1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the GNU runtime. The 10 // class in this file generates structures used by the GNU Objective-C runtime 11 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 12 // the GNU runtime distribution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/StmtObjC.h" 27 #include "clang/Basic/FileManager.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/StringMap.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include <cctype> 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 namespace { 44 45 /// Class that lazily initialises the runtime function. Avoids inserting the 46 /// types and the function declaration into a module if they're not used, and 47 /// avoids constructing the type more than once if it's used more than once. 48 class LazyRuntimeFunction { 49 CodeGenModule *CGM = nullptr; 50 llvm::FunctionType *FTy = nullptr; 51 const char *FunctionName = nullptr; 52 llvm::FunctionCallee Function = nullptr; 53 54 public: 55 LazyRuntimeFunction() = default; 56 57 /// Initialises the lazy function with the name, return type, and the types 58 /// of the arguments. 59 template <typename... Tys> 60 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, 61 Tys *... Types) { 62 CGM = Mod; 63 FunctionName = name; 64 Function = nullptr; 65 if(sizeof...(Tys)) { 66 SmallVector<llvm::Type *, 8> ArgTys({Types...}); 67 FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 68 } 69 else { 70 FTy = llvm::FunctionType::get(RetTy, std::nullopt, false); 71 } 72 } 73 74 llvm::FunctionType *getType() { return FTy; } 75 76 /// Overloaded cast operator, allows the class to be implicitly cast to an 77 /// LLVM constant. 78 operator llvm::FunctionCallee() { 79 if (!Function) { 80 if (!FunctionName) 81 return nullptr; 82 Function = CGM->CreateRuntimeFunction(FTy, FunctionName); 83 } 84 return Function; 85 } 86 }; 87 88 89 /// GNU Objective-C runtime code generation. This class implements the parts of 90 /// Objective-C support that are specific to the GNU family of runtimes (GCC, 91 /// GNUstep and ObjFW). 92 class CGObjCGNU : public CGObjCRuntime { 93 protected: 94 /// The LLVM module into which output is inserted 95 llvm::Module &TheModule; 96 /// strut objc_super. Used for sending messages to super. This structure 97 /// contains the receiver (object) and the expected class. 98 llvm::StructType *ObjCSuperTy; 99 /// struct objc_super*. The type of the argument to the superclass message 100 /// lookup functions. 101 llvm::PointerType *PtrToObjCSuperTy; 102 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 103 /// SEL is included in a header somewhere, in which case it will be whatever 104 /// type is declared in that header, most likely {i8*, i8*}. 105 llvm::PointerType *SelectorTy; 106 /// Element type of SelectorTy. 107 llvm::Type *SelectorElemTy; 108 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 109 /// places where it's used 110 llvm::IntegerType *Int8Ty; 111 /// Pointer to i8 - LLVM type of char*, for all of the places where the 112 /// runtime needs to deal with C strings. 113 llvm::PointerType *PtrToInt8Ty; 114 /// struct objc_protocol type 115 llvm::StructType *ProtocolTy; 116 /// Protocol * type. 117 llvm::PointerType *ProtocolPtrTy; 118 /// Instance Method Pointer type. This is a pointer to a function that takes, 119 /// at a minimum, an object and a selector, and is the generic type for 120 /// Objective-C methods. Due to differences between variadic / non-variadic 121 /// calling conventions, it must always be cast to the correct type before 122 /// actually being used. 123 llvm::PointerType *IMPTy; 124 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 125 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 126 /// but if the runtime header declaring it is included then it may be a 127 /// pointer to a structure. 128 llvm::PointerType *IdTy; 129 /// Element type of IdTy. 130 llvm::Type *IdElemTy; 131 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 132 /// message lookup function and some GC-related functions. 133 llvm::PointerType *PtrToIdTy; 134 /// The clang type of id. Used when using the clang CGCall infrastructure to 135 /// call Objective-C methods. 136 CanQualType ASTIdTy; 137 /// LLVM type for C int type. 138 llvm::IntegerType *IntTy; 139 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 140 /// used in the code to document the difference between i8* meaning a pointer 141 /// to a C string and i8* meaning a pointer to some opaque type. 142 llvm::PointerType *PtrTy; 143 /// LLVM type for C long type. The runtime uses this in a lot of places where 144 /// it should be using intptr_t, but we can't fix this without breaking 145 /// compatibility with GCC... 146 llvm::IntegerType *LongTy; 147 /// LLVM type for C size_t. Used in various runtime data structures. 148 llvm::IntegerType *SizeTy; 149 /// LLVM type for C intptr_t. 150 llvm::IntegerType *IntPtrTy; 151 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 152 llvm::IntegerType *PtrDiffTy; 153 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 154 /// variables. 155 llvm::PointerType *PtrToIntTy; 156 /// LLVM type for Objective-C BOOL type. 157 llvm::Type *BoolTy; 158 /// 32-bit integer type, to save us needing to look it up every time it's used. 159 llvm::IntegerType *Int32Ty; 160 /// 64-bit integer type, to save us needing to look it up every time it's used. 161 llvm::IntegerType *Int64Ty; 162 /// The type of struct objc_property. 163 llvm::StructType *PropertyMetadataTy; 164 /// Metadata kind used to tie method lookups to message sends. The GNUstep 165 /// runtime provides some LLVM passes that can use this to do things like 166 /// automatic IMP caching and speculative inlining. 167 unsigned msgSendMDKind; 168 /// Does the current target use SEH-based exceptions? False implies 169 /// Itanium-style DWARF unwinding. 170 bool usesSEHExceptions; 171 172 /// Helper to check if we are targeting a specific runtime version or later. 173 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) { 174 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 175 return (R.getKind() == kind) && 176 (R.getVersion() >= VersionTuple(major, minor)); 177 } 178 179 std::string ManglePublicSymbol(StringRef Name) { 180 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str(); 181 } 182 183 std::string SymbolForProtocol(Twine Name) { 184 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str(); 185 } 186 187 std::string SymbolForProtocolRef(StringRef Name) { 188 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str(); 189 } 190 191 192 /// Helper function that generates a constant string and returns a pointer to 193 /// the start of the string. The result of this function can be used anywhere 194 /// where the C code specifies const char*. 195 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") { 196 ConstantAddress Array = 197 CGM.GetAddrOfConstantCString(std::string(Str), Name); 198 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(), 199 Array.getPointer(), Zeros); 200 } 201 202 /// Emits a linkonce_odr string, whose name is the prefix followed by the 203 /// string value. This allows the linker to combine the strings between 204 /// different modules. Used for EH typeinfo names, selector strings, and a 205 /// few other things. 206 llvm::Constant *ExportUniqueString(const std::string &Str, 207 const std::string &prefix, 208 bool Private=false) { 209 std::string name = prefix + Str; 210 auto *ConstStr = TheModule.getGlobalVariable(name); 211 if (!ConstStr) { 212 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 213 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true, 214 llvm::GlobalValue::LinkOnceODRLinkage, value, name); 215 GV->setComdat(TheModule.getOrInsertComdat(name)); 216 if (Private) 217 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 218 ConstStr = GV; 219 } 220 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(), 221 ConstStr, Zeros); 222 } 223 224 /// Returns a property name and encoding string. 225 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, 226 const Decl *Container) { 227 assert(!isRuntime(ObjCRuntime::GNUstep, 2)); 228 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) { 229 std::string NameAndAttributes; 230 std::string TypeStr = 231 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 232 NameAndAttributes += '\0'; 233 NameAndAttributes += TypeStr.length() + 3; 234 NameAndAttributes += TypeStr; 235 NameAndAttributes += '\0'; 236 NameAndAttributes += PD->getNameAsString(); 237 return MakeConstantString(NameAndAttributes); 238 } 239 return MakeConstantString(PD->getNameAsString()); 240 } 241 242 /// Push the property attributes into two structure fields. 243 void PushPropertyAttributes(ConstantStructBuilder &Fields, 244 const ObjCPropertyDecl *property, bool isSynthesized=true, bool 245 isDynamic=true) { 246 int attrs = property->getPropertyAttributes(); 247 // For read-only properties, clear the copy and retain flags 248 if (attrs & ObjCPropertyAttribute::kind_readonly) { 249 attrs &= ~ObjCPropertyAttribute::kind_copy; 250 attrs &= ~ObjCPropertyAttribute::kind_retain; 251 attrs &= ~ObjCPropertyAttribute::kind_weak; 252 attrs &= ~ObjCPropertyAttribute::kind_strong; 253 } 254 // The first flags field has the same attribute values as clang uses internally 255 Fields.addInt(Int8Ty, attrs & 0xff); 256 attrs >>= 8; 257 attrs <<= 2; 258 // For protocol properties, synthesized and dynamic have no meaning, so we 259 // reuse these flags to indicate that this is a protocol property (both set 260 // has no meaning, as a property can't be both synthesized and dynamic) 261 attrs |= isSynthesized ? (1<<0) : 0; 262 attrs |= isDynamic ? (1<<1) : 0; 263 // The second field is the next four fields left shifted by two, with the 264 // low bit set to indicate whether the field is synthesized or dynamic. 265 Fields.addInt(Int8Ty, attrs & 0xff); 266 // Two padding fields 267 Fields.addInt(Int8Ty, 0); 268 Fields.addInt(Int8Ty, 0); 269 } 270 271 virtual llvm::Constant *GenerateCategoryProtocolList(const 272 ObjCCategoryDecl *OCD); 273 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields, 274 int count) { 275 // int count; 276 Fields.addInt(IntTy, count); 277 // int size; (only in GNUstep v2 ABI. 278 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 279 llvm::DataLayout td(&TheModule); 280 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) / 281 CGM.getContext().getCharWidth()); 282 } 283 // struct objc_property_list *next; 284 Fields.add(NULLPtr); 285 // struct objc_property properties[] 286 return Fields.beginArray(PropertyMetadataTy); 287 } 288 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray, 289 const ObjCPropertyDecl *property, 290 const Decl *OCD, 291 bool isSynthesized=true, bool 292 isDynamic=true) { 293 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 294 ASTContext &Context = CGM.getContext(); 295 Fields.add(MakePropertyEncodingString(property, OCD)); 296 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); 297 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 298 if (accessor) { 299 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 300 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 301 Fields.add(MakeConstantString(accessor->getSelector().getAsString())); 302 Fields.add(TypeEncoding); 303 } else { 304 Fields.add(NULLPtr); 305 Fields.add(NULLPtr); 306 } 307 }; 308 addPropertyMethod(property->getGetterMethodDecl()); 309 addPropertyMethod(property->getSetterMethodDecl()); 310 Fields.finishAndAddTo(PropertiesArray); 311 } 312 313 /// Ensures that the value has the required type, by inserting a bitcast if 314 /// required. This function lets us avoid inserting bitcasts that are 315 /// redundant. 316 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { 317 if (V->getType() == Ty) 318 return V; 319 return B.CreateBitCast(V, Ty); 320 } 321 322 // Some zeros used for GEPs in lots of places. 323 llvm::Constant *Zeros[2]; 324 /// Null pointer value. Mainly used as a terminator in various arrays. 325 llvm::Constant *NULLPtr; 326 /// LLVM context. 327 llvm::LLVMContext &VMContext; 328 329 protected: 330 331 /// Placeholder for the class. Lots of things refer to the class before we've 332 /// actually emitted it. We use this alias as a placeholder, and then replace 333 /// it with a pointer to the class structure before finally emitting the 334 /// module. 335 llvm::GlobalAlias *ClassPtrAlias; 336 /// Placeholder for the metaclass. Lots of things refer to the class before 337 /// we've / actually emitted it. We use this alias as a placeholder, and then 338 /// replace / it with a pointer to the metaclass structure before finally 339 /// emitting the / module. 340 llvm::GlobalAlias *MetaClassPtrAlias; 341 /// All of the classes that have been generated for this compilation units. 342 std::vector<llvm::Constant*> Classes; 343 /// All of the categories that have been generated for this compilation units. 344 std::vector<llvm::Constant*> Categories; 345 /// All of the Objective-C constant strings that have been generated for this 346 /// compilation units. 347 std::vector<llvm::Constant*> ConstantStrings; 348 /// Map from string values to Objective-C constant strings in the output. 349 /// Used to prevent emitting Objective-C strings more than once. This should 350 /// not be required at all - CodeGenModule should manage this list. 351 llvm::StringMap<llvm::Constant*> ObjCStrings; 352 /// All of the protocols that have been declared. 353 llvm::StringMap<llvm::Constant*> ExistingProtocols; 354 /// For each variant of a selector, we store the type encoding and a 355 /// placeholder value. For an untyped selector, the type will be the empty 356 /// string. Selector references are all done via the module's selector table, 357 /// so we create an alias as a placeholder and then replace it with the real 358 /// value later. 359 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 360 /// Type of the selector map. This is roughly equivalent to the structure 361 /// used in the GNUstep runtime, which maintains a list of all of the valid 362 /// types for a selector in a table. 363 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 364 SelectorMap; 365 /// A map from selectors to selector types. This allows us to emit all 366 /// selectors of the same name and type together. 367 SelectorMap SelectorTable; 368 369 /// Selectors related to memory management. When compiling in GC mode, we 370 /// omit these. 371 Selector RetainSel, ReleaseSel, AutoreleaseSel; 372 /// Runtime functions used for memory management in GC mode. Note that clang 373 /// supports code generation for calling these functions, but neither GNU 374 /// runtime actually supports this API properly yet. 375 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 376 WeakAssignFn, GlobalAssignFn; 377 378 typedef std::pair<std::string, std::string> ClassAliasPair; 379 /// All classes that have aliases set for them. 380 std::vector<ClassAliasPair> ClassAliases; 381 382 protected: 383 /// Function used for throwing Objective-C exceptions. 384 LazyRuntimeFunction ExceptionThrowFn; 385 /// Function used for rethrowing exceptions, used at the end of \@finally or 386 /// \@synchronize blocks. 387 LazyRuntimeFunction ExceptionReThrowFn; 388 /// Function called when entering a catch function. This is required for 389 /// differentiating Objective-C exceptions and foreign exceptions. 390 LazyRuntimeFunction EnterCatchFn; 391 /// Function called when exiting from a catch block. Used to do exception 392 /// cleanup. 393 LazyRuntimeFunction ExitCatchFn; 394 /// Function called when entering an \@synchronize block. Acquires the lock. 395 LazyRuntimeFunction SyncEnterFn; 396 /// Function called when exiting an \@synchronize block. Releases the lock. 397 LazyRuntimeFunction SyncExitFn; 398 399 private: 400 /// Function called if fast enumeration detects that the collection is 401 /// modified during the update. 402 LazyRuntimeFunction EnumerationMutationFn; 403 /// Function for implementing synthesized property getters that return an 404 /// object. 405 LazyRuntimeFunction GetPropertyFn; 406 /// Function for implementing synthesized property setters that return an 407 /// object. 408 LazyRuntimeFunction SetPropertyFn; 409 /// Function used for non-object declared property getters. 410 LazyRuntimeFunction GetStructPropertyFn; 411 /// Function used for non-object declared property setters. 412 LazyRuntimeFunction SetStructPropertyFn; 413 414 protected: 415 /// The version of the runtime that this class targets. Must match the 416 /// version in the runtime. 417 int RuntimeVersion; 418 /// The version of the protocol class. Used to differentiate between ObjC1 419 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 420 /// components and can not contain declared properties. We always emit 421 /// Objective-C 2 property structures, but we have to pretend that they're 422 /// Objective-C 1 property structures when targeting the GCC runtime or it 423 /// will abort. 424 const int ProtocolVersion; 425 /// The version of the class ABI. This value is used in the class structure 426 /// and indicates how various fields should be interpreted. 427 const int ClassABIVersion; 428 /// Generates an instance variable list structure. This is a structure 429 /// containing a size and an array of structures containing instance variable 430 /// metadata. This is used purely for introspection in the fragile ABI. In 431 /// the non-fragile ABI, it's used for instance variable fixup. 432 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 433 ArrayRef<llvm::Constant *> IvarTypes, 434 ArrayRef<llvm::Constant *> IvarOffsets, 435 ArrayRef<llvm::Constant *> IvarAlign, 436 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership); 437 438 /// Generates a method list structure. This is a structure containing a size 439 /// and an array of structures containing method metadata. 440 /// 441 /// This structure is used by both classes and categories, and contains a next 442 /// pointer allowing them to be chained together in a linked list. 443 llvm::Constant *GenerateMethodList(StringRef ClassName, 444 StringRef CategoryName, 445 ArrayRef<const ObjCMethodDecl*> Methods, 446 bool isClassMethodList); 447 448 /// Emits an empty protocol. This is used for \@protocol() where no protocol 449 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 450 /// real protocol. 451 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName); 452 453 /// Generates a list of property metadata structures. This follows the same 454 /// pattern as method and instance variable metadata lists. 455 llvm::Constant *GeneratePropertyList(const Decl *Container, 456 const ObjCContainerDecl *OCD, 457 bool isClassProperty=false, 458 bool protocolOptionalProperties=false); 459 460 /// Generates a list of referenced protocols. Classes, categories, and 461 /// protocols all use this structure. 462 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 463 464 /// To ensure that all protocols are seen by the runtime, we add a category on 465 /// a class defined in the runtime, declaring no methods, but adopting the 466 /// protocols. This is a horribly ugly hack, but it allows us to collect all 467 /// of the protocols without changing the ABI. 468 void GenerateProtocolHolderCategory(); 469 470 /// Generates a class structure. 471 llvm::Constant *GenerateClassStructure( 472 llvm::Constant *MetaClass, 473 llvm::Constant *SuperClass, 474 unsigned info, 475 const char *Name, 476 llvm::Constant *Version, 477 llvm::Constant *InstanceSize, 478 llvm::Constant *IVars, 479 llvm::Constant *Methods, 480 llvm::Constant *Protocols, 481 llvm::Constant *IvarOffsets, 482 llvm::Constant *Properties, 483 llvm::Constant *StrongIvarBitmap, 484 llvm::Constant *WeakIvarBitmap, 485 bool isMeta=false); 486 487 /// Generates a method list. This is used by protocols to define the required 488 /// and optional methods. 489 virtual llvm::Constant *GenerateProtocolMethodList( 490 ArrayRef<const ObjCMethodDecl*> Methods); 491 /// Emits optional and required method lists. 492 template<class T> 493 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required, 494 llvm::Constant *&Optional) { 495 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods; 496 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods; 497 for (const auto *I : Methods) 498 if (I->isOptional()) 499 OptionalMethods.push_back(I); 500 else 501 RequiredMethods.push_back(I); 502 Required = GenerateProtocolMethodList(RequiredMethods); 503 Optional = GenerateProtocolMethodList(OptionalMethods); 504 } 505 506 /// Returns a selector with the specified type encoding. An empty string is 507 /// used to return an untyped selector (with the types field set to NULL). 508 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 509 const std::string &TypeEncoding); 510 511 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this 512 /// contains the class and ivar names, in the v2 ABI this contains the type 513 /// encoding as well. 514 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 515 const ObjCIvarDecl *Ivar) { 516 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 517 + '.' + Ivar->getNameAsString(); 518 return Name; 519 } 520 /// Returns the variable used to store the offset of an instance variable. 521 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 522 const ObjCIvarDecl *Ivar); 523 /// Emits a reference to a class. This allows the linker to object if there 524 /// is no class of the matching name. 525 void EmitClassRef(const std::string &className); 526 527 /// Emits a pointer to the named class 528 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 529 const std::string &Name, bool isWeak); 530 531 /// Looks up the method for sending a message to the specified object. This 532 /// mechanism differs between the GCC and GNU runtimes, so this method must be 533 /// overridden in subclasses. 534 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 535 llvm::Value *&Receiver, 536 llvm::Value *cmd, 537 llvm::MDNode *node, 538 MessageSendInfo &MSI) = 0; 539 540 /// Looks up the method for sending a message to a superclass. This 541 /// mechanism differs between the GCC and GNU runtimes, so this method must 542 /// be overridden in subclasses. 543 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 544 Address ObjCSuper, 545 llvm::Value *cmd, 546 MessageSendInfo &MSI) = 0; 547 548 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 549 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 550 /// bits set to their values, LSB first, while larger ones are stored in a 551 /// structure of this / form: 552 /// 553 /// struct { int32_t length; int32_t values[length]; }; 554 /// 555 /// The values in the array are stored in host-endian format, with the least 556 /// significant bit being assumed to come first in the bitfield. Therefore, 557 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 558 /// while a bitfield / with the 63rd bit set will be 1<<64. 559 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 560 561 public: 562 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 563 unsigned protocolClassVersion, unsigned classABI=1); 564 565 ConstantAddress GenerateConstantString(const StringLiteral *) override; 566 567 RValue 568 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, 569 QualType ResultType, Selector Sel, 570 llvm::Value *Receiver, const CallArgList &CallArgs, 571 const ObjCInterfaceDecl *Class, 572 const ObjCMethodDecl *Method) override; 573 RValue 574 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, 575 QualType ResultType, Selector Sel, 576 const ObjCInterfaceDecl *Class, 577 bool isCategoryImpl, llvm::Value *Receiver, 578 bool IsClassMessage, const CallArgList &CallArgs, 579 const ObjCMethodDecl *Method) override; 580 llvm::Value *GetClass(CodeGenFunction &CGF, 581 const ObjCInterfaceDecl *OID) override; 582 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 583 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 584 llvm::Value *GetSelector(CodeGenFunction &CGF, 585 const ObjCMethodDecl *Method) override; 586 virtual llvm::Constant *GetConstantSelector(Selector Sel, 587 const std::string &TypeEncoding) { 588 llvm_unreachable("Runtime unable to generate constant selector"); 589 } 590 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) { 591 return GetConstantSelector(M->getSelector(), 592 CGM.getContext().getObjCEncodingForMethodDecl(M)); 593 } 594 llvm::Constant *GetEHType(QualType T) override; 595 596 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 597 const ObjCContainerDecl *CD) override; 598 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 599 const ObjCMethodDecl *OMD, 600 const ObjCContainerDecl *CD) override; 601 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 602 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 603 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override; 604 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 605 const ObjCProtocolDecl *PD) override; 606 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 607 608 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD); 609 610 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override { 611 return GenerateProtocolRef(PD); 612 } 613 614 llvm::Function *ModuleInitFunction() override; 615 llvm::FunctionCallee GetPropertyGetFunction() override; 616 llvm::FunctionCallee GetPropertySetFunction() override; 617 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 618 bool copy) override; 619 llvm::FunctionCallee GetSetStructFunction() override; 620 llvm::FunctionCallee GetGetStructFunction() override; 621 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 622 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 623 llvm::FunctionCallee EnumerationMutationFunction() override; 624 625 void EmitTryStmt(CodeGenFunction &CGF, 626 const ObjCAtTryStmt &S) override; 627 void EmitSynchronizedStmt(CodeGenFunction &CGF, 628 const ObjCAtSynchronizedStmt &S) override; 629 void EmitThrowStmt(CodeGenFunction &CGF, 630 const ObjCAtThrowStmt &S, 631 bool ClearInsertionPoint=true) override; 632 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 633 Address AddrWeakObj) override; 634 void EmitObjCWeakAssign(CodeGenFunction &CGF, 635 llvm::Value *src, Address dst) override; 636 void EmitObjCGlobalAssign(CodeGenFunction &CGF, 637 llvm::Value *src, Address dest, 638 bool threadlocal=false) override; 639 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, 640 Address dest, llvm::Value *ivarOffset) override; 641 void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 642 llvm::Value *src, Address dest) override; 643 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, 644 Address SrcPtr, 645 llvm::Value *Size) override; 646 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, 647 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 648 unsigned CVRQualifiers) override; 649 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 650 const ObjCInterfaceDecl *Interface, 651 const ObjCIvarDecl *Ivar) override; 652 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 653 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 654 const CGBlockInfo &blockInfo) override { 655 return NULLPtr; 656 } 657 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, 658 const CGBlockInfo &blockInfo) override { 659 return NULLPtr; 660 } 661 662 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override { 663 return NULLPtr; 664 } 665 }; 666 667 /// Class representing the legacy GCC Objective-C ABI. This is the default when 668 /// -fobjc-nonfragile-abi is not specified. 669 /// 670 /// The GCC ABI target actually generates code that is approximately compatible 671 /// with the new GNUstep runtime ABI, but refrains from using any features that 672 /// would not work with the GCC runtime. For example, clang always generates 673 /// the extended form of the class structure, and the extra fields are simply 674 /// ignored by GCC libobjc. 675 class CGObjCGCC : public CGObjCGNU { 676 /// The GCC ABI message lookup function. Returns an IMP pointing to the 677 /// method implementation for this message. 678 LazyRuntimeFunction MsgLookupFn; 679 /// The GCC ABI superclass message lookup function. Takes a pointer to a 680 /// structure describing the receiver and the class, and a selector as 681 /// arguments. Returns the IMP for the corresponding method. 682 LazyRuntimeFunction MsgLookupSuperFn; 683 684 protected: 685 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 686 llvm::Value *cmd, llvm::MDNode *node, 687 MessageSendInfo &MSI) override { 688 CGBuilderTy &Builder = CGF.Builder; 689 llvm::Value *args[] = { 690 EnforceType(Builder, Receiver, IdTy), 691 EnforceType(Builder, cmd, SelectorTy) }; 692 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 693 imp->setMetadata(msgSendMDKind, node); 694 return imp; 695 } 696 697 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 698 llvm::Value *cmd, MessageSendInfo &MSI) override { 699 CGBuilderTy &Builder = CGF.Builder; 700 llvm::Value *lookupArgs[] = { 701 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd}; 702 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 703 } 704 705 public: 706 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 707 // IMP objc_msg_lookup(id, SEL); 708 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 709 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 710 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 711 PtrToObjCSuperTy, SelectorTy); 712 } 713 }; 714 715 /// Class used when targeting the new GNUstep runtime ABI. 716 class CGObjCGNUstep : public CGObjCGNU { 717 /// The slot lookup function. Returns a pointer to a cacheable structure 718 /// that contains (among other things) the IMP. 719 LazyRuntimeFunction SlotLookupFn; 720 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 721 /// a structure describing the receiver and the class, and a selector as 722 /// arguments. Returns the slot for the corresponding method. Superclass 723 /// message lookup rarely changes, so this is a good caching opportunity. 724 LazyRuntimeFunction SlotLookupSuperFn; 725 /// Specialised function for setting atomic retain properties 726 LazyRuntimeFunction SetPropertyAtomic; 727 /// Specialised function for setting atomic copy properties 728 LazyRuntimeFunction SetPropertyAtomicCopy; 729 /// Specialised function for setting nonatomic retain properties 730 LazyRuntimeFunction SetPropertyNonAtomic; 731 /// Specialised function for setting nonatomic copy properties 732 LazyRuntimeFunction SetPropertyNonAtomicCopy; 733 /// Function to perform atomic copies of C++ objects with nontrivial copy 734 /// constructors from Objective-C ivars. 735 LazyRuntimeFunction CxxAtomicObjectGetFn; 736 /// Function to perform atomic copies of C++ objects with nontrivial copy 737 /// constructors to Objective-C ivars. 738 LazyRuntimeFunction CxxAtomicObjectSetFn; 739 /// Type of a slot structure pointer. This is returned by the various 740 /// lookup functions. 741 llvm::Type *SlotTy; 742 /// Type of a slot structure. 743 llvm::Type *SlotStructTy; 744 745 public: 746 llvm::Constant *GetEHType(QualType T) override; 747 748 protected: 749 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 750 llvm::Value *cmd, llvm::MDNode *node, 751 MessageSendInfo &MSI) override { 752 CGBuilderTy &Builder = CGF.Builder; 753 llvm::FunctionCallee LookupFn = SlotLookupFn; 754 755 // Store the receiver on the stack so that we can reload it later 756 Address ReceiverPtr = 757 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign()); 758 Builder.CreateStore(Receiver, ReceiverPtr); 759 760 llvm::Value *self; 761 762 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 763 self = CGF.LoadObjCSelf(); 764 } else { 765 self = llvm::ConstantPointerNull::get(IdTy); 766 } 767 768 // The lookup function is guaranteed not to capture the receiver pointer. 769 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee())) 770 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture); 771 772 llvm::Value *args[] = { 773 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy), 774 EnforceType(Builder, cmd, SelectorTy), 775 EnforceType(Builder, self, IdTy) }; 776 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); 777 slot->setOnlyReadsMemory(); 778 slot->setMetadata(msgSendMDKind, node); 779 780 // Load the imp from the slot 781 llvm::Value *imp = Builder.CreateAlignedLoad( 782 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 783 CGF.getPointerAlign()); 784 785 // The lookup function may have changed the receiver, so make sure we use 786 // the new one. 787 Receiver = Builder.CreateLoad(ReceiverPtr, true); 788 return imp; 789 } 790 791 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 792 llvm::Value *cmd, 793 MessageSendInfo &MSI) override { 794 CGBuilderTy &Builder = CGF.Builder; 795 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd}; 796 797 llvm::CallInst *slot = 798 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); 799 slot->setOnlyReadsMemory(); 800 801 return Builder.CreateAlignedLoad( 802 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 803 CGF.getPointerAlign()); 804 } 805 806 public: 807 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {} 808 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI, 809 unsigned ClassABI) : 810 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) { 811 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 812 813 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy); 814 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 815 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 816 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 817 SelectorTy, IdTy); 818 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL); 819 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 820 PtrToObjCSuperTy, SelectorTy); 821 // If we're in ObjC++ mode, then we want to make 822 if (usesSEHExceptions) { 823 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 824 // void objc_exception_rethrow(void) 825 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy); 826 } else if (CGM.getLangOpts().CPlusPlus) { 827 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 828 // void *__cxa_begin_catch(void *e) 829 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 830 // void __cxa_end_catch(void) 831 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 832 // void _Unwind_Resume_or_Rethrow(void*) 833 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, 834 PtrTy); 835 } else if (R.getVersion() >= VersionTuple(1, 7)) { 836 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 837 // id objc_begin_catch(void *e) 838 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy); 839 // void objc_end_catch(void) 840 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy); 841 // void _Unwind_Resume_or_Rethrow(void*) 842 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy); 843 } 844 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 845 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, 846 SelectorTy, IdTy, PtrDiffTy); 847 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, 848 IdTy, SelectorTy, IdTy, PtrDiffTy); 849 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, 850 IdTy, SelectorTy, IdTy, PtrDiffTy); 851 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", 852 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); 853 // void objc_setCppObjectAtomic(void *dest, const void *src, void 854 // *helper); 855 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, 856 PtrTy, PtrTy); 857 // void objc_getCppObjectAtomic(void *dest, const void *src, void 858 // *helper); 859 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, 860 PtrTy, PtrTy); 861 } 862 863 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 864 // The optimised functions were added in version 1.7 of the GNUstep 865 // runtime. 866 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 867 VersionTuple(1, 7)); 868 return CxxAtomicObjectGetFn; 869 } 870 871 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 872 // The optimised functions were added in version 1.7 of the GNUstep 873 // runtime. 874 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 875 VersionTuple(1, 7)); 876 return CxxAtomicObjectSetFn; 877 } 878 879 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 880 bool copy) override { 881 // The optimised property functions omit the GC check, and so are not 882 // safe to use in GC mode. The standard functions are fast in GC mode, 883 // so there is less advantage in using them. 884 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); 885 // The optimised functions were added in version 1.7 of the GNUstep 886 // runtime. 887 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 888 VersionTuple(1, 7)); 889 890 if (atomic) { 891 if (copy) return SetPropertyAtomicCopy; 892 return SetPropertyAtomic; 893 } 894 895 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic; 896 } 897 }; 898 899 /// GNUstep Objective-C ABI version 2 implementation. 900 /// This is the ABI that provides a clean break with the legacy GCC ABI and 901 /// cleans up a number of things that were added to work around 1980s linkers. 902 class CGObjCGNUstep2 : public CGObjCGNUstep { 903 enum SectionKind 904 { 905 SelectorSection = 0, 906 ClassSection, 907 ClassReferenceSection, 908 CategorySection, 909 ProtocolSection, 910 ProtocolReferenceSection, 911 ClassAliasSection, 912 ConstantStringSection 913 }; 914 static const char *const SectionsBaseNames[8]; 915 static const char *const PECOFFSectionsBaseNames[8]; 916 template<SectionKind K> 917 std::string sectionName() { 918 if (CGM.getTriple().isOSBinFormatCOFF()) { 919 std::string name(PECOFFSectionsBaseNames[K]); 920 name += "$m"; 921 return name; 922 } 923 return SectionsBaseNames[K]; 924 } 925 /// The GCC ABI superclass message lookup function. Takes a pointer to a 926 /// structure describing the receiver and the class, and a selector as 927 /// arguments. Returns the IMP for the corresponding method. 928 LazyRuntimeFunction MsgLookupSuperFn; 929 /// A flag indicating if we've emitted at least one protocol. 930 /// If we haven't, then we need to emit an empty protocol, to ensure that the 931 /// __start__objc_protocols and __stop__objc_protocols sections exist. 932 bool EmittedProtocol = false; 933 /// A flag indicating if we've emitted at least one protocol reference. 934 /// If we haven't, then we need to emit an empty protocol, to ensure that the 935 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections 936 /// exist. 937 bool EmittedProtocolRef = false; 938 /// A flag indicating if we've emitted at least one class. 939 /// If we haven't, then we need to emit an empty protocol, to ensure that the 940 /// __start__objc_classes and __stop__objc_classes sections / exist. 941 bool EmittedClass = false; 942 /// Generate the name of a symbol for a reference to a class. Accesses to 943 /// classes should be indirected via this. 944 945 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>> 946 EarlyInitPair; 947 std::vector<EarlyInitPair> EarlyInitList; 948 949 std::string SymbolForClassRef(StringRef Name, bool isWeak) { 950 if (isWeak) 951 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str(); 952 else 953 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str(); 954 } 955 /// Generate the name of a class symbol. 956 std::string SymbolForClass(StringRef Name) { 957 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str(); 958 } 959 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName, 960 ArrayRef<llvm::Value*> Args) { 961 SmallVector<llvm::Type *,8> Types; 962 for (auto *Arg : Args) 963 Types.push_back(Arg->getType()); 964 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types, 965 false); 966 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName); 967 B.CreateCall(Fn, Args); 968 } 969 970 ConstantAddress GenerateConstantString(const StringLiteral *SL) override { 971 972 auto Str = SL->getString(); 973 CharUnits Align = CGM.getPointerAlign(); 974 975 // Look for an existing one 976 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 977 if (old != ObjCStrings.end()) 978 return ConstantAddress(old->getValue(), IdElemTy, Align); 979 980 bool isNonASCII = SL->containsNonAscii(); 981 982 auto LiteralLength = SL->getLength(); 983 984 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) && 985 (LiteralLength < 9) && !isNonASCII) { 986 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit 987 // ASCII characters in the high 56 bits, followed by a 4-bit length and a 988 // 3-bit tag (which is always 4). 989 uint64_t str = 0; 990 // Fill in the characters 991 for (unsigned i=0 ; i<LiteralLength ; i++) 992 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7)); 993 // Fill in the length 994 str |= LiteralLength << 3; 995 // Set the tag 996 str |= 4; 997 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr( 998 llvm::ConstantInt::get(Int64Ty, str), IdTy); 999 ObjCStrings[Str] = ObjCStr; 1000 return ConstantAddress(ObjCStr, IdElemTy, Align); 1001 } 1002 1003 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1004 1005 if (StringClass.empty()) StringClass = "NSConstantString"; 1006 1007 std::string Sym = SymbolForClass(StringClass); 1008 1009 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 1010 1011 if (!isa) { 1012 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 1013 llvm::GlobalValue::ExternalLinkage, nullptr, Sym); 1014 if (CGM.getTriple().isOSBinFormatCOFF()) { 1015 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1016 } 1017 } 1018 1019 // struct 1020 // { 1021 // Class isa; 1022 // uint32_t flags; 1023 // uint32_t length; // Number of codepoints 1024 // uint32_t size; // Number of bytes 1025 // uint32_t hash; 1026 // const char *data; 1027 // }; 1028 1029 ConstantInitBuilder Builder(CGM); 1030 auto Fields = Builder.beginStruct(); 1031 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1032 Fields.add(isa); 1033 } else { 1034 Fields.addNullPointer(PtrTy); 1035 } 1036 // For now, all non-ASCII strings are represented as UTF-16. As such, the 1037 // number of bytes is simply double the number of UTF-16 codepoints. In 1038 // ASCII strings, the number of bytes is equal to the number of non-ASCII 1039 // codepoints. 1040 if (isNonASCII) { 1041 unsigned NumU8CodeUnits = Str.size(); 1042 // A UTF-16 representation of a unicode string contains at most the same 1043 // number of code units as a UTF-8 representation. Allocate that much 1044 // space, plus one for the final null character. 1045 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1); 1046 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data(); 1047 llvm::UTF16 *ToPtr = &ToBuf[0]; 1048 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits, 1049 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion); 1050 uint32_t StringLength = ToPtr - &ToBuf[0]; 1051 // Add null terminator 1052 *ToPtr = 0; 1053 // Flags: 2 indicates UTF-16 encoding 1054 Fields.addInt(Int32Ty, 2); 1055 // Number of UTF-16 codepoints 1056 Fields.addInt(Int32Ty, StringLength); 1057 // Number of bytes 1058 Fields.addInt(Int32Ty, StringLength * 2); 1059 // Hash. Not currently initialised by the compiler. 1060 Fields.addInt(Int32Ty, 0); 1061 // pointer to the data string. 1062 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1); 1063 auto *C = llvm::ConstantDataArray::get(VMContext, Arr); 1064 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(), 1065 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); 1066 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1067 Fields.add(Buffer); 1068 } else { 1069 // Flags: 0 indicates ASCII encoding 1070 Fields.addInt(Int32Ty, 0); 1071 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint 1072 Fields.addInt(Int32Ty, Str.size()); 1073 // Number of bytes 1074 Fields.addInt(Int32Ty, Str.size()); 1075 // Hash. Not currently initialised by the compiler. 1076 Fields.addInt(Int32Ty, 0); 1077 // Data pointer 1078 Fields.add(MakeConstantString(Str)); 1079 } 1080 std::string StringName; 1081 bool isNamed = !isNonASCII; 1082 if (isNamed) { 1083 StringName = ".objc_str_"; 1084 for (int i=0,e=Str.size() ; i<e ; ++i) { 1085 unsigned char c = Str[i]; 1086 if (isalnum(c)) 1087 StringName += c; 1088 else if (c == ' ') 1089 StringName += '_'; 1090 else { 1091 isNamed = false; 1092 break; 1093 } 1094 } 1095 } 1096 llvm::GlobalVariable *ObjCStrGV = 1097 Fields.finishAndCreateGlobal( 1098 isNamed ? StringRef(StringName) : ".objc_string", 1099 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage 1100 : llvm::GlobalValue::PrivateLinkage); 1101 ObjCStrGV->setSection(sectionName<ConstantStringSection>()); 1102 if (isNamed) { 1103 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName)); 1104 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1105 } 1106 if (CGM.getTriple().isOSBinFormatCOFF()) { 1107 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0}; 1108 EarlyInitList.emplace_back(Sym, v); 1109 } 1110 ObjCStrings[Str] = ObjCStrGV; 1111 ConstantStrings.push_back(ObjCStrGV); 1112 return ConstantAddress(ObjCStrGV, IdElemTy, Align); 1113 } 1114 1115 void PushProperty(ConstantArrayBuilder &PropertiesArray, 1116 const ObjCPropertyDecl *property, 1117 const Decl *OCD, 1118 bool isSynthesized=true, bool 1119 isDynamic=true) override { 1120 // struct objc_property 1121 // { 1122 // const char *name; 1123 // const char *attributes; 1124 // const char *type; 1125 // SEL getter; 1126 // SEL setter; 1127 // }; 1128 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 1129 ASTContext &Context = CGM.getContext(); 1130 Fields.add(MakeConstantString(property->getNameAsString())); 1131 std::string TypeStr = 1132 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD); 1133 Fields.add(MakeConstantString(TypeStr)); 1134 std::string typeStr; 1135 Context.getObjCEncodingForType(property->getType(), typeStr); 1136 Fields.add(MakeConstantString(typeStr)); 1137 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 1138 if (accessor) { 1139 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 1140 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr)); 1141 } else { 1142 Fields.add(NULLPtr); 1143 } 1144 }; 1145 addPropertyMethod(property->getGetterMethodDecl()); 1146 addPropertyMethod(property->getSetterMethodDecl()); 1147 Fields.finishAndAddTo(PropertiesArray); 1148 } 1149 1150 llvm::Constant * 1151 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override { 1152 // struct objc_protocol_method_description 1153 // { 1154 // SEL selector; 1155 // const char *types; 1156 // }; 1157 llvm::StructType *ObjCMethodDescTy = 1158 llvm::StructType::get(CGM.getLLVMContext(), 1159 { PtrToInt8Ty, PtrToInt8Ty }); 1160 ASTContext &Context = CGM.getContext(); 1161 ConstantInitBuilder Builder(CGM); 1162 // struct objc_protocol_method_description_list 1163 // { 1164 // int count; 1165 // int size; 1166 // struct objc_protocol_method_description methods[]; 1167 // }; 1168 auto MethodList = Builder.beginStruct(); 1169 // int count; 1170 MethodList.addInt(IntTy, Methods.size()); 1171 // int size; // sizeof(struct objc_method_description) 1172 llvm::DataLayout td(&TheModule); 1173 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) / 1174 CGM.getContext().getCharWidth()); 1175 // struct objc_method_description[] 1176 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 1177 for (auto *M : Methods) { 1178 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 1179 Method.add(CGObjCGNU::GetConstantSelector(M)); 1180 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true))); 1181 Method.finishAndAddTo(MethodArray); 1182 } 1183 MethodArray.finishAndAddTo(MethodList); 1184 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list", 1185 CGM.getPointerAlign()); 1186 } 1187 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD) 1188 override { 1189 const auto &ReferencedProtocols = OCD->getReferencedProtocols(); 1190 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(), 1191 ReferencedProtocols.end()); 1192 SmallVector<llvm::Constant *, 16> Protocols; 1193 for (const auto *PI : RuntimeProtocols) 1194 Protocols.push_back(GenerateProtocolRef(PI)); 1195 return GenerateProtocolList(Protocols); 1196 } 1197 1198 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 1199 llvm::Value *cmd, MessageSendInfo &MSI) override { 1200 // Don't access the slot unless we're trying to cache the result. 1201 CGBuilderTy &Builder = CGF.Builder; 1202 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, 1203 ObjCSuper.getPointer(), 1204 PtrToObjCSuperTy), 1205 cmd}; 1206 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 1207 } 1208 1209 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) { 1210 std::string SymbolName = SymbolForClassRef(Name, isWeak); 1211 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName); 1212 if (ClassSymbol) 1213 return ClassSymbol; 1214 ClassSymbol = new llvm::GlobalVariable(TheModule, 1215 IdTy, false, llvm::GlobalValue::ExternalLinkage, 1216 nullptr, SymbolName); 1217 // If this is a weak symbol, then we are creating a valid definition for 1218 // the symbol, pointing to a weak definition of the real class pointer. If 1219 // this is not a weak reference, then we are expecting another compilation 1220 // unit to provide the real indirection symbol. 1221 if (isWeak) 1222 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule, 1223 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage, 1224 nullptr, SymbolForClass(Name))); 1225 else { 1226 if (CGM.getTriple().isOSBinFormatCOFF()) { 1227 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 1228 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 1229 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 1230 1231 const ObjCInterfaceDecl *OID = nullptr; 1232 for (const auto *Result : DC->lookup(&II)) 1233 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result))) 1234 break; 1235 1236 // The first Interface we find may be a @class, 1237 // which should only be treated as the source of 1238 // truth in the absence of a true declaration. 1239 assert(OID && "Failed to find ObjCInterfaceDecl"); 1240 const ObjCInterfaceDecl *OIDDef = OID->getDefinition(); 1241 if (OIDDef != nullptr) 1242 OID = OIDDef; 1243 1244 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1245 if (OID->hasAttr<DLLImportAttr>()) 1246 Storage = llvm::GlobalValue::DLLImportStorageClass; 1247 else if (OID->hasAttr<DLLExportAttr>()) 1248 Storage = llvm::GlobalValue::DLLExportStorageClass; 1249 1250 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage); 1251 } 1252 } 1253 assert(ClassSymbol->getName() == SymbolName); 1254 return ClassSymbol; 1255 } 1256 llvm::Value *GetClassNamed(CodeGenFunction &CGF, 1257 const std::string &Name, 1258 bool isWeak) override { 1259 return CGF.Builder.CreateLoad( 1260 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign())); 1261 } 1262 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) { 1263 // typedef enum { 1264 // ownership_invalid = 0, 1265 // ownership_strong = 1, 1266 // ownership_weak = 2, 1267 // ownership_unsafe = 3 1268 // } ivar_ownership; 1269 int Flag; 1270 switch (Ownership) { 1271 case Qualifiers::OCL_Strong: 1272 Flag = 1; 1273 break; 1274 case Qualifiers::OCL_Weak: 1275 Flag = 2; 1276 break; 1277 case Qualifiers::OCL_ExplicitNone: 1278 Flag = 3; 1279 break; 1280 case Qualifiers::OCL_None: 1281 case Qualifiers::OCL_Autoreleasing: 1282 assert(Ownership != Qualifiers::OCL_Autoreleasing); 1283 Flag = 0; 1284 } 1285 return Flag; 1286 } 1287 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1288 ArrayRef<llvm::Constant *> IvarTypes, 1289 ArrayRef<llvm::Constant *> IvarOffsets, 1290 ArrayRef<llvm::Constant *> IvarAlign, 1291 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override { 1292 llvm_unreachable("Method should not be called!"); 1293 } 1294 1295 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override { 1296 std::string Name = SymbolForProtocol(ProtocolName); 1297 auto *GV = TheModule.getGlobalVariable(Name); 1298 if (!GV) { 1299 // Emit a placeholder symbol. 1300 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false, 1301 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1302 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1303 } 1304 return GV; 1305 } 1306 1307 /// Existing protocol references. 1308 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs; 1309 1310 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1311 const ObjCProtocolDecl *PD) override { 1312 auto Name = PD->getNameAsString(); 1313 auto *&Ref = ExistingProtocolRefs[Name]; 1314 if (!Ref) { 1315 auto *&Protocol = ExistingProtocols[Name]; 1316 if (!Protocol) 1317 Protocol = GenerateProtocolRef(PD); 1318 std::string RefName = SymbolForProtocolRef(Name); 1319 assert(!TheModule.getGlobalVariable(RefName)); 1320 // Emit a reference symbol. 1321 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false, 1322 llvm::GlobalValue::LinkOnceODRLinkage, 1323 Protocol, RefName); 1324 GV->setComdat(TheModule.getOrInsertComdat(RefName)); 1325 GV->setSection(sectionName<ProtocolReferenceSection>()); 1326 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1327 Ref = GV; 1328 } 1329 EmittedProtocolRef = true; 1330 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref, 1331 CGM.getPointerAlign()); 1332 } 1333 1334 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) { 1335 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy, 1336 Protocols.size()); 1337 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1338 Protocols); 1339 ConstantInitBuilder builder(CGM); 1340 auto ProtocolBuilder = builder.beginStruct(); 1341 ProtocolBuilder.addNullPointer(PtrTy); 1342 ProtocolBuilder.addInt(SizeTy, Protocols.size()); 1343 ProtocolBuilder.add(ProtocolArray); 1344 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list", 1345 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage); 1346 } 1347 1348 void GenerateProtocol(const ObjCProtocolDecl *PD) override { 1349 // Do nothing - we only emit referenced protocols. 1350 } 1351 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override { 1352 std::string ProtocolName = PD->getNameAsString(); 1353 auto *&Protocol = ExistingProtocols[ProtocolName]; 1354 if (Protocol) 1355 return Protocol; 1356 1357 EmittedProtocol = true; 1358 1359 auto SymName = SymbolForProtocol(ProtocolName); 1360 auto *OldGV = TheModule.getGlobalVariable(SymName); 1361 1362 // Use the protocol definition, if there is one. 1363 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1364 PD = Def; 1365 else { 1366 // If there is no definition, then create an external linkage symbol and 1367 // hope that someone else fills it in for us (and fail to link if they 1368 // don't). 1369 assert(!OldGV); 1370 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy, 1371 /*isConstant*/false, 1372 llvm::GlobalValue::ExternalLinkage, nullptr, SymName); 1373 return Protocol; 1374 } 1375 1376 SmallVector<llvm::Constant*, 16> Protocols; 1377 auto RuntimeProtocols = 1378 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end()); 1379 for (const auto *PI : RuntimeProtocols) 1380 Protocols.push_back(GenerateProtocolRef(PI)); 1381 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1382 1383 // Collect information about methods 1384 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList; 1385 llvm::Constant *ClassMethodList, *OptionalClassMethodList; 1386 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList, 1387 OptionalInstanceMethodList); 1388 EmitProtocolMethodList(PD->class_methods(), ClassMethodList, 1389 OptionalClassMethodList); 1390 1391 // The isa pointer must be set to a magic number so the runtime knows it's 1392 // the correct layout. 1393 ConstantInitBuilder builder(CGM); 1394 auto ProtocolBuilder = builder.beginStruct(); 1395 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr( 1396 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1397 ProtocolBuilder.add(MakeConstantString(ProtocolName)); 1398 ProtocolBuilder.add(ProtocolList); 1399 ProtocolBuilder.add(InstanceMethodList); 1400 ProtocolBuilder.add(ClassMethodList); 1401 ProtocolBuilder.add(OptionalInstanceMethodList); 1402 ProtocolBuilder.add(OptionalClassMethodList); 1403 // Required instance properties 1404 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false)); 1405 // Optional instance properties 1406 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true)); 1407 // Required class properties 1408 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false)); 1409 // Optional class properties 1410 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true)); 1411 1412 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName, 1413 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1414 GV->setSection(sectionName<ProtocolSection>()); 1415 GV->setComdat(TheModule.getOrInsertComdat(SymName)); 1416 if (OldGV) { 1417 OldGV->replaceAllUsesWith(GV); 1418 OldGV->removeFromParent(); 1419 GV->setName(SymName); 1420 } 1421 Protocol = GV; 1422 return GV; 1423 } 1424 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 1425 const std::string &TypeEncoding) override { 1426 return GetConstantSelector(Sel, TypeEncoding); 1427 } 1428 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) { 1429 if (TypeEncoding.empty()) 1430 return NULLPtr; 1431 std::string MangledTypes = std::string(TypeEncoding); 1432 std::replace(MangledTypes.begin(), MangledTypes.end(), 1433 '@', '\1'); 1434 std::string TypesVarName = ".objc_sel_types_" + MangledTypes; 1435 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName); 1436 if (!TypesGlobal) { 1437 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, 1438 TypeEncoding); 1439 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(), 1440 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName); 1441 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName)); 1442 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1443 TypesGlobal = GV; 1444 } 1445 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(), 1446 TypesGlobal, Zeros); 1447 } 1448 llvm::Constant *GetConstantSelector(Selector Sel, 1449 const std::string &TypeEncoding) override { 1450 // @ is used as a special character in symbol names (used for symbol 1451 // versioning), so mangle the name to not include it. Replace it with a 1452 // character that is not a valid type encoding character (and, being 1453 // non-printable, never will be!) 1454 std::string MangledTypes = TypeEncoding; 1455 std::replace(MangledTypes.begin(), MangledTypes.end(), 1456 '@', '\1'); 1457 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" + 1458 MangledTypes).str(); 1459 if (auto *GV = TheModule.getNamedGlobal(SelVarName)) 1460 return GV; 1461 ConstantInitBuilder builder(CGM); 1462 auto SelBuilder = builder.beginStruct(); 1463 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_", 1464 true)); 1465 SelBuilder.add(GetTypeString(TypeEncoding)); 1466 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName, 1467 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1468 GV->setComdat(TheModule.getOrInsertComdat(SelVarName)); 1469 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1470 GV->setSection(sectionName<SelectorSection>()); 1471 return GV; 1472 } 1473 llvm::StructType *emptyStruct = nullptr; 1474 1475 /// Return pointers to the start and end of a section. On ELF platforms, we 1476 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set 1477 /// to the start and end of section names, as long as those section names are 1478 /// valid identifiers and the symbols are referenced but not defined. On 1479 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort 1480 /// by subsections and place everything that we want to reference in a middle 1481 /// subsection and then insert zero-sized symbols in subsections a and z. 1482 std::pair<llvm::Constant*,llvm::Constant*> 1483 GetSectionBounds(StringRef Section) { 1484 if (CGM.getTriple().isOSBinFormatCOFF()) { 1485 if (emptyStruct == nullptr) { 1486 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel"); 1487 emptyStruct->setBody({}, /*isPacked*/true); 1488 } 1489 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct); 1490 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) { 1491 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct, 1492 /*isConstant*/false, 1493 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix + 1494 Section); 1495 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility); 1496 Sym->setSection((Section + SecSuffix).str()); 1497 Sym->setComdat(TheModule.getOrInsertComdat((Prefix + 1498 Section).str())); 1499 Sym->setAlignment(CGM.getPointerAlign().getAsAlign()); 1500 return Sym; 1501 }; 1502 return { Sym("__start_", "$a"), Sym("__stop", "$z") }; 1503 } 1504 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy, 1505 /*isConstant*/false, 1506 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") + 1507 Section); 1508 Start->setVisibility(llvm::GlobalValue::HiddenVisibility); 1509 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy, 1510 /*isConstant*/false, 1511 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") + 1512 Section); 1513 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility); 1514 return { Start, Stop }; 1515 } 1516 CatchTypeInfo getCatchAllTypeInfo() override { 1517 return CGM.getCXXABI().getCatchAllTypeInfo(); 1518 } 1519 llvm::Function *ModuleInitFunction() override { 1520 llvm::Function *LoadFunction = llvm::Function::Create( 1521 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 1522 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function", 1523 &TheModule); 1524 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility); 1525 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function")); 1526 1527 llvm::BasicBlock *EntryBB = 1528 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 1529 CGBuilderTy B(CGM, VMContext); 1530 B.SetInsertPoint(EntryBB); 1531 ConstantInitBuilder builder(CGM); 1532 auto InitStructBuilder = builder.beginStruct(); 1533 InitStructBuilder.addInt(Int64Ty, 0); 1534 auto §ionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames; 1535 for (auto *s : sectionVec) { 1536 auto bounds = GetSectionBounds(s); 1537 InitStructBuilder.add(bounds.first); 1538 InitStructBuilder.add(bounds.second); 1539 } 1540 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init", 1541 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1542 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility); 1543 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init")); 1544 1545 CallRuntimeFunction(B, "__objc_load", {InitStruct});; 1546 B.CreateRetVoid(); 1547 // Make sure that the optimisers don't delete this function. 1548 CGM.addCompilerUsedGlobal(LoadFunction); 1549 // FIXME: Currently ELF only! 1550 // We have to do this by hand, rather than with @llvm.ctors, so that the 1551 // linker can remove the duplicate invocations. 1552 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(), 1553 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage, 1554 LoadFunction, ".objc_ctor"); 1555 // Check that this hasn't been renamed. This shouldn't happen, because 1556 // this function should be called precisely once. 1557 assert(InitVar->getName() == ".objc_ctor"); 1558 // In Windows, initialisers are sorted by the suffix. XCL is for library 1559 // initialisers, which run before user initialisers. We are running 1560 // Objective-C loads at the end of library load. This means +load methods 1561 // will run before any other static constructors, but that static 1562 // constructors can see a fully initialised Objective-C state. 1563 if (CGM.getTriple().isOSBinFormatCOFF()) 1564 InitVar->setSection(".CRT$XCLz"); 1565 else 1566 { 1567 if (CGM.getCodeGenOpts().UseInitArray) 1568 InitVar->setSection(".init_array"); 1569 else 1570 InitVar->setSection(".ctors"); 1571 } 1572 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility); 1573 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor")); 1574 CGM.addUsedGlobal(InitVar); 1575 for (auto *C : Categories) { 1576 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts()); 1577 Cat->setSection(sectionName<CategorySection>()); 1578 CGM.addUsedGlobal(Cat); 1579 } 1580 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init, 1581 StringRef Section) { 1582 auto nullBuilder = builder.beginStruct(); 1583 for (auto *F : Init) 1584 nullBuilder.add(F); 1585 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 1586 false, llvm::GlobalValue::LinkOnceODRLinkage); 1587 GV->setSection(Section); 1588 GV->setComdat(TheModule.getOrInsertComdat(Name)); 1589 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1590 CGM.addUsedGlobal(GV); 1591 return GV; 1592 }; 1593 for (auto clsAlias : ClassAliases) 1594 createNullGlobal(std::string(".objc_class_alias") + 1595 clsAlias.second, { MakeConstantString(clsAlias.second), 1596 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>()); 1597 // On ELF platforms, add a null value for each special section so that we 1598 // can always guarantee that the _start and _stop symbols will exist and be 1599 // meaningful. This is not required on COFF platforms, where our start and 1600 // stop symbols will create the section. 1601 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1602 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr}, 1603 sectionName<SelectorSection>()); 1604 if (Categories.empty()) 1605 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr, 1606 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, 1607 sectionName<CategorySection>()); 1608 if (!EmittedClass) { 1609 createNullGlobal(".objc_null_cls_init_ref", NULLPtr, 1610 sectionName<ClassSection>()); 1611 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr }, 1612 sectionName<ClassReferenceSection>()); 1613 } 1614 if (!EmittedProtocol) 1615 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr, 1616 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, 1617 NULLPtr}, sectionName<ProtocolSection>()); 1618 if (!EmittedProtocolRef) 1619 createNullGlobal(".objc_null_protocol_ref", {NULLPtr}, 1620 sectionName<ProtocolReferenceSection>()); 1621 if (ClassAliases.empty()) 1622 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr }, 1623 sectionName<ClassAliasSection>()); 1624 if (ConstantStrings.empty()) { 1625 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0); 1626 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero, 1627 i32Zero, i32Zero, i32Zero, NULLPtr }, 1628 sectionName<ConstantStringSection>()); 1629 } 1630 } 1631 ConstantStrings.clear(); 1632 Categories.clear(); 1633 Classes.clear(); 1634 1635 if (EarlyInitList.size() > 0) { 1636 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, 1637 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init", 1638 &CGM.getModule()); 1639 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", 1640 Init)); 1641 for (const auto &lateInit : EarlyInitList) { 1642 auto *global = TheModule.getGlobalVariable(lateInit.first); 1643 if (global) { 1644 llvm::GlobalVariable *GV = lateInit.second.first; 1645 b.CreateAlignedStore( 1646 global, 1647 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second), 1648 CGM.getPointerAlign().getAsAlign()); 1649 } 1650 } 1651 b.CreateRetVoid(); 1652 // We can't use the normal LLVM global initialisation array, because we 1653 // need to specify that this runs early in library initialisation. 1654 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 1655 /*isConstant*/true, llvm::GlobalValue::InternalLinkage, 1656 Init, ".objc_early_init_ptr"); 1657 InitVar->setSection(".CRT$XCLb"); 1658 CGM.addUsedGlobal(InitVar); 1659 } 1660 return nullptr; 1661 } 1662 /// In the v2 ABI, ivar offset variables use the type encoding in their name 1663 /// to trigger linker failures if the types don't match. 1664 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 1665 const ObjCIvarDecl *Ivar) override { 1666 std::string TypeEncoding; 1667 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding); 1668 // Prevent the @ from being interpreted as a symbol version. 1669 std::replace(TypeEncoding.begin(), TypeEncoding.end(), 1670 '@', '\1'); 1671 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 1672 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding; 1673 return Name; 1674 } 1675 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 1676 const ObjCInterfaceDecl *Interface, 1677 const ObjCIvarDecl *Ivar) override { 1678 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar); 1679 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 1680 if (!IvarOffsetPointer) 1681 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false, 1682 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1683 CharUnits Align = CGM.getIntAlign(); 1684 llvm::Value *Offset = 1685 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align); 1686 if (Offset->getType() != PtrDiffTy) 1687 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 1688 return Offset; 1689 } 1690 void GenerateClass(const ObjCImplementationDecl *OID) override { 1691 ASTContext &Context = CGM.getContext(); 1692 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF(); 1693 1694 // Get the class name 1695 ObjCInterfaceDecl *classDecl = 1696 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 1697 std::string className = classDecl->getNameAsString(); 1698 auto *classNameConstant = MakeConstantString(className); 1699 1700 ConstantInitBuilder builder(CGM); 1701 auto metaclassFields = builder.beginStruct(); 1702 // struct objc_class *isa; 1703 metaclassFields.addNullPointer(PtrTy); 1704 // struct objc_class *super_class; 1705 metaclassFields.addNullPointer(PtrTy); 1706 // const char *name; 1707 metaclassFields.add(classNameConstant); 1708 // long version; 1709 metaclassFields.addInt(LongTy, 0); 1710 // unsigned long info; 1711 // objc_class_flag_meta 1712 metaclassFields.addInt(LongTy, 1); 1713 // long instance_size; 1714 // Setting this to zero is consistent with the older ABI, but it might be 1715 // more sensible to set this to sizeof(struct objc_class) 1716 metaclassFields.addInt(LongTy, 0); 1717 // struct objc_ivar_list *ivars; 1718 metaclassFields.addNullPointer(PtrTy); 1719 // struct objc_method_list *methods 1720 // FIXME: Almost identical code is copied and pasted below for the 1721 // class, but refactoring it cleanly requires C++14 generic lambdas. 1722 if (OID->classmeth_begin() == OID->classmeth_end()) 1723 metaclassFields.addNullPointer(PtrTy); 1724 else { 1725 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 1726 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 1727 OID->classmeth_end()); 1728 metaclassFields.add( 1729 GenerateMethodList(className, "", ClassMethods, true)); 1730 } 1731 // void *dtable; 1732 metaclassFields.addNullPointer(PtrTy); 1733 // IMP cxx_construct; 1734 metaclassFields.addNullPointer(PtrTy); 1735 // IMP cxx_destruct; 1736 metaclassFields.addNullPointer(PtrTy); 1737 // struct objc_class *subclass_list 1738 metaclassFields.addNullPointer(PtrTy); 1739 // struct objc_class *sibling_class 1740 metaclassFields.addNullPointer(PtrTy); 1741 // struct objc_protocol_list *protocols; 1742 metaclassFields.addNullPointer(PtrTy); 1743 // struct reference_list *extra_data; 1744 metaclassFields.addNullPointer(PtrTy); 1745 // long abi_version; 1746 metaclassFields.addInt(LongTy, 0); 1747 // struct objc_property_list *properties 1748 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true)); 1749 1750 auto *metaclass = metaclassFields.finishAndCreateGlobal( 1751 ManglePublicSymbol("OBJC_METACLASS_") + className, 1752 CGM.getPointerAlign()); 1753 1754 auto classFields = builder.beginStruct(); 1755 // struct objc_class *isa; 1756 classFields.add(metaclass); 1757 // struct objc_class *super_class; 1758 // Get the superclass name. 1759 const ObjCInterfaceDecl * SuperClassDecl = 1760 OID->getClassInterface()->getSuperClass(); 1761 llvm::Constant *SuperClass = nullptr; 1762 if (SuperClassDecl) { 1763 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString()); 1764 SuperClass = TheModule.getNamedGlobal(SuperClassName); 1765 if (!SuperClass) 1766 { 1767 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false, 1768 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName); 1769 if (IsCOFF) { 1770 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1771 if (SuperClassDecl->hasAttr<DLLImportAttr>()) 1772 Storage = llvm::GlobalValue::DLLImportStorageClass; 1773 else if (SuperClassDecl->hasAttr<DLLExportAttr>()) 1774 Storage = llvm::GlobalValue::DLLExportStorageClass; 1775 1776 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage); 1777 } 1778 } 1779 if (!IsCOFF) 1780 classFields.add(SuperClass); 1781 else 1782 classFields.addNullPointer(PtrTy); 1783 } else 1784 classFields.addNullPointer(PtrTy); 1785 // const char *name; 1786 classFields.add(classNameConstant); 1787 // long version; 1788 classFields.addInt(LongTy, 0); 1789 // unsigned long info; 1790 // !objc_class_flag_meta 1791 classFields.addInt(LongTy, 0); 1792 // long instance_size; 1793 int superInstanceSize = !SuperClassDecl ? 0 : 1794 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 1795 // Instance size is negative for classes that have not yet had their ivar 1796 // layout calculated. 1797 classFields.addInt(LongTy, 1798 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() - 1799 superInstanceSize)); 1800 1801 if (classDecl->all_declared_ivar_begin() == nullptr) 1802 classFields.addNullPointer(PtrTy); 1803 else { 1804 int ivar_count = 0; 1805 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1806 IVD = IVD->getNextIvar()) ivar_count++; 1807 llvm::DataLayout td(&TheModule); 1808 // struct objc_ivar_list *ivars; 1809 ConstantInitBuilder b(CGM); 1810 auto ivarListBuilder = b.beginStruct(); 1811 // int count; 1812 ivarListBuilder.addInt(IntTy, ivar_count); 1813 // size_t size; 1814 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1815 PtrToInt8Ty, 1816 PtrToInt8Ty, 1817 PtrToInt8Ty, 1818 Int32Ty, 1819 Int32Ty); 1820 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) / 1821 CGM.getContext().getCharWidth()); 1822 // struct objc_ivar ivars[] 1823 auto ivarArrayBuilder = ivarListBuilder.beginArray(); 1824 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1825 IVD = IVD->getNextIvar()) { 1826 auto ivarTy = IVD->getType(); 1827 auto ivarBuilder = ivarArrayBuilder.beginStruct(); 1828 // const char *name; 1829 ivarBuilder.add(MakeConstantString(IVD->getNameAsString())); 1830 // const char *type; 1831 std::string TypeStr; 1832 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true); 1833 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true); 1834 ivarBuilder.add(MakeConstantString(TypeStr)); 1835 // int *offset; 1836 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 1837 uint64_t Offset = BaseOffset - superInstanceSize; 1838 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 1839 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD); 1840 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 1841 if (OffsetVar) 1842 OffsetVar->setInitializer(OffsetValue); 1843 else 1844 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 1845 false, llvm::GlobalValue::ExternalLinkage, 1846 OffsetValue, OffsetName); 1847 auto ivarVisibility = 1848 (IVD->getAccessControl() == ObjCIvarDecl::Private || 1849 IVD->getAccessControl() == ObjCIvarDecl::Package || 1850 classDecl->getVisibility() == HiddenVisibility) ? 1851 llvm::GlobalValue::HiddenVisibility : 1852 llvm::GlobalValue::DefaultVisibility; 1853 OffsetVar->setVisibility(ivarVisibility); 1854 if (ivarVisibility != llvm::GlobalValue::HiddenVisibility) 1855 CGM.setGVProperties(OffsetVar, OID->getClassInterface()); 1856 ivarBuilder.add(OffsetVar); 1857 // Ivar size 1858 ivarBuilder.addInt(Int32Ty, 1859 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity()); 1860 // Alignment will be stored as a base-2 log of the alignment. 1861 unsigned align = 1862 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity()); 1863 // Objects that require more than 2^64-byte alignment should be impossible! 1864 assert(align < 64); 1865 // uint32_t flags; 1866 // Bits 0-1 are ownership. 1867 // Bit 2 indicates an extended type encoding 1868 // Bits 3-8 contain log2(aligment) 1869 ivarBuilder.addInt(Int32Ty, 1870 (align << 3) | (1<<2) | 1871 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime())); 1872 ivarBuilder.finishAndAddTo(ivarArrayBuilder); 1873 } 1874 ivarArrayBuilder.finishAndAddTo(ivarListBuilder); 1875 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list", 1876 CGM.getPointerAlign(), /*constant*/ false, 1877 llvm::GlobalValue::PrivateLinkage); 1878 classFields.add(ivarList); 1879 } 1880 // struct objc_method_list *methods 1881 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 1882 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 1883 OID->instmeth_end()); 1884 for (auto *propImpl : OID->property_impls()) 1885 if (propImpl->getPropertyImplementation() == 1886 ObjCPropertyImplDecl::Synthesize) { 1887 auto addIfExists = [&](const ObjCMethodDecl *OMD) { 1888 if (OMD && OMD->hasBody()) 1889 InstanceMethods.push_back(OMD); 1890 }; 1891 addIfExists(propImpl->getGetterMethodDecl()); 1892 addIfExists(propImpl->getSetterMethodDecl()); 1893 } 1894 1895 if (InstanceMethods.size() == 0) 1896 classFields.addNullPointer(PtrTy); 1897 else 1898 classFields.add( 1899 GenerateMethodList(className, "", InstanceMethods, false)); 1900 1901 // void *dtable; 1902 classFields.addNullPointer(PtrTy); 1903 // IMP cxx_construct; 1904 classFields.addNullPointer(PtrTy); 1905 // IMP cxx_destruct; 1906 classFields.addNullPointer(PtrTy); 1907 // struct objc_class *subclass_list 1908 classFields.addNullPointer(PtrTy); 1909 // struct objc_class *sibling_class 1910 classFields.addNullPointer(PtrTy); 1911 // struct objc_protocol_list *protocols; 1912 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(), 1913 classDecl->protocol_end()); 1914 SmallVector<llvm::Constant *, 16> Protocols; 1915 for (const auto *I : RuntimeProtocols) 1916 Protocols.push_back(GenerateProtocolRef(I)); 1917 1918 if (Protocols.empty()) 1919 classFields.addNullPointer(PtrTy); 1920 else 1921 classFields.add(GenerateProtocolList(Protocols)); 1922 // struct reference_list *extra_data; 1923 classFields.addNullPointer(PtrTy); 1924 // long abi_version; 1925 classFields.addInt(LongTy, 0); 1926 // struct objc_property_list *properties 1927 classFields.add(GeneratePropertyList(OID, classDecl)); 1928 1929 llvm::GlobalVariable *classStruct = 1930 classFields.finishAndCreateGlobal(SymbolForClass(className), 1931 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1932 1933 auto *classRefSymbol = GetClassVar(className); 1934 classRefSymbol->setSection(sectionName<ClassReferenceSection>()); 1935 classRefSymbol->setInitializer(classStruct); 1936 1937 if (IsCOFF) { 1938 // we can't import a class struct. 1939 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) { 1940 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1941 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1942 } 1943 1944 if (SuperClass) { 1945 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1}; 1946 EarlyInitList.emplace_back(std::string(SuperClass->getName()), 1947 std::move(v)); 1948 } 1949 1950 } 1951 1952 1953 // Resolve the class aliases, if they exist. 1954 // FIXME: Class pointer aliases shouldn't exist! 1955 if (ClassPtrAlias) { 1956 ClassPtrAlias->replaceAllUsesWith(classStruct); 1957 ClassPtrAlias->eraseFromParent(); 1958 ClassPtrAlias = nullptr; 1959 } 1960 if (auto Placeholder = 1961 TheModule.getNamedGlobal(SymbolForClass(className))) 1962 if (Placeholder != classStruct) { 1963 Placeholder->replaceAllUsesWith(classStruct); 1964 Placeholder->eraseFromParent(); 1965 classStruct->setName(SymbolForClass(className)); 1966 } 1967 if (MetaClassPtrAlias) { 1968 MetaClassPtrAlias->replaceAllUsesWith(metaclass); 1969 MetaClassPtrAlias->eraseFromParent(); 1970 MetaClassPtrAlias = nullptr; 1971 } 1972 assert(classStruct->getName() == SymbolForClass(className)); 1973 1974 auto classInitRef = new llvm::GlobalVariable(TheModule, 1975 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage, 1976 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className); 1977 classInitRef->setSection(sectionName<ClassSection>()); 1978 CGM.addUsedGlobal(classInitRef); 1979 1980 EmittedClass = true; 1981 } 1982 public: 1983 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) { 1984 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 1985 PtrToObjCSuperTy, SelectorTy); 1986 // struct objc_property 1987 // { 1988 // const char *name; 1989 // const char *attributes; 1990 // const char *type; 1991 // SEL getter; 1992 // SEL setter; 1993 // } 1994 PropertyMetadataTy = 1995 llvm::StructType::get(CGM.getLLVMContext(), 1996 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); 1997 } 1998 1999 }; 2000 2001 const char *const CGObjCGNUstep2::SectionsBaseNames[8] = 2002 { 2003 "__objc_selectors", 2004 "__objc_classes", 2005 "__objc_class_refs", 2006 "__objc_cats", 2007 "__objc_protocols", 2008 "__objc_protocol_refs", 2009 "__objc_class_aliases", 2010 "__objc_constant_string" 2011 }; 2012 2013 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] = 2014 { 2015 ".objcrt$SEL", 2016 ".objcrt$CLS", 2017 ".objcrt$CLR", 2018 ".objcrt$CAT", 2019 ".objcrt$PCL", 2020 ".objcrt$PCR", 2021 ".objcrt$CAL", 2022 ".objcrt$STR" 2023 }; 2024 2025 /// Support for the ObjFW runtime. 2026 class CGObjCObjFW: public CGObjCGNU { 2027 protected: 2028 /// The GCC ABI message lookup function. Returns an IMP pointing to the 2029 /// method implementation for this message. 2030 LazyRuntimeFunction MsgLookupFn; 2031 /// stret lookup function. While this does not seem to make sense at the 2032 /// first look, this is required to call the correct forwarding function. 2033 LazyRuntimeFunction MsgLookupFnSRet; 2034 /// The GCC ABI superclass message lookup function. Takes a pointer to a 2035 /// structure describing the receiver and the class, and a selector as 2036 /// arguments. Returns the IMP for the corresponding method. 2037 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; 2038 2039 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 2040 llvm::Value *cmd, llvm::MDNode *node, 2041 MessageSendInfo &MSI) override { 2042 CGBuilderTy &Builder = CGF.Builder; 2043 llvm::Value *args[] = { 2044 EnforceType(Builder, Receiver, IdTy), 2045 EnforceType(Builder, cmd, SelectorTy) }; 2046 2047 llvm::CallBase *imp; 2048 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2049 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); 2050 else 2051 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 2052 2053 imp->setMetadata(msgSendMDKind, node); 2054 return imp; 2055 } 2056 2057 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 2058 llvm::Value *cmd, MessageSendInfo &MSI) override { 2059 CGBuilderTy &Builder = CGF.Builder; 2060 llvm::Value *lookupArgs[] = { 2061 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd, 2062 }; 2063 2064 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2065 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); 2066 else 2067 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 2068 } 2069 2070 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, 2071 bool isWeak) override { 2072 if (isWeak) 2073 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); 2074 2075 EmitClassRef(Name); 2076 std::string SymbolName = "_OBJC_CLASS_" + Name; 2077 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); 2078 if (!ClassSymbol) 2079 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2080 llvm::GlobalValue::ExternalLinkage, 2081 nullptr, SymbolName); 2082 return ClassSymbol; 2083 } 2084 2085 public: 2086 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { 2087 // IMP objc_msg_lookup(id, SEL); 2088 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 2089 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, 2090 SelectorTy); 2091 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 2092 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2093 PtrToObjCSuperTy, SelectorTy); 2094 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, 2095 PtrToObjCSuperTy, SelectorTy); 2096 } 2097 }; 2098 } // end anonymous namespace 2099 2100 /// Emits a reference to a dummy variable which is emitted with each class. 2101 /// This ensures that a linker error will be generated when trying to link 2102 /// together modules where a referenced class is not defined. 2103 void CGObjCGNU::EmitClassRef(const std::string &className) { 2104 std::string symbolRef = "__objc_class_ref_" + className; 2105 // Don't emit two copies of the same symbol 2106 if (TheModule.getGlobalVariable(symbolRef)) 2107 return; 2108 std::string symbolName = "__objc_class_name_" + className; 2109 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 2110 if (!ClassSymbol) { 2111 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2112 llvm::GlobalValue::ExternalLinkage, 2113 nullptr, symbolName); 2114 } 2115 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 2116 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 2117 } 2118 2119 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 2120 unsigned protocolClassVersion, unsigned classABI) 2121 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 2122 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr), 2123 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion), 2124 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) { 2125 2126 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 2127 usesSEHExceptions = 2128 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment(); 2129 2130 CodeGenTypes &Types = CGM.getTypes(); 2131 IntTy = cast<llvm::IntegerType>( 2132 Types.ConvertType(CGM.getContext().IntTy)); 2133 LongTy = cast<llvm::IntegerType>( 2134 Types.ConvertType(CGM.getContext().LongTy)); 2135 SizeTy = cast<llvm::IntegerType>( 2136 Types.ConvertType(CGM.getContext().getSizeType())); 2137 PtrDiffTy = cast<llvm::IntegerType>( 2138 Types.ConvertType(CGM.getContext().getPointerDiffType())); 2139 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 2140 2141 Int8Ty = llvm::Type::getInt8Ty(VMContext); 2142 // C string type. Used in lots of places. 2143 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 2144 ProtocolPtrTy = llvm::PointerType::getUnqual( 2145 Types.ConvertType(CGM.getContext().getObjCProtoType())); 2146 2147 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 2148 Zeros[1] = Zeros[0]; 2149 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2150 // Get the selector Type. 2151 QualType selTy = CGM.getContext().getObjCSelType(); 2152 if (QualType() == selTy) { 2153 SelectorTy = PtrToInt8Ty; 2154 SelectorElemTy = Int8Ty; 2155 } else { 2156 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 2157 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType()); 2158 } 2159 2160 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 2161 PtrTy = PtrToInt8Ty; 2162 2163 Int32Ty = llvm::Type::getInt32Ty(VMContext); 2164 Int64Ty = llvm::Type::getInt64Ty(VMContext); 2165 2166 IntPtrTy = 2167 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty; 2168 2169 // Object type 2170 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 2171 ASTIdTy = CanQualType(); 2172 if (UnqualIdTy != QualType()) { 2173 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 2174 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2175 IdElemTy = CGM.getTypes().ConvertTypeForMem( 2176 ASTIdTy.getTypePtr()->getPointeeType()); 2177 } else { 2178 IdTy = PtrToInt8Ty; 2179 IdElemTy = Int8Ty; 2180 } 2181 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 2182 ProtocolTy = llvm::StructType::get(IdTy, 2183 PtrToInt8Ty, // name 2184 PtrToInt8Ty, // protocols 2185 PtrToInt8Ty, // instance methods 2186 PtrToInt8Ty, // class methods 2187 PtrToInt8Ty, // optional instance methods 2188 PtrToInt8Ty, // optional class methods 2189 PtrToInt8Ty, // properties 2190 PtrToInt8Ty);// optional properties 2191 2192 // struct objc_property_gsv1 2193 // { 2194 // const char *name; 2195 // char attributes; 2196 // char attributes2; 2197 // char unused1; 2198 // char unused2; 2199 // const char *getter_name; 2200 // const char *getter_types; 2201 // const char *setter_name; 2202 // const char *setter_types; 2203 // } 2204 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { 2205 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, 2206 PtrToInt8Ty, PtrToInt8Ty }); 2207 2208 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy); 2209 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 2210 2211 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 2212 2213 // void objc_exception_throw(id); 2214 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2215 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2216 // int objc_sync_enter(id); 2217 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy); 2218 // int objc_sync_exit(id); 2219 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy); 2220 2221 // void objc_enumerationMutation (id) 2222 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy); 2223 2224 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 2225 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 2226 PtrDiffTy, BoolTy); 2227 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 2228 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 2229 PtrDiffTy, IdTy, BoolTy, BoolTy); 2230 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2231 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 2232 PtrDiffTy, BoolTy, BoolTy); 2233 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2234 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 2235 PtrDiffTy, BoolTy, BoolTy); 2236 2237 // IMP type 2238 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 2239 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 2240 true)); 2241 2242 const LangOptions &Opts = CGM.getLangOpts(); 2243 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 2244 RuntimeVersion = 10; 2245 2246 // Don't bother initialising the GC stuff unless we're compiling in GC mode 2247 if (Opts.getGC() != LangOptions::NonGC) { 2248 // This is a bit of an hack. We should sort this out by having a proper 2249 // CGObjCGNUstep subclass for GC, but we may want to really support the old 2250 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 2251 // Get selectors needed in GC mode 2252 RetainSel = GetNullarySelector("retain", CGM.getContext()); 2253 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 2254 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 2255 2256 // Get functions needed in GC mode 2257 2258 // id objc_assign_ivar(id, id, ptrdiff_t); 2259 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy); 2260 // id objc_assign_strongCast (id, id*) 2261 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 2262 PtrToIdTy); 2263 // id objc_assign_global(id, id*); 2264 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy); 2265 // id objc_assign_weak(id, id*); 2266 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy); 2267 // id objc_read_weak(id*); 2268 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy); 2269 // void *objc_memmove_collectable(void*, void *, size_t); 2270 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 2271 SizeTy); 2272 } 2273 } 2274 2275 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, 2276 const std::string &Name, bool isWeak) { 2277 llvm::Constant *ClassName = MakeConstantString(Name); 2278 // With the incompatible ABI, this will need to be replaced with a direct 2279 // reference to the class symbol. For the compatible nonfragile ABI we are 2280 // still performing this lookup at run time but emitting the symbol for the 2281 // class externally so that we can make the switch later. 2282 // 2283 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 2284 // with memoized versions or with static references if it's safe to do so. 2285 if (!isWeak) 2286 EmitClassRef(Name); 2287 2288 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction( 2289 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class"); 2290 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); 2291 } 2292 2293 // This has to perform the lookup every time, since posing and related 2294 // techniques can modify the name -> class mapping. 2295 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, 2296 const ObjCInterfaceDecl *OID) { 2297 auto *Value = 2298 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); 2299 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) 2300 CGM.setGVProperties(ClassSymbol, OID); 2301 return Value; 2302 } 2303 2304 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 2305 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false); 2306 if (CGM.getTriple().isOSBinFormatCOFF()) { 2307 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) { 2308 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool"); 2309 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 2310 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2311 2312 const VarDecl *VD = nullptr; 2313 for (const auto *Result : DC->lookup(&II)) 2314 if ((VD = dyn_cast<VarDecl>(Result))) 2315 break; 2316 2317 CGM.setGVProperties(ClassSymbol, VD); 2318 } 2319 } 2320 return Value; 2321 } 2322 2323 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 2324 const std::string &TypeEncoding) { 2325 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel]; 2326 llvm::GlobalAlias *SelValue = nullptr; 2327 2328 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2329 e = Types.end() ; i!=e ; i++) { 2330 if (i->first == TypeEncoding) { 2331 SelValue = i->second; 2332 break; 2333 } 2334 } 2335 if (!SelValue) { 2336 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0, 2337 llvm::GlobalValue::PrivateLinkage, 2338 ".objc_selector_" + Sel.getAsString(), 2339 &TheModule); 2340 Types.emplace_back(TypeEncoding, SelValue); 2341 } 2342 2343 return SelValue; 2344 } 2345 2346 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 2347 llvm::Value *SelValue = GetSelector(CGF, Sel); 2348 2349 // Store it to a temporary. Does this satisfy the semantics of 2350 // GetAddrOfSelector? Hopefully. 2351 Address tmp = CGF.CreateTempAlloca(SelValue->getType(), 2352 CGF.getPointerAlign()); 2353 CGF.Builder.CreateStore(SelValue, tmp); 2354 return tmp; 2355 } 2356 2357 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) { 2358 return GetTypedSelector(CGF, Sel, std::string()); 2359 } 2360 2361 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, 2362 const ObjCMethodDecl *Method) { 2363 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method); 2364 return GetTypedSelector(CGF, Method->getSelector(), SelTypes); 2365 } 2366 2367 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 2368 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 2369 // With the old ABI, there was only one kind of catchall, which broke 2370 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 2371 // a pointer indicating object catchalls, and NULL to indicate real 2372 // catchalls 2373 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2374 return MakeConstantString("@id"); 2375 } else { 2376 return nullptr; 2377 } 2378 } 2379 2380 // All other types should be Objective-C interface pointer types. 2381 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>(); 2382 assert(OPT && "Invalid @catch type."); 2383 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); 2384 assert(IDecl && "Invalid @catch type."); 2385 return MakeConstantString(IDecl->getIdentifier()->getName()); 2386 } 2387 2388 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { 2389 if (usesSEHExceptions) 2390 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T); 2391 2392 if (!CGM.getLangOpts().CPlusPlus) 2393 return CGObjCGNU::GetEHType(T); 2394 2395 // For Objective-C++, we want to provide the ability to catch both C++ and 2396 // Objective-C objects in the same function. 2397 2398 // There's a particular fixed type info for 'id'. 2399 if (T->isObjCIdType() || 2400 T->isObjCQualifiedIdType()) { 2401 llvm::Constant *IDEHType = 2402 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 2403 if (!IDEHType) 2404 IDEHType = 2405 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 2406 false, 2407 llvm::GlobalValue::ExternalLinkage, 2408 nullptr, "__objc_id_type_info"); 2409 return IDEHType; 2410 } 2411 2412 const ObjCObjectPointerType *PT = 2413 T->getAs<ObjCObjectPointerType>(); 2414 assert(PT && "Invalid @catch type."); 2415 const ObjCInterfaceType *IT = PT->getInterfaceType(); 2416 assert(IT && "Invalid @catch type."); 2417 std::string className = 2418 std::string(IT->getDecl()->getIdentifier()->getName()); 2419 2420 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 2421 2422 // Return the existing typeinfo if it exists 2423 if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName)) 2424 return typeinfo; 2425 2426 // Otherwise create it. 2427 2428 // vtable for gnustep::libobjc::__objc_class_type_info 2429 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 2430 // platform's name mangling. 2431 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 2432 auto *Vtable = TheModule.getGlobalVariable(vtableName); 2433 if (!Vtable) { 2434 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 2435 llvm::GlobalValue::ExternalLinkage, 2436 nullptr, vtableName); 2437 } 2438 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 2439 auto *BVtable = 2440 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two); 2441 2442 llvm::Constant *typeName = 2443 ExportUniqueString(className, "__objc_eh_typename_"); 2444 2445 ConstantInitBuilder builder(CGM); 2446 auto fields = builder.beginStruct(); 2447 fields.add(BVtable); 2448 fields.add(typeName); 2449 llvm::Constant *TI = 2450 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className, 2451 CGM.getPointerAlign(), 2452 /*constant*/ false, 2453 llvm::GlobalValue::LinkOnceODRLinkage); 2454 return TI; 2455 } 2456 2457 /// Generate an NSConstantString object. 2458 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 2459 2460 std::string Str = SL->getString().str(); 2461 CharUnits Align = CGM.getPointerAlign(); 2462 2463 // Look for an existing one 2464 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 2465 if (old != ObjCStrings.end()) 2466 return ConstantAddress(old->getValue(), Int8Ty, Align); 2467 2468 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2469 2470 if (StringClass.empty()) StringClass = "NSConstantString"; 2471 2472 std::string Sym = "_OBJC_CLASS_"; 2473 Sym += StringClass; 2474 2475 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 2476 2477 if (!isa) 2478 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false, 2479 llvm::GlobalValue::ExternalWeakLinkage, 2480 nullptr, Sym); 2481 2482 ConstantInitBuilder Builder(CGM); 2483 auto Fields = Builder.beginStruct(); 2484 Fields.add(isa); 2485 Fields.add(MakeConstantString(Str)); 2486 Fields.addInt(IntTy, Str.size()); 2487 llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align); 2488 ObjCStrings[Str] = ObjCStr; 2489 ConstantStrings.push_back(ObjCStr); 2490 return ConstantAddress(ObjCStr, Int8Ty, Align); 2491 } 2492 2493 ///Generates a message send where the super is the receiver. This is a message 2494 ///send to self with special delivery semantics indicating which class's method 2495 ///should be called. 2496 RValue 2497 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 2498 ReturnValueSlot Return, 2499 QualType ResultType, 2500 Selector Sel, 2501 const ObjCInterfaceDecl *Class, 2502 bool isCategoryImpl, 2503 llvm::Value *Receiver, 2504 bool IsClassMessage, 2505 const CallArgList &CallArgs, 2506 const ObjCMethodDecl *Method) { 2507 CGBuilderTy &Builder = CGF.Builder; 2508 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2509 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2510 return RValue::get(EnforceType(Builder, Receiver, 2511 CGM.getTypes().ConvertType(ResultType))); 2512 } 2513 if (Sel == ReleaseSel) { 2514 return RValue::get(nullptr); 2515 } 2516 } 2517 2518 llvm::Value *cmd = GetSelector(CGF, Sel); 2519 CallArgList ActualArgs; 2520 2521 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 2522 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2523 ActualArgs.addFrom(CallArgs); 2524 2525 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2526 2527 llvm::Value *ReceiverClass = nullptr; 2528 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2529 if (isV2ABI) { 2530 ReceiverClass = GetClassNamed(CGF, 2531 Class->getSuperClass()->getNameAsString(), /*isWeak*/false); 2532 if (IsClassMessage) { 2533 // Load the isa pointer of the superclass is this is a class method. 2534 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2535 llvm::PointerType::getUnqual(IdTy)); 2536 ReceiverClass = 2537 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2538 } 2539 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy); 2540 } else { 2541 if (isCategoryImpl) { 2542 llvm::FunctionCallee classLookupFunction = nullptr; 2543 if (IsClassMessage) { 2544 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2545 IdTy, PtrTy, true), "objc_get_meta_class"); 2546 } else { 2547 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2548 IdTy, PtrTy, true), "objc_get_class"); 2549 } 2550 ReceiverClass = Builder.CreateCall(classLookupFunction, 2551 MakeConstantString(Class->getNameAsString())); 2552 } else { 2553 // Set up global aliases for the metaclass or class pointer if they do not 2554 // already exist. These will are forward-references which will be set to 2555 // pointers to the class and metaclass structure created for the runtime 2556 // load function. To send a message to super, we look up the value of the 2557 // super_class pointer from either the class or metaclass structure. 2558 if (IsClassMessage) { 2559 if (!MetaClassPtrAlias) { 2560 MetaClassPtrAlias = llvm::GlobalAlias::create( 2561 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2562 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule); 2563 } 2564 ReceiverClass = MetaClassPtrAlias; 2565 } else { 2566 if (!ClassPtrAlias) { 2567 ClassPtrAlias = llvm::GlobalAlias::create( 2568 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2569 ".objc_class_ref" + Class->getNameAsString(), &TheModule); 2570 } 2571 ReceiverClass = ClassPtrAlias; 2572 } 2573 } 2574 // Cast the pointer to a simplified version of the class structure 2575 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy); 2576 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2577 llvm::PointerType::getUnqual(CastTy)); 2578 // Get the superclass pointer 2579 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1); 2580 // Load the superclass pointer 2581 ReceiverClass = 2582 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2583 } 2584 // Construct the structure used to look up the IMP 2585 llvm::StructType *ObjCSuperTy = 2586 llvm::StructType::get(Receiver->getType(), IdTy); 2587 2588 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy, 2589 CGF.getPointerAlign()); 2590 2591 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 2592 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 2593 2594 // Get the IMP 2595 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); 2596 imp = EnforceType(Builder, imp, MSI.MessengerType); 2597 2598 llvm::Metadata *impMD[] = { 2599 llvm::MDString::get(VMContext, Sel.getAsString()), 2600 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 2601 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2602 llvm::Type::getInt1Ty(VMContext), IsClassMessage))}; 2603 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2604 2605 CGCallee callee(CGCalleeInfo(), imp); 2606 2607 llvm::CallBase *call; 2608 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2609 call->setMetadata(msgSendMDKind, node); 2610 return msgRet; 2611 } 2612 2613 /// Generate code for a message send expression. 2614 RValue 2615 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 2616 ReturnValueSlot Return, 2617 QualType ResultType, 2618 Selector Sel, 2619 llvm::Value *Receiver, 2620 const CallArgList &CallArgs, 2621 const ObjCInterfaceDecl *Class, 2622 const ObjCMethodDecl *Method) { 2623 CGBuilderTy &Builder = CGF.Builder; 2624 2625 // Strip out message sends to retain / release in GC mode 2626 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2627 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2628 return RValue::get(EnforceType(Builder, Receiver, 2629 CGM.getTypes().ConvertType(ResultType))); 2630 } 2631 if (Sel == ReleaseSel) { 2632 return RValue::get(nullptr); 2633 } 2634 } 2635 2636 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2637 llvm::Value *cmd; 2638 if (Method) 2639 cmd = GetSelector(CGF, Method); 2640 else 2641 cmd = GetSelector(CGF, Sel); 2642 cmd = EnforceType(Builder, cmd, SelectorTy); 2643 Receiver = EnforceType(Builder, Receiver, IdTy); 2644 2645 llvm::Metadata *impMD[] = { 2646 llvm::MDString::get(VMContext, Sel.getAsString()), 2647 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""), 2648 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2649 llvm::Type::getInt1Ty(VMContext), Class != nullptr))}; 2650 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2651 2652 CallArgList ActualArgs; 2653 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 2654 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2655 ActualArgs.addFrom(CallArgs); 2656 2657 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2658 2659 // Message sends are expected to return a zero value when the 2660 // receiver is nil. At one point, this was only guaranteed for 2661 // simple integer and pointer types, but expectations have grown 2662 // over time. 2663 // 2664 // Given a nil receiver, the GNU runtime's message lookup will 2665 // return a stub function that simply sets various return-value 2666 // registers to zero and then returns. That's good enough for us 2667 // if and only if (1) the calling conventions of that stub are 2668 // compatible with the signature we're using and (2) the registers 2669 // it sets are sufficient to produce a zero value of the return type. 2670 // Rather than doing a whole target-specific analysis, we assume it 2671 // only works for void, integer, and pointer types, and in all 2672 // other cases we do an explicit nil check is emitted code. In 2673 // addition to ensuring we produe a zero value for other types, this 2674 // sidesteps the few outright CC incompatibilities we know about that 2675 // could otherwise lead to crashes, like when a method is expected to 2676 // return on the x87 floating point stack or adjust the stack pointer 2677 // because of an indirect return. 2678 bool hasParamDestroyedInCallee = false; 2679 bool requiresExplicitZeroResult = false; 2680 bool requiresNilReceiverCheck = [&] { 2681 // We never need a check if we statically know the receiver isn't nil. 2682 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false, 2683 Class, Receiver)) 2684 return false; 2685 2686 // If there's a consumed argument, we need a nil check. 2687 if (Method && Method->hasParamDestroyedInCallee()) { 2688 hasParamDestroyedInCallee = true; 2689 } 2690 2691 // If the return value isn't flagged as unused, and the result 2692 // type isn't in our narrow set where we assume compatibility, 2693 // we need a nil check to ensure a nil value. 2694 if (!Return.isUnused()) { 2695 if (ResultType->isVoidType()) { 2696 // void results are definitely okay. 2697 } else if (ResultType->hasPointerRepresentation() && 2698 CGM.getTypes().isZeroInitializable(ResultType)) { 2699 // Pointer types should be fine as long as they have 2700 // bitwise-zero null pointers. But do we need to worry 2701 // about unusual address spaces? 2702 } else if (ResultType->isIntegralOrEnumerationType()) { 2703 // Bitwise zero should always be zero for integral types. 2704 // FIXME: we probably need a size limit here, but we've 2705 // never imposed one before 2706 } else { 2707 // Otherwise, use an explicit check just to be sure. 2708 requiresExplicitZeroResult = true; 2709 } 2710 } 2711 2712 return hasParamDestroyedInCallee || requiresExplicitZeroResult; 2713 }(); 2714 2715 // We will need to explicitly zero-initialize an aggregate result slot 2716 // if we generally require explicit zeroing and we have an aggregate 2717 // result. 2718 bool requiresExplicitAggZeroing = 2719 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType); 2720 2721 // The block we're going to end up in after any message send or nil path. 2722 llvm::BasicBlock *continueBB = nullptr; 2723 // The block that eventually branched to continueBB along the nil path. 2724 llvm::BasicBlock *nilPathBB = nullptr; 2725 // The block to do explicit work in along the nil path, if necessary. 2726 llvm::BasicBlock *nilCleanupBB = nullptr; 2727 2728 // Emit the nil-receiver check. 2729 if (requiresNilReceiverCheck) { 2730 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend"); 2731 continueBB = CGF.createBasicBlock("continue"); 2732 2733 // If we need to zero-initialize an aggregate result or destroy 2734 // consumed arguments, we'll need a separate cleanup block. 2735 // Otherwise we can just branch directly to the continuation block. 2736 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) { 2737 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup"); 2738 } else { 2739 nilPathBB = Builder.GetInsertBlock(); 2740 } 2741 2742 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 2743 llvm::Constant::getNullValue(Receiver->getType())); 2744 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB, 2745 messageBB); 2746 CGF.EmitBlock(messageBB); 2747 } 2748 2749 // Get the IMP to call 2750 llvm::Value *imp; 2751 2752 // If we have non-legacy dispatch specified, we try using the objc_msgSend() 2753 // functions. These are not supported on all platforms (or all runtimes on a 2754 // given platform), so we 2755 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 2756 case CodeGenOptions::Legacy: 2757 imp = LookupIMP(CGF, Receiver, cmd, node, MSI); 2758 break; 2759 case CodeGenOptions::Mixed: 2760 case CodeGenOptions::NonLegacy: 2761 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2762 imp = 2763 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2764 "objc_msgSend_fpret") 2765 .getCallee(); 2766 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 2767 // The actual types here don't matter - we're going to bitcast the 2768 // function anyway 2769 imp = 2770 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2771 "objc_msgSend_stret") 2772 .getCallee(); 2773 } else { 2774 imp = CGM.CreateRuntimeFunction( 2775 llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend") 2776 .getCallee(); 2777 } 2778 } 2779 2780 // Reset the receiver in case the lookup modified it 2781 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy); 2782 2783 imp = EnforceType(Builder, imp, MSI.MessengerType); 2784 2785 llvm::CallBase *call; 2786 CGCallee callee(CGCalleeInfo(), imp); 2787 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2788 call->setMetadata(msgSendMDKind, node); 2789 2790 if (requiresNilReceiverCheck) { 2791 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock(); 2792 CGF.Builder.CreateBr(continueBB); 2793 2794 // Emit the nil path if we decided it was necessary above. 2795 if (nilCleanupBB) { 2796 CGF.EmitBlock(nilCleanupBB); 2797 2798 if (hasParamDestroyedInCallee) { 2799 destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 2800 } 2801 2802 if (requiresExplicitAggZeroing) { 2803 assert(msgRet.isAggregate()); 2804 Address addr = msgRet.getAggregateAddress(); 2805 CGF.EmitNullInitialization(addr, ResultType); 2806 } 2807 2808 nilPathBB = CGF.Builder.GetInsertBlock(); 2809 CGF.Builder.CreateBr(continueBB); 2810 } 2811 2812 // Enter the continuation block and emit a phi if required. 2813 CGF.EmitBlock(continueBB); 2814 if (msgRet.isScalar()) { 2815 // If the return type is void, do nothing 2816 if (llvm::Value *v = msgRet.getScalarVal()) { 2817 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 2818 phi->addIncoming(v, nonNilPathBB); 2819 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB); 2820 msgRet = RValue::get(phi); 2821 } 2822 } else if (msgRet.isAggregate()) { 2823 // Aggregate zeroing is handled in nilCleanupBB when it's required. 2824 } else /* isComplex() */ { 2825 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 2826 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 2827 phi->addIncoming(v.first, nonNilPathBB); 2828 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 2829 nilPathBB); 2830 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 2831 phi2->addIncoming(v.second, nonNilPathBB); 2832 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 2833 nilPathBB); 2834 msgRet = RValue::getComplex(phi, phi2); 2835 } 2836 } 2837 return msgRet; 2838 } 2839 2840 /// Generates a MethodList. Used in construction of a objc_class and 2841 /// objc_category structures. 2842 llvm::Constant *CGObjCGNU:: 2843 GenerateMethodList(StringRef ClassName, 2844 StringRef CategoryName, 2845 ArrayRef<const ObjCMethodDecl*> Methods, 2846 bool isClassMethodList) { 2847 if (Methods.empty()) 2848 return NULLPtr; 2849 2850 ConstantInitBuilder Builder(CGM); 2851 2852 auto MethodList = Builder.beginStruct(); 2853 MethodList.addNullPointer(CGM.Int8PtrTy); 2854 MethodList.addInt(Int32Ty, Methods.size()); 2855 2856 // Get the method structure type. 2857 llvm::StructType *ObjCMethodTy = 2858 llvm::StructType::get(CGM.getLLVMContext(), { 2859 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2860 PtrToInt8Ty, // Method types 2861 IMPTy // Method pointer 2862 }); 2863 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2864 if (isV2ABI) { 2865 // size_t size; 2866 llvm::DataLayout td(&TheModule); 2867 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) / 2868 CGM.getContext().getCharWidth()); 2869 ObjCMethodTy = 2870 llvm::StructType::get(CGM.getLLVMContext(), { 2871 IMPTy, // Method pointer 2872 PtrToInt8Ty, // Selector 2873 PtrToInt8Ty // Extended type encoding 2874 }); 2875 } else { 2876 ObjCMethodTy = 2877 llvm::StructType::get(CGM.getLLVMContext(), { 2878 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 2879 PtrToInt8Ty, // Method types 2880 IMPTy // Method pointer 2881 }); 2882 } 2883 auto MethodArray = MethodList.beginArray(); 2884 ASTContext &Context = CGM.getContext(); 2885 for (const auto *OMD : Methods) { 2886 llvm::Constant *FnPtr = 2887 TheModule.getFunction(getSymbolNameForMethod(OMD)); 2888 assert(FnPtr && "Can't generate metadata for method that doesn't exist"); 2889 auto Method = MethodArray.beginStruct(ObjCMethodTy); 2890 if (isV2ABI) { 2891 Method.add(FnPtr); 2892 Method.add(GetConstantSelector(OMD->getSelector(), 2893 Context.getObjCEncodingForMethodDecl(OMD))); 2894 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true))); 2895 } else { 2896 Method.add(MakeConstantString(OMD->getSelector().getAsString())); 2897 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD))); 2898 Method.add(FnPtr); 2899 } 2900 Method.finishAndAddTo(MethodArray); 2901 } 2902 MethodArray.finishAndAddTo(MethodList); 2903 2904 // Create an instance of the structure 2905 return MethodList.finishAndCreateGlobal(".objc_method_list", 2906 CGM.getPointerAlign()); 2907 } 2908 2909 /// Generates an IvarList. Used in construction of a objc_class. 2910 llvm::Constant *CGObjCGNU:: 2911 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 2912 ArrayRef<llvm::Constant *> IvarTypes, 2913 ArrayRef<llvm::Constant *> IvarOffsets, 2914 ArrayRef<llvm::Constant *> IvarAlign, 2915 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) { 2916 if (IvarNames.empty()) 2917 return NULLPtr; 2918 2919 ConstantInitBuilder Builder(CGM); 2920 2921 // Structure containing array count followed by array. 2922 auto IvarList = Builder.beginStruct(); 2923 IvarList.addInt(IntTy, (int)IvarNames.size()); 2924 2925 // Get the ivar structure type. 2926 llvm::StructType *ObjCIvarTy = 2927 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy); 2928 2929 // Array of ivar structures. 2930 auto Ivars = IvarList.beginArray(ObjCIvarTy); 2931 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 2932 auto Ivar = Ivars.beginStruct(ObjCIvarTy); 2933 Ivar.add(IvarNames[i]); 2934 Ivar.add(IvarTypes[i]); 2935 Ivar.add(IvarOffsets[i]); 2936 Ivar.finishAndAddTo(Ivars); 2937 } 2938 Ivars.finishAndAddTo(IvarList); 2939 2940 // Create an instance of the structure 2941 return IvarList.finishAndCreateGlobal(".objc_ivar_list", 2942 CGM.getPointerAlign()); 2943 } 2944 2945 /// Generate a class structure 2946 llvm::Constant *CGObjCGNU::GenerateClassStructure( 2947 llvm::Constant *MetaClass, 2948 llvm::Constant *SuperClass, 2949 unsigned info, 2950 const char *Name, 2951 llvm::Constant *Version, 2952 llvm::Constant *InstanceSize, 2953 llvm::Constant *IVars, 2954 llvm::Constant *Methods, 2955 llvm::Constant *Protocols, 2956 llvm::Constant *IvarOffsets, 2957 llvm::Constant *Properties, 2958 llvm::Constant *StrongIvarBitmap, 2959 llvm::Constant *WeakIvarBitmap, 2960 bool isMeta) { 2961 // Set up the class structure 2962 // Note: Several of these are char*s when they should be ids. This is 2963 // because the runtime performs this translation on load. 2964 // 2965 // Fields marked New ABI are part of the GNUstep runtime. We emit them 2966 // anyway; the classes will still work with the GNU runtime, they will just 2967 // be ignored. 2968 llvm::StructType *ClassTy = llvm::StructType::get( 2969 PtrToInt8Ty, // isa 2970 PtrToInt8Ty, // super_class 2971 PtrToInt8Ty, // name 2972 LongTy, // version 2973 LongTy, // info 2974 LongTy, // instance_size 2975 IVars->getType(), // ivars 2976 Methods->getType(), // methods 2977 // These are all filled in by the runtime, so we pretend 2978 PtrTy, // dtable 2979 PtrTy, // subclass_list 2980 PtrTy, // sibling_class 2981 PtrTy, // protocols 2982 PtrTy, // gc_object_type 2983 // New ABI: 2984 LongTy, // abi_version 2985 IvarOffsets->getType(), // ivar_offsets 2986 Properties->getType(), // properties 2987 IntPtrTy, // strong_pointers 2988 IntPtrTy // weak_pointers 2989 ); 2990 2991 ConstantInitBuilder Builder(CGM); 2992 auto Elements = Builder.beginStruct(ClassTy); 2993 2994 // Fill in the structure 2995 2996 // isa 2997 Elements.add(MetaClass); 2998 // super_class 2999 Elements.add(SuperClass); 3000 // name 3001 Elements.add(MakeConstantString(Name, ".class_name")); 3002 // version 3003 Elements.addInt(LongTy, 0); 3004 // info 3005 Elements.addInt(LongTy, info); 3006 // instance_size 3007 if (isMeta) { 3008 llvm::DataLayout td(&TheModule); 3009 Elements.addInt(LongTy, 3010 td.getTypeSizeInBits(ClassTy) / 3011 CGM.getContext().getCharWidth()); 3012 } else 3013 Elements.add(InstanceSize); 3014 // ivars 3015 Elements.add(IVars); 3016 // methods 3017 Elements.add(Methods); 3018 // These are all filled in by the runtime, so we pretend 3019 // dtable 3020 Elements.add(NULLPtr); 3021 // subclass_list 3022 Elements.add(NULLPtr); 3023 // sibling_class 3024 Elements.add(NULLPtr); 3025 // protocols 3026 Elements.add(Protocols); 3027 // gc_object_type 3028 Elements.add(NULLPtr); 3029 // abi_version 3030 Elements.addInt(LongTy, ClassABIVersion); 3031 // ivar_offsets 3032 Elements.add(IvarOffsets); 3033 // properties 3034 Elements.add(Properties); 3035 // strong_pointers 3036 Elements.add(StrongIvarBitmap); 3037 // weak_pointers 3038 Elements.add(WeakIvarBitmap); 3039 // Create an instance of the structure 3040 // This is now an externally visible symbol, so that we can speed up class 3041 // messages in the next ABI. We may already have some weak references to 3042 // this, so check and fix them properly. 3043 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 3044 std::string(Name)); 3045 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 3046 llvm::Constant *Class = 3047 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false, 3048 llvm::GlobalValue::ExternalLinkage); 3049 if (ClassRef) { 3050 ClassRef->replaceAllUsesWith(Class); 3051 ClassRef->removeFromParent(); 3052 Class->setName(ClassSym); 3053 } 3054 return Class; 3055 } 3056 3057 llvm::Constant *CGObjCGNU:: 3058 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) { 3059 // Get the method structure type. 3060 llvm::StructType *ObjCMethodDescTy = 3061 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); 3062 ASTContext &Context = CGM.getContext(); 3063 ConstantInitBuilder Builder(CGM); 3064 auto MethodList = Builder.beginStruct(); 3065 MethodList.addInt(IntTy, Methods.size()); 3066 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 3067 for (auto *M : Methods) { 3068 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 3069 Method.add(MakeConstantString(M->getSelector().getAsString())); 3070 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M))); 3071 Method.finishAndAddTo(MethodArray); 3072 } 3073 MethodArray.finishAndAddTo(MethodList); 3074 return MethodList.finishAndCreateGlobal(".objc_method_list", 3075 CGM.getPointerAlign()); 3076 } 3077 3078 // Create the protocol list structure used in classes, categories and so on 3079 llvm::Constant * 3080 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) { 3081 3082 ConstantInitBuilder Builder(CGM); 3083 auto ProtocolList = Builder.beginStruct(); 3084 ProtocolList.add(NULLPtr); 3085 ProtocolList.addInt(LongTy, Protocols.size()); 3086 3087 auto Elements = ProtocolList.beginArray(PtrToInt8Ty); 3088 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 3089 iter != endIter ; iter++) { 3090 llvm::Constant *protocol = nullptr; 3091 llvm::StringMap<llvm::Constant*>::iterator value = 3092 ExistingProtocols.find(*iter); 3093 if (value == ExistingProtocols.end()) { 3094 protocol = GenerateEmptyProtocol(*iter); 3095 } else { 3096 protocol = value->getValue(); 3097 } 3098 Elements.add(protocol); 3099 } 3100 Elements.finishAndAddTo(ProtocolList); 3101 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3102 CGM.getPointerAlign()); 3103 } 3104 3105 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, 3106 const ObjCProtocolDecl *PD) { 3107 auto protocol = GenerateProtocolRef(PD); 3108 llvm::Type *T = 3109 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 3110 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 3111 } 3112 3113 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) { 3114 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()]; 3115 if (!protocol) 3116 GenerateProtocol(PD); 3117 assert(protocol && "Unknown protocol"); 3118 return protocol; 3119 } 3120 3121 llvm::Constant * 3122 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) { 3123 llvm::Constant *ProtocolList = GenerateProtocolList({}); 3124 llvm::Constant *MethodList = GenerateProtocolMethodList({}); 3125 // Protocols are objects containing lists of the methods implemented and 3126 // protocols adopted. 3127 ConstantInitBuilder Builder(CGM); 3128 auto Elements = Builder.beginStruct(); 3129 3130 // The isa pointer must be set to a magic number so the runtime knows it's 3131 // the correct layout. 3132 Elements.add(llvm::ConstantExpr::getIntToPtr( 3133 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3134 3135 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name")); 3136 Elements.add(ProtocolList); /* .protocol_list */ 3137 Elements.add(MethodList); /* .instance_methods */ 3138 Elements.add(MethodList); /* .class_methods */ 3139 Elements.add(MethodList); /* .optional_instance_methods */ 3140 Elements.add(MethodList); /* .optional_class_methods */ 3141 Elements.add(NULLPtr); /* .properties */ 3142 Elements.add(NULLPtr); /* .optional_properties */ 3143 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName), 3144 CGM.getPointerAlign()); 3145 } 3146 3147 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 3148 if (PD->isNonRuntimeProtocol()) 3149 return; 3150 3151 std::string ProtocolName = PD->getNameAsString(); 3152 3153 // Use the protocol definition, if there is one. 3154 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3155 PD = Def; 3156 3157 SmallVector<std::string, 16> Protocols; 3158 for (const auto *PI : PD->protocols()) 3159 Protocols.push_back(PI->getNameAsString()); 3160 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3161 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods; 3162 for (const auto *I : PD->instance_methods()) 3163 if (I->isOptional()) 3164 OptionalInstanceMethods.push_back(I); 3165 else 3166 InstanceMethods.push_back(I); 3167 // Collect information about class methods: 3168 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3169 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods; 3170 for (const auto *I : PD->class_methods()) 3171 if (I->isOptional()) 3172 OptionalClassMethods.push_back(I); 3173 else 3174 ClassMethods.push_back(I); 3175 3176 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 3177 llvm::Constant *InstanceMethodList = 3178 GenerateProtocolMethodList(InstanceMethods); 3179 llvm::Constant *ClassMethodList = 3180 GenerateProtocolMethodList(ClassMethods); 3181 llvm::Constant *OptionalInstanceMethodList = 3182 GenerateProtocolMethodList(OptionalInstanceMethods); 3183 llvm::Constant *OptionalClassMethodList = 3184 GenerateProtocolMethodList(OptionalClassMethods); 3185 3186 // Property metadata: name, attributes, isSynthesized, setter name, setter 3187 // types, getter name, getter types. 3188 // The isSynthesized value is always set to 0 in a protocol. It exists to 3189 // simplify the runtime library by allowing it to use the same data 3190 // structures for protocol metadata everywhere. 3191 3192 llvm::Constant *PropertyList = 3193 GeneratePropertyList(nullptr, PD, false, false); 3194 llvm::Constant *OptionalPropertyList = 3195 GeneratePropertyList(nullptr, PD, false, true); 3196 3197 // Protocols are objects containing lists of the methods implemented and 3198 // protocols adopted. 3199 // The isa pointer must be set to a magic number so the runtime knows it's 3200 // the correct layout. 3201 ConstantInitBuilder Builder(CGM); 3202 auto Elements = Builder.beginStruct(); 3203 Elements.add( 3204 llvm::ConstantExpr::getIntToPtr( 3205 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3206 Elements.add(MakeConstantString(ProtocolName)); 3207 Elements.add(ProtocolList); 3208 Elements.add(InstanceMethodList); 3209 Elements.add(ClassMethodList); 3210 Elements.add(OptionalInstanceMethodList); 3211 Elements.add(OptionalClassMethodList); 3212 Elements.add(PropertyList); 3213 Elements.add(OptionalPropertyList); 3214 ExistingProtocols[ProtocolName] = 3215 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()); 3216 } 3217 void CGObjCGNU::GenerateProtocolHolderCategory() { 3218 // Collect information about instance methods 3219 3220 ConstantInitBuilder Builder(CGM); 3221 auto Elements = Builder.beginStruct(); 3222 3223 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 3224 const std::string CategoryName = "AnotherHack"; 3225 Elements.add(MakeConstantString(CategoryName)); 3226 Elements.add(MakeConstantString(ClassName)); 3227 // Instance method list 3228 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false)); 3229 // Class method list 3230 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true)); 3231 3232 // Protocol list 3233 ConstantInitBuilder ProtocolListBuilder(CGM); 3234 auto ProtocolList = ProtocolListBuilder.beginStruct(); 3235 ProtocolList.add(NULLPtr); 3236 ProtocolList.addInt(LongTy, ExistingProtocols.size()); 3237 auto ProtocolElements = ProtocolList.beginArray(PtrTy); 3238 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 3239 iter != endIter ; iter++) { 3240 ProtocolElements.add(iter->getValue()); 3241 } 3242 ProtocolElements.finishAndAddTo(ProtocolList); 3243 Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3244 CGM.getPointerAlign())); 3245 Categories.push_back( 3246 Elements.finishAndCreateGlobal("", CGM.getPointerAlign())); 3247 } 3248 3249 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 3250 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 3251 /// bits set to their values, LSB first, while larger ones are stored in a 3252 /// structure of this / form: 3253 /// 3254 /// struct { int32_t length; int32_t values[length]; }; 3255 /// 3256 /// The values in the array are stored in host-endian format, with the least 3257 /// significant bit being assumed to come first in the bitfield. Therefore, a 3258 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 3259 /// bitfield / with the 63rd bit set will be 1<<64. 3260 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 3261 int bitCount = bits.size(); 3262 int ptrBits = CGM.getDataLayout().getPointerSizeInBits(); 3263 if (bitCount < ptrBits) { 3264 uint64_t val = 1; 3265 for (int i=0 ; i<bitCount ; ++i) { 3266 if (bits[i]) val |= 1ULL<<(i+1); 3267 } 3268 return llvm::ConstantInt::get(IntPtrTy, val); 3269 } 3270 SmallVector<llvm::Constant *, 8> values; 3271 int v=0; 3272 while (v < bitCount) { 3273 int32_t word = 0; 3274 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 3275 if (bits[v]) word |= 1<<i; 3276 v++; 3277 } 3278 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 3279 } 3280 3281 ConstantInitBuilder builder(CGM); 3282 auto fields = builder.beginStruct(); 3283 fields.addInt(Int32Ty, values.size()); 3284 auto array = fields.beginArray(); 3285 for (auto *v : values) array.add(v); 3286 array.finishAndAddTo(fields); 3287 3288 llvm::Constant *GS = 3289 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4)); 3290 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 3291 return ptr; 3292 } 3293 3294 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const 3295 ObjCCategoryDecl *OCD) { 3296 const auto &RefPro = OCD->getReferencedProtocols(); 3297 const auto RuntimeProtos = 3298 GetRuntimeProtocolList(RefPro.begin(), RefPro.end()); 3299 SmallVector<std::string, 16> Protocols; 3300 for (const auto *PD : RuntimeProtos) 3301 Protocols.push_back(PD->getNameAsString()); 3302 return GenerateProtocolList(Protocols); 3303 } 3304 3305 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3306 const ObjCInterfaceDecl *Class = OCD->getClassInterface(); 3307 std::string ClassName = Class->getNameAsString(); 3308 std::string CategoryName = OCD->getNameAsString(); 3309 3310 // Collect the names of referenced protocols 3311 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 3312 3313 ConstantInitBuilder Builder(CGM); 3314 auto Elements = Builder.beginStruct(); 3315 Elements.add(MakeConstantString(CategoryName)); 3316 Elements.add(MakeConstantString(ClassName)); 3317 // Instance method list 3318 SmallVector<ObjCMethodDecl*, 16> InstanceMethods; 3319 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(), 3320 OCD->instmeth_end()); 3321 Elements.add( 3322 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false)); 3323 3324 // Class method list 3325 3326 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 3327 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(), 3328 OCD->classmeth_end()); 3329 Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true)); 3330 3331 // Protocol list 3332 Elements.add(GenerateCategoryProtocolList(CatDecl)); 3333 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 3334 const ObjCCategoryDecl *Category = 3335 Class->FindCategoryDeclaration(OCD->getIdentifier()); 3336 if (Category) { 3337 // Instance properties 3338 Elements.add(GeneratePropertyList(OCD, Category, false)); 3339 // Class properties 3340 Elements.add(GeneratePropertyList(OCD, Category, true)); 3341 } else { 3342 Elements.addNullPointer(PtrTy); 3343 Elements.addNullPointer(PtrTy); 3344 } 3345 } 3346 3347 Categories.push_back(Elements.finishAndCreateGlobal( 3348 std::string(".objc_category_") + ClassName + CategoryName, 3349 CGM.getPointerAlign())); 3350 } 3351 3352 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container, 3353 const ObjCContainerDecl *OCD, 3354 bool isClassProperty, 3355 bool protocolOptionalProperties) { 3356 3357 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3358 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3359 bool isProtocol = isa<ObjCProtocolDecl>(OCD); 3360 ASTContext &Context = CGM.getContext(); 3361 3362 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties 3363 = [&](const ObjCProtocolDecl *Proto) { 3364 for (const auto *P : Proto->protocols()) 3365 collectProtocolProperties(P); 3366 for (const auto *PD : Proto->properties()) { 3367 if (isClassProperty != PD->isClassProperty()) 3368 continue; 3369 // Skip any properties that are declared in protocols that this class 3370 // conforms to but are not actually implemented by this class. 3371 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container)) 3372 continue; 3373 if (!PropertySet.insert(PD->getIdentifier()).second) 3374 continue; 3375 Properties.push_back(PD); 3376 } 3377 }; 3378 3379 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3380 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3381 for (auto *PD : ClassExt->properties()) { 3382 if (isClassProperty != PD->isClassProperty()) 3383 continue; 3384 PropertySet.insert(PD->getIdentifier()); 3385 Properties.push_back(PD); 3386 } 3387 3388 for (const auto *PD : OCD->properties()) { 3389 if (isClassProperty != PD->isClassProperty()) 3390 continue; 3391 // If we're generating a list for a protocol, skip optional / required ones 3392 // when generating the other list. 3393 if (isProtocol && (protocolOptionalProperties != PD->isOptional())) 3394 continue; 3395 // Don't emit duplicate metadata for properties that were already in a 3396 // class extension. 3397 if (!PropertySet.insert(PD->getIdentifier()).second) 3398 continue; 3399 3400 Properties.push_back(PD); 3401 } 3402 3403 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3404 for (const auto *P : OID->all_referenced_protocols()) 3405 collectProtocolProperties(P); 3406 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) 3407 for (const auto *P : CD->protocols()) 3408 collectProtocolProperties(P); 3409 3410 auto numProperties = Properties.size(); 3411 3412 if (numProperties == 0) 3413 return NULLPtr; 3414 3415 ConstantInitBuilder builder(CGM); 3416 auto propertyList = builder.beginStruct(); 3417 auto properties = PushPropertyListHeader(propertyList, numProperties); 3418 3419 // Add all of the property methods need adding to the method list and to the 3420 // property metadata list. 3421 for (auto *property : Properties) { 3422 bool isSynthesized = false; 3423 bool isDynamic = false; 3424 if (!isProtocol) { 3425 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container); 3426 if (propertyImpl) { 3427 isSynthesized = (propertyImpl->getPropertyImplementation() == 3428 ObjCPropertyImplDecl::Synthesize); 3429 isDynamic = (propertyImpl->getPropertyImplementation() == 3430 ObjCPropertyImplDecl::Dynamic); 3431 } 3432 } 3433 PushProperty(properties, property, Container, isSynthesized, isDynamic); 3434 } 3435 properties.finishAndAddTo(propertyList); 3436 3437 return propertyList.finishAndCreateGlobal(".objc_property_list", 3438 CGM.getPointerAlign()); 3439 } 3440 3441 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 3442 // Get the class declaration for which the alias is specified. 3443 ObjCInterfaceDecl *ClassDecl = 3444 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 3445 ClassAliases.emplace_back(ClassDecl->getNameAsString(), 3446 OAD->getNameAsString()); 3447 } 3448 3449 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 3450 ASTContext &Context = CGM.getContext(); 3451 3452 // Get the superclass name. 3453 const ObjCInterfaceDecl * SuperClassDecl = 3454 OID->getClassInterface()->getSuperClass(); 3455 std::string SuperClassName; 3456 if (SuperClassDecl) { 3457 SuperClassName = SuperClassDecl->getNameAsString(); 3458 EmitClassRef(SuperClassName); 3459 } 3460 3461 // Get the class name 3462 ObjCInterfaceDecl *ClassDecl = 3463 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 3464 std::string ClassName = ClassDecl->getNameAsString(); 3465 3466 // Emit the symbol that is used to generate linker errors if this class is 3467 // referenced in other modules but not declared. 3468 std::string classSymbolName = "__objc_class_name_" + ClassName; 3469 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) { 3470 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 3471 } else { 3472 new llvm::GlobalVariable(TheModule, LongTy, false, 3473 llvm::GlobalValue::ExternalLinkage, 3474 llvm::ConstantInt::get(LongTy, 0), 3475 classSymbolName); 3476 } 3477 3478 // Get the size of instances. 3479 int instanceSize = 3480 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 3481 3482 // Collect information about instance variables. 3483 SmallVector<llvm::Constant*, 16> IvarNames; 3484 SmallVector<llvm::Constant*, 16> IvarTypes; 3485 SmallVector<llvm::Constant*, 16> IvarOffsets; 3486 SmallVector<llvm::Constant*, 16> IvarAligns; 3487 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership; 3488 3489 ConstantInitBuilder IvarOffsetBuilder(CGM); 3490 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy); 3491 SmallVector<bool, 16> WeakIvars; 3492 SmallVector<bool, 16> StrongIvars; 3493 3494 int superInstanceSize = !SuperClassDecl ? 0 : 3495 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 3496 // For non-fragile ivars, set the instance size to 0 - {the size of just this 3497 // class}. The runtime will then set this to the correct value on load. 3498 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3499 instanceSize = 0 - (instanceSize - superInstanceSize); 3500 } 3501 3502 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3503 IVD = IVD->getNextIvar()) { 3504 // Store the name 3505 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 3506 // Get the type encoding for this ivar 3507 std::string TypeStr; 3508 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD); 3509 IvarTypes.push_back(MakeConstantString(TypeStr)); 3510 IvarAligns.push_back(llvm::ConstantInt::get(IntTy, 3511 Context.getTypeSize(IVD->getType()))); 3512 // Get the offset 3513 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 3514 uint64_t Offset = BaseOffset; 3515 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3516 Offset = BaseOffset - superInstanceSize; 3517 } 3518 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 3519 // Create the direct offset value 3520 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 3521 IVD->getNameAsString(); 3522 3523 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 3524 if (OffsetVar) { 3525 OffsetVar->setInitializer(OffsetValue); 3526 // If this is the real definition, change its linkage type so that 3527 // different modules will use this one, rather than their private 3528 // copy. 3529 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 3530 } else 3531 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty, 3532 false, llvm::GlobalValue::ExternalLinkage, 3533 OffsetValue, OffsetName); 3534 IvarOffsets.push_back(OffsetValue); 3535 IvarOffsetValues.add(OffsetVar); 3536 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 3537 IvarOwnership.push_back(lt); 3538 switch (lt) { 3539 case Qualifiers::OCL_Strong: 3540 StrongIvars.push_back(true); 3541 WeakIvars.push_back(false); 3542 break; 3543 case Qualifiers::OCL_Weak: 3544 StrongIvars.push_back(false); 3545 WeakIvars.push_back(true); 3546 break; 3547 default: 3548 StrongIvars.push_back(false); 3549 WeakIvars.push_back(false); 3550 } 3551 } 3552 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 3553 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 3554 llvm::GlobalVariable *IvarOffsetArray = 3555 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets", 3556 CGM.getPointerAlign()); 3557 3558 // Collect information about instance methods 3559 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3560 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 3561 OID->instmeth_end()); 3562 3563 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3564 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 3565 OID->classmeth_end()); 3566 3567 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl); 3568 3569 // Collect the names of referenced protocols 3570 auto RefProtocols = ClassDecl->protocols(); 3571 auto RuntimeProtocols = 3572 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end()); 3573 SmallVector<std::string, 16> Protocols; 3574 for (const auto *I : RuntimeProtocols) 3575 Protocols.push_back(I->getNameAsString()); 3576 3577 // Get the superclass pointer. 3578 llvm::Constant *SuperClass; 3579 if (!SuperClassName.empty()) { 3580 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 3581 } else { 3582 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 3583 } 3584 // Empty vector used to construct empty method lists 3585 SmallVector<llvm::Constant*, 1> empty; 3586 // Generate the method and instance variable lists 3587 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 3588 InstanceMethods, false); 3589 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 3590 ClassMethods, true); 3591 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 3592 IvarOffsets, IvarAligns, IvarOwnership); 3593 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 3594 // we emit a symbol containing the offset for each ivar in the class. This 3595 // allows code compiled for the non-Fragile ABI to inherit from code compiled 3596 // for the legacy ABI, without causing problems. The converse is also 3597 // possible, but causes all ivar accesses to be fragile. 3598 3599 // Offset pointer for getting at the correct field in the ivar list when 3600 // setting up the alias. These are: The base address for the global, the 3601 // ivar array (second field), the ivar in this list (set for each ivar), and 3602 // the offset (third field in ivar structure) 3603 llvm::Type *IndexTy = Int32Ty; 3604 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 3605 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr, 3606 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) }; 3607 3608 unsigned ivarIndex = 0; 3609 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3610 IVD = IVD->getNextIvar()) { 3611 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD); 3612 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 3613 // Get the correct ivar field 3614 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 3615 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList, 3616 offsetPointerIndexes); 3617 // Get the existing variable, if one exists. 3618 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 3619 if (offset) { 3620 offset->setInitializer(offsetValue); 3621 // If this is the real definition, change its linkage type so that 3622 // different modules will use this one, rather than their private 3623 // copy. 3624 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 3625 } else 3626 // Add a new alias if there isn't one already. 3627 new llvm::GlobalVariable(TheModule, offsetValue->getType(), 3628 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 3629 ++ivarIndex; 3630 } 3631 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 3632 3633 //Generate metaclass for class methods 3634 llvm::Constant *MetaClassStruct = GenerateClassStructure( 3635 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], 3636 NULLPtr, ClassMethodList, NULLPtr, NULLPtr, 3637 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true); 3638 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct), 3639 OID->getClassInterface()); 3640 3641 // Generate the class structure 3642 llvm::Constant *ClassStruct = GenerateClassStructure( 3643 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr, 3644 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList, 3645 GenerateProtocolList(Protocols), IvarOffsetArray, Properties, 3646 StrongIvarBitmap, WeakIvarBitmap); 3647 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct), 3648 OID->getClassInterface()); 3649 3650 // Resolve the class aliases, if they exist. 3651 if (ClassPtrAlias) { 3652 ClassPtrAlias->replaceAllUsesWith(ClassStruct); 3653 ClassPtrAlias->eraseFromParent(); 3654 ClassPtrAlias = nullptr; 3655 } 3656 if (MetaClassPtrAlias) { 3657 MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct); 3658 MetaClassPtrAlias->eraseFromParent(); 3659 MetaClassPtrAlias = nullptr; 3660 } 3661 3662 // Add class structure to list to be added to the symtab later 3663 Classes.push_back(ClassStruct); 3664 } 3665 3666 llvm::Function *CGObjCGNU::ModuleInitFunction() { 3667 // Only emit an ObjC load function if no Objective-C stuff has been called 3668 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 3669 ExistingProtocols.empty() && SelectorTable.empty()) 3670 return nullptr; 3671 3672 // Add all referenced protocols to a category. 3673 GenerateProtocolHolderCategory(); 3674 3675 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy); 3676 if (!selStructTy) { 3677 selStructTy = llvm::StructType::get(CGM.getLLVMContext(), 3678 { PtrToInt8Ty, PtrToInt8Ty }); 3679 } 3680 3681 // Generate statics list: 3682 llvm::Constant *statics = NULLPtr; 3683 if (!ConstantStrings.empty()) { 3684 llvm::GlobalVariable *fileStatics = [&] { 3685 ConstantInitBuilder builder(CGM); 3686 auto staticsStruct = builder.beginStruct(); 3687 3688 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass; 3689 if (stringClass.empty()) stringClass = "NXConstantString"; 3690 staticsStruct.add(MakeConstantString(stringClass, 3691 ".objc_static_class_name")); 3692 3693 auto array = staticsStruct.beginArray(); 3694 array.addAll(ConstantStrings); 3695 array.add(NULLPtr); 3696 array.finishAndAddTo(staticsStruct); 3697 3698 return staticsStruct.finishAndCreateGlobal(".objc_statics", 3699 CGM.getPointerAlign()); 3700 }(); 3701 3702 ConstantInitBuilder builder(CGM); 3703 auto allStaticsArray = builder.beginArray(fileStatics->getType()); 3704 allStaticsArray.add(fileStatics); 3705 allStaticsArray.addNullPointer(fileStatics->getType()); 3706 3707 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr", 3708 CGM.getPointerAlign()); 3709 } 3710 3711 // Array of classes, categories, and constant objects. 3712 3713 SmallVector<llvm::GlobalAlias*, 16> selectorAliases; 3714 unsigned selectorCount; 3715 3716 // Pointer to an array of selectors used in this module. 3717 llvm::GlobalVariable *selectorList = [&] { 3718 ConstantInitBuilder builder(CGM); 3719 auto selectors = builder.beginArray(selStructTy); 3720 auto &table = SelectorTable; // MSVC workaround 3721 std::vector<Selector> allSelectors; 3722 for (auto &entry : table) 3723 allSelectors.push_back(entry.first); 3724 llvm::sort(allSelectors); 3725 3726 for (auto &untypedSel : allSelectors) { 3727 std::string selNameStr = untypedSel.getAsString(); 3728 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name"); 3729 3730 for (TypedSelector &sel : table[untypedSel]) { 3731 llvm::Constant *selectorTypeEncoding = NULLPtr; 3732 if (!sel.first.empty()) 3733 selectorTypeEncoding = 3734 MakeConstantString(sel.first, ".objc_sel_types"); 3735 3736 auto selStruct = selectors.beginStruct(selStructTy); 3737 selStruct.add(selName); 3738 selStruct.add(selectorTypeEncoding); 3739 selStruct.finishAndAddTo(selectors); 3740 3741 // Store the selector alias for later replacement 3742 selectorAliases.push_back(sel.second); 3743 } 3744 } 3745 3746 // Remember the number of entries in the selector table. 3747 selectorCount = selectors.size(); 3748 3749 // NULL-terminate the selector list. This should not actually be required, 3750 // because the selector list has a length field. Unfortunately, the GCC 3751 // runtime decides to ignore the length field and expects a NULL terminator, 3752 // and GCC cooperates with this by always setting the length to 0. 3753 auto selStruct = selectors.beginStruct(selStructTy); 3754 selStruct.add(NULLPtr); 3755 selStruct.add(NULLPtr); 3756 selStruct.finishAndAddTo(selectors); 3757 3758 return selectors.finishAndCreateGlobal(".objc_selector_list", 3759 CGM.getPointerAlign()); 3760 }(); 3761 3762 // Now that all of the static selectors exist, create pointers to them. 3763 for (unsigned i = 0; i < selectorCount; ++i) { 3764 llvm::Constant *idxs[] = { 3765 Zeros[0], 3766 llvm::ConstantInt::get(Int32Ty, i) 3767 }; 3768 // FIXME: We're generating redundant loads and stores here! 3769 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr( 3770 selectorList->getValueType(), selectorList, idxs); 3771 selectorAliases[i]->replaceAllUsesWith(selPtr); 3772 selectorAliases[i]->eraseFromParent(); 3773 } 3774 3775 llvm::GlobalVariable *symtab = [&] { 3776 ConstantInitBuilder builder(CGM); 3777 auto symtab = builder.beginStruct(); 3778 3779 // Number of static selectors 3780 symtab.addInt(LongTy, selectorCount); 3781 3782 symtab.add(selectorList); 3783 3784 // Number of classes defined. 3785 symtab.addInt(CGM.Int16Ty, Classes.size()); 3786 // Number of categories defined 3787 symtab.addInt(CGM.Int16Ty, Categories.size()); 3788 3789 // Create an array of classes, then categories, then static object instances 3790 auto classList = symtab.beginArray(PtrToInt8Ty); 3791 classList.addAll(Classes); 3792 classList.addAll(Categories); 3793 // NULL-terminated list of static object instances (mainly constant strings) 3794 classList.add(statics); 3795 classList.add(NULLPtr); 3796 classList.finishAndAddTo(symtab); 3797 3798 // Construct the symbol table. 3799 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign()); 3800 }(); 3801 3802 // The symbol table is contained in a module which has some version-checking 3803 // constants 3804 llvm::Constant *module = [&] { 3805 llvm::Type *moduleEltTys[] = { 3806 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy 3807 }; 3808 llvm::StructType *moduleTy = llvm::StructType::get( 3809 CGM.getLLVMContext(), 3810 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10))); 3811 3812 ConstantInitBuilder builder(CGM); 3813 auto module = builder.beginStruct(moduleTy); 3814 // Runtime version, used for ABI compatibility checking. 3815 module.addInt(LongTy, RuntimeVersion); 3816 // sizeof(ModuleTy) 3817 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy)); 3818 3819 // The path to the source file where this module was declared 3820 SourceManager &SM = CGM.getContext().getSourceManager(); 3821 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID()); 3822 std::string path = 3823 (mainFile->getDir().getName() + "/" + mainFile->getName()).str(); 3824 module.add(MakeConstantString(path, ".objc_source_file_name")); 3825 module.add(symtab); 3826 3827 if (RuntimeVersion >= 10) { 3828 switch (CGM.getLangOpts().getGC()) { 3829 case LangOptions::GCOnly: 3830 module.addInt(IntTy, 2); 3831 break; 3832 case LangOptions::NonGC: 3833 if (CGM.getLangOpts().ObjCAutoRefCount) 3834 module.addInt(IntTy, 1); 3835 else 3836 module.addInt(IntTy, 0); 3837 break; 3838 case LangOptions::HybridGC: 3839 module.addInt(IntTy, 1); 3840 break; 3841 } 3842 } 3843 3844 return module.finishAndCreateGlobal("", CGM.getPointerAlign()); 3845 }(); 3846 3847 // Create the load function calling the runtime entry point with the module 3848 // structure 3849 llvm::Function * LoadFunction = llvm::Function::Create( 3850 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 3851 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 3852 &TheModule); 3853 llvm::BasicBlock *EntryBB = 3854 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 3855 CGBuilderTy Builder(CGM, VMContext); 3856 Builder.SetInsertPoint(EntryBB); 3857 3858 llvm::FunctionType *FT = 3859 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true); 3860 llvm::FunctionCallee Register = 3861 CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 3862 Builder.CreateCall(Register, module); 3863 3864 if (!ClassAliases.empty()) { 3865 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 3866 llvm::FunctionType *RegisterAliasTy = 3867 llvm::FunctionType::get(Builder.getVoidTy(), 3868 ArgTypes, false); 3869 llvm::Function *RegisterAlias = llvm::Function::Create( 3870 RegisterAliasTy, 3871 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 3872 &TheModule); 3873 llvm::BasicBlock *AliasBB = 3874 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 3875 llvm::BasicBlock *NoAliasBB = 3876 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 3877 3878 // Branch based on whether the runtime provided class_registerAlias_np() 3879 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 3880 llvm::Constant::getNullValue(RegisterAlias->getType())); 3881 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 3882 3883 // The true branch (has alias registration function): 3884 Builder.SetInsertPoint(AliasBB); 3885 // Emit alias registration calls: 3886 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 3887 iter != ClassAliases.end(); ++iter) { 3888 llvm::Constant *TheClass = 3889 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true); 3890 if (TheClass) { 3891 Builder.CreateCall(RegisterAlias, 3892 {TheClass, MakeConstantString(iter->second)}); 3893 } 3894 } 3895 // Jump to end: 3896 Builder.CreateBr(NoAliasBB); 3897 3898 // Missing alias registration function, just return from the function: 3899 Builder.SetInsertPoint(NoAliasBB); 3900 } 3901 Builder.CreateRetVoid(); 3902 3903 return LoadFunction; 3904 } 3905 3906 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 3907 const ObjCContainerDecl *CD) { 3908 CodeGenTypes &Types = CGM.getTypes(); 3909 llvm::FunctionType *MethodTy = 3910 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3911 std::string FunctionName = getSymbolNameForMethod(OMD); 3912 3913 llvm::Function *Method 3914 = llvm::Function::Create(MethodTy, 3915 llvm::GlobalValue::InternalLinkage, 3916 FunctionName, 3917 &TheModule); 3918 return Method; 3919 } 3920 3921 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF, 3922 llvm::Function *Fn, 3923 const ObjCMethodDecl *OMD, 3924 const ObjCContainerDecl *CD) { 3925 // GNU runtime doesn't support direct calls at this time 3926 } 3927 3928 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() { 3929 return GetPropertyFn; 3930 } 3931 3932 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() { 3933 return SetPropertyFn; 3934 } 3935 3936 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 3937 bool copy) { 3938 return nullptr; 3939 } 3940 3941 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() { 3942 return GetStructPropertyFn; 3943 } 3944 3945 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() { 3946 return SetStructPropertyFn; 3947 } 3948 3949 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() { 3950 return nullptr; 3951 } 3952 3953 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() { 3954 return nullptr; 3955 } 3956 3957 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() { 3958 return EnumerationMutationFn; 3959 } 3960 3961 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 3962 const ObjCAtSynchronizedStmt &S) { 3963 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 3964 } 3965 3966 3967 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 3968 const ObjCAtTryStmt &S) { 3969 // Unlike the Apple non-fragile runtimes, which also uses 3970 // unwind-based zero cost exceptions, the GNU Objective C runtime's 3971 // EH support isn't a veneer over C++ EH. Instead, exception 3972 // objects are created by objc_exception_throw and destroyed by 3973 // the personality function; this avoids the need for bracketing 3974 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 3975 // (or even _Unwind_DeleteException), but probably doesn't 3976 // interoperate very well with foreign exceptions. 3977 // 3978 // In Objective-C++ mode, we actually emit something equivalent to the C++ 3979 // exception handler. 3980 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 3981 } 3982 3983 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 3984 const ObjCAtThrowStmt &S, 3985 bool ClearInsertionPoint) { 3986 llvm::Value *ExceptionAsObject; 3987 bool isRethrow = false; 3988 3989 if (const Expr *ThrowExpr = S.getThrowExpr()) { 3990 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 3991 ExceptionAsObject = Exception; 3992 } else { 3993 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 3994 "Unexpected rethrow outside @catch block."); 3995 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 3996 isRethrow = true; 3997 } 3998 if (isRethrow && usesSEHExceptions) { 3999 // For SEH, ExceptionAsObject may be undef, because the catch handler is 4000 // not passed it for catchalls and so it is not visible to the catch 4001 // funclet. The real thrown object will still be live on the stack at this 4002 // point and will be rethrown. If we are explicitly rethrowing the object 4003 // that was passed into the `@catch` block, then this code path is not 4004 // reached and we will instead call `objc_exception_throw` with an explicit 4005 // argument. 4006 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn); 4007 Throw->setDoesNotReturn(); 4008 } 4009 else { 4010 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 4011 llvm::CallBase *Throw = 4012 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); 4013 Throw->setDoesNotReturn(); 4014 } 4015 CGF.Builder.CreateUnreachable(); 4016 if (ClearInsertionPoint) 4017 CGF.Builder.ClearInsertionPoint(); 4018 } 4019 4020 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 4021 Address AddrWeakObj) { 4022 CGBuilderTy &B = CGF.Builder; 4023 return B.CreateCall(WeakReadFn, 4024 EnforceType(B, AddrWeakObj.getPointer(), PtrToIdTy)); 4025 } 4026 4027 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 4028 llvm::Value *src, Address dst) { 4029 CGBuilderTy &B = CGF.Builder; 4030 src = EnforceType(B, src, IdTy); 4031 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4032 B.CreateCall(WeakAssignFn, {src, dstVal}); 4033 } 4034 4035 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 4036 llvm::Value *src, Address dst, 4037 bool threadlocal) { 4038 CGBuilderTy &B = CGF.Builder; 4039 src = EnforceType(B, src, IdTy); 4040 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4041 // FIXME. Add threadloca assign API 4042 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"); 4043 B.CreateCall(GlobalAssignFn, {src, dstVal}); 4044 } 4045 4046 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 4047 llvm::Value *src, Address dst, 4048 llvm::Value *ivarOffset) { 4049 CGBuilderTy &B = CGF.Builder; 4050 src = EnforceType(B, src, IdTy); 4051 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), IdTy); 4052 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset}); 4053 } 4054 4055 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 4056 llvm::Value *src, Address dst) { 4057 CGBuilderTy &B = CGF.Builder; 4058 src = EnforceType(B, src, IdTy); 4059 llvm::Value *dstVal = EnforceType(B, dst.getPointer(), PtrToIdTy); 4060 B.CreateCall(StrongCastAssignFn, {src, dstVal}); 4061 } 4062 4063 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 4064 Address DestPtr, 4065 Address SrcPtr, 4066 llvm::Value *Size) { 4067 CGBuilderTy &B = CGF.Builder; 4068 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.getPointer(), PtrTy); 4069 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.getPointer(), PtrTy); 4070 4071 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size}); 4072 } 4073 4074 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 4075 const ObjCInterfaceDecl *ID, 4076 const ObjCIvarDecl *Ivar) { 4077 const std::string Name = GetIVarOffsetVariableName(ID, Ivar); 4078 // Emit the variable and initialize it with what we think the correct value 4079 // is. This allows code compiled with non-fragile ivars to work correctly 4080 // when linked against code which isn't (most of the time). 4081 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 4082 if (!IvarOffsetPointer) 4083 IvarOffsetPointer = new llvm::GlobalVariable( 4084 TheModule, llvm::PointerType::getUnqual(VMContext), false, 4085 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 4086 return IvarOffsetPointer; 4087 } 4088 4089 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 4090 QualType ObjectTy, 4091 llvm::Value *BaseValue, 4092 const ObjCIvarDecl *Ivar, 4093 unsigned CVRQualifiers) { 4094 const ObjCInterfaceDecl *ID = 4095 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 4096 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4097 EmitIvarOffset(CGF, ID, Ivar)); 4098 } 4099 4100 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 4101 const ObjCInterfaceDecl *OID, 4102 const ObjCIvarDecl *OIVD) { 4103 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 4104 next = next->getNextIvar()) { 4105 if (OIVD == next) 4106 return OID; 4107 } 4108 4109 // Otherwise check in the super class. 4110 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 4111 return FindIvarInterface(Context, Super, OIVD); 4112 4113 return nullptr; 4114 } 4115 4116 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 4117 const ObjCInterfaceDecl *Interface, 4118 const ObjCIvarDecl *Ivar) { 4119 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 4120 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 4121 4122 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage 4123 // and ExternalLinkage, so create a reference to the ivar global and rely on 4124 // the definition being created as part of GenerateClass. 4125 if (RuntimeVersion < 10 || 4126 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment()) 4127 return CGF.Builder.CreateZExtOrBitCast( 4128 CGF.Builder.CreateAlignedLoad( 4129 Int32Ty, 4130 CGF.Builder.CreateAlignedLoad( 4131 llvm::PointerType::getUnqual(VMContext), 4132 ObjCIvarOffsetVariable(Interface, Ivar), 4133 CGF.getPointerAlign(), "ivar"), 4134 CharUnits::fromQuantity(4)), 4135 PtrDiffTy); 4136 std::string name = "__objc_ivar_offset_value_" + 4137 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 4138 CharUnits Align = CGM.getIntAlign(); 4139 llvm::Value *Offset = TheModule.getGlobalVariable(name); 4140 if (!Offset) { 4141 auto GV = new llvm::GlobalVariable(TheModule, IntTy, 4142 false, llvm::GlobalValue::LinkOnceAnyLinkage, 4143 llvm::Constant::getNullValue(IntTy), name); 4144 GV->setAlignment(Align.getAsAlign()); 4145 Offset = GV; 4146 } 4147 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align); 4148 if (Offset->getType() != PtrDiffTy) 4149 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 4150 return Offset; 4151 } 4152 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 4153 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 4154 } 4155 4156 CGObjCRuntime * 4157 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 4158 auto Runtime = CGM.getLangOpts().ObjCRuntime; 4159 switch (Runtime.getKind()) { 4160 case ObjCRuntime::GNUstep: 4161 if (Runtime.getVersion() >= VersionTuple(2, 0)) 4162 return new CGObjCGNUstep2(CGM); 4163 return new CGObjCGNUstep(CGM); 4164 4165 case ObjCRuntime::GCC: 4166 return new CGObjCGCC(CGM); 4167 4168 case ObjCRuntime::ObjFW: 4169 return new CGObjCObjFW(CGM); 4170 4171 case ObjCRuntime::FragileMacOSX: 4172 case ObjCRuntime::MacOSX: 4173 case ObjCRuntime::iOS: 4174 case ObjCRuntime::WatchOS: 4175 llvm_unreachable("these runtimes are not GNU runtimes"); 4176 } 4177 llvm_unreachable("bad runtime"); 4178 } 4179