1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the GNU runtime. The 10 // class in this file generates structures used by the GNU Objective-C runtime 11 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 12 // the GNU runtime distribution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenTypes.h" 22 #include "SanitizerMetadata.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/CodeGen/ConstantInitBuilder.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include <cctype> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 namespace { 46 47 /// Class that lazily initialises the runtime function. Avoids inserting the 48 /// types and the function declaration into a module if they're not used, and 49 /// avoids constructing the type more than once if it's used more than once. 50 class LazyRuntimeFunction { 51 CodeGenModule *CGM = nullptr; 52 llvm::FunctionType *FTy = nullptr; 53 const char *FunctionName = nullptr; 54 llvm::FunctionCallee Function = nullptr; 55 56 public: 57 LazyRuntimeFunction() = default; 58 59 /// Initialises the lazy function with the name, return type, and the types 60 /// of the arguments. 61 template <typename... Tys> 62 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, 63 Tys *... Types) { 64 CGM = Mod; 65 FunctionName = name; 66 Function = nullptr; 67 if(sizeof...(Tys)) { 68 SmallVector<llvm::Type *, 8> ArgTys({Types...}); 69 FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 70 } 71 else { 72 FTy = llvm::FunctionType::get(RetTy, std::nullopt, false); 73 } 74 } 75 76 llvm::FunctionType *getType() { return FTy; } 77 78 /// Overloaded cast operator, allows the class to be implicitly cast to an 79 /// LLVM constant. 80 operator llvm::FunctionCallee() { 81 if (!Function) { 82 if (!FunctionName) 83 return nullptr; 84 Function = CGM->CreateRuntimeFunction(FTy, FunctionName); 85 } 86 return Function; 87 } 88 }; 89 90 91 /// GNU Objective-C runtime code generation. This class implements the parts of 92 /// Objective-C support that are specific to the GNU family of runtimes (GCC, 93 /// GNUstep and ObjFW). 94 class CGObjCGNU : public CGObjCRuntime { 95 protected: 96 /// The LLVM module into which output is inserted 97 llvm::Module &TheModule; 98 /// strut objc_super. Used for sending messages to super. This structure 99 /// contains the receiver (object) and the expected class. 100 llvm::StructType *ObjCSuperTy; 101 /// struct objc_super*. The type of the argument to the superclass message 102 /// lookup functions. 103 llvm::PointerType *PtrToObjCSuperTy; 104 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 105 /// SEL is included in a header somewhere, in which case it will be whatever 106 /// type is declared in that header, most likely {i8*, i8*}. 107 llvm::PointerType *SelectorTy; 108 /// Element type of SelectorTy. 109 llvm::Type *SelectorElemTy; 110 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 111 /// places where it's used 112 llvm::IntegerType *Int8Ty; 113 /// Pointer to i8 - LLVM type of char*, for all of the places where the 114 /// runtime needs to deal with C strings. 115 llvm::PointerType *PtrToInt8Ty; 116 /// struct objc_protocol type 117 llvm::StructType *ProtocolTy; 118 /// Protocol * type. 119 llvm::PointerType *ProtocolPtrTy; 120 /// Instance Method Pointer type. This is a pointer to a function that takes, 121 /// at a minimum, an object and a selector, and is the generic type for 122 /// Objective-C methods. Due to differences between variadic / non-variadic 123 /// calling conventions, it must always be cast to the correct type before 124 /// actually being used. 125 llvm::PointerType *IMPTy; 126 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 127 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 128 /// but if the runtime header declaring it is included then it may be a 129 /// pointer to a structure. 130 llvm::PointerType *IdTy; 131 /// Element type of IdTy. 132 llvm::Type *IdElemTy; 133 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 134 /// message lookup function and some GC-related functions. 135 llvm::PointerType *PtrToIdTy; 136 /// The clang type of id. Used when using the clang CGCall infrastructure to 137 /// call Objective-C methods. 138 CanQualType ASTIdTy; 139 /// LLVM type for C int type. 140 llvm::IntegerType *IntTy; 141 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 142 /// used in the code to document the difference between i8* meaning a pointer 143 /// to a C string and i8* meaning a pointer to some opaque type. 144 llvm::PointerType *PtrTy; 145 /// LLVM type for C long type. The runtime uses this in a lot of places where 146 /// it should be using intptr_t, but we can't fix this without breaking 147 /// compatibility with GCC... 148 llvm::IntegerType *LongTy; 149 /// LLVM type for C size_t. Used in various runtime data structures. 150 llvm::IntegerType *SizeTy; 151 /// LLVM type for C intptr_t. 152 llvm::IntegerType *IntPtrTy; 153 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 154 llvm::IntegerType *PtrDiffTy; 155 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 156 /// variables. 157 llvm::PointerType *PtrToIntTy; 158 /// LLVM type for Objective-C BOOL type. 159 llvm::Type *BoolTy; 160 /// 32-bit integer type, to save us needing to look it up every time it's used. 161 llvm::IntegerType *Int32Ty; 162 /// 64-bit integer type, to save us needing to look it up every time it's used. 163 llvm::IntegerType *Int64Ty; 164 /// The type of struct objc_property. 165 llvm::StructType *PropertyMetadataTy; 166 /// Metadata kind used to tie method lookups to message sends. The GNUstep 167 /// runtime provides some LLVM passes that can use this to do things like 168 /// automatic IMP caching and speculative inlining. 169 unsigned msgSendMDKind; 170 /// Does the current target use SEH-based exceptions? False implies 171 /// Itanium-style DWARF unwinding. 172 bool usesSEHExceptions; 173 /// Does the current target uses C++-based exceptions? 174 bool usesCxxExceptions; 175 176 /// Helper to check if we are targeting a specific runtime version or later. 177 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) { 178 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 179 return (R.getKind() == kind) && 180 (R.getVersion() >= VersionTuple(major, minor)); 181 } 182 183 std::string ManglePublicSymbol(StringRef Name) { 184 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str(); 185 } 186 187 std::string SymbolForProtocol(Twine Name) { 188 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str(); 189 } 190 191 std::string SymbolForProtocolRef(StringRef Name) { 192 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str(); 193 } 194 195 196 /// Helper function that generates a constant string and returns a pointer to 197 /// the start of the string. The result of this function can be used anywhere 198 /// where the C code specifies const char*. 199 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") { 200 ConstantAddress Array = 201 CGM.GetAddrOfConstantCString(std::string(Str), Name); 202 return Array.getPointer(); 203 } 204 205 /// Emits a linkonce_odr string, whose name is the prefix followed by the 206 /// string value. This allows the linker to combine the strings between 207 /// different modules. Used for EH typeinfo names, selector strings, and a 208 /// few other things. 209 llvm::Constant *ExportUniqueString(const std::string &Str, 210 const std::string &prefix, 211 bool Private=false) { 212 std::string name = prefix + Str; 213 auto *ConstStr = TheModule.getGlobalVariable(name); 214 if (!ConstStr) { 215 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 216 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true, 217 llvm::GlobalValue::LinkOnceODRLinkage, value, name); 218 GV->setComdat(TheModule.getOrInsertComdat(name)); 219 if (Private) 220 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 221 ConstStr = GV; 222 } 223 return ConstStr; 224 } 225 226 /// Returns a property name and encoding string. 227 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD, 228 const Decl *Container) { 229 assert(!isRuntime(ObjCRuntime::GNUstep, 2)); 230 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) { 231 std::string NameAndAttributes; 232 std::string TypeStr = 233 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 234 NameAndAttributes += '\0'; 235 NameAndAttributes += TypeStr.length() + 3; 236 NameAndAttributes += TypeStr; 237 NameAndAttributes += '\0'; 238 NameAndAttributes += PD->getNameAsString(); 239 return MakeConstantString(NameAndAttributes); 240 } 241 return MakeConstantString(PD->getNameAsString()); 242 } 243 244 /// Push the property attributes into two structure fields. 245 void PushPropertyAttributes(ConstantStructBuilder &Fields, 246 const ObjCPropertyDecl *property, bool isSynthesized=true, bool 247 isDynamic=true) { 248 int attrs = property->getPropertyAttributes(); 249 // For read-only properties, clear the copy and retain flags 250 if (attrs & ObjCPropertyAttribute::kind_readonly) { 251 attrs &= ~ObjCPropertyAttribute::kind_copy; 252 attrs &= ~ObjCPropertyAttribute::kind_retain; 253 attrs &= ~ObjCPropertyAttribute::kind_weak; 254 attrs &= ~ObjCPropertyAttribute::kind_strong; 255 } 256 // The first flags field has the same attribute values as clang uses internally 257 Fields.addInt(Int8Ty, attrs & 0xff); 258 attrs >>= 8; 259 attrs <<= 2; 260 // For protocol properties, synthesized and dynamic have no meaning, so we 261 // reuse these flags to indicate that this is a protocol property (both set 262 // has no meaning, as a property can't be both synthesized and dynamic) 263 attrs |= isSynthesized ? (1<<0) : 0; 264 attrs |= isDynamic ? (1<<1) : 0; 265 // The second field is the next four fields left shifted by two, with the 266 // low bit set to indicate whether the field is synthesized or dynamic. 267 Fields.addInt(Int8Ty, attrs & 0xff); 268 // Two padding fields 269 Fields.addInt(Int8Ty, 0); 270 Fields.addInt(Int8Ty, 0); 271 } 272 273 virtual llvm::Constant *GenerateCategoryProtocolList(const 274 ObjCCategoryDecl *OCD); 275 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields, 276 int count) { 277 // int count; 278 Fields.addInt(IntTy, count); 279 // int size; (only in GNUstep v2 ABI. 280 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 281 llvm::DataLayout td(&TheModule); 282 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) / 283 CGM.getContext().getCharWidth()); 284 } 285 // struct objc_property_list *next; 286 Fields.add(NULLPtr); 287 // struct objc_property properties[] 288 return Fields.beginArray(PropertyMetadataTy); 289 } 290 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray, 291 const ObjCPropertyDecl *property, 292 const Decl *OCD, 293 bool isSynthesized=true, bool 294 isDynamic=true) { 295 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 296 ASTContext &Context = CGM.getContext(); 297 Fields.add(MakePropertyEncodingString(property, OCD)); 298 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic); 299 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 300 if (accessor) { 301 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 302 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 303 Fields.add(MakeConstantString(accessor->getSelector().getAsString())); 304 Fields.add(TypeEncoding); 305 } else { 306 Fields.add(NULLPtr); 307 Fields.add(NULLPtr); 308 } 309 }; 310 addPropertyMethod(property->getGetterMethodDecl()); 311 addPropertyMethod(property->getSetterMethodDecl()); 312 Fields.finishAndAddTo(PropertiesArray); 313 } 314 315 /// Ensures that the value has the required type, by inserting a bitcast if 316 /// required. This function lets us avoid inserting bitcasts that are 317 /// redundant. 318 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) { 319 if (V->getType() == Ty) 320 return V; 321 return B.CreateBitCast(V, Ty); 322 } 323 324 // Some zeros used for GEPs in lots of places. 325 llvm::Constant *Zeros[2]; 326 /// Null pointer value. Mainly used as a terminator in various arrays. 327 llvm::Constant *NULLPtr; 328 /// LLVM context. 329 llvm::LLVMContext &VMContext; 330 331 protected: 332 333 /// Placeholder for the class. Lots of things refer to the class before we've 334 /// actually emitted it. We use this alias as a placeholder, and then replace 335 /// it with a pointer to the class structure before finally emitting the 336 /// module. 337 llvm::GlobalAlias *ClassPtrAlias; 338 /// Placeholder for the metaclass. Lots of things refer to the class before 339 /// we've / actually emitted it. We use this alias as a placeholder, and then 340 /// replace / it with a pointer to the metaclass structure before finally 341 /// emitting the / module. 342 llvm::GlobalAlias *MetaClassPtrAlias; 343 /// All of the classes that have been generated for this compilation units. 344 std::vector<llvm::Constant*> Classes; 345 /// All of the categories that have been generated for this compilation units. 346 std::vector<llvm::Constant*> Categories; 347 /// All of the Objective-C constant strings that have been generated for this 348 /// compilation units. 349 std::vector<llvm::Constant*> ConstantStrings; 350 /// Map from string values to Objective-C constant strings in the output. 351 /// Used to prevent emitting Objective-C strings more than once. This should 352 /// not be required at all - CodeGenModule should manage this list. 353 llvm::StringMap<llvm::Constant*> ObjCStrings; 354 /// All of the protocols that have been declared. 355 llvm::StringMap<llvm::Constant*> ExistingProtocols; 356 /// For each variant of a selector, we store the type encoding and a 357 /// placeholder value. For an untyped selector, the type will be the empty 358 /// string. Selector references are all done via the module's selector table, 359 /// so we create an alias as a placeholder and then replace it with the real 360 /// value later. 361 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 362 /// Type of the selector map. This is roughly equivalent to the structure 363 /// used in the GNUstep runtime, which maintains a list of all of the valid 364 /// types for a selector in a table. 365 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 366 SelectorMap; 367 /// A map from selectors to selector types. This allows us to emit all 368 /// selectors of the same name and type together. 369 SelectorMap SelectorTable; 370 371 /// Selectors related to memory management. When compiling in GC mode, we 372 /// omit these. 373 Selector RetainSel, ReleaseSel, AutoreleaseSel; 374 /// Runtime functions used for memory management in GC mode. Note that clang 375 /// supports code generation for calling these functions, but neither GNU 376 /// runtime actually supports this API properly yet. 377 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 378 WeakAssignFn, GlobalAssignFn; 379 380 typedef std::pair<std::string, std::string> ClassAliasPair; 381 /// All classes that have aliases set for them. 382 std::vector<ClassAliasPair> ClassAliases; 383 384 protected: 385 /// Function used for throwing Objective-C exceptions. 386 LazyRuntimeFunction ExceptionThrowFn; 387 /// Function used for rethrowing exceptions, used at the end of \@finally or 388 /// \@synchronize blocks. 389 LazyRuntimeFunction ExceptionReThrowFn; 390 /// Function called when entering a catch function. This is required for 391 /// differentiating Objective-C exceptions and foreign exceptions. 392 LazyRuntimeFunction EnterCatchFn; 393 /// Function called when exiting from a catch block. Used to do exception 394 /// cleanup. 395 LazyRuntimeFunction ExitCatchFn; 396 /// Function called when entering an \@synchronize block. Acquires the lock. 397 LazyRuntimeFunction SyncEnterFn; 398 /// Function called when exiting an \@synchronize block. Releases the lock. 399 LazyRuntimeFunction SyncExitFn; 400 401 private: 402 /// Function called if fast enumeration detects that the collection is 403 /// modified during the update. 404 LazyRuntimeFunction EnumerationMutationFn; 405 /// Function for implementing synthesized property getters that return an 406 /// object. 407 LazyRuntimeFunction GetPropertyFn; 408 /// Function for implementing synthesized property setters that return an 409 /// object. 410 LazyRuntimeFunction SetPropertyFn; 411 /// Function used for non-object declared property getters. 412 LazyRuntimeFunction GetStructPropertyFn; 413 /// Function used for non-object declared property setters. 414 LazyRuntimeFunction SetStructPropertyFn; 415 416 protected: 417 /// The version of the runtime that this class targets. Must match the 418 /// version in the runtime. 419 int RuntimeVersion; 420 /// The version of the protocol class. Used to differentiate between ObjC1 421 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 422 /// components and can not contain declared properties. We always emit 423 /// Objective-C 2 property structures, but we have to pretend that they're 424 /// Objective-C 1 property structures when targeting the GCC runtime or it 425 /// will abort. 426 const int ProtocolVersion; 427 /// The version of the class ABI. This value is used in the class structure 428 /// and indicates how various fields should be interpreted. 429 const int ClassABIVersion; 430 /// Generates an instance variable list structure. This is a structure 431 /// containing a size and an array of structures containing instance variable 432 /// metadata. This is used purely for introspection in the fragile ABI. In 433 /// the non-fragile ABI, it's used for instance variable fixup. 434 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 435 ArrayRef<llvm::Constant *> IvarTypes, 436 ArrayRef<llvm::Constant *> IvarOffsets, 437 ArrayRef<llvm::Constant *> IvarAlign, 438 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership); 439 440 /// Generates a method list structure. This is a structure containing a size 441 /// and an array of structures containing method metadata. 442 /// 443 /// This structure is used by both classes and categories, and contains a next 444 /// pointer allowing them to be chained together in a linked list. 445 llvm::Constant *GenerateMethodList(StringRef ClassName, 446 StringRef CategoryName, 447 ArrayRef<const ObjCMethodDecl*> Methods, 448 bool isClassMethodList); 449 450 /// Emits an empty protocol. This is used for \@protocol() where no protocol 451 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 452 /// real protocol. 453 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName); 454 455 /// Generates a list of property metadata structures. This follows the same 456 /// pattern as method and instance variable metadata lists. 457 llvm::Constant *GeneratePropertyList(const Decl *Container, 458 const ObjCContainerDecl *OCD, 459 bool isClassProperty=false, 460 bool protocolOptionalProperties=false); 461 462 /// Generates a list of referenced protocols. Classes, categories, and 463 /// protocols all use this structure. 464 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 465 466 /// To ensure that all protocols are seen by the runtime, we add a category on 467 /// a class defined in the runtime, declaring no methods, but adopting the 468 /// protocols. This is a horribly ugly hack, but it allows us to collect all 469 /// of the protocols without changing the ABI. 470 void GenerateProtocolHolderCategory(); 471 472 /// Generates a class structure. 473 llvm::Constant *GenerateClassStructure( 474 llvm::Constant *MetaClass, 475 llvm::Constant *SuperClass, 476 unsigned info, 477 const char *Name, 478 llvm::Constant *Version, 479 llvm::Constant *InstanceSize, 480 llvm::Constant *IVars, 481 llvm::Constant *Methods, 482 llvm::Constant *Protocols, 483 llvm::Constant *IvarOffsets, 484 llvm::Constant *Properties, 485 llvm::Constant *StrongIvarBitmap, 486 llvm::Constant *WeakIvarBitmap, 487 bool isMeta=false); 488 489 /// Generates a method list. This is used by protocols to define the required 490 /// and optional methods. 491 virtual llvm::Constant *GenerateProtocolMethodList( 492 ArrayRef<const ObjCMethodDecl*> Methods); 493 /// Emits optional and required method lists. 494 template<class T> 495 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required, 496 llvm::Constant *&Optional) { 497 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods; 498 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods; 499 for (const auto *I : Methods) 500 if (I->isOptional()) 501 OptionalMethods.push_back(I); 502 else 503 RequiredMethods.push_back(I); 504 Required = GenerateProtocolMethodList(RequiredMethods); 505 Optional = GenerateProtocolMethodList(OptionalMethods); 506 } 507 508 /// Returns a selector with the specified type encoding. An empty string is 509 /// used to return an untyped selector (with the types field set to NULL). 510 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 511 const std::string &TypeEncoding); 512 513 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this 514 /// contains the class and ivar names, in the v2 ABI this contains the type 515 /// encoding as well. 516 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 517 const ObjCIvarDecl *Ivar) { 518 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 519 + '.' + Ivar->getNameAsString(); 520 return Name; 521 } 522 /// Returns the variable used to store the offset of an instance variable. 523 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 524 const ObjCIvarDecl *Ivar); 525 /// Emits a reference to a class. This allows the linker to object if there 526 /// is no class of the matching name. 527 void EmitClassRef(const std::string &className); 528 529 /// Emits a pointer to the named class 530 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF, 531 const std::string &Name, bool isWeak); 532 533 /// Looks up the method for sending a message to the specified object. This 534 /// mechanism differs between the GCC and GNU runtimes, so this method must be 535 /// overridden in subclasses. 536 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 537 llvm::Value *&Receiver, 538 llvm::Value *cmd, 539 llvm::MDNode *node, 540 MessageSendInfo &MSI) = 0; 541 542 /// Looks up the method for sending a message to a superclass. This 543 /// mechanism differs between the GCC and GNU runtimes, so this method must 544 /// be overridden in subclasses. 545 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 546 Address ObjCSuper, 547 llvm::Value *cmd, 548 MessageSendInfo &MSI) = 0; 549 550 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 551 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 552 /// bits set to their values, LSB first, while larger ones are stored in a 553 /// structure of this / form: 554 /// 555 /// struct { int32_t length; int32_t values[length]; }; 556 /// 557 /// The values in the array are stored in host-endian format, with the least 558 /// significant bit being assumed to come first in the bitfield. Therefore, 559 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 560 /// while a bitfield / with the 63rd bit set will be 1<<64. 561 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 562 563 public: 564 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 565 unsigned protocolClassVersion, unsigned classABI=1); 566 567 ConstantAddress GenerateConstantString(const StringLiteral *) override; 568 569 RValue 570 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return, 571 QualType ResultType, Selector Sel, 572 llvm::Value *Receiver, const CallArgList &CallArgs, 573 const ObjCInterfaceDecl *Class, 574 const ObjCMethodDecl *Method) override; 575 RValue 576 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, 577 QualType ResultType, Selector Sel, 578 const ObjCInterfaceDecl *Class, 579 bool isCategoryImpl, llvm::Value *Receiver, 580 bool IsClassMessage, const CallArgList &CallArgs, 581 const ObjCMethodDecl *Method) override; 582 llvm::Value *GetClass(CodeGenFunction &CGF, 583 const ObjCInterfaceDecl *OID) override; 584 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 585 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 586 llvm::Value *GetSelector(CodeGenFunction &CGF, 587 const ObjCMethodDecl *Method) override; 588 virtual llvm::Constant *GetConstantSelector(Selector Sel, 589 const std::string &TypeEncoding) { 590 llvm_unreachable("Runtime unable to generate constant selector"); 591 } 592 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) { 593 return GetConstantSelector(M->getSelector(), 594 CGM.getContext().getObjCEncodingForMethodDecl(M)); 595 } 596 llvm::Constant *GetEHType(QualType T) override; 597 598 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 599 const ObjCContainerDecl *CD) override; 600 601 // Map to unify direct method definitions. 602 llvm::DenseMap<const ObjCMethodDecl *, llvm::Function *> 603 DirectMethodDefinitions; 604 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 605 const ObjCMethodDecl *OMD, 606 const ObjCContainerDecl *CD) override; 607 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 608 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 609 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override; 610 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 611 const ObjCProtocolDecl *PD) override; 612 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 613 614 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD); 615 616 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override { 617 return GenerateProtocolRef(PD); 618 } 619 620 llvm::Function *ModuleInitFunction() override; 621 llvm::FunctionCallee GetPropertyGetFunction() override; 622 llvm::FunctionCallee GetPropertySetFunction() override; 623 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 624 bool copy) override; 625 llvm::FunctionCallee GetSetStructFunction() override; 626 llvm::FunctionCallee GetGetStructFunction() override; 627 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 628 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 629 llvm::FunctionCallee EnumerationMutationFunction() override; 630 631 void EmitTryStmt(CodeGenFunction &CGF, 632 const ObjCAtTryStmt &S) override; 633 void EmitSynchronizedStmt(CodeGenFunction &CGF, 634 const ObjCAtSynchronizedStmt &S) override; 635 void EmitThrowStmt(CodeGenFunction &CGF, 636 const ObjCAtThrowStmt &S, 637 bool ClearInsertionPoint=true) override; 638 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 639 Address AddrWeakObj) override; 640 void EmitObjCWeakAssign(CodeGenFunction &CGF, 641 llvm::Value *src, Address dst) override; 642 void EmitObjCGlobalAssign(CodeGenFunction &CGF, 643 llvm::Value *src, Address dest, 644 bool threadlocal=false) override; 645 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src, 646 Address dest, llvm::Value *ivarOffset) override; 647 void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 648 llvm::Value *src, Address dest) override; 649 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr, 650 Address SrcPtr, 651 llvm::Value *Size) override; 652 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy, 653 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 654 unsigned CVRQualifiers) override; 655 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 656 const ObjCInterfaceDecl *Interface, 657 const ObjCIvarDecl *Ivar) override; 658 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 659 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 660 const CGBlockInfo &blockInfo) override { 661 return NULLPtr; 662 } 663 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM, 664 const CGBlockInfo &blockInfo) override { 665 return NULLPtr; 666 } 667 668 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override { 669 return NULLPtr; 670 } 671 }; 672 673 /// Class representing the legacy GCC Objective-C ABI. This is the default when 674 /// -fobjc-nonfragile-abi is not specified. 675 /// 676 /// The GCC ABI target actually generates code that is approximately compatible 677 /// with the new GNUstep runtime ABI, but refrains from using any features that 678 /// would not work with the GCC runtime. For example, clang always generates 679 /// the extended form of the class structure, and the extra fields are simply 680 /// ignored by GCC libobjc. 681 class CGObjCGCC : public CGObjCGNU { 682 /// The GCC ABI message lookup function. Returns an IMP pointing to the 683 /// method implementation for this message. 684 LazyRuntimeFunction MsgLookupFn; 685 /// The GCC ABI superclass message lookup function. Takes a pointer to a 686 /// structure describing the receiver and the class, and a selector as 687 /// arguments. Returns the IMP for the corresponding method. 688 LazyRuntimeFunction MsgLookupSuperFn; 689 690 protected: 691 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 692 llvm::Value *cmd, llvm::MDNode *node, 693 MessageSendInfo &MSI) override { 694 CGBuilderTy &Builder = CGF.Builder; 695 llvm::Value *args[] = { 696 EnforceType(Builder, Receiver, IdTy), 697 EnforceType(Builder, cmd, SelectorTy) }; 698 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 699 imp->setMetadata(msgSendMDKind, node); 700 return imp; 701 } 702 703 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 704 llvm::Value *cmd, MessageSendInfo &MSI) override { 705 CGBuilderTy &Builder = CGF.Builder; 706 llvm::Value *lookupArgs[] = { 707 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy), 708 cmd}; 709 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 710 } 711 712 public: 713 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 714 // IMP objc_msg_lookup(id, SEL); 715 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 716 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 717 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 718 PtrToObjCSuperTy, SelectorTy); 719 } 720 }; 721 722 /// Class used when targeting the new GNUstep runtime ABI. 723 class CGObjCGNUstep : public CGObjCGNU { 724 /// The slot lookup function. Returns a pointer to a cacheable structure 725 /// that contains (among other things) the IMP. 726 LazyRuntimeFunction SlotLookupFn; 727 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 728 /// a structure describing the receiver and the class, and a selector as 729 /// arguments. Returns the slot for the corresponding method. Superclass 730 /// message lookup rarely changes, so this is a good caching opportunity. 731 LazyRuntimeFunction SlotLookupSuperFn; 732 /// Specialised function for setting atomic retain properties 733 LazyRuntimeFunction SetPropertyAtomic; 734 /// Specialised function for setting atomic copy properties 735 LazyRuntimeFunction SetPropertyAtomicCopy; 736 /// Specialised function for setting nonatomic retain properties 737 LazyRuntimeFunction SetPropertyNonAtomic; 738 /// Specialised function for setting nonatomic copy properties 739 LazyRuntimeFunction SetPropertyNonAtomicCopy; 740 /// Function to perform atomic copies of C++ objects with nontrivial copy 741 /// constructors from Objective-C ivars. 742 LazyRuntimeFunction CxxAtomicObjectGetFn; 743 /// Function to perform atomic copies of C++ objects with nontrivial copy 744 /// constructors to Objective-C ivars. 745 LazyRuntimeFunction CxxAtomicObjectSetFn; 746 /// Type of a slot structure pointer. This is returned by the various 747 /// lookup functions. 748 llvm::Type *SlotTy; 749 /// Type of a slot structure. 750 llvm::Type *SlotStructTy; 751 752 public: 753 llvm::Constant *GetEHType(QualType T) override; 754 755 protected: 756 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 757 llvm::Value *cmd, llvm::MDNode *node, 758 MessageSendInfo &MSI) override { 759 CGBuilderTy &Builder = CGF.Builder; 760 llvm::FunctionCallee LookupFn = SlotLookupFn; 761 762 // Store the receiver on the stack so that we can reload it later 763 RawAddress ReceiverPtr = 764 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign()); 765 Builder.CreateStore(Receiver, ReceiverPtr); 766 767 llvm::Value *self; 768 769 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 770 self = CGF.LoadObjCSelf(); 771 } else { 772 self = llvm::ConstantPointerNull::get(IdTy); 773 } 774 775 // The lookup function is guaranteed not to capture the receiver pointer. 776 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee())) 777 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture); 778 779 llvm::Value *args[] = { 780 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy), 781 EnforceType(Builder, cmd, SelectorTy), 782 EnforceType(Builder, self, IdTy)}; 783 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args); 784 slot->setOnlyReadsMemory(); 785 slot->setMetadata(msgSendMDKind, node); 786 787 // Load the imp from the slot 788 llvm::Value *imp = Builder.CreateAlignedLoad( 789 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 790 CGF.getPointerAlign()); 791 792 // The lookup function may have changed the receiver, so make sure we use 793 // the new one. 794 Receiver = Builder.CreateLoad(ReceiverPtr, true); 795 return imp; 796 } 797 798 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 799 llvm::Value *cmd, 800 MessageSendInfo &MSI) override { 801 CGBuilderTy &Builder = CGF.Builder; 802 llvm::Value *lookupArgs[] = {ObjCSuper.emitRawPointer(CGF), cmd}; 803 804 llvm::CallInst *slot = 805 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs); 806 slot->setOnlyReadsMemory(); 807 808 return Builder.CreateAlignedLoad( 809 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4), 810 CGF.getPointerAlign()); 811 } 812 813 public: 814 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {} 815 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI, 816 unsigned ClassABI) : 817 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) { 818 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime; 819 820 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy); 821 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 822 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 823 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 824 SelectorTy, IdTy); 825 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL); 826 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 827 PtrToObjCSuperTy, SelectorTy); 828 // If we're in ObjC++ mode, then we want to make 829 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 830 if (usesCxxExceptions) { 831 // void *__cxa_begin_catch(void *e) 832 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 833 // void __cxa_end_catch(void) 834 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 835 // void objc_exception_rethrow(void*) 836 ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy); 837 } else if (usesSEHExceptions) { 838 // void objc_exception_rethrow(void) 839 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy); 840 } else if (CGM.getLangOpts().CPlusPlus) { 841 // void *__cxa_begin_catch(void *e) 842 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy); 843 // void __cxa_end_catch(void) 844 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy); 845 // void _Unwind_Resume_or_Rethrow(void*) 846 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, 847 PtrTy); 848 } else if (R.getVersion() >= VersionTuple(1, 7)) { 849 // id objc_begin_catch(void *e) 850 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy); 851 // void objc_end_catch(void) 852 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy); 853 // void _Unwind_Resume_or_Rethrow(void*) 854 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy); 855 } 856 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy, 857 SelectorTy, IdTy, PtrDiffTy); 858 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy, 859 IdTy, SelectorTy, IdTy, PtrDiffTy); 860 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy, 861 IdTy, SelectorTy, IdTy, PtrDiffTy); 862 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy", 863 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy); 864 // void objc_setCppObjectAtomic(void *dest, const void *src, void 865 // *helper); 866 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy, 867 PtrTy, PtrTy); 868 // void objc_getCppObjectAtomic(void *dest, const void *src, void 869 // *helper); 870 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy, 871 PtrTy, PtrTy); 872 } 873 874 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 875 // The optimised functions were added in version 1.7 of the GNUstep 876 // runtime. 877 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 878 VersionTuple(1, 7)); 879 return CxxAtomicObjectGetFn; 880 } 881 882 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 883 // The optimised functions were added in version 1.7 of the GNUstep 884 // runtime. 885 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 886 VersionTuple(1, 7)); 887 return CxxAtomicObjectSetFn; 888 } 889 890 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 891 bool copy) override { 892 // The optimised property functions omit the GC check, and so are not 893 // safe to use in GC mode. The standard functions are fast in GC mode, 894 // so there is less advantage in using them. 895 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC)); 896 // The optimised functions were added in version 1.7 of the GNUstep 897 // runtime. 898 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >= 899 VersionTuple(1, 7)); 900 901 if (atomic) { 902 if (copy) return SetPropertyAtomicCopy; 903 return SetPropertyAtomic; 904 } 905 906 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic; 907 } 908 }; 909 910 /// GNUstep Objective-C ABI version 2 implementation. 911 /// This is the ABI that provides a clean break with the legacy GCC ABI and 912 /// cleans up a number of things that were added to work around 1980s linkers. 913 class CGObjCGNUstep2 : public CGObjCGNUstep { 914 enum SectionKind 915 { 916 SelectorSection = 0, 917 ClassSection, 918 ClassReferenceSection, 919 CategorySection, 920 ProtocolSection, 921 ProtocolReferenceSection, 922 ClassAliasSection, 923 ConstantStringSection 924 }; 925 /// The subset of `objc_class_flags` used at compile time. 926 enum ClassFlags { 927 /// This is a metaclass 928 ClassFlagMeta = (1 << 0), 929 /// This class has been initialised by the runtime (+initialize has been 930 /// sent if necessary). 931 ClassFlagInitialized = (1 << 8), 932 }; 933 static const char *const SectionsBaseNames[8]; 934 static const char *const PECOFFSectionsBaseNames[8]; 935 template<SectionKind K> 936 std::string sectionName() { 937 if (CGM.getTriple().isOSBinFormatCOFF()) { 938 std::string name(PECOFFSectionsBaseNames[K]); 939 name += "$m"; 940 return name; 941 } 942 return SectionsBaseNames[K]; 943 } 944 /// The GCC ABI superclass message lookup function. Takes a pointer to a 945 /// structure describing the receiver and the class, and a selector as 946 /// arguments. Returns the IMP for the corresponding method. 947 LazyRuntimeFunction MsgLookupSuperFn; 948 /// Function to ensure that +initialize is sent to a class. 949 LazyRuntimeFunction SentInitializeFn; 950 /// A flag indicating if we've emitted at least one protocol. 951 /// If we haven't, then we need to emit an empty protocol, to ensure that the 952 /// __start__objc_protocols and __stop__objc_protocols sections exist. 953 bool EmittedProtocol = false; 954 /// A flag indicating if we've emitted at least one protocol reference. 955 /// If we haven't, then we need to emit an empty protocol, to ensure that the 956 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections 957 /// exist. 958 bool EmittedProtocolRef = false; 959 /// A flag indicating if we've emitted at least one class. 960 /// If we haven't, then we need to emit an empty protocol, to ensure that the 961 /// __start__objc_classes and __stop__objc_classes sections / exist. 962 bool EmittedClass = false; 963 /// Generate the name of a symbol for a reference to a class. Accesses to 964 /// classes should be indirected via this. 965 966 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>> 967 EarlyInitPair; 968 std::vector<EarlyInitPair> EarlyInitList; 969 970 std::string SymbolForClassRef(StringRef Name, bool isWeak) { 971 if (isWeak) 972 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str(); 973 else 974 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str(); 975 } 976 /// Generate the name of a class symbol. 977 std::string SymbolForClass(StringRef Name) { 978 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str(); 979 } 980 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName, 981 ArrayRef<llvm::Value*> Args) { 982 SmallVector<llvm::Type *,8> Types; 983 for (auto *Arg : Args) 984 Types.push_back(Arg->getType()); 985 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types, 986 false); 987 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName); 988 B.CreateCall(Fn, Args); 989 } 990 991 ConstantAddress GenerateConstantString(const StringLiteral *SL) override { 992 993 auto Str = SL->getString(); 994 CharUnits Align = CGM.getPointerAlign(); 995 996 // Look for an existing one 997 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 998 if (old != ObjCStrings.end()) 999 return ConstantAddress(old->getValue(), IdElemTy, Align); 1000 1001 bool isNonASCII = SL->containsNonAscii(); 1002 1003 auto LiteralLength = SL->getLength(); 1004 1005 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) && 1006 (LiteralLength < 9) && !isNonASCII) { 1007 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit 1008 // ASCII characters in the high 56 bits, followed by a 4-bit length and a 1009 // 3-bit tag (which is always 4). 1010 uint64_t str = 0; 1011 // Fill in the characters 1012 for (unsigned i=0 ; i<LiteralLength ; i++) 1013 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7)); 1014 // Fill in the length 1015 str |= LiteralLength << 3; 1016 // Set the tag 1017 str |= 4; 1018 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr( 1019 llvm::ConstantInt::get(Int64Ty, str), IdTy); 1020 ObjCStrings[Str] = ObjCStr; 1021 return ConstantAddress(ObjCStr, IdElemTy, Align); 1022 } 1023 1024 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1025 1026 if (StringClass.empty()) StringClass = "NSConstantString"; 1027 1028 std::string Sym = SymbolForClass(StringClass); 1029 1030 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 1031 1032 if (!isa) { 1033 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 1034 llvm::GlobalValue::ExternalLinkage, nullptr, Sym); 1035 if (CGM.getTriple().isOSBinFormatCOFF()) { 1036 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1037 } 1038 } 1039 1040 // struct 1041 // { 1042 // Class isa; 1043 // uint32_t flags; 1044 // uint32_t length; // Number of codepoints 1045 // uint32_t size; // Number of bytes 1046 // uint32_t hash; 1047 // const char *data; 1048 // }; 1049 1050 ConstantInitBuilder Builder(CGM); 1051 auto Fields = Builder.beginStruct(); 1052 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1053 Fields.add(isa); 1054 } else { 1055 Fields.addNullPointer(PtrTy); 1056 } 1057 // For now, all non-ASCII strings are represented as UTF-16. As such, the 1058 // number of bytes is simply double the number of UTF-16 codepoints. In 1059 // ASCII strings, the number of bytes is equal to the number of non-ASCII 1060 // codepoints. 1061 if (isNonASCII) { 1062 unsigned NumU8CodeUnits = Str.size(); 1063 // A UTF-16 representation of a unicode string contains at most the same 1064 // number of code units as a UTF-8 representation. Allocate that much 1065 // space, plus one for the final null character. 1066 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1); 1067 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data(); 1068 llvm::UTF16 *ToPtr = &ToBuf[0]; 1069 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits, 1070 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion); 1071 uint32_t StringLength = ToPtr - &ToBuf[0]; 1072 // Add null terminator 1073 *ToPtr = 0; 1074 // Flags: 2 indicates UTF-16 encoding 1075 Fields.addInt(Int32Ty, 2); 1076 // Number of UTF-16 codepoints 1077 Fields.addInt(Int32Ty, StringLength); 1078 // Number of bytes 1079 Fields.addInt(Int32Ty, StringLength * 2); 1080 // Hash. Not currently initialised by the compiler. 1081 Fields.addInt(Int32Ty, 0); 1082 // pointer to the data string. 1083 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1); 1084 auto *C = llvm::ConstantDataArray::get(VMContext, Arr); 1085 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(), 1086 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); 1087 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1088 Fields.add(Buffer); 1089 } else { 1090 // Flags: 0 indicates ASCII encoding 1091 Fields.addInt(Int32Ty, 0); 1092 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint 1093 Fields.addInt(Int32Ty, Str.size()); 1094 // Number of bytes 1095 Fields.addInt(Int32Ty, Str.size()); 1096 // Hash. Not currently initialised by the compiler. 1097 Fields.addInt(Int32Ty, 0); 1098 // Data pointer 1099 Fields.add(MakeConstantString(Str)); 1100 } 1101 std::string StringName; 1102 bool isNamed = !isNonASCII; 1103 if (isNamed) { 1104 StringName = ".objc_str_"; 1105 for (int i=0,e=Str.size() ; i<e ; ++i) { 1106 unsigned char c = Str[i]; 1107 if (isalnum(c)) 1108 StringName += c; 1109 else if (c == ' ') 1110 StringName += '_'; 1111 else { 1112 isNamed = false; 1113 break; 1114 } 1115 } 1116 } 1117 llvm::GlobalVariable *ObjCStrGV = 1118 Fields.finishAndCreateGlobal( 1119 isNamed ? StringRef(StringName) : ".objc_string", 1120 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage 1121 : llvm::GlobalValue::PrivateLinkage); 1122 ObjCStrGV->setSection(sectionName<ConstantStringSection>()); 1123 if (isNamed) { 1124 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName)); 1125 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1126 } 1127 if (CGM.getTriple().isOSBinFormatCOFF()) { 1128 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0}; 1129 EarlyInitList.emplace_back(Sym, v); 1130 } 1131 ObjCStrings[Str] = ObjCStrGV; 1132 ConstantStrings.push_back(ObjCStrGV); 1133 return ConstantAddress(ObjCStrGV, IdElemTy, Align); 1134 } 1135 1136 void PushProperty(ConstantArrayBuilder &PropertiesArray, 1137 const ObjCPropertyDecl *property, 1138 const Decl *OCD, 1139 bool isSynthesized=true, bool 1140 isDynamic=true) override { 1141 // struct objc_property 1142 // { 1143 // const char *name; 1144 // const char *attributes; 1145 // const char *type; 1146 // SEL getter; 1147 // SEL setter; 1148 // }; 1149 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy); 1150 ASTContext &Context = CGM.getContext(); 1151 Fields.add(MakeConstantString(property->getNameAsString())); 1152 std::string TypeStr = 1153 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD); 1154 Fields.add(MakeConstantString(TypeStr)); 1155 std::string typeStr; 1156 Context.getObjCEncodingForType(property->getType(), typeStr); 1157 Fields.add(MakeConstantString(typeStr)); 1158 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) { 1159 if (accessor) { 1160 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor); 1161 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr)); 1162 } else { 1163 Fields.add(NULLPtr); 1164 } 1165 }; 1166 addPropertyMethod(property->getGetterMethodDecl()); 1167 addPropertyMethod(property->getSetterMethodDecl()); 1168 Fields.finishAndAddTo(PropertiesArray); 1169 } 1170 1171 llvm::Constant * 1172 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override { 1173 // struct objc_protocol_method_description 1174 // { 1175 // SEL selector; 1176 // const char *types; 1177 // }; 1178 llvm::StructType *ObjCMethodDescTy = 1179 llvm::StructType::get(CGM.getLLVMContext(), 1180 { PtrToInt8Ty, PtrToInt8Ty }); 1181 ASTContext &Context = CGM.getContext(); 1182 ConstantInitBuilder Builder(CGM); 1183 // struct objc_protocol_method_description_list 1184 // { 1185 // int count; 1186 // int size; 1187 // struct objc_protocol_method_description methods[]; 1188 // }; 1189 auto MethodList = Builder.beginStruct(); 1190 // int count; 1191 MethodList.addInt(IntTy, Methods.size()); 1192 // int size; // sizeof(struct objc_method_description) 1193 llvm::DataLayout td(&TheModule); 1194 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) / 1195 CGM.getContext().getCharWidth()); 1196 // struct objc_method_description[] 1197 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 1198 for (auto *M : Methods) { 1199 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 1200 Method.add(CGObjCGNU::GetConstantSelector(M)); 1201 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true))); 1202 Method.finishAndAddTo(MethodArray); 1203 } 1204 MethodArray.finishAndAddTo(MethodList); 1205 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list", 1206 CGM.getPointerAlign()); 1207 } 1208 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD) 1209 override { 1210 const auto &ReferencedProtocols = OCD->getReferencedProtocols(); 1211 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(), 1212 ReferencedProtocols.end()); 1213 SmallVector<llvm::Constant *, 16> Protocols; 1214 for (const auto *PI : RuntimeProtocols) 1215 Protocols.push_back(GenerateProtocolRef(PI)); 1216 return GenerateProtocolList(Protocols); 1217 } 1218 1219 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 1220 llvm::Value *cmd, MessageSendInfo &MSI) override { 1221 // Don't access the slot unless we're trying to cache the result. 1222 CGBuilderTy &Builder = CGF.Builder; 1223 llvm::Value *lookupArgs[] = { 1224 CGObjCGNU::EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), 1225 PtrToObjCSuperTy), 1226 cmd}; 1227 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 1228 } 1229 1230 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) { 1231 std::string SymbolName = SymbolForClassRef(Name, isWeak); 1232 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName); 1233 if (ClassSymbol) 1234 return ClassSymbol; 1235 ClassSymbol = new llvm::GlobalVariable(TheModule, 1236 IdTy, false, llvm::GlobalValue::ExternalLinkage, 1237 nullptr, SymbolName); 1238 // If this is a weak symbol, then we are creating a valid definition for 1239 // the symbol, pointing to a weak definition of the real class pointer. If 1240 // this is not a weak reference, then we are expecting another compilation 1241 // unit to provide the real indirection symbol. 1242 if (isWeak) 1243 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule, 1244 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage, 1245 nullptr, SymbolForClass(Name))); 1246 else { 1247 if (CGM.getTriple().isOSBinFormatCOFF()) { 1248 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 1249 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 1250 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 1251 1252 const ObjCInterfaceDecl *OID = nullptr; 1253 for (const auto *Result : DC->lookup(&II)) 1254 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result))) 1255 break; 1256 1257 // The first Interface we find may be a @class, 1258 // which should only be treated as the source of 1259 // truth in the absence of a true declaration. 1260 assert(OID && "Failed to find ObjCInterfaceDecl"); 1261 const ObjCInterfaceDecl *OIDDef = OID->getDefinition(); 1262 if (OIDDef != nullptr) 1263 OID = OIDDef; 1264 1265 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1266 if (OID->hasAttr<DLLImportAttr>()) 1267 Storage = llvm::GlobalValue::DLLImportStorageClass; 1268 else if (OID->hasAttr<DLLExportAttr>()) 1269 Storage = llvm::GlobalValue::DLLExportStorageClass; 1270 1271 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage); 1272 } 1273 } 1274 assert(ClassSymbol->getName() == SymbolName); 1275 return ClassSymbol; 1276 } 1277 llvm::Value *GetClassNamed(CodeGenFunction &CGF, 1278 const std::string &Name, 1279 bool isWeak) override { 1280 return CGF.Builder.CreateLoad( 1281 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign())); 1282 } 1283 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) { 1284 // typedef enum { 1285 // ownership_invalid = 0, 1286 // ownership_strong = 1, 1287 // ownership_weak = 2, 1288 // ownership_unsafe = 3 1289 // } ivar_ownership; 1290 int Flag; 1291 switch (Ownership) { 1292 case Qualifiers::OCL_Strong: 1293 Flag = 1; 1294 break; 1295 case Qualifiers::OCL_Weak: 1296 Flag = 2; 1297 break; 1298 case Qualifiers::OCL_ExplicitNone: 1299 Flag = 3; 1300 break; 1301 case Qualifiers::OCL_None: 1302 case Qualifiers::OCL_Autoreleasing: 1303 assert(Ownership != Qualifiers::OCL_Autoreleasing); 1304 Flag = 0; 1305 } 1306 return Flag; 1307 } 1308 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1309 ArrayRef<llvm::Constant *> IvarTypes, 1310 ArrayRef<llvm::Constant *> IvarOffsets, 1311 ArrayRef<llvm::Constant *> IvarAlign, 1312 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override { 1313 llvm_unreachable("Method should not be called!"); 1314 } 1315 1316 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override { 1317 std::string Name = SymbolForProtocol(ProtocolName); 1318 auto *GV = TheModule.getGlobalVariable(Name); 1319 if (!GV) { 1320 // Emit a placeholder symbol. 1321 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false, 1322 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1323 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1324 } 1325 return GV; 1326 } 1327 1328 /// Existing protocol references. 1329 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs; 1330 1331 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1332 const ObjCProtocolDecl *PD) override { 1333 auto Name = PD->getNameAsString(); 1334 auto *&Ref = ExistingProtocolRefs[Name]; 1335 if (!Ref) { 1336 auto *&Protocol = ExistingProtocols[Name]; 1337 if (!Protocol) 1338 Protocol = GenerateProtocolRef(PD); 1339 std::string RefName = SymbolForProtocolRef(Name); 1340 assert(!TheModule.getGlobalVariable(RefName)); 1341 // Emit a reference symbol. 1342 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false, 1343 llvm::GlobalValue::LinkOnceODRLinkage, 1344 Protocol, RefName); 1345 GV->setComdat(TheModule.getOrInsertComdat(RefName)); 1346 GV->setSection(sectionName<ProtocolReferenceSection>()); 1347 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 1348 Ref = GV; 1349 } 1350 EmittedProtocolRef = true; 1351 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref, 1352 CGM.getPointerAlign()); 1353 } 1354 1355 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) { 1356 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy, 1357 Protocols.size()); 1358 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1359 Protocols); 1360 ConstantInitBuilder builder(CGM); 1361 auto ProtocolBuilder = builder.beginStruct(); 1362 ProtocolBuilder.addNullPointer(PtrTy); 1363 ProtocolBuilder.addInt(SizeTy, Protocols.size()); 1364 ProtocolBuilder.add(ProtocolArray); 1365 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list", 1366 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage); 1367 } 1368 1369 void GenerateProtocol(const ObjCProtocolDecl *PD) override { 1370 // Do nothing - we only emit referenced protocols. 1371 } 1372 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override { 1373 std::string ProtocolName = PD->getNameAsString(); 1374 auto *&Protocol = ExistingProtocols[ProtocolName]; 1375 if (Protocol) 1376 return Protocol; 1377 1378 EmittedProtocol = true; 1379 1380 auto SymName = SymbolForProtocol(ProtocolName); 1381 auto *OldGV = TheModule.getGlobalVariable(SymName); 1382 1383 // Use the protocol definition, if there is one. 1384 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1385 PD = Def; 1386 else { 1387 // If there is no definition, then create an external linkage symbol and 1388 // hope that someone else fills it in for us (and fail to link if they 1389 // don't). 1390 assert(!OldGV); 1391 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy, 1392 /*isConstant*/false, 1393 llvm::GlobalValue::ExternalLinkage, nullptr, SymName); 1394 return Protocol; 1395 } 1396 1397 SmallVector<llvm::Constant*, 16> Protocols; 1398 auto RuntimeProtocols = 1399 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end()); 1400 for (const auto *PI : RuntimeProtocols) 1401 Protocols.push_back(GenerateProtocolRef(PI)); 1402 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1403 1404 // Collect information about methods 1405 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList; 1406 llvm::Constant *ClassMethodList, *OptionalClassMethodList; 1407 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList, 1408 OptionalInstanceMethodList); 1409 EmitProtocolMethodList(PD->class_methods(), ClassMethodList, 1410 OptionalClassMethodList); 1411 1412 // The isa pointer must be set to a magic number so the runtime knows it's 1413 // the correct layout. 1414 ConstantInitBuilder builder(CGM); 1415 auto ProtocolBuilder = builder.beginStruct(); 1416 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr( 1417 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1418 ProtocolBuilder.add(MakeConstantString(ProtocolName)); 1419 ProtocolBuilder.add(ProtocolList); 1420 ProtocolBuilder.add(InstanceMethodList); 1421 ProtocolBuilder.add(ClassMethodList); 1422 ProtocolBuilder.add(OptionalInstanceMethodList); 1423 ProtocolBuilder.add(OptionalClassMethodList); 1424 // Required instance properties 1425 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false)); 1426 // Optional instance properties 1427 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true)); 1428 // Required class properties 1429 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false)); 1430 // Optional class properties 1431 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true)); 1432 1433 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName, 1434 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1435 GV->setSection(sectionName<ProtocolSection>()); 1436 GV->setComdat(TheModule.getOrInsertComdat(SymName)); 1437 if (OldGV) { 1438 OldGV->replaceAllUsesWith(GV); 1439 OldGV->removeFromParent(); 1440 GV->setName(SymName); 1441 } 1442 Protocol = GV; 1443 return GV; 1444 } 1445 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 1446 const std::string &TypeEncoding) override { 1447 return GetConstantSelector(Sel, TypeEncoding); 1448 } 1449 std::string GetSymbolNameForTypeEncoding(const std::string &TypeEncoding) { 1450 std::string MangledTypes = std::string(TypeEncoding); 1451 // @ is used as a special character in ELF symbol names (used for symbol 1452 // versioning), so mangle the name to not include it. Replace it with a 1453 // character that is not a valid type encoding character (and, being 1454 // non-printable, never will be!) 1455 if (CGM.getTriple().isOSBinFormatELF()) 1456 std::replace(MangledTypes.begin(), MangledTypes.end(), '@', '\1'); 1457 // = in dll exported names causes lld to fail when linking on Windows. 1458 if (CGM.getTriple().isOSWindows()) 1459 std::replace(MangledTypes.begin(), MangledTypes.end(), '=', '\2'); 1460 return MangledTypes; 1461 } 1462 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) { 1463 if (TypeEncoding.empty()) 1464 return NULLPtr; 1465 std::string MangledTypes = 1466 GetSymbolNameForTypeEncoding(std::string(TypeEncoding)); 1467 std::string TypesVarName = ".objc_sel_types_" + MangledTypes; 1468 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName); 1469 if (!TypesGlobal) { 1470 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, 1471 TypeEncoding); 1472 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(), 1473 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName); 1474 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName)); 1475 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1476 TypesGlobal = GV; 1477 } 1478 return TypesGlobal; 1479 } 1480 llvm::Constant *GetConstantSelector(Selector Sel, 1481 const std::string &TypeEncoding) override { 1482 std::string MangledTypes = GetSymbolNameForTypeEncoding(TypeEncoding); 1483 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" + 1484 MangledTypes).str(); 1485 if (auto *GV = TheModule.getNamedGlobal(SelVarName)) 1486 return GV; 1487 ConstantInitBuilder builder(CGM); 1488 auto SelBuilder = builder.beginStruct(); 1489 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_", 1490 true)); 1491 SelBuilder.add(GetTypeString(TypeEncoding)); 1492 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName, 1493 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1494 GV->setComdat(TheModule.getOrInsertComdat(SelVarName)); 1495 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1496 GV->setSection(sectionName<SelectorSection>()); 1497 return GV; 1498 } 1499 llvm::StructType *emptyStruct = nullptr; 1500 1501 /// Return pointers to the start and end of a section. On ELF platforms, we 1502 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set 1503 /// to the start and end of section names, as long as those section names are 1504 /// valid identifiers and the symbols are referenced but not defined. On 1505 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort 1506 /// by subsections and place everything that we want to reference in a middle 1507 /// subsection and then insert zero-sized symbols in subsections a and z. 1508 std::pair<llvm::Constant*,llvm::Constant*> 1509 GetSectionBounds(StringRef Section) { 1510 if (CGM.getTriple().isOSBinFormatCOFF()) { 1511 if (emptyStruct == nullptr) { 1512 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel"); 1513 emptyStruct->setBody({}, /*isPacked*/true); 1514 } 1515 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct); 1516 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) { 1517 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct, 1518 /*isConstant*/false, 1519 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix + 1520 Section); 1521 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility); 1522 Sym->setSection((Section + SecSuffix).str()); 1523 Sym->setComdat(TheModule.getOrInsertComdat((Prefix + 1524 Section).str())); 1525 Sym->setAlignment(CGM.getPointerAlign().getAsAlign()); 1526 return Sym; 1527 }; 1528 return { Sym("__start_", "$a"), Sym("__stop", "$z") }; 1529 } 1530 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy, 1531 /*isConstant*/false, 1532 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") + 1533 Section); 1534 Start->setVisibility(llvm::GlobalValue::HiddenVisibility); 1535 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy, 1536 /*isConstant*/false, 1537 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") + 1538 Section); 1539 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility); 1540 return { Start, Stop }; 1541 } 1542 CatchTypeInfo getCatchAllTypeInfo() override { 1543 return CGM.getCXXABI().getCatchAllTypeInfo(); 1544 } 1545 llvm::Function *ModuleInitFunction() override { 1546 llvm::Function *LoadFunction = llvm::Function::Create( 1547 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 1548 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function", 1549 &TheModule); 1550 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility); 1551 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function")); 1552 1553 llvm::BasicBlock *EntryBB = 1554 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 1555 CGBuilderTy B(CGM, VMContext); 1556 B.SetInsertPoint(EntryBB); 1557 ConstantInitBuilder builder(CGM); 1558 auto InitStructBuilder = builder.beginStruct(); 1559 InitStructBuilder.addInt(Int64Ty, 0); 1560 auto §ionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames; 1561 for (auto *s : sectionVec) { 1562 auto bounds = GetSectionBounds(s); 1563 InitStructBuilder.add(bounds.first); 1564 InitStructBuilder.add(bounds.second); 1565 } 1566 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init", 1567 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage); 1568 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility); 1569 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init")); 1570 1571 CallRuntimeFunction(B, "__objc_load", {InitStruct});; 1572 B.CreateRetVoid(); 1573 // Make sure that the optimisers don't delete this function. 1574 CGM.addCompilerUsedGlobal(LoadFunction); 1575 // FIXME: Currently ELF only! 1576 // We have to do this by hand, rather than with @llvm.ctors, so that the 1577 // linker can remove the duplicate invocations. 1578 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(), 1579 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage, 1580 LoadFunction, ".objc_ctor"); 1581 // Check that this hasn't been renamed. This shouldn't happen, because 1582 // this function should be called precisely once. 1583 assert(InitVar->getName() == ".objc_ctor"); 1584 // In Windows, initialisers are sorted by the suffix. XCL is for library 1585 // initialisers, which run before user initialisers. We are running 1586 // Objective-C loads at the end of library load. This means +load methods 1587 // will run before any other static constructors, but that static 1588 // constructors can see a fully initialised Objective-C state. 1589 if (CGM.getTriple().isOSBinFormatCOFF()) 1590 InitVar->setSection(".CRT$XCLz"); 1591 else 1592 { 1593 if (CGM.getCodeGenOpts().UseInitArray) 1594 InitVar->setSection(".init_array"); 1595 else 1596 InitVar->setSection(".ctors"); 1597 } 1598 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility); 1599 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor")); 1600 CGM.addUsedGlobal(InitVar); 1601 for (auto *C : Categories) { 1602 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts()); 1603 Cat->setSection(sectionName<CategorySection>()); 1604 CGM.addUsedGlobal(Cat); 1605 } 1606 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init, 1607 StringRef Section) { 1608 auto nullBuilder = builder.beginStruct(); 1609 for (auto *F : Init) 1610 nullBuilder.add(F); 1611 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 1612 false, llvm::GlobalValue::LinkOnceODRLinkage); 1613 GV->setSection(Section); 1614 GV->setComdat(TheModule.getOrInsertComdat(Name)); 1615 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1616 CGM.addUsedGlobal(GV); 1617 return GV; 1618 }; 1619 for (auto clsAlias : ClassAliases) 1620 createNullGlobal(std::string(".objc_class_alias") + 1621 clsAlias.second, { MakeConstantString(clsAlias.second), 1622 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>()); 1623 // On ELF platforms, add a null value for each special section so that we 1624 // can always guarantee that the _start and _stop symbols will exist and be 1625 // meaningful. This is not required on COFF platforms, where our start and 1626 // stop symbols will create the section. 1627 if (!CGM.getTriple().isOSBinFormatCOFF()) { 1628 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr}, 1629 sectionName<SelectorSection>()); 1630 if (Categories.empty()) 1631 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr, 1632 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr}, 1633 sectionName<CategorySection>()); 1634 if (!EmittedClass) { 1635 createNullGlobal(".objc_null_cls_init_ref", NULLPtr, 1636 sectionName<ClassSection>()); 1637 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr }, 1638 sectionName<ClassReferenceSection>()); 1639 } 1640 if (!EmittedProtocol) 1641 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr, 1642 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, 1643 NULLPtr}, sectionName<ProtocolSection>()); 1644 if (!EmittedProtocolRef) 1645 createNullGlobal(".objc_null_protocol_ref", {NULLPtr}, 1646 sectionName<ProtocolReferenceSection>()); 1647 if (ClassAliases.empty()) 1648 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr }, 1649 sectionName<ClassAliasSection>()); 1650 if (ConstantStrings.empty()) { 1651 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0); 1652 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero, 1653 i32Zero, i32Zero, i32Zero, NULLPtr }, 1654 sectionName<ConstantStringSection>()); 1655 } 1656 } 1657 ConstantStrings.clear(); 1658 Categories.clear(); 1659 Classes.clear(); 1660 1661 if (EarlyInitList.size() > 0) { 1662 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, 1663 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init", 1664 &CGM.getModule()); 1665 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", 1666 Init)); 1667 for (const auto &lateInit : EarlyInitList) { 1668 auto *global = TheModule.getGlobalVariable(lateInit.first); 1669 if (global) { 1670 llvm::GlobalVariable *GV = lateInit.second.first; 1671 b.CreateAlignedStore( 1672 global, 1673 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second), 1674 CGM.getPointerAlign().getAsAlign()); 1675 } 1676 } 1677 b.CreateRetVoid(); 1678 // We can't use the normal LLVM global initialisation array, because we 1679 // need to specify that this runs early in library initialisation. 1680 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 1681 /*isConstant*/true, llvm::GlobalValue::InternalLinkage, 1682 Init, ".objc_early_init_ptr"); 1683 InitVar->setSection(".CRT$XCLb"); 1684 CGM.addUsedGlobal(InitVar); 1685 } 1686 return nullptr; 1687 } 1688 /// In the v2 ABI, ivar offset variables use the type encoding in their name 1689 /// to trigger linker failures if the types don't match. 1690 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID, 1691 const ObjCIvarDecl *Ivar) override { 1692 std::string TypeEncoding; 1693 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding); 1694 TypeEncoding = GetSymbolNameForTypeEncoding(TypeEncoding); 1695 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 1696 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding; 1697 return Name; 1698 } 1699 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 1700 const ObjCInterfaceDecl *Interface, 1701 const ObjCIvarDecl *Ivar) override { 1702 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar); 1703 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 1704 if (!IvarOffsetPointer) 1705 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false, 1706 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 1707 CharUnits Align = CGM.getIntAlign(); 1708 llvm::Value *Offset = 1709 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align); 1710 if (Offset->getType() != PtrDiffTy) 1711 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 1712 return Offset; 1713 } 1714 void GenerateClass(const ObjCImplementationDecl *OID) override { 1715 ASTContext &Context = CGM.getContext(); 1716 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF(); 1717 1718 // Get the class name 1719 ObjCInterfaceDecl *classDecl = 1720 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 1721 std::string className = classDecl->getNameAsString(); 1722 auto *classNameConstant = MakeConstantString(className); 1723 1724 ConstantInitBuilder builder(CGM); 1725 auto metaclassFields = builder.beginStruct(); 1726 // struct objc_class *isa; 1727 metaclassFields.addNullPointer(PtrTy); 1728 // struct objc_class *super_class; 1729 metaclassFields.addNullPointer(PtrTy); 1730 // const char *name; 1731 metaclassFields.add(classNameConstant); 1732 // long version; 1733 metaclassFields.addInt(LongTy, 0); 1734 // unsigned long info; 1735 // objc_class_flag_meta 1736 metaclassFields.addInt(LongTy, ClassFlags::ClassFlagMeta); 1737 // long instance_size; 1738 // Setting this to zero is consistent with the older ABI, but it might be 1739 // more sensible to set this to sizeof(struct objc_class) 1740 metaclassFields.addInt(LongTy, 0); 1741 // struct objc_ivar_list *ivars; 1742 metaclassFields.addNullPointer(PtrTy); 1743 // struct objc_method_list *methods 1744 // FIXME: Almost identical code is copied and pasted below for the 1745 // class, but refactoring it cleanly requires C++14 generic lambdas. 1746 if (OID->classmeth_begin() == OID->classmeth_end()) 1747 metaclassFields.addNullPointer(PtrTy); 1748 else { 1749 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 1750 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 1751 OID->classmeth_end()); 1752 metaclassFields.add( 1753 GenerateMethodList(className, "", ClassMethods, true)); 1754 } 1755 // void *dtable; 1756 metaclassFields.addNullPointer(PtrTy); 1757 // IMP cxx_construct; 1758 metaclassFields.addNullPointer(PtrTy); 1759 // IMP cxx_destruct; 1760 metaclassFields.addNullPointer(PtrTy); 1761 // struct objc_class *subclass_list 1762 metaclassFields.addNullPointer(PtrTy); 1763 // struct objc_class *sibling_class 1764 metaclassFields.addNullPointer(PtrTy); 1765 // struct objc_protocol_list *protocols; 1766 metaclassFields.addNullPointer(PtrTy); 1767 // struct reference_list *extra_data; 1768 metaclassFields.addNullPointer(PtrTy); 1769 // long abi_version; 1770 metaclassFields.addInt(LongTy, 0); 1771 // struct objc_property_list *properties 1772 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true)); 1773 1774 auto *metaclass = metaclassFields.finishAndCreateGlobal( 1775 ManglePublicSymbol("OBJC_METACLASS_") + className, 1776 CGM.getPointerAlign()); 1777 1778 auto classFields = builder.beginStruct(); 1779 // struct objc_class *isa; 1780 classFields.add(metaclass); 1781 // struct objc_class *super_class; 1782 // Get the superclass name. 1783 const ObjCInterfaceDecl * SuperClassDecl = 1784 OID->getClassInterface()->getSuperClass(); 1785 llvm::Constant *SuperClass = nullptr; 1786 if (SuperClassDecl) { 1787 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString()); 1788 SuperClass = TheModule.getNamedGlobal(SuperClassName); 1789 if (!SuperClass) 1790 { 1791 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false, 1792 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName); 1793 if (IsCOFF) { 1794 auto Storage = llvm::GlobalValue::DefaultStorageClass; 1795 if (SuperClassDecl->hasAttr<DLLImportAttr>()) 1796 Storage = llvm::GlobalValue::DLLImportStorageClass; 1797 else if (SuperClassDecl->hasAttr<DLLExportAttr>()) 1798 Storage = llvm::GlobalValue::DLLExportStorageClass; 1799 1800 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage); 1801 } 1802 } 1803 if (!IsCOFF) 1804 classFields.add(SuperClass); 1805 else 1806 classFields.addNullPointer(PtrTy); 1807 } else 1808 classFields.addNullPointer(PtrTy); 1809 // const char *name; 1810 classFields.add(classNameConstant); 1811 // long version; 1812 classFields.addInt(LongTy, 0); 1813 // unsigned long info; 1814 // !objc_class_flag_meta 1815 classFields.addInt(LongTy, 0); 1816 // long instance_size; 1817 int superInstanceSize = !SuperClassDecl ? 0 : 1818 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 1819 // Instance size is negative for classes that have not yet had their ivar 1820 // layout calculated. 1821 classFields.addInt(LongTy, 1822 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() - 1823 superInstanceSize)); 1824 1825 if (classDecl->all_declared_ivar_begin() == nullptr) 1826 classFields.addNullPointer(PtrTy); 1827 else { 1828 int ivar_count = 0; 1829 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1830 IVD = IVD->getNextIvar()) ivar_count++; 1831 llvm::DataLayout td(&TheModule); 1832 // struct objc_ivar_list *ivars; 1833 ConstantInitBuilder b(CGM); 1834 auto ivarListBuilder = b.beginStruct(); 1835 // int count; 1836 ivarListBuilder.addInt(IntTy, ivar_count); 1837 // size_t size; 1838 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1839 PtrToInt8Ty, 1840 PtrToInt8Ty, 1841 PtrToInt8Ty, 1842 Int32Ty, 1843 Int32Ty); 1844 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) / 1845 CGM.getContext().getCharWidth()); 1846 // struct objc_ivar ivars[] 1847 auto ivarArrayBuilder = ivarListBuilder.beginArray(); 1848 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD; 1849 IVD = IVD->getNextIvar()) { 1850 auto ivarTy = IVD->getType(); 1851 auto ivarBuilder = ivarArrayBuilder.beginStruct(); 1852 // const char *name; 1853 ivarBuilder.add(MakeConstantString(IVD->getNameAsString())); 1854 // const char *type; 1855 std::string TypeStr; 1856 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true); 1857 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true); 1858 ivarBuilder.add(MakeConstantString(TypeStr)); 1859 // int *offset; 1860 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 1861 uint64_t Offset = BaseOffset - superInstanceSize; 1862 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 1863 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD); 1864 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 1865 if (OffsetVar) 1866 OffsetVar->setInitializer(OffsetValue); 1867 else 1868 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 1869 false, llvm::GlobalValue::ExternalLinkage, 1870 OffsetValue, OffsetName); 1871 auto ivarVisibility = 1872 (IVD->getAccessControl() == ObjCIvarDecl::Private || 1873 IVD->getAccessControl() == ObjCIvarDecl::Package || 1874 classDecl->getVisibility() == HiddenVisibility) ? 1875 llvm::GlobalValue::HiddenVisibility : 1876 llvm::GlobalValue::DefaultVisibility; 1877 OffsetVar->setVisibility(ivarVisibility); 1878 if (ivarVisibility != llvm::GlobalValue::HiddenVisibility) 1879 CGM.setGVProperties(OffsetVar, OID->getClassInterface()); 1880 ivarBuilder.add(OffsetVar); 1881 // Ivar size 1882 ivarBuilder.addInt(Int32Ty, 1883 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity()); 1884 // Alignment will be stored as a base-2 log of the alignment. 1885 unsigned align = 1886 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity()); 1887 // Objects that require more than 2^64-byte alignment should be impossible! 1888 assert(align < 64); 1889 // uint32_t flags; 1890 // Bits 0-1 are ownership. 1891 // Bit 2 indicates an extended type encoding 1892 // Bits 3-8 contain log2(aligment) 1893 ivarBuilder.addInt(Int32Ty, 1894 (align << 3) | (1<<2) | 1895 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime())); 1896 ivarBuilder.finishAndAddTo(ivarArrayBuilder); 1897 } 1898 ivarArrayBuilder.finishAndAddTo(ivarListBuilder); 1899 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list", 1900 CGM.getPointerAlign(), /*constant*/ false, 1901 llvm::GlobalValue::PrivateLinkage); 1902 classFields.add(ivarList); 1903 } 1904 // struct objc_method_list *methods 1905 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 1906 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 1907 OID->instmeth_end()); 1908 for (auto *propImpl : OID->property_impls()) 1909 if (propImpl->getPropertyImplementation() == 1910 ObjCPropertyImplDecl::Synthesize) { 1911 auto addIfExists = [&](const ObjCMethodDecl *OMD) { 1912 if (OMD && OMD->hasBody()) 1913 InstanceMethods.push_back(OMD); 1914 }; 1915 addIfExists(propImpl->getGetterMethodDecl()); 1916 addIfExists(propImpl->getSetterMethodDecl()); 1917 } 1918 1919 if (InstanceMethods.size() == 0) 1920 classFields.addNullPointer(PtrTy); 1921 else 1922 classFields.add( 1923 GenerateMethodList(className, "", InstanceMethods, false)); 1924 1925 // void *dtable; 1926 classFields.addNullPointer(PtrTy); 1927 // IMP cxx_construct; 1928 classFields.addNullPointer(PtrTy); 1929 // IMP cxx_destruct; 1930 classFields.addNullPointer(PtrTy); 1931 // struct objc_class *subclass_list 1932 classFields.addNullPointer(PtrTy); 1933 // struct objc_class *sibling_class 1934 classFields.addNullPointer(PtrTy); 1935 // struct objc_protocol_list *protocols; 1936 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(), 1937 classDecl->protocol_end()); 1938 SmallVector<llvm::Constant *, 16> Protocols; 1939 for (const auto *I : RuntimeProtocols) 1940 Protocols.push_back(GenerateProtocolRef(I)); 1941 1942 if (Protocols.empty()) 1943 classFields.addNullPointer(PtrTy); 1944 else 1945 classFields.add(GenerateProtocolList(Protocols)); 1946 // struct reference_list *extra_data; 1947 classFields.addNullPointer(PtrTy); 1948 // long abi_version; 1949 classFields.addInt(LongTy, 0); 1950 // struct objc_property_list *properties 1951 classFields.add(GeneratePropertyList(OID, classDecl)); 1952 1953 llvm::GlobalVariable *classStruct = 1954 classFields.finishAndCreateGlobal(SymbolForClass(className), 1955 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage); 1956 1957 auto *classRefSymbol = GetClassVar(className); 1958 classRefSymbol->setSection(sectionName<ClassReferenceSection>()); 1959 classRefSymbol->setInitializer(classStruct); 1960 1961 if (IsCOFF) { 1962 // we can't import a class struct. 1963 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) { 1964 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1965 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1966 } 1967 1968 if (SuperClass) { 1969 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1}; 1970 EarlyInitList.emplace_back(std::string(SuperClass->getName()), 1971 std::move(v)); 1972 } 1973 1974 } 1975 1976 1977 // Resolve the class aliases, if they exist. 1978 // FIXME: Class pointer aliases shouldn't exist! 1979 if (ClassPtrAlias) { 1980 ClassPtrAlias->replaceAllUsesWith(classStruct); 1981 ClassPtrAlias->eraseFromParent(); 1982 ClassPtrAlias = nullptr; 1983 } 1984 if (auto Placeholder = 1985 TheModule.getNamedGlobal(SymbolForClass(className))) 1986 if (Placeholder != classStruct) { 1987 Placeholder->replaceAllUsesWith(classStruct); 1988 Placeholder->eraseFromParent(); 1989 classStruct->setName(SymbolForClass(className)); 1990 } 1991 if (MetaClassPtrAlias) { 1992 MetaClassPtrAlias->replaceAllUsesWith(metaclass); 1993 MetaClassPtrAlias->eraseFromParent(); 1994 MetaClassPtrAlias = nullptr; 1995 } 1996 assert(classStruct->getName() == SymbolForClass(className)); 1997 1998 auto classInitRef = new llvm::GlobalVariable(TheModule, 1999 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage, 2000 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className); 2001 classInitRef->setSection(sectionName<ClassSection>()); 2002 CGM.addUsedGlobal(classInitRef); 2003 2004 EmittedClass = true; 2005 } 2006 public: 2007 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) { 2008 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2009 PtrToObjCSuperTy, SelectorTy); 2010 SentInitializeFn.init(&CGM, "objc_send_initialize", 2011 llvm::Type::getVoidTy(VMContext), IdTy); 2012 // struct objc_property 2013 // { 2014 // const char *name; 2015 // const char *attributes; 2016 // const char *type; 2017 // SEL getter; 2018 // SEL setter; 2019 // } 2020 PropertyMetadataTy = 2021 llvm::StructType::get(CGM.getLLVMContext(), 2022 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty }); 2023 } 2024 2025 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 2026 const ObjCMethodDecl *OMD, 2027 const ObjCContainerDecl *CD) override { 2028 auto &Builder = CGF.Builder; 2029 bool ReceiverCanBeNull = true; 2030 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 2031 auto selfValue = Builder.CreateLoad(selfAddr); 2032 2033 // Generate: 2034 // 2035 // /* unless the receiver is never NULL */ 2036 // if (self == nil) { 2037 // return (ReturnType){ }; 2038 // } 2039 // 2040 // /* for class methods only to force class lazy initialization */ 2041 // if (!__objc_{class}_initialized) 2042 // { 2043 // objc_send_initialize(class); 2044 // __objc_{class}_initialized = 1; 2045 // } 2046 // 2047 // _cmd = @selector(...) 2048 // ... 2049 2050 if (OMD->isClassMethod()) { 2051 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 2052 2053 // Nullable `Class` expressions cannot be messaged with a direct method 2054 // so the only reason why the receive can be null would be because 2055 // of weak linking. 2056 ReceiverCanBeNull = isWeakLinkedClass(OID); 2057 } 2058 2059 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2060 if (ReceiverCanBeNull) { 2061 llvm::BasicBlock *SelfIsNilBlock = 2062 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 2063 llvm::BasicBlock *ContBlock = 2064 CGF.createBasicBlock("objc_direct_method.cont"); 2065 2066 // if (self == nil) { 2067 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 2068 auto Zero = llvm::ConstantPointerNull::get(selfTy); 2069 2070 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), 2071 SelfIsNilBlock, ContBlock, 2072 MDHelper.createUnlikelyBranchWeights()); 2073 2074 CGF.EmitBlock(SelfIsNilBlock); 2075 2076 // return (ReturnType){ }; 2077 auto retTy = OMD->getReturnType(); 2078 Builder.SetInsertPoint(SelfIsNilBlock); 2079 if (!retTy->isVoidType()) { 2080 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 2081 } 2082 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 2083 // } 2084 2085 // rest of the body 2086 CGF.EmitBlock(ContBlock); 2087 Builder.SetInsertPoint(ContBlock); 2088 } 2089 2090 if (OMD->isClassMethod()) { 2091 // Prefix of the class type. 2092 auto *classStart = 2093 llvm::StructType::get(PtrTy, PtrTy, PtrTy, LongTy, LongTy); 2094 auto &astContext = CGM.getContext(); 2095 auto flags = Builder.CreateLoad( 2096 Address{Builder.CreateStructGEP(classStart, selfValue, 4), LongTy, 2097 CharUnits::fromQuantity( 2098 astContext.getTypeAlign(astContext.UnsignedLongTy))}); 2099 auto isInitialized = 2100 Builder.CreateAnd(flags, ClassFlags::ClassFlagInitialized); 2101 llvm::BasicBlock *notInitializedBlock = 2102 CGF.createBasicBlock("objc_direct_method.class_uninitialized"); 2103 llvm::BasicBlock *initializedBlock = 2104 CGF.createBasicBlock("objc_direct_method.class_initialized"); 2105 Builder.CreateCondBr(Builder.CreateICmpEQ(isInitialized, Zeros[0]), 2106 notInitializedBlock, initializedBlock, 2107 MDHelper.createUnlikelyBranchWeights()); 2108 CGF.EmitBlock(notInitializedBlock); 2109 Builder.SetInsertPoint(notInitializedBlock); 2110 CGF.EmitRuntimeCall(SentInitializeFn, selfValue); 2111 Builder.CreateBr(initializedBlock); 2112 CGF.EmitBlock(initializedBlock); 2113 Builder.SetInsertPoint(initializedBlock); 2114 } 2115 2116 // only synthesize _cmd if it's referenced 2117 if (OMD->getCmdDecl()->isUsed()) { 2118 // `_cmd` is not a parameter to direct methods, so storage must be 2119 // explicitly declared for it. 2120 CGF.EmitVarDecl(*OMD->getCmdDecl()); 2121 Builder.CreateStore(GetSelector(CGF, OMD), 2122 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 2123 } 2124 } 2125 }; 2126 2127 const char *const CGObjCGNUstep2::SectionsBaseNames[8] = 2128 { 2129 "__objc_selectors", 2130 "__objc_classes", 2131 "__objc_class_refs", 2132 "__objc_cats", 2133 "__objc_protocols", 2134 "__objc_protocol_refs", 2135 "__objc_class_aliases", 2136 "__objc_constant_string" 2137 }; 2138 2139 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] = 2140 { 2141 ".objcrt$SEL", 2142 ".objcrt$CLS", 2143 ".objcrt$CLR", 2144 ".objcrt$CAT", 2145 ".objcrt$PCL", 2146 ".objcrt$PCR", 2147 ".objcrt$CAL", 2148 ".objcrt$STR" 2149 }; 2150 2151 /// Support for the ObjFW runtime. 2152 class CGObjCObjFW: public CGObjCGNU { 2153 protected: 2154 /// The GCC ABI message lookup function. Returns an IMP pointing to the 2155 /// method implementation for this message. 2156 LazyRuntimeFunction MsgLookupFn; 2157 /// stret lookup function. While this does not seem to make sense at the 2158 /// first look, this is required to call the correct forwarding function. 2159 LazyRuntimeFunction MsgLookupFnSRet; 2160 /// The GCC ABI superclass message lookup function. Takes a pointer to a 2161 /// structure describing the receiver and the class, and a selector as 2162 /// arguments. Returns the IMP for the corresponding method. 2163 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet; 2164 2165 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver, 2166 llvm::Value *cmd, llvm::MDNode *node, 2167 MessageSendInfo &MSI) override { 2168 CGBuilderTy &Builder = CGF.Builder; 2169 llvm::Value *args[] = { 2170 EnforceType(Builder, Receiver, IdTy), 2171 EnforceType(Builder, cmd, SelectorTy) }; 2172 2173 llvm::CallBase *imp; 2174 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2175 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args); 2176 else 2177 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args); 2178 2179 imp->setMetadata(msgSendMDKind, node); 2180 return imp; 2181 } 2182 2183 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper, 2184 llvm::Value *cmd, MessageSendInfo &MSI) override { 2185 CGBuilderTy &Builder = CGF.Builder; 2186 llvm::Value *lookupArgs[] = { 2187 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy), 2188 cmd, 2189 }; 2190 2191 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2192 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs); 2193 else 2194 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs); 2195 } 2196 2197 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name, 2198 bool isWeak) override { 2199 if (isWeak) 2200 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak); 2201 2202 EmitClassRef(Name); 2203 std::string SymbolName = "_OBJC_CLASS_" + Name; 2204 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName); 2205 if (!ClassSymbol) 2206 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2207 llvm::GlobalValue::ExternalLinkage, 2208 nullptr, SymbolName); 2209 return ClassSymbol; 2210 } 2211 2212 public: 2213 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) { 2214 // IMP objc_msg_lookup(id, SEL); 2215 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy); 2216 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy, 2217 SelectorTy); 2218 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 2219 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 2220 PtrToObjCSuperTy, SelectorTy); 2221 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy, 2222 PtrToObjCSuperTy, SelectorTy); 2223 } 2224 }; 2225 } // end anonymous namespace 2226 2227 /// Emits a reference to a dummy variable which is emitted with each class. 2228 /// This ensures that a linker error will be generated when trying to link 2229 /// together modules where a referenced class is not defined. 2230 void CGObjCGNU::EmitClassRef(const std::string &className) { 2231 std::string symbolRef = "__objc_class_ref_" + className; 2232 // Don't emit two copies of the same symbol 2233 if (TheModule.getGlobalVariable(symbolRef)) 2234 return; 2235 std::string symbolName = "__objc_class_name_" + className; 2236 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 2237 if (!ClassSymbol) { 2238 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 2239 llvm::GlobalValue::ExternalLinkage, 2240 nullptr, symbolName); 2241 } 2242 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 2243 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 2244 } 2245 2246 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 2247 unsigned protocolClassVersion, unsigned classABI) 2248 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 2249 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr), 2250 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion), 2251 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) { 2252 2253 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 2254 usesSEHExceptions = 2255 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment(); 2256 usesCxxExceptions = 2257 cgm.getContext().getTargetInfo().getTriple().isOSCygMing() && 2258 isRuntime(ObjCRuntime::GNUstep, 2); 2259 2260 CodeGenTypes &Types = CGM.getTypes(); 2261 IntTy = cast<llvm::IntegerType>( 2262 Types.ConvertType(CGM.getContext().IntTy)); 2263 LongTy = cast<llvm::IntegerType>( 2264 Types.ConvertType(CGM.getContext().LongTy)); 2265 SizeTy = cast<llvm::IntegerType>( 2266 Types.ConvertType(CGM.getContext().getSizeType())); 2267 PtrDiffTy = cast<llvm::IntegerType>( 2268 Types.ConvertType(CGM.getContext().getPointerDiffType())); 2269 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 2270 2271 Int8Ty = llvm::Type::getInt8Ty(VMContext); 2272 // C string type. Used in lots of places. 2273 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 2274 ProtocolPtrTy = llvm::PointerType::getUnqual( 2275 Types.ConvertType(CGM.getContext().getObjCProtoType())); 2276 2277 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 2278 Zeros[1] = Zeros[0]; 2279 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2280 // Get the selector Type. 2281 QualType selTy = CGM.getContext().getObjCSelType(); 2282 if (QualType() == selTy) { 2283 SelectorTy = PtrToInt8Ty; 2284 SelectorElemTy = Int8Ty; 2285 } else { 2286 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 2287 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType()); 2288 } 2289 2290 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 2291 PtrTy = PtrToInt8Ty; 2292 2293 Int32Ty = llvm::Type::getInt32Ty(VMContext); 2294 Int64Ty = llvm::Type::getInt64Ty(VMContext); 2295 2296 IntPtrTy = 2297 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty; 2298 2299 // Object type 2300 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 2301 ASTIdTy = CanQualType(); 2302 if (UnqualIdTy != QualType()) { 2303 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 2304 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2305 IdElemTy = CGM.getTypes().ConvertTypeForMem( 2306 ASTIdTy.getTypePtr()->getPointeeType()); 2307 } else { 2308 IdTy = PtrToInt8Ty; 2309 IdElemTy = Int8Ty; 2310 } 2311 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 2312 ProtocolTy = llvm::StructType::get(IdTy, 2313 PtrToInt8Ty, // name 2314 PtrToInt8Ty, // protocols 2315 PtrToInt8Ty, // instance methods 2316 PtrToInt8Ty, // class methods 2317 PtrToInt8Ty, // optional instance methods 2318 PtrToInt8Ty, // optional class methods 2319 PtrToInt8Ty, // properties 2320 PtrToInt8Ty);// optional properties 2321 2322 // struct objc_property_gsv1 2323 // { 2324 // const char *name; 2325 // char attributes; 2326 // char attributes2; 2327 // char unused1; 2328 // char unused2; 2329 // const char *getter_name; 2330 // const char *getter_types; 2331 // const char *setter_name; 2332 // const char *setter_types; 2333 // } 2334 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), { 2335 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, 2336 PtrToInt8Ty, PtrToInt8Ty }); 2337 2338 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy); 2339 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 2340 2341 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 2342 2343 // void objc_exception_throw(id); 2344 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy); 2345 ExceptionReThrowFn.init(&CGM, 2346 usesCxxExceptions ? "objc_exception_rethrow" 2347 : "objc_exception_throw", 2348 VoidTy, IdTy); 2349 // int objc_sync_enter(id); 2350 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy); 2351 // int objc_sync_exit(id); 2352 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy); 2353 2354 // void objc_enumerationMutation (id) 2355 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy); 2356 2357 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 2358 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 2359 PtrDiffTy, BoolTy); 2360 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 2361 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 2362 PtrDiffTy, IdTy, BoolTy, BoolTy); 2363 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2364 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 2365 PtrDiffTy, BoolTy, BoolTy); 2366 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 2367 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 2368 PtrDiffTy, BoolTy, BoolTy); 2369 2370 // IMP type 2371 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 2372 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 2373 true)); 2374 2375 const LangOptions &Opts = CGM.getLangOpts(); 2376 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 2377 RuntimeVersion = 10; 2378 2379 // Don't bother initialising the GC stuff unless we're compiling in GC mode 2380 if (Opts.getGC() != LangOptions::NonGC) { 2381 // This is a bit of an hack. We should sort this out by having a proper 2382 // CGObjCGNUstep subclass for GC, but we may want to really support the old 2383 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 2384 // Get selectors needed in GC mode 2385 RetainSel = GetNullarySelector("retain", CGM.getContext()); 2386 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 2387 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 2388 2389 // Get functions needed in GC mode 2390 2391 // id objc_assign_ivar(id, id, ptrdiff_t); 2392 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy); 2393 // id objc_assign_strongCast (id, id*) 2394 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 2395 PtrToIdTy); 2396 // id objc_assign_global(id, id*); 2397 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy); 2398 // id objc_assign_weak(id, id*); 2399 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy); 2400 // id objc_read_weak(id*); 2401 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy); 2402 // void *objc_memmove_collectable(void*, void *, size_t); 2403 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 2404 SizeTy); 2405 } 2406 } 2407 2408 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF, 2409 const std::string &Name, bool isWeak) { 2410 llvm::Constant *ClassName = MakeConstantString(Name); 2411 // With the incompatible ABI, this will need to be replaced with a direct 2412 // reference to the class symbol. For the compatible nonfragile ABI we are 2413 // still performing this lookup at run time but emitting the symbol for the 2414 // class externally so that we can make the switch later. 2415 // 2416 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 2417 // with memoized versions or with static references if it's safe to do so. 2418 if (!isWeak) 2419 EmitClassRef(Name); 2420 2421 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction( 2422 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class"); 2423 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName); 2424 } 2425 2426 // This has to perform the lookup every time, since posing and related 2427 // techniques can modify the name -> class mapping. 2428 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF, 2429 const ObjCInterfaceDecl *OID) { 2430 auto *Value = 2431 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported()); 2432 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) 2433 CGM.setGVProperties(ClassSymbol, OID); 2434 return Value; 2435 } 2436 2437 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 2438 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false); 2439 if (CGM.getTriple().isOSBinFormatCOFF()) { 2440 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) { 2441 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool"); 2442 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 2443 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2444 2445 const VarDecl *VD = nullptr; 2446 for (const auto *Result : DC->lookup(&II)) 2447 if ((VD = dyn_cast<VarDecl>(Result))) 2448 break; 2449 2450 CGM.setGVProperties(ClassSymbol, VD); 2451 } 2452 } 2453 return Value; 2454 } 2455 2456 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel, 2457 const std::string &TypeEncoding) { 2458 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel]; 2459 llvm::GlobalAlias *SelValue = nullptr; 2460 2461 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2462 e = Types.end() ; i!=e ; i++) { 2463 if (i->first == TypeEncoding) { 2464 SelValue = i->second; 2465 break; 2466 } 2467 } 2468 if (!SelValue) { 2469 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0, 2470 llvm::GlobalValue::PrivateLinkage, 2471 ".objc_selector_" + Sel.getAsString(), 2472 &TheModule); 2473 Types.emplace_back(TypeEncoding, SelValue); 2474 } 2475 2476 return SelValue; 2477 } 2478 2479 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 2480 llvm::Value *SelValue = GetSelector(CGF, Sel); 2481 2482 // Store it to a temporary. Does this satisfy the semantics of 2483 // GetAddrOfSelector? Hopefully. 2484 Address tmp = CGF.CreateTempAlloca(SelValue->getType(), 2485 CGF.getPointerAlign()); 2486 CGF.Builder.CreateStore(SelValue, tmp); 2487 return tmp; 2488 } 2489 2490 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) { 2491 return GetTypedSelector(CGF, Sel, std::string()); 2492 } 2493 2494 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, 2495 const ObjCMethodDecl *Method) { 2496 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method); 2497 return GetTypedSelector(CGF, Method->getSelector(), SelTypes); 2498 } 2499 2500 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 2501 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 2502 // With the old ABI, there was only one kind of catchall, which broke 2503 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 2504 // a pointer indicating object catchalls, and NULL to indicate real 2505 // catchalls 2506 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2507 return MakeConstantString("@id"); 2508 } else { 2509 return nullptr; 2510 } 2511 } 2512 2513 // All other types should be Objective-C interface pointer types. 2514 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>(); 2515 assert(OPT && "Invalid @catch type."); 2516 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface(); 2517 assert(IDecl && "Invalid @catch type."); 2518 return MakeConstantString(IDecl->getIdentifier()->getName()); 2519 } 2520 2521 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) { 2522 if (usesSEHExceptions) 2523 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T); 2524 2525 if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions) 2526 return CGObjCGNU::GetEHType(T); 2527 2528 // For Objective-C++, we want to provide the ability to catch both C++ and 2529 // Objective-C objects in the same function. 2530 2531 // There's a particular fixed type info for 'id'. 2532 if (T->isObjCIdType() || 2533 T->isObjCQualifiedIdType()) { 2534 llvm::Constant *IDEHType = 2535 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 2536 if (!IDEHType) 2537 IDEHType = 2538 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 2539 false, 2540 llvm::GlobalValue::ExternalLinkage, 2541 nullptr, "__objc_id_type_info"); 2542 return IDEHType; 2543 } 2544 2545 const ObjCObjectPointerType *PT = 2546 T->getAs<ObjCObjectPointerType>(); 2547 assert(PT && "Invalid @catch type."); 2548 const ObjCInterfaceType *IT = PT->getInterfaceType(); 2549 assert(IT && "Invalid @catch type."); 2550 std::string className = 2551 std::string(IT->getDecl()->getIdentifier()->getName()); 2552 2553 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 2554 2555 // Return the existing typeinfo if it exists 2556 if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName)) 2557 return typeinfo; 2558 2559 // Otherwise create it. 2560 2561 // vtable for gnustep::libobjc::__objc_class_type_info 2562 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 2563 // platform's name mangling. 2564 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 2565 auto *Vtable = TheModule.getGlobalVariable(vtableName); 2566 if (!Vtable) { 2567 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 2568 llvm::GlobalValue::ExternalLinkage, 2569 nullptr, vtableName); 2570 } 2571 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 2572 auto *BVtable = 2573 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two); 2574 2575 llvm::Constant *typeName = 2576 ExportUniqueString(className, "__objc_eh_typename_"); 2577 2578 ConstantInitBuilder builder(CGM); 2579 auto fields = builder.beginStruct(); 2580 fields.add(BVtable); 2581 fields.add(typeName); 2582 llvm::Constant *TI = 2583 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className, 2584 CGM.getPointerAlign(), 2585 /*constant*/ false, 2586 llvm::GlobalValue::LinkOnceODRLinkage); 2587 return TI; 2588 } 2589 2590 /// Generate an NSConstantString object. 2591 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 2592 2593 std::string Str = SL->getString().str(); 2594 CharUnits Align = CGM.getPointerAlign(); 2595 2596 // Look for an existing one 2597 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 2598 if (old != ObjCStrings.end()) 2599 return ConstantAddress(old->getValue(), Int8Ty, Align); 2600 2601 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2602 2603 if (StringClass.empty()) StringClass = "NSConstantString"; 2604 2605 std::string Sym = "_OBJC_CLASS_"; 2606 Sym += StringClass; 2607 2608 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 2609 2610 if (!isa) 2611 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false, 2612 llvm::GlobalValue::ExternalWeakLinkage, 2613 nullptr, Sym); 2614 2615 ConstantInitBuilder Builder(CGM); 2616 auto Fields = Builder.beginStruct(); 2617 Fields.add(isa); 2618 Fields.add(MakeConstantString(Str)); 2619 Fields.addInt(IntTy, Str.size()); 2620 llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align); 2621 ObjCStrings[Str] = ObjCStr; 2622 ConstantStrings.push_back(ObjCStr); 2623 return ConstantAddress(ObjCStr, Int8Ty, Align); 2624 } 2625 2626 ///Generates a message send where the super is the receiver. This is a message 2627 ///send to self with special delivery semantics indicating which class's method 2628 ///should be called. 2629 RValue 2630 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 2631 ReturnValueSlot Return, 2632 QualType ResultType, 2633 Selector Sel, 2634 const ObjCInterfaceDecl *Class, 2635 bool isCategoryImpl, 2636 llvm::Value *Receiver, 2637 bool IsClassMessage, 2638 const CallArgList &CallArgs, 2639 const ObjCMethodDecl *Method) { 2640 CGBuilderTy &Builder = CGF.Builder; 2641 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2642 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2643 return RValue::get(EnforceType(Builder, Receiver, 2644 CGM.getTypes().ConvertType(ResultType))); 2645 } 2646 if (Sel == ReleaseSel) { 2647 return RValue::get(nullptr); 2648 } 2649 } 2650 2651 llvm::Value *cmd = GetSelector(CGF, Sel); 2652 CallArgList ActualArgs; 2653 2654 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 2655 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2656 ActualArgs.addFrom(CallArgs); 2657 2658 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2659 2660 llvm::Value *ReceiverClass = nullptr; 2661 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 2662 if (isV2ABI) { 2663 ReceiverClass = GetClassNamed(CGF, 2664 Class->getSuperClass()->getNameAsString(), /*isWeak*/false); 2665 if (IsClassMessage) { 2666 // Load the isa pointer of the superclass is this is a class method. 2667 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2668 llvm::PointerType::getUnqual(IdTy)); 2669 ReceiverClass = 2670 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2671 } 2672 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy); 2673 } else { 2674 if (isCategoryImpl) { 2675 llvm::FunctionCallee classLookupFunction = nullptr; 2676 if (IsClassMessage) { 2677 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2678 IdTy, PtrTy, true), "objc_get_meta_class"); 2679 } else { 2680 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 2681 IdTy, PtrTy, true), "objc_get_class"); 2682 } 2683 ReceiverClass = Builder.CreateCall(classLookupFunction, 2684 MakeConstantString(Class->getNameAsString())); 2685 } else { 2686 // Set up global aliases for the metaclass or class pointer if they do not 2687 // already exist. These will are forward-references which will be set to 2688 // pointers to the class and metaclass structure created for the runtime 2689 // load function. To send a message to super, we look up the value of the 2690 // super_class pointer from either the class or metaclass structure. 2691 if (IsClassMessage) { 2692 if (!MetaClassPtrAlias) { 2693 MetaClassPtrAlias = llvm::GlobalAlias::create( 2694 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2695 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule); 2696 } 2697 ReceiverClass = MetaClassPtrAlias; 2698 } else { 2699 if (!ClassPtrAlias) { 2700 ClassPtrAlias = llvm::GlobalAlias::create( 2701 IdElemTy, 0, llvm::GlobalValue::InternalLinkage, 2702 ".objc_class_ref" + Class->getNameAsString(), &TheModule); 2703 } 2704 ReceiverClass = ClassPtrAlias; 2705 } 2706 } 2707 // Cast the pointer to a simplified version of the class structure 2708 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy); 2709 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 2710 llvm::PointerType::getUnqual(CastTy)); 2711 // Get the superclass pointer 2712 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1); 2713 // Load the superclass pointer 2714 ReceiverClass = 2715 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign()); 2716 } 2717 // Construct the structure used to look up the IMP 2718 llvm::StructType *ObjCSuperTy = 2719 llvm::StructType::get(Receiver->getType(), IdTy); 2720 2721 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy, 2722 CGF.getPointerAlign()); 2723 2724 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 2725 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 2726 2727 // Get the IMP 2728 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI); 2729 imp = EnforceType(Builder, imp, MSI.MessengerType); 2730 2731 llvm::Metadata *impMD[] = { 2732 llvm::MDString::get(VMContext, Sel.getAsString()), 2733 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 2734 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2735 llvm::Type::getInt1Ty(VMContext), IsClassMessage))}; 2736 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2737 2738 CGCallee callee(CGCalleeInfo(), imp); 2739 2740 llvm::CallBase *call; 2741 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2742 call->setMetadata(msgSendMDKind, node); 2743 return msgRet; 2744 } 2745 2746 /// Generate code for a message send expression. 2747 RValue 2748 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 2749 ReturnValueSlot Return, 2750 QualType ResultType, 2751 Selector Sel, 2752 llvm::Value *Receiver, 2753 const CallArgList &CallArgs, 2754 const ObjCInterfaceDecl *Class, 2755 const ObjCMethodDecl *Method) { 2756 CGBuilderTy &Builder = CGF.Builder; 2757 2758 // Strip out message sends to retain / release in GC mode 2759 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 2760 if (Sel == RetainSel || Sel == AutoreleaseSel) { 2761 return RValue::get(EnforceType(Builder, Receiver, 2762 CGM.getTypes().ConvertType(ResultType))); 2763 } 2764 if (Sel == ReleaseSel) { 2765 return RValue::get(nullptr); 2766 } 2767 } 2768 2769 bool isDirect = Method && Method->isDirectMethod(); 2770 2771 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 2772 llvm::Value *cmd; 2773 if (!isDirect) { 2774 if (Method) 2775 cmd = GetSelector(CGF, Method); 2776 else 2777 cmd = GetSelector(CGF, Sel); 2778 cmd = EnforceType(Builder, cmd, SelectorTy); 2779 } 2780 2781 Receiver = EnforceType(Builder, Receiver, IdTy); 2782 2783 llvm::Metadata *impMD[] = { 2784 llvm::MDString::get(VMContext, Sel.getAsString()), 2785 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""), 2786 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2787 llvm::Type::getInt1Ty(VMContext), Class != nullptr))}; 2788 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 2789 2790 CallArgList ActualArgs; 2791 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 2792 if (!isDirect) 2793 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 2794 ActualArgs.addFrom(CallArgs); 2795 2796 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2797 2798 // Message sends are expected to return a zero value when the 2799 // receiver is nil. At one point, this was only guaranteed for 2800 // simple integer and pointer types, but expectations have grown 2801 // over time. 2802 // 2803 // Given a nil receiver, the GNU runtime's message lookup will 2804 // return a stub function that simply sets various return-value 2805 // registers to zero and then returns. That's good enough for us 2806 // if and only if (1) the calling conventions of that stub are 2807 // compatible with the signature we're using and (2) the registers 2808 // it sets are sufficient to produce a zero value of the return type. 2809 // Rather than doing a whole target-specific analysis, we assume it 2810 // only works for void, integer, and pointer types, and in all 2811 // other cases we do an explicit nil check is emitted code. In 2812 // addition to ensuring we produce a zero value for other types, this 2813 // sidesteps the few outright CC incompatibilities we know about that 2814 // could otherwise lead to crashes, like when a method is expected to 2815 // return on the x87 floating point stack or adjust the stack pointer 2816 // because of an indirect return. 2817 bool hasParamDestroyedInCallee = false; 2818 bool requiresExplicitZeroResult = false; 2819 bool requiresNilReceiverCheck = [&] { 2820 // We never need a check if we statically know the receiver isn't nil. 2821 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false, 2822 Class, Receiver)) 2823 return false; 2824 2825 // If there's a consumed argument, we need a nil check. 2826 if (Method && Method->hasParamDestroyedInCallee()) { 2827 hasParamDestroyedInCallee = true; 2828 } 2829 2830 // If the return value isn't flagged as unused, and the result 2831 // type isn't in our narrow set where we assume compatibility, 2832 // we need a nil check to ensure a nil value. 2833 if (!Return.isUnused()) { 2834 if (ResultType->isVoidType()) { 2835 // void results are definitely okay. 2836 } else if (ResultType->hasPointerRepresentation() && 2837 CGM.getTypes().isZeroInitializable(ResultType)) { 2838 // Pointer types should be fine as long as they have 2839 // bitwise-zero null pointers. But do we need to worry 2840 // about unusual address spaces? 2841 } else if (ResultType->isIntegralOrEnumerationType()) { 2842 // Bitwise zero should always be zero for integral types. 2843 // FIXME: we probably need a size limit here, but we've 2844 // never imposed one before 2845 } else { 2846 // Otherwise, use an explicit check just to be sure, unless we're 2847 // calling a direct method, where the implementation does this for us. 2848 requiresExplicitZeroResult = !isDirect; 2849 } 2850 } 2851 2852 return hasParamDestroyedInCallee || requiresExplicitZeroResult; 2853 }(); 2854 2855 // We will need to explicitly zero-initialize an aggregate result slot 2856 // if we generally require explicit zeroing and we have an aggregate 2857 // result. 2858 bool requiresExplicitAggZeroing = 2859 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType); 2860 2861 // The block we're going to end up in after any message send or nil path. 2862 llvm::BasicBlock *continueBB = nullptr; 2863 // The block that eventually branched to continueBB along the nil path. 2864 llvm::BasicBlock *nilPathBB = nullptr; 2865 // The block to do explicit work in along the nil path, if necessary. 2866 llvm::BasicBlock *nilCleanupBB = nullptr; 2867 2868 // Emit the nil-receiver check. 2869 if (requiresNilReceiverCheck) { 2870 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend"); 2871 continueBB = CGF.createBasicBlock("continue"); 2872 2873 // If we need to zero-initialize an aggregate result or destroy 2874 // consumed arguments, we'll need a separate cleanup block. 2875 // Otherwise we can just branch directly to the continuation block. 2876 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) { 2877 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup"); 2878 } else { 2879 nilPathBB = Builder.GetInsertBlock(); 2880 } 2881 2882 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 2883 llvm::Constant::getNullValue(Receiver->getType())); 2884 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB, 2885 messageBB); 2886 CGF.EmitBlock(messageBB); 2887 } 2888 2889 // Get the IMP to call 2890 llvm::Value *imp; 2891 2892 // If this is a direct method, just emit it here. 2893 if (isDirect) 2894 imp = GenerateMethod(Method, Method->getClassInterface()); 2895 else 2896 // If we have non-legacy dispatch specified, we try using the 2897 // objc_msgSend() functions. These are not supported on all platforms 2898 // (or all runtimes on a given platform), so we 2899 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 2900 case CodeGenOptions::Legacy: 2901 imp = LookupIMP(CGF, Receiver, cmd, node, MSI); 2902 break; 2903 case CodeGenOptions::Mixed: 2904 case CodeGenOptions::NonLegacy: 2905 StringRef name = "objc_msgSend"; 2906 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2907 name = "objc_msgSend_fpret"; 2908 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 2909 name = "objc_msgSend_stret"; 2910 2911 // The address of the memory block is be passed in x8 for POD type, 2912 // or in x0 for non-POD type (marked as inreg). 2913 bool shouldCheckForInReg = 2914 CGM.getContext() 2915 .getTargetInfo() 2916 .getTriple() 2917 .isWindowsMSVCEnvironment() && 2918 CGM.getContext().getTargetInfo().getTriple().isAArch64(); 2919 if (shouldCheckForInReg && CGM.ReturnTypeHasInReg(MSI.CallInfo)) { 2920 name = "objc_msgSend_stret2"; 2921 } 2922 } 2923 // The actual types here don't matter - we're going to bitcast the 2924 // function anyway 2925 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 2926 name) 2927 .getCallee(); 2928 } 2929 2930 // Reset the receiver in case the lookup modified it 2931 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy); 2932 2933 imp = EnforceType(Builder, imp, MSI.MessengerType); 2934 2935 llvm::CallBase *call; 2936 CGCallee callee(CGCalleeInfo(), imp); 2937 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call); 2938 if (!isDirect) 2939 call->setMetadata(msgSendMDKind, node); 2940 2941 if (requiresNilReceiverCheck) { 2942 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock(); 2943 CGF.Builder.CreateBr(continueBB); 2944 2945 // Emit the nil path if we decided it was necessary above. 2946 if (nilCleanupBB) { 2947 CGF.EmitBlock(nilCleanupBB); 2948 2949 if (hasParamDestroyedInCallee) { 2950 destroyCalleeDestroyedArguments(CGF, Method, CallArgs); 2951 } 2952 2953 if (requiresExplicitAggZeroing) { 2954 assert(msgRet.isAggregate()); 2955 Address addr = msgRet.getAggregateAddress(); 2956 CGF.EmitNullInitialization(addr, ResultType); 2957 } 2958 2959 nilPathBB = CGF.Builder.GetInsertBlock(); 2960 CGF.Builder.CreateBr(continueBB); 2961 } 2962 2963 // Enter the continuation block and emit a phi if required. 2964 CGF.EmitBlock(continueBB); 2965 if (msgRet.isScalar()) { 2966 // If the return type is void, do nothing 2967 if (llvm::Value *v = msgRet.getScalarVal()) { 2968 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 2969 phi->addIncoming(v, nonNilPathBB); 2970 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB); 2971 msgRet = RValue::get(phi); 2972 } 2973 } else if (msgRet.isAggregate()) { 2974 // Aggregate zeroing is handled in nilCleanupBB when it's required. 2975 } else /* isComplex() */ { 2976 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 2977 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 2978 phi->addIncoming(v.first, nonNilPathBB); 2979 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 2980 nilPathBB); 2981 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 2982 phi2->addIncoming(v.second, nonNilPathBB); 2983 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 2984 nilPathBB); 2985 msgRet = RValue::getComplex(phi, phi2); 2986 } 2987 } 2988 return msgRet; 2989 } 2990 2991 /// Generates a MethodList. Used in construction of a objc_class and 2992 /// objc_category structures. 2993 llvm::Constant *CGObjCGNU:: 2994 GenerateMethodList(StringRef ClassName, 2995 StringRef CategoryName, 2996 ArrayRef<const ObjCMethodDecl*> Methods, 2997 bool isClassMethodList) { 2998 if (Methods.empty()) 2999 return NULLPtr; 3000 3001 ConstantInitBuilder Builder(CGM); 3002 3003 auto MethodList = Builder.beginStruct(); 3004 MethodList.addNullPointer(CGM.Int8PtrTy); 3005 MethodList.addInt(Int32Ty, Methods.size()); 3006 3007 // Get the method structure type. 3008 llvm::StructType *ObjCMethodTy = 3009 llvm::StructType::get(CGM.getLLVMContext(), { 3010 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 3011 PtrToInt8Ty, // Method types 3012 IMPTy // Method pointer 3013 }); 3014 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2); 3015 if (isV2ABI) { 3016 // size_t size; 3017 llvm::DataLayout td(&TheModule); 3018 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) / 3019 CGM.getContext().getCharWidth()); 3020 ObjCMethodTy = 3021 llvm::StructType::get(CGM.getLLVMContext(), { 3022 IMPTy, // Method pointer 3023 PtrToInt8Ty, // Selector 3024 PtrToInt8Ty // Extended type encoding 3025 }); 3026 } else { 3027 ObjCMethodTy = 3028 llvm::StructType::get(CGM.getLLVMContext(), { 3029 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 3030 PtrToInt8Ty, // Method types 3031 IMPTy // Method pointer 3032 }); 3033 } 3034 auto MethodArray = MethodList.beginArray(); 3035 ASTContext &Context = CGM.getContext(); 3036 for (const auto *OMD : Methods) { 3037 llvm::Constant *FnPtr = 3038 TheModule.getFunction(getSymbolNameForMethod(OMD)); 3039 assert(FnPtr && "Can't generate metadata for method that doesn't exist"); 3040 auto Method = MethodArray.beginStruct(ObjCMethodTy); 3041 if (isV2ABI) { 3042 Method.add(FnPtr); 3043 Method.add(GetConstantSelector(OMD->getSelector(), 3044 Context.getObjCEncodingForMethodDecl(OMD))); 3045 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true))); 3046 } else { 3047 Method.add(MakeConstantString(OMD->getSelector().getAsString())); 3048 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD))); 3049 Method.add(FnPtr); 3050 } 3051 Method.finishAndAddTo(MethodArray); 3052 } 3053 MethodArray.finishAndAddTo(MethodList); 3054 3055 // Create an instance of the structure 3056 return MethodList.finishAndCreateGlobal(".objc_method_list", 3057 CGM.getPointerAlign()); 3058 } 3059 3060 /// Generates an IvarList. Used in construction of a objc_class. 3061 llvm::Constant *CGObjCGNU:: 3062 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 3063 ArrayRef<llvm::Constant *> IvarTypes, 3064 ArrayRef<llvm::Constant *> IvarOffsets, 3065 ArrayRef<llvm::Constant *> IvarAlign, 3066 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) { 3067 if (IvarNames.empty()) 3068 return NULLPtr; 3069 3070 ConstantInitBuilder Builder(CGM); 3071 3072 // Structure containing array count followed by array. 3073 auto IvarList = Builder.beginStruct(); 3074 IvarList.addInt(IntTy, (int)IvarNames.size()); 3075 3076 // Get the ivar structure type. 3077 llvm::StructType *ObjCIvarTy = 3078 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy); 3079 3080 // Array of ivar structures. 3081 auto Ivars = IvarList.beginArray(ObjCIvarTy); 3082 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 3083 auto Ivar = Ivars.beginStruct(ObjCIvarTy); 3084 Ivar.add(IvarNames[i]); 3085 Ivar.add(IvarTypes[i]); 3086 Ivar.add(IvarOffsets[i]); 3087 Ivar.finishAndAddTo(Ivars); 3088 } 3089 Ivars.finishAndAddTo(IvarList); 3090 3091 // Create an instance of the structure 3092 return IvarList.finishAndCreateGlobal(".objc_ivar_list", 3093 CGM.getPointerAlign()); 3094 } 3095 3096 /// Generate a class structure 3097 llvm::Constant *CGObjCGNU::GenerateClassStructure( 3098 llvm::Constant *MetaClass, 3099 llvm::Constant *SuperClass, 3100 unsigned info, 3101 const char *Name, 3102 llvm::Constant *Version, 3103 llvm::Constant *InstanceSize, 3104 llvm::Constant *IVars, 3105 llvm::Constant *Methods, 3106 llvm::Constant *Protocols, 3107 llvm::Constant *IvarOffsets, 3108 llvm::Constant *Properties, 3109 llvm::Constant *StrongIvarBitmap, 3110 llvm::Constant *WeakIvarBitmap, 3111 bool isMeta) { 3112 // Set up the class structure 3113 // Note: Several of these are char*s when they should be ids. This is 3114 // because the runtime performs this translation on load. 3115 // 3116 // Fields marked New ABI are part of the GNUstep runtime. We emit them 3117 // anyway; the classes will still work with the GNU runtime, they will just 3118 // be ignored. 3119 llvm::StructType *ClassTy = llvm::StructType::get( 3120 PtrToInt8Ty, // isa 3121 PtrToInt8Ty, // super_class 3122 PtrToInt8Ty, // name 3123 LongTy, // version 3124 LongTy, // info 3125 LongTy, // instance_size 3126 IVars->getType(), // ivars 3127 Methods->getType(), // methods 3128 // These are all filled in by the runtime, so we pretend 3129 PtrTy, // dtable 3130 PtrTy, // subclass_list 3131 PtrTy, // sibling_class 3132 PtrTy, // protocols 3133 PtrTy, // gc_object_type 3134 // New ABI: 3135 LongTy, // abi_version 3136 IvarOffsets->getType(), // ivar_offsets 3137 Properties->getType(), // properties 3138 IntPtrTy, // strong_pointers 3139 IntPtrTy // weak_pointers 3140 ); 3141 3142 ConstantInitBuilder Builder(CGM); 3143 auto Elements = Builder.beginStruct(ClassTy); 3144 3145 // Fill in the structure 3146 3147 // isa 3148 Elements.add(MetaClass); 3149 // super_class 3150 Elements.add(SuperClass); 3151 // name 3152 Elements.add(MakeConstantString(Name, ".class_name")); 3153 // version 3154 Elements.addInt(LongTy, 0); 3155 // info 3156 Elements.addInt(LongTy, info); 3157 // instance_size 3158 if (isMeta) { 3159 llvm::DataLayout td(&TheModule); 3160 Elements.addInt(LongTy, 3161 td.getTypeSizeInBits(ClassTy) / 3162 CGM.getContext().getCharWidth()); 3163 } else 3164 Elements.add(InstanceSize); 3165 // ivars 3166 Elements.add(IVars); 3167 // methods 3168 Elements.add(Methods); 3169 // These are all filled in by the runtime, so we pretend 3170 // dtable 3171 Elements.add(NULLPtr); 3172 // subclass_list 3173 Elements.add(NULLPtr); 3174 // sibling_class 3175 Elements.add(NULLPtr); 3176 // protocols 3177 Elements.add(Protocols); 3178 // gc_object_type 3179 Elements.add(NULLPtr); 3180 // abi_version 3181 Elements.addInt(LongTy, ClassABIVersion); 3182 // ivar_offsets 3183 Elements.add(IvarOffsets); 3184 // properties 3185 Elements.add(Properties); 3186 // strong_pointers 3187 Elements.add(StrongIvarBitmap); 3188 // weak_pointers 3189 Elements.add(WeakIvarBitmap); 3190 // Create an instance of the structure 3191 // This is now an externally visible symbol, so that we can speed up class 3192 // messages in the next ABI. We may already have some weak references to 3193 // this, so check and fix them properly. 3194 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 3195 std::string(Name)); 3196 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 3197 llvm::Constant *Class = 3198 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false, 3199 llvm::GlobalValue::ExternalLinkage); 3200 if (ClassRef) { 3201 ClassRef->replaceAllUsesWith(Class); 3202 ClassRef->removeFromParent(); 3203 Class->setName(ClassSym); 3204 } 3205 return Class; 3206 } 3207 3208 llvm::Constant *CGObjCGNU:: 3209 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) { 3210 // Get the method structure type. 3211 llvm::StructType *ObjCMethodDescTy = 3212 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty }); 3213 ASTContext &Context = CGM.getContext(); 3214 ConstantInitBuilder Builder(CGM); 3215 auto MethodList = Builder.beginStruct(); 3216 MethodList.addInt(IntTy, Methods.size()); 3217 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy); 3218 for (auto *M : Methods) { 3219 auto Method = MethodArray.beginStruct(ObjCMethodDescTy); 3220 Method.add(MakeConstantString(M->getSelector().getAsString())); 3221 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M))); 3222 Method.finishAndAddTo(MethodArray); 3223 } 3224 MethodArray.finishAndAddTo(MethodList); 3225 return MethodList.finishAndCreateGlobal(".objc_method_list", 3226 CGM.getPointerAlign()); 3227 } 3228 3229 // Create the protocol list structure used in classes, categories and so on 3230 llvm::Constant * 3231 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) { 3232 3233 ConstantInitBuilder Builder(CGM); 3234 auto ProtocolList = Builder.beginStruct(); 3235 ProtocolList.add(NULLPtr); 3236 ProtocolList.addInt(LongTy, Protocols.size()); 3237 3238 auto Elements = ProtocolList.beginArray(PtrToInt8Ty); 3239 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 3240 iter != endIter ; iter++) { 3241 llvm::Constant *protocol = nullptr; 3242 llvm::StringMap<llvm::Constant*>::iterator value = 3243 ExistingProtocols.find(*iter); 3244 if (value == ExistingProtocols.end()) { 3245 protocol = GenerateEmptyProtocol(*iter); 3246 } else { 3247 protocol = value->getValue(); 3248 } 3249 Elements.add(protocol); 3250 } 3251 Elements.finishAndAddTo(ProtocolList); 3252 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3253 CGM.getPointerAlign()); 3254 } 3255 3256 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF, 3257 const ObjCProtocolDecl *PD) { 3258 auto protocol = GenerateProtocolRef(PD); 3259 llvm::Type *T = 3260 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 3261 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 3262 } 3263 3264 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) { 3265 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()]; 3266 if (!protocol) 3267 GenerateProtocol(PD); 3268 assert(protocol && "Unknown protocol"); 3269 return protocol; 3270 } 3271 3272 llvm::Constant * 3273 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) { 3274 llvm::Constant *ProtocolList = GenerateProtocolList({}); 3275 llvm::Constant *MethodList = GenerateProtocolMethodList({}); 3276 // Protocols are objects containing lists of the methods implemented and 3277 // protocols adopted. 3278 ConstantInitBuilder Builder(CGM); 3279 auto Elements = Builder.beginStruct(); 3280 3281 // The isa pointer must be set to a magic number so the runtime knows it's 3282 // the correct layout. 3283 Elements.add(llvm::ConstantExpr::getIntToPtr( 3284 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3285 3286 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name")); 3287 Elements.add(ProtocolList); /* .protocol_list */ 3288 Elements.add(MethodList); /* .instance_methods */ 3289 Elements.add(MethodList); /* .class_methods */ 3290 Elements.add(MethodList); /* .optional_instance_methods */ 3291 Elements.add(MethodList); /* .optional_class_methods */ 3292 Elements.add(NULLPtr); /* .properties */ 3293 Elements.add(NULLPtr); /* .optional_properties */ 3294 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName), 3295 CGM.getPointerAlign()); 3296 } 3297 3298 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 3299 if (PD->isNonRuntimeProtocol()) 3300 return; 3301 3302 std::string ProtocolName = PD->getNameAsString(); 3303 3304 // Use the protocol definition, if there is one. 3305 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3306 PD = Def; 3307 3308 SmallVector<std::string, 16> Protocols; 3309 for (const auto *PI : PD->protocols()) 3310 Protocols.push_back(PI->getNameAsString()); 3311 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3312 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods; 3313 for (const auto *I : PD->instance_methods()) 3314 if (I->isOptional()) 3315 OptionalInstanceMethods.push_back(I); 3316 else 3317 InstanceMethods.push_back(I); 3318 // Collect information about class methods: 3319 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3320 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods; 3321 for (const auto *I : PD->class_methods()) 3322 if (I->isOptional()) 3323 OptionalClassMethods.push_back(I); 3324 else 3325 ClassMethods.push_back(I); 3326 3327 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 3328 llvm::Constant *InstanceMethodList = 3329 GenerateProtocolMethodList(InstanceMethods); 3330 llvm::Constant *ClassMethodList = 3331 GenerateProtocolMethodList(ClassMethods); 3332 llvm::Constant *OptionalInstanceMethodList = 3333 GenerateProtocolMethodList(OptionalInstanceMethods); 3334 llvm::Constant *OptionalClassMethodList = 3335 GenerateProtocolMethodList(OptionalClassMethods); 3336 3337 // Property metadata: name, attributes, isSynthesized, setter name, setter 3338 // types, getter name, getter types. 3339 // The isSynthesized value is always set to 0 in a protocol. It exists to 3340 // simplify the runtime library by allowing it to use the same data 3341 // structures for protocol metadata everywhere. 3342 3343 llvm::Constant *PropertyList = 3344 GeneratePropertyList(nullptr, PD, false, false); 3345 llvm::Constant *OptionalPropertyList = 3346 GeneratePropertyList(nullptr, PD, false, true); 3347 3348 // Protocols are objects containing lists of the methods implemented and 3349 // protocols adopted. 3350 // The isa pointer must be set to a magic number so the runtime knows it's 3351 // the correct layout. 3352 ConstantInitBuilder Builder(CGM); 3353 auto Elements = Builder.beginStruct(); 3354 Elements.add( 3355 llvm::ConstantExpr::getIntToPtr( 3356 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 3357 Elements.add(MakeConstantString(ProtocolName)); 3358 Elements.add(ProtocolList); 3359 Elements.add(InstanceMethodList); 3360 Elements.add(ClassMethodList); 3361 Elements.add(OptionalInstanceMethodList); 3362 Elements.add(OptionalClassMethodList); 3363 Elements.add(PropertyList); 3364 Elements.add(OptionalPropertyList); 3365 ExistingProtocols[ProtocolName] = 3366 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()); 3367 } 3368 void CGObjCGNU::GenerateProtocolHolderCategory() { 3369 // Collect information about instance methods 3370 3371 ConstantInitBuilder Builder(CGM); 3372 auto Elements = Builder.beginStruct(); 3373 3374 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 3375 const std::string CategoryName = "AnotherHack"; 3376 Elements.add(MakeConstantString(CategoryName)); 3377 Elements.add(MakeConstantString(ClassName)); 3378 // Instance method list 3379 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false)); 3380 // Class method list 3381 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true)); 3382 3383 // Protocol list 3384 ConstantInitBuilder ProtocolListBuilder(CGM); 3385 auto ProtocolList = ProtocolListBuilder.beginStruct(); 3386 ProtocolList.add(NULLPtr); 3387 ProtocolList.addInt(LongTy, ExistingProtocols.size()); 3388 auto ProtocolElements = ProtocolList.beginArray(PtrTy); 3389 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 3390 iter != endIter ; iter++) { 3391 ProtocolElements.add(iter->getValue()); 3392 } 3393 ProtocolElements.finishAndAddTo(ProtocolList); 3394 Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list", 3395 CGM.getPointerAlign())); 3396 Categories.push_back( 3397 Elements.finishAndCreateGlobal("", CGM.getPointerAlign())); 3398 } 3399 3400 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 3401 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 3402 /// bits set to their values, LSB first, while larger ones are stored in a 3403 /// structure of this / form: 3404 /// 3405 /// struct { int32_t length; int32_t values[length]; }; 3406 /// 3407 /// The values in the array are stored in host-endian format, with the least 3408 /// significant bit being assumed to come first in the bitfield. Therefore, a 3409 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 3410 /// bitfield / with the 63rd bit set will be 1<<64. 3411 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 3412 int bitCount = bits.size(); 3413 int ptrBits = CGM.getDataLayout().getPointerSizeInBits(); 3414 if (bitCount < ptrBits) { 3415 uint64_t val = 1; 3416 for (int i=0 ; i<bitCount ; ++i) { 3417 if (bits[i]) val |= 1ULL<<(i+1); 3418 } 3419 return llvm::ConstantInt::get(IntPtrTy, val); 3420 } 3421 SmallVector<llvm::Constant *, 8> values; 3422 int v=0; 3423 while (v < bitCount) { 3424 int32_t word = 0; 3425 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 3426 if (bits[v]) word |= 1<<i; 3427 v++; 3428 } 3429 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 3430 } 3431 3432 ConstantInitBuilder builder(CGM); 3433 auto fields = builder.beginStruct(); 3434 fields.addInt(Int32Ty, values.size()); 3435 auto array = fields.beginArray(); 3436 for (auto *v : values) array.add(v); 3437 array.finishAndAddTo(fields); 3438 3439 llvm::Constant *GS = 3440 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4)); 3441 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 3442 return ptr; 3443 } 3444 3445 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const 3446 ObjCCategoryDecl *OCD) { 3447 const auto &RefPro = OCD->getReferencedProtocols(); 3448 const auto RuntimeProtos = 3449 GetRuntimeProtocolList(RefPro.begin(), RefPro.end()); 3450 SmallVector<std::string, 16> Protocols; 3451 for (const auto *PD : RuntimeProtos) 3452 Protocols.push_back(PD->getNameAsString()); 3453 return GenerateProtocolList(Protocols); 3454 } 3455 3456 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3457 const ObjCInterfaceDecl *Class = OCD->getClassInterface(); 3458 std::string ClassName = Class->getNameAsString(); 3459 std::string CategoryName = OCD->getNameAsString(); 3460 3461 // Collect the names of referenced protocols 3462 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 3463 3464 ConstantInitBuilder Builder(CGM); 3465 auto Elements = Builder.beginStruct(); 3466 Elements.add(MakeConstantString(CategoryName)); 3467 Elements.add(MakeConstantString(ClassName)); 3468 // Instance method list 3469 SmallVector<ObjCMethodDecl*, 16> InstanceMethods; 3470 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(), 3471 OCD->instmeth_end()); 3472 Elements.add( 3473 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false)); 3474 3475 // Class method list 3476 3477 SmallVector<ObjCMethodDecl*, 16> ClassMethods; 3478 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(), 3479 OCD->classmeth_end()); 3480 Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true)); 3481 3482 // Protocol list 3483 Elements.add(GenerateCategoryProtocolList(CatDecl)); 3484 if (isRuntime(ObjCRuntime::GNUstep, 2)) { 3485 const ObjCCategoryDecl *Category = 3486 Class->FindCategoryDeclaration(OCD->getIdentifier()); 3487 if (Category) { 3488 // Instance properties 3489 Elements.add(GeneratePropertyList(OCD, Category, false)); 3490 // Class properties 3491 Elements.add(GeneratePropertyList(OCD, Category, true)); 3492 } else { 3493 Elements.addNullPointer(PtrTy); 3494 Elements.addNullPointer(PtrTy); 3495 } 3496 } 3497 3498 Categories.push_back(Elements.finishAndCreateGlobal( 3499 std::string(".objc_category_") + ClassName + CategoryName, 3500 CGM.getPointerAlign())); 3501 } 3502 3503 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container, 3504 const ObjCContainerDecl *OCD, 3505 bool isClassProperty, 3506 bool protocolOptionalProperties) { 3507 3508 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3509 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3510 bool isProtocol = isa<ObjCProtocolDecl>(OCD); 3511 ASTContext &Context = CGM.getContext(); 3512 3513 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties 3514 = [&](const ObjCProtocolDecl *Proto) { 3515 for (const auto *P : Proto->protocols()) 3516 collectProtocolProperties(P); 3517 for (const auto *PD : Proto->properties()) { 3518 if (isClassProperty != PD->isClassProperty()) 3519 continue; 3520 // Skip any properties that are declared in protocols that this class 3521 // conforms to but are not actually implemented by this class. 3522 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container)) 3523 continue; 3524 if (!PropertySet.insert(PD->getIdentifier()).second) 3525 continue; 3526 Properties.push_back(PD); 3527 } 3528 }; 3529 3530 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3531 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3532 for (auto *PD : ClassExt->properties()) { 3533 if (isClassProperty != PD->isClassProperty()) 3534 continue; 3535 PropertySet.insert(PD->getIdentifier()); 3536 Properties.push_back(PD); 3537 } 3538 3539 for (const auto *PD : OCD->properties()) { 3540 if (isClassProperty != PD->isClassProperty()) 3541 continue; 3542 // If we're generating a list for a protocol, skip optional / required ones 3543 // when generating the other list. 3544 if (isProtocol && (protocolOptionalProperties != PD->isOptional())) 3545 continue; 3546 // Don't emit duplicate metadata for properties that were already in a 3547 // class extension. 3548 if (!PropertySet.insert(PD->getIdentifier()).second) 3549 continue; 3550 3551 Properties.push_back(PD); 3552 } 3553 3554 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3555 for (const auto *P : OID->all_referenced_protocols()) 3556 collectProtocolProperties(P); 3557 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) 3558 for (const auto *P : CD->protocols()) 3559 collectProtocolProperties(P); 3560 3561 auto numProperties = Properties.size(); 3562 3563 if (numProperties == 0) 3564 return NULLPtr; 3565 3566 ConstantInitBuilder builder(CGM); 3567 auto propertyList = builder.beginStruct(); 3568 auto properties = PushPropertyListHeader(propertyList, numProperties); 3569 3570 // Add all of the property methods need adding to the method list and to the 3571 // property metadata list. 3572 for (auto *property : Properties) { 3573 bool isSynthesized = false; 3574 bool isDynamic = false; 3575 if (!isProtocol) { 3576 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container); 3577 if (propertyImpl) { 3578 isSynthesized = (propertyImpl->getPropertyImplementation() == 3579 ObjCPropertyImplDecl::Synthesize); 3580 isDynamic = (propertyImpl->getPropertyImplementation() == 3581 ObjCPropertyImplDecl::Dynamic); 3582 } 3583 } 3584 PushProperty(properties, property, Container, isSynthesized, isDynamic); 3585 } 3586 properties.finishAndAddTo(propertyList); 3587 3588 return propertyList.finishAndCreateGlobal(".objc_property_list", 3589 CGM.getPointerAlign()); 3590 } 3591 3592 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 3593 // Get the class declaration for which the alias is specified. 3594 ObjCInterfaceDecl *ClassDecl = 3595 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 3596 ClassAliases.emplace_back(ClassDecl->getNameAsString(), 3597 OAD->getNameAsString()); 3598 } 3599 3600 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 3601 ASTContext &Context = CGM.getContext(); 3602 3603 // Get the superclass name. 3604 const ObjCInterfaceDecl * SuperClassDecl = 3605 OID->getClassInterface()->getSuperClass(); 3606 std::string SuperClassName; 3607 if (SuperClassDecl) { 3608 SuperClassName = SuperClassDecl->getNameAsString(); 3609 EmitClassRef(SuperClassName); 3610 } 3611 3612 // Get the class name 3613 ObjCInterfaceDecl *ClassDecl = 3614 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 3615 std::string ClassName = ClassDecl->getNameAsString(); 3616 3617 // Emit the symbol that is used to generate linker errors if this class is 3618 // referenced in other modules but not declared. 3619 std::string classSymbolName = "__objc_class_name_" + ClassName; 3620 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) { 3621 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 3622 } else { 3623 new llvm::GlobalVariable(TheModule, LongTy, false, 3624 llvm::GlobalValue::ExternalLinkage, 3625 llvm::ConstantInt::get(LongTy, 0), 3626 classSymbolName); 3627 } 3628 3629 // Get the size of instances. 3630 int instanceSize = 3631 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 3632 3633 // Collect information about instance variables. 3634 SmallVector<llvm::Constant*, 16> IvarNames; 3635 SmallVector<llvm::Constant*, 16> IvarTypes; 3636 SmallVector<llvm::Constant*, 16> IvarOffsets; 3637 SmallVector<llvm::Constant*, 16> IvarAligns; 3638 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership; 3639 3640 ConstantInitBuilder IvarOffsetBuilder(CGM); 3641 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy); 3642 SmallVector<bool, 16> WeakIvars; 3643 SmallVector<bool, 16> StrongIvars; 3644 3645 int superInstanceSize = !SuperClassDecl ? 0 : 3646 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 3647 // For non-fragile ivars, set the instance size to 0 - {the size of just this 3648 // class}. The runtime will then set this to the correct value on load. 3649 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3650 instanceSize = 0 - (instanceSize - superInstanceSize); 3651 } 3652 3653 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3654 IVD = IVD->getNextIvar()) { 3655 // Store the name 3656 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 3657 // Get the type encoding for this ivar 3658 std::string TypeStr; 3659 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD); 3660 IvarTypes.push_back(MakeConstantString(TypeStr)); 3661 IvarAligns.push_back(llvm::ConstantInt::get(IntTy, 3662 Context.getTypeSize(IVD->getType()))); 3663 // Get the offset 3664 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 3665 uint64_t Offset = BaseOffset; 3666 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 3667 Offset = BaseOffset - superInstanceSize; 3668 } 3669 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 3670 // Create the direct offset value 3671 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 3672 IVD->getNameAsString(); 3673 3674 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 3675 if (OffsetVar) { 3676 OffsetVar->setInitializer(OffsetValue); 3677 // If this is the real definition, change its linkage type so that 3678 // different modules will use this one, rather than their private 3679 // copy. 3680 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 3681 } else 3682 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty, 3683 false, llvm::GlobalValue::ExternalLinkage, 3684 OffsetValue, OffsetName); 3685 IvarOffsets.push_back(OffsetValue); 3686 IvarOffsetValues.add(OffsetVar); 3687 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 3688 IvarOwnership.push_back(lt); 3689 switch (lt) { 3690 case Qualifiers::OCL_Strong: 3691 StrongIvars.push_back(true); 3692 WeakIvars.push_back(false); 3693 break; 3694 case Qualifiers::OCL_Weak: 3695 StrongIvars.push_back(false); 3696 WeakIvars.push_back(true); 3697 break; 3698 default: 3699 StrongIvars.push_back(false); 3700 WeakIvars.push_back(false); 3701 } 3702 } 3703 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 3704 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 3705 llvm::GlobalVariable *IvarOffsetArray = 3706 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets", 3707 CGM.getPointerAlign()); 3708 3709 // Collect information about instance methods 3710 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods; 3711 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(), 3712 OID->instmeth_end()); 3713 3714 SmallVector<const ObjCMethodDecl*, 16> ClassMethods; 3715 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(), 3716 OID->classmeth_end()); 3717 3718 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl); 3719 3720 // Collect the names of referenced protocols 3721 auto RefProtocols = ClassDecl->protocols(); 3722 auto RuntimeProtocols = 3723 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end()); 3724 SmallVector<std::string, 16> Protocols; 3725 for (const auto *I : RuntimeProtocols) 3726 Protocols.push_back(I->getNameAsString()); 3727 3728 // Get the superclass pointer. 3729 llvm::Constant *SuperClass; 3730 if (!SuperClassName.empty()) { 3731 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 3732 } else { 3733 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 3734 } 3735 // Empty vector used to construct empty method lists 3736 SmallVector<llvm::Constant*, 1> empty; 3737 // Generate the method and instance variable lists 3738 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 3739 InstanceMethods, false); 3740 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 3741 ClassMethods, true); 3742 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 3743 IvarOffsets, IvarAligns, IvarOwnership); 3744 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 3745 // we emit a symbol containing the offset for each ivar in the class. This 3746 // allows code compiled for the non-Fragile ABI to inherit from code compiled 3747 // for the legacy ABI, without causing problems. The converse is also 3748 // possible, but causes all ivar accesses to be fragile. 3749 3750 // Offset pointer for getting at the correct field in the ivar list when 3751 // setting up the alias. These are: The base address for the global, the 3752 // ivar array (second field), the ivar in this list (set for each ivar), and 3753 // the offset (third field in ivar structure) 3754 llvm::Type *IndexTy = Int32Ty; 3755 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 3756 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr, 3757 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) }; 3758 3759 unsigned ivarIndex = 0; 3760 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 3761 IVD = IVD->getNextIvar()) { 3762 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD); 3763 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 3764 // Get the correct ivar field 3765 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 3766 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList, 3767 offsetPointerIndexes); 3768 // Get the existing variable, if one exists. 3769 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 3770 if (offset) { 3771 offset->setInitializer(offsetValue); 3772 // If this is the real definition, change its linkage type so that 3773 // different modules will use this one, rather than their private 3774 // copy. 3775 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 3776 } else 3777 // Add a new alias if there isn't one already. 3778 new llvm::GlobalVariable(TheModule, offsetValue->getType(), 3779 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 3780 ++ivarIndex; 3781 } 3782 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 3783 3784 //Generate metaclass for class methods 3785 llvm::Constant *MetaClassStruct = GenerateClassStructure( 3786 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], 3787 NULLPtr, ClassMethodList, NULLPtr, NULLPtr, 3788 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true); 3789 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct), 3790 OID->getClassInterface()); 3791 3792 // Generate the class structure 3793 llvm::Constant *ClassStruct = GenerateClassStructure( 3794 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr, 3795 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList, 3796 GenerateProtocolList(Protocols), IvarOffsetArray, Properties, 3797 StrongIvarBitmap, WeakIvarBitmap); 3798 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct), 3799 OID->getClassInterface()); 3800 3801 // Resolve the class aliases, if they exist. 3802 if (ClassPtrAlias) { 3803 ClassPtrAlias->replaceAllUsesWith(ClassStruct); 3804 ClassPtrAlias->eraseFromParent(); 3805 ClassPtrAlias = nullptr; 3806 } 3807 if (MetaClassPtrAlias) { 3808 MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct); 3809 MetaClassPtrAlias->eraseFromParent(); 3810 MetaClassPtrAlias = nullptr; 3811 } 3812 3813 // Add class structure to list to be added to the symtab later 3814 Classes.push_back(ClassStruct); 3815 } 3816 3817 llvm::Function *CGObjCGNU::ModuleInitFunction() { 3818 // Only emit an ObjC load function if no Objective-C stuff has been called 3819 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 3820 ExistingProtocols.empty() && SelectorTable.empty()) 3821 return nullptr; 3822 3823 // Add all referenced protocols to a category. 3824 GenerateProtocolHolderCategory(); 3825 3826 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy); 3827 if (!selStructTy) { 3828 selStructTy = llvm::StructType::get(CGM.getLLVMContext(), 3829 { PtrToInt8Ty, PtrToInt8Ty }); 3830 } 3831 3832 // Generate statics list: 3833 llvm::Constant *statics = NULLPtr; 3834 if (!ConstantStrings.empty()) { 3835 llvm::GlobalVariable *fileStatics = [&] { 3836 ConstantInitBuilder builder(CGM); 3837 auto staticsStruct = builder.beginStruct(); 3838 3839 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass; 3840 if (stringClass.empty()) stringClass = "NXConstantString"; 3841 staticsStruct.add(MakeConstantString(stringClass, 3842 ".objc_static_class_name")); 3843 3844 auto array = staticsStruct.beginArray(); 3845 array.addAll(ConstantStrings); 3846 array.add(NULLPtr); 3847 array.finishAndAddTo(staticsStruct); 3848 3849 return staticsStruct.finishAndCreateGlobal(".objc_statics", 3850 CGM.getPointerAlign()); 3851 }(); 3852 3853 ConstantInitBuilder builder(CGM); 3854 auto allStaticsArray = builder.beginArray(fileStatics->getType()); 3855 allStaticsArray.add(fileStatics); 3856 allStaticsArray.addNullPointer(fileStatics->getType()); 3857 3858 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr", 3859 CGM.getPointerAlign()); 3860 } 3861 3862 // Array of classes, categories, and constant objects. 3863 3864 SmallVector<llvm::GlobalAlias*, 16> selectorAliases; 3865 unsigned selectorCount; 3866 3867 // Pointer to an array of selectors used in this module. 3868 llvm::GlobalVariable *selectorList = [&] { 3869 ConstantInitBuilder builder(CGM); 3870 auto selectors = builder.beginArray(selStructTy); 3871 auto &table = SelectorTable; // MSVC workaround 3872 std::vector<Selector> allSelectors; 3873 for (auto &entry : table) 3874 allSelectors.push_back(entry.first); 3875 llvm::sort(allSelectors); 3876 3877 for (auto &untypedSel : allSelectors) { 3878 std::string selNameStr = untypedSel.getAsString(); 3879 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name"); 3880 3881 for (TypedSelector &sel : table[untypedSel]) { 3882 llvm::Constant *selectorTypeEncoding = NULLPtr; 3883 if (!sel.first.empty()) 3884 selectorTypeEncoding = 3885 MakeConstantString(sel.first, ".objc_sel_types"); 3886 3887 auto selStruct = selectors.beginStruct(selStructTy); 3888 selStruct.add(selName); 3889 selStruct.add(selectorTypeEncoding); 3890 selStruct.finishAndAddTo(selectors); 3891 3892 // Store the selector alias for later replacement 3893 selectorAliases.push_back(sel.second); 3894 } 3895 } 3896 3897 // Remember the number of entries in the selector table. 3898 selectorCount = selectors.size(); 3899 3900 // NULL-terminate the selector list. This should not actually be required, 3901 // because the selector list has a length field. Unfortunately, the GCC 3902 // runtime decides to ignore the length field and expects a NULL terminator, 3903 // and GCC cooperates with this by always setting the length to 0. 3904 auto selStruct = selectors.beginStruct(selStructTy); 3905 selStruct.add(NULLPtr); 3906 selStruct.add(NULLPtr); 3907 selStruct.finishAndAddTo(selectors); 3908 3909 return selectors.finishAndCreateGlobal(".objc_selector_list", 3910 CGM.getPointerAlign()); 3911 }(); 3912 3913 // Now that all of the static selectors exist, create pointers to them. 3914 for (unsigned i = 0; i < selectorCount; ++i) { 3915 llvm::Constant *idxs[] = { 3916 Zeros[0], 3917 llvm::ConstantInt::get(Int32Ty, i) 3918 }; 3919 // FIXME: We're generating redundant loads and stores here! 3920 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr( 3921 selectorList->getValueType(), selectorList, idxs); 3922 selectorAliases[i]->replaceAllUsesWith(selPtr); 3923 selectorAliases[i]->eraseFromParent(); 3924 } 3925 3926 llvm::GlobalVariable *symtab = [&] { 3927 ConstantInitBuilder builder(CGM); 3928 auto symtab = builder.beginStruct(); 3929 3930 // Number of static selectors 3931 symtab.addInt(LongTy, selectorCount); 3932 3933 symtab.add(selectorList); 3934 3935 // Number of classes defined. 3936 symtab.addInt(CGM.Int16Ty, Classes.size()); 3937 // Number of categories defined 3938 symtab.addInt(CGM.Int16Ty, Categories.size()); 3939 3940 // Create an array of classes, then categories, then static object instances 3941 auto classList = symtab.beginArray(PtrToInt8Ty); 3942 classList.addAll(Classes); 3943 classList.addAll(Categories); 3944 // NULL-terminated list of static object instances (mainly constant strings) 3945 classList.add(statics); 3946 classList.add(NULLPtr); 3947 classList.finishAndAddTo(symtab); 3948 3949 // Construct the symbol table. 3950 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign()); 3951 }(); 3952 3953 // The symbol table is contained in a module which has some version-checking 3954 // constants 3955 llvm::Constant *module = [&] { 3956 llvm::Type *moduleEltTys[] = { 3957 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy 3958 }; 3959 llvm::StructType *moduleTy = llvm::StructType::get( 3960 CGM.getLLVMContext(), 3961 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10))); 3962 3963 ConstantInitBuilder builder(CGM); 3964 auto module = builder.beginStruct(moduleTy); 3965 // Runtime version, used for ABI compatibility checking. 3966 module.addInt(LongTy, RuntimeVersion); 3967 // sizeof(ModuleTy) 3968 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy)); 3969 3970 // The path to the source file where this module was declared 3971 SourceManager &SM = CGM.getContext().getSourceManager(); 3972 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID()); 3973 std::string path = 3974 (mainFile->getDir().getName() + "/" + mainFile->getName()).str(); 3975 module.add(MakeConstantString(path, ".objc_source_file_name")); 3976 module.add(symtab); 3977 3978 if (RuntimeVersion >= 10) { 3979 switch (CGM.getLangOpts().getGC()) { 3980 case LangOptions::GCOnly: 3981 module.addInt(IntTy, 2); 3982 break; 3983 case LangOptions::NonGC: 3984 if (CGM.getLangOpts().ObjCAutoRefCount) 3985 module.addInt(IntTy, 1); 3986 else 3987 module.addInt(IntTy, 0); 3988 break; 3989 case LangOptions::HybridGC: 3990 module.addInt(IntTy, 1); 3991 break; 3992 } 3993 } 3994 3995 return module.finishAndCreateGlobal("", CGM.getPointerAlign()); 3996 }(); 3997 3998 // Create the load function calling the runtime entry point with the module 3999 // structure 4000 llvm::Function * LoadFunction = llvm::Function::Create( 4001 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 4002 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 4003 &TheModule); 4004 llvm::BasicBlock *EntryBB = 4005 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 4006 CGBuilderTy Builder(CGM, VMContext); 4007 Builder.SetInsertPoint(EntryBB); 4008 4009 llvm::FunctionType *FT = 4010 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true); 4011 llvm::FunctionCallee Register = 4012 CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 4013 Builder.CreateCall(Register, module); 4014 4015 if (!ClassAliases.empty()) { 4016 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 4017 llvm::FunctionType *RegisterAliasTy = 4018 llvm::FunctionType::get(Builder.getVoidTy(), 4019 ArgTypes, false); 4020 llvm::Function *RegisterAlias = llvm::Function::Create( 4021 RegisterAliasTy, 4022 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 4023 &TheModule); 4024 llvm::BasicBlock *AliasBB = 4025 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 4026 llvm::BasicBlock *NoAliasBB = 4027 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 4028 4029 // Branch based on whether the runtime provided class_registerAlias_np() 4030 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 4031 llvm::Constant::getNullValue(RegisterAlias->getType())); 4032 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 4033 4034 // The true branch (has alias registration function): 4035 Builder.SetInsertPoint(AliasBB); 4036 // Emit alias registration calls: 4037 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 4038 iter != ClassAliases.end(); ++iter) { 4039 llvm::Constant *TheClass = 4040 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true); 4041 if (TheClass) { 4042 Builder.CreateCall(RegisterAlias, 4043 {TheClass, MakeConstantString(iter->second)}); 4044 } 4045 } 4046 // Jump to end: 4047 Builder.CreateBr(NoAliasBB); 4048 4049 // Missing alias registration function, just return from the function: 4050 Builder.SetInsertPoint(NoAliasBB); 4051 } 4052 Builder.CreateRetVoid(); 4053 4054 return LoadFunction; 4055 } 4056 4057 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 4058 const ObjCContainerDecl *CD) { 4059 CodeGenTypes &Types = CGM.getTypes(); 4060 llvm::FunctionType *MethodTy = 4061 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4062 4063 bool isDirect = OMD->isDirectMethod(); 4064 std::string FunctionName = 4065 getSymbolNameForMethod(OMD, /*include category*/ !isDirect); 4066 4067 if (!isDirect) 4068 return llvm::Function::Create(MethodTy, 4069 llvm::GlobalVariable::InternalLinkage, 4070 FunctionName, &TheModule); 4071 4072 auto *COMD = OMD->getCanonicalDecl(); 4073 auto I = DirectMethodDefinitions.find(COMD); 4074 llvm::Function *OldFn = nullptr, *Fn = nullptr; 4075 4076 if (I == DirectMethodDefinitions.end()) { 4077 auto *F = 4078 llvm::Function::Create(MethodTy, llvm::GlobalVariable::ExternalLinkage, 4079 FunctionName, &TheModule); 4080 DirectMethodDefinitions.insert(std::make_pair(COMD, F)); 4081 return F; 4082 } 4083 4084 // Objective-C allows for the declaration and implementation types 4085 // to differ slightly. 4086 // 4087 // If we're being asked for the Function associated for a method 4088 // implementation, a previous value might have been cached 4089 // based on the type of the canonical declaration. 4090 // 4091 // If these do not match, then we'll replace this function with 4092 // a new one that has the proper type below. 4093 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType()) 4094 return I->second; 4095 4096 OldFn = I->second; 4097 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, "", 4098 &CGM.getModule()); 4099 Fn->takeName(OldFn); 4100 OldFn->replaceAllUsesWith(Fn); 4101 OldFn->eraseFromParent(); 4102 4103 // Replace the cached function in the map. 4104 I->second = Fn; 4105 return Fn; 4106 } 4107 4108 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF, 4109 llvm::Function *Fn, 4110 const ObjCMethodDecl *OMD, 4111 const ObjCContainerDecl *CD) { 4112 // GNU runtime doesn't support direct calls at this time 4113 } 4114 4115 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() { 4116 return GetPropertyFn; 4117 } 4118 4119 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() { 4120 return SetPropertyFn; 4121 } 4122 4123 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 4124 bool copy) { 4125 return nullptr; 4126 } 4127 4128 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() { 4129 return GetStructPropertyFn; 4130 } 4131 4132 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() { 4133 return SetStructPropertyFn; 4134 } 4135 4136 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() { 4137 return nullptr; 4138 } 4139 4140 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() { 4141 return nullptr; 4142 } 4143 4144 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() { 4145 return EnumerationMutationFn; 4146 } 4147 4148 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 4149 const ObjCAtSynchronizedStmt &S) { 4150 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 4151 } 4152 4153 4154 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 4155 const ObjCAtTryStmt &S) { 4156 // Unlike the Apple non-fragile runtimes, which also uses 4157 // unwind-based zero cost exceptions, the GNU Objective C runtime's 4158 // EH support isn't a veneer over C++ EH. Instead, exception 4159 // objects are created by objc_exception_throw and destroyed by 4160 // the personality function; this avoids the need for bracketing 4161 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 4162 // (or even _Unwind_DeleteException), but probably doesn't 4163 // interoperate very well with foreign exceptions. 4164 // 4165 // In Objective-C++ mode, we actually emit something equivalent to the C++ 4166 // exception handler. 4167 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 4168 } 4169 4170 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 4171 const ObjCAtThrowStmt &S, 4172 bool ClearInsertionPoint) { 4173 llvm::Value *ExceptionAsObject; 4174 bool isRethrow = false; 4175 4176 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4177 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4178 ExceptionAsObject = Exception; 4179 } else { 4180 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4181 "Unexpected rethrow outside @catch block."); 4182 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4183 isRethrow = true; 4184 } 4185 if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) { 4186 // For SEH, ExceptionAsObject may be undef, because the catch handler is 4187 // not passed it for catchalls and so it is not visible to the catch 4188 // funclet. The real thrown object will still be live on the stack at this 4189 // point and will be rethrown. If we are explicitly rethrowing the object 4190 // that was passed into the `@catch` block, then this code path is not 4191 // reached and we will instead call `objc_exception_throw` with an explicit 4192 // argument. 4193 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn); 4194 Throw->setDoesNotReturn(); 4195 } else { 4196 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 4197 llvm::CallBase *Throw = 4198 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject); 4199 Throw->setDoesNotReturn(); 4200 } 4201 CGF.Builder.CreateUnreachable(); 4202 if (ClearInsertionPoint) 4203 CGF.Builder.ClearInsertionPoint(); 4204 } 4205 4206 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 4207 Address AddrWeakObj) { 4208 CGBuilderTy &B = CGF.Builder; 4209 return B.CreateCall( 4210 WeakReadFn, EnforceType(B, AddrWeakObj.emitRawPointer(CGF), PtrToIdTy)); 4211 } 4212 4213 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 4214 llvm::Value *src, Address dst) { 4215 CGBuilderTy &B = CGF.Builder; 4216 src = EnforceType(B, src, IdTy); 4217 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy); 4218 B.CreateCall(WeakAssignFn, {src, dstVal}); 4219 } 4220 4221 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 4222 llvm::Value *src, Address dst, 4223 bool threadlocal) { 4224 CGBuilderTy &B = CGF.Builder; 4225 src = EnforceType(B, src, IdTy); 4226 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy); 4227 // FIXME. Add threadloca assign API 4228 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"); 4229 B.CreateCall(GlobalAssignFn, {src, dstVal}); 4230 } 4231 4232 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 4233 llvm::Value *src, Address dst, 4234 llvm::Value *ivarOffset) { 4235 CGBuilderTy &B = CGF.Builder; 4236 src = EnforceType(B, src, IdTy); 4237 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), IdTy); 4238 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset}); 4239 } 4240 4241 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 4242 llvm::Value *src, Address dst) { 4243 CGBuilderTy &B = CGF.Builder; 4244 src = EnforceType(B, src, IdTy); 4245 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy); 4246 B.CreateCall(StrongCastAssignFn, {src, dstVal}); 4247 } 4248 4249 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 4250 Address DestPtr, 4251 Address SrcPtr, 4252 llvm::Value *Size) { 4253 CGBuilderTy &B = CGF.Builder; 4254 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.emitRawPointer(CGF), PtrTy); 4255 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.emitRawPointer(CGF), PtrTy); 4256 4257 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size}); 4258 } 4259 4260 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 4261 const ObjCInterfaceDecl *ID, 4262 const ObjCIvarDecl *Ivar) { 4263 const std::string Name = GetIVarOffsetVariableName(ID, Ivar); 4264 // Emit the variable and initialize it with what we think the correct value 4265 // is. This allows code compiled with non-fragile ivars to work correctly 4266 // when linked against code which isn't (most of the time). 4267 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 4268 if (!IvarOffsetPointer) 4269 IvarOffsetPointer = new llvm::GlobalVariable( 4270 TheModule, llvm::PointerType::getUnqual(VMContext), false, 4271 llvm::GlobalValue::ExternalLinkage, nullptr, Name); 4272 return IvarOffsetPointer; 4273 } 4274 4275 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 4276 QualType ObjectTy, 4277 llvm::Value *BaseValue, 4278 const ObjCIvarDecl *Ivar, 4279 unsigned CVRQualifiers) { 4280 const ObjCInterfaceDecl *ID = 4281 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 4282 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4283 EmitIvarOffset(CGF, ID, Ivar)); 4284 } 4285 4286 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 4287 const ObjCInterfaceDecl *OID, 4288 const ObjCIvarDecl *OIVD) { 4289 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 4290 next = next->getNextIvar()) { 4291 if (OIVD == next) 4292 return OID; 4293 } 4294 4295 // Otherwise check in the super class. 4296 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 4297 return FindIvarInterface(Context, Super, OIVD); 4298 4299 return nullptr; 4300 } 4301 4302 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 4303 const ObjCInterfaceDecl *Interface, 4304 const ObjCIvarDecl *Ivar) { 4305 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 4306 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 4307 4308 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage 4309 // and ExternalLinkage, so create a reference to the ivar global and rely on 4310 // the definition being created as part of GenerateClass. 4311 if (RuntimeVersion < 10 || 4312 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment()) 4313 return CGF.Builder.CreateZExtOrBitCast( 4314 CGF.Builder.CreateAlignedLoad( 4315 Int32Ty, 4316 CGF.Builder.CreateAlignedLoad( 4317 llvm::PointerType::getUnqual(VMContext), 4318 ObjCIvarOffsetVariable(Interface, Ivar), 4319 CGF.getPointerAlign(), "ivar"), 4320 CharUnits::fromQuantity(4)), 4321 PtrDiffTy); 4322 std::string name = "__objc_ivar_offset_value_" + 4323 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 4324 CharUnits Align = CGM.getIntAlign(); 4325 llvm::Value *Offset = TheModule.getGlobalVariable(name); 4326 if (!Offset) { 4327 auto GV = new llvm::GlobalVariable(TheModule, IntTy, 4328 false, llvm::GlobalValue::LinkOnceAnyLinkage, 4329 llvm::Constant::getNullValue(IntTy), name); 4330 GV->setAlignment(Align.getAsAlign()); 4331 Offset = GV; 4332 } 4333 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align); 4334 if (Offset->getType() != PtrDiffTy) 4335 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 4336 return Offset; 4337 } 4338 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 4339 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 4340 } 4341 4342 CGObjCRuntime * 4343 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 4344 auto Runtime = CGM.getLangOpts().ObjCRuntime; 4345 switch (Runtime.getKind()) { 4346 case ObjCRuntime::GNUstep: 4347 if (Runtime.getVersion() >= VersionTuple(2, 0)) 4348 return new CGObjCGNUstep2(CGM); 4349 return new CGObjCGNUstep(CGM); 4350 4351 case ObjCRuntime::GCC: 4352 return new CGObjCGCC(CGM); 4353 4354 case ObjCRuntime::ObjFW: 4355 return new CGObjCObjFW(CGM); 4356 4357 case ObjCRuntime::FragileMacOSX: 4358 case ObjCRuntime::MacOSX: 4359 case ObjCRuntime::iOS: 4360 case ObjCRuntime::WatchOS: 4361 llvm_unreachable("these runtimes are not GNU runtimes"); 4362 } 4363 llvm_unreachable("bad runtime"); 4364 } 4365