1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the GNU runtime. The 10 // class in this file generates structures used by the GNU Objective-C runtime 11 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 12 // the GNU runtime distribution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/StmtObjC.h" 27 #include "clang/Basic/FileManager.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/StringMap.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include <cctype> 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 namespace { 44 45 /// Class that lazily initialises the runtime function. Avoids inserting the 46 /// types and the function declaration into a module if they're not used, and 47 /// avoids constructing the type more than once if it's used more than once. 48 class LazyRuntimeFunction { 49 CodeGenModule *CGM = nullptr; 50 llvm::FunctionType *FTy = nullptr; 51 const char *FunctionName = nullptr; 52 llvm::FunctionCallee Function = nullptr; 53 54 public: 55 LazyRuntimeFunction() = default; 56 57 /// Initialises the lazy function with the name, return type, and the types 58 /// of the arguments. 59 template <typename... Tys> 60 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, 61 Tys *... Types) { 62 CGM = Mod; 63 FunctionName = name; 64 Function = nullptr; 65 if(sizeof...(Tys)) { 66 SmallVector<llvm::Type *, 8> ArgTys({Types...}); 67 FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 68 } 69 else { 70 FTy = llvm::FunctionType::get(RetTy, std::nullopt, false); 71 } 72 } 73 74 llvm::FunctionType *getType() { return FTy; } 75 76 /// Overloaded cast operator, allows the class to be implicitly cast to an 77 /// LLVM constant. 78 operator llvm::FunctionCallee() { 79 if (!Function) { 80 if (!FunctionName) 81 return nullptr; 82 Function = CGM->CreateRuntimeFunction(FTy, FunctionName); 83 } 84 return Function; 85 } 86 }; 87 88 89 /// GNU Objective-C runtime code generation. This class implements the parts of 90 /// Objective-C support that are specific to the GNU family of runtimes (GCC, 91 /// GNUstep and ObjFW). 92 class CGObjCGNU : public CGObjCRuntime { 93 protected: 94 /// The LLVM module into which output is inserted 95 llvm::Module &TheModule; 96 /// strut objc_super. Used for sending messages to super. This structure 97 /// contains the receiver (object) and the expected class. 98 llvm::StructType *ObjCSuperTy; 99 /// struct objc_super*. The type of the argument to the superclass message 100 /// lookup functions. 101 llvm::PointerType *PtrToObjCSuperTy; 102 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 103 /// SEL is included in a header somewhere, in which case it will be whatever 104 /// type is declared in that header, most likely {i8*, i8*}. 105 llvm::PointerType *SelectorTy; 106 /// Element type of SelectorTy. 107 llvm::Type *SelectorElemTy; 108 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 109 /// places where it's used 110 llvm::IntegerType *Int8Ty; 111 /// Pointer to i8 - LLVM type of char*, for all of the places where the 112 /// runtime needs to deal with C strings. 113 llvm::PointerType *PtrToInt8Ty; 114 /// struct objc_protocol type 115 llvm::StructType *ProtocolTy; 116 /// Protocol * type. 117 llvm::PointerType *ProtocolPtrTy; 118 /// Instance Method Pointer type. This is a pointer to a function that takes, 119 /// at a minimum, an object and a selector, and is the generic type for 120 /// Objective-C methods. Due to differences between variadic / non-variadic 121 /// calling conventions, it must always be cast to the correct type before 122 /// actually being used. 123 llvm::PointerType *IMPTy; 124 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 125 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 126 /// but if the runtime header declaring it is included then it may be a 127 /// pointer to a structure. 128 llvm::PointerType *IdTy; 129 /// Element type of IdTy. 130 llvm::Type *IdElemTy; 131 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 132 /// message lookup function and some GC-related functions. 133 llvm::PointerType *PtrToIdTy; 134 /// The clang type of id. Used when using the clang CGCall infrastructure to 135 /// call Objective-C methods. 136 CanQualType ASTIdTy; 137 /// LLVM type for C int type. 138 llvm::IntegerType *IntTy; 139 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 140 /// used in the code to document the difference between i8* meaning a pointer 141 /// to a C string and i8* meaning a pointer to some opaque type. 142 llvm::PointerType *PtrTy; 143 /// LLVM type for C long type. The runtime uses this in a lot of places where 144 /// it should be using intptr_t, but we can't fix this without breaking 145 /// compatibility with GCC... 146 llvm::IntegerType *LongTy; 147 /// LLVM type for C size_t. Used in various runtime data structures. 148 llvm::IntegerType *SizeTy; 149 /// LLVM type for C intptr_t. 150 llvm::IntegerType *IntPtrTy; 151 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 152 llvm::IntegerType *PtrDiffTy; 153 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 154 /// variables. 155 llvm::PointerType *PtrToIntTy; 156 /// LLVM type for Objective-C BOOL type. 157 llvm::Type *BoolTy; 158 /// 32-bit integer type, to save us needing to look it up every time it's used. 159 llvm::IntegerType *Int32Ty; 160 /// 64-bit integer type, to save us needing to look it up every time it's used. 161 llvm::IntegerType *Int64Ty; 162 /// The type of struct objc_property. 163 llvm::StructType *PropertyMetadataTy; 164 /// Metadata kind used to tie method lookups to message sends. The GNUstep 165 /// runtime provides some LLVM passes that can use this to do things like 166 /// automatic IMP caching and speculative inlining. 167 unsigned msgSendMDKind; 168 /// Does the current target use SEH-based exceptions? False implies 169 /// Itanium-style DWARF unwinding. 170 bool usesSEHExceptions; 171 172 /// Helper to check if we are targeting a specific runtime version or later. 173 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) { 174 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 175 return (R.getKind() == kind) && 176 (R.getVersion() >= VersionTuple(major, minor)); 177 } 178 179 std::string ManglePublicSymbol(StringRef Name) { 180 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str(); 181 } 182 183 std::string SymbolForProtocol(Twine Name) { 184 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str(); 185 } 186 187 std::string SymbolForProtocolRef(StringRef Name) { 188 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str(); 189 } 190 191 192 /// Helper function that generates a constant string and returns a pointer to 193 /// the start of the string. The result of this function can be used anywhere 194 /// where the C code specifies const char*. 195 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") { 196 ConstantAddress Array = 197 CGM.GetAddrOfConstantCString(std::string(Str), Name); 198 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(), 199 Array.getPointer(), Zeros); 200 } 201 202 /// Emits a linkonce_odr string, whose name is the prefix followed by the 203 /// string value. This allows the linker to combine the strings between 204 /// different modules. Used for EH typeinfo names, selector strings, and a 205 /// few other things. 206 llvm::Constant *ExportUniqueString(const std::string &Str, 207 const std::string &prefix, 208 bool Private=false) { 209 std::string name = prefix + Str; 210 auto *ConstStr = TheModule.getGlobalVariable(name); 211 if (!ConstStr) { 212 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 213 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true, 214 llvm::GlobalValue::LinkOnceODRLinkage, value, name); 215 GV->setComdat(TheModule.getOrInsertComdat(name)); 216 if (Private) 217 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 218 ConstStr = GV; 219 } 220 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(), 221 ConstStr, Zeros); 222 } 223 224 /// Returns a property name and encoding string. 225 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, 226 const Decl *Container) { 227 assert(!isRuntime(ObjCRuntime::GNUstep, 2)); 228 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) { 229 std::string NameAndAttributes; 230 std::string TypeStr = 231 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 232 NameAndAttributes += '\0'; 233 NameAndAttributes += TypeStr.length() + 3; 234 NameAndAttributes += TypeStr; 235 NameAndAttributes += '\0'; 236 NameAndAttributes += PD->getNameAsString(); 237 return MakeConstantString(NameAndAttributes); 238 } 239 return MakeConstantString(PD->getNameAsString()); 240 } 241 242 /// Push the property attributes into two structure fields. 243 void PushPropertyAttributes(ConstantStructBuilder &Fields, 244 const ObjCPropertyDecl *property, bool isSynthesized=true, bool 245 isDynamic=true) { 246 int attrs = property->getPropertyAttributes(); 247 // For read-only properties, clear the copy and retain flags 248 if (attrs & ObjCPropertyAttribute::kind_readonly) { 249 attrs &= ~ObjCPropertyAttribute::kind_copy; 250 attrs &= ~ObjCPropertyAttribute::kind_retain; 251 attrs &= ~ObjCPropertyAttribute::kind_weak; 252 attrs &= ~ObjCPropertyAttribute::kind_strong; 253 } 254 // The first flags field has the same attribute values as clang uses internally 255 Fields.addInt(Int8Ty, attrs & 0xff); 256 attrs >>= 8; 257 attrs <<= 2; 258 // For protocol properties, synthesized and dynamic have no meaning, so we 259 // reuse these flags to indicate that this is a protocol property (both set 260 // has no meaning, as a property can't be both synthesized and dynamic) 261 attrs |= isSynthesized ? (1<<0) : 0; 262 attrs |= isDynamic ? (1<<1) : 0; 263 // The second field is the next four fields left shifted by two, with the 264 // low bit set to indicate whether the field is synthesized or dynamic. 265 Fields.addInt(Int8Ty, attrs & 0xff); 266 // Two padding fields 267 Fields.addInt(Int8Ty, 0); 268 Fields.addInt(Int8Ty, 0); 269 } 270 271 virtual llvm::Constant *GenerateCategoryProtocolList(const 272 ObjCCategoryDecl *OCD); 273 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields, 274 int count) { 275 // int count; 276 Fields.addInt(IntTy, count); 277 // int size; (only in GNUstep v2 ABI. 278 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 279 llvm::DataLayout td(&TheModule); 280 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) / 281 CGM.getContext().getCharWidth()); 282 } 283 // struct objc_property_list *next; 284 Fields.add(NULLPtr); 285 // struct objc_property properties[] 286 return Fields.beginArray(PropertyMetadataTy); 287 } 288 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray, 289 const ObjCPropertyDecl *property, 290 const Decl *OCD, 291 bool isSynthesized=true, bool 292 isDynamic=true) { 293 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 294 ASTContext &Context = CGM.getContext(); 295 Fields.add(MakePropertyEncodingString(property, OCD)); 296 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); 297 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 298 if (accessor) { 299 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 300 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 301 Fields.add(MakeConstantString(accessor->getSelector().getAsString())); 302 Fields.add(TypeEncoding); 303 } else { 304 Fields.add(NULLPtr); 305 Fields.add(NULLPtr); 306 } 307 }; 308 addPropertyMethod(property->getGetterMethodDecl()); 309 addPropertyMethod(property->getSetterMethodDecl()); 310 Fields.finishAndAddTo(PropertiesArray); 311 } 312 313 /// Ensures that the value has the required type, by inserting a bitcast if 314 /// required. This function lets us avoid inserting bitcasts that are 315 /// redundant. 316 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { 317 if (V->getType() == Ty) 318 return V; 319 return B.CreateBitCast(V, Ty); 320 } 321 322 // Some zeros used for GEPs in lots of places. 323 llvm::Constant *Zeros[2]; 324 /// Null pointer value. Mainly used as a terminator in various arrays. 325 llvm::Constant *NULLPtr; 326 /// LLVM context. 327 llvm::LLVMContext &VMContext; 328 329 protected: 330 331 /// Placeholder for the class. Lots of things refer to the class before we've 332 /// actually emitted it. We use this alias as a placeholder, and then replace 333 /// it with a pointer to the class structure before finally emitting the 334 /// module. 335 llvm::GlobalAlias *ClassPtrAlias; 336 /// Placeholder for the metaclass. Lots of things refer to the class before 337 /// we've / actually emitted it. We use this alias as a placeholder, and then 338 /// replace / it with a pointer to the metaclass structure before finally 339 /// emitting the / module. 340 llvm::GlobalAlias *MetaClassPtrAlias; 341 /// All of the classes that have been generated for this compilation units. 342 std::vector<llvm::Constant*> Classes; 343 /// All of the categories that have been generated for this compilation units. 344 std::vector<llvm::Constant*> Categories; 345 /// All of the Objective-C constant strings that have been generated for this 346 /// compilation units. 347 std::vector<llvm::Constant*> ConstantStrings; 348 /// Map from string values to Objective-C constant strings in the output. 349 /// Used to prevent emitting Objective-C strings more than once. This should 350 /// not be required at all - CodeGenModule should manage this list. 351 llvm::StringMap<llvm::Constant*> ObjCStrings; 352 /// All of the protocols that have been declared. 353 llvm::StringMap<llvm::Constant*> ExistingProtocols; 354 /// For each variant of a selector, we store the type encoding and a 355 /// placeholder value. For an untyped selector, the type will be the empty 356 /// string. Selector references are all done via the module's selector table, 357 /// so we create an alias as a placeholder and then replace it with the real 358 /// value later. 359 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 360 /// Type of the selector map. This is roughly equivalent to the structure 361 /// used in the GNUstep runtime, which maintains a list of all of the valid 362 /// types for a selector in a table. 363 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 364 SelectorMap; 365 /// A map from selectors to selector types. This allows us to emit all 366 /// selectors of the same name and type together. 367 SelectorMap SelectorTable; 368 369 /// Selectors related to memory management. When compiling in GC mode, we 370 /// omit these. 371 Selector RetainSel, ReleaseSel, AutoreleaseSel; 372 /// Runtime functions used for memory management in GC mode. Note that clang 373 /// supports code generation for calling these functions, but neither GNU 374 /// runtime actually supports this API properly yet. 375 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 376 WeakAssignFn, GlobalAssignFn; 377 378 typedef std::pair<std::string, std::string> ClassAliasPair; 379 /// All classes that have aliases set for them. 380 std::vector<ClassAliasPair> ClassAliases; 381 382 protected: 383 /// Function used for throwing Objective-C exceptions. 384 LazyRuntimeFunction ExceptionThrowFn; 385 /// Function used for rethrowing exceptions, used at the end of \@finally or 386 /// \@synchronize blocks. 387 LazyRuntimeFunction ExceptionReThrowFn; 388 /// Function called when entering a catch function. This is required for 389 /// differentiating Objective-C exceptions and foreign exceptions. 390 LazyRuntimeFunction EnterCatchFn; 391 /// Function called when exiting from a catch block. Used to do exception 392 /// cleanup. 393 LazyRuntimeFunction ExitCatchFn; 394 /// Function called when entering an \@synchronize block. Acquires the lock. 395 LazyRuntimeFunction SyncEnterFn; 396 /// Function called when exiting an \@synchronize block. Releases the lock. 397 LazyRuntimeFunction SyncExitFn; 398 399 private: 400 /// Function called if fast enumeration detects that the collection is 401 /// modified during the update. 402 LazyRuntimeFunction EnumerationMutationFn; 403 /// Function for implementing synthesized property getters that return an 404 /// object. 405 LazyRuntimeFunction GetPropertyFn; 406 /// Function for implementing synthesized property setters that return an 407 /// object. 408 LazyRuntimeFunction SetPropertyFn; 409 /// Function used for non-object declared property getters. 410 LazyRuntimeFunction GetStructPropertyFn; 411 /// Function used for non-object declared property setters. 412 LazyRuntimeFunction SetStructPropertyFn; 413 414 protected: 415 /// The version of the runtime that this class targets. Must match the 416 /// version in the runtime. 417 int RuntimeVersion; 418 /// The version of the protocol class. Used to differentiate between ObjC1 419 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 420 /// components and can not contain declared properties. We always emit 421 /// Objective-C 2 property structures, but we have to pretend that they're 422 /// Objective-C 1 property structures when targeting the GCC runtime or it 423 /// will abort. 424 const int ProtocolVersion; 425 /// The version of the class ABI. This value is used in the class structure 426 /// and indicates how various fields should be interpreted. 427 const int ClassABIVersion; 428 /// Generates an instance variable list structure. This is a structure 429 /// containing a size and an array of structures containing instance variable 430 /// metadata. This is used purely for introspection in the fragile ABI. In 431 /// the non-fragile ABI, it's used for instance variable fixup. 432 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 433 ArrayRef<llvm::Constant *> IvarTypes, 434 ArrayRef<llvm::Constant *> IvarOffsets, 435 ArrayRef<llvm::Constant *> IvarAlign, 436 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership); 437 438 /// Generates a method list structure. This is a structure containing a size 439 /// and an array of structures containing method metadata. 440 /// 441 /// This structure is used by both classes and categories, and contains a next 442 /// pointer allowing them to be chained together in a linked list. 443 llvm::Constant *GenerateMethodList(StringRef ClassName, 444 StringRef CategoryName, 445 ArrayRef<const ObjCMethodDecl*> Methods, 446 bool isClassMethodList); 447 448 /// Emits an empty protocol. This is used for \@protocol() where no protocol 449 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 450 /// real protocol. 451 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName); 452 453 /// Generates a list of property metadata structures. This follows the same 454 /// pattern as method and instance variable metadata lists. 455 llvm::Constant *GeneratePropertyList(const Decl *Container, 456 const ObjCContainerDecl *OCD, 457 bool isClassProperty=false, 458 bool protocolOptionalProperties=false); 459 460 /// Generates a list of referenced protocols. Classes, categories, and 461 /// protocols all use this structure. 462 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 463 464 /// To ensure that all protocols are seen by the runtime, we add a category on 465 /// a class defined in the runtime, declaring no methods, but adopting the 466 /// protocols. This is a horribly ugly hack, but it allows us to collect all 467 /// of the protocols without changing the ABI. 468 void GenerateProtocolHolderCategory(); 469 470 /// Generates a class structure. 471 llvm::Constant *GenerateClassStructure( 472 llvm::Constant *MetaClass, 473 llvm::Constant *SuperClass, 474 unsigned info, 475 const char *Name, 476 llvm::Constant *Version, 477 llvm::Constant *InstanceSize, 478 llvm::Constant *IVars, 479 llvm::Constant *Methods, 480 llvm::Constant *Protocols, 481 llvm::Constant *IvarOffsets, 482 llvm::Constant *Properties, 483 llvm::Constant *StrongIvarBitmap, 484 llvm::Constant *WeakIvarBitmap, 485 bool isMeta=false); 486 487 /// Generates a method list. This is used by protocols to define the required 488 /// and optional methods. 489 virtual llvm::Constant *GenerateProtocolMethodList( 490 ArrayRef<const ObjCMethodDecl*> Methods); 491 /// Emits optional and required method lists. 492 template<class T> 493 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required, 494 llvm::Constant *&Optional) { 495 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods; 496 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods; 497 for (const auto *I : Methods) 498 if (I->isOptional()) 499 OptionalMethods.push_back(I); 500 else 501 RequiredMethods.push_back(I); 502 Required = GenerateProtocolMethodList(RequiredMethods); 503 Optional = GenerateProtocolMethodList(OptionalMethods); 504 } 505 506 /// Returns a selector with the specified type encoding. An empty string is 507 /// used to return an untyped selector (with the types field set to NULL). 508 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 509 const std::string &TypeEncoding); 510 511 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this 512 /// contains the class and ivar names, in the v2 ABI this contains the type 513 /// encoding as well. 514 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 515 const ObjCIvarDecl *Ivar) { 516 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 517 + '.' + Ivar->getNameAsString(); 518 return Name; 519 } 520 /// Returns the variable used to store the offset of an instance variable. 521 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 522 const ObjCIvarDecl *Ivar); 523 /// Emits a reference to a class. This allows the linker to object if there 524 /// is no class of the matching name. 525 void EmitClassRef(const std::string &className); 526 527 /// Emits a pointer to the named class 528 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 529 const std::string &Name, bool isWeak); 530 531 /// Looks up the method for sending a message to the specified object. This 532 /// mechanism differs between the GCC and GNU runtimes, so this method must be 533 /// overridden in subclasses. 534 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 535 llvm::Value *&Receiver, 536 llvm::Value *cmd, 537 llvm::MDNode *node, 538 MessageSendInfo &MSI) = 0; 539 540 /// Looks up the method for sending a message to a superclass. This 541 /// mechanism differs between the GCC and GNU runtimes, so this method must 542 /// be overridden in subclasses. 543 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 544 Address ObjCSuper, 545 llvm::Value *cmd, 546 MessageSendInfo &MSI) = 0; 547 548 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 549 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 550 /// bits set to their values, LSB first, while larger ones are stored in a 551 /// structure of this / form: 552 /// 553 /// struct { int32_t length; int32_t values[length]; }; 554 /// 555 /// The values in the array are stored in host-endian format, with the least 556 /// significant bit being assumed to come first in the bitfield. Therefore, 557 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 558 /// while a bitfield / with the 63rd bit set will be 1<<64. 559 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 560 561 public: 562 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 563 unsigned protocolClassVersion, unsigned classABI=1); 564 565 ConstantAddress GenerateConstantString(const StringLiteral *) override; 566 567 RValue 568 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, 569 QualType ResultType, Selector Sel, 570 llvm::Value *Receiver, const CallArgList &CallArgs, 571 const ObjCInterfaceDecl *Class, 572 const ObjCMethodDecl *Method) override; 573 RValue 574 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, 575 QualType ResultType, Selector Sel, 576 const ObjCInterfaceDecl *Class, 577 bool isCategoryImpl, llvm::Value *Receiver, 578 bool IsClassMessage, const CallArgList &CallArgs, 579 const ObjCMethodDecl *Method) override; 580 llvm::Value *GetClass(CodeGenFunction &CGF, 581 const ObjCInterfaceDecl *OID) override; 582 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 583 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 584 llvm::Value *GetSelector(CodeGenFunction &CGF, 585 const ObjCMethodDecl *Method) override; 586 virtual llvm::Constant *GetConstantSelector(Selector Sel, 587 const std::string &TypeEncoding) { 588 llvm_unreachable("Runtime unable to generate constant selector"); 589 } 590 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) { 591 return GetConstantSelector(M->getSelector(), 592 CGM.getContext().getObjCEncodingForMethodDecl(M)); 593 } 594 llvm::Constant *GetEHType(QualType T) override; 595 596 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 597 const ObjCContainerDecl *CD) override; 598 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 599 const ObjCMethodDecl *OMD, 600 const ObjCContainerDecl *CD) override; 601 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 602 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 603 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override; 604 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 605 const ObjCProtocolDecl *PD) override; 606 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 607 608 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD); 609 610 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override { 611 return GenerateProtocolRef(PD); 612 } 613 614 llvm::Function *ModuleInitFunction() override; 615 llvm::FunctionCallee GetPropertyGetFunction() override; 616 llvm::FunctionCallee GetPropertySetFunction() override; 617 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 618 bool copy) override; 619 llvm::FunctionCallee GetSetStructFunction() override; 620 llvm::FunctionCallee GetGetStructFunction() override; 621 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 622 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 623 llvm::FunctionCallee EnumerationMutationFunction() override; 624 625 void EmitTryStmt(CodeGenFunction &CGF, 626 const ObjCAtTryStmt &S) override; 627 void EmitSynchronizedStmt(CodeGenFunction &CGF, 628 const ObjCAtSynchronizedStmt &S) override; 629 void EmitThrowStmt(CodeGenFunction &CGF, 630 const ObjCAtThrowStmt &S, 631 bool ClearInsertionPoint=true) override; 632 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 633 Address AddrWeakObj) override; 634 void EmitObjCWeakAssign(CodeGenFunction &CGF, 635 llvm::Value *src, Address dst) override; 636 void EmitObjCGlobalAssign(CodeGenFunction &CGF, 637 llvm::Value *src, Address dest, 638 bool threadlocal=false) override; 639 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, 640 Address dest, llvm::Value *ivarOffset) override; 641 void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 642 llvm::Value *src, Address dest) override; 643 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, 644 Address SrcPtr, 645 llvm::Value *Size) override; 646 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, 647 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 648 unsigned CVRQualifiers) override; 649 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 650 const ObjCInterfaceDecl *Interface, 651 const ObjCIvarDecl *Ivar) override; 652 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 653 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 654 const CGBlockInfo &blockInfo) override { 655 return NULLPtr; 656 } 657 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, 658 const CGBlockInfo &blockInfo) override { 659 return NULLPtr; 660 } 661 662 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override { 663 return NULLPtr; 664 } 665 }; 666 667 /// Class representing the legacy GCC Objective-C ABI. This is the default when 668 /// -fobjc-nonfragile-abi is not specified. 669 /// 670 /// The GCC ABI target actually generates code that is approximately compatible 671 /// with the new GNUstep runtime ABI, but refrains from using any features that 672 /// would not work with the GCC runtime. For example, clang always generates 673 /// the extended form of the class structure, and the extra fields are simply 674 /// ignored by GCC libobjc. 675 class CGObjCGCC : public CGObjCGNU { 676 /// The GCC ABI message lookup function. Returns an IMP pointing to the 677 /// method implementation for this message. 678 LazyRuntimeFunction MsgLookupFn; 679 /// The GCC ABI superclass message lookup function. Takes a pointer to a 680 /// structure describing the receiver and the class, and a selector as 681 /// arguments. Returns the IMP for the corresponding method. 682 LazyRuntimeFunction MsgLookupSuperFn; 683 684 protected: 685 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 686 llvm::Value *cmd, llvm::MDNode *node, 687 MessageSendInfo &MSI) override { 688 CGBuilderTy &Builder = CGF.Builder; 689 llvm::Value *args[] = { 690 EnforceType(Builder, Receiver, IdTy), 691 EnforceType(Builder, cmd, SelectorTy) }; 692 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 693 imp->setMetadata(msgSendMDKind, node); 694 return imp; 695 } 696 697 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 698 llvm::Value *cmd, MessageSendInfo &MSI) override { 699 CGBuilderTy &Builder = CGF.Builder; 700 llvm::Value *lookupArgs[] = { 701 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd}; 702 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 703 } 704 705 public: 706 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 707 // IMP objc_msg_lookup(id, SEL); 708 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 709 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 710 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 711 PtrToObjCSuperTy, SelectorTy); 712 } 713 }; 714 715 /// Class used when targeting the new GNUstep runtime ABI. 716 class CGObjCGNUstep : public CGObjCGNU { 717 /// The slot lookup function. Returns a pointer to a cacheable structure 718 /// that contains (among other things) the IMP. 719 LazyRuntimeFunction SlotLookupFn; 720 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 721 /// a structure describing the receiver and the class, and a selector as 722 /// arguments. Returns the slot for the corresponding method. Superclass 723 /// message lookup rarely changes, so this is a good caching opportunity. 724 LazyRuntimeFunction SlotLookupSuperFn; 725 /// Specialised function for setting atomic retain properties 726 LazyRuntimeFunction SetPropertyAtomic; 727 /// Specialised function for setting atomic copy properties 728 LazyRuntimeFunction SetPropertyAtomicCopy; 729 /// Specialised function for setting nonatomic retain properties 730 LazyRuntimeFunction SetPropertyNonAtomic; 731 /// Specialised function for setting nonatomic copy properties 732 LazyRuntimeFunction SetPropertyNonAtomicCopy; 733 /// Function to perform atomic copies of C++ objects with nontrivial copy 734 /// constructors from Objective-C ivars. 735 LazyRuntimeFunction CxxAtomicObjectGetFn; 736 /// Function to perform atomic copies of C++ objects with nontrivial copy 737 /// constructors to Objective-C ivars. 738 LazyRuntimeFunction CxxAtomicObjectSetFn; 739 /// Type of a slot structure pointer. This is returned by the various 740 /// lookup functions. 741 llvm::Type *SlotTy; 742 /// Type of a slot structure. 743 llvm::Type *SlotStructTy; 744 745 public: 746 llvm::Constant *GetEHType(QualType T) override; 747 748 protected: 749 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 750 llvm::Value *cmd, llvm::MDNode *node, 751 MessageSendInfo &MSI) override { 752 CGBuilderTy &Builder = CGF.Builder; 753 llvm::FunctionCallee LookupFn = SlotLookupFn; 754 755 // Store the receiver on the stack so that we can reload it later 756 Address ReceiverPtr = 757 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign()); 758 Builder.CreateStore(Receiver, ReceiverPtr); 759 760 llvm::Value *self; 761 762 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 763 self = CGF.LoadObjCSelf(); 764 } else { 765 self = llvm::ConstantPointerNull::get(IdTy); 766 } 767 768 // The lookup function is guaranteed not to capture the receiver pointer. 769 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee())) 770 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture); 771 772 llvm::Value *args[] = { 773 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy), 774 EnforceType(Builder, cmd, SelectorTy), 775 EnforceType(Builder, self, IdTy) }; 776 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); 777 slot->setOnlyReadsMemory(); 778 slot->setMetadata(msgSendMDKind, node); 779 780 // Load the imp from the slot 781 llvm::Value *imp = Builder.CreateAlignedLoad( 782 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 783 CGF.getPointerAlign()); 784 785 // The lookup function may have changed the receiver, so make sure we use 786 // the new one. 787 Receiver = Builder.CreateLoad(ReceiverPtr, true); 788 return imp; 789 } 790 791 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 792 llvm::Value *cmd, 793 MessageSendInfo &MSI) override { 794 CGBuilderTy &Builder = CGF.Builder; 795 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd}; 796 797 llvm::CallInst *slot = 798 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); 799 slot->setOnlyReadsMemory(); 800 801 return Builder.CreateAlignedLoad( 802 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 803 CGF.getPointerAlign()); 804 } 805 806 public: 807 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {} 808 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI, 809 unsigned ClassABI) : 810 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) { 811 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 812 813 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy); 814 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 815 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 816 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 817 SelectorTy, IdTy); 818 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL); 819 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 820 PtrToObjCSuperTy, SelectorTy); 821 // If we're in ObjC++ mode, then we want to make 822 if (usesSEHExceptions) { 823 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 824 // void objc_exception_rethrow(void) 825 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy); 826 } else if (CGM.getLangOpts().CPlusPlus) { 827 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 828 // void *__cxa_begin_catch(void *e) 829 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 830 // void __cxa_end_catch(void) 831 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 832 // void _Unwind_Resume_or_Rethrow(void*) 833 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, 834 PtrTy); 835 } else if (R.getVersion() >= VersionTuple(1, 7)) { 836 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 837 // id objc_begin_catch(void *e) 838 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy); 839 // void objc_end_catch(void) 840 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy); 841 // void _Unwind_Resume_or_Rethrow(void*) 842 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy); 843 } 844 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 845 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, 846 SelectorTy, IdTy, PtrDiffTy); 847 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, 848 IdTy, SelectorTy, IdTy, PtrDiffTy); 849 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, 850 IdTy, SelectorTy, IdTy, PtrDiffTy); 851 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", 852 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); 853 // void objc_setCppObjectAtomic(void *dest, const void *src, void 854 // *helper); 855 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, 856 PtrTy, PtrTy); 857 // void objc_getCppObjectAtomic(void *dest, const void *src, void 858 // *helper); 859 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, 860 PtrTy, PtrTy); 861 } 862 863 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 864 // The optimised functions were added in version 1.7 of the GNUstep 865 // runtime. 866 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 867 VersionTuple(1, 7)); 868 return CxxAtomicObjectGetFn; 869 } 870 871 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 872 // The optimised functions were added in version 1.7 of the GNUstep 873 // runtime. 874 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 875 VersionTuple(1, 7)); 876 return CxxAtomicObjectSetFn; 877 } 878 879 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 880 bool copy) override { 881 // The optimised property functions omit the GC check, and so are not 882 // safe to use in GC mode. The standard functions are fast in GC mode, 883 // so there is less advantage in using them. 884 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); 885 // The optimised functions were added in version 1.7 of the GNUstep 886 // runtime. 887 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 888 VersionTuple(1, 7)); 889 890 if (atomic) { 891 if (copy) return SetPropertyAtomicCopy; 892 return SetPropertyAtomic; 893 } 894 895 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic; 896 } 897 }; 898 899 /// GNUstep Objective-C ABI version 2 implementation. 900 /// This is the ABI that provides a clean break with the legacy GCC ABI and 901 /// cleans up a number of things that were added to work around 1980s linkers. 902 class CGObjCGNUstep2 : public CGObjCGNUstep { 903 enum SectionKind 904 { 905 SelectorSection = 0, 906 ClassSection, 907 ClassReferenceSection, 908 CategorySection, 909 ProtocolSection, 910 ProtocolReferenceSection, 911 ClassAliasSection, 912 ConstantStringSection 913 }; 914 static const char *const SectionsBaseNames[8]; 915 static const char *const PECOFFSectionsBaseNames[8]; 916 template<SectionKind K> 917 std::string sectionName() { 918 if (CGM.getTriple().isOSBinFormatCOFF()) { 919 std::string name(PECOFFSectionsBaseNames[K]); 920 name += "$m"; 921 return name; 922 } 923 return SectionsBaseNames[K]; 924 } 925 /// The GCC ABI superclass message lookup function. Takes a pointer to a 926 /// structure describing the receiver and the class, and a selector as 927 /// arguments. Returns the IMP for the corresponding method. 928 LazyRuntimeFunction MsgLookupSuperFn; 929 /// A flag indicating if we've emitted at least one protocol. 930 /// If we haven't, then we need to emit an empty protocol, to ensure that the 931 /// __start__objc_protocols and __stop__objc_protocols sections exist. 932 bool EmittedProtocol = false; 933 /// A flag indicating if we've emitted at least one protocol reference. 934 /// If we haven't, then we need to emit an empty protocol, to ensure that the 935 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections 936 /// exist. 937 bool EmittedProtocolRef = false; 938 /// A flag indicating if we've emitted at least one class. 939 /// If we haven't, then we need to emit an empty protocol, to ensure that the 940 /// __start__objc_classes and __stop__objc_classes sections / exist. 941 bool EmittedClass = false; 942 /// Generate the name of a symbol for a reference to a class. Accesses to 943 /// classes should be indirected via this. 944 945 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>> 946 EarlyInitPair; 947 std::vector<EarlyInitPair> EarlyInitList; 948 949 std::string SymbolForClassRef(StringRef Name, bool isWeak) { 950 if (isWeak) 951 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str(); 952 else 953 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str(); 954 } 955 /// Generate the name of a class symbol. 956 std::string SymbolForClass(StringRef Name) { 957 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str(); 958 } 959 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName, 960 ArrayRef<llvm::Value*> Args) { 961 SmallVector<llvm::Type *,8> Types; 962 for (auto *Arg : Args) 963 Types.push_back(Arg->getType()); 964 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types, 965 false); 966 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName); 967 B.CreateCall(Fn, Args); 968 } 969 970 ConstantAddress GenerateConstantString(const StringLiteral *SL) override { 971 972 auto Str = SL->getString(); 973 CharUnits Align = CGM.getPointerAlign(); 974 975 // Look for an existing one 976 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 977 if (old != ObjCStrings.end()) 978 return ConstantAddress(old->getValue(), IdElemTy, Align); 979 980 bool isNonASCII = SL->containsNonAscii(); 981 982 auto LiteralLength = SL->getLength(); 983 984 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) && 985 (LiteralLength < 9) && !isNonASCII) { 986 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit 987 // ASCII characters in the high 56 bits, followed by a 4-bit length and a 988 // 3-bit tag (which is always 4). 989 uint64_t str = 0; 990 // Fill in the characters 991 for (unsigned i=0 ; i<LiteralLength ; i++) 992 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7)); 993 // Fill in the length 994 str |= LiteralLength << 3; 995 // Set the tag 996 str |= 4; 997 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr( 998 llvm::ConstantInt::get(Int64Ty, str), IdTy); 999 ObjCStrings[Str] = ObjCStr; 1000 return ConstantAddress(ObjCStr, IdElemTy, Align); 1001 } 1002 1003 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1004 1005 if (StringClass.empty()) StringClass = "NSConstantString"; 1006 1007 std::string Sym = SymbolForClass(StringClass); 1008 1009 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 1010 1011 if (!isa) { 1012 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 1013 llvm::GlobalValue::ExternalLinkage, nullptr, Sym); 1014 if (CGM.getTriple().isOSBinFormatCOFF()) { 1015 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1016 } 1017 } else if (isa->getType() != PtrToIdTy) 1018 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 1019 1020 // struct 1021 // { 1022 // Class isa; 1023 // uint32_t flags; 1024 // uint32_t length; // Number of codepoints 1025 // uint32_t size; // Number of bytes 1026 // uint32_t hash; 1027 // const char *data; 1028 // }; 1029 1030 ConstantInitBuilder Builder(CGM); 1031 auto Fields = Builder.beginStruct(); 1032 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1033 Fields.add(isa); 1034 } else { 1035 Fields.addNullPointer(PtrTy); 1036 } 1037 // For now, all non-ASCII strings are represented as UTF-16. As such, the 1038 // number of bytes is simply double the number of UTF-16 codepoints. In 1039 // ASCII strings, the number of bytes is equal to the number of non-ASCII 1040 // codepoints. 1041 if (isNonASCII) { 1042 unsigned NumU8CodeUnits = Str.size(); 1043 // A UTF-16 representation of a unicode string contains at most the same 1044 // number of code units as a UTF-8 representation. Allocate that much 1045 // space, plus one for the final null character. 1046 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1); 1047 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data(); 1048 llvm::UTF16 *ToPtr = &ToBuf[0]; 1049 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits, 1050 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion); 1051 uint32_t StringLength = ToPtr - &ToBuf[0]; 1052 // Add null terminator 1053 *ToPtr = 0; 1054 // Flags: 2 indicates UTF-16 encoding 1055 Fields.addInt(Int32Ty, 2); 1056 // Number of UTF-16 codepoints 1057 Fields.addInt(Int32Ty, StringLength); 1058 // Number of bytes 1059 Fields.addInt(Int32Ty, StringLength * 2); 1060 // Hash. Not currently initialised by the compiler. 1061 Fields.addInt(Int32Ty, 0); 1062 // pointer to the data string. 1063 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1); 1064 auto *C = llvm::ConstantDataArray::get(VMContext, Arr); 1065 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(), 1066 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); 1067 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1068 Fields.add(Buffer); 1069 } else { 1070 // Flags: 0 indicates ASCII encoding 1071 Fields.addInt(Int32Ty, 0); 1072 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint 1073 Fields.addInt(Int32Ty, Str.size()); 1074 // Number of bytes 1075 Fields.addInt(Int32Ty, Str.size()); 1076 // Hash. Not currently initialised by the compiler. 1077 Fields.addInt(Int32Ty, 0); 1078 // Data pointer 1079 Fields.add(MakeConstantString(Str)); 1080 } 1081 std::string StringName; 1082 bool isNamed = !isNonASCII; 1083 if (isNamed) { 1084 StringName = ".objc_str_"; 1085 for (int i=0,e=Str.size() ; i<e ; ++i) { 1086 unsigned char c = Str[i]; 1087 if (isalnum(c)) 1088 StringName += c; 1089 else if (c == ' ') 1090 StringName += '_'; 1091 else { 1092 isNamed = false; 1093 break; 1094 } 1095 } 1096 } 1097 llvm::GlobalVariable *ObjCStrGV = 1098 Fields.finishAndCreateGlobal( 1099 isNamed ? StringRef(StringName) : ".objc_string", 1100 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage 1101 : llvm::GlobalValue::PrivateLinkage); 1102 ObjCStrGV->setSection(sectionName<ConstantStringSection>()); 1103 if (isNamed) { 1104 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName)); 1105 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1106 } 1107 if (CGM.getTriple().isOSBinFormatCOFF()) { 1108 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0}; 1109 EarlyInitList.emplace_back(Sym, v); 1110 } 1111 llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy); 1112 ObjCStrings[Str] = ObjCStr; 1113 ConstantStrings.push_back(ObjCStr); 1114 return ConstantAddress(ObjCStr, IdElemTy, Align); 1115 } 1116 1117 void PushProperty(ConstantArrayBuilder &PropertiesArray, 1118 const ObjCPropertyDecl *property, 1119 const Decl *OCD, 1120 bool isSynthesized=true, bool 1121 isDynamic=true) override { 1122 // struct objc_property 1123 // { 1124 // const char *name; 1125 // const char *attributes; 1126 // const char *type; 1127 // SEL getter; 1128 // SEL setter; 1129 // }; 1130 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 1131 ASTContext &Context = CGM.getContext(); 1132 Fields.add(MakeConstantString(property->getNameAsString())); 1133 std::string TypeStr = 1134 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD); 1135 Fields.add(MakeConstantString(TypeStr)); 1136 std::string typeStr; 1137 Context.getObjCEncodingForType(property->getType(), typeStr); 1138 Fields.add(MakeConstantString(typeStr)); 1139 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 1140 if (accessor) { 1141 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 1142 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr)); 1143 } else { 1144 Fields.add(NULLPtr); 1145 } 1146 }; 1147 addPropertyMethod(property->getGetterMethodDecl()); 1148 addPropertyMethod(property->getSetterMethodDecl()); 1149 Fields.finishAndAddTo(PropertiesArray); 1150 } 1151 1152 llvm::Constant * 1153 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override { 1154 // struct objc_protocol_method_description 1155 // { 1156 // SEL selector; 1157 // const char *types; 1158 // }; 1159 llvm::StructType *ObjCMethodDescTy = 1160 llvm::StructType::get(CGM.getLLVMContext(), 1161 { PtrToInt8Ty, PtrToInt8Ty }); 1162 ASTContext &Context = CGM.getContext(); 1163 ConstantInitBuilder Builder(CGM); 1164 // struct objc_protocol_method_description_list 1165 // { 1166 // int count; 1167 // int size; 1168 // struct objc_protocol_method_description methods[]; 1169 // }; 1170 auto MethodList = Builder.beginStruct(); 1171 // int count; 1172 MethodList.addInt(IntTy, Methods.size()); 1173 // int size; // sizeof(struct objc_method_description) 1174 llvm::DataLayout td(&TheModule); 1175 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) / 1176 CGM.getContext().getCharWidth()); 1177 // struct objc_method_description[] 1178 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 1179 for (auto *M : Methods) { 1180 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 1181 Method.add(CGObjCGNU::GetConstantSelector(M)); 1182 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true))); 1183 Method.finishAndAddTo(MethodArray); 1184 } 1185 MethodArray.finishAndAddTo(MethodList); 1186 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list", 1187 CGM.getPointerAlign()); 1188 } 1189 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD) 1190 override { 1191 const auto &ReferencedProtocols = OCD->getReferencedProtocols(); 1192 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(), 1193 ReferencedProtocols.end()); 1194 SmallVector<llvm::Constant *, 16> Protocols; 1195 for (const auto *PI : RuntimeProtocols) 1196 Protocols.push_back( 1197 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI), 1198 ProtocolPtrTy)); 1199 return GenerateProtocolList(Protocols); 1200 } 1201 1202 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 1203 llvm::Value *cmd, MessageSendInfo &MSI) override { 1204 // Don't access the slot unless we're trying to cache the result. 1205 CGBuilderTy &Builder = CGF.Builder; 1206 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, 1207 ObjCSuper.getPointer(), 1208 PtrToObjCSuperTy), 1209 cmd}; 1210 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 1211 } 1212 1213 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) { 1214 std::string SymbolName = SymbolForClassRef(Name, isWeak); 1215 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName); 1216 if (ClassSymbol) 1217 return ClassSymbol; 1218 ClassSymbol = new llvm::GlobalVariable(TheModule, 1219 IdTy, false, llvm::GlobalValue::ExternalLinkage, 1220 nullptr, SymbolName); 1221 // If this is a weak symbol, then we are creating a valid definition for 1222 // the symbol, pointing to a weak definition of the real class pointer. If 1223 // this is not a weak reference, then we are expecting another compilation 1224 // unit to provide the real indirection symbol. 1225 if (isWeak) 1226 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule, 1227 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage, 1228 nullptr, SymbolForClass(Name))); 1229 else { 1230 if (CGM.getTriple().isOSBinFormatCOFF()) { 1231 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 1232 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 1233 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 1234 1235 const ObjCInterfaceDecl *OID = nullptr; 1236 for (const auto *Result : DC->lookup(&II)) 1237 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result))) 1238 break; 1239 1240 // The first Interface we find may be a @class, 1241 // which should only be treated as the source of 1242 // truth in the absence of a true declaration. 1243 assert(OID && "Failed to find ObjCInterfaceDecl"); 1244 const ObjCInterfaceDecl *OIDDef = OID->getDefinition(); 1245 if (OIDDef != nullptr) 1246 OID = OIDDef; 1247 1248 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1249 if (OID->hasAttr<DLLImportAttr>()) 1250 Storage = llvm::GlobalValue::DLLImportStorageClass; 1251 else if (OID->hasAttr<DLLExportAttr>()) 1252 Storage = llvm::GlobalValue::DLLExportStorageClass; 1253 1254 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage); 1255 } 1256 } 1257 assert(ClassSymbol->getName() == SymbolName); 1258 return ClassSymbol; 1259 } 1260 llvm::Value *GetClassNamed(CodeGenFunction &CGF, 1261 const std::string &Name, 1262 bool isWeak) override { 1263 return CGF.Builder.CreateLoad( 1264 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign())); 1265 } 1266 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) { 1267 // typedef enum { 1268 // ownership_invalid = 0, 1269 // ownership_strong = 1, 1270 // ownership_weak = 2, 1271 // ownership_unsafe = 3 1272 // } ivar_ownership; 1273 int Flag; 1274 switch (Ownership) { 1275 case Qualifiers::OCL_Strong: 1276 Flag = 1; 1277 break; 1278 case Qualifiers::OCL_Weak: 1279 Flag = 2; 1280 break; 1281 case Qualifiers::OCL_ExplicitNone: 1282 Flag = 3; 1283 break; 1284 case Qualifiers::OCL_None: 1285 case Qualifiers::OCL_Autoreleasing: 1286 assert(Ownership != Qualifiers::OCL_Autoreleasing); 1287 Flag = 0; 1288 } 1289 return Flag; 1290 } 1291 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1292 ArrayRef<llvm::Constant *> IvarTypes, 1293 ArrayRef<llvm::Constant *> IvarOffsets, 1294 ArrayRef<llvm::Constant *> IvarAlign, 1295 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override { 1296 llvm_unreachable("Method should not be called!"); 1297 } 1298 1299 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override { 1300 std::string Name = SymbolForProtocol(ProtocolName); 1301 auto *GV = TheModule.getGlobalVariable(Name); 1302 if (!GV) { 1303 // Emit a placeholder symbol. 1304 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false, 1305 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1306 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1307 } 1308 return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy); 1309 } 1310 1311 /// Existing protocol references. 1312 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs; 1313 1314 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1315 const ObjCProtocolDecl *PD) override { 1316 auto Name = PD->getNameAsString(); 1317 auto *&Ref = ExistingProtocolRefs[Name]; 1318 if (!Ref) { 1319 auto *&Protocol = ExistingProtocols[Name]; 1320 if (!Protocol) 1321 Protocol = GenerateProtocolRef(PD); 1322 std::string RefName = SymbolForProtocolRef(Name); 1323 assert(!TheModule.getGlobalVariable(RefName)); 1324 // Emit a reference symbol. 1325 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, 1326 false, llvm::GlobalValue::LinkOnceODRLinkage, 1327 llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName); 1328 GV->setComdat(TheModule.getOrInsertComdat(RefName)); 1329 GV->setSection(sectionName<ProtocolReferenceSection>()); 1330 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1331 Ref = GV; 1332 } 1333 EmittedProtocolRef = true; 1334 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref, 1335 CGM.getPointerAlign()); 1336 } 1337 1338 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) { 1339 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy, 1340 Protocols.size()); 1341 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1342 Protocols); 1343 ConstantInitBuilder builder(CGM); 1344 auto ProtocolBuilder = builder.beginStruct(); 1345 ProtocolBuilder.addNullPointer(PtrTy); 1346 ProtocolBuilder.addInt(SizeTy, Protocols.size()); 1347 ProtocolBuilder.add(ProtocolArray); 1348 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list", 1349 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage); 1350 } 1351 1352 void GenerateProtocol(const ObjCProtocolDecl *PD) override { 1353 // Do nothing - we only emit referenced protocols. 1354 } 1355 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override { 1356 std::string ProtocolName = PD->getNameAsString(); 1357 auto *&Protocol = ExistingProtocols[ProtocolName]; 1358 if (Protocol) 1359 return Protocol; 1360 1361 EmittedProtocol = true; 1362 1363 auto SymName = SymbolForProtocol(ProtocolName); 1364 auto *OldGV = TheModule.getGlobalVariable(SymName); 1365 1366 // Use the protocol definition, if there is one. 1367 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1368 PD = Def; 1369 else { 1370 // If there is no definition, then create an external linkage symbol and 1371 // hope that someone else fills it in for us (and fail to link if they 1372 // don't). 1373 assert(!OldGV); 1374 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy, 1375 /*isConstant*/false, 1376 llvm::GlobalValue::ExternalLinkage, nullptr, SymName); 1377 return Protocol; 1378 } 1379 1380 SmallVector<llvm::Constant*, 16> Protocols; 1381 auto RuntimeProtocols = 1382 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end()); 1383 for (const auto *PI : RuntimeProtocols) 1384 Protocols.push_back( 1385 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI), 1386 ProtocolPtrTy)); 1387 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1388 1389 // Collect information about methods 1390 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList; 1391 llvm::Constant *ClassMethodList, *OptionalClassMethodList; 1392 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList, 1393 OptionalInstanceMethodList); 1394 EmitProtocolMethodList(PD->class_methods(), ClassMethodList, 1395 OptionalClassMethodList); 1396 1397 // The isa pointer must be set to a magic number so the runtime knows it's 1398 // the correct layout. 1399 ConstantInitBuilder builder(CGM); 1400 auto ProtocolBuilder = builder.beginStruct(); 1401 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr( 1402 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1403 ProtocolBuilder.add(MakeConstantString(ProtocolName)); 1404 ProtocolBuilder.add(ProtocolList); 1405 ProtocolBuilder.add(InstanceMethodList); 1406 ProtocolBuilder.add(ClassMethodList); 1407 ProtocolBuilder.add(OptionalInstanceMethodList); 1408 ProtocolBuilder.add(OptionalClassMethodList); 1409 // Required instance properties 1410 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false)); 1411 // Optional instance properties 1412 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true)); 1413 // Required class properties 1414 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false)); 1415 // Optional class properties 1416 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true)); 1417 1418 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName, 1419 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1420 GV->setSection(sectionName<ProtocolSection>()); 1421 GV->setComdat(TheModule.getOrInsertComdat(SymName)); 1422 if (OldGV) { 1423 OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV, 1424 OldGV->getType())); 1425 OldGV->removeFromParent(); 1426 GV->setName(SymName); 1427 } 1428 Protocol = GV; 1429 return GV; 1430 } 1431 llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) { 1432 if (Val->getType() == Ty) 1433 return Val; 1434 return llvm::ConstantExpr::getBitCast(Val, Ty); 1435 } 1436 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 1437 const std::string &TypeEncoding) override { 1438 return GetConstantSelector(Sel, TypeEncoding); 1439 } 1440 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) { 1441 if (TypeEncoding.empty()) 1442 return NULLPtr; 1443 std::string MangledTypes = std::string(TypeEncoding); 1444 std::replace(MangledTypes.begin(), MangledTypes.end(), 1445 '@', '\1'); 1446 std::string TypesVarName = ".objc_sel_types_" + MangledTypes; 1447 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName); 1448 if (!TypesGlobal) { 1449 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, 1450 TypeEncoding); 1451 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(), 1452 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName); 1453 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName)); 1454 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1455 TypesGlobal = GV; 1456 } 1457 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(), 1458 TypesGlobal, Zeros); 1459 } 1460 llvm::Constant *GetConstantSelector(Selector Sel, 1461 const std::string &TypeEncoding) override { 1462 // @ is used as a special character in symbol names (used for symbol 1463 // versioning), so mangle the name to not include it. Replace it with a 1464 // character that is not a valid type encoding character (and, being 1465 // non-printable, never will be!) 1466 std::string MangledTypes = TypeEncoding; 1467 std::replace(MangledTypes.begin(), MangledTypes.end(), 1468 '@', '\1'); 1469 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" + 1470 MangledTypes).str(); 1471 if (auto *GV = TheModule.getNamedGlobal(SelVarName)) 1472 return EnforceType(GV, SelectorTy); 1473 ConstantInitBuilder builder(CGM); 1474 auto SelBuilder = builder.beginStruct(); 1475 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_", 1476 true)); 1477 SelBuilder.add(GetTypeString(TypeEncoding)); 1478 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName, 1479 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1480 GV->setComdat(TheModule.getOrInsertComdat(SelVarName)); 1481 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1482 GV->setSection(sectionName<SelectorSection>()); 1483 auto *SelVal = EnforceType(GV, SelectorTy); 1484 return SelVal; 1485 } 1486 llvm::StructType *emptyStruct = nullptr; 1487 1488 /// Return pointers to the start and end of a section. On ELF platforms, we 1489 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set 1490 /// to the start and end of section names, as long as those section names are 1491 /// valid identifiers and the symbols are referenced but not defined. On 1492 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort 1493 /// by subsections and place everything that we want to reference in a middle 1494 /// subsection and then insert zero-sized symbols in subsections a and z. 1495 std::pair<llvm::Constant*,llvm::Constant*> 1496 GetSectionBounds(StringRef Section) { 1497 if (CGM.getTriple().isOSBinFormatCOFF()) { 1498 if (emptyStruct == nullptr) { 1499 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel"); 1500 emptyStruct->setBody({}, /*isPacked*/true); 1501 } 1502 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct); 1503 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) { 1504 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct, 1505 /*isConstant*/false, 1506 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix + 1507 Section); 1508 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility); 1509 Sym->setSection((Section + SecSuffix).str()); 1510 Sym->setComdat(TheModule.getOrInsertComdat((Prefix + 1511 Section).str())); 1512 Sym->setAlignment(CGM.getPointerAlign().getAsAlign()); 1513 return Sym; 1514 }; 1515 return { Sym("__start_", "$a"), Sym("__stop", "$z") }; 1516 } 1517 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy, 1518 /*isConstant*/false, 1519 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") + 1520 Section); 1521 Start->setVisibility(llvm::GlobalValue::HiddenVisibility); 1522 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy, 1523 /*isConstant*/false, 1524 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") + 1525 Section); 1526 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility); 1527 return { Start, Stop }; 1528 } 1529 CatchTypeInfo getCatchAllTypeInfo() override { 1530 return CGM.getCXXABI().getCatchAllTypeInfo(); 1531 } 1532 llvm::Function *ModuleInitFunction() override { 1533 llvm::Function *LoadFunction = llvm::Function::Create( 1534 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 1535 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function", 1536 &TheModule); 1537 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility); 1538 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function")); 1539 1540 llvm::BasicBlock *EntryBB = 1541 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 1542 CGBuilderTy B(CGM, VMContext); 1543 B.SetInsertPoint(EntryBB); 1544 ConstantInitBuilder builder(CGM); 1545 auto InitStructBuilder = builder.beginStruct(); 1546 InitStructBuilder.addInt(Int64Ty, 0); 1547 auto §ionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames; 1548 for (auto *s : sectionVec) { 1549 auto bounds = GetSectionBounds(s); 1550 InitStructBuilder.add(bounds.first); 1551 InitStructBuilder.add(bounds.second); 1552 } 1553 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init", 1554 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1555 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility); 1556 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init")); 1557 1558 CallRuntimeFunction(B, "__objc_load", {InitStruct});; 1559 B.CreateRetVoid(); 1560 // Make sure that the optimisers don't delete this function. 1561 CGM.addCompilerUsedGlobal(LoadFunction); 1562 // FIXME: Currently ELF only! 1563 // We have to do this by hand, rather than with @llvm.ctors, so that the 1564 // linker can remove the duplicate invocations. 1565 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(), 1566 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage, 1567 LoadFunction, ".objc_ctor"); 1568 // Check that this hasn't been renamed. This shouldn't happen, because 1569 // this function should be called precisely once. 1570 assert(InitVar->getName() == ".objc_ctor"); 1571 // In Windows, initialisers are sorted by the suffix. XCL is for library 1572 // initialisers, which run before user initialisers. We are running 1573 // Objective-C loads at the end of library load. This means +load methods 1574 // will run before any other static constructors, but that static 1575 // constructors can see a fully initialised Objective-C state. 1576 if (CGM.getTriple().isOSBinFormatCOFF()) 1577 InitVar->setSection(".CRT$XCLz"); 1578 else 1579 { 1580 if (CGM.getCodeGenOpts().UseInitArray) 1581 InitVar->setSection(".init_array"); 1582 else 1583 InitVar->setSection(".ctors"); 1584 } 1585 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility); 1586 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor")); 1587 CGM.addUsedGlobal(InitVar); 1588 for (auto *C : Categories) { 1589 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts()); 1590 Cat->setSection(sectionName<CategorySection>()); 1591 CGM.addUsedGlobal(Cat); 1592 } 1593 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init, 1594 StringRef Section) { 1595 auto nullBuilder = builder.beginStruct(); 1596 for (auto *F : Init) 1597 nullBuilder.add(F); 1598 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 1599 false, llvm::GlobalValue::LinkOnceODRLinkage); 1600 GV->setSection(Section); 1601 GV->setComdat(TheModule.getOrInsertComdat(Name)); 1602 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1603 CGM.addUsedGlobal(GV); 1604 return GV; 1605 }; 1606 for (auto clsAlias : ClassAliases) 1607 createNullGlobal(std::string(".objc_class_alias") + 1608 clsAlias.second, { MakeConstantString(clsAlias.second), 1609 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>()); 1610 // On ELF platforms, add a null value for each special section so that we 1611 // can always guarantee that the _start and _stop symbols will exist and be 1612 // meaningful. This is not required on COFF platforms, where our start and 1613 // stop symbols will create the section. 1614 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1615 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr}, 1616 sectionName<SelectorSection>()); 1617 if (Categories.empty()) 1618 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr, 1619 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, 1620 sectionName<CategorySection>()); 1621 if (!EmittedClass) { 1622 createNullGlobal(".objc_null_cls_init_ref", NULLPtr, 1623 sectionName<ClassSection>()); 1624 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr }, 1625 sectionName<ClassReferenceSection>()); 1626 } 1627 if (!EmittedProtocol) 1628 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr, 1629 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, 1630 NULLPtr}, sectionName<ProtocolSection>()); 1631 if (!EmittedProtocolRef) 1632 createNullGlobal(".objc_null_protocol_ref", {NULLPtr}, 1633 sectionName<ProtocolReferenceSection>()); 1634 if (ClassAliases.empty()) 1635 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr }, 1636 sectionName<ClassAliasSection>()); 1637 if (ConstantStrings.empty()) { 1638 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0); 1639 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero, 1640 i32Zero, i32Zero, i32Zero, NULLPtr }, 1641 sectionName<ConstantStringSection>()); 1642 } 1643 } 1644 ConstantStrings.clear(); 1645 Categories.clear(); 1646 Classes.clear(); 1647 1648 if (EarlyInitList.size() > 0) { 1649 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, 1650 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init", 1651 &CGM.getModule()); 1652 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", 1653 Init)); 1654 for (const auto &lateInit : EarlyInitList) { 1655 auto *global = TheModule.getGlobalVariable(lateInit.first); 1656 if (global) { 1657 llvm::GlobalVariable *GV = lateInit.second.first; 1658 b.CreateAlignedStore( 1659 global, 1660 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second), 1661 CGM.getPointerAlign().getAsAlign()); 1662 } 1663 } 1664 b.CreateRetVoid(); 1665 // We can't use the normal LLVM global initialisation array, because we 1666 // need to specify that this runs early in library initialisation. 1667 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 1668 /*isConstant*/true, llvm::GlobalValue::InternalLinkage, 1669 Init, ".objc_early_init_ptr"); 1670 InitVar->setSection(".CRT$XCLb"); 1671 CGM.addUsedGlobal(InitVar); 1672 } 1673 return nullptr; 1674 } 1675 /// In the v2 ABI, ivar offset variables use the type encoding in their name 1676 /// to trigger linker failures if the types don't match. 1677 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 1678 const ObjCIvarDecl *Ivar) override { 1679 std::string TypeEncoding; 1680 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding); 1681 // Prevent the @ from being interpreted as a symbol version. 1682 std::replace(TypeEncoding.begin(), TypeEncoding.end(), 1683 '@', '\1'); 1684 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 1685 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding; 1686 return Name; 1687 } 1688 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 1689 const ObjCInterfaceDecl *Interface, 1690 const ObjCIvarDecl *Ivar) override { 1691 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar); 1692 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 1693 if (!IvarOffsetPointer) 1694 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false, 1695 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1696 CharUnits Align = CGM.getIntAlign(); 1697 llvm::Value *Offset = 1698 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align); 1699 if (Offset->getType() != PtrDiffTy) 1700 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 1701 return Offset; 1702 } 1703 void GenerateClass(const ObjCImplementationDecl *OID) override { 1704 ASTContext &Context = CGM.getContext(); 1705 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF(); 1706 1707 // Get the class name 1708 ObjCInterfaceDecl *classDecl = 1709 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 1710 std::string className = classDecl->getNameAsString(); 1711 auto *classNameConstant = MakeConstantString(className); 1712 1713 ConstantInitBuilder builder(CGM); 1714 auto metaclassFields = builder.beginStruct(); 1715 // struct objc_class *isa; 1716 metaclassFields.addNullPointer(PtrTy); 1717 // struct objc_class *super_class; 1718 metaclassFields.addNullPointer(PtrTy); 1719 // const char *name; 1720 metaclassFields.add(classNameConstant); 1721 // long version; 1722 metaclassFields.addInt(LongTy, 0); 1723 // unsigned long info; 1724 // objc_class_flag_meta 1725 metaclassFields.addInt(LongTy, 1); 1726 // long instance_size; 1727 // Setting this to zero is consistent with the older ABI, but it might be 1728 // more sensible to set this to sizeof(struct objc_class) 1729 metaclassFields.addInt(LongTy, 0); 1730 // struct objc_ivar_list *ivars; 1731 metaclassFields.addNullPointer(PtrTy); 1732 // struct objc_method_list *methods 1733 // FIXME: Almost identical code is copied and pasted below for the 1734 // class, but refactoring it cleanly requires C++14 generic lambdas. 1735 if (OID->classmeth_begin() == OID->classmeth_end()) 1736 metaclassFields.addNullPointer(PtrTy); 1737 else { 1738 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 1739 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 1740 OID->classmeth_end()); 1741 metaclassFields.addBitCast( 1742 GenerateMethodList(className, "", ClassMethods, true), 1743 PtrTy); 1744 } 1745 // void *dtable; 1746 metaclassFields.addNullPointer(PtrTy); 1747 // IMP cxx_construct; 1748 metaclassFields.addNullPointer(PtrTy); 1749 // IMP cxx_destruct; 1750 metaclassFields.addNullPointer(PtrTy); 1751 // struct objc_class *subclass_list 1752 metaclassFields.addNullPointer(PtrTy); 1753 // struct objc_class *sibling_class 1754 metaclassFields.addNullPointer(PtrTy); 1755 // struct objc_protocol_list *protocols; 1756 metaclassFields.addNullPointer(PtrTy); 1757 // struct reference_list *extra_data; 1758 metaclassFields.addNullPointer(PtrTy); 1759 // long abi_version; 1760 metaclassFields.addInt(LongTy, 0); 1761 // struct objc_property_list *properties 1762 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true)); 1763 1764 auto *metaclass = metaclassFields.finishAndCreateGlobal( 1765 ManglePublicSymbol("OBJC_METACLASS_") + className, 1766 CGM.getPointerAlign()); 1767 1768 auto classFields = builder.beginStruct(); 1769 // struct objc_class *isa; 1770 classFields.add(metaclass); 1771 // struct objc_class *super_class; 1772 // Get the superclass name. 1773 const ObjCInterfaceDecl * SuperClassDecl = 1774 OID->getClassInterface()->getSuperClass(); 1775 llvm::Constant *SuperClass = nullptr; 1776 if (SuperClassDecl) { 1777 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString()); 1778 SuperClass = TheModule.getNamedGlobal(SuperClassName); 1779 if (!SuperClass) 1780 { 1781 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false, 1782 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName); 1783 if (IsCOFF) { 1784 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1785 if (SuperClassDecl->hasAttr<DLLImportAttr>()) 1786 Storage = llvm::GlobalValue::DLLImportStorageClass; 1787 else if (SuperClassDecl->hasAttr<DLLExportAttr>()) 1788 Storage = llvm::GlobalValue::DLLExportStorageClass; 1789 1790 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage); 1791 } 1792 } 1793 if (!IsCOFF) 1794 classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy)); 1795 else 1796 classFields.addNullPointer(PtrTy); 1797 } else 1798 classFields.addNullPointer(PtrTy); 1799 // const char *name; 1800 classFields.add(classNameConstant); 1801 // long version; 1802 classFields.addInt(LongTy, 0); 1803 // unsigned long info; 1804 // !objc_class_flag_meta 1805 classFields.addInt(LongTy, 0); 1806 // long instance_size; 1807 int superInstanceSize = !SuperClassDecl ? 0 : 1808 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 1809 // Instance size is negative for classes that have not yet had their ivar 1810 // layout calculated. 1811 classFields.addInt(LongTy, 1812 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() - 1813 superInstanceSize)); 1814 1815 if (classDecl->all_declared_ivar_begin() == nullptr) 1816 classFields.addNullPointer(PtrTy); 1817 else { 1818 int ivar_count = 0; 1819 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1820 IVD = IVD->getNextIvar()) ivar_count++; 1821 llvm::DataLayout td(&TheModule); 1822 // struct objc_ivar_list *ivars; 1823 ConstantInitBuilder b(CGM); 1824 auto ivarListBuilder = b.beginStruct(); 1825 // int count; 1826 ivarListBuilder.addInt(IntTy, ivar_count); 1827 // size_t size; 1828 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1829 PtrToInt8Ty, 1830 PtrToInt8Ty, 1831 PtrToInt8Ty, 1832 Int32Ty, 1833 Int32Ty); 1834 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) / 1835 CGM.getContext().getCharWidth()); 1836 // struct objc_ivar ivars[] 1837 auto ivarArrayBuilder = ivarListBuilder.beginArray(); 1838 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1839 IVD = IVD->getNextIvar()) { 1840 auto ivarTy = IVD->getType(); 1841 auto ivarBuilder = ivarArrayBuilder.beginStruct(); 1842 // const char *name; 1843 ivarBuilder.add(MakeConstantString(IVD->getNameAsString())); 1844 // const char *type; 1845 std::string TypeStr; 1846 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true); 1847 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true); 1848 ivarBuilder.add(MakeConstantString(TypeStr)); 1849 // int *offset; 1850 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 1851 uint64_t Offset = BaseOffset - superInstanceSize; 1852 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 1853 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD); 1854 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 1855 if (OffsetVar) 1856 OffsetVar->setInitializer(OffsetValue); 1857 else 1858 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 1859 false, llvm::GlobalValue::ExternalLinkage, 1860 OffsetValue, OffsetName); 1861 auto ivarVisibility = 1862 (IVD->getAccessControl() == ObjCIvarDecl::Private || 1863 IVD->getAccessControl() == ObjCIvarDecl::Package || 1864 classDecl->getVisibility() == HiddenVisibility) ? 1865 llvm::GlobalValue::HiddenVisibility : 1866 llvm::GlobalValue::DefaultVisibility; 1867 OffsetVar->setVisibility(ivarVisibility); 1868 ivarBuilder.add(OffsetVar); 1869 // Ivar size 1870 ivarBuilder.addInt(Int32Ty, 1871 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity()); 1872 // Alignment will be stored as a base-2 log of the alignment. 1873 unsigned align = 1874 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity()); 1875 // Objects that require more than 2^64-byte alignment should be impossible! 1876 assert(align < 64); 1877 // uint32_t flags; 1878 // Bits 0-1 are ownership. 1879 // Bit 2 indicates an extended type encoding 1880 // Bits 3-8 contain log2(aligment) 1881 ivarBuilder.addInt(Int32Ty, 1882 (align << 3) | (1<<2) | 1883 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime())); 1884 ivarBuilder.finishAndAddTo(ivarArrayBuilder); 1885 } 1886 ivarArrayBuilder.finishAndAddTo(ivarListBuilder); 1887 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list", 1888 CGM.getPointerAlign(), /*constant*/ false, 1889 llvm::GlobalValue::PrivateLinkage); 1890 classFields.add(ivarList); 1891 } 1892 // struct objc_method_list *methods 1893 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 1894 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 1895 OID->instmeth_end()); 1896 for (auto *propImpl : OID->property_impls()) 1897 if (propImpl->getPropertyImplementation() == 1898 ObjCPropertyImplDecl::Synthesize) { 1899 auto addIfExists = [&](const ObjCMethodDecl *OMD) { 1900 if (OMD && OMD->hasBody()) 1901 InstanceMethods.push_back(OMD); 1902 }; 1903 addIfExists(propImpl->getGetterMethodDecl()); 1904 addIfExists(propImpl->getSetterMethodDecl()); 1905 } 1906 1907 if (InstanceMethods.size() == 0) 1908 classFields.addNullPointer(PtrTy); 1909 else 1910 classFields.addBitCast( 1911 GenerateMethodList(className, "", InstanceMethods, false), 1912 PtrTy); 1913 // void *dtable; 1914 classFields.addNullPointer(PtrTy); 1915 // IMP cxx_construct; 1916 classFields.addNullPointer(PtrTy); 1917 // IMP cxx_destruct; 1918 classFields.addNullPointer(PtrTy); 1919 // struct objc_class *subclass_list 1920 classFields.addNullPointer(PtrTy); 1921 // struct objc_class *sibling_class 1922 classFields.addNullPointer(PtrTy); 1923 // struct objc_protocol_list *protocols; 1924 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(), 1925 classDecl->protocol_end()); 1926 SmallVector<llvm::Constant *, 16> Protocols; 1927 for (const auto *I : RuntimeProtocols) 1928 Protocols.push_back( 1929 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I), 1930 ProtocolPtrTy)); 1931 if (Protocols.empty()) 1932 classFields.addNullPointer(PtrTy); 1933 else 1934 classFields.add(GenerateProtocolList(Protocols)); 1935 // struct reference_list *extra_data; 1936 classFields.addNullPointer(PtrTy); 1937 // long abi_version; 1938 classFields.addInt(LongTy, 0); 1939 // struct objc_property_list *properties 1940 classFields.add(GeneratePropertyList(OID, classDecl)); 1941 1942 llvm::GlobalVariable *classStruct = 1943 classFields.finishAndCreateGlobal(SymbolForClass(className), 1944 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1945 1946 auto *classRefSymbol = GetClassVar(className); 1947 classRefSymbol->setSection(sectionName<ClassReferenceSection>()); 1948 classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy)); 1949 1950 if (IsCOFF) { 1951 // we can't import a class struct. 1952 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) { 1953 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1954 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1955 } 1956 1957 if (SuperClass) { 1958 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1}; 1959 EarlyInitList.emplace_back(std::string(SuperClass->getName()), 1960 std::move(v)); 1961 } 1962 1963 } 1964 1965 1966 // Resolve the class aliases, if they exist. 1967 // FIXME: Class pointer aliases shouldn't exist! 1968 if (ClassPtrAlias) { 1969 ClassPtrAlias->replaceAllUsesWith( 1970 llvm::ConstantExpr::getBitCast(classStruct, IdTy)); 1971 ClassPtrAlias->eraseFromParent(); 1972 ClassPtrAlias = nullptr; 1973 } 1974 if (auto Placeholder = 1975 TheModule.getNamedGlobal(SymbolForClass(className))) 1976 if (Placeholder != classStruct) { 1977 Placeholder->replaceAllUsesWith( 1978 llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType())); 1979 Placeholder->eraseFromParent(); 1980 classStruct->setName(SymbolForClass(className)); 1981 } 1982 if (MetaClassPtrAlias) { 1983 MetaClassPtrAlias->replaceAllUsesWith( 1984 llvm::ConstantExpr::getBitCast(metaclass, IdTy)); 1985 MetaClassPtrAlias->eraseFromParent(); 1986 MetaClassPtrAlias = nullptr; 1987 } 1988 assert(classStruct->getName() == SymbolForClass(className)); 1989 1990 auto classInitRef = new llvm::GlobalVariable(TheModule, 1991 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage, 1992 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className); 1993 classInitRef->setSection(sectionName<ClassSection>()); 1994 CGM.addUsedGlobal(classInitRef); 1995 1996 EmittedClass = true; 1997 } 1998 public: 1999 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) { 2000 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2001 PtrToObjCSuperTy, SelectorTy); 2002 // struct objc_property 2003 // { 2004 // const char *name; 2005 // const char *attributes; 2006 // const char *type; 2007 // SEL getter; 2008 // SEL setter; 2009 // } 2010 PropertyMetadataTy = 2011 llvm::StructType::get(CGM.getLLVMContext(), 2012 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); 2013 } 2014 2015 }; 2016 2017 const char *const CGObjCGNUstep2::SectionsBaseNames[8] = 2018 { 2019 "__objc_selectors", 2020 "__objc_classes", 2021 "__objc_class_refs", 2022 "__objc_cats", 2023 "__objc_protocols", 2024 "__objc_protocol_refs", 2025 "__objc_class_aliases", 2026 "__objc_constant_string" 2027 }; 2028 2029 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] = 2030 { 2031 ".objcrt$SEL", 2032 ".objcrt$CLS", 2033 ".objcrt$CLR", 2034 ".objcrt$CAT", 2035 ".objcrt$PCL", 2036 ".objcrt$PCR", 2037 ".objcrt$CAL", 2038 ".objcrt$STR" 2039 }; 2040 2041 /// Support for the ObjFW runtime. 2042 class CGObjCObjFW: public CGObjCGNU { 2043 protected: 2044 /// The GCC ABI message lookup function. Returns an IMP pointing to the 2045 /// method implementation for this message. 2046 LazyRuntimeFunction MsgLookupFn; 2047 /// stret lookup function. While this does not seem to make sense at the 2048 /// first look, this is required to call the correct forwarding function. 2049 LazyRuntimeFunction MsgLookupFnSRet; 2050 /// The GCC ABI superclass message lookup function. Takes a pointer to a 2051 /// structure describing the receiver and the class, and a selector as 2052 /// arguments. Returns the IMP for the corresponding method. 2053 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; 2054 2055 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 2056 llvm::Value *cmd, llvm::MDNode *node, 2057 MessageSendInfo &MSI) override { 2058 CGBuilderTy &Builder = CGF.Builder; 2059 llvm::Value *args[] = { 2060 EnforceType(Builder, Receiver, IdTy), 2061 EnforceType(Builder, cmd, SelectorTy) }; 2062 2063 llvm::CallBase *imp; 2064 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2065 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); 2066 else 2067 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 2068 2069 imp->setMetadata(msgSendMDKind, node); 2070 return imp; 2071 } 2072 2073 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 2074 llvm::Value *cmd, MessageSendInfo &MSI) override { 2075 CGBuilderTy &Builder = CGF.Builder; 2076 llvm::Value *lookupArgs[] = { 2077 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd, 2078 }; 2079 2080 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2081 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); 2082 else 2083 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 2084 } 2085 2086 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, 2087 bool isWeak) override { 2088 if (isWeak) 2089 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); 2090 2091 EmitClassRef(Name); 2092 std::string SymbolName = "_OBJC_CLASS_" + Name; 2093 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); 2094 if (!ClassSymbol) 2095 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2096 llvm::GlobalValue::ExternalLinkage, 2097 nullptr, SymbolName); 2098 return ClassSymbol; 2099 } 2100 2101 public: 2102 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { 2103 // IMP objc_msg_lookup(id, SEL); 2104 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 2105 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, 2106 SelectorTy); 2107 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 2108 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2109 PtrToObjCSuperTy, SelectorTy); 2110 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, 2111 PtrToObjCSuperTy, SelectorTy); 2112 } 2113 }; 2114 } // end anonymous namespace 2115 2116 /// Emits a reference to a dummy variable which is emitted with each class. 2117 /// This ensures that a linker error will be generated when trying to link 2118 /// together modules where a referenced class is not defined. 2119 void CGObjCGNU::EmitClassRef(const std::string &className) { 2120 std::string symbolRef = "__objc_class_ref_" + className; 2121 // Don't emit two copies of the same symbol 2122 if (TheModule.getGlobalVariable(symbolRef)) 2123 return; 2124 std::string symbolName = "__objc_class_name_" + className; 2125 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 2126 if (!ClassSymbol) { 2127 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2128 llvm::GlobalValue::ExternalLinkage, 2129 nullptr, symbolName); 2130 } 2131 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 2132 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 2133 } 2134 2135 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 2136 unsigned protocolClassVersion, unsigned classABI) 2137 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 2138 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr), 2139 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion), 2140 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) { 2141 2142 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 2143 usesSEHExceptions = 2144 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment(); 2145 2146 CodeGenTypes &Types = CGM.getTypes(); 2147 IntTy = cast<llvm::IntegerType>( 2148 Types.ConvertType(CGM.getContext().IntTy)); 2149 LongTy = cast<llvm::IntegerType>( 2150 Types.ConvertType(CGM.getContext().LongTy)); 2151 SizeTy = cast<llvm::IntegerType>( 2152 Types.ConvertType(CGM.getContext().getSizeType())); 2153 PtrDiffTy = cast<llvm::IntegerType>( 2154 Types.ConvertType(CGM.getContext().getPointerDiffType())); 2155 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 2156 2157 Int8Ty = llvm::Type::getInt8Ty(VMContext); 2158 // C string type. Used in lots of places. 2159 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 2160 ProtocolPtrTy = llvm::PointerType::getUnqual( 2161 Types.ConvertType(CGM.getContext().getObjCProtoType())); 2162 2163 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 2164 Zeros[1] = Zeros[0]; 2165 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2166 // Get the selector Type. 2167 QualType selTy = CGM.getContext().getObjCSelType(); 2168 if (QualType() == selTy) { 2169 SelectorTy = PtrToInt8Ty; 2170 SelectorElemTy = Int8Ty; 2171 } else { 2172 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 2173 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType()); 2174 } 2175 2176 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 2177 PtrTy = PtrToInt8Ty; 2178 2179 Int32Ty = llvm::Type::getInt32Ty(VMContext); 2180 Int64Ty = llvm::Type::getInt64Ty(VMContext); 2181 2182 IntPtrTy = 2183 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty; 2184 2185 // Object type 2186 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 2187 ASTIdTy = CanQualType(); 2188 if (UnqualIdTy != QualType()) { 2189 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 2190 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2191 IdElemTy = CGM.getTypes().ConvertTypeForMem( 2192 ASTIdTy.getTypePtr()->getPointeeType()); 2193 } else { 2194 IdTy = PtrToInt8Ty; 2195 IdElemTy = Int8Ty; 2196 } 2197 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 2198 ProtocolTy = llvm::StructType::get(IdTy, 2199 PtrToInt8Ty, // name 2200 PtrToInt8Ty, // protocols 2201 PtrToInt8Ty, // instance methods 2202 PtrToInt8Ty, // class methods 2203 PtrToInt8Ty, // optional instance methods 2204 PtrToInt8Ty, // optional class methods 2205 PtrToInt8Ty, // properties 2206 PtrToInt8Ty);// optional properties 2207 2208 // struct objc_property_gsv1 2209 // { 2210 // const char *name; 2211 // char attributes; 2212 // char attributes2; 2213 // char unused1; 2214 // char unused2; 2215 // const char *getter_name; 2216 // const char *getter_types; 2217 // const char *setter_name; 2218 // const char *setter_types; 2219 // } 2220 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { 2221 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, 2222 PtrToInt8Ty, PtrToInt8Ty }); 2223 2224 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy); 2225 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 2226 2227 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 2228 2229 // void objc_exception_throw(id); 2230 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2231 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2232 // int objc_sync_enter(id); 2233 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy); 2234 // int objc_sync_exit(id); 2235 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy); 2236 2237 // void objc_enumerationMutation (id) 2238 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy); 2239 2240 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 2241 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 2242 PtrDiffTy, BoolTy); 2243 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 2244 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 2245 PtrDiffTy, IdTy, BoolTy, BoolTy); 2246 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2247 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 2248 PtrDiffTy, BoolTy, BoolTy); 2249 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2250 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 2251 PtrDiffTy, BoolTy, BoolTy); 2252 2253 // IMP type 2254 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 2255 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 2256 true)); 2257 2258 const LangOptions &Opts = CGM.getLangOpts(); 2259 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 2260 RuntimeVersion = 10; 2261 2262 // Don't bother initialising the GC stuff unless we're compiling in GC mode 2263 if (Opts.getGC() != LangOptions::NonGC) { 2264 // This is a bit of an hack. We should sort this out by having a proper 2265 // CGObjCGNUstep subclass for GC, but we may want to really support the old 2266 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 2267 // Get selectors needed in GC mode 2268 RetainSel = GetNullarySelector("retain", CGM.getContext()); 2269 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 2270 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 2271 2272 // Get functions needed in GC mode 2273 2274 // id objc_assign_ivar(id, id, ptrdiff_t); 2275 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy); 2276 // id objc_assign_strongCast (id, id*) 2277 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 2278 PtrToIdTy); 2279 // id objc_assign_global(id, id*); 2280 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy); 2281 // id objc_assign_weak(id, id*); 2282 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy); 2283 // id objc_read_weak(id*); 2284 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy); 2285 // void *objc_memmove_collectable(void*, void *, size_t); 2286 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 2287 SizeTy); 2288 } 2289 } 2290 2291 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, 2292 const std::string &Name, bool isWeak) { 2293 llvm::Constant *ClassName = MakeConstantString(Name); 2294 // With the incompatible ABI, this will need to be replaced with a direct 2295 // reference to the class symbol. For the compatible nonfragile ABI we are 2296 // still performing this lookup at run time but emitting the symbol for the 2297 // class externally so that we can make the switch later. 2298 // 2299 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 2300 // with memoized versions or with static references if it's safe to do so. 2301 if (!isWeak) 2302 EmitClassRef(Name); 2303 2304 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction( 2305 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class"); 2306 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); 2307 } 2308 2309 // This has to perform the lookup every time, since posing and related 2310 // techniques can modify the name -> class mapping. 2311 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, 2312 const ObjCInterfaceDecl *OID) { 2313 auto *Value = 2314 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); 2315 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) 2316 CGM.setGVProperties(ClassSymbol, OID); 2317 return Value; 2318 } 2319 2320 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 2321 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false); 2322 if (CGM.getTriple().isOSBinFormatCOFF()) { 2323 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) { 2324 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool"); 2325 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 2326 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2327 2328 const VarDecl *VD = nullptr; 2329 for (const auto *Result : DC->lookup(&II)) 2330 if ((VD = dyn_cast<VarDecl>(Result))) 2331 break; 2332 2333 CGM.setGVProperties(ClassSymbol, VD); 2334 } 2335 } 2336 return Value; 2337 } 2338 2339 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 2340 const std::string &TypeEncoding) { 2341 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel]; 2342 llvm::GlobalAlias *SelValue = nullptr; 2343 2344 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2345 e = Types.end() ; i!=e ; i++) { 2346 if (i->first == TypeEncoding) { 2347 SelValue = i->second; 2348 break; 2349 } 2350 } 2351 if (!SelValue) { 2352 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0, 2353 llvm::GlobalValue::PrivateLinkage, 2354 ".objc_selector_" + Sel.getAsString(), 2355 &TheModule); 2356 Types.emplace_back(TypeEncoding, SelValue); 2357 } 2358 2359 return SelValue; 2360 } 2361 2362 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 2363 llvm::Value *SelValue = GetSelector(CGF, Sel); 2364 2365 // Store it to a temporary. Does this satisfy the semantics of 2366 // GetAddrOfSelector? Hopefully. 2367 Address tmp = CGF.CreateTempAlloca(SelValue->getType(), 2368 CGF.getPointerAlign()); 2369 CGF.Builder.CreateStore(SelValue, tmp); 2370 return tmp; 2371 } 2372 2373 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) { 2374 return GetTypedSelector(CGF, Sel, std::string()); 2375 } 2376 2377 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, 2378 const ObjCMethodDecl *Method) { 2379 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method); 2380 return GetTypedSelector(CGF, Method->getSelector(), SelTypes); 2381 } 2382 2383 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 2384 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 2385 // With the old ABI, there was only one kind of catchall, which broke 2386 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 2387 // a pointer indicating object catchalls, and NULL to indicate real 2388 // catchalls 2389 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2390 return MakeConstantString("@id"); 2391 } else { 2392 return nullptr; 2393 } 2394 } 2395 2396 // All other types should be Objective-C interface pointer types. 2397 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>(); 2398 assert(OPT && "Invalid @catch type."); 2399 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); 2400 assert(IDecl && "Invalid @catch type."); 2401 return MakeConstantString(IDecl->getIdentifier()->getName()); 2402 } 2403 2404 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { 2405 if (usesSEHExceptions) 2406 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T); 2407 2408 if (!CGM.getLangOpts().CPlusPlus) 2409 return CGObjCGNU::GetEHType(T); 2410 2411 // For Objective-C++, we want to provide the ability to catch both C++ and 2412 // Objective-C objects in the same function. 2413 2414 // There's a particular fixed type info for 'id'. 2415 if (T->isObjCIdType() || 2416 T->isObjCQualifiedIdType()) { 2417 llvm::Constant *IDEHType = 2418 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 2419 if (!IDEHType) 2420 IDEHType = 2421 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 2422 false, 2423 llvm::GlobalValue::ExternalLinkage, 2424 nullptr, "__objc_id_type_info"); 2425 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty); 2426 } 2427 2428 const ObjCObjectPointerType *PT = 2429 T->getAs<ObjCObjectPointerType>(); 2430 assert(PT && "Invalid @catch type."); 2431 const ObjCInterfaceType *IT = PT->getInterfaceType(); 2432 assert(IT && "Invalid @catch type."); 2433 std::string className = 2434 std::string(IT->getDecl()->getIdentifier()->getName()); 2435 2436 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 2437 2438 // Return the existing typeinfo if it exists 2439 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName); 2440 if (typeinfo) 2441 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty); 2442 2443 // Otherwise create it. 2444 2445 // vtable for gnustep::libobjc::__objc_class_type_info 2446 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 2447 // platform's name mangling. 2448 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 2449 auto *Vtable = TheModule.getGlobalVariable(vtableName); 2450 if (!Vtable) { 2451 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 2452 llvm::GlobalValue::ExternalLinkage, 2453 nullptr, vtableName); 2454 } 2455 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 2456 auto *BVtable = llvm::ConstantExpr::getBitCast( 2457 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two), 2458 PtrToInt8Ty); 2459 2460 llvm::Constant *typeName = 2461 ExportUniqueString(className, "__objc_eh_typename_"); 2462 2463 ConstantInitBuilder builder(CGM); 2464 auto fields = builder.beginStruct(); 2465 fields.add(BVtable); 2466 fields.add(typeName); 2467 llvm::Constant *TI = 2468 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className, 2469 CGM.getPointerAlign(), 2470 /*constant*/ false, 2471 llvm::GlobalValue::LinkOnceODRLinkage); 2472 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty); 2473 } 2474 2475 /// Generate an NSConstantString object. 2476 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 2477 2478 std::string Str = SL->getString().str(); 2479 CharUnits Align = CGM.getPointerAlign(); 2480 2481 // Look for an existing one 2482 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 2483 if (old != ObjCStrings.end()) 2484 return ConstantAddress(old->getValue(), Int8Ty, Align); 2485 2486 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2487 2488 if (StringClass.empty()) StringClass = "NSConstantString"; 2489 2490 std::string Sym = "_OBJC_CLASS_"; 2491 Sym += StringClass; 2492 2493 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 2494 2495 if (!isa) 2496 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 2497 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym); 2498 else if (isa->getType() != PtrToIdTy) 2499 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 2500 2501 ConstantInitBuilder Builder(CGM); 2502 auto Fields = Builder.beginStruct(); 2503 Fields.add(isa); 2504 Fields.add(MakeConstantString(Str)); 2505 Fields.addInt(IntTy, Str.size()); 2506 llvm::Constant *ObjCStr = 2507 Fields.finishAndCreateGlobal(".objc_str", Align); 2508 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty); 2509 ObjCStrings[Str] = ObjCStr; 2510 ConstantStrings.push_back(ObjCStr); 2511 return ConstantAddress(ObjCStr, Int8Ty, Align); 2512 } 2513 2514 ///Generates a message send where the super is the receiver. This is a message 2515 ///send to self with special delivery semantics indicating which class's method 2516 ///should be called. 2517 RValue 2518 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 2519 ReturnValueSlot Return, 2520 QualType ResultType, 2521 Selector Sel, 2522 const ObjCInterfaceDecl *Class, 2523 bool isCategoryImpl, 2524 llvm::Value *Receiver, 2525 bool IsClassMessage, 2526 const CallArgList &CallArgs, 2527 const ObjCMethodDecl *Method) { 2528 CGBuilderTy &Builder = CGF.Builder; 2529 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2530 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2531 return RValue::get(EnforceType(Builder, Receiver, 2532 CGM.getTypes().ConvertType(ResultType))); 2533 } 2534 if (Sel == ReleaseSel) { 2535 return RValue::get(nullptr); 2536 } 2537 } 2538 2539 llvm::Value *cmd = GetSelector(CGF, Sel); 2540 CallArgList ActualArgs; 2541 2542 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 2543 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2544 ActualArgs.addFrom(CallArgs); 2545 2546 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2547 2548 llvm::Value *ReceiverClass = nullptr; 2549 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2550 if (isV2ABI) { 2551 ReceiverClass = GetClassNamed(CGF, 2552 Class->getSuperClass()->getNameAsString(), /*isWeak*/false); 2553 if (IsClassMessage) { 2554 // Load the isa pointer of the superclass is this is a class method. 2555 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2556 llvm::PointerType::getUnqual(IdTy)); 2557 ReceiverClass = 2558 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2559 } 2560 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy); 2561 } else { 2562 if (isCategoryImpl) { 2563 llvm::FunctionCallee classLookupFunction = nullptr; 2564 if (IsClassMessage) { 2565 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2566 IdTy, PtrTy, true), "objc_get_meta_class"); 2567 } else { 2568 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2569 IdTy, PtrTy, true), "objc_get_class"); 2570 } 2571 ReceiverClass = Builder.CreateCall(classLookupFunction, 2572 MakeConstantString(Class->getNameAsString())); 2573 } else { 2574 // Set up global aliases for the metaclass or class pointer if they do not 2575 // already exist. These will are forward-references which will be set to 2576 // pointers to the class and metaclass structure created for the runtime 2577 // load function. To send a message to super, we look up the value of the 2578 // super_class pointer from either the class or metaclass structure. 2579 if (IsClassMessage) { 2580 if (!MetaClassPtrAlias) { 2581 MetaClassPtrAlias = llvm::GlobalAlias::create( 2582 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2583 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule); 2584 } 2585 ReceiverClass = MetaClassPtrAlias; 2586 } else { 2587 if (!ClassPtrAlias) { 2588 ClassPtrAlias = llvm::GlobalAlias::create( 2589 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2590 ".objc_class_ref" + Class->getNameAsString(), &TheModule); 2591 } 2592 ReceiverClass = ClassPtrAlias; 2593 } 2594 } 2595 // Cast the pointer to a simplified version of the class structure 2596 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy); 2597 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2598 llvm::PointerType::getUnqual(CastTy)); 2599 // Get the superclass pointer 2600 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1); 2601 // Load the superclass pointer 2602 ReceiverClass = 2603 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2604 } 2605 // Construct the structure used to look up the IMP 2606 llvm::StructType *ObjCSuperTy = 2607 llvm::StructType::get(Receiver->getType(), IdTy); 2608 2609 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy, 2610 CGF.getPointerAlign()); 2611 2612 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 2613 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 2614 2615 // Get the IMP 2616 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); 2617 imp = EnforceType(Builder, imp, MSI.MessengerType); 2618 2619 llvm::Metadata *impMD[] = { 2620 llvm::MDString::get(VMContext, Sel.getAsString()), 2621 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 2622 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2623 llvm::Type::getInt1Ty(VMContext), IsClassMessage))}; 2624 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2625 2626 CGCallee callee(CGCalleeInfo(), imp); 2627 2628 llvm::CallBase *call; 2629 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2630 call->setMetadata(msgSendMDKind, node); 2631 return msgRet; 2632 } 2633 2634 /// Generate code for a message send expression. 2635 RValue 2636 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 2637 ReturnValueSlot Return, 2638 QualType ResultType, 2639 Selector Sel, 2640 llvm::Value *Receiver, 2641 const CallArgList &CallArgs, 2642 const ObjCInterfaceDecl *Class, 2643 const ObjCMethodDecl *Method) { 2644 CGBuilderTy &Builder = CGF.Builder; 2645 2646 // Strip out message sends to retain / release in GC mode 2647 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2648 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2649 return RValue::get(EnforceType(Builder, Receiver, 2650 CGM.getTypes().ConvertType(ResultType))); 2651 } 2652 if (Sel == ReleaseSel) { 2653 return RValue::get(nullptr); 2654 } 2655 } 2656 2657 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2658 llvm::Value *cmd; 2659 if (Method) 2660 cmd = GetSelector(CGF, Method); 2661 else 2662 cmd = GetSelector(CGF, Sel); 2663 cmd = EnforceType(Builder, cmd, SelectorTy); 2664 Receiver = EnforceType(Builder, Receiver, IdTy); 2665 2666 llvm::Metadata *impMD[] = { 2667 llvm::MDString::get(VMContext, Sel.getAsString()), 2668 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""), 2669 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2670 llvm::Type::getInt1Ty(VMContext), Class != nullptr))}; 2671 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2672 2673 CallArgList ActualArgs; 2674 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 2675 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2676 ActualArgs.addFrom(CallArgs); 2677 2678 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2679 2680 // Message sends are expected to return a zero value when the 2681 // receiver is nil. At one point, this was only guaranteed for 2682 // simple integer and pointer types, but expectations have grown 2683 // over time. 2684 // 2685 // Given a nil receiver, the GNU runtime's message lookup will 2686 // return a stub function that simply sets various return-value 2687 // registers to zero and then returns. That's good enough for us 2688 // if and only if (1) the calling conventions of that stub are 2689 // compatible with the signature we're using and (2) the registers 2690 // it sets are sufficient to produce a zero value of the return type. 2691 // Rather than doing a whole target-specific analysis, we assume it 2692 // only works for void, integer, and pointer types, and in all 2693 // other cases we do an explicit nil check is emitted code. In 2694 // addition to ensuring we produe a zero value for other types, this 2695 // sidesteps the few outright CC incompatibilities we know about that 2696 // could otherwise lead to crashes, like when a method is expected to 2697 // return on the x87 floating point stack or adjust the stack pointer 2698 // because of an indirect return. 2699 bool hasParamDestroyedInCallee = false; 2700 bool requiresExplicitZeroResult = false; 2701 bool requiresNilReceiverCheck = [&] { 2702 // We never need a check if we statically know the receiver isn't nil. 2703 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false, 2704 Class, Receiver)) 2705 return false; 2706 2707 // If there's a consumed argument, we need a nil check. 2708 if (Method && Method->hasParamDestroyedInCallee()) { 2709 hasParamDestroyedInCallee = true; 2710 } 2711 2712 // If the return value isn't flagged as unused, and the result 2713 // type isn't in our narrow set where we assume compatibility, 2714 // we need a nil check to ensure a nil value. 2715 if (!Return.isUnused()) { 2716 if (ResultType->isVoidType()) { 2717 // void results are definitely okay. 2718 } else if (ResultType->hasPointerRepresentation() && 2719 CGM.getTypes().isZeroInitializable(ResultType)) { 2720 // Pointer types should be fine as long as they have 2721 // bitwise-zero null pointers. But do we need to worry 2722 // about unusual address spaces? 2723 } else if (ResultType->isIntegralOrEnumerationType()) { 2724 // Bitwise zero should always be zero for integral types. 2725 // FIXME: we probably need a size limit here, but we've 2726 // never imposed one before 2727 } else { 2728 // Otherwise, use an explicit check just to be sure. 2729 requiresExplicitZeroResult = true; 2730 } 2731 } 2732 2733 return hasParamDestroyedInCallee || requiresExplicitZeroResult; 2734 }(); 2735 2736 // We will need to explicitly zero-initialize an aggregate result slot 2737 // if we generally require explicit zeroing and we have an aggregate 2738 // result. 2739 bool requiresExplicitAggZeroing = 2740 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType); 2741 2742 // The block we're going to end up in after any message send or nil path. 2743 llvm::BasicBlock *continueBB = nullptr; 2744 // The block that eventually branched to continueBB along the nil path. 2745 llvm::BasicBlock *nilPathBB = nullptr; 2746 // The block to do explicit work in along the nil path, if necessary. 2747 llvm::BasicBlock *nilCleanupBB = nullptr; 2748 2749 // Emit the nil-receiver check. 2750 if (requiresNilReceiverCheck) { 2751 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend"); 2752 continueBB = CGF.createBasicBlock("continue"); 2753 2754 // If we need to zero-initialize an aggregate result or destroy 2755 // consumed arguments, we'll need a separate cleanup block. 2756 // Otherwise we can just branch directly to the continuation block. 2757 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) { 2758 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup"); 2759 } else { 2760 nilPathBB = Builder.GetInsertBlock(); 2761 } 2762 2763 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 2764 llvm::Constant::getNullValue(Receiver->getType())); 2765 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB, 2766 messageBB); 2767 CGF.EmitBlock(messageBB); 2768 } 2769 2770 // Get the IMP to call 2771 llvm::Value *imp; 2772 2773 // If we have non-legacy dispatch specified, we try using the objc_msgSend() 2774 // functions. These are not supported on all platforms (or all runtimes on a 2775 // given platform), so we 2776 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 2777 case CodeGenOptions::Legacy: 2778 imp = LookupIMP(CGF, Receiver, cmd, node, MSI); 2779 break; 2780 case CodeGenOptions::Mixed: 2781 case CodeGenOptions::NonLegacy: 2782 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2783 imp = 2784 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2785 "objc_msgSend_fpret") 2786 .getCallee(); 2787 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 2788 // The actual types here don't matter - we're going to bitcast the 2789 // function anyway 2790 imp = 2791 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2792 "objc_msgSend_stret") 2793 .getCallee(); 2794 } else { 2795 imp = CGM.CreateRuntimeFunction( 2796 llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend") 2797 .getCallee(); 2798 } 2799 } 2800 2801 // Reset the receiver in case the lookup modified it 2802 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy); 2803 2804 imp = EnforceType(Builder, imp, MSI.MessengerType); 2805 2806 llvm::CallBase *call; 2807 CGCallee callee(CGCalleeInfo(), imp); 2808 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2809 call->setMetadata(msgSendMDKind, node); 2810 2811 if (requiresNilReceiverCheck) { 2812 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock(); 2813 CGF.Builder.CreateBr(continueBB); 2814 2815 // Emit the nil path if we decided it was necessary above. 2816 if (nilCleanupBB) { 2817 CGF.EmitBlock(nilCleanupBB); 2818 2819 if (hasParamDestroyedInCallee) { 2820 destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 2821 } 2822 2823 if (requiresExplicitAggZeroing) { 2824 assert(msgRet.isAggregate()); 2825 Address addr = msgRet.getAggregateAddress(); 2826 CGF.EmitNullInitialization(addr, ResultType); 2827 } 2828 2829 nilPathBB = CGF.Builder.GetInsertBlock(); 2830 CGF.Builder.CreateBr(continueBB); 2831 } 2832 2833 // Enter the continuation block and emit a phi if required. 2834 CGF.EmitBlock(continueBB); 2835 if (msgRet.isScalar()) { 2836 // If the return type is void, do nothing 2837 if (llvm::Value *v = msgRet.getScalarVal()) { 2838 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 2839 phi->addIncoming(v, nonNilPathBB); 2840 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB); 2841 msgRet = RValue::get(phi); 2842 } 2843 } else if (msgRet.isAggregate()) { 2844 // Aggregate zeroing is handled in nilCleanupBB when it's required. 2845 } else /* isComplex() */ { 2846 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 2847 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 2848 phi->addIncoming(v.first, nonNilPathBB); 2849 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 2850 nilPathBB); 2851 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 2852 phi2->addIncoming(v.second, nonNilPathBB); 2853 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 2854 nilPathBB); 2855 msgRet = RValue::getComplex(phi, phi2); 2856 } 2857 } 2858 return msgRet; 2859 } 2860 2861 /// Generates a MethodList. Used in construction of a objc_class and 2862 /// objc_category structures. 2863 llvm::Constant *CGObjCGNU:: 2864 GenerateMethodList(StringRef ClassName, 2865 StringRef CategoryName, 2866 ArrayRef<const ObjCMethodDecl*> Methods, 2867 bool isClassMethodList) { 2868 if (Methods.empty()) 2869 return NULLPtr; 2870 2871 ConstantInitBuilder Builder(CGM); 2872 2873 auto MethodList = Builder.beginStruct(); 2874 MethodList.addNullPointer(CGM.Int8PtrTy); 2875 MethodList.addInt(Int32Ty, Methods.size()); 2876 2877 // Get the method structure type. 2878 llvm::StructType *ObjCMethodTy = 2879 llvm::StructType::get(CGM.getLLVMContext(), { 2880 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2881 PtrToInt8Ty, // Method types 2882 IMPTy // Method pointer 2883 }); 2884 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2885 if (isV2ABI) { 2886 // size_t size; 2887 llvm::DataLayout td(&TheModule); 2888 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) / 2889 CGM.getContext().getCharWidth()); 2890 ObjCMethodTy = 2891 llvm::StructType::get(CGM.getLLVMContext(), { 2892 IMPTy, // Method pointer 2893 PtrToInt8Ty, // Selector 2894 PtrToInt8Ty // Extended type encoding 2895 }); 2896 } else { 2897 ObjCMethodTy = 2898 llvm::StructType::get(CGM.getLLVMContext(), { 2899 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2900 PtrToInt8Ty, // Method types 2901 IMPTy // Method pointer 2902 }); 2903 } 2904 auto MethodArray = MethodList.beginArray(); 2905 ASTContext &Context = CGM.getContext(); 2906 for (const auto *OMD : Methods) { 2907 llvm::Constant *FnPtr = 2908 TheModule.getFunction(getSymbolNameForMethod(OMD)); 2909 assert(FnPtr && "Can't generate metadata for method that doesn't exist"); 2910 auto Method = MethodArray.beginStruct(ObjCMethodTy); 2911 if (isV2ABI) { 2912 Method.addBitCast(FnPtr, IMPTy); 2913 Method.add(GetConstantSelector(OMD->getSelector(), 2914 Context.getObjCEncodingForMethodDecl(OMD))); 2915 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true))); 2916 } else { 2917 Method.add(MakeConstantString(OMD->getSelector().getAsString())); 2918 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD))); 2919 Method.addBitCast(FnPtr, IMPTy); 2920 } 2921 Method.finishAndAddTo(MethodArray); 2922 } 2923 MethodArray.finishAndAddTo(MethodList); 2924 2925 // Create an instance of the structure 2926 return MethodList.finishAndCreateGlobal(".objc_method_list", 2927 CGM.getPointerAlign()); 2928 } 2929 2930 /// Generates an IvarList. Used in construction of a objc_class. 2931 llvm::Constant *CGObjCGNU:: 2932 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 2933 ArrayRef<llvm::Constant *> IvarTypes, 2934 ArrayRef<llvm::Constant *> IvarOffsets, 2935 ArrayRef<llvm::Constant *> IvarAlign, 2936 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) { 2937 if (IvarNames.empty()) 2938 return NULLPtr; 2939 2940 ConstantInitBuilder Builder(CGM); 2941 2942 // Structure containing array count followed by array. 2943 auto IvarList = Builder.beginStruct(); 2944 IvarList.addInt(IntTy, (int)IvarNames.size()); 2945 2946 // Get the ivar structure type. 2947 llvm::StructType *ObjCIvarTy = 2948 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy); 2949 2950 // Array of ivar structures. 2951 auto Ivars = IvarList.beginArray(ObjCIvarTy); 2952 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 2953 auto Ivar = Ivars.beginStruct(ObjCIvarTy); 2954 Ivar.add(IvarNames[i]); 2955 Ivar.add(IvarTypes[i]); 2956 Ivar.add(IvarOffsets[i]); 2957 Ivar.finishAndAddTo(Ivars); 2958 } 2959 Ivars.finishAndAddTo(IvarList); 2960 2961 // Create an instance of the structure 2962 return IvarList.finishAndCreateGlobal(".objc_ivar_list", 2963 CGM.getPointerAlign()); 2964 } 2965 2966 /// Generate a class structure 2967 llvm::Constant *CGObjCGNU::GenerateClassStructure( 2968 llvm::Constant *MetaClass, 2969 llvm::Constant *SuperClass, 2970 unsigned info, 2971 const char *Name, 2972 llvm::Constant *Version, 2973 llvm::Constant *InstanceSize, 2974 llvm::Constant *IVars, 2975 llvm::Constant *Methods, 2976 llvm::Constant *Protocols, 2977 llvm::Constant *IvarOffsets, 2978 llvm::Constant *Properties, 2979 llvm::Constant *StrongIvarBitmap, 2980 llvm::Constant *WeakIvarBitmap, 2981 bool isMeta) { 2982 // Set up the class structure 2983 // Note: Several of these are char*s when they should be ids. This is 2984 // because the runtime performs this translation on load. 2985 // 2986 // Fields marked New ABI are part of the GNUstep runtime. We emit them 2987 // anyway; the classes will still work with the GNU runtime, they will just 2988 // be ignored. 2989 llvm::StructType *ClassTy = llvm::StructType::get( 2990 PtrToInt8Ty, // isa 2991 PtrToInt8Ty, // super_class 2992 PtrToInt8Ty, // name 2993 LongTy, // version 2994 LongTy, // info 2995 LongTy, // instance_size 2996 IVars->getType(), // ivars 2997 Methods->getType(), // methods 2998 // These are all filled in by the runtime, so we pretend 2999 PtrTy, // dtable 3000 PtrTy, // subclass_list 3001 PtrTy, // sibling_class 3002 PtrTy, // protocols 3003 PtrTy, // gc_object_type 3004 // New ABI: 3005 LongTy, // abi_version 3006 IvarOffsets->getType(), // ivar_offsets 3007 Properties->getType(), // properties 3008 IntPtrTy, // strong_pointers 3009 IntPtrTy // weak_pointers 3010 ); 3011 3012 ConstantInitBuilder Builder(CGM); 3013 auto Elements = Builder.beginStruct(ClassTy); 3014 3015 // Fill in the structure 3016 3017 // isa 3018 Elements.addBitCast(MetaClass, PtrToInt8Ty); 3019 // super_class 3020 Elements.add(SuperClass); 3021 // name 3022 Elements.add(MakeConstantString(Name, ".class_name")); 3023 // version 3024 Elements.addInt(LongTy, 0); 3025 // info 3026 Elements.addInt(LongTy, info); 3027 // instance_size 3028 if (isMeta) { 3029 llvm::DataLayout td(&TheModule); 3030 Elements.addInt(LongTy, 3031 td.getTypeSizeInBits(ClassTy) / 3032 CGM.getContext().getCharWidth()); 3033 } else 3034 Elements.add(InstanceSize); 3035 // ivars 3036 Elements.add(IVars); 3037 // methods 3038 Elements.add(Methods); 3039 // These are all filled in by the runtime, so we pretend 3040 // dtable 3041 Elements.add(NULLPtr); 3042 // subclass_list 3043 Elements.add(NULLPtr); 3044 // sibling_class 3045 Elements.add(NULLPtr); 3046 // protocols 3047 Elements.addBitCast(Protocols, PtrTy); 3048 // gc_object_type 3049 Elements.add(NULLPtr); 3050 // abi_version 3051 Elements.addInt(LongTy, ClassABIVersion); 3052 // ivar_offsets 3053 Elements.add(IvarOffsets); 3054 // properties 3055 Elements.add(Properties); 3056 // strong_pointers 3057 Elements.add(StrongIvarBitmap); 3058 // weak_pointers 3059 Elements.add(WeakIvarBitmap); 3060 // Create an instance of the structure 3061 // This is now an externally visible symbol, so that we can speed up class 3062 // messages in the next ABI. We may already have some weak references to 3063 // this, so check and fix them properly. 3064 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 3065 std::string(Name)); 3066 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 3067 llvm::Constant *Class = 3068 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false, 3069 llvm::GlobalValue::ExternalLinkage); 3070 if (ClassRef) { 3071 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class, 3072 ClassRef->getType())); 3073 ClassRef->removeFromParent(); 3074 Class->setName(ClassSym); 3075 } 3076 return Class; 3077 } 3078 3079 llvm::Constant *CGObjCGNU:: 3080 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) { 3081 // Get the method structure type. 3082 llvm::StructType *ObjCMethodDescTy = 3083 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); 3084 ASTContext &Context = CGM.getContext(); 3085 ConstantInitBuilder Builder(CGM); 3086 auto MethodList = Builder.beginStruct(); 3087 MethodList.addInt(IntTy, Methods.size()); 3088 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 3089 for (auto *M : Methods) { 3090 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 3091 Method.add(MakeConstantString(M->getSelector().getAsString())); 3092 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M))); 3093 Method.finishAndAddTo(MethodArray); 3094 } 3095 MethodArray.finishAndAddTo(MethodList); 3096 return MethodList.finishAndCreateGlobal(".objc_method_list", 3097 CGM.getPointerAlign()); 3098 } 3099 3100 // Create the protocol list structure used in classes, categories and so on 3101 llvm::Constant * 3102 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) { 3103 3104 ConstantInitBuilder Builder(CGM); 3105 auto ProtocolList = Builder.beginStruct(); 3106 ProtocolList.add(NULLPtr); 3107 ProtocolList.addInt(LongTy, Protocols.size()); 3108 3109 auto Elements = ProtocolList.beginArray(PtrToInt8Ty); 3110 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 3111 iter != endIter ; iter++) { 3112 llvm::Constant *protocol = nullptr; 3113 llvm::StringMap<llvm::Constant*>::iterator value = 3114 ExistingProtocols.find(*iter); 3115 if (value == ExistingProtocols.end()) { 3116 protocol = GenerateEmptyProtocol(*iter); 3117 } else { 3118 protocol = value->getValue(); 3119 } 3120 Elements.addBitCast(protocol, PtrToInt8Ty); 3121 } 3122 Elements.finishAndAddTo(ProtocolList); 3123 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3124 CGM.getPointerAlign()); 3125 } 3126 3127 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, 3128 const ObjCProtocolDecl *PD) { 3129 auto protocol = GenerateProtocolRef(PD); 3130 llvm::Type *T = 3131 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 3132 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 3133 } 3134 3135 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) { 3136 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()]; 3137 if (!protocol) 3138 GenerateProtocol(PD); 3139 assert(protocol && "Unknown protocol"); 3140 return protocol; 3141 } 3142 3143 llvm::Constant * 3144 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) { 3145 llvm::Constant *ProtocolList = GenerateProtocolList({}); 3146 llvm::Constant *MethodList = GenerateProtocolMethodList({}); 3147 MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty); 3148 // Protocols are objects containing lists of the methods implemented and 3149 // protocols adopted. 3150 ConstantInitBuilder Builder(CGM); 3151 auto Elements = Builder.beginStruct(); 3152 3153 // The isa pointer must be set to a magic number so the runtime knows it's 3154 // the correct layout. 3155 Elements.add(llvm::ConstantExpr::getIntToPtr( 3156 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3157 3158 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name")); 3159 Elements.add(ProtocolList); /* .protocol_list */ 3160 Elements.add(MethodList); /* .instance_methods */ 3161 Elements.add(MethodList); /* .class_methods */ 3162 Elements.add(MethodList); /* .optional_instance_methods */ 3163 Elements.add(MethodList); /* .optional_class_methods */ 3164 Elements.add(NULLPtr); /* .properties */ 3165 Elements.add(NULLPtr); /* .optional_properties */ 3166 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName), 3167 CGM.getPointerAlign()); 3168 } 3169 3170 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 3171 if (PD->isNonRuntimeProtocol()) 3172 return; 3173 3174 std::string ProtocolName = PD->getNameAsString(); 3175 3176 // Use the protocol definition, if there is one. 3177 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3178 PD = Def; 3179 3180 SmallVector<std::string, 16> Protocols; 3181 for (const auto *PI : PD->protocols()) 3182 Protocols.push_back(PI->getNameAsString()); 3183 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3184 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods; 3185 for (const auto *I : PD->instance_methods()) 3186 if (I->isOptional()) 3187 OptionalInstanceMethods.push_back(I); 3188 else 3189 InstanceMethods.push_back(I); 3190 // Collect information about class methods: 3191 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3192 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods; 3193 for (const auto *I : PD->class_methods()) 3194 if (I->isOptional()) 3195 OptionalClassMethods.push_back(I); 3196 else 3197 ClassMethods.push_back(I); 3198 3199 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 3200 llvm::Constant *InstanceMethodList = 3201 GenerateProtocolMethodList(InstanceMethods); 3202 llvm::Constant *ClassMethodList = 3203 GenerateProtocolMethodList(ClassMethods); 3204 llvm::Constant *OptionalInstanceMethodList = 3205 GenerateProtocolMethodList(OptionalInstanceMethods); 3206 llvm::Constant *OptionalClassMethodList = 3207 GenerateProtocolMethodList(OptionalClassMethods); 3208 3209 // Property metadata: name, attributes, isSynthesized, setter name, setter 3210 // types, getter name, getter types. 3211 // The isSynthesized value is always set to 0 in a protocol. It exists to 3212 // simplify the runtime library by allowing it to use the same data 3213 // structures for protocol metadata everywhere. 3214 3215 llvm::Constant *PropertyList = 3216 GeneratePropertyList(nullptr, PD, false, false); 3217 llvm::Constant *OptionalPropertyList = 3218 GeneratePropertyList(nullptr, PD, false, true); 3219 3220 // Protocols are objects containing lists of the methods implemented and 3221 // protocols adopted. 3222 // The isa pointer must be set to a magic number so the runtime knows it's 3223 // the correct layout. 3224 ConstantInitBuilder Builder(CGM); 3225 auto Elements = Builder.beginStruct(); 3226 Elements.add( 3227 llvm::ConstantExpr::getIntToPtr( 3228 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3229 Elements.add(MakeConstantString(ProtocolName)); 3230 Elements.add(ProtocolList); 3231 Elements.add(InstanceMethodList); 3232 Elements.add(ClassMethodList); 3233 Elements.add(OptionalInstanceMethodList); 3234 Elements.add(OptionalClassMethodList); 3235 Elements.add(PropertyList); 3236 Elements.add(OptionalPropertyList); 3237 ExistingProtocols[ProtocolName] = 3238 llvm::ConstantExpr::getBitCast( 3239 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()), 3240 IdTy); 3241 } 3242 void CGObjCGNU::GenerateProtocolHolderCategory() { 3243 // Collect information about instance methods 3244 3245 ConstantInitBuilder Builder(CGM); 3246 auto Elements = Builder.beginStruct(); 3247 3248 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 3249 const std::string CategoryName = "AnotherHack"; 3250 Elements.add(MakeConstantString(CategoryName)); 3251 Elements.add(MakeConstantString(ClassName)); 3252 // Instance method list 3253 Elements.addBitCast(GenerateMethodList( 3254 ClassName, CategoryName, {}, false), PtrTy); 3255 // Class method list 3256 Elements.addBitCast(GenerateMethodList( 3257 ClassName, CategoryName, {}, true), PtrTy); 3258 3259 // Protocol list 3260 ConstantInitBuilder ProtocolListBuilder(CGM); 3261 auto ProtocolList = ProtocolListBuilder.beginStruct(); 3262 ProtocolList.add(NULLPtr); 3263 ProtocolList.addInt(LongTy, ExistingProtocols.size()); 3264 auto ProtocolElements = ProtocolList.beginArray(PtrTy); 3265 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 3266 iter != endIter ; iter++) { 3267 ProtocolElements.addBitCast(iter->getValue(), PtrTy); 3268 } 3269 ProtocolElements.finishAndAddTo(ProtocolList); 3270 Elements.addBitCast( 3271 ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3272 CGM.getPointerAlign()), 3273 PtrTy); 3274 Categories.push_back(llvm::ConstantExpr::getBitCast( 3275 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()), 3276 PtrTy)); 3277 } 3278 3279 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 3280 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 3281 /// bits set to their values, LSB first, while larger ones are stored in a 3282 /// structure of this / form: 3283 /// 3284 /// struct { int32_t length; int32_t values[length]; }; 3285 /// 3286 /// The values in the array are stored in host-endian format, with the least 3287 /// significant bit being assumed to come first in the bitfield. Therefore, a 3288 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 3289 /// bitfield / with the 63rd bit set will be 1<<64. 3290 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 3291 int bitCount = bits.size(); 3292 int ptrBits = CGM.getDataLayout().getPointerSizeInBits(); 3293 if (bitCount < ptrBits) { 3294 uint64_t val = 1; 3295 for (int i=0 ; i<bitCount ; ++i) { 3296 if (bits[i]) val |= 1ULL<<(i+1); 3297 } 3298 return llvm::ConstantInt::get(IntPtrTy, val); 3299 } 3300 SmallVector<llvm::Constant *, 8> values; 3301 int v=0; 3302 while (v < bitCount) { 3303 int32_t word = 0; 3304 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 3305 if (bits[v]) word |= 1<<i; 3306 v++; 3307 } 3308 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 3309 } 3310 3311 ConstantInitBuilder builder(CGM); 3312 auto fields = builder.beginStruct(); 3313 fields.addInt(Int32Ty, values.size()); 3314 auto array = fields.beginArray(); 3315 for (auto *v : values) array.add(v); 3316 array.finishAndAddTo(fields); 3317 3318 llvm::Constant *GS = 3319 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4)); 3320 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 3321 return ptr; 3322 } 3323 3324 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const 3325 ObjCCategoryDecl *OCD) { 3326 const auto &RefPro = OCD->getReferencedProtocols(); 3327 const auto RuntimeProtos = 3328 GetRuntimeProtocolList(RefPro.begin(), RefPro.end()); 3329 SmallVector<std::string, 16> Protocols; 3330 for (const auto *PD : RuntimeProtos) 3331 Protocols.push_back(PD->getNameAsString()); 3332 return GenerateProtocolList(Protocols); 3333 } 3334 3335 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3336 const ObjCInterfaceDecl *Class = OCD->getClassInterface(); 3337 std::string ClassName = Class->getNameAsString(); 3338 std::string CategoryName = OCD->getNameAsString(); 3339 3340 // Collect the names of referenced protocols 3341 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 3342 3343 ConstantInitBuilder Builder(CGM); 3344 auto Elements = Builder.beginStruct(); 3345 Elements.add(MakeConstantString(CategoryName)); 3346 Elements.add(MakeConstantString(ClassName)); 3347 // Instance method list 3348 SmallVector<ObjCMethodDecl*, 16> InstanceMethods; 3349 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(), 3350 OCD->instmeth_end()); 3351 Elements.addBitCast( 3352 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false), 3353 PtrTy); 3354 // Class method list 3355 3356 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 3357 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(), 3358 OCD->classmeth_end()); 3359 Elements.addBitCast( 3360 GenerateMethodList(ClassName, CategoryName, ClassMethods, true), 3361 PtrTy); 3362 // Protocol list 3363 Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy); 3364 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 3365 const ObjCCategoryDecl *Category = 3366 Class->FindCategoryDeclaration(OCD->getIdentifier()); 3367 if (Category) { 3368 // Instance properties 3369 Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy); 3370 // Class properties 3371 Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy); 3372 } else { 3373 Elements.addNullPointer(PtrTy); 3374 Elements.addNullPointer(PtrTy); 3375 } 3376 } 3377 3378 Categories.push_back(llvm::ConstantExpr::getBitCast( 3379 Elements.finishAndCreateGlobal( 3380 std::string(".objc_category_")+ClassName+CategoryName, 3381 CGM.getPointerAlign()), 3382 PtrTy)); 3383 } 3384 3385 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container, 3386 const ObjCContainerDecl *OCD, 3387 bool isClassProperty, 3388 bool protocolOptionalProperties) { 3389 3390 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3391 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3392 bool isProtocol = isa<ObjCProtocolDecl>(OCD); 3393 ASTContext &Context = CGM.getContext(); 3394 3395 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties 3396 = [&](const ObjCProtocolDecl *Proto) { 3397 for (const auto *P : Proto->protocols()) 3398 collectProtocolProperties(P); 3399 for (const auto *PD : Proto->properties()) { 3400 if (isClassProperty != PD->isClassProperty()) 3401 continue; 3402 // Skip any properties that are declared in protocols that this class 3403 // conforms to but are not actually implemented by this class. 3404 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container)) 3405 continue; 3406 if (!PropertySet.insert(PD->getIdentifier()).second) 3407 continue; 3408 Properties.push_back(PD); 3409 } 3410 }; 3411 3412 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3413 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3414 for (auto *PD : ClassExt->properties()) { 3415 if (isClassProperty != PD->isClassProperty()) 3416 continue; 3417 PropertySet.insert(PD->getIdentifier()); 3418 Properties.push_back(PD); 3419 } 3420 3421 for (const auto *PD : OCD->properties()) { 3422 if (isClassProperty != PD->isClassProperty()) 3423 continue; 3424 // If we're generating a list for a protocol, skip optional / required ones 3425 // when generating the other list. 3426 if (isProtocol && (protocolOptionalProperties != PD->isOptional())) 3427 continue; 3428 // Don't emit duplicate metadata for properties that were already in a 3429 // class extension. 3430 if (!PropertySet.insert(PD->getIdentifier()).second) 3431 continue; 3432 3433 Properties.push_back(PD); 3434 } 3435 3436 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3437 for (const auto *P : OID->all_referenced_protocols()) 3438 collectProtocolProperties(P); 3439 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) 3440 for (const auto *P : CD->protocols()) 3441 collectProtocolProperties(P); 3442 3443 auto numProperties = Properties.size(); 3444 3445 if (numProperties == 0) 3446 return NULLPtr; 3447 3448 ConstantInitBuilder builder(CGM); 3449 auto propertyList = builder.beginStruct(); 3450 auto properties = PushPropertyListHeader(propertyList, numProperties); 3451 3452 // Add all of the property methods need adding to the method list and to the 3453 // property metadata list. 3454 for (auto *property : Properties) { 3455 bool isSynthesized = false; 3456 bool isDynamic = false; 3457 if (!isProtocol) { 3458 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container); 3459 if (propertyImpl) { 3460 isSynthesized = (propertyImpl->getPropertyImplementation() == 3461 ObjCPropertyImplDecl::Synthesize); 3462 isDynamic = (propertyImpl->getPropertyImplementation() == 3463 ObjCPropertyImplDecl::Dynamic); 3464 } 3465 } 3466 PushProperty(properties, property, Container, isSynthesized, isDynamic); 3467 } 3468 properties.finishAndAddTo(propertyList); 3469 3470 return propertyList.finishAndCreateGlobal(".objc_property_list", 3471 CGM.getPointerAlign()); 3472 } 3473 3474 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 3475 // Get the class declaration for which the alias is specified. 3476 ObjCInterfaceDecl *ClassDecl = 3477 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 3478 ClassAliases.emplace_back(ClassDecl->getNameAsString(), 3479 OAD->getNameAsString()); 3480 } 3481 3482 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 3483 ASTContext &Context = CGM.getContext(); 3484 3485 // Get the superclass name. 3486 const ObjCInterfaceDecl * SuperClassDecl = 3487 OID->getClassInterface()->getSuperClass(); 3488 std::string SuperClassName; 3489 if (SuperClassDecl) { 3490 SuperClassName = SuperClassDecl->getNameAsString(); 3491 EmitClassRef(SuperClassName); 3492 } 3493 3494 // Get the class name 3495 ObjCInterfaceDecl *ClassDecl = 3496 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 3497 std::string ClassName = ClassDecl->getNameAsString(); 3498 3499 // Emit the symbol that is used to generate linker errors if this class is 3500 // referenced in other modules but not declared. 3501 std::string classSymbolName = "__objc_class_name_" + ClassName; 3502 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) { 3503 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 3504 } else { 3505 new llvm::GlobalVariable(TheModule, LongTy, false, 3506 llvm::GlobalValue::ExternalLinkage, 3507 llvm::ConstantInt::get(LongTy, 0), 3508 classSymbolName); 3509 } 3510 3511 // Get the size of instances. 3512 int instanceSize = 3513 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 3514 3515 // Collect information about instance variables. 3516 SmallVector<llvm::Constant*, 16> IvarNames; 3517 SmallVector<llvm::Constant*, 16> IvarTypes; 3518 SmallVector<llvm::Constant*, 16> IvarOffsets; 3519 SmallVector<llvm::Constant*, 16> IvarAligns; 3520 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership; 3521 3522 ConstantInitBuilder IvarOffsetBuilder(CGM); 3523 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy); 3524 SmallVector<bool, 16> WeakIvars; 3525 SmallVector<bool, 16> StrongIvars; 3526 3527 int superInstanceSize = !SuperClassDecl ? 0 : 3528 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 3529 // For non-fragile ivars, set the instance size to 0 - {the size of just this 3530 // class}. The runtime will then set this to the correct value on load. 3531 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3532 instanceSize = 0 - (instanceSize - superInstanceSize); 3533 } 3534 3535 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3536 IVD = IVD->getNextIvar()) { 3537 // Store the name 3538 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 3539 // Get the type encoding for this ivar 3540 std::string TypeStr; 3541 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD); 3542 IvarTypes.push_back(MakeConstantString(TypeStr)); 3543 IvarAligns.push_back(llvm::ConstantInt::get(IntTy, 3544 Context.getTypeSize(IVD->getType()))); 3545 // Get the offset 3546 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 3547 uint64_t Offset = BaseOffset; 3548 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3549 Offset = BaseOffset - superInstanceSize; 3550 } 3551 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 3552 // Create the direct offset value 3553 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 3554 IVD->getNameAsString(); 3555 3556 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 3557 if (OffsetVar) { 3558 OffsetVar->setInitializer(OffsetValue); 3559 // If this is the real definition, change its linkage type so that 3560 // different modules will use this one, rather than their private 3561 // copy. 3562 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 3563 } else 3564 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty, 3565 false, llvm::GlobalValue::ExternalLinkage, 3566 OffsetValue, OffsetName); 3567 IvarOffsets.push_back(OffsetValue); 3568 IvarOffsetValues.add(OffsetVar); 3569 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 3570 IvarOwnership.push_back(lt); 3571 switch (lt) { 3572 case Qualifiers::OCL_Strong: 3573 StrongIvars.push_back(true); 3574 WeakIvars.push_back(false); 3575 break; 3576 case Qualifiers::OCL_Weak: 3577 StrongIvars.push_back(false); 3578 WeakIvars.push_back(true); 3579 break; 3580 default: 3581 StrongIvars.push_back(false); 3582 WeakIvars.push_back(false); 3583 } 3584 } 3585 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 3586 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 3587 llvm::GlobalVariable *IvarOffsetArray = 3588 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets", 3589 CGM.getPointerAlign()); 3590 3591 // Collect information about instance methods 3592 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3593 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 3594 OID->instmeth_end()); 3595 3596 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3597 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 3598 OID->classmeth_end()); 3599 3600 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl); 3601 3602 // Collect the names of referenced protocols 3603 auto RefProtocols = ClassDecl->protocols(); 3604 auto RuntimeProtocols = 3605 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end()); 3606 SmallVector<std::string, 16> Protocols; 3607 for (const auto *I : RuntimeProtocols) 3608 Protocols.push_back(I->getNameAsString()); 3609 3610 // Get the superclass pointer. 3611 llvm::Constant *SuperClass; 3612 if (!SuperClassName.empty()) { 3613 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 3614 } else { 3615 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 3616 } 3617 // Empty vector used to construct empty method lists 3618 SmallVector<llvm::Constant*, 1> empty; 3619 // Generate the method and instance variable lists 3620 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 3621 InstanceMethods, false); 3622 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 3623 ClassMethods, true); 3624 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 3625 IvarOffsets, IvarAligns, IvarOwnership); 3626 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 3627 // we emit a symbol containing the offset for each ivar in the class. This 3628 // allows code compiled for the non-Fragile ABI to inherit from code compiled 3629 // for the legacy ABI, without causing problems. The converse is also 3630 // possible, but causes all ivar accesses to be fragile. 3631 3632 // Offset pointer for getting at the correct field in the ivar list when 3633 // setting up the alias. These are: The base address for the global, the 3634 // ivar array (second field), the ivar in this list (set for each ivar), and 3635 // the offset (third field in ivar structure) 3636 llvm::Type *IndexTy = Int32Ty; 3637 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 3638 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr, 3639 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) }; 3640 3641 unsigned ivarIndex = 0; 3642 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3643 IVD = IVD->getNextIvar()) { 3644 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD); 3645 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 3646 // Get the correct ivar field 3647 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 3648 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList, 3649 offsetPointerIndexes); 3650 // Get the existing variable, if one exists. 3651 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 3652 if (offset) { 3653 offset->setInitializer(offsetValue); 3654 // If this is the real definition, change its linkage type so that 3655 // different modules will use this one, rather than their private 3656 // copy. 3657 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 3658 } else 3659 // Add a new alias if there isn't one already. 3660 new llvm::GlobalVariable(TheModule, offsetValue->getType(), 3661 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 3662 ++ivarIndex; 3663 } 3664 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 3665 3666 //Generate metaclass for class methods 3667 llvm::Constant *MetaClassStruct = GenerateClassStructure( 3668 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], 3669 NULLPtr, ClassMethodList, NULLPtr, NULLPtr, 3670 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true); 3671 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct), 3672 OID->getClassInterface()); 3673 3674 // Generate the class structure 3675 llvm::Constant *ClassStruct = GenerateClassStructure( 3676 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr, 3677 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList, 3678 GenerateProtocolList(Protocols), IvarOffsetArray, Properties, 3679 StrongIvarBitmap, WeakIvarBitmap); 3680 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct), 3681 OID->getClassInterface()); 3682 3683 // Resolve the class aliases, if they exist. 3684 if (ClassPtrAlias) { 3685 ClassPtrAlias->replaceAllUsesWith( 3686 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy)); 3687 ClassPtrAlias->eraseFromParent(); 3688 ClassPtrAlias = nullptr; 3689 } 3690 if (MetaClassPtrAlias) { 3691 MetaClassPtrAlias->replaceAllUsesWith( 3692 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy)); 3693 MetaClassPtrAlias->eraseFromParent(); 3694 MetaClassPtrAlias = nullptr; 3695 } 3696 3697 // Add class structure to list to be added to the symtab later 3698 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty); 3699 Classes.push_back(ClassStruct); 3700 } 3701 3702 llvm::Function *CGObjCGNU::ModuleInitFunction() { 3703 // Only emit an ObjC load function if no Objective-C stuff has been called 3704 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 3705 ExistingProtocols.empty() && SelectorTable.empty()) 3706 return nullptr; 3707 3708 // Add all referenced protocols to a category. 3709 GenerateProtocolHolderCategory(); 3710 3711 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy); 3712 llvm::Type *selStructPtrTy = SelectorTy; 3713 if (!selStructTy) { 3714 selStructTy = llvm::StructType::get(CGM.getLLVMContext(), 3715 { PtrToInt8Ty, PtrToInt8Ty }); 3716 selStructPtrTy = llvm::PointerType::getUnqual(selStructTy); 3717 } 3718 3719 // Generate statics list: 3720 llvm::Constant *statics = NULLPtr; 3721 if (!ConstantStrings.empty()) { 3722 llvm::GlobalVariable *fileStatics = [&] { 3723 ConstantInitBuilder builder(CGM); 3724 auto staticsStruct = builder.beginStruct(); 3725 3726 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass; 3727 if (stringClass.empty()) stringClass = "NXConstantString"; 3728 staticsStruct.add(MakeConstantString(stringClass, 3729 ".objc_static_class_name")); 3730 3731 auto array = staticsStruct.beginArray(); 3732 array.addAll(ConstantStrings); 3733 array.add(NULLPtr); 3734 array.finishAndAddTo(staticsStruct); 3735 3736 return staticsStruct.finishAndCreateGlobal(".objc_statics", 3737 CGM.getPointerAlign()); 3738 }(); 3739 3740 ConstantInitBuilder builder(CGM); 3741 auto allStaticsArray = builder.beginArray(fileStatics->getType()); 3742 allStaticsArray.add(fileStatics); 3743 allStaticsArray.addNullPointer(fileStatics->getType()); 3744 3745 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr", 3746 CGM.getPointerAlign()); 3747 statics = llvm::ConstantExpr::getBitCast(statics, PtrTy); 3748 } 3749 3750 // Array of classes, categories, and constant objects. 3751 3752 SmallVector<llvm::GlobalAlias*, 16> selectorAliases; 3753 unsigned selectorCount; 3754 3755 // Pointer to an array of selectors used in this module. 3756 llvm::GlobalVariable *selectorList = [&] { 3757 ConstantInitBuilder builder(CGM); 3758 auto selectors = builder.beginArray(selStructTy); 3759 auto &table = SelectorTable; // MSVC workaround 3760 std::vector<Selector> allSelectors; 3761 for (auto &entry : table) 3762 allSelectors.push_back(entry.first); 3763 llvm::sort(allSelectors); 3764 3765 for (auto &untypedSel : allSelectors) { 3766 std::string selNameStr = untypedSel.getAsString(); 3767 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name"); 3768 3769 for (TypedSelector &sel : table[untypedSel]) { 3770 llvm::Constant *selectorTypeEncoding = NULLPtr; 3771 if (!sel.first.empty()) 3772 selectorTypeEncoding = 3773 MakeConstantString(sel.first, ".objc_sel_types"); 3774 3775 auto selStruct = selectors.beginStruct(selStructTy); 3776 selStruct.add(selName); 3777 selStruct.add(selectorTypeEncoding); 3778 selStruct.finishAndAddTo(selectors); 3779 3780 // Store the selector alias for later replacement 3781 selectorAliases.push_back(sel.second); 3782 } 3783 } 3784 3785 // Remember the number of entries in the selector table. 3786 selectorCount = selectors.size(); 3787 3788 // NULL-terminate the selector list. This should not actually be required, 3789 // because the selector list has a length field. Unfortunately, the GCC 3790 // runtime decides to ignore the length field and expects a NULL terminator, 3791 // and GCC cooperates with this by always setting the length to 0. 3792 auto selStruct = selectors.beginStruct(selStructTy); 3793 selStruct.add(NULLPtr); 3794 selStruct.add(NULLPtr); 3795 selStruct.finishAndAddTo(selectors); 3796 3797 return selectors.finishAndCreateGlobal(".objc_selector_list", 3798 CGM.getPointerAlign()); 3799 }(); 3800 3801 // Now that all of the static selectors exist, create pointers to them. 3802 for (unsigned i = 0; i < selectorCount; ++i) { 3803 llvm::Constant *idxs[] = { 3804 Zeros[0], 3805 llvm::ConstantInt::get(Int32Ty, i) 3806 }; 3807 // FIXME: We're generating redundant loads and stores here! 3808 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr( 3809 selectorList->getValueType(), selectorList, idxs); 3810 // If selectors are defined as an opaque type, cast the pointer to this 3811 // type. 3812 selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy); 3813 selectorAliases[i]->replaceAllUsesWith(selPtr); 3814 selectorAliases[i]->eraseFromParent(); 3815 } 3816 3817 llvm::GlobalVariable *symtab = [&] { 3818 ConstantInitBuilder builder(CGM); 3819 auto symtab = builder.beginStruct(); 3820 3821 // Number of static selectors 3822 symtab.addInt(LongTy, selectorCount); 3823 3824 symtab.addBitCast(selectorList, selStructPtrTy); 3825 3826 // Number of classes defined. 3827 symtab.addInt(CGM.Int16Ty, Classes.size()); 3828 // Number of categories defined 3829 symtab.addInt(CGM.Int16Ty, Categories.size()); 3830 3831 // Create an array of classes, then categories, then static object instances 3832 auto classList = symtab.beginArray(PtrToInt8Ty); 3833 classList.addAll(Classes); 3834 classList.addAll(Categories); 3835 // NULL-terminated list of static object instances (mainly constant strings) 3836 classList.add(statics); 3837 classList.add(NULLPtr); 3838 classList.finishAndAddTo(symtab); 3839 3840 // Construct the symbol table. 3841 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign()); 3842 }(); 3843 3844 // The symbol table is contained in a module which has some version-checking 3845 // constants 3846 llvm::Constant *module = [&] { 3847 llvm::Type *moduleEltTys[] = { 3848 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy 3849 }; 3850 llvm::StructType *moduleTy = llvm::StructType::get( 3851 CGM.getLLVMContext(), 3852 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10))); 3853 3854 ConstantInitBuilder builder(CGM); 3855 auto module = builder.beginStruct(moduleTy); 3856 // Runtime version, used for ABI compatibility checking. 3857 module.addInt(LongTy, RuntimeVersion); 3858 // sizeof(ModuleTy) 3859 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy)); 3860 3861 // The path to the source file where this module was declared 3862 SourceManager &SM = CGM.getContext().getSourceManager(); 3863 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID()); 3864 std::string path = 3865 (mainFile->getDir().getName() + "/" + mainFile->getName()).str(); 3866 module.add(MakeConstantString(path, ".objc_source_file_name")); 3867 module.add(symtab); 3868 3869 if (RuntimeVersion >= 10) { 3870 switch (CGM.getLangOpts().getGC()) { 3871 case LangOptions::GCOnly: 3872 module.addInt(IntTy, 2); 3873 break; 3874 case LangOptions::NonGC: 3875 if (CGM.getLangOpts().ObjCAutoRefCount) 3876 module.addInt(IntTy, 1); 3877 else 3878 module.addInt(IntTy, 0); 3879 break; 3880 case LangOptions::HybridGC: 3881 module.addInt(IntTy, 1); 3882 break; 3883 } 3884 } 3885 3886 return module.finishAndCreateGlobal("", CGM.getPointerAlign()); 3887 }(); 3888 3889 // Create the load function calling the runtime entry point with the module 3890 // structure 3891 llvm::Function * LoadFunction = llvm::Function::Create( 3892 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 3893 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 3894 &TheModule); 3895 llvm::BasicBlock *EntryBB = 3896 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 3897 CGBuilderTy Builder(CGM, VMContext); 3898 Builder.SetInsertPoint(EntryBB); 3899 3900 llvm::FunctionType *FT = 3901 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true); 3902 llvm::FunctionCallee Register = 3903 CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 3904 Builder.CreateCall(Register, module); 3905 3906 if (!ClassAliases.empty()) { 3907 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 3908 llvm::FunctionType *RegisterAliasTy = 3909 llvm::FunctionType::get(Builder.getVoidTy(), 3910 ArgTypes, false); 3911 llvm::Function *RegisterAlias = llvm::Function::Create( 3912 RegisterAliasTy, 3913 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 3914 &TheModule); 3915 llvm::BasicBlock *AliasBB = 3916 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 3917 llvm::BasicBlock *NoAliasBB = 3918 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 3919 3920 // Branch based on whether the runtime provided class_registerAlias_np() 3921 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 3922 llvm::Constant::getNullValue(RegisterAlias->getType())); 3923 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 3924 3925 // The true branch (has alias registration function): 3926 Builder.SetInsertPoint(AliasBB); 3927 // Emit alias registration calls: 3928 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 3929 iter != ClassAliases.end(); ++iter) { 3930 llvm::Constant *TheClass = 3931 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true); 3932 if (TheClass) { 3933 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy); 3934 Builder.CreateCall(RegisterAlias, 3935 {TheClass, MakeConstantString(iter->second)}); 3936 } 3937 } 3938 // Jump to end: 3939 Builder.CreateBr(NoAliasBB); 3940 3941 // Missing alias registration function, just return from the function: 3942 Builder.SetInsertPoint(NoAliasBB); 3943 } 3944 Builder.CreateRetVoid(); 3945 3946 return LoadFunction; 3947 } 3948 3949 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 3950 const ObjCContainerDecl *CD) { 3951 CodeGenTypes &Types = CGM.getTypes(); 3952 llvm::FunctionType *MethodTy = 3953 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3954 std::string FunctionName = getSymbolNameForMethod(OMD); 3955 3956 llvm::Function *Method 3957 = llvm::Function::Create(MethodTy, 3958 llvm::GlobalValue::InternalLinkage, 3959 FunctionName, 3960 &TheModule); 3961 return Method; 3962 } 3963 3964 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF, 3965 llvm::Function *Fn, 3966 const ObjCMethodDecl *OMD, 3967 const ObjCContainerDecl *CD) { 3968 // GNU runtime doesn't support direct calls at this time 3969 } 3970 3971 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() { 3972 return GetPropertyFn; 3973 } 3974 3975 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() { 3976 return SetPropertyFn; 3977 } 3978 3979 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 3980 bool copy) { 3981 return nullptr; 3982 } 3983 3984 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() { 3985 return GetStructPropertyFn; 3986 } 3987 3988 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() { 3989 return SetStructPropertyFn; 3990 } 3991 3992 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() { 3993 return nullptr; 3994 } 3995 3996 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() { 3997 return nullptr; 3998 } 3999 4000 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() { 4001 return EnumerationMutationFn; 4002 } 4003 4004 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 4005 const ObjCAtSynchronizedStmt &S) { 4006 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 4007 } 4008 4009 4010 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 4011 const ObjCAtTryStmt &S) { 4012 // Unlike the Apple non-fragile runtimes, which also uses 4013 // unwind-based zero cost exceptions, the GNU Objective C runtime's 4014 // EH support isn't a veneer over C++ EH. Instead, exception 4015 // objects are created by objc_exception_throw and destroyed by 4016 // the personality function; this avoids the need for bracketing 4017 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 4018 // (or even _Unwind_DeleteException), but probably doesn't 4019 // interoperate very well with foreign exceptions. 4020 // 4021 // In Objective-C++ mode, we actually emit something equivalent to the C++ 4022 // exception handler. 4023 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 4024 } 4025 4026 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 4027 const ObjCAtThrowStmt &S, 4028 bool ClearInsertionPoint) { 4029 llvm::Value *ExceptionAsObject; 4030 bool isRethrow = false; 4031 4032 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4033 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4034 ExceptionAsObject = Exception; 4035 } else { 4036 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4037 "Unexpected rethrow outside @catch block."); 4038 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4039 isRethrow = true; 4040 } 4041 if (isRethrow && usesSEHExceptions) { 4042 // For SEH, ExceptionAsObject may be undef, because the catch handler is 4043 // not passed it for catchalls and so it is not visible to the catch 4044 // funclet. The real thrown object will still be live on the stack at this 4045 // point and will be rethrown. If we are explicitly rethrowing the object 4046 // that was passed into the `@catch` block, then this code path is not 4047 // reached and we will instead call `objc_exception_throw` with an explicit 4048 // argument. 4049 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn); 4050 Throw->setDoesNotReturn(); 4051 } 4052 else { 4053 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 4054 llvm::CallBase *Throw = 4055 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); 4056 Throw->setDoesNotReturn(); 4057 } 4058 CGF.Builder.CreateUnreachable(); 4059 if (ClearInsertionPoint) 4060 CGF.Builder.ClearInsertionPoint(); 4061 } 4062 4063 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 4064 Address AddrWeakObj) { 4065 CGBuilderTy &B = CGF.Builder; 4066 return B.CreateCall(WeakReadFn, 4067 EnforceType(B, AddrWeakObj.getPointer(), PtrToIdTy)); 4068 } 4069 4070 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 4071 llvm::Value *src, Address dst) { 4072 CGBuilderTy &B = CGF.Builder; 4073 src = EnforceType(B, src, IdTy); 4074 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4075 B.CreateCall(WeakAssignFn, {src, dstVal}); 4076 } 4077 4078 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 4079 llvm::Value *src, Address dst, 4080 bool threadlocal) { 4081 CGBuilderTy &B = CGF.Builder; 4082 src = EnforceType(B, src, IdTy); 4083 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4084 // FIXME. Add threadloca assign API 4085 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"); 4086 B.CreateCall(GlobalAssignFn, {src, dstVal}); 4087 } 4088 4089 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 4090 llvm::Value *src, Address dst, 4091 llvm::Value *ivarOffset) { 4092 CGBuilderTy &B = CGF.Builder; 4093 src = EnforceType(B, src, IdTy); 4094 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), IdTy); 4095 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset}); 4096 } 4097 4098 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 4099 llvm::Value *src, Address dst) { 4100 CGBuilderTy &B = CGF.Builder; 4101 src = EnforceType(B, src, IdTy); 4102 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4103 B.CreateCall(StrongCastAssignFn, {src, dstVal}); 4104 } 4105 4106 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 4107 Address DestPtr, 4108 Address SrcPtr, 4109 llvm::Value *Size) { 4110 CGBuilderTy &B = CGF.Builder; 4111 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.getPointer(), PtrTy); 4112 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.getPointer(), PtrTy); 4113 4114 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size}); 4115 } 4116 4117 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 4118 const ObjCInterfaceDecl *ID, 4119 const ObjCIvarDecl *Ivar) { 4120 const std::string Name = GetIVarOffsetVariableName(ID, Ivar); 4121 // Emit the variable and initialize it with what we think the correct value 4122 // is. This allows code compiled with non-fragile ivars to work correctly 4123 // when linked against code which isn't (most of the time). 4124 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 4125 if (!IvarOffsetPointer) 4126 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, 4127 llvm::Type::getInt32PtrTy(VMContext), false, 4128 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 4129 return IvarOffsetPointer; 4130 } 4131 4132 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 4133 QualType ObjectTy, 4134 llvm::Value *BaseValue, 4135 const ObjCIvarDecl *Ivar, 4136 unsigned CVRQualifiers) { 4137 const ObjCInterfaceDecl *ID = 4138 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 4139 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4140 EmitIvarOffset(CGF, ID, Ivar)); 4141 } 4142 4143 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 4144 const ObjCInterfaceDecl *OID, 4145 const ObjCIvarDecl *OIVD) { 4146 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 4147 next = next->getNextIvar()) { 4148 if (OIVD == next) 4149 return OID; 4150 } 4151 4152 // Otherwise check in the super class. 4153 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 4154 return FindIvarInterface(Context, Super, OIVD); 4155 4156 return nullptr; 4157 } 4158 4159 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 4160 const ObjCInterfaceDecl *Interface, 4161 const ObjCIvarDecl *Ivar) { 4162 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 4163 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 4164 4165 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage 4166 // and ExternalLinkage, so create a reference to the ivar global and rely on 4167 // the definition being created as part of GenerateClass. 4168 if (RuntimeVersion < 10 || 4169 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment()) 4170 return CGF.Builder.CreateZExtOrBitCast( 4171 CGF.Builder.CreateAlignedLoad( 4172 Int32Ty, CGF.Builder.CreateAlignedLoad( 4173 llvm::Type::getInt32PtrTy(VMContext), 4174 ObjCIvarOffsetVariable(Interface, Ivar), 4175 CGF.getPointerAlign(), "ivar"), 4176 CharUnits::fromQuantity(4)), 4177 PtrDiffTy); 4178 std::string name = "__objc_ivar_offset_value_" + 4179 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 4180 CharUnits Align = CGM.getIntAlign(); 4181 llvm::Value *Offset = TheModule.getGlobalVariable(name); 4182 if (!Offset) { 4183 auto GV = new llvm::GlobalVariable(TheModule, IntTy, 4184 false, llvm::GlobalValue::LinkOnceAnyLinkage, 4185 llvm::Constant::getNullValue(IntTy), name); 4186 GV->setAlignment(Align.getAsAlign()); 4187 Offset = GV; 4188 } 4189 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align); 4190 if (Offset->getType() != PtrDiffTy) 4191 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 4192 return Offset; 4193 } 4194 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 4195 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 4196 } 4197 4198 CGObjCRuntime * 4199 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 4200 auto Runtime = CGM.getLangOpts().ObjCRuntime; 4201 switch (Runtime.getKind()) { 4202 case ObjCRuntime::GNUstep: 4203 if (Runtime.getVersion() >= VersionTuple(2, 0)) 4204 return new CGObjCGNUstep2(CGM); 4205 return new CGObjCGNUstep(CGM); 4206 4207 case ObjCRuntime::GCC: 4208 return new CGObjCGCC(CGM); 4209 4210 case ObjCRuntime::ObjFW: 4211 return new CGObjCObjFW(CGM); 4212 4213 case ObjCRuntime::FragileMacOSX: 4214 case ObjCRuntime::MacOSX: 4215 case ObjCRuntime::iOS: 4216 case ObjCRuntime::WatchOS: 4217 llvm_unreachable("these runtimes are not GNU runtimes"); 4218 } 4219 llvm_unreachable("bad runtime"); 4220 } 4221