int32Ty, 1832 Int32Ty); 1833 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) / 1834 CGM.getContext().getCharWidth()); 1835 // struct objc_ivar ivars[] 1836 auto ivarArrayBuilder = ivarListBuilder.beginArray(); 1837 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1838 IVD = IVD->getNextIvar()) { 1839 auto ivarTy = IVD->getType(); 1840 auto ivarBuilder = ivarArrayBuilder.beginStruct(); 1841 // const char *name; 1842 ivarBuilder.add(MakeConstantString(IVD->getNameAsString())); 1843 // const char *type; 1844 std::string TypeStr; 1845 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true); 1846 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true); 1847 ivarBuilder.add(MakeConstantString(TypeStr)); 1848 // int *offset; 1849 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 1850 uint64_t Offset = BaseOffset - superInstanceSize; 1851 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 1852 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD); 1853 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 1854 if (OffsetVar) 1855 OffsetVar->setInitializer(OffsetValue); 1856 else 1857 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 1858 false, llvm::GlobalValue::ExternalLinkage, 1859 OffsetValue, OffsetName); 1860 auto ivarVisibility = 1861 (IVD->getAccessControl() == ObjCIvarDecl::Private || 1862 IVD->getAccessControl() == ObjCIvarDecl::Package || 1863 classDecl->getVisibility() == HiddenVisibility) ? 1864 llvm::GlobalValue::HiddenVisibility : 1865 llvm::GlobalValue::DefaultVisibility; 1866 OffsetVar->setVisibility(ivarVisibility); 1867 ivarBuilder.add(OffsetVar); 1868 // Ivar size 1869 ivarBuilder.addInt(Int32Ty, 1870 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity()); 1871 // Alignment will be stored as a base-2 log of the alignment. 1872 unsigned align = 1873 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity()); 1874 // Objects that require more than 2^64-byte alignment should be impossible! 1875 assert(align < 64); 1876 // uint32_t flags; 1877 // Bits 0-1 are ownership. 1878 // Bit 2 indicates an extended type encoding 1879 // Bits 3-8 contain log2(aligment) 1880 ivarBuilder.addInt(Int32Ty, 1881 (align << 3) | (1<<2) | 1882 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime())); 1883 ivarBuilder.finishAndAddTo(ivarArrayBuilder); 1884 } 1885 ivarArrayBuilder.finishAndAddTo(ivarListBuilder); 1886 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list", 1887 CGM.getPointerAlign(), /*constant*/ false, 1888 llvm::GlobalValue::PrivateLinkage); 1889 classFields.add(ivarList); 1890 } 1891 // struct objc_method_list *methods 1892 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 1893 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 1894 OID->instmeth_end()); 1895 for (auto *propImpl : OID->property_impls()) 1896 if (propImpl->getPropertyImplementation() == 1897 ObjCPropertyImplDecl::Synthesize) { 1898 auto addIfExists = [&](const ObjCMethodDecl *OMD) { 1899 if (OMD && OMD->hasBody()) 1900 InstanceMethods.push_back(OMD); 1901 }; 1902 addIfExists(propImpl->getGetterMethodDecl()); 1903 addIfExists(propImpl->getSetterMethodDecl()); 1904 } 1905 1906 if (InstanceMethods.size() == 0) 1907 classFields.addNullPointer(PtrTy); 1908 else 1909 classFields.addBitCast( 1910 GenerateMethodList(className, "", InstanceMethods, false), 1911 PtrTy); 1912 // void *dtable; 1913 classFields.addNullPointer(PtrTy); 1914 // IMP cxx_construct; 1915 classFields.addNullPointer(PtrTy); 1916 // IMP cxx_destruct; 1917 classFields.addNullPointer(PtrTy); 1918 // struct objc_class *subclass_list 1919 classFields.addNullPointer(PtrTy); 1920 // struct objc_class *sibling_class 1921 classFields.addNullPointer(PtrTy); 1922 // struct objc_protocol_list *protocols; 1923 SmallVector<llvm::Constant*, 16> Protocols; 1924 for (const auto *I : classDecl->protocols()) 1925 Protocols.push_back( 1926 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I), 1927 ProtocolPtrTy)); 1928 if (Protocols.empty()) 1929 classFields.addNullPointer(PtrTy); 1930 else 1931 classFields.add(GenerateProtocolList(Protocols)); 1932 // struct reference_list *extra_data; 1933 classFields.addNullPointer(PtrTy); 1934 // long abi_version; 1935 classFields.addInt(LongTy, 0); 1936 // struct objc_property_list *properties 1937 classFields.add(GeneratePropertyList(OID, classDecl)); 1938 1939 auto *classStruct = 1940 classFields.finishAndCreateGlobal(SymbolForClass(className), 1941 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1942 1943 auto *classRefSymbol = GetClassVar(className); 1944 classRefSymbol->setSection(sectionName<ClassReferenceSection>()); 1945 classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy)); 1946 1947 if (IsCOFF) { 1948 // we can't import a class struct. 1949 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) { 1950 cast<llvm::GlobalValue>(classStruct)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1951 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1952 } 1953 1954 if (SuperClass) { 1955 std::pair<llvm::Constant*, int> v{classStruct, 1}; 1956 EarlyInitList.emplace_back(std::string(SuperClass->getName()), 1957 std::move(v)); 1958 } 1959 1960 } 1961 1962 1963 // Resolve the class aliases, if they exist. 1964 // FIXME: Class pointer aliases shouldn't exist! 1965 if (ClassPtrAlias) { 1966 ClassPtrAlias->replaceAllUsesWith( 1967 llvm::ConstantExpr::getBitCast(classStruct, IdTy)); 1968 ClassPtrAlias->eraseFromParent(); 1969 ClassPtrAlias = nullptr; 1970 } 1971 if (auto Placeholder = 1972 TheModule.getNamedGlobal(SymbolForClass(className))) 1973 if (Placeholder != classStruct) { 1974 Placeholder->replaceAllUsesWith( 1975 llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType())); 1976 Placeholder->eraseFromParent(); 1977 classStruct->setName(SymbolForClass(className)); 1978 } 1979 if (MetaClassPtrAlias) { 1980 MetaClassPtrAlias->replaceAllUsesWith( 1981 llvm::ConstantExpr::getBitCast(metaclass, IdTy)); 1982 MetaClassPtrAlias->eraseFromParent(); 1983 MetaClassPtrAlias = nullptr; 1984 } 1985 assert(classStruct->getName() == SymbolForClass(className)); 1986 1987 auto classInitRef = new llvm::GlobalVariable(TheModule, 1988 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage, 1989 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className); 1990 classInitRef->setSection(sectionName<ClassSection>()); 1991 CGM.addUsedGlobal(classInitRef); 1992 1993 EmittedClass = true; 1994 } 1995 public: 1996 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) { 1997 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 1998 PtrToObjCSuperTy, SelectorTy); 1999 // struct objc_property 2000 // { 2001 // const char *name; 2002 // const char *attributes; 2003 // const char *type; 2004 // SEL getter; 2005 // SEL setter; 2006 // } 2007 PropertyMetadataTy = 2008 llvm::StructType::get(CGM.getLLVMContext(), 2009 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); 2010 } 2011 2012 }; 2013 2014 const char *const CGObjCGNUstep2::SectionsBaseNames[8] = 2015 { 2016 "__objc_selectors", 2017 "__objc_classes", 2018 "__objc_class_refs", 2019 "__objc_cats", 2020 "__objc_protocols", 2021 "__objc_protocol_refs", 2022 "__objc_class_aliases", 2023 "__objc_constant_string" 2024 }; 2025 2026 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] = 2027 { 2028 ".objcrt$SEL", 2029 ".objcrt$CLS", 2030 ".objcrt$CLR", 2031 ".objcrt$CAT", 2032 ".objcrt$PCL", 2033 ".objcrt$PCR", 2034 ".objcrt$CAL", 2035 ".objcrt$STR" 2036 }; 2037 2038 /// Support for the ObjFW runtime. 2039 class CGObjCObjFW: public CGObjCGNU { 2040 protected: 2041 /// The GCC ABI message lookup function. Returns an IMP pointing to the 2042 /// method implementation for this message. 2043 LazyRuntimeFunction MsgLookupFn; 2044 /// stret lookup function. While this does not seem to make sense at the 2045 /// first look, this is required to call the correct forwarding function. 2046 LazyRuntimeFunction MsgLookupFnSRet; 2047 /// The GCC ABI superclass message lookup function. Takes a pointer to a 2048 /// structure describing the receiver and the class, and a selector as 2049 /// arguments. Returns the IMP for the corresponding method. 2050 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; 2051 2052 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 2053 llvm::Value *cmd, llvm::MDNode *node, 2054 MessageSendInfo &MSI) override { 2055 CGBuilderTy &Builder = CGF.Builder; 2056 llvm::Value *args[] = { 2057 EnforceType(Builder, Receiver, IdTy), 2058 EnforceType(Builder, cmd, SelectorTy) }; 2059 2060 llvm::CallBase *imp; 2061 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2062 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); 2063 else 2064 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 2065 2066 imp->setMetadata(msgSendMDKind, node); 2067 return imp; 2068 } 2069 2070 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 2071 llvm::Value *cmd, MessageSendInfo &MSI) override { 2072 CGBuilderTy &Builder = CGF.Builder; 2073 llvm::Value *lookupArgs[] = { 2074 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd, 2075 }; 2076 2077 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2078 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); 2079 else 2080 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 2081 } 2082 2083 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, 2084 bool isWeak) override { 2085 if (isWeak) 2086 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); 2087 2088 EmitClassRef(Name); 2089 std::string SymbolName = "_OBJC_CLASS_" + Name; 2090 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); 2091 if (!ClassSymbol) 2092 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2093 llvm::GlobalValue::ExternalLinkage, 2094 nullptr, SymbolName); 2095 return ClassSymbol; 2096 } 2097 2098 public: 2099 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { 2100 // IMP objc_msg_lookup(id, SEL); 2101 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 2102 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, 2103 SelectorTy); 2104 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 2105 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2106 PtrToObjCSuperTy, SelectorTy); 2107 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, 2108 PtrToObjCSuperTy, SelectorTy); 2109 } 2110 }; 2111 } // end anonymous namespace 2112 2113 /// Emits a reference to a dummy variable which is emitted with each class. 2114 /// This ensures that a linker error will be generated when trying to link 2115 /// together modules where a referenced class is not defined. 2116 void CGObjCGNU::EmitClassRef(const std::string &className) { 2117 std::string symbolRef = "__objc_class_ref_" + className; 2118 // Don't emit two copies of the same symbol 2119 if (TheModule.getGlobalVariable(symbolRef)) 2120 return; 2121 std::string symbolName = "__objc_class_name_" + className; 2122 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 2123 if (!ClassSymbol) { 2124 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2125 llvm::GlobalValue::ExternalLinkage, 2126 nullptr, symbolName); 2127 } 2128 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 2129 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 2130 } 2131 2132 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 2133 unsigned protocolClassVersion, unsigned classABI) 2134 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 2135 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr), 2136 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion), 2137 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) { 2138 2139 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 2140 usesSEHExceptions = 2141 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment(); 2142 2143 CodeGenTypes &Types = CGM.getTypes(); 2144 IntTy = cast<llvm::IntegerType>( 2145 Types.ConvertType(CGM.getContext().IntTy)); 2146 LongTy = cast<llvm::IntegerType>( 2147 Types.ConvertType(CGM.getContext().LongTy)); 2148 SizeTy = cast<llvm::IntegerType>( 2149 Types.ConvertType(CGM.getContext().getSizeType())); 2150 PtrDiffTy = cast<llvm::IntegerType>( 2151 Types.ConvertType(CGM.getContext().getPointerDiffType())); 2152 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 2153 2154 Int8Ty = llvm::Type::getInt8Ty(VMContext); 2155 // C string type. Used in lots of places. 2156 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 2157 ProtocolPtrTy = llvm::PointerType::getUnqual( 2158 Types.ConvertType(CGM.getContext().getObjCProtoType())); 2159 2160 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 2161 Zeros[1] = Zeros[0]; 2162 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2163 // Get the selector Type. 2164 QualType selTy = CGM.getContext().getObjCSelType(); 2165 if (QualType() == selTy) { 2166 SelectorTy = PtrToInt8Ty; 2167 } else { 2168 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 2169 } 2170 2171 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 2172 PtrTy = PtrToInt8Ty; 2173 2174 Int32Ty = llvm::Type::getInt32Ty(VMContext); 2175 Int64Ty = llvm::Type::getInt64Ty(VMContext); 2176 2177 IntPtrTy = 2178 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty; 2179 2180 // Object type 2181 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 2182 ASTIdTy = CanQualType(); 2183 if (UnqualIdTy != QualType()) { 2184 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 2185 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2186 } else { 2187 IdTy = PtrToInt8Ty; 2188 } 2189 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 2190 ProtocolTy = llvm::StructType::get(IdTy, 2191 PtrToInt8Ty, // name 2192 PtrToInt8Ty, // protocols 2193 PtrToInt8Ty, // instance methods 2194 PtrToInt8Ty, // class methods 2195 PtrToInt8Ty, // optional instance methods 2196 PtrToInt8Ty, // optional class methods 2197 PtrToInt8Ty, // properties 2198 PtrToInt8Ty);// optional properties 2199 2200 // struct objc_property_gsv1 2201 // { 2202 // const char *name; 2203 // char attributes; 2204 // char attributes2; 2205 // char unused1; 2206 // char unused2; 2207 // const char *getter_name; 2208 // const char *getter_types; 2209 // const char *setter_name; 2210 // const char *setter_types; 2211 // } 2212 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { 2213 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, 2214 PtrToInt8Ty, PtrToInt8Ty }); 2215 2216 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy); 2217 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 2218 2219 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 2220 2221 // void objc_exception_throw(id); 2222 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2223 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2224 // int objc_sync_enter(id); 2225 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy); 2226 // int objc_sync_exit(id); 2227 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy); 2228 2229 // void objc_enumerationMutation (id) 2230 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy); 2231 2232 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 2233 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 2234 PtrDiffTy, BoolTy); 2235 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 2236 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 2237 PtrDiffTy, IdTy, BoolTy, BoolTy); 2238 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2239 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 2240 PtrDiffTy, BoolTy, BoolTy); 2241 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2242 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 2243 PtrDiffTy, BoolTy, BoolTy); 2244 2245 // IMP type 2246 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 2247 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 2248 true)); 2249 2250 const LangOptions &Opts = CGM.getLangOpts(); 2251 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 2252 RuntimeVersion = 10; 2253 2254 // Don't bother initialising the GC stuff unless we're compiling in GC mode 2255 if (Opts.getGC() != LangOptions::NonGC) { 2256 // This is a bit of an hack. We should sort this out by having a proper 2257 // CGObjCGNUstep subclass for GC, but we may want to really support the old 2258 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 2259 // Get selectors needed in GC mode 2260 RetainSel = GetNullarySelector("retain", CGM.getContext()); 2261 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 2262 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 2263 2264 // Get functions needed in GC mode 2265 2266 // id objc_assign_ivar(id, id, ptrdiff_t); 2267 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy); 2268 // id objc_assign_strongCast (id, id*) 2269 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 2270 PtrToIdTy); 2271 // id objc_assign_global(id, id*); 2272 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy); 2273 // id objc_assign_weak(id, id*); 2274 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy); 2275 // id objc_read_weak(id*); 2276 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy); 2277 // void *objc_memmove_collectable(void*, void *, size_t); 2278 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 2279 SizeTy); 2280 } 2281 } 2282 2283 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, 2284 const std::string &Name, bool isWeak) { 2285 llvm::Constant *ClassName = MakeConstantString(Name); 2286 // With the incompatible ABI, this will need to be replaced with a direct 2287 // reference to the class symbol. For the compatible nonfragile ABI we are 2288 // still performing this lookup at run time but emitting the symbol for the 2289 // class externally so that we can make the switch later. 2290 // 2291 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 2292 // with memoized versions or with static references if it's safe to do so. 2293 if (!isWeak) 2294 EmitClassRef(Name); 2295 2296 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction( 2297 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class"); 2298 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); 2299 } 2300 2301 // This has to perform the lookup every time, since posing and related 2302 // techniques can modify the name -> class mapping. 2303 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, 2304 const ObjCInterfaceDecl *OID) { 2305 auto *Value = 2306 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); 2307 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) 2308 CGM.setGVProperties(ClassSymbol, OID); 2309 return Value; 2310 } 2311 2312 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 2313 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false); 2314 if (CGM.getTriple().isOSBinFormatCOFF()) { 2315 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) { 2316 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool"); 2317 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 2318 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2319 2320 const VarDecl *VD = nullptr; 2321 for (const auto &Result : DC->lookup(&II)) 2322 if ((VD = dyn_cast<VarDecl>(Result))) 2323 break; 2324 2325 CGM.setGVProperties(ClassSymbol, VD); 2326 } 2327 } 2328 return Value; 2329 } 2330 2331 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 2332 const std::string &TypeEncoding) { 2333 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel]; 2334 llvm::GlobalAlias *SelValue = nullptr; 2335 2336 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2337 e = Types.end() ; i!=e ; i++) { 2338 if (i->first == TypeEncoding) { 2339 SelValue = i->second; 2340 break; 2341 } 2342 } 2343 if (!SelValue) { 2344 SelValue = llvm::GlobalAlias::create( 2345 SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage, 2346 ".objc_selector_" + Sel.getAsString(), &TheModule); 2347 Types.emplace_back(TypeEncoding, SelValue); 2348 } 2349 2350 return SelValue; 2351 } 2352 2353 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 2354 llvm::Value *SelValue = GetSelector(CGF, Sel); 2355 2356 // Store it to a temporary. Does this satisfy the semantics of 2357 // GetAddrOfSelector? Hopefully. 2358 Address tmp = CGF.CreateTempAlloca(SelValue->getType(), 2359 CGF.getPointerAlign()); 2360 CGF.Builder.CreateStore(SelValue, tmp); 2361 return tmp; 2362 } 2363 2364 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) { 2365 return GetTypedSelector(CGF, Sel, std::string()); 2366 } 2367 2368 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, 2369 const ObjCMethodDecl *Method) { 2370 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method); 2371 return GetTypedSelector(CGF, Method->getSelector(), SelTypes); 2372 } 2373 2374 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 2375 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 2376 // With the old ABI, there was only one kind of catchall, which broke 2377 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 2378 // a pointer indicating object catchalls, and NULL to indicate real 2379 // catchalls 2380 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2381 return MakeConstantString("@id"); 2382 } else { 2383 return nullptr; 2384 } 2385 } 2386 2387 // All other types should be Objective-C interface pointer types. 2388 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>(); 2389 assert(OPT && "Invalid @catch type."); 2390 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); 2391 assert(IDecl && "Invalid @catch type."); 2392 return MakeConstantString(IDecl->getIdentifier()->getName()); 2393 } 2394 2395 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { 2396 if (usesSEHExceptions) 2397 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T); 2398 2399 if (!CGM.getLangOpts().CPlusPlus) 2400 return CGObjCGNU::GetEHType(T); 2401 2402 // For Objective-C++, we want to provide the ability to catch both C++ and 2403 // Objective-C objects in the same function. 2404 2405 // There's a particular fixed type info for 'id'. 2406 if (T->isObjCIdType() || 2407 T->isObjCQualifiedIdType()) { 2408 llvm::Constant *IDEHType = 2409 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 2410 if (!IDEHType) 2411 IDEHType = 2412 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 2413 false, 2414 llvm::GlobalValue::ExternalLinkage, 2415 nullptr, "__objc_id_type_info"); 2416 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty); 2417 } 2418 2419 const ObjCObjectPointerType *PT = 2420 T->getAs<ObjCObjectPointerType>(); 2421 assert(PT && "Invalid @catch type."); 2422 const ObjCInterfaceType *IT = PT->getInterfaceType(); 2423 assert(IT && "Invalid @catch type."); 2424 std::string className = 2425 std::string(IT->getDecl()->getIdentifier()->getName()); 2426 2427 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 2428 2429 // Return the existing typeinfo if it exists 2430 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName); 2431 if (typeinfo) 2432 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty); 2433 2434 // Otherwise create it. 2435 2436 // vtable for gnustep::libobjc::__objc_class_type_info 2437 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 2438 // platform's name mangling. 2439 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 2440 auto *Vtable = TheModule.getGlobalVariable(vtableName); 2441 if (!Vtable) { 2442 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 2443 llvm::GlobalValue::ExternalLinkage, 2444 nullptr, vtableName); 2445 } 2446 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 2447 auto *BVtable = llvm::ConstantExpr::getBitCast( 2448 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two), 2449 PtrToInt8Ty); 2450 2451 llvm::Constant *typeName = 2452 ExportUniqueString(className, "__objc_eh_typename_"); 2453 2454 ConstantInitBuilder builder(CGM); 2455 auto fields = builder.beginStruct(); 2456 fields.add(BVtable); 2457 fields.add(typeName); 2458 llvm::Constant *TI = 2459 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className, 2460 CGM.getPointerAlign(), 2461 /*constant*/ false, 2462 llvm::GlobalValue::LinkOnceODRLinkage); 2463 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty); 2464 } 2465 2466 /// Generate an NSConstantString object. 2467 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 2468 2469 std::string Str = SL->getString().str(); 2470 CharUnits Align = CGM.getPointerAlign(); 2471 2472 // Look for an existing one 2473 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 2474 if (old != ObjCStrings.end()) 2475 return ConstantAddress(old->getValue(), Align); 2476 2477 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2478 2479 if (StringClass.empty()) StringClass = "NSConstantString"; 2480 2481 std::string Sym = "_OBJC_CLASS_"; 2482 Sym += StringClass; 2483 2484 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 2485 2486 if (!isa) 2487 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 2488 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym); 2489 else if (isa->getType() != PtrToIdTy) 2490 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 2491 2492 ConstantInitBuilder Builder(CGM); 2493 auto Fields = Builder.beginStruct(); 2494 Fields.add(isa); 2495 Fields.add(MakeConstantString(Str)); 2496 Fields.addInt(IntTy, Str.size()); 2497 llvm::Constant *ObjCStr = 2498 Fields.finishAndCreateGlobal(".objc_str", Align); 2499 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty); 2500 ObjCStrings[Str] = ObjCStr; 2501 ConstantStrings.push_back(ObjCStr); 2502 return ConstantAddress(ObjCStr, Align); 2503 } 2504 2505 ///Generates a message send where the super is the receiver. This is a message 2506 ///send to self with special delivery semantics indicating which class's method 2507 ///should be called. 2508 RValue 2509 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 2510 ReturnValueSlot Return, 2511 QualType ResultType, 2512 Selector Sel, 2513 const ObjCInterfaceDecl *Class, 2514 bool isCategoryImpl, 2515 llvm::Value *Receiver, 2516 bool IsClassMessage, 2517 const CallArgList &CallArgs, 2518 const ObjCMethodDecl *Method) { 2519 CGBuilderTy &Builder = CGF.Builder; 2520 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2521 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2522 return RValue::get(EnforceType(Builder, Receiver, 2523 CGM.getTypes().ConvertType(ResultType))); 2524 } 2525 if (Sel == ReleaseSel) { 2526 return RValue::get(nullptr); 2527 } 2528 } 2529 2530 llvm::Value *cmd = GetSelector(CGF, Sel); 2531 CallArgList ActualArgs; 2532 2533 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 2534 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2535 ActualArgs.addFrom(CallArgs); 2536 2537 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2538 2539 llvm::Value *ReceiverClass = nullptr; 2540 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2541 if (isV2ABI) { 2542 ReceiverClass = GetClassNamed(CGF, 2543 Class->getSuperClass()->getNameAsString(), /*isWeak*/false); 2544 if (IsClassMessage) { 2545 // Load the isa pointer of the superclass is this is a class method. 2546 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2547 llvm::PointerType::getUnqual(IdTy)); 2548 ReceiverClass = 2549 Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign()); 2550 } 2551 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy); 2552 } else { 2553 if (isCategoryImpl) { 2554 llvm::FunctionCallee classLookupFunction = nullptr; 2555 if (IsClassMessage) { 2556 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2557 IdTy, PtrTy, true), "objc_get_meta_class"); 2558 } else { 2559 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2560 IdTy, PtrTy, true), "objc_get_class"); 2561 } 2562 ReceiverClass = Builder.CreateCall(classLookupFunction, 2563 MakeConstantString(Class->getNameAsString())); 2564 } else { 2565 // Set up global aliases for the metaclass or class pointer if they do not 2566 // already exist. These will are forward-references which will be set to 2567 // pointers to the class and metaclass structure created for the runtime 2568 // load function. To send a message to super, we look up the value of the 2569 // super_class pointer from either the class or metaclass structure. 2570 if (IsClassMessage) { 2571 if (!MetaClassPtrAlias) { 2572 MetaClassPtrAlias = llvm::GlobalAlias::create( 2573 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage, 2574 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule); 2575 } 2576 ReceiverClass = MetaClassPtrAlias; 2577 } else { 2578 if (!ClassPtrAlias) { 2579 ClassPtrAlias = llvm::GlobalAlias::create( 2580 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage, 2581 ".objc_class_ref" + Class->getNameAsString(), &TheModule); 2582 } 2583 ReceiverClass = ClassPtrAlias; 2584 } 2585 } 2586 // Cast the pointer to a simplified version of the class structure 2587 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy); 2588 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2589 llvm::PointerType::getUnqual(CastTy)); 2590 // Get the superclass pointer 2591 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1); 2592 // Load the superclass pointer 2593 ReceiverClass = 2594 Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign()); 2595 } 2596 // Construct the structure used to look up the IMP 2597 llvm::StructType *ObjCSuperTy = 2598 llvm::StructType::get(Receiver->getType(), IdTy); 2599 2600 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy, 2601 CGF.getPointerAlign()); 2602 2603 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 2604 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 2605 2606 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy); 2607 2608 // Get the IMP 2609 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); 2610 imp = EnforceType(Builder, imp, MSI.MessengerType); 2611 2612 llvm::Metadata *impMD[] = { 2613 llvm::MDString::get(VMContext, Sel.getAsString()), 2614 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 2615 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2616 llvm::Type::getInt1Ty(VMContext), IsClassMessage))}; 2617 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2618 2619 CGCallee callee(CGCalleeInfo(), imp); 2620 2621 llvm::CallBase *call; 2622 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2623 call->setMetadata(msgSendMDKind, node); 2624 return msgRet; 2625 } 2626 2627 /// Generate code for a message send expression. 2628 RValue 2629 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 2630 ReturnValueSlot Return, 2631 QualType ResultType, 2632 Selector Sel, 2633 llvm::Value *Receiver, 2634 const CallArgList &CallArgs, 2635 const ObjCInterfaceDecl *Class, 2636 const ObjCMethodDecl *Method) { 2637 CGBuilderTy &Builder = CGF.Builder; 2638 2639 // Strip out message sends to retain / release in GC mode 2640 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2641 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2642 return RValue::get(EnforceType(Builder, Receiver, 2643 CGM.getTypes().ConvertType(ResultType))); 2644 } 2645 if (Sel == ReleaseSel) { 2646 return RValue::get(nullptr); 2647 } 2648 } 2649 2650 // If the return type is something that goes in an integer register, the 2651 // runtime will handle 0 returns. For other cases, we fill in the 0 value 2652 // ourselves. 2653 // 2654 // The language spec says the result of this kind of message send is 2655 // undefined, but lots of people seem to have forgotten to read that 2656 // paragraph and insist on sending messages to nil that have structure 2657 // returns. With GCC, this generates a random return value (whatever happens 2658 // to be on the stack / in those registers at the time) on most platforms, 2659 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts 2660 // the stack. 2661 bool isPointerSizedReturn = (ResultType->isAnyPointerType() || 2662 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType()); 2663 2664 llvm::BasicBlock *startBB = nullptr; 2665 llvm::BasicBlock *messageBB = nullptr; 2666 llvm::BasicBlock *continueBB = nullptr; 2667 2668 if (!isPointerSizedReturn) { 2669 startBB = Builder.GetInsertBlock(); 2670 messageBB = CGF.createBasicBlock("msgSend"); 2671 continueBB = CGF.createBasicBlock("continue"); 2672 2673 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 2674 llvm::Constant::getNullValue(Receiver->getType())); 2675 Builder.CreateCondBr(isNil, continueBB, messageBB); 2676 CGF.EmitBlock(messageBB); 2677 } 2678 2679 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2680 llvm::Value *cmd; 2681 if (Method) 2682 cmd = GetSelector(CGF, Method); 2683 else 2684 cmd = GetSelector(CGF, Sel); 2685 cmd = EnforceType(Builder, cmd, SelectorTy); 2686 Receiver = EnforceType(Builder, Receiver, IdTy); 2687 2688 llvm::Metadata *impMD[] = { 2689 llvm::MDString::get(VMContext, Sel.getAsString()), 2690 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""), 2691 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2692 llvm::Type::getInt1Ty(VMContext), Class != nullptr))}; 2693 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2694 2695 CallArgList ActualArgs; 2696 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 2697 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2698 ActualArgs.addFrom(CallArgs); 2699 2700 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2701 2702 // Get the IMP to call 2703 llvm::Value *imp; 2704 2705 // If we have non-legacy dispatch specified, we try using the objc_msgSend() 2706 // functions. These are not supported on all platforms (or all runtimes on a 2707 // given platform), so we 2708 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 2709 case CodeGenOptions::Legacy: 2710 imp = LookupIMP(CGF, Receiver, cmd, node, MSI); 2711 break; 2712 case CodeGenOptions::Mixed: 2713 case CodeGenOptions::NonLegacy: 2714 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2715 imp = 2716 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2717 "objc_msgSend_fpret") 2718 .getCallee(); 2719 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 2720 // The actual types here don't matter - we're going to bitcast the 2721 // function anyway 2722 imp = 2723 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2724 "objc_msgSend_stret") 2725 .getCallee(); 2726 } else { 2727 imp = CGM.CreateRuntimeFunction( 2728 llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend") 2729 .getCallee(); 2730 } 2731 } 2732 2733 // Reset the receiver in case the lookup modified it 2734 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy); 2735 2736 imp = EnforceType(Builder, imp, MSI.MessengerType); 2737 2738 llvm::CallBase *call; 2739 CGCallee callee(CGCalleeInfo(), imp); 2740 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2741 call->setMetadata(msgSendMDKind, node); 2742 2743 2744 if (!isPointerSizedReturn) { 2745 messageBB = CGF.Builder.GetInsertBlock(); 2746 CGF.Builder.CreateBr(continueBB); 2747 CGF.EmitBlock(continueBB); 2748 if (msgRet.isScalar()) { 2749 llvm::Value *v = msgRet.getScalarVal(); 2750 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 2751 phi->addIncoming(v, messageBB); 2752 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB); 2753 msgRet = RValue::get(phi); 2754 } else if (msgRet.isAggregate()) { 2755 Address v = msgRet.getAggregateAddress(); 2756 llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2); 2757 llvm::Type *RetTy = v.getElementType(); 2758 Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null"); 2759 CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy)); 2760 phi->addIncoming(v.getPointer(), messageBB); 2761 phi->addIncoming(NullVal.getPointer(), startBB); 2762 msgRet = RValue::getAggregate(Address(phi, v.getAlignment())); 2763 } else /* isComplex() */ { 2764 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 2765 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 2766 phi->addIncoming(v.first, messageBB); 2767 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 2768 startBB); 2769 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 2770 phi2->addIncoming(v.second, messageBB); 2771 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 2772 startBB); 2773 msgRet = RValue::getComplex(phi, phi2); 2774 } 2775 } 2776 return msgRet; 2777 } 2778 2779 /// Generates a MethodList. Used in construction of a objc_class and 2780 /// objc_category structures. 2781 llvm::Constant *CGObjCGNU:: 2782 GenerateMethodList(StringRef ClassName, 2783 StringRef CategoryName, 2784 ArrayRef<const ObjCMethodDecl*> Methods, 2785 bool isClassMethodList) { 2786 if (Methods.empty()) 2787 return NULLPtr; 2788 2789 ConstantInitBuilder Builder(CGM); 2790 2791 auto MethodList = Builder.beginStruct(); 2792 MethodList.addNullPointer(CGM.Int8PtrTy); 2793 MethodList.addInt(Int32Ty, Methods.size()); 2794 2795 // Get the method structure type. 2796 llvm::StructType *ObjCMethodTy = 2797 llvm::StructType::get(CGM.getLLVMContext(), { 2798 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2799 PtrToInt8Ty, // Method types 2800 IMPTy // Method pointer 2801 }); 2802 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2803 if (isV2ABI) { 2804 // size_t size; 2805 llvm::DataLayout td(&TheModule); 2806 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) / 2807 CGM.getContext().getCharWidth()); 2808 ObjCMethodTy = 2809 llvm::StructType::get(CGM.getLLVMContext(), { 2810 IMPTy, // Method pointer 2811 PtrToInt8Ty, // Selector 2812 PtrToInt8Ty // Extended type encoding 2813 }); 2814 } else { 2815 ObjCMethodTy = 2816 llvm::StructType::get(CGM.getLLVMContext(), { 2817 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2818 PtrToInt8Ty, // Method types 2819 IMPTy // Method pointer 2820 }); 2821 } 2822 auto MethodArray = MethodList.beginArray(); 2823 ASTContext &Context = CGM.getContext(); 2824 for (const auto *OMD : Methods) { 2825 llvm::Constant *FnPtr = 2826 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName, 2827 OMD->getSelector(), 2828 isClassMethodList)); 2829 assert(FnPtr && "Can't generate metadata for method that doesn't exist"); 2830 auto Method = MethodArray.beginStruct(ObjCMethodTy); 2831 if (isV2ABI) { 2832 Method.addBitCast(FnPtr, IMPTy); 2833 Method.add(GetConstantSelector(OMD->getSelector(), 2834 Context.getObjCEncodingForMethodDecl(OMD))); 2835 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true))); 2836 } else { 2837 Method.add(MakeConstantString(OMD->getSelector().getAsString())); 2838 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD))); 2839 Method.addBitCast(FnPtr, IMPTy); 2840 } 2841 Method.finishAndAddTo(MethodArray); 2842 } 2843 MethodArray.finishAndAddTo(MethodList); 2844 2845 // Create an instance of the structure 2846 return MethodList.finishAndCreateGlobal(".objc_method_list", 2847 CGM.getPointerAlign()); 2848 } 2849 2850 /// Generates an IvarList. Used in construction of a objc_class. 2851 llvm::Constant *CGObjCGNU:: 2852 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 2853 ArrayRef<llvm::Constant *> IvarTypes, 2854 ArrayRef<llvm::Constant *> IvarOffsets, 2855 ArrayRef<llvm::Constant *> IvarAlign, 2856 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) { 2857 if (IvarNames.empty()) 2858 return NULLPtr; 2859 2860 ConstantInitBuilder Builder(CGM); 2861 2862 // Structure containing array count followed by array. 2863 auto IvarList = Builder.beginStruct(); 2864 IvarList.addInt(IntTy, (int)IvarNames.size()); 2865 2866 // Get the ivar structure type. 2867 llvm::StructType *ObjCIvarTy = 2868 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy); 2869 2870 // Array of ivar structures. 2871 auto Ivars = IvarList.beginArray(ObjCIvarTy); 2872 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 2873 auto Ivar = Ivars.beginStruct(ObjCIvarTy); 2874 Ivar.add(IvarNames[i]); 2875 Ivar.add(IvarTypes[i]); 2876 Ivar.add(IvarOffsets[i]); 2877 Ivar.finishAndAddTo(Ivars); 2878 } 2879 Ivars.finishAndAddTo(IvarList); 2880 2881 // Create an instance of the structure 2882 return IvarList.finishAndCreateGlobal(".objc_ivar_list", 2883 CGM.getPointerAlign()); 2884 } 2885 2886 /// Generate a class structure 2887 llvm::Constant *CGObjCGNU::GenerateClassStructure( 2888 llvm::Constant *MetaClass, 2889 llvm::Constant *SuperClass, 2890 unsigned info, 2891 const char *Name, 2892 llvm::Constant *Version, 2893 llvm::Constant *InstanceSize, 2894 llvm::Constant *IVars, 2895 llvm::Constant *Methods, 2896 llvm::Constant *Protocols, 2897 llvm::Constant *IvarOffsets, 2898 llvm::Constant *Properties, 2899 llvm::Constant *StrongIvarBitmap, 2900 llvm::Constant *WeakIvarBitmap, 2901 bool isMeta) { 2902 // Set up the class structure 2903 // Note: Several of these are char*s when they should be ids. This is 2904 // because the runtime performs this translation on load. 2905 // 2906 // Fields marked New ABI are part of the GNUstep runtime. We emit them 2907 // anyway; the classes will still work with the GNU runtime, they will just 2908 // be ignored. 2909 llvm::StructType *ClassTy = llvm::StructType::get( 2910 PtrToInt8Ty, // isa 2911 PtrToInt8Ty, // super_class 2912 PtrToInt8Ty, // name 2913 LongTy, // version 2914 LongTy, // info 2915 LongTy, // instance_size 2916 IVars->getType(), // ivars 2917 Methods->getType(), // methods 2918 // These are all filled in by the runtime, so we pretend 2919 PtrTy, // dtable 2920 PtrTy, // subclass_list 2921 PtrTy, // sibling_class 2922 PtrTy, // protocols 2923 PtrTy, // gc_object_type 2924 // New ABI: 2925 LongTy, // abi_version 2926 IvarOffsets->getType(), // ivar_offsets 2927 Properties->getType(), // properties 2928 IntPtrTy, // strong_pointers 2929 IntPtrTy // weak_pointers 2930 ); 2931 2932 ConstantInitBuilder Builder(CGM); 2933 auto Elements = Builder.beginStruct(ClassTy); 2934 2935 // Fill in the structure 2936 2937 // isa 2938 Elements.addBitCast(MetaClass, PtrToInt8Ty); 2939 // super_class 2940 Elements.add(SuperClass); 2941 // name 2942 Elements.add(MakeConstantString(Name, ".class_name")); 2943 // version 2944 Elements.addInt(LongTy, 0); 2945 // info 2946 Elements.addInt(LongTy, info); 2947 // instance_size 2948 if (isMeta) { 2949 llvm::DataLayout td(&TheModule); 2950 Elements.addInt(LongTy, 2951 td.getTypeSizeInBits(ClassTy) / 2952 CGM.getContext().getCharWidth()); 2953 } else 2954 Elements.add(InstanceSize); 2955 // ivars 2956 Elements.add(IVars); 2957 // methods 2958 Elements.add(Methods); 2959 // These are all filled in by the runtime, so we pretend 2960 // dtable 2961 Elements.add(NULLPtr); 2962 // subclass_list 2963 Elements.add(NULLPtr); 2964 // sibling_class 2965 Elements.add(NULLPtr); 2966 // protocols 2967 Elements.addBitCast(Protocols, PtrTy); 2968 // gc_object_type 2969 Elements.add(NULLPtr); 2970 // abi_version 2971 Elements.addInt(LongTy, ClassABIVersion); 2972 // ivar_offsets 2973 Elements.add(IvarOffsets); 2974 // properties 2975 Elements.add(Properties); 2976 // strong_pointers 2977 Elements.add(StrongIvarBitmap); 2978 // weak_pointers 2979 Elements.add(WeakIvarBitmap); 2980 // Create an instance of the structure 2981 // This is now an externally visible symbol, so that we can speed up class 2982 // messages in the next ABI. We may already have some weak references to 2983 // this, so check and fix them properly. 2984 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 2985 std::string(Name)); 2986 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 2987 llvm::Constant *Class = 2988 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false, 2989 llvm::GlobalValue::ExternalLinkage); 2990 if (ClassRef) { 2991 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class, 2992 ClassRef->getType())); 2993 ClassRef->removeFromParent(); 2994 Class->setName(ClassSym); 2995 } 2996 return Class; 2997 } 2998 2999 llvm::Constant *CGObjCGNU:: 3000 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) { 3001 // Get the method structure type. 3002 llvm::StructType *ObjCMethodDescTy = 3003 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); 3004 ASTContext &Context = CGM.getContext(); 3005 ConstantInitBuilder Builder(CGM); 3006 auto MethodList = Builder.beginStruct(); 3007 MethodList.addInt(IntTy, Methods.size()); 3008 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 3009 for (auto *M : Methods) { 3010 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 3011 Method.add(MakeConstantString(M->getSelector().getAsString())); 3012 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M))); 3013 Method.finishAndAddTo(MethodArray); 3014 } 3015 MethodArray.finishAndAddTo(MethodList); 3016 return MethodList.finishAndCreateGlobal(".objc_method_list", 3017 CGM.getPointerAlign()); 3018 } 3019 3020 // Create the protocol list structure used in classes, categories and so on 3021 llvm::Constant * 3022 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) { 3023 3024 ConstantInitBuilder Builder(CGM); 3025 auto ProtocolList = Builder.beginStruct(); 3026 ProtocolList.add(NULLPtr); 3027 ProtocolList.addInt(LongTy, Protocols.size()); 3028 3029 auto Elements = ProtocolList.beginArray(PtrToInt8Ty); 3030 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 3031 iter != endIter ; iter++) { 3032 llvm::Constant *protocol = nullptr; 3033 llvm::StringMap<llvm::Constant*>::iterator value = 3034 ExistingProtocols.find(*iter); 3035 if (value == ExistingProtocols.end()) { 3036 protocol = GenerateEmptyProtocol(*iter); 3037 } else { 3038 protocol = value->getValue(); 3039 } 3040 Elements.addBitCast(protocol, PtrToInt8Ty); 3041 } 3042 Elements.finishAndAddTo(ProtocolList); 3043 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3044 CGM.getPointerAlign()); 3045 } 3046 3047 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, 3048 const ObjCProtocolDecl *PD) { 3049 auto protocol = GenerateProtocolRef(PD); 3050 llvm::Type *T = 3051 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 3052 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 3053 } 3054 3055 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) { 3056 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()]; 3057 if (!protocol) 3058 GenerateProtocol(PD); 3059 assert(protocol && "Unknown protocol"); 3060 return protocol; 3061 } 3062 3063 llvm::Constant * 3064 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) { 3065 llvm::Constant *ProtocolList = GenerateProtocolList({}); 3066 llvm::Constant *MethodList = GenerateProtocolMethodList({}); 3067 MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty); 3068 // Protocols are objects containing lists of the methods implemented and 3069 // protocols adopted. 3070 ConstantInitBuilder Builder(CGM); 3071 auto Elements = Builder.beginStruct(); 3072 3073 // The isa pointer must be set to a magic number so the runtime knows it's 3074 // the correct layout. 3075 Elements.add(llvm::ConstantExpr::getIntToPtr( 3076 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3077 3078 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name")); 3079 Elements.add(ProtocolList); /* .protocol_list */ 3080 Elements.add(MethodList); /* .instance_methods */ 3081 Elements.add(MethodList); /* .class_methods */ 3082 Elements.add(MethodList); /* .optional_instance_methods */ 3083 Elements.add(MethodList); /* .optional_class_methods */ 3084 Elements.add(NULLPtr); /* .properties */ 3085 Elements.add(NULLPtr); /* .optional_properties */ 3086 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName), 3087 CGM.getPointerAlign()); 3088 } 3089 3090 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 3091 std::string ProtocolName = PD->getNameAsString(); 3092 3093 // Use the protocol definition, if there is one. 3094 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3095 PD = Def; 3096 3097 SmallVector<std::string, 16> Protocols; 3098 for (const auto *PI : PD->protocols()) 3099 Protocols.push_back(PI->getNameAsString()); 3100 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3101 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods; 3102 for (const auto *I : PD->instance_methods()) 3103 if (I->isOptional()) 3104 OptionalInstanceMethods.push_back(I); 3105 else 3106 InstanceMethods.push_back(I); 3107 // Collect information about class methods: 3108 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3109 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods; 3110 for (const auto *I : PD->class_methods()) 3111 if (I->isOptional()) 3112 OptionalClassMethods.push_back(I); 3113 else 3114 ClassMethods.push_back(I); 3115 3116 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 3117 llvm::Constant *InstanceMethodList = 3118 GenerateProtocolMethodList(InstanceMethods); 3119 llvm::Constant *ClassMethodList = 3120 GenerateProtocolMethodList(ClassMethods); 3121 llvm::Constant *OptionalInstanceMethodList = 3122 GenerateProtocolMethodList(OptionalInstanceMethods); 3123 llvm::Constant *OptionalClassMethodList = 3124 GenerateProtocolMethodList(OptionalClassMethods); 3125 3126 // Property metadata: name, attributes, isSynthesized, setter name, setter 3127 // types, getter name, getter types. 3128 // The isSynthesized value is always set to 0 in a protocol. It exists to 3129 // simplify the runtime library by allowing it to use the same data 3130 // structures for protocol metadata everywhere. 3131 3132 llvm::Constant *PropertyList = 3133 GeneratePropertyList(nullptr, PD, false, false); 3134 llvm::Constant *OptionalPropertyList = 3135 GeneratePropertyList(nullptr, PD, false, true); 3136 3137 // Protocols are objects containing lists of the methods implemented and 3138 // protocols adopted. 3139 // The isa pointer must be set to a magic number so the runtime knows it's 3140 // the correct layout. 3141 ConstantInitBuilder Builder(CGM); 3142 auto Elements = Builder.beginStruct(); 3143 Elements.add( 3144 llvm::ConstantExpr::getIntToPtr( 3145 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3146 Elements.add(MakeConstantString(ProtocolName)); 3147 Elements.add(ProtocolList); 3148 Elements.add(InstanceMethodList); 3149 Elements.add(ClassMethodList); 3150 Elements.add(OptionalInstanceMethodList); 3151 Elements.add(OptionalClassMethodList); 3152 Elements.add(PropertyList); 3153 Elements.add(OptionalPropertyList); 3154 ExistingProtocols[ProtocolName] = 3155 llvm::ConstantExpr::getBitCast( 3156 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()), 3157 IdTy); 3158 } 3159 void CGObjCGNU::GenerateProtocolHolderCategory() { 3160 // Collect information about instance methods 3161 3162 ConstantInitBuilder Builder(CGM); 3163 auto Elements = Builder.beginStruct(); 3164 3165 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 3166 const std::string CategoryName = "AnotherHack"; 3167 Elements.add(MakeConstantString(CategoryName)); 3168 Elements.add(MakeConstantString(ClassName)); 3169 // Instance method list 3170 Elements.addBitCast(GenerateMethodList( 3171 ClassName, CategoryName, {}, false), PtrTy); 3172 // Class method list 3173 Elements.addBitCast(GenerateMethodList( 3174 ClassName, CategoryName, {}, true), PtrTy); 3175 3176 // Protocol list 3177 ConstantInitBuilder ProtocolListBuilder(CGM); 3178 auto ProtocolList = ProtocolListBuilder.beginStruct(); 3179 ProtocolList.add(NULLPtr); 3180 ProtocolList.addInt(LongTy, ExistingProtocols.size()); 3181 auto ProtocolElements = ProtocolList.beginArray(PtrTy); 3182 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 3183 iter != endIter ; iter++) { 3184 ProtocolElements.addBitCast(iter->getValue(), PtrTy); 3185 } 3186 ProtocolElements.finishAndAddTo(ProtocolList); 3187 Elements.addBitCast( 3188 ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3189 CGM.getPointerAlign()), 3190 PtrTy); 3191 Categories.push_back(llvm::ConstantExpr::getBitCast( 3192 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()), 3193 PtrTy)); 3194 } 3195 3196 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 3197 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 3198 /// bits set to their values, LSB first, while larger ones are stored in a 3199 /// structure of this / form: 3200 /// 3201 /// struct { int32_t length; int32_t values[length]; }; 3202 /// 3203 /// The values in the array are stored in host-endian format, with the least 3204 /// significant bit being assumed to come first in the bitfield. Therefore, a 3205 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 3206 /// bitfield / with the 63rd bit set will be 1<<64. 3207 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 3208 int bitCount = bits.size(); 3209 int ptrBits = CGM.getDataLayout().getPointerSizeInBits(); 3210 if (bitCount < ptrBits) { 3211 uint64_t val = 1; 3212 for (int i=0 ; i<bitCount ; ++i) { 3213 if (bits[i]) val |= 1ULL<<(i+1); 3214 } 3215 return llvm::ConstantInt::get(IntPtrTy, val); 3216 } 3217 SmallVector<llvm::Constant *, 8> values; 3218 int v=0; 3219 while (v < bitCount) { 3220 int32_t word = 0; 3221 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 3222 if (bits[v]) word |= 1<<i; 3223 v++; 3224 } 3225 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 3226 } 3227 3228 ConstantInitBuilder builder(CGM); 3229 auto fields = builder.beginStruct(); 3230 fields.addInt(Int32Ty, values.size()); 3231 auto array = fields.beginArray(); 3232 for (auto v : values) array.add(v); 3233 array.finishAndAddTo(fields); 3234 3235 llvm::Constant *GS = 3236 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4)); 3237 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 3238 return ptr; 3239 } 3240 3241 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const 3242 ObjCCategoryDecl *OCD) { 3243 SmallVector<std::string, 16> Protocols; 3244 for (const auto *PD : OCD->getReferencedProtocols()) 3245 Protocols.push_back(PD->getNameAsString()); 3246 return GenerateProtocolList(Protocols); 3247 } 3248 3249 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3250 const ObjCInterfaceDecl *Class = OCD->getClassInterface(); 3251 std::string ClassName = Class->getNameAsString(); 3252 std::string CategoryName = OCD->getNameAsString(); 3253 3254 // Collect the names of referenced protocols 3255 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 3256 3257 ConstantInitBuilder Builder(CGM); 3258 auto Elements = Builder.beginStruct(); 3259 Elements.add(MakeConstantString(CategoryName)); 3260 Elements.add(MakeConstantString(ClassName)); 3261 // Instance method list 3262 SmallVector<ObjCMethodDecl*, 16> InstanceMethods; 3263 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(), 3264 OCD->instmeth_end()); 3265 Elements.addBitCast( 3266 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false), 3267 PtrTy); 3268 // Class method list 3269 3270 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 3271 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(), 3272 OCD->classmeth_end()); 3273 Elements.addBitCast( 3274 GenerateMethodList(ClassName, CategoryName, ClassMethods, true), 3275 PtrTy); 3276 // Protocol list 3277 Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy); 3278 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 3279 const ObjCCategoryDecl *Category = 3280 Class->FindCategoryDeclaration(OCD->getIdentifier()); 3281 if (Category) { 3282 // Instance properties 3283 Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy); 3284 // Class properties 3285 Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy); 3286 } else { 3287 Elements.addNullPointer(PtrTy); 3288 Elements.addNullPointer(PtrTy); 3289 } 3290 } 3291 3292 Categories.push_back(llvm::ConstantExpr::getBitCast( 3293 Elements.finishAndCreateGlobal( 3294 std::string(".objc_category_")+ClassName+CategoryName, 3295 CGM.getPointerAlign()), 3296 PtrTy)); 3297 } 3298 3299 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container, 3300 const ObjCContainerDecl *OCD, 3301 bool isClassProperty, 3302 bool protocolOptionalProperties) { 3303 3304 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3305 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3306 bool isProtocol = isa<ObjCProtocolDecl>(OCD); 3307 ASTContext &Context = CGM.getContext(); 3308 3309 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties 3310 = [&](const ObjCProtocolDecl *Proto) { 3311 for (const auto *P : Proto->protocols()) 3312 collectProtocolProperties(P); 3313 for (const auto *PD : Proto->properties()) { 3314 if (isClassProperty != PD->isClassProperty()) 3315 continue; 3316 // Skip any properties that are declared in protocols that this class 3317 // conforms to but are not actually implemented by this class. 3318 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container)) 3319 continue; 3320 if (!PropertySet.insert(PD->getIdentifier()).second) 3321 continue; 3322 Properties.push_back(PD); 3323 } 3324 }; 3325 3326 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3327 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3328 for (auto *PD : ClassExt->properties()) { 3329 if (isClassProperty != PD->isClassProperty()) 3330 continue; 3331 PropertySet.insert(PD->getIdentifier()); 3332 Properties.push_back(PD); 3333 } 3334 3335 for (const auto *PD : OCD->properties()) { 3336 if (isClassProperty != PD->isClassProperty()) 3337 continue; 3338 // If we're generating a list for a protocol, skip optional / required ones 3339 // when generating the other list. 3340 if (isProtocol && (protocolOptionalProperties != PD->isOptional())) 3341 continue; 3342 // Don't emit duplicate metadata for properties that were already in a 3343 // class extension. 3344 if (!PropertySet.insert(PD->getIdentifier()).second) 3345 continue; 3346 3347 Properties.push_back(PD); 3348 } 3349 3350 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3351 for (const auto *P : OID->all_referenced_protocols()) 3352 collectProtocolProperties(P); 3353 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) 3354 for (const auto *P : CD->protocols()) 3355 collectProtocolProperties(P); 3356 3357 auto numProperties = Properties.size(); 3358 3359 if (numProperties == 0) 3360 return NULLPtr; 3361 3362 ConstantInitBuilder builder(CGM); 3363 auto propertyList = builder.beginStruct(); 3364 auto properties = PushPropertyListHeader(propertyList, numProperties); 3365 3366 // Add all of the property methods need adding to the method list and to the 3367 // property metadata list. 3368 for (auto *property : Properties) { 3369 bool isSynthesized = false; 3370 bool isDynamic = false; 3371 if (!isProtocol) { 3372 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container); 3373 if (propertyImpl) { 3374 isSynthesized = (propertyImpl->getPropertyImplementation() == 3375 ObjCPropertyImplDecl::Synthesize); 3376 isDynamic = (propertyImpl->getPropertyImplementation() == 3377 ObjCPropertyImplDecl::Dynamic); 3378 } 3379 } 3380 PushProperty(properties, property, Container, isSynthesized, isDynamic); 3381 } 3382 properties.finishAndAddTo(propertyList); 3383 3384 return propertyList.finishAndCreateGlobal(".objc_property_list", 3385 CGM.getPointerAlign()); 3386 } 3387 3388 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 3389 // Get the class declaration for which the alias is specified. 3390 ObjCInterfaceDecl *ClassDecl = 3391 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 3392 ClassAliases.emplace_back(ClassDecl->getNameAsString(), 3393 OAD->getNameAsString()); 3394 } 3395 3396 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 3397 ASTContext &Context = CGM.getContext(); 3398 3399 // Get the superclass name. 3400 const ObjCInterfaceDecl * SuperClassDecl = 3401 OID->getClassInterface()->getSuperClass(); 3402 std::string SuperClassName; 3403 if (SuperClassDecl) { 3404 SuperClassName = SuperClassDecl->getNameAsString(); 3405 EmitClassRef(SuperClassName); 3406 } 3407 3408 // Get the class name 3409 ObjCInterfaceDecl *ClassDecl = 3410 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 3411 std::string ClassName = ClassDecl->getNameAsString(); 3412 3413 // Emit the symbol that is used to generate linker errors if this class is 3414 // referenced in other modules but not declared. 3415 std::string classSymbolName = "__objc_class_name_" + ClassName; 3416 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) { 3417 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 3418 } else { 3419 new llvm::GlobalVariable(TheModule, LongTy, false, 3420 llvm::GlobalValue::ExternalLinkage, 3421 llvm::ConstantInt::get(LongTy, 0), 3422 classSymbolName); 3423 } 3424 3425 // Get the size of instances. 3426 int instanceSize = 3427 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 3428 3429 // Collect information about instance variables. 3430 SmallVector<llvm::Constant*, 16> IvarNames; 3431 SmallVector<llvm::Constant*, 16> IvarTypes; 3432 SmallVector<llvm::Constant*, 16> IvarOffsets; 3433 SmallVector<llvm::Constant*, 16> IvarAligns; 3434 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership; 3435 3436 ConstantInitBuilder IvarOffsetBuilder(CGM); 3437 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy); 3438 SmallVector<bool, 16> WeakIvars; 3439 SmallVector<bool, 16> StrongIvars; 3440 3441 int superInstanceSize = !SuperClassDecl ? 0 : 3442 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 3443 // For non-fragile ivars, set the instance size to 0 - {the size of just this 3444 // class}. The runtime will then set this to the correct value on load. 3445 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3446 instanceSize = 0 - (instanceSize - superInstanceSize); 3447 } 3448 3449 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3450 IVD = IVD->getNextIvar()) { 3451 // Store the name 3452 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 3453 // Get the type encoding for this ivar 3454 std::string TypeStr; 3455 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD); 3456 IvarTypes.push_back(MakeConstantString(TypeStr)); 3457 IvarAligns.push_back(llvm::ConstantInt::get(IntTy, 3458 Context.getTypeSize(IVD->getType()))); 3459 // Get the offset 3460 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 3461 uint64_t Offset = BaseOffset; 3462 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3463 Offset = BaseOffset - superInstanceSize; 3464 } 3465 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 3466 // Create the direct offset value 3467 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 3468 IVD->getNameAsString(); 3469 3470 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 3471 if (OffsetVar) { 3472 OffsetVar->setInitializer(OffsetValue); 3473 // If this is the real definition, change its linkage type so that 3474 // different modules will use this one, rather than their private 3475 // copy. 3476 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 3477 } else 3478 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty, 3479 false, llvm::GlobalValue::ExternalLinkage, 3480 OffsetValue, OffsetName); 3481 IvarOffsets.push_back(OffsetValue); 3482 IvarOffsetValues.add(OffsetVar); 3483 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 3484 IvarOwnership.push_back(lt); 3485 switch (lt) { 3486 case Qualifiers::OCL_Strong: 3487 StrongIvars.push_back(true); 3488 WeakIvars.push_back(false); 3489 break; 3490 case Qualifiers::OCL_Weak: 3491 StrongIvars.push_back(false); 3492 WeakIvars.push_back(true); 3493 break; 3494 default: 3495 StrongIvars.push_back(false); 3496 WeakIvars.push_back(false); 3497 } 3498 } 3499 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 3500 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 3501 llvm::GlobalVariable *IvarOffsetArray = 3502 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets", 3503 CGM.getPointerAlign()); 3504 3505 // Collect information about instance methods 3506 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3507 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 3508 OID->instmeth_end()); 3509 3510 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3511 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 3512 OID->classmeth_end()); 3513 3514 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl); 3515 3516 // Collect the names of referenced protocols 3517 SmallVector<std::string, 16> Protocols; 3518 for (const auto *I : ClassDecl->protocols()) 3519 Protocols.push_back(I->getNameAsString()); 3520 3521 // Get the superclass pointer. 3522 llvm::Constant *SuperClass; 3523 if (!SuperClassName.empty()) { 3524 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 3525 } else { 3526 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 3527 } 3528 // Empty vector used to construct empty method lists 3529 SmallVector<llvm::Constant*, 1> empty; 3530 // Generate the method and instance variable lists 3531 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 3532 InstanceMethods, false); 3533 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 3534 ClassMethods, true); 3535 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 3536 IvarOffsets, IvarAligns, IvarOwnership); 3537 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 3538 // we emit a symbol containing the offset for each ivar in the class. This 3539 // allows code compiled for the non-Fragile ABI to inherit from code compiled 3540 // for the legacy ABI, without causing problems. The converse is also 3541 // possible, but causes all ivar accesses to be fragile. 3542 3543 // Offset pointer for getting at the correct field in the ivar list when 3544 // setting up the alias. These are: The base address for the global, the 3545 // ivar array (second field), the ivar in this list (set for each ivar), and 3546 // the offset (third field in ivar structure) 3547 llvm::Type *IndexTy = Int32Ty; 3548 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 3549 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr, 3550 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) }; 3551 3552 unsigned ivarIndex = 0; 3553 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3554 IVD = IVD->getNextIvar()) { 3555 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD); 3556 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 3557 // Get the correct ivar field 3558 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 3559 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList, 3560 offsetPointerIndexes); 3561 // Get the existing variable, if one exists. 3562 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 3563 if (offset) { 3564 offset->setInitializer(offsetValue); 3565 // If this is the real definition, change its linkage type so that 3566 // different modules will use this one, rather than their private 3567 // copy. 3568 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 3569 } else 3570 // Add a new alias if there isn't one already. 3571 new llvm::GlobalVariable(TheModule, offsetValue->getType(), 3572 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 3573 ++ivarIndex; 3574 } 3575 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 3576 3577 //Generate metaclass for class methods 3578 llvm::Constant *MetaClassStruct = GenerateClassStructure( 3579 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], 3580 NULLPtr, ClassMethodList, NULLPtr, NULLPtr, 3581 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true); 3582 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct), 3583 OID->getClassInterface()); 3584 3585 // Generate the class structure 3586 llvm::Constant *ClassStruct = GenerateClassStructure( 3587 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr, 3588 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList, 3589 GenerateProtocolList(Protocols), IvarOffsetArray, Properties, 3590 StrongIvarBitmap, WeakIvarBitmap); 3591 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct), 3592 OID->getClassInterface()); 3593 3594 // Resolve the class aliases, if they exist. 3595 if (ClassPtrAlias) { 3596 ClassPtrAlias->replaceAllUsesWith( 3597 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy)); 3598 ClassPtrAlias->eraseFromParent(); 3599 ClassPtrAlias = nullptr; 3600 } 3601 if (MetaClassPtrAlias) { 3602 MetaClassPtrAlias->replaceAllUsesWith( 3603 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy)); 3604 MetaClassPtrAlias->eraseFromParent(); 3605 MetaClassPtrAlias = nullptr; 3606 } 3607 3608 // Add class structure to list to be added to the symtab later 3609 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty); 3610 Classes.push_back(ClassStruct); 3611 } 3612 3613 llvm::Function *CGObjCGNU::ModuleInitFunction() { 3614 // Only emit an ObjC load function if no Objective-C stuff has been called 3615 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 3616 ExistingProtocols.empty() && SelectorTable.empty()) 3617 return nullptr; 3618 3619 // Add all referenced protocols to a category. 3620 GenerateProtocolHolderCategory(); 3621 3622 llvm::StructType *selStructTy = 3623 dyn_cast<llvm::StructType>(SelectorTy->getElementType()); 3624 llvm::Type *selStructPtrTy = SelectorTy; 3625 if (!selStructTy) { 3626 selStructTy = llvm::StructType::get(CGM.getLLVMContext(), 3627 { PtrToInt8Ty, PtrToInt8Ty }); 3628 selStructPtrTy = llvm::PointerType::getUnqual(selStructTy); 3629 } 3630 3631 // Generate statics list: 3632 llvm::Constant *statics = NULLPtr; 3633 if (!ConstantStrings.empty()) { 3634 llvm::GlobalVariable *fileStatics = [&] { 3635 ConstantInitBuilder builder(CGM); 3636 auto staticsStruct = builder.beginStruct(); 3637 3638 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass; 3639 if (stringClass.empty()) stringClass = "NXConstantString"; 3640 staticsStruct.add(MakeConstantString(stringClass, 3641 ".objc_static_class_name")); 3642 3643 auto array = staticsStruct.beginArray(); 3644 array.addAll(ConstantStrings); 3645 array.add(NULLPtr); 3646 array.finishAndAddTo(staticsStruct); 3647 3648 return staticsStruct.finishAndCreateGlobal(".objc_statics", 3649 CGM.getPointerAlign()); 3650 }(); 3651 3652 ConstantInitBuilder builder(CGM); 3653 auto allStaticsArray = builder.beginArray(fileStatics->getType()); 3654 allStaticsArray.add(fileStatics); 3655 allStaticsArray.addNullPointer(fileStatics->getType()); 3656 3657 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr", 3658 CGM.getPointerAlign()); 3659 statics = llvm::ConstantExpr::getBitCast(statics, PtrTy); 3660 } 3661 3662 // Array of classes, categories, and constant objects. 3663 3664 SmallVector<llvm::GlobalAlias*, 16> selectorAliases; 3665 unsigned selectorCount; 3666 3667 // Pointer to an array of selectors used in this module. 3668 llvm::GlobalVariable *selectorList = [&] { 3669 ConstantInitBuilder builder(CGM); 3670 auto selectors = builder.beginArray(selStructTy); 3671 auto &table = SelectorTable; // MSVC workaround 3672 std::vector<Selector> allSelectors; 3673 for (auto &entry : table) 3674 allSelectors.push_back(entry.first); 3675 llvm::sort(allSelectors); 3676 3677 for (auto &untypedSel : allSelectors) { 3678 std::string selNameStr = untypedSel.getAsString(); 3679 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name"); 3680 3681 for (TypedSelector &sel : table[untypedSel]) { 3682 llvm::Constant *selectorTypeEncoding = NULLPtr; 3683 if (!sel.first.empty()) 3684 selectorTypeEncoding = 3685 MakeConstantString(sel.first, ".objc_sel_types"); 3686 3687 auto selStruct = selectors.beginStruct(selStructTy); 3688 selStruct.add(selName); 3689 selStruct.add(selectorTypeEncoding); 3690 selStruct.finishAndAddTo(selectors); 3691 3692 // Store the selector alias for later replacement 3693 selectorAliases.push_back(sel.second); 3694 } 3695 } 3696 3697 // Remember the number of entries in the selector table. 3698 selectorCount = selectors.size(); 3699 3700 // NULL-terminate the selector list. This should not actually be required, 3701 // because the selector list has a length field. Unfortunately, the GCC 3702 // runtime decides to ignore the length field and expects a NULL terminator, 3703 // and GCC cooperates with this by always setting the length to 0. 3704 auto selStruct = selectors.beginStruct(selStructTy); 3705 selStruct.add(NULLPtr); 3706 selStruct.add(NULLPtr); 3707 selStruct.finishAndAddTo(selectors); 3708 3709 return selectors.finishAndCreateGlobal(".objc_selector_list", 3710 CGM.getPointerAlign()); 3711 }(); 3712 3713 // Now that all of the static selectors exist, create pointers to them. 3714 for (unsigned i = 0; i < selectorCount; ++i) { 3715 llvm::Constant *idxs[] = { 3716 Zeros[0], 3717 llvm::ConstantInt::get(Int32Ty, i) 3718 }; 3719 // FIXME: We're generating redundant loads and stores here! 3720 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr( 3721 selectorList->getValueType(), selectorList, idxs); 3722 // If selectors are defined as an opaque type, cast the pointer to this 3723 // type. 3724 selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy); 3725 selectorAliases[i]->replaceAllUsesWith(selPtr); 3726 selectorAliases[i]->eraseFromParent(); 3727 } 3728 3729 llvm::GlobalVariable *symtab = [&] { 3730 ConstantInitBuilder builder(CGM); 3731 auto symtab = builder.beginStruct(); 3732 3733 // Number of static selectors 3734 symtab.addInt(LongTy, selectorCount); 3735 3736 symtab.addBitCast(selectorList, selStructPtrTy); 3737 3738 // Number of classes defined. 3739 symtab.addInt(CGM.Int16Ty, Classes.size()); 3740 // Number of categories defined 3741 symtab.addInt(CGM.Int16Ty, Categories.size()); 3742 3743 // Create an array of classes, then categories, then static object instances 3744 auto classList = symtab.beginArray(PtrToInt8Ty); 3745 classList.addAll(Classes); 3746 classList.addAll(Categories); 3747 // NULL-terminated list of static object instances (mainly constant strings) 3748 classList.add(statics); 3749 classList.add(NULLPtr); 3750 classList.finishAndAddTo(symtab); 3751 3752 // Construct the symbol table. 3753 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign()); 3754 }(); 3755 3756 // The symbol table is contained in a module which has some version-checking 3757 // constants 3758 llvm::Constant *module = [&] { 3759 llvm::Type *moduleEltTys[] = { 3760 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy 3761 }; 3762 llvm::StructType *moduleTy = 3763 llvm::StructType::get(CGM.getLLVMContext(), 3764 makeArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10))); 3765 3766 ConstantInitBuilder builder(CGM); 3767 auto module = builder.beginStruct(moduleTy); 3768 // Runtime version, used for ABI compatibility checking. 3769 module.addInt(LongTy, RuntimeVersion); 3770 // sizeof(ModuleTy) 3771 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy)); 3772 3773 // The path to the source file where this module was declared 3774 SourceManager &SM = CGM.getContext().getSourceManager(); 3775 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID()); 3776 std::string path = 3777 (Twine(mainFile->getDir()->getName()) + "/" + mainFile->getName()).str(); 3778 module.add(MakeConstantString(path, ".objc_source_file_name")); 3779 module.add(symtab); 3780 3781 if (RuntimeVersion >= 10) { 3782 switch (CGM.getLangOpts().getGC()) { 3783 case LangOptions::GCOnly: 3784 module.addInt(IntTy, 2); 3785 break; 3786 case LangOptions::NonGC: 3787 if (CGM.getLangOpts().ObjCAutoRefCount) 3788 module.addInt(IntTy, 1); 3789 else 3790 module.addInt(IntTy, 0); 3791 break; 3792 case LangOptions::HybridGC: 3793 module.addInt(IntTy, 1); 3794 break; 3795 } 3796 } 3797 3798 return module.finishAndCreateGlobal("", CGM.getPointerAlign()); 3799 }(); 3800 3801 // Create the load function calling the runtime entry point with the module 3802 // structure 3803 llvm::Function * LoadFunction = llvm::Function::Create( 3804 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 3805 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 3806 &TheModule); 3807 llvm::BasicBlock *EntryBB = 3808 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 3809 CGBuilderTy Builder(CGM, VMContext); 3810 Builder.SetInsertPoint(EntryBB); 3811 3812 llvm::FunctionType *FT = 3813 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true); 3814 llvm::FunctionCallee Register = 3815 CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 3816 Builder.CreateCall(Register, module); 3817 3818 if (!ClassAliases.empty()) { 3819 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 3820 llvm::FunctionType *RegisterAliasTy = 3821 llvm::FunctionType::get(Builder.getVoidTy(), 3822 ArgTypes, false); 3823 llvm::Function *RegisterAlias = llvm::Function::Create( 3824 RegisterAliasTy, 3825 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 3826 &TheModule); 3827 llvm::BasicBlock *AliasBB = 3828 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 3829 llvm::BasicBlock *NoAliasBB = 3830 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 3831 3832 // Branch based on whether the runtime provided class_registerAlias_np() 3833 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 3834 llvm::Constant::getNullValue(RegisterAlias->getType())); 3835 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 3836 3837 // The true branch (has alias registration function): 3838 Builder.SetInsertPoint(AliasBB); 3839 // Emit alias registration calls: 3840 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 3841 iter != ClassAliases.end(); ++iter) { 3842 llvm::Constant *TheClass = 3843 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true); 3844 if (TheClass) { 3845 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy); 3846 Builder.CreateCall(RegisterAlias, 3847 {TheClass, MakeConstantString(iter->second)}); 3848 } 3849 } 3850 // Jump to end: 3851 Builder.CreateBr(NoAliasBB); 3852 3853 // Missing alias registration function, just return from the function: 3854 Builder.SetInsertPoint(NoAliasBB); 3855 } 3856 Builder.CreateRetVoid(); 3857 3858 return LoadFunction; 3859 } 3860 3861 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 3862 const ObjCContainerDecl *CD) { 3863 const ObjCCategoryImplDecl *OCD = 3864 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext()); 3865 StringRef CategoryName = OCD ? OCD->getName() : ""; 3866 StringRef ClassName = CD->getName(); 3867 Selector MethodName = OMD->getSelector(); 3868 bool isClassMethod = !OMD->isInstanceMethod(); 3869 3870 CodeGenTypes &Types = CGM.getTypes(); 3871 llvm::FunctionType *MethodTy = 3872 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3873 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName, 3874 MethodName, isClassMethod); 3875 3876 llvm::Function *Method 3877 = llvm::Function::Create(MethodTy, 3878 llvm::GlobalValue::InternalLinkage, 3879 FunctionName, 3880 &TheModule); 3881 return Method; 3882 } 3883 3884 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF, 3885 llvm::Function *Fn, 3886 const ObjCMethodDecl *OMD, 3887 const ObjCContainerDecl *CD) { 3888 // GNU runtime doesn't support direct calls at this time 3889 } 3890 3891 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() { 3892 return GetPropertyFn; 3893 } 3894 3895 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() { 3896 return SetPropertyFn; 3897 } 3898 3899 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 3900 bool copy) { 3901 return nullptr; 3902 } 3903 3904 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() { 3905 return GetStructPropertyFn; 3906 } 3907 3908 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() { 3909 return SetStructPropertyFn; 3910 } 3911 3912 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() { 3913 return nullptr; 3914 } 3915 3916 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() { 3917 return nullptr; 3918 } 3919 3920 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() { 3921 return EnumerationMutationFn; 3922 } 3923 3924 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 3925 const ObjCAtSynchronizedStmt &S) { 3926 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 3927 } 3928 3929 3930 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 3931 const ObjCAtTryStmt &S) { 3932 // Unlike the Apple non-fragile runtimes, which also uses 3933 // unwind-based zero cost exceptions, the GNU Objective C runtime's 3934 // EH support isn't a veneer over C++ EH. Instead, exception 3935 // objects are created by objc_exception_throw and destroyed by 3936 // the personality function; this avoids the need for bracketing 3937 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 3938 // (or even _Unwind_DeleteException), but probably doesn't 3939 // interoperate very well with foreign exceptions. 3940 // 3941 // In Objective-C++ mode, we actually emit something equivalent to the C++ 3942 // exception handler. 3943 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 3944 } 3945 3946 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 3947 const ObjCAtThrowStmt &S, 3948 bool ClearInsertionPoint) { 3949 llvm::Value *ExceptionAsObject; 3950 bool isRethrow = false; 3951 3952 if (const Expr *ThrowExpr = S.getThrowExpr()) { 3953 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 3954 ExceptionAsObject = Exception; 3955 } else { 3956 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 3957 "Unexpected rethrow outside @catch block."); 3958 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 3959 isRethrow = true; 3960 } 3961 if (isRethrow && usesSEHExceptions) { 3962 // For SEH, ExceptionAsObject may be undef, because the catch handler is 3963 // not passed it for catchalls and so it is not visible to the catch 3964 // funclet. The real thrown object will still be live on the stack at this 3965 // point and will be rethrown. If we are explicitly rethrowing the object 3966 // that was passed into the `@catch` block, then this code path is not 3967 // reached and we will instead call `objc_exception_throw` with an explicit 3968 // argument. 3969 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn); 3970 Throw->setDoesNotReturn(); 3971 } 3972 else { 3973 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 3974 llvm::CallBase *Throw = 3975 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); 3976 Throw->setDoesNotReturn(); 3977 } 3978 CGF.Builder.CreateUnreachable(); 3979 if (ClearInsertionPoint) 3980 CGF.Builder.ClearInsertionPoint(); 3981 } 3982 3983 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 3984 Address AddrWeakObj) { 3985 CGBuilderTy &B = CGF.Builder; 3986 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy); 3987 return B.CreateCall(WeakReadFn, AddrWeakObj.getPointer()); 3988 } 3989 3990 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 3991 llvm::Value *src, Address dst) { 3992 CGBuilderTy &B = CGF.Builder; 3993 src = EnforceType(B, src, IdTy); 3994 dst = EnforceType(B, dst, PtrToIdTy); 3995 B.CreateCall(WeakAssignFn, {src, dst.getPointer()}); 3996 } 3997 3998 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 3999 llvm::Value *src, Address dst, 4000 bool threadlocal) { 4001 CGBuilderTy &B = CGF.Builder; 4002 src = EnforceType(B, src, IdTy); 4003 dst = EnforceType(B, dst, PtrToIdTy); 4004 // FIXME. Add threadloca assign API 4005 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"); 4006 B.CreateCall(GlobalAssignFn, {src, dst.getPointer()}); 4007 } 4008 4009 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 4010 llvm::Value *src, Address dst, 4011 llvm::Value *ivarOffset) { 4012 CGBuilderTy &B = CGF.Builder; 4013 src = EnforceType(B, src, IdTy); 4014 dst = EnforceType(B, dst, IdTy); 4015 B.CreateCall(IvarAssignFn, {src, dst.getPointer(), ivarOffset}); 4016 } 4017 4018 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 4019 llvm::Value *src, Address dst) { 4020 CGBuilderTy &B = CGF.Builder; 4021 src = EnforceType(B, src, IdTy); 4022 dst = EnforceType(B, dst, PtrToIdTy); 4023 B.CreateCall(StrongCastAssignFn, {src, dst.getPointer()}); 4024 } 4025 4026 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 4027 Address DestPtr, 4028 Address SrcPtr, 4029 llvm::Value *Size) { 4030 CGBuilderTy &B = CGF.Builder; 4031 DestPtr = EnforceType(B, DestPtr, PtrTy); 4032 SrcPtr = EnforceType(B, SrcPtr, PtrTy); 4033 4034 B.CreateCall(MemMoveFn, {DestPtr.getPointer(), SrcPtr.getPointer(), Size}); 4035 } 4036 4037 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 4038 const ObjCInterfaceDecl *ID, 4039 const ObjCIvarDecl *Ivar) { 4040 const std::string Name = GetIVarOffsetVariableName(ID, Ivar); 4041 // Emit the variable and initialize it with what we think the correct value 4042 // is. This allows code compiled with non-fragile ivars to work correctly 4043 // when linked against code which isn't (most of the time). 4044 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 4045 if (!IvarOffsetPointer) 4046 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, 4047 llvm::Type::getInt32PtrTy(VMContext), false, 4048 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 4049 return IvarOffsetPointer; 4050 } 4051 4052 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 4053 QualType ObjectTy, 4054 llvm::Value *BaseValue, 4055 const ObjCIvarDecl *Ivar, 4056 unsigned CVRQualifiers) { 4057 const ObjCInterfaceDecl *ID = 4058 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 4059 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4060 EmitIvarOffset(CGF, ID, Ivar)); 4061 } 4062 4063 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 4064 const ObjCInterfaceDecl *OID, 4065 const ObjCIvarDecl *OIVD) { 4066 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 4067 next = next->getNextIvar()) { 4068 if (OIVD == next) 4069 return OID; 4070 } 4071 4072 // Otherwise check in the super class. 4073 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 4074 return FindIvarInterface(Context, Super, OIVD); 4075 4076 return nullptr; 4077 } 4078 4079 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 4080 const ObjCInterfaceDecl *Interface, 4081 const ObjCIvarDecl *Ivar) { 4082 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 4083 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 4084 4085 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage 4086 // and ExternalLinkage, so create a reference to the ivar global and rely on 4087 // the definition being created as part of GenerateClass. 4088 if (RuntimeVersion < 10 || 4089 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment()) 4090 return CGF.Builder.CreateZExtOrBitCast( 4091 CGF.Builder.CreateAlignedLoad( 4092 Int32Ty, CGF.Builder.CreateAlignedLoad( 4093 ObjCIvarOffsetVariable(Interface, Ivar), 4094 CGF.getPointerAlign(), "ivar"), 4095 CharUnits::fromQuantity(4)), 4096 PtrDiffTy); 4097 std::string name = "__objc_ivar_offset_value_" + 4098 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 4099 CharUnits Align = CGM.getIntAlign(); 4100 llvm::Value *Offset = TheModule.getGlobalVariable(name); 4101 if (!Offset) { 4102 auto GV = new llvm::GlobalVariable(TheModule, IntTy, 4103 false, llvm::GlobalValue::LinkOnceAnyLinkage, 4104 llvm::Constant::getNullValue(IntTy), name); 4105 GV->setAlignment(Align.getAsAlign()); 4106 Offset = GV; 4107 } 4108 Offset = CGF.Builder.CreateAlignedLoad(Offset, Align); 4109 if (Offset->getType() != PtrDiffTy) 4110 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 4111 return Offset; 4112 } 4113 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 4114 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 4115 } 4116 4117 CGObjCRuntime * 4118 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 4119 auto Runtime = CGM.getLangOpts().ObjCRuntime; 4120 switch (Runtime.getKind()) { 4121 case ObjCRuntime::GNUstep: 4122 if (Runtime.getVersion() >= VersionTuple(2, 0)) 4123 return new CGObjCGNUstep2(CGM); 4124 return new CGObjCGNUstep(CGM); 4125 4126 case ObjCRuntime::GCC: 4127 return new CGObjCGCC(CGM); 4128 4129 case ObjCRuntime::ObjFW: 4130 return new CGObjCObjFW(CGM); 4131 4132 case ObjCRuntime::FragileMacOSX: 4133 case ObjCRuntime::MacOSX: 4134 case ObjCRuntime::iOS: 4135 case ObjCRuntime::WatchOS: 4136 llvm_unreachable("these runtimes are not GNU runtimes"); 4137 } 4138 llvm_unreachable("bad runtime"); 4139 } 4140