xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGObjC.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
31 static TryEmitResult
32 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
33 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
34                                    QualType ET,
35                                    RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(Address addr) {
40   llvm::Type *type = addr.getElementType();
41   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
42 }
43 
44 /// Emits an instance of NSConstantString representing the object.
45 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
46 {
47   llvm::Constant *C =
48       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
49   // FIXME: This bitcast should just be made an invariant on the Runtime.
50   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
51 }
52 
53 /// EmitObjCBoxedExpr - This routine generates code to call
54 /// the appropriate expression boxing method. This will either be
55 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
56 /// or [NSValue valueWithBytes:objCType:].
57 ///
58 llvm::Value *
59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
60   // Generate the correct selector for this literal's concrete type.
61   // Get the method.
62   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
63   const Expr *SubExpr = E->getSubExpr();
64 
65   if (E->isExpressibleAsConstantInitializer()) {
66     ConstantEmitter ConstEmitter(CGM);
67     return ConstEmitter.tryEmitAbstract(E, E->getType());
68   }
69 
70   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
71   Selector Sel = BoxingMethod->getSelector();
72 
73   // Generate a reference to the class pointer, which will be the receiver.
74   // Assumes that the method was introduced in the class that should be
75   // messaged (avoids pulling it out of the result type).
76   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
77   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
78   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
79 
80   CallArgList Args;
81   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
82   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
83 
84   // ObjCBoxedExpr supports boxing of structs and unions
85   // via [NSValue valueWithBytes:objCType:]
86   const QualType ValueType(SubExpr->getType().getCanonicalType());
87   if (ValueType->isObjCBoxableRecordType()) {
88     // Emit CodeGen for first parameter
89     // and cast value to correct type
90     Address Temporary = CreateMemTemp(SubExpr->getType());
91     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
92     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
93     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
94 
95     // Create char array to store type encoding
96     std::string Str;
97     getContext().getObjCEncodingForType(ValueType, Str);
98     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
99 
100     // Cast type encoding to correct type
101     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
102     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
103     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
104 
105     Args.add(RValue::get(Cast), EncodingQT);
106   } else {
107     Args.add(EmitAnyExpr(SubExpr), ArgQT);
108   }
109 
110   RValue result = Runtime.GenerateMessageSend(
111       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
112       Args, ClassDecl, BoxingMethod);
113   return Builder.CreateBitCast(result.getScalarVal(),
114                                ConvertType(E->getType()));
115 }
116 
117 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
118                                     const ObjCMethodDecl *MethodWithObjects) {
119   ASTContext &Context = CGM.getContext();
120   const ObjCDictionaryLiteral *DLE = nullptr;
121   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
122   if (!ALE)
123     DLE = cast<ObjCDictionaryLiteral>(E);
124 
125   // Optimize empty collections by referencing constants, when available.
126   uint64_t NumElements =
127     ALE ? ALE->getNumElements() : DLE->getNumElements();
128   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
129     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
130     QualType IdTy(CGM.getContext().getObjCIdType());
131     llvm::Constant *Constant =
132         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
133     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
134     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
135     cast<llvm::LoadInst>(Ptr)->setMetadata(
136         CGM.getModule().getMDKindID("invariant.load"),
137         llvm::MDNode::get(getLLVMContext(), None));
138     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
139   }
140 
141   // Compute the type of the array we're initializing.
142   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
143                             NumElements);
144   QualType ElementType = Context.getObjCIdType().withConst();
145   QualType ElementArrayType
146     = Context.getConstantArrayType(ElementType, APNumElements,
147                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
148 
149   // Allocate the temporary array(s).
150   Address Objects = CreateMemTemp(ElementArrayType, "objects");
151   Address Keys = Address::invalid();
152   if (DLE)
153     Keys = CreateMemTemp(ElementArrayType, "keys");
154 
155   // In ARC, we may need to do extra work to keep all the keys and
156   // values alive until after the call.
157   SmallVector<llvm::Value *, 16> NeededObjects;
158   bool TrackNeededObjects =
159     (getLangOpts().ObjCAutoRefCount &&
160     CGM.getCodeGenOpts().OptimizationLevel != 0);
161 
162   // Perform the actual initialialization of the array(s).
163   for (uint64_t i = 0; i < NumElements; i++) {
164     if (ALE) {
165       // Emit the element and store it to the appropriate array slot.
166       const Expr *Rhs = ALE->getElement(i);
167       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
168                                  ElementType, AlignmentSource::Decl);
169 
170       llvm::Value *value = EmitScalarExpr(Rhs);
171       EmitStoreThroughLValue(RValue::get(value), LV, true);
172       if (TrackNeededObjects) {
173         NeededObjects.push_back(value);
174       }
175     } else {
176       // Emit the key and store it to the appropriate array slot.
177       const Expr *Key = DLE->getKeyValueElement(i).Key;
178       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
179                                     ElementType, AlignmentSource::Decl);
180       llvm::Value *keyValue = EmitScalarExpr(Key);
181       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
182 
183       // Emit the value and store it to the appropriate array slot.
184       const Expr *Value = DLE->getKeyValueElement(i).Value;
185       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
186                                       ElementType, AlignmentSource::Decl);
187       llvm::Value *valueValue = EmitScalarExpr(Value);
188       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
189       if (TrackNeededObjects) {
190         NeededObjects.push_back(keyValue);
191         NeededObjects.push_back(valueValue);
192       }
193     }
194   }
195 
196   // Generate the argument list.
197   CallArgList Args;
198   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
199   const ParmVarDecl *argDecl = *PI++;
200   QualType ArgQT = argDecl->getType().getUnqualifiedType();
201   Args.add(RValue::get(Objects.getPointer()), ArgQT);
202   if (DLE) {
203     argDecl = *PI++;
204     ArgQT = argDecl->getType().getUnqualifiedType();
205     Args.add(RValue::get(Keys.getPointer()), ArgQT);
206   }
207   argDecl = *PI;
208   ArgQT = argDecl->getType().getUnqualifiedType();
209   llvm::Value *Count =
210     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
211   Args.add(RValue::get(Count), ArgQT);
212 
213   // Generate a reference to the class pointer, which will be the receiver.
214   Selector Sel = MethodWithObjects->getSelector();
215   QualType ResultType = E->getType();
216   const ObjCObjectPointerType *InterfacePointerType
217     = ResultType->getAsObjCInterfacePointerType();
218   ObjCInterfaceDecl *Class
219     = InterfacePointerType->getObjectType()->getInterface();
220   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
221   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
222 
223   // Generate the message send.
224   RValue result = Runtime.GenerateMessageSend(
225       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
226       Receiver, Args, Class, MethodWithObjects);
227 
228   // The above message send needs these objects, but in ARC they are
229   // passed in a buffer that is essentially __unsafe_unretained.
230   // Therefore we must prevent the optimizer from releasing them until
231   // after the call.
232   if (TrackNeededObjects) {
233     EmitARCIntrinsicUse(NeededObjects);
234   }
235 
236   return Builder.CreateBitCast(result.getScalarVal(),
237                                ConvertType(E->getType()));
238 }
239 
240 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
241   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
242 }
243 
244 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
245                                             const ObjCDictionaryLiteral *E) {
246   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
247 }
248 
249 /// Emit a selector.
250 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
251   // Untyped selector.
252   // Note that this implementation allows for non-constant strings to be passed
253   // as arguments to @selector().  Currently, the only thing preventing this
254   // behaviour is the type checking in the front end.
255   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
256 }
257 
258 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
259   // FIXME: This should pass the Decl not the name.
260   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
261 }
262 
263 /// Adjust the type of an Objective-C object that doesn't match up due
264 /// to type erasure at various points, e.g., related result types or the use
265 /// of parameterized classes.
266 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
267                                    RValue Result) {
268   if (!ExpT->isObjCRetainableType())
269     return Result;
270 
271   // If the converted types are the same, we're done.
272   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
273   if (ExpLLVMTy == Result.getScalarVal()->getType())
274     return Result;
275 
276   // We have applied a substitution. Cast the rvalue appropriately.
277   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
278                                                ExpLLVMTy));
279 }
280 
281 /// Decide whether to extend the lifetime of the receiver of a
282 /// returns-inner-pointer message.
283 static bool
284 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
285   switch (message->getReceiverKind()) {
286 
287   // For a normal instance message, we should extend unless the
288   // receiver is loaded from a variable with precise lifetime.
289   case ObjCMessageExpr::Instance: {
290     const Expr *receiver = message->getInstanceReceiver();
291 
292     // Look through OVEs.
293     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
294       if (opaque->getSourceExpr())
295         receiver = opaque->getSourceExpr()->IgnoreParens();
296     }
297 
298     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
299     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
300     receiver = ice->getSubExpr()->IgnoreParens();
301 
302     // Look through OVEs.
303     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
304       if (opaque->getSourceExpr())
305         receiver = opaque->getSourceExpr()->IgnoreParens();
306     }
307 
308     // Only __strong variables.
309     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
310       return true;
311 
312     // All ivars and fields have precise lifetime.
313     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
314       return false;
315 
316     // Otherwise, check for variables.
317     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
318     if (!declRef) return true;
319     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
320     if (!var) return true;
321 
322     // All variables have precise lifetime except local variables with
323     // automatic storage duration that aren't specially marked.
324     return (var->hasLocalStorage() &&
325             !var->hasAttr<ObjCPreciseLifetimeAttr>());
326   }
327 
328   case ObjCMessageExpr::Class:
329   case ObjCMessageExpr::SuperClass:
330     // It's never necessary for class objects.
331     return false;
332 
333   case ObjCMessageExpr::SuperInstance:
334     // We generally assume that 'self' lives throughout a method call.
335     return false;
336   }
337 
338   llvm_unreachable("invalid receiver kind");
339 }
340 
341 /// Given an expression of ObjC pointer type, check whether it was
342 /// immediately loaded from an ARC __weak l-value.
343 static const Expr *findWeakLValue(const Expr *E) {
344   assert(E->getType()->isObjCRetainableType());
345   E = E->IgnoreParens();
346   if (auto CE = dyn_cast<CastExpr>(E)) {
347     if (CE->getCastKind() == CK_LValueToRValue) {
348       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
349         return CE->getSubExpr();
350     }
351   }
352 
353   return nullptr;
354 }
355 
356 /// The ObjC runtime may provide entrypoints that are likely to be faster
357 /// than an ordinary message send of the appropriate selector.
358 ///
359 /// The entrypoints are guaranteed to be equivalent to just sending the
360 /// corresponding message.  If the entrypoint is implemented naively as just a
361 /// message send, using it is a trade-off: it sacrifices a few cycles of
362 /// overhead to save a small amount of code.  However, it's possible for
363 /// runtimes to detect and special-case classes that use "standard"
364 /// behavior; if that's dynamically a large proportion of all objects, using
365 /// the entrypoint will also be faster than using a message send.
366 ///
367 /// If the runtime does support a required entrypoint, then this method will
368 /// generate a call and return the resulting value.  Otherwise it will return
369 /// None and the caller can generate a msgSend instead.
370 static Optional<llvm::Value *>
371 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
372                                   llvm::Value *Receiver,
373                                   const CallArgList& Args, Selector Sel,
374                                   const ObjCMethodDecl *method,
375                                   bool isClassMessage) {
376   auto &CGM = CGF.CGM;
377   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
378     return None;
379 
380   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
381   switch (Sel.getMethodFamily()) {
382   case OMF_alloc:
383     if (isClassMessage &&
384         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
385         ResultType->isObjCObjectPointerType()) {
386         // [Foo alloc] -> objc_alloc(Foo) or
387         // [self alloc] -> objc_alloc(self)
388         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
389           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
390         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
391         // [self allocWithZone:nil] -> objc_allocWithZone(self)
392         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
393             Args.size() == 1 && Args.front().getType()->isPointerType() &&
394             Sel.getNameForSlot(0) == "allocWithZone") {
395           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
396           if (isa<llvm::ConstantPointerNull>(arg))
397             return CGF.EmitObjCAllocWithZone(Receiver,
398                                              CGF.ConvertType(ResultType));
399           return None;
400         }
401     }
402     break;
403 
404   case OMF_autorelease:
405     if (ResultType->isObjCObjectPointerType() &&
406         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
407         Runtime.shouldUseARCFunctionsForRetainRelease())
408       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
409     break;
410 
411   case OMF_retain:
412     if (ResultType->isObjCObjectPointerType() &&
413         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
414         Runtime.shouldUseARCFunctionsForRetainRelease())
415       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
416     break;
417 
418   case OMF_release:
419     if (ResultType->isVoidType() &&
420         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
421         Runtime.shouldUseARCFunctionsForRetainRelease()) {
422       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
423       return nullptr;
424     }
425     break;
426 
427   default:
428     break;
429   }
430   return None;
431 }
432 
433 /// Instead of '[[MyClass alloc] init]', try to generate
434 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
435 /// caller side, as well as the optimized objc_alloc.
436 static Optional<llvm::Value *>
437 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
438   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
439   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
440     return None;
441 
442   // Match the exact pattern '[[MyClass alloc] init]'.
443   Selector Sel = OME->getSelector();
444   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
445       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
446       Sel.getNameForSlot(0) != "init")
447     return None;
448 
449   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' or
450   // we are in an ObjC class method and 'receiver' is '[self alloc]'.
451   auto *SubOME =
452       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
453   if (!SubOME)
454     return None;
455   Selector SubSel = SubOME->getSelector();
456 
457   // Check if we are in an ObjC class method and the receiver expression is
458   // 'self'.
459   const Expr *SelfInClassMethod = nullptr;
460   if (const auto *CurMD = dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
461     if (CurMD->isClassMethod())
462       if ((SelfInClassMethod = SubOME->getInstanceReceiver()))
463         if (!SelfInClassMethod->isObjCSelfExpr())
464           SelfInClassMethod = nullptr;
465 
466   if ((SubOME->getReceiverKind() != ObjCMessageExpr::Class &&
467        !SelfInClassMethod) || !SubOME->getType()->isObjCObjectPointerType() ||
468       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
469     return None;
470 
471   llvm::Value *Receiver;
472   if (SelfInClassMethod) {
473     Receiver = CGF.EmitScalarExpr(SelfInClassMethod);
474   } else {
475     QualType ReceiverType = SubOME->getClassReceiver();
476     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
477     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
478     assert(ID && "null interface should be impossible here");
479     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
480   }
481   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
482 }
483 
484 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
485                                             ReturnValueSlot Return) {
486   // Only the lookup mechanism and first two arguments of the method
487   // implementation vary between runtimes.  We can get the receiver and
488   // arguments in generic code.
489 
490   bool isDelegateInit = E->isDelegateInitCall();
491 
492   const ObjCMethodDecl *method = E->getMethodDecl();
493 
494   // If the method is -retain, and the receiver's being loaded from
495   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
496   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
497       method->getMethodFamily() == OMF_retain) {
498     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
499       LValue lvalue = EmitLValue(lvalueExpr);
500       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
501       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
502     }
503   }
504 
505   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
506     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
507 
508   // We don't retain the receiver in delegate init calls, and this is
509   // safe because the receiver value is always loaded from 'self',
510   // which we zero out.  We don't want to Block_copy block receivers,
511   // though.
512   bool retainSelf =
513     (!isDelegateInit &&
514      CGM.getLangOpts().ObjCAutoRefCount &&
515      method &&
516      method->hasAttr<NSConsumesSelfAttr>());
517 
518   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
519   bool isSuperMessage = false;
520   bool isClassMessage = false;
521   ObjCInterfaceDecl *OID = nullptr;
522   // Find the receiver
523   QualType ReceiverType;
524   llvm::Value *Receiver = nullptr;
525   switch (E->getReceiverKind()) {
526   case ObjCMessageExpr::Instance:
527     ReceiverType = E->getInstanceReceiver()->getType();
528     if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(CurFuncDecl))
529       if (OMD->isClassMethod())
530         if (E->getInstanceReceiver()->isObjCSelfExpr())
531           isClassMessage = true;
532     if (retainSelf) {
533       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
534                                                    E->getInstanceReceiver());
535       Receiver = ter.getPointer();
536       if (ter.getInt()) retainSelf = false;
537     } else
538       Receiver = EmitScalarExpr(E->getInstanceReceiver());
539     break;
540 
541   case ObjCMessageExpr::Class: {
542     ReceiverType = E->getClassReceiver();
543     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
544     assert(ObjTy && "Invalid Objective-C class message send");
545     OID = ObjTy->getInterface();
546     assert(OID && "Invalid Objective-C class message send");
547     Receiver = Runtime.GetClass(*this, OID);
548     isClassMessage = true;
549     break;
550   }
551 
552   case ObjCMessageExpr::SuperInstance:
553     ReceiverType = E->getSuperType();
554     Receiver = LoadObjCSelf();
555     isSuperMessage = true;
556     break;
557 
558   case ObjCMessageExpr::SuperClass:
559     ReceiverType = E->getSuperType();
560     Receiver = LoadObjCSelf();
561     isSuperMessage = true;
562     isClassMessage = true;
563     break;
564   }
565 
566   if (retainSelf)
567     Receiver = EmitARCRetainNonBlock(Receiver);
568 
569   // In ARC, we sometimes want to "extend the lifetime"
570   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
571   // messages.
572   if (getLangOpts().ObjCAutoRefCount && method &&
573       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
574       shouldExtendReceiverForInnerPointerMessage(E))
575     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
576 
577   QualType ResultType = method ? method->getReturnType() : E->getType();
578 
579   CallArgList Args;
580   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
581 
582   // For delegate init calls in ARC, do an unsafe store of null into
583   // self.  This represents the call taking direct ownership of that
584   // value.  We have to do this after emitting the other call
585   // arguments because they might also reference self, but we don't
586   // have to worry about any of them modifying self because that would
587   // be an undefined read and write of an object in unordered
588   // expressions.
589   if (isDelegateInit) {
590     assert(getLangOpts().ObjCAutoRefCount &&
591            "delegate init calls should only be marked in ARC");
592 
593     // Do an unsafe store of null into self.
594     Address selfAddr =
595       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
596     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
597   }
598 
599   RValue result;
600   if (isSuperMessage) {
601     // super is only valid in an Objective-C method
602     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
603     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
604     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
605                                               E->getSelector(),
606                                               OMD->getClassInterface(),
607                                               isCategoryImpl,
608                                               Receiver,
609                                               isClassMessage,
610                                               Args,
611                                               method);
612   } else {
613     // Call runtime methods directly if we can.
614     if (Optional<llvm::Value *> SpecializedResult =
615             tryGenerateSpecializedMessageSend(*this, ResultType, Receiver, Args,
616                                               E->getSelector(), method,
617                                               isClassMessage)) {
618       result = RValue::get(SpecializedResult.getValue());
619     } else {
620       result = Runtime.GenerateMessageSend(*this, Return, ResultType,
621                                            E->getSelector(), Receiver, Args,
622                                            OID, method);
623     }
624   }
625 
626   // For delegate init calls in ARC, implicitly store the result of
627   // the call back into self.  This takes ownership of the value.
628   if (isDelegateInit) {
629     Address selfAddr =
630       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
631     llvm::Value *newSelf = result.getScalarVal();
632 
633     // The delegate return type isn't necessarily a matching type; in
634     // fact, it's quite likely to be 'id'.
635     llvm::Type *selfTy = selfAddr.getElementType();
636     newSelf = Builder.CreateBitCast(newSelf, selfTy);
637 
638     Builder.CreateStore(newSelf, selfAddr);
639   }
640 
641   return AdjustObjCObjectType(*this, E->getType(), result);
642 }
643 
644 namespace {
645 struct FinishARCDealloc final : EHScopeStack::Cleanup {
646   void Emit(CodeGenFunction &CGF, Flags flags) override {
647     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
648 
649     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
650     const ObjCInterfaceDecl *iface = impl->getClassInterface();
651     if (!iface->getSuperClass()) return;
652 
653     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
654 
655     // Call [super dealloc] if we have a superclass.
656     llvm::Value *self = CGF.LoadObjCSelf();
657 
658     CallArgList args;
659     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
660                                                       CGF.getContext().VoidTy,
661                                                       method->getSelector(),
662                                                       iface,
663                                                       isCategory,
664                                                       self,
665                                                       /*is class msg*/ false,
666                                                       args,
667                                                       method);
668   }
669 };
670 }
671 
672 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
673 /// the LLVM function and sets the other context used by
674 /// CodeGenFunction.
675 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
676                                       const ObjCContainerDecl *CD) {
677   SourceLocation StartLoc = OMD->getBeginLoc();
678   FunctionArgList args;
679   // Check if we should generate debug info for this method.
680   if (OMD->hasAttr<NoDebugAttr>())
681     DebugInfo = nullptr; // disable debug info indefinitely for this function
682 
683   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
684 
685   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
686   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
687 
688   args.push_back(OMD->getSelfDecl());
689   args.push_back(OMD->getCmdDecl());
690 
691   args.append(OMD->param_begin(), OMD->param_end());
692 
693   CurGD = OMD;
694   CurEHLocation = OMD->getEndLoc();
695 
696   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
697                 OMD->getLocation(), StartLoc);
698 
699   // In ARC, certain methods get an extra cleanup.
700   if (CGM.getLangOpts().ObjCAutoRefCount &&
701       OMD->isInstanceMethod() &&
702       OMD->getSelector().isUnarySelector()) {
703     const IdentifierInfo *ident =
704       OMD->getSelector().getIdentifierInfoForSlot(0);
705     if (ident->isStr("dealloc"))
706       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
707   }
708 }
709 
710 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
711                                               LValue lvalue, QualType type);
712 
713 /// Generate an Objective-C method.  An Objective-C method is a C function with
714 /// its pointer, name, and types registered in the class structure.
715 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
716   StartObjCMethod(OMD, OMD->getClassInterface());
717   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
718   assert(isa<CompoundStmt>(OMD->getBody()));
719   incrementProfileCounter(OMD->getBody());
720   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
721   FinishFunction(OMD->getBodyRBrace());
722 }
723 
724 /// emitStructGetterCall - Call the runtime function to load a property
725 /// into the return value slot.
726 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
727                                  bool isAtomic, bool hasStrong) {
728   ASTContext &Context = CGF.getContext();
729 
730   Address src =
731     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
732        .getAddress();
733 
734   // objc_copyStruct (ReturnValue, &structIvar,
735   //                  sizeof (Type of Ivar), isAtomic, false);
736   CallArgList args;
737 
738   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
739   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
740 
741   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
742   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
743 
744   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
745   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
746   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
747   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
748 
749   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
750   CGCallee callee = CGCallee::forDirect(fn);
751   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
752                callee, ReturnValueSlot(), args);
753 }
754 
755 /// Determine whether the given architecture supports unaligned atomic
756 /// accesses.  They don't have to be fast, just faster than a function
757 /// call and a mutex.
758 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
759   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
760   // currently supported by the backend.)
761   return 0;
762 }
763 
764 /// Return the maximum size that permits atomic accesses for the given
765 /// architecture.
766 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
767                                         llvm::Triple::ArchType arch) {
768   // ARM has 8-byte atomic accesses, but it's not clear whether we
769   // want to rely on them here.
770 
771   // In the default case, just assume that any size up to a pointer is
772   // fine given adequate alignment.
773   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
774 }
775 
776 namespace {
777   class PropertyImplStrategy {
778   public:
779     enum StrategyKind {
780       /// The 'native' strategy is to use the architecture's provided
781       /// reads and writes.
782       Native,
783 
784       /// Use objc_setProperty and objc_getProperty.
785       GetSetProperty,
786 
787       /// Use objc_setProperty for the setter, but use expression
788       /// evaluation for the getter.
789       SetPropertyAndExpressionGet,
790 
791       /// Use objc_copyStruct.
792       CopyStruct,
793 
794       /// The 'expression' strategy is to emit normal assignment or
795       /// lvalue-to-rvalue expressions.
796       Expression
797     };
798 
799     StrategyKind getKind() const { return StrategyKind(Kind); }
800 
801     bool hasStrongMember() const { return HasStrong; }
802     bool isAtomic() const { return IsAtomic; }
803     bool isCopy() const { return IsCopy; }
804 
805     CharUnits getIvarSize() const { return IvarSize; }
806     CharUnits getIvarAlignment() const { return IvarAlignment; }
807 
808     PropertyImplStrategy(CodeGenModule &CGM,
809                          const ObjCPropertyImplDecl *propImpl);
810 
811   private:
812     unsigned Kind : 8;
813     unsigned IsAtomic : 1;
814     unsigned IsCopy : 1;
815     unsigned HasStrong : 1;
816 
817     CharUnits IvarSize;
818     CharUnits IvarAlignment;
819   };
820 }
821 
822 /// Pick an implementation strategy for the given property synthesis.
823 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
824                                      const ObjCPropertyImplDecl *propImpl) {
825   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
826   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
827 
828   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
829   IsAtomic = prop->isAtomic();
830   HasStrong = false; // doesn't matter here.
831 
832   // Evaluate the ivar's size and alignment.
833   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
834   QualType ivarType = ivar->getType();
835   std::tie(IvarSize, IvarAlignment) =
836       CGM.getContext().getTypeInfoInChars(ivarType);
837 
838   // If we have a copy property, we always have to use getProperty/setProperty.
839   // TODO: we could actually use setProperty and an expression for non-atomics.
840   if (IsCopy) {
841     Kind = GetSetProperty;
842     return;
843   }
844 
845   // Handle retain.
846   if (setterKind == ObjCPropertyDecl::Retain) {
847     // In GC-only, there's nothing special that needs to be done.
848     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
849       // fallthrough
850 
851     // In ARC, if the property is non-atomic, use expression emission,
852     // which translates to objc_storeStrong.  This isn't required, but
853     // it's slightly nicer.
854     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
855       // Using standard expression emission for the setter is only
856       // acceptable if the ivar is __strong, which won't be true if
857       // the property is annotated with __attribute__((NSObject)).
858       // TODO: falling all the way back to objc_setProperty here is
859       // just laziness, though;  we could still use objc_storeStrong
860       // if we hacked it right.
861       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
862         Kind = Expression;
863       else
864         Kind = SetPropertyAndExpressionGet;
865       return;
866 
867     // Otherwise, we need to at least use setProperty.  However, if
868     // the property isn't atomic, we can use normal expression
869     // emission for the getter.
870     } else if (!IsAtomic) {
871       Kind = SetPropertyAndExpressionGet;
872       return;
873 
874     // Otherwise, we have to use both setProperty and getProperty.
875     } else {
876       Kind = GetSetProperty;
877       return;
878     }
879   }
880 
881   // If we're not atomic, just use expression accesses.
882   if (!IsAtomic) {
883     Kind = Expression;
884     return;
885   }
886 
887   // Properties on bitfield ivars need to be emitted using expression
888   // accesses even if they're nominally atomic.
889   if (ivar->isBitField()) {
890     Kind = Expression;
891     return;
892   }
893 
894   // GC-qualified or ARC-qualified ivars need to be emitted as
895   // expressions.  This actually works out to being atomic anyway,
896   // except for ARC __strong, but that should trigger the above code.
897   if (ivarType.hasNonTrivialObjCLifetime() ||
898       (CGM.getLangOpts().getGC() &&
899        CGM.getContext().getObjCGCAttrKind(ivarType))) {
900     Kind = Expression;
901     return;
902   }
903 
904   // Compute whether the ivar has strong members.
905   if (CGM.getLangOpts().getGC())
906     if (const RecordType *recordType = ivarType->getAs<RecordType>())
907       HasStrong = recordType->getDecl()->hasObjectMember();
908 
909   // We can never access structs with object members with a native
910   // access, because we need to use write barriers.  This is what
911   // objc_copyStruct is for.
912   if (HasStrong) {
913     Kind = CopyStruct;
914     return;
915   }
916 
917   // Otherwise, this is target-dependent and based on the size and
918   // alignment of the ivar.
919 
920   // If the size of the ivar is not a power of two, give up.  We don't
921   // want to get into the business of doing compare-and-swaps.
922   if (!IvarSize.isPowerOfTwo()) {
923     Kind = CopyStruct;
924     return;
925   }
926 
927   llvm::Triple::ArchType arch =
928     CGM.getTarget().getTriple().getArch();
929 
930   // Most architectures require memory to fit within a single cache
931   // line, so the alignment has to be at least the size of the access.
932   // Otherwise we have to grab a lock.
933   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
934     Kind = CopyStruct;
935     return;
936   }
937 
938   // If the ivar's size exceeds the architecture's maximum atomic
939   // access size, we have to use CopyStruct.
940   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
941     Kind = CopyStruct;
942     return;
943   }
944 
945   // Otherwise, we can use native loads and stores.
946   Kind = Native;
947 }
948 
949 /// Generate an Objective-C property getter function.
950 ///
951 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
952 /// is illegal within a category.
953 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
954                                          const ObjCPropertyImplDecl *PID) {
955   llvm::Constant *AtomicHelperFn =
956       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
957   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
958   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
959   assert(OMD && "Invalid call to generate getter (empty method)");
960   StartObjCMethod(OMD, IMP->getClassInterface());
961 
962   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
963 
964   FinishFunction();
965 }
966 
967 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
968   const Expr *getter = propImpl->getGetterCXXConstructor();
969   if (!getter) return true;
970 
971   // Sema only makes only of these when the ivar has a C++ class type,
972   // so the form is pretty constrained.
973 
974   // If the property has a reference type, we might just be binding a
975   // reference, in which case the result will be a gl-value.  We should
976   // treat this as a non-trivial operation.
977   if (getter->isGLValue())
978     return false;
979 
980   // If we selected a trivial copy-constructor, we're okay.
981   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
982     return (construct->getConstructor()->isTrivial());
983 
984   // The constructor might require cleanups (in which case it's never
985   // trivial).
986   assert(isa<ExprWithCleanups>(getter));
987   return false;
988 }
989 
990 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
991 /// copy the ivar into the resturn slot.
992 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
993                                           llvm::Value *returnAddr,
994                                           ObjCIvarDecl *ivar,
995                                           llvm::Constant *AtomicHelperFn) {
996   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
997   //                           AtomicHelperFn);
998   CallArgList args;
999 
1000   // The 1st argument is the return Slot.
1001   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1002 
1003   // The 2nd argument is the address of the ivar.
1004   llvm::Value *ivarAddr =
1005     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1006                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1007   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1008   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1009 
1010   // Third argument is the helper function.
1011   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1012 
1013   llvm::FunctionCallee copyCppAtomicObjectFn =
1014       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1015   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1016   CGF.EmitCall(
1017       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1018                callee, ReturnValueSlot(), args);
1019 }
1020 
1021 void
1022 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1023                                         const ObjCPropertyImplDecl *propImpl,
1024                                         const ObjCMethodDecl *GetterMethodDecl,
1025                                         llvm::Constant *AtomicHelperFn) {
1026   // If there's a non-trivial 'get' expression, we just have to emit that.
1027   if (!hasTrivialGetExpr(propImpl)) {
1028     if (!AtomicHelperFn) {
1029       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1030                                      propImpl->getGetterCXXConstructor(),
1031                                      /* NRVOCandidate=*/nullptr);
1032       EmitReturnStmt(*ret);
1033     }
1034     else {
1035       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1036       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1037                                     ivar, AtomicHelperFn);
1038     }
1039     return;
1040   }
1041 
1042   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1043   QualType propType = prop->getType();
1044   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
1045 
1046   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1047 
1048   // Pick an implementation strategy.
1049   PropertyImplStrategy strategy(CGM, propImpl);
1050   switch (strategy.getKind()) {
1051   case PropertyImplStrategy::Native: {
1052     // We don't need to do anything for a zero-size struct.
1053     if (strategy.getIvarSize().isZero())
1054       return;
1055 
1056     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1057 
1058     // Currently, all atomic accesses have to be through integer
1059     // types, so there's no point in trying to pick a prettier type.
1060     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1061     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1062     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1063 
1064     // Perform an atomic load.  This does not impose ordering constraints.
1065     Address ivarAddr = LV.getAddress();
1066     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1067     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1068     load->setAtomic(llvm::AtomicOrdering::Unordered);
1069 
1070     // Store that value into the return address.  Doing this with a
1071     // bitcast is likely to produce some pretty ugly IR, but it's not
1072     // the *most* terrible thing in the world.
1073     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1074     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1075     llvm::Value *ivarVal = load;
1076     if (ivarSize > retTySize) {
1077       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1078       ivarVal = Builder.CreateTrunc(load, newTy);
1079       bitcastType = newTy->getPointerTo();
1080     }
1081     Builder.CreateStore(ivarVal,
1082                         Builder.CreateBitCast(ReturnValue, bitcastType));
1083 
1084     // Make sure we don't do an autorelease.
1085     AutoreleaseResult = false;
1086     return;
1087   }
1088 
1089   case PropertyImplStrategy::GetSetProperty: {
1090     llvm::FunctionCallee getPropertyFn =
1091         CGM.getObjCRuntime().GetPropertyGetFunction();
1092     if (!getPropertyFn) {
1093       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1094       return;
1095     }
1096     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1097 
1098     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1099     // FIXME: Can't this be simpler? This might even be worse than the
1100     // corresponding gcc code.
1101     llvm::Value *cmd =
1102       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1103     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1104     llvm::Value *ivarOffset =
1105       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1106 
1107     CallArgList args;
1108     args.add(RValue::get(self), getContext().getObjCIdType());
1109     args.add(RValue::get(cmd), getContext().getObjCSelType());
1110     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1111     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1112              getContext().BoolTy);
1113 
1114     // FIXME: We shouldn't need to get the function info here, the
1115     // runtime already should have computed it to build the function.
1116     llvm::CallBase *CallInstruction;
1117     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1118                              getContext().getObjCIdType(), args),
1119                          callee, ReturnValueSlot(), args, &CallInstruction);
1120     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1121       call->setTailCall();
1122 
1123     // We need to fix the type here. Ivars with copy & retain are
1124     // always objects so we don't need to worry about complex or
1125     // aggregates.
1126     RV = RValue::get(Builder.CreateBitCast(
1127         RV.getScalarVal(),
1128         getTypes().ConvertType(getterMethod->getReturnType())));
1129 
1130     EmitReturnOfRValue(RV, propType);
1131 
1132     // objc_getProperty does an autorelease, so we should suppress ours.
1133     AutoreleaseResult = false;
1134 
1135     return;
1136   }
1137 
1138   case PropertyImplStrategy::CopyStruct:
1139     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1140                          strategy.hasStrongMember());
1141     return;
1142 
1143   case PropertyImplStrategy::Expression:
1144   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1145     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1146 
1147     QualType ivarType = ivar->getType();
1148     switch (getEvaluationKind(ivarType)) {
1149     case TEK_Complex: {
1150       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1151       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1152                          /*init*/ true);
1153       return;
1154     }
1155     case TEK_Aggregate: {
1156       // The return value slot is guaranteed to not be aliased, but
1157       // that's not necessarily the same as "on the stack", so
1158       // we still potentially need objc_memmove_collectable.
1159       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1160                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1161       return;
1162     }
1163     case TEK_Scalar: {
1164       llvm::Value *value;
1165       if (propType->isReferenceType()) {
1166         value = LV.getAddress().getPointer();
1167       } else {
1168         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1169         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1170           if (getLangOpts().ObjCAutoRefCount) {
1171             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1172           } else {
1173             value = EmitARCLoadWeak(LV.getAddress());
1174           }
1175 
1176         // Otherwise we want to do a simple load, suppressing the
1177         // final autorelease.
1178         } else {
1179           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1180           AutoreleaseResult = false;
1181         }
1182 
1183         value = Builder.CreateBitCast(
1184             value, ConvertType(GetterMethodDecl->getReturnType()));
1185       }
1186 
1187       EmitReturnOfRValue(RValue::get(value), propType);
1188       return;
1189     }
1190     }
1191     llvm_unreachable("bad evaluation kind");
1192   }
1193 
1194   }
1195   llvm_unreachable("bad @property implementation strategy!");
1196 }
1197 
1198 /// emitStructSetterCall - Call the runtime function to store the value
1199 /// from the first formal parameter into the given ivar.
1200 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1201                                  ObjCIvarDecl *ivar) {
1202   // objc_copyStruct (&structIvar, &Arg,
1203   //                  sizeof (struct something), true, false);
1204   CallArgList args;
1205 
1206   // The first argument is the address of the ivar.
1207   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1208                                                 CGF.LoadObjCSelf(), ivar, 0)
1209     .getPointer();
1210   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1211   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1212 
1213   // The second argument is the address of the parameter variable.
1214   ParmVarDecl *argVar = *OMD->param_begin();
1215   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1216                      argVar->getType().getNonReferenceType(), VK_LValue,
1217                      SourceLocation());
1218   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1219   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1220   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1221 
1222   // The third argument is the sizeof the type.
1223   llvm::Value *size =
1224     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1225   args.add(RValue::get(size), CGF.getContext().getSizeType());
1226 
1227   // The fourth argument is the 'isAtomic' flag.
1228   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1229 
1230   // The fifth argument is the 'hasStrong' flag.
1231   // FIXME: should this really always be false?
1232   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1233 
1234   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1235   CGCallee callee = CGCallee::forDirect(fn);
1236   CGF.EmitCall(
1237       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1238                callee, ReturnValueSlot(), args);
1239 }
1240 
1241 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1242 /// the value from the first formal parameter into the given ivar, using
1243 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1244 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1245                                           ObjCMethodDecl *OMD,
1246                                           ObjCIvarDecl *ivar,
1247                                           llvm::Constant *AtomicHelperFn) {
1248   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1249   //                           AtomicHelperFn);
1250   CallArgList args;
1251 
1252   // The first argument is the address of the ivar.
1253   llvm::Value *ivarAddr =
1254     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1255                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1256   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1257   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1258 
1259   // The second argument is the address of the parameter variable.
1260   ParmVarDecl *argVar = *OMD->param_begin();
1261   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1262                      argVar->getType().getNonReferenceType(), VK_LValue,
1263                      SourceLocation());
1264   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1265   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1266   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1267 
1268   // Third argument is the helper function.
1269   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1270 
1271   llvm::FunctionCallee fn =
1272       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1273   CGCallee callee = CGCallee::forDirect(fn);
1274   CGF.EmitCall(
1275       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1276                callee, ReturnValueSlot(), args);
1277 }
1278 
1279 
1280 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1281   Expr *setter = PID->getSetterCXXAssignment();
1282   if (!setter) return true;
1283 
1284   // Sema only makes only of these when the ivar has a C++ class type,
1285   // so the form is pretty constrained.
1286 
1287   // An operator call is trivial if the function it calls is trivial.
1288   // This also implies that there's nothing non-trivial going on with
1289   // the arguments, because operator= can only be trivial if it's a
1290   // synthesized assignment operator and therefore both parameters are
1291   // references.
1292   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1293     if (const FunctionDecl *callee
1294           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1295       if (callee->isTrivial())
1296         return true;
1297     return false;
1298   }
1299 
1300   assert(isa<ExprWithCleanups>(setter));
1301   return false;
1302 }
1303 
1304 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1305   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1306     return false;
1307   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1308 }
1309 
1310 void
1311 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1312                                         const ObjCPropertyImplDecl *propImpl,
1313                                         llvm::Constant *AtomicHelperFn) {
1314   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1315   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1316   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1317 
1318   // Just use the setter expression if Sema gave us one and it's
1319   // non-trivial.
1320   if (!hasTrivialSetExpr(propImpl)) {
1321     if (!AtomicHelperFn)
1322       // If non-atomic, assignment is called directly.
1323       EmitStmt(propImpl->getSetterCXXAssignment());
1324     else
1325       // If atomic, assignment is called via a locking api.
1326       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1327                                     AtomicHelperFn);
1328     return;
1329   }
1330 
1331   PropertyImplStrategy strategy(CGM, propImpl);
1332   switch (strategy.getKind()) {
1333   case PropertyImplStrategy::Native: {
1334     // We don't need to do anything for a zero-size struct.
1335     if (strategy.getIvarSize().isZero())
1336       return;
1337 
1338     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1339 
1340     LValue ivarLValue =
1341       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1342     Address ivarAddr = ivarLValue.getAddress();
1343 
1344     // Currently, all atomic accesses have to be through integer
1345     // types, so there's no point in trying to pick a prettier type.
1346     llvm::Type *bitcastType =
1347       llvm::Type::getIntNTy(getLLVMContext(),
1348                             getContext().toBits(strategy.getIvarSize()));
1349 
1350     // Cast both arguments to the chosen operation type.
1351     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1352     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1353 
1354     // This bitcast load is likely to cause some nasty IR.
1355     llvm::Value *load = Builder.CreateLoad(argAddr);
1356 
1357     // Perform an atomic store.  There are no memory ordering requirements.
1358     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1359     store->setAtomic(llvm::AtomicOrdering::Unordered);
1360     return;
1361   }
1362 
1363   case PropertyImplStrategy::GetSetProperty:
1364   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1365 
1366     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1367     llvm::FunctionCallee setPropertyFn = nullptr;
1368     if (UseOptimizedSetter(CGM)) {
1369       // 10.8 and iOS 6.0 code and GC is off
1370       setOptimizedPropertyFn =
1371           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1372               strategy.isAtomic(), strategy.isCopy());
1373       if (!setOptimizedPropertyFn) {
1374         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1375         return;
1376       }
1377     }
1378     else {
1379       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1380       if (!setPropertyFn) {
1381         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1382         return;
1383       }
1384     }
1385 
1386     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1387     //                       <is-atomic>, <is-copy>).
1388     llvm::Value *cmd =
1389       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1390     llvm::Value *self =
1391       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1392     llvm::Value *ivarOffset =
1393       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1394     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1395     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1396     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1397 
1398     CallArgList args;
1399     args.add(RValue::get(self), getContext().getObjCIdType());
1400     args.add(RValue::get(cmd), getContext().getObjCSelType());
1401     if (setOptimizedPropertyFn) {
1402       args.add(RValue::get(arg), getContext().getObjCIdType());
1403       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1404       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1405       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1406                callee, ReturnValueSlot(), args);
1407     } else {
1408       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1409       args.add(RValue::get(arg), getContext().getObjCIdType());
1410       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1411                getContext().BoolTy);
1412       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1413                getContext().BoolTy);
1414       // FIXME: We shouldn't need to get the function info here, the runtime
1415       // already should have computed it to build the function.
1416       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1417       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1418                callee, ReturnValueSlot(), args);
1419     }
1420 
1421     return;
1422   }
1423 
1424   case PropertyImplStrategy::CopyStruct:
1425     emitStructSetterCall(*this, setterMethod, ivar);
1426     return;
1427 
1428   case PropertyImplStrategy::Expression:
1429     break;
1430   }
1431 
1432   // Otherwise, fake up some ASTs and emit a normal assignment.
1433   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1434   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1435                    VK_LValue, SourceLocation());
1436   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1437                             selfDecl->getType(), CK_LValueToRValue, &self,
1438                             VK_RValue);
1439   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1440                           SourceLocation(), SourceLocation(),
1441                           &selfLoad, true, true);
1442 
1443   ParmVarDecl *argDecl = *setterMethod->param_begin();
1444   QualType argType = argDecl->getType().getNonReferenceType();
1445   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1446                   SourceLocation());
1447   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1448                            argType.getUnqualifiedType(), CK_LValueToRValue,
1449                            &arg, VK_RValue);
1450 
1451   // The property type can differ from the ivar type in some situations with
1452   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1453   // The following absurdity is just to ensure well-formed IR.
1454   CastKind argCK = CK_NoOp;
1455   if (ivarRef.getType()->isObjCObjectPointerType()) {
1456     if (argLoad.getType()->isObjCObjectPointerType())
1457       argCK = CK_BitCast;
1458     else if (argLoad.getType()->isBlockPointerType())
1459       argCK = CK_BlockPointerToObjCPointerCast;
1460     else
1461       argCK = CK_CPointerToObjCPointerCast;
1462   } else if (ivarRef.getType()->isBlockPointerType()) {
1463      if (argLoad.getType()->isBlockPointerType())
1464       argCK = CK_BitCast;
1465     else
1466       argCK = CK_AnyPointerToBlockPointerCast;
1467   } else if (ivarRef.getType()->isPointerType()) {
1468     argCK = CK_BitCast;
1469   }
1470   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1471                            ivarRef.getType(), argCK, &argLoad,
1472                            VK_RValue);
1473   Expr *finalArg = &argLoad;
1474   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1475                                            argLoad.getType()))
1476     finalArg = &argCast;
1477 
1478 
1479   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1480                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1481                         SourceLocation(), FPOptions());
1482   EmitStmt(&assign);
1483 }
1484 
1485 /// Generate an Objective-C property setter function.
1486 ///
1487 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1488 /// is illegal within a category.
1489 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1490                                          const ObjCPropertyImplDecl *PID) {
1491   llvm::Constant *AtomicHelperFn =
1492       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1493   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1494   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1495   assert(OMD && "Invalid call to generate setter (empty method)");
1496   StartObjCMethod(OMD, IMP->getClassInterface());
1497 
1498   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1499 
1500   FinishFunction();
1501 }
1502 
1503 namespace {
1504   struct DestroyIvar final : EHScopeStack::Cleanup {
1505   private:
1506     llvm::Value *addr;
1507     const ObjCIvarDecl *ivar;
1508     CodeGenFunction::Destroyer *destroyer;
1509     bool useEHCleanupForArray;
1510   public:
1511     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1512                 CodeGenFunction::Destroyer *destroyer,
1513                 bool useEHCleanupForArray)
1514       : addr(addr), ivar(ivar), destroyer(destroyer),
1515         useEHCleanupForArray(useEHCleanupForArray) {}
1516 
1517     void Emit(CodeGenFunction &CGF, Flags flags) override {
1518       LValue lvalue
1519         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1520       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1521                       flags.isForNormalCleanup() && useEHCleanupForArray);
1522     }
1523   };
1524 }
1525 
1526 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1527 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1528                                       Address addr,
1529                                       QualType type) {
1530   llvm::Value *null = getNullForVariable(addr);
1531   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1532 }
1533 
1534 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1535                                   ObjCImplementationDecl *impl) {
1536   CodeGenFunction::RunCleanupsScope scope(CGF);
1537 
1538   llvm::Value *self = CGF.LoadObjCSelf();
1539 
1540   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1541   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1542        ivar; ivar = ivar->getNextIvar()) {
1543     QualType type = ivar->getType();
1544 
1545     // Check whether the ivar is a destructible type.
1546     QualType::DestructionKind dtorKind = type.isDestructedType();
1547     if (!dtorKind) continue;
1548 
1549     CodeGenFunction::Destroyer *destroyer = nullptr;
1550 
1551     // Use a call to objc_storeStrong to destroy strong ivars, for the
1552     // general benefit of the tools.
1553     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1554       destroyer = destroyARCStrongWithStore;
1555 
1556     // Otherwise use the default for the destruction kind.
1557     } else {
1558       destroyer = CGF.getDestroyer(dtorKind);
1559     }
1560 
1561     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1562 
1563     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1564                                          cleanupKind & EHCleanup);
1565   }
1566 
1567   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1568 }
1569 
1570 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1571                                                  ObjCMethodDecl *MD,
1572                                                  bool ctor) {
1573   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1574   StartObjCMethod(MD, IMP->getClassInterface());
1575 
1576   // Emit .cxx_construct.
1577   if (ctor) {
1578     // Suppress the final autorelease in ARC.
1579     AutoreleaseResult = false;
1580 
1581     for (const auto *IvarInit : IMP->inits()) {
1582       FieldDecl *Field = IvarInit->getAnyMember();
1583       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1584       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1585                                     LoadObjCSelf(), Ivar, 0);
1586       EmitAggExpr(IvarInit->getInit(),
1587                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1588                                           AggValueSlot::DoesNotNeedGCBarriers,
1589                                           AggValueSlot::IsNotAliased,
1590                                           AggValueSlot::DoesNotOverlap));
1591     }
1592     // constructor returns 'self'.
1593     CodeGenTypes &Types = CGM.getTypes();
1594     QualType IdTy(CGM.getContext().getObjCIdType());
1595     llvm::Value *SelfAsId =
1596       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1597     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1598 
1599   // Emit .cxx_destruct.
1600   } else {
1601     emitCXXDestructMethod(*this, IMP);
1602   }
1603   FinishFunction();
1604 }
1605 
1606 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1607   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1608   DeclRefExpr DRE(getContext(), Self,
1609                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1610                   Self->getType(), VK_LValue, SourceLocation());
1611   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1612 }
1613 
1614 QualType CodeGenFunction::TypeOfSelfObject() {
1615   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1616   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1617   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1618     getContext().getCanonicalType(selfDecl->getType()));
1619   return PTy->getPointeeType();
1620 }
1621 
1622 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1623   llvm::FunctionCallee EnumerationMutationFnPtr =
1624       CGM.getObjCRuntime().EnumerationMutationFunction();
1625   if (!EnumerationMutationFnPtr) {
1626     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1627     return;
1628   }
1629   CGCallee EnumerationMutationFn =
1630     CGCallee::forDirect(EnumerationMutationFnPtr);
1631 
1632   CGDebugInfo *DI = getDebugInfo();
1633   if (DI)
1634     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1635 
1636   RunCleanupsScope ForScope(*this);
1637 
1638   // The local variable comes into scope immediately.
1639   AutoVarEmission variable = AutoVarEmission::invalid();
1640   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1641     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1642 
1643   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1644 
1645   // Fast enumeration state.
1646   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1647   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1648   EmitNullInitialization(StatePtr, StateTy);
1649 
1650   // Number of elements in the items array.
1651   static const unsigned NumItems = 16;
1652 
1653   // Fetch the countByEnumeratingWithState:objects:count: selector.
1654   IdentifierInfo *II[] = {
1655     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1656     &CGM.getContext().Idents.get("objects"),
1657     &CGM.getContext().Idents.get("count")
1658   };
1659   Selector FastEnumSel =
1660     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1661 
1662   QualType ItemsTy =
1663     getContext().getConstantArrayType(getContext().getObjCIdType(),
1664                                       llvm::APInt(32, NumItems),
1665                                       ArrayType::Normal, 0);
1666   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1667 
1668   // Emit the collection pointer.  In ARC, we do a retain.
1669   llvm::Value *Collection;
1670   if (getLangOpts().ObjCAutoRefCount) {
1671     Collection = EmitARCRetainScalarExpr(S.getCollection());
1672 
1673     // Enter a cleanup to do the release.
1674     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1675   } else {
1676     Collection = EmitScalarExpr(S.getCollection());
1677   }
1678 
1679   // The 'continue' label needs to appear within the cleanup for the
1680   // collection object.
1681   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1682 
1683   // Send it our message:
1684   CallArgList Args;
1685 
1686   // The first argument is a temporary of the enumeration-state type.
1687   Args.add(RValue::get(StatePtr.getPointer()),
1688            getContext().getPointerType(StateTy));
1689 
1690   // The second argument is a temporary array with space for NumItems
1691   // pointers.  We'll actually be loading elements from the array
1692   // pointer written into the control state; this buffer is so that
1693   // collections that *aren't* backed by arrays can still queue up
1694   // batches of elements.
1695   Args.add(RValue::get(ItemsPtr.getPointer()),
1696            getContext().getPointerType(ItemsTy));
1697 
1698   // The third argument is the capacity of that temporary array.
1699   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1700   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1701   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1702 
1703   // Start the enumeration.
1704   RValue CountRV =
1705       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1706                                                getContext().getNSUIntegerType(),
1707                                                FastEnumSel, Collection, Args);
1708 
1709   // The initial number of objects that were returned in the buffer.
1710   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1711 
1712   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1713   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1714 
1715   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1716 
1717   // If the limit pointer was zero to begin with, the collection is
1718   // empty; skip all this. Set the branch weight assuming this has the same
1719   // probability of exiting the loop as any other loop exit.
1720   uint64_t EntryCount = getCurrentProfileCount();
1721   Builder.CreateCondBr(
1722       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1723       LoopInitBB,
1724       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1725 
1726   // Otherwise, initialize the loop.
1727   EmitBlock(LoopInitBB);
1728 
1729   // Save the initial mutations value.  This is the value at an
1730   // address that was written into the state object by
1731   // countByEnumeratingWithState:objects:count:.
1732   Address StateMutationsPtrPtr =
1733       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1734   llvm::Value *StateMutationsPtr
1735     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1736 
1737   llvm::Value *initialMutations =
1738     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1739                               "forcoll.initial-mutations");
1740 
1741   // Start looping.  This is the point we return to whenever we have a
1742   // fresh, non-empty batch of objects.
1743   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1744   EmitBlock(LoopBodyBB);
1745 
1746   // The current index into the buffer.
1747   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1748   index->addIncoming(zero, LoopInitBB);
1749 
1750   // The current buffer size.
1751   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1752   count->addIncoming(initialBufferLimit, LoopInitBB);
1753 
1754   incrementProfileCounter(&S);
1755 
1756   // Check whether the mutations value has changed from where it was
1757   // at start.  StateMutationsPtr should actually be invariant between
1758   // refreshes.
1759   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1760   llvm::Value *currentMutations
1761     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1762                                 "statemutations");
1763 
1764   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1765   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1766 
1767   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1768                        WasNotMutatedBB, WasMutatedBB);
1769 
1770   // If so, call the enumeration-mutation function.
1771   EmitBlock(WasMutatedBB);
1772   llvm::Value *V =
1773     Builder.CreateBitCast(Collection,
1774                           ConvertType(getContext().getObjCIdType()));
1775   CallArgList Args2;
1776   Args2.add(RValue::get(V), getContext().getObjCIdType());
1777   // FIXME: We shouldn't need to get the function info here, the runtime already
1778   // should have computed it to build the function.
1779   EmitCall(
1780           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1781            EnumerationMutationFn, ReturnValueSlot(), Args2);
1782 
1783   // Otherwise, or if the mutation function returns, just continue.
1784   EmitBlock(WasNotMutatedBB);
1785 
1786   // Initialize the element variable.
1787   RunCleanupsScope elementVariableScope(*this);
1788   bool elementIsVariable;
1789   LValue elementLValue;
1790   QualType elementType;
1791   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1792     // Initialize the variable, in case it's a __block variable or something.
1793     EmitAutoVarInit(variable);
1794 
1795     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1796     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1797                         D->getType(), VK_LValue, SourceLocation());
1798     elementLValue = EmitLValue(&tempDRE);
1799     elementType = D->getType();
1800     elementIsVariable = true;
1801 
1802     if (D->isARCPseudoStrong())
1803       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1804   } else {
1805     elementLValue = LValue(); // suppress warning
1806     elementType = cast<Expr>(S.getElement())->getType();
1807     elementIsVariable = false;
1808   }
1809   llvm::Type *convertedElementType = ConvertType(elementType);
1810 
1811   // Fetch the buffer out of the enumeration state.
1812   // TODO: this pointer should actually be invariant between
1813   // refreshes, which would help us do certain loop optimizations.
1814   Address StateItemsPtr =
1815       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1816   llvm::Value *EnumStateItems =
1817     Builder.CreateLoad(StateItemsPtr, "stateitems");
1818 
1819   // Fetch the value at the current index from the buffer.
1820   llvm::Value *CurrentItemPtr =
1821     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1822   llvm::Value *CurrentItem =
1823     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1824 
1825   // Cast that value to the right type.
1826   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1827                                       "currentitem");
1828 
1829   // Make sure we have an l-value.  Yes, this gets evaluated every
1830   // time through the loop.
1831   if (!elementIsVariable) {
1832     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1833     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1834   } else {
1835     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1836                            /*isInit*/ true);
1837   }
1838 
1839   // If we do have an element variable, this assignment is the end of
1840   // its initialization.
1841   if (elementIsVariable)
1842     EmitAutoVarCleanups(variable);
1843 
1844   // Perform the loop body, setting up break and continue labels.
1845   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1846   {
1847     RunCleanupsScope Scope(*this);
1848     EmitStmt(S.getBody());
1849   }
1850   BreakContinueStack.pop_back();
1851 
1852   // Destroy the element variable now.
1853   elementVariableScope.ForceCleanup();
1854 
1855   // Check whether there are more elements.
1856   EmitBlock(AfterBody.getBlock());
1857 
1858   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1859 
1860   // First we check in the local buffer.
1861   llvm::Value *indexPlusOne =
1862       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1863 
1864   // If we haven't overrun the buffer yet, we can continue.
1865   // Set the branch weights based on the simplifying assumption that this is
1866   // like a while-loop, i.e., ignoring that the false branch fetches more
1867   // elements and then returns to the loop.
1868   Builder.CreateCondBr(
1869       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1870       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1871 
1872   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1873   count->addIncoming(count, AfterBody.getBlock());
1874 
1875   // Otherwise, we have to fetch more elements.
1876   EmitBlock(FetchMoreBB);
1877 
1878   CountRV =
1879       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1880                                                getContext().getNSUIntegerType(),
1881                                                FastEnumSel, Collection, Args);
1882 
1883   // If we got a zero count, we're done.
1884   llvm::Value *refetchCount = CountRV.getScalarVal();
1885 
1886   // (note that the message send might split FetchMoreBB)
1887   index->addIncoming(zero, Builder.GetInsertBlock());
1888   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1889 
1890   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1891                        EmptyBB, LoopBodyBB);
1892 
1893   // No more elements.
1894   EmitBlock(EmptyBB);
1895 
1896   if (!elementIsVariable) {
1897     // If the element was not a declaration, set it to be null.
1898 
1899     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1900     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1901     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1902   }
1903 
1904   if (DI)
1905     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1906 
1907   ForScope.ForceCleanup();
1908   EmitBlock(LoopEnd.getBlock());
1909 }
1910 
1911 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1912   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1913 }
1914 
1915 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1916   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1917 }
1918 
1919 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1920                                               const ObjCAtSynchronizedStmt &S) {
1921   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1922 }
1923 
1924 namespace {
1925   struct CallObjCRelease final : EHScopeStack::Cleanup {
1926     CallObjCRelease(llvm::Value *object) : object(object) {}
1927     llvm::Value *object;
1928 
1929     void Emit(CodeGenFunction &CGF, Flags flags) override {
1930       // Releases at the end of the full-expression are imprecise.
1931       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1932     }
1933   };
1934 }
1935 
1936 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1937 /// release at the end of the full-expression.
1938 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1939                                                     llvm::Value *object) {
1940   // If we're in a conditional branch, we need to make the cleanup
1941   // conditional.
1942   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1943   return object;
1944 }
1945 
1946 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1947                                                            llvm::Value *value) {
1948   return EmitARCRetainAutorelease(type, value);
1949 }
1950 
1951 /// Given a number of pointers, inform the optimizer that they're
1952 /// being intrinsically used up until this point in the program.
1953 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1954   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1955   if (!fn)
1956     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
1957 
1958   // This isn't really a "runtime" function, but as an intrinsic it
1959   // doesn't really matter as long as we align things up.
1960   EmitNounwindRuntimeCall(fn, values);
1961 }
1962 
1963 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
1964   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1965     // If the target runtime doesn't naturally support ARC, emit weak
1966     // references to the runtime support library.  We don't really
1967     // permit this to fail, but we need a particular relocation style.
1968     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1969         !CGM.getTriple().isOSBinFormatCOFF()) {
1970       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1971     }
1972   }
1973 }
1974 
1975 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
1976                                          llvm::FunctionCallee RTF) {
1977   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
1978 }
1979 
1980 /// Perform an operation having the signature
1981 ///   i8* (i8*)
1982 /// where a null input causes a no-op and returns null.
1983 static llvm::Value *emitARCValueOperation(
1984     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
1985     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
1986     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
1987   if (isa<llvm::ConstantPointerNull>(value))
1988     return value;
1989 
1990   if (!fn) {
1991     fn = CGF.CGM.getIntrinsic(IntID);
1992     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
1993   }
1994 
1995   // Cast the argument to 'id'.
1996   llvm::Type *origType = returnType ? returnType : value->getType();
1997   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1998 
1999   // Call the function.
2000   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2001   call->setTailCallKind(tailKind);
2002 
2003   // Cast the result back to the original type.
2004   return CGF.Builder.CreateBitCast(call, origType);
2005 }
2006 
2007 /// Perform an operation having the following signature:
2008 ///   i8* (i8**)
2009 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2010                                          llvm::Function *&fn,
2011                                          llvm::Intrinsic::ID IntID) {
2012   if (!fn) {
2013     fn = CGF.CGM.getIntrinsic(IntID);
2014     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2015   }
2016 
2017   // Cast the argument to 'id*'.
2018   llvm::Type *origType = addr.getElementType();
2019   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2020 
2021   // Call the function.
2022   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2023 
2024   // Cast the result back to a dereference of the original type.
2025   if (origType != CGF.Int8PtrTy)
2026     result = CGF.Builder.CreateBitCast(result, origType);
2027 
2028   return result;
2029 }
2030 
2031 /// Perform an operation having the following signature:
2032 ///   i8* (i8**, i8*)
2033 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2034                                           llvm::Value *value,
2035                                           llvm::Function *&fn,
2036                                           llvm::Intrinsic::ID IntID,
2037                                           bool ignored) {
2038   assert(addr.getElementType() == value->getType());
2039 
2040   if (!fn) {
2041     fn = CGF.CGM.getIntrinsic(IntID);
2042     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2043   }
2044 
2045   llvm::Type *origType = value->getType();
2046 
2047   llvm::Value *args[] = {
2048     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2049     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2050   };
2051   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2052 
2053   if (ignored) return nullptr;
2054 
2055   return CGF.Builder.CreateBitCast(result, origType);
2056 }
2057 
2058 /// Perform an operation having the following signature:
2059 ///   void (i8**, i8**)
2060 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2061                                  llvm::Function *&fn,
2062                                  llvm::Intrinsic::ID IntID) {
2063   assert(dst.getType() == src.getType());
2064 
2065   if (!fn) {
2066     fn = CGF.CGM.getIntrinsic(IntID);
2067     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2068   }
2069 
2070   llvm::Value *args[] = {
2071     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2072     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2073   };
2074   CGF.EmitNounwindRuntimeCall(fn, args);
2075 }
2076 
2077 /// Perform an operation having the signature
2078 ///   i8* (i8*)
2079 /// where a null input causes a no-op and returns null.
2080 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2081                                            llvm::Value *value,
2082                                            llvm::Type *returnType,
2083                                            llvm::FunctionCallee &fn,
2084                                            StringRef fnName) {
2085   if (isa<llvm::ConstantPointerNull>(value))
2086     return value;
2087 
2088   if (!fn) {
2089     llvm::FunctionType *fnType =
2090       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2091     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2092 
2093     // We have Native ARC, so set nonlazybind attribute for performance
2094     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2095       if (fnName == "objc_retain")
2096         f->addFnAttr(llvm::Attribute::NonLazyBind);
2097   }
2098 
2099   // Cast the argument to 'id'.
2100   llvm::Type *origType = returnType ? returnType : value->getType();
2101   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2102 
2103   // Call the function.
2104   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2105 
2106   // Cast the result back to the original type.
2107   return CGF.Builder.CreateBitCast(Inst, origType);
2108 }
2109 
2110 /// Produce the code to do a retain.  Based on the type, calls one of:
2111 ///   call i8* \@objc_retain(i8* %value)
2112 ///   call i8* \@objc_retainBlock(i8* %value)
2113 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2114   if (type->isBlockPointerType())
2115     return EmitARCRetainBlock(value, /*mandatory*/ false);
2116   else
2117     return EmitARCRetainNonBlock(value);
2118 }
2119 
2120 /// Retain the given object, with normal retain semantics.
2121 ///   call i8* \@objc_retain(i8* %value)
2122 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2123   return emitARCValueOperation(*this, value, nullptr,
2124                                CGM.getObjCEntrypoints().objc_retain,
2125                                llvm::Intrinsic::objc_retain);
2126 }
2127 
2128 /// Retain the given block, with _Block_copy semantics.
2129 ///   call i8* \@objc_retainBlock(i8* %value)
2130 ///
2131 /// \param mandatory - If false, emit the call with metadata
2132 /// indicating that it's okay for the optimizer to eliminate this call
2133 /// if it can prove that the block never escapes except down the stack.
2134 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2135                                                  bool mandatory) {
2136   llvm::Value *result
2137     = emitARCValueOperation(*this, value, nullptr,
2138                             CGM.getObjCEntrypoints().objc_retainBlock,
2139                             llvm::Intrinsic::objc_retainBlock);
2140 
2141   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2142   // tell the optimizer that it doesn't need to do this copy if the
2143   // block doesn't escape, where being passed as an argument doesn't
2144   // count as escaping.
2145   if (!mandatory && isa<llvm::Instruction>(result)) {
2146     llvm::CallInst *call
2147       = cast<llvm::CallInst>(result->stripPointerCasts());
2148     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
2149 
2150     call->setMetadata("clang.arc.copy_on_escape",
2151                       llvm::MDNode::get(Builder.getContext(), None));
2152   }
2153 
2154   return result;
2155 }
2156 
2157 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2158   // Fetch the void(void) inline asm which marks that we're going to
2159   // do something with the autoreleased return value.
2160   llvm::InlineAsm *&marker
2161     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2162   if (!marker) {
2163     StringRef assembly
2164       = CGF.CGM.getTargetCodeGenInfo()
2165            .getARCRetainAutoreleasedReturnValueMarker();
2166 
2167     // If we have an empty assembly string, there's nothing to do.
2168     if (assembly.empty()) {
2169 
2170     // Otherwise, at -O0, build an inline asm that we're going to call
2171     // in a moment.
2172     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2173       llvm::FunctionType *type =
2174         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2175 
2176       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2177 
2178     // If we're at -O1 and above, we don't want to litter the code
2179     // with this marker yet, so leave a breadcrumb for the ARC
2180     // optimizer to pick up.
2181     } else {
2182       const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2183       if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2184         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2185         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2186       }
2187     }
2188   }
2189 
2190   // Call the marker asm if we made one, which we do only at -O0.
2191   if (marker)
2192     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2193 }
2194 
2195 /// Retain the given object which is the result of a function call.
2196 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2197 ///
2198 /// Yes, this function name is one character away from a different
2199 /// call with completely different semantics.
2200 llvm::Value *
2201 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2202   emitAutoreleasedReturnValueMarker(*this);
2203   llvm::CallInst::TailCallKind tailKind =
2204       CGM.getTargetCodeGenInfo()
2205               .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue()
2206           ? llvm::CallInst::TCK_NoTail
2207           : llvm::CallInst::TCK_None;
2208   return emitARCValueOperation(
2209       *this, value, nullptr,
2210       CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2211       llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2212 }
2213 
2214 /// Claim a possibly-autoreleased return value at +0.  This is only
2215 /// valid to do in contexts which do not rely on the retain to keep
2216 /// the object valid for all of its uses; for example, when
2217 /// the value is ignored, or when it is being assigned to an
2218 /// __unsafe_unretained variable.
2219 ///
2220 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2221 llvm::Value *
2222 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2223   emitAutoreleasedReturnValueMarker(*this);
2224   return emitARCValueOperation(*this, value, nullptr,
2225               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2226                      llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2227 }
2228 
2229 /// Release the given object.
2230 ///   call void \@objc_release(i8* %value)
2231 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2232                                      ARCPreciseLifetime_t precise) {
2233   if (isa<llvm::ConstantPointerNull>(value)) return;
2234 
2235   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2236   if (!fn) {
2237     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2238     setARCRuntimeFunctionLinkage(CGM, fn);
2239   }
2240 
2241   // Cast the argument to 'id'.
2242   value = Builder.CreateBitCast(value, Int8PtrTy);
2243 
2244   // Call objc_release.
2245   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2246 
2247   if (precise == ARCImpreciseLifetime) {
2248     call->setMetadata("clang.imprecise_release",
2249                       llvm::MDNode::get(Builder.getContext(), None));
2250   }
2251 }
2252 
2253 /// Destroy a __strong variable.
2254 ///
2255 /// At -O0, emit a call to store 'null' into the address;
2256 /// instrumenting tools prefer this because the address is exposed,
2257 /// but it's relatively cumbersome to optimize.
2258 ///
2259 /// At -O1 and above, just load and call objc_release.
2260 ///
2261 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2262 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2263                                            ARCPreciseLifetime_t precise) {
2264   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2265     llvm::Value *null = getNullForVariable(addr);
2266     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2267     return;
2268   }
2269 
2270   llvm::Value *value = Builder.CreateLoad(addr);
2271   EmitARCRelease(value, precise);
2272 }
2273 
2274 /// Store into a strong object.  Always calls this:
2275 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2276 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2277                                                      llvm::Value *value,
2278                                                      bool ignored) {
2279   assert(addr.getElementType() == value->getType());
2280 
2281   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2282   if (!fn) {
2283     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2284     setARCRuntimeFunctionLinkage(CGM, fn);
2285   }
2286 
2287   llvm::Value *args[] = {
2288     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2289     Builder.CreateBitCast(value, Int8PtrTy)
2290   };
2291   EmitNounwindRuntimeCall(fn, args);
2292 
2293   if (ignored) return nullptr;
2294   return value;
2295 }
2296 
2297 /// Store into a strong object.  Sometimes calls this:
2298 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2299 /// Other times, breaks it down into components.
2300 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2301                                                  llvm::Value *newValue,
2302                                                  bool ignored) {
2303   QualType type = dst.getType();
2304   bool isBlock = type->isBlockPointerType();
2305 
2306   // Use a store barrier at -O0 unless this is a block type or the
2307   // lvalue is inadequately aligned.
2308   if (shouldUseFusedARCCalls() &&
2309       !isBlock &&
2310       (dst.getAlignment().isZero() ||
2311        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2312     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2313   }
2314 
2315   // Otherwise, split it out.
2316 
2317   // Retain the new value.
2318   newValue = EmitARCRetain(type, newValue);
2319 
2320   // Read the old value.
2321   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2322 
2323   // Store.  We do this before the release so that any deallocs won't
2324   // see the old value.
2325   EmitStoreOfScalar(newValue, dst);
2326 
2327   // Finally, release the old value.
2328   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2329 
2330   return newValue;
2331 }
2332 
2333 /// Autorelease the given object.
2334 ///   call i8* \@objc_autorelease(i8* %value)
2335 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2336   return emitARCValueOperation(*this, value, nullptr,
2337                                CGM.getObjCEntrypoints().objc_autorelease,
2338                                llvm::Intrinsic::objc_autorelease);
2339 }
2340 
2341 /// Autorelease the given object.
2342 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2343 llvm::Value *
2344 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2345   return emitARCValueOperation(*this, value, nullptr,
2346                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2347                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2348                                llvm::CallInst::TCK_Tail);
2349 }
2350 
2351 /// Do a fused retain/autorelease of the given object.
2352 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2353 llvm::Value *
2354 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2355   return emitARCValueOperation(*this, value, nullptr,
2356                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2357                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2358                                llvm::CallInst::TCK_Tail);
2359 }
2360 
2361 /// Do a fused retain/autorelease of the given object.
2362 ///   call i8* \@objc_retainAutorelease(i8* %value)
2363 /// or
2364 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2365 ///   call i8* \@objc_autorelease(i8* %retain)
2366 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2367                                                        llvm::Value *value) {
2368   if (!type->isBlockPointerType())
2369     return EmitARCRetainAutoreleaseNonBlock(value);
2370 
2371   if (isa<llvm::ConstantPointerNull>(value)) return value;
2372 
2373   llvm::Type *origType = value->getType();
2374   value = Builder.CreateBitCast(value, Int8PtrTy);
2375   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2376   value = EmitARCAutorelease(value);
2377   return Builder.CreateBitCast(value, origType);
2378 }
2379 
2380 /// Do a fused retain/autorelease of the given object.
2381 ///   call i8* \@objc_retainAutorelease(i8* %value)
2382 llvm::Value *
2383 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2384   return emitARCValueOperation(*this, value, nullptr,
2385                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2386                                llvm::Intrinsic::objc_retainAutorelease);
2387 }
2388 
2389 /// i8* \@objc_loadWeak(i8** %addr)
2390 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2391 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2392   return emitARCLoadOperation(*this, addr,
2393                               CGM.getObjCEntrypoints().objc_loadWeak,
2394                               llvm::Intrinsic::objc_loadWeak);
2395 }
2396 
2397 /// i8* \@objc_loadWeakRetained(i8** %addr)
2398 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2399   return emitARCLoadOperation(*this, addr,
2400                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2401                               llvm::Intrinsic::objc_loadWeakRetained);
2402 }
2403 
2404 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2405 /// Returns %value.
2406 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2407                                                llvm::Value *value,
2408                                                bool ignored) {
2409   return emitARCStoreOperation(*this, addr, value,
2410                                CGM.getObjCEntrypoints().objc_storeWeak,
2411                                llvm::Intrinsic::objc_storeWeak, ignored);
2412 }
2413 
2414 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2415 /// Returns %value.  %addr is known to not have a current weak entry.
2416 /// Essentially equivalent to:
2417 ///   *addr = nil; objc_storeWeak(addr, value);
2418 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2419   // If we're initializing to null, just write null to memory; no need
2420   // to get the runtime involved.  But don't do this if optimization
2421   // is enabled, because accounting for this would make the optimizer
2422   // much more complicated.
2423   if (isa<llvm::ConstantPointerNull>(value) &&
2424       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2425     Builder.CreateStore(value, addr);
2426     return;
2427   }
2428 
2429   emitARCStoreOperation(*this, addr, value,
2430                         CGM.getObjCEntrypoints().objc_initWeak,
2431                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2432 }
2433 
2434 /// void \@objc_destroyWeak(i8** %addr)
2435 /// Essentially objc_storeWeak(addr, nil).
2436 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2437   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2438   if (!fn) {
2439     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2440     setARCRuntimeFunctionLinkage(CGM, fn);
2441   }
2442 
2443   // Cast the argument to 'id*'.
2444   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2445 
2446   EmitNounwindRuntimeCall(fn, addr.getPointer());
2447 }
2448 
2449 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2450 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2451 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2452 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2453   emitARCCopyOperation(*this, dst, src,
2454                        CGM.getObjCEntrypoints().objc_moveWeak,
2455                        llvm::Intrinsic::objc_moveWeak);
2456 }
2457 
2458 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2459 /// Disregards the current value in %dest.  Essentially
2460 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2461 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2462   emitARCCopyOperation(*this, dst, src,
2463                        CGM.getObjCEntrypoints().objc_copyWeak,
2464                        llvm::Intrinsic::objc_copyWeak);
2465 }
2466 
2467 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2468                                             Address SrcAddr) {
2469   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2470   Object = EmitObjCConsumeObject(Ty, Object);
2471   EmitARCStoreWeak(DstAddr, Object, false);
2472 }
2473 
2474 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2475                                             Address SrcAddr) {
2476   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2477   Object = EmitObjCConsumeObject(Ty, Object);
2478   EmitARCStoreWeak(DstAddr, Object, false);
2479   EmitARCDestroyWeak(SrcAddr);
2480 }
2481 
2482 /// Produce the code to do a objc_autoreleasepool_push.
2483 ///   call i8* \@objc_autoreleasePoolPush(void)
2484 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2485   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2486   if (!fn) {
2487     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2488     setARCRuntimeFunctionLinkage(CGM, fn);
2489   }
2490 
2491   return EmitNounwindRuntimeCall(fn);
2492 }
2493 
2494 /// Produce the code to do a primitive release.
2495 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2496 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2497   assert(value->getType() == Int8PtrTy);
2498 
2499   if (getInvokeDest()) {
2500     // Call the runtime method not the intrinsic if we are handling exceptions
2501     llvm::FunctionCallee &fn =
2502         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2503     if (!fn) {
2504       llvm::FunctionType *fnType =
2505         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2506       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2507       setARCRuntimeFunctionLinkage(CGM, fn);
2508     }
2509 
2510     // objc_autoreleasePoolPop can throw.
2511     EmitRuntimeCallOrInvoke(fn, value);
2512   } else {
2513     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2514     if (!fn) {
2515       fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2516       setARCRuntimeFunctionLinkage(CGM, fn);
2517     }
2518 
2519     EmitRuntimeCall(fn, value);
2520   }
2521 }
2522 
2523 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2524 /// Which is: [[NSAutoreleasePool alloc] init];
2525 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2526 /// init is declared as: - (id) init; in its NSObject super class.
2527 ///
2528 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2529   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2530   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2531   // [NSAutoreleasePool alloc]
2532   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2533   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2534   CallArgList Args;
2535   RValue AllocRV =
2536     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2537                                 getContext().getObjCIdType(),
2538                                 AllocSel, Receiver, Args);
2539 
2540   // [Receiver init]
2541   Receiver = AllocRV.getScalarVal();
2542   II = &CGM.getContext().Idents.get("init");
2543   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2544   RValue InitRV =
2545     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2546                                 getContext().getObjCIdType(),
2547                                 InitSel, Receiver, Args);
2548   return InitRV.getScalarVal();
2549 }
2550 
2551 /// Allocate the given objc object.
2552 ///   call i8* \@objc_alloc(i8* %value)
2553 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2554                                             llvm::Type *resultType) {
2555   return emitObjCValueOperation(*this, value, resultType,
2556                                 CGM.getObjCEntrypoints().objc_alloc,
2557                                 "objc_alloc");
2558 }
2559 
2560 /// Allocate the given objc object.
2561 ///   call i8* \@objc_allocWithZone(i8* %value)
2562 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2563                                                     llvm::Type *resultType) {
2564   return emitObjCValueOperation(*this, value, resultType,
2565                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2566                                 "objc_allocWithZone");
2567 }
2568 
2569 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2570                                                 llvm::Type *resultType) {
2571   return emitObjCValueOperation(*this, value, resultType,
2572                                 CGM.getObjCEntrypoints().objc_alloc_init,
2573                                 "objc_alloc_init");
2574 }
2575 
2576 /// Produce the code to do a primitive release.
2577 /// [tmp drain];
2578 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2579   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2580   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2581   CallArgList Args;
2582   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2583                               getContext().VoidTy, DrainSel, Arg, Args);
2584 }
2585 
2586 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2587                                               Address addr,
2588                                               QualType type) {
2589   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2590 }
2591 
2592 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2593                                                 Address addr,
2594                                                 QualType type) {
2595   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2596 }
2597 
2598 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2599                                      Address addr,
2600                                      QualType type) {
2601   CGF.EmitARCDestroyWeak(addr);
2602 }
2603 
2604 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2605                                           QualType type) {
2606   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2607   CGF.EmitARCIntrinsicUse(value);
2608 }
2609 
2610 /// Autorelease the given object.
2611 ///   call i8* \@objc_autorelease(i8* %value)
2612 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2613                                                   llvm::Type *returnType) {
2614   return emitObjCValueOperation(
2615       *this, value, returnType,
2616       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2617       "objc_autorelease");
2618 }
2619 
2620 /// Retain the given object, with normal retain semantics.
2621 ///   call i8* \@objc_retain(i8* %value)
2622 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2623                                                      llvm::Type *returnType) {
2624   return emitObjCValueOperation(
2625       *this, value, returnType,
2626       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2627 }
2628 
2629 /// Release the given object.
2630 ///   call void \@objc_release(i8* %value)
2631 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2632                                       ARCPreciseLifetime_t precise) {
2633   if (isa<llvm::ConstantPointerNull>(value)) return;
2634 
2635   llvm::FunctionCallee &fn =
2636       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2637   if (!fn) {
2638     llvm::FunctionType *fnType =
2639         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2640     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2641     setARCRuntimeFunctionLinkage(CGM, fn);
2642     // We have Native ARC, so set nonlazybind attribute for performance
2643     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2644       f->addFnAttr(llvm::Attribute::NonLazyBind);
2645   }
2646 
2647   // Cast the argument to 'id'.
2648   value = Builder.CreateBitCast(value, Int8PtrTy);
2649 
2650   // Call objc_release.
2651   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2652 
2653   if (precise == ARCImpreciseLifetime) {
2654     call->setMetadata("clang.imprecise_release",
2655                       llvm::MDNode::get(Builder.getContext(), None));
2656   }
2657 }
2658 
2659 namespace {
2660   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2661     llvm::Value *Token;
2662 
2663     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2664 
2665     void Emit(CodeGenFunction &CGF, Flags flags) override {
2666       CGF.EmitObjCAutoreleasePoolPop(Token);
2667     }
2668   };
2669   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2670     llvm::Value *Token;
2671 
2672     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2673 
2674     void Emit(CodeGenFunction &CGF, Flags flags) override {
2675       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2676     }
2677   };
2678 }
2679 
2680 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2681   if (CGM.getLangOpts().ObjCAutoRefCount)
2682     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2683   else
2684     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2685 }
2686 
2687 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2688   switch (lifetime) {
2689   case Qualifiers::OCL_None:
2690   case Qualifiers::OCL_ExplicitNone:
2691   case Qualifiers::OCL_Strong:
2692   case Qualifiers::OCL_Autoreleasing:
2693     return true;
2694 
2695   case Qualifiers::OCL_Weak:
2696     return false;
2697   }
2698 
2699   llvm_unreachable("impossible lifetime!");
2700 }
2701 
2702 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2703                                                   LValue lvalue,
2704                                                   QualType type) {
2705   llvm::Value *result;
2706   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2707   if (shouldRetain) {
2708     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2709   } else {
2710     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2711     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2712   }
2713   return TryEmitResult(result, !shouldRetain);
2714 }
2715 
2716 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2717                                                   const Expr *e) {
2718   e = e->IgnoreParens();
2719   QualType type = e->getType();
2720 
2721   // If we're loading retained from a __strong xvalue, we can avoid
2722   // an extra retain/release pair by zeroing out the source of this
2723   // "move" operation.
2724   if (e->isXValue() &&
2725       !type.isConstQualified() &&
2726       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2727     // Emit the lvalue.
2728     LValue lv = CGF.EmitLValue(e);
2729 
2730     // Load the object pointer.
2731     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2732                                                SourceLocation()).getScalarVal();
2733 
2734     // Set the source pointer to NULL.
2735     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2736 
2737     return TryEmitResult(result, true);
2738   }
2739 
2740   // As a very special optimization, in ARC++, if the l-value is the
2741   // result of a non-volatile assignment, do a simple retain of the
2742   // result of the call to objc_storeWeak instead of reloading.
2743   if (CGF.getLangOpts().CPlusPlus &&
2744       !type.isVolatileQualified() &&
2745       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2746       isa<BinaryOperator>(e) &&
2747       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2748     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2749 
2750   // Try to emit code for scalar constant instead of emitting LValue and
2751   // loading it because we are not guaranteed to have an l-value. One of such
2752   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2753   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2754     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2755     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2756       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2757                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2758   }
2759 
2760   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2761 }
2762 
2763 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2764                                          llvm::Value *value)>
2765   ValueTransform;
2766 
2767 /// Insert code immediately after a call.
2768 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2769                                               llvm::Value *value,
2770                                               ValueTransform doAfterCall,
2771                                               ValueTransform doFallback) {
2772   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2773     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2774 
2775     // Place the retain immediately following the call.
2776     CGF.Builder.SetInsertPoint(call->getParent(),
2777                                ++llvm::BasicBlock::iterator(call));
2778     value = doAfterCall(CGF, value);
2779 
2780     CGF.Builder.restoreIP(ip);
2781     return value;
2782   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2783     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2784 
2785     // Place the retain at the beginning of the normal destination block.
2786     llvm::BasicBlock *BB = invoke->getNormalDest();
2787     CGF.Builder.SetInsertPoint(BB, BB->begin());
2788     value = doAfterCall(CGF, value);
2789 
2790     CGF.Builder.restoreIP(ip);
2791     return value;
2792 
2793   // Bitcasts can arise because of related-result returns.  Rewrite
2794   // the operand.
2795   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2796     llvm::Value *operand = bitcast->getOperand(0);
2797     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2798     bitcast->setOperand(0, operand);
2799     return bitcast;
2800 
2801   // Generic fall-back case.
2802   } else {
2803     // Retain using the non-block variant: we never need to do a copy
2804     // of a block that's been returned to us.
2805     return doFallback(CGF, value);
2806   }
2807 }
2808 
2809 /// Given that the given expression is some sort of call (which does
2810 /// not return retained), emit a retain following it.
2811 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2812                                             const Expr *e) {
2813   llvm::Value *value = CGF.EmitScalarExpr(e);
2814   return emitARCOperationAfterCall(CGF, value,
2815            [](CodeGenFunction &CGF, llvm::Value *value) {
2816              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2817            },
2818            [](CodeGenFunction &CGF, llvm::Value *value) {
2819              return CGF.EmitARCRetainNonBlock(value);
2820            });
2821 }
2822 
2823 /// Given that the given expression is some sort of call (which does
2824 /// not return retained), perform an unsafeClaim following it.
2825 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2826                                                  const Expr *e) {
2827   llvm::Value *value = CGF.EmitScalarExpr(e);
2828   return emitARCOperationAfterCall(CGF, value,
2829            [](CodeGenFunction &CGF, llvm::Value *value) {
2830              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2831            },
2832            [](CodeGenFunction &CGF, llvm::Value *value) {
2833              return value;
2834            });
2835 }
2836 
2837 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2838                                                       bool allowUnsafeClaim) {
2839   if (allowUnsafeClaim &&
2840       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2841     return emitARCUnsafeClaimCallResult(*this, E);
2842   } else {
2843     llvm::Value *value = emitARCRetainCallResult(*this, E);
2844     return EmitObjCConsumeObject(E->getType(), value);
2845   }
2846 }
2847 
2848 /// Determine whether it might be important to emit a separate
2849 /// objc_retain_block on the result of the given expression, or
2850 /// whether it's okay to just emit it in a +1 context.
2851 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2852   assert(e->getType()->isBlockPointerType());
2853   e = e->IgnoreParens();
2854 
2855   // For future goodness, emit block expressions directly in +1
2856   // contexts if we can.
2857   if (isa<BlockExpr>(e))
2858     return false;
2859 
2860   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2861     switch (cast->getCastKind()) {
2862     // Emitting these operations in +1 contexts is goodness.
2863     case CK_LValueToRValue:
2864     case CK_ARCReclaimReturnedObject:
2865     case CK_ARCConsumeObject:
2866     case CK_ARCProduceObject:
2867       return false;
2868 
2869     // These operations preserve a block type.
2870     case CK_NoOp:
2871     case CK_BitCast:
2872       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2873 
2874     // These operations are known to be bad (or haven't been considered).
2875     case CK_AnyPointerToBlockPointerCast:
2876     default:
2877       return true;
2878     }
2879   }
2880 
2881   return true;
2882 }
2883 
2884 namespace {
2885 /// A CRTP base class for emitting expressions of retainable object
2886 /// pointer type in ARC.
2887 template <typename Impl, typename Result> class ARCExprEmitter {
2888 protected:
2889   CodeGenFunction &CGF;
2890   Impl &asImpl() { return *static_cast<Impl*>(this); }
2891 
2892   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2893 
2894 public:
2895   Result visit(const Expr *e);
2896   Result visitCastExpr(const CastExpr *e);
2897   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2898   Result visitBlockExpr(const BlockExpr *e);
2899   Result visitBinaryOperator(const BinaryOperator *e);
2900   Result visitBinAssign(const BinaryOperator *e);
2901   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2902   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2903   Result visitBinAssignWeak(const BinaryOperator *e);
2904   Result visitBinAssignStrong(const BinaryOperator *e);
2905 
2906   // Minimal implementation:
2907   //   Result visitLValueToRValue(const Expr *e)
2908   //   Result visitConsumeObject(const Expr *e)
2909   //   Result visitExtendBlockObject(const Expr *e)
2910   //   Result visitReclaimReturnedObject(const Expr *e)
2911   //   Result visitCall(const Expr *e)
2912   //   Result visitExpr(const Expr *e)
2913   //
2914   //   Result emitBitCast(Result result, llvm::Type *resultType)
2915   //   llvm::Value *getValueOfResult(Result result)
2916 };
2917 }
2918 
2919 /// Try to emit a PseudoObjectExpr under special ARC rules.
2920 ///
2921 /// This massively duplicates emitPseudoObjectRValue.
2922 template <typename Impl, typename Result>
2923 Result
2924 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2925   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2926 
2927   // Find the result expression.
2928   const Expr *resultExpr = E->getResultExpr();
2929   assert(resultExpr);
2930   Result result;
2931 
2932   for (PseudoObjectExpr::const_semantics_iterator
2933          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2934     const Expr *semantic = *i;
2935 
2936     // If this semantic expression is an opaque value, bind it
2937     // to the result of its source expression.
2938     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2939       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2940       OVMA opaqueData;
2941 
2942       // If this semantic is the result of the pseudo-object
2943       // expression, try to evaluate the source as +1.
2944       if (ov == resultExpr) {
2945         assert(!OVMA::shouldBindAsLValue(ov));
2946         result = asImpl().visit(ov->getSourceExpr());
2947         opaqueData = OVMA::bind(CGF, ov,
2948                             RValue::get(asImpl().getValueOfResult(result)));
2949 
2950       // Otherwise, just bind it.
2951       } else {
2952         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2953       }
2954       opaques.push_back(opaqueData);
2955 
2956     // Otherwise, if the expression is the result, evaluate it
2957     // and remember the result.
2958     } else if (semantic == resultExpr) {
2959       result = asImpl().visit(semantic);
2960 
2961     // Otherwise, evaluate the expression in an ignored context.
2962     } else {
2963       CGF.EmitIgnoredExpr(semantic);
2964     }
2965   }
2966 
2967   // Unbind all the opaques now.
2968   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2969     opaques[i].unbind(CGF);
2970 
2971   return result;
2972 }
2973 
2974 template <typename Impl, typename Result>
2975 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
2976   // The default implementation just forwards the expression to visitExpr.
2977   return asImpl().visitExpr(e);
2978 }
2979 
2980 template <typename Impl, typename Result>
2981 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2982   switch (e->getCastKind()) {
2983 
2984   // No-op casts don't change the type, so we just ignore them.
2985   case CK_NoOp:
2986     return asImpl().visit(e->getSubExpr());
2987 
2988   // These casts can change the type.
2989   case CK_CPointerToObjCPointerCast:
2990   case CK_BlockPointerToObjCPointerCast:
2991   case CK_AnyPointerToBlockPointerCast:
2992   case CK_BitCast: {
2993     llvm::Type *resultType = CGF.ConvertType(e->getType());
2994     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2995     Result result = asImpl().visit(e->getSubExpr());
2996     return asImpl().emitBitCast(result, resultType);
2997   }
2998 
2999   // Handle some casts specially.
3000   case CK_LValueToRValue:
3001     return asImpl().visitLValueToRValue(e->getSubExpr());
3002   case CK_ARCConsumeObject:
3003     return asImpl().visitConsumeObject(e->getSubExpr());
3004   case CK_ARCExtendBlockObject:
3005     return asImpl().visitExtendBlockObject(e->getSubExpr());
3006   case CK_ARCReclaimReturnedObject:
3007     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3008 
3009   // Otherwise, use the default logic.
3010   default:
3011     return asImpl().visitExpr(e);
3012   }
3013 }
3014 
3015 template <typename Impl, typename Result>
3016 Result
3017 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3018   switch (e->getOpcode()) {
3019   case BO_Comma:
3020     CGF.EmitIgnoredExpr(e->getLHS());
3021     CGF.EnsureInsertPoint();
3022     return asImpl().visit(e->getRHS());
3023 
3024   case BO_Assign:
3025     return asImpl().visitBinAssign(e);
3026 
3027   default:
3028     return asImpl().visitExpr(e);
3029   }
3030 }
3031 
3032 template <typename Impl, typename Result>
3033 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3034   switch (e->getLHS()->getType().getObjCLifetime()) {
3035   case Qualifiers::OCL_ExplicitNone:
3036     return asImpl().visitBinAssignUnsafeUnretained(e);
3037 
3038   case Qualifiers::OCL_Weak:
3039     return asImpl().visitBinAssignWeak(e);
3040 
3041   case Qualifiers::OCL_Autoreleasing:
3042     return asImpl().visitBinAssignAutoreleasing(e);
3043 
3044   case Qualifiers::OCL_Strong:
3045     return asImpl().visitBinAssignStrong(e);
3046 
3047   case Qualifiers::OCL_None:
3048     return asImpl().visitExpr(e);
3049   }
3050   llvm_unreachable("bad ObjC ownership qualifier");
3051 }
3052 
3053 /// The default rule for __unsafe_unretained emits the RHS recursively,
3054 /// stores into the unsafe variable, and propagates the result outward.
3055 template <typename Impl, typename Result>
3056 Result ARCExprEmitter<Impl,Result>::
3057                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3058   // Recursively emit the RHS.
3059   // For __block safety, do this before emitting the LHS.
3060   Result result = asImpl().visit(e->getRHS());
3061 
3062   // Perform the store.
3063   LValue lvalue =
3064     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3065   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3066                              lvalue);
3067 
3068   return result;
3069 }
3070 
3071 template <typename Impl, typename Result>
3072 Result
3073 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3074   return asImpl().visitExpr(e);
3075 }
3076 
3077 template <typename Impl, typename Result>
3078 Result
3079 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3080   return asImpl().visitExpr(e);
3081 }
3082 
3083 template <typename Impl, typename Result>
3084 Result
3085 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3086   return asImpl().visitExpr(e);
3087 }
3088 
3089 /// The general expression-emission logic.
3090 template <typename Impl, typename Result>
3091 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3092   // We should *never* see a nested full-expression here, because if
3093   // we fail to emit at +1, our caller must not retain after we close
3094   // out the full-expression.  This isn't as important in the unsafe
3095   // emitter.
3096   assert(!isa<ExprWithCleanups>(e));
3097 
3098   // Look through parens, __extension__, generic selection, etc.
3099   e = e->IgnoreParens();
3100 
3101   // Handle certain kinds of casts.
3102   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3103     return asImpl().visitCastExpr(ce);
3104 
3105   // Handle the comma operator.
3106   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3107     return asImpl().visitBinaryOperator(op);
3108 
3109   // TODO: handle conditional operators here
3110 
3111   // For calls and message sends, use the retained-call logic.
3112   // Delegate inits are a special case in that they're the only
3113   // returns-retained expression that *isn't* surrounded by
3114   // a consume.
3115   } else if (isa<CallExpr>(e) ||
3116              (isa<ObjCMessageExpr>(e) &&
3117               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3118     return asImpl().visitCall(e);
3119 
3120   // Look through pseudo-object expressions.
3121   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3122     return asImpl().visitPseudoObjectExpr(pseudo);
3123   } else if (auto *be = dyn_cast<BlockExpr>(e))
3124     return asImpl().visitBlockExpr(be);
3125 
3126   return asImpl().visitExpr(e);
3127 }
3128 
3129 namespace {
3130 
3131 /// An emitter for +1 results.
3132 struct ARCRetainExprEmitter :
3133   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3134 
3135   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3136 
3137   llvm::Value *getValueOfResult(TryEmitResult result) {
3138     return result.getPointer();
3139   }
3140 
3141   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3142     llvm::Value *value = result.getPointer();
3143     value = CGF.Builder.CreateBitCast(value, resultType);
3144     result.setPointer(value);
3145     return result;
3146   }
3147 
3148   TryEmitResult visitLValueToRValue(const Expr *e) {
3149     return tryEmitARCRetainLoadOfScalar(CGF, e);
3150   }
3151 
3152   /// For consumptions, just emit the subexpression and thus elide
3153   /// the retain/release pair.
3154   TryEmitResult visitConsumeObject(const Expr *e) {
3155     llvm::Value *result = CGF.EmitScalarExpr(e);
3156     return TryEmitResult(result, true);
3157   }
3158 
3159   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3160     TryEmitResult result = visitExpr(e);
3161     // Avoid the block-retain if this is a block literal that doesn't need to be
3162     // copied to the heap.
3163     if (e->getBlockDecl()->canAvoidCopyToHeap())
3164       result.setInt(true);
3165     return result;
3166   }
3167 
3168   /// Block extends are net +0.  Naively, we could just recurse on
3169   /// the subexpression, but actually we need to ensure that the
3170   /// value is copied as a block, so there's a little filter here.
3171   TryEmitResult visitExtendBlockObject(const Expr *e) {
3172     llvm::Value *result; // will be a +0 value
3173 
3174     // If we can't safely assume the sub-expression will produce a
3175     // block-copied value, emit the sub-expression at +0.
3176     if (shouldEmitSeparateBlockRetain(e)) {
3177       result = CGF.EmitScalarExpr(e);
3178 
3179     // Otherwise, try to emit the sub-expression at +1 recursively.
3180     } else {
3181       TryEmitResult subresult = asImpl().visit(e);
3182 
3183       // If that produced a retained value, just use that.
3184       if (subresult.getInt()) {
3185         return subresult;
3186       }
3187 
3188       // Otherwise it's +0.
3189       result = subresult.getPointer();
3190     }
3191 
3192     // Retain the object as a block.
3193     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3194     return TryEmitResult(result, true);
3195   }
3196 
3197   /// For reclaims, emit the subexpression as a retained call and
3198   /// skip the consumption.
3199   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3200     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3201     return TryEmitResult(result, true);
3202   }
3203 
3204   /// When we have an undecorated call, retroactively do a claim.
3205   TryEmitResult visitCall(const Expr *e) {
3206     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3207     return TryEmitResult(result, true);
3208   }
3209 
3210   // TODO: maybe special-case visitBinAssignWeak?
3211 
3212   TryEmitResult visitExpr(const Expr *e) {
3213     // We didn't find an obvious production, so emit what we've got and
3214     // tell the caller that we didn't manage to retain.
3215     llvm::Value *result = CGF.EmitScalarExpr(e);
3216     return TryEmitResult(result, false);
3217   }
3218 };
3219 }
3220 
3221 static TryEmitResult
3222 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3223   return ARCRetainExprEmitter(CGF).visit(e);
3224 }
3225 
3226 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3227                                                 LValue lvalue,
3228                                                 QualType type) {
3229   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3230   llvm::Value *value = result.getPointer();
3231   if (!result.getInt())
3232     value = CGF.EmitARCRetain(type, value);
3233   return value;
3234 }
3235 
3236 /// EmitARCRetainScalarExpr - Semantically equivalent to
3237 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3238 /// best-effort attempt to peephole expressions that naturally produce
3239 /// retained objects.
3240 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3241   // The retain needs to happen within the full-expression.
3242   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3243     enterFullExpression(cleanups);
3244     RunCleanupsScope scope(*this);
3245     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3246   }
3247 
3248   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3249   llvm::Value *value = result.getPointer();
3250   if (!result.getInt())
3251     value = EmitARCRetain(e->getType(), value);
3252   return value;
3253 }
3254 
3255 llvm::Value *
3256 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3257   // The retain needs to happen within the full-expression.
3258   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3259     enterFullExpression(cleanups);
3260     RunCleanupsScope scope(*this);
3261     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3262   }
3263 
3264   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3265   llvm::Value *value = result.getPointer();
3266   if (result.getInt())
3267     value = EmitARCAutorelease(value);
3268   else
3269     value = EmitARCRetainAutorelease(e->getType(), value);
3270   return value;
3271 }
3272 
3273 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3274   llvm::Value *result;
3275   bool doRetain;
3276 
3277   if (shouldEmitSeparateBlockRetain(e)) {
3278     result = EmitScalarExpr(e);
3279     doRetain = true;
3280   } else {
3281     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3282     result = subresult.getPointer();
3283     doRetain = !subresult.getInt();
3284   }
3285 
3286   if (doRetain)
3287     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3288   return EmitObjCConsumeObject(e->getType(), result);
3289 }
3290 
3291 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3292   // In ARC, retain and autorelease the expression.
3293   if (getLangOpts().ObjCAutoRefCount) {
3294     // Do so before running any cleanups for the full-expression.
3295     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3296     return EmitARCRetainAutoreleaseScalarExpr(expr);
3297   }
3298 
3299   // Otherwise, use the normal scalar-expression emission.  The
3300   // exception machinery doesn't do anything special with the
3301   // exception like retaining it, so there's no safety associated with
3302   // only running cleanups after the throw has started, and when it
3303   // matters it tends to be substantially inferior code.
3304   return EmitScalarExpr(expr);
3305 }
3306 
3307 namespace {
3308 
3309 /// An emitter for assigning into an __unsafe_unretained context.
3310 struct ARCUnsafeUnretainedExprEmitter :
3311   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3312 
3313   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3314 
3315   llvm::Value *getValueOfResult(llvm::Value *value) {
3316     return value;
3317   }
3318 
3319   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3320     return CGF.Builder.CreateBitCast(value, resultType);
3321   }
3322 
3323   llvm::Value *visitLValueToRValue(const Expr *e) {
3324     return CGF.EmitScalarExpr(e);
3325   }
3326 
3327   /// For consumptions, just emit the subexpression and perform the
3328   /// consumption like normal.
3329   llvm::Value *visitConsumeObject(const Expr *e) {
3330     llvm::Value *value = CGF.EmitScalarExpr(e);
3331     return CGF.EmitObjCConsumeObject(e->getType(), value);
3332   }
3333 
3334   /// No special logic for block extensions.  (This probably can't
3335   /// actually happen in this emitter, though.)
3336   llvm::Value *visitExtendBlockObject(const Expr *e) {
3337     return CGF.EmitARCExtendBlockObject(e);
3338   }
3339 
3340   /// For reclaims, perform an unsafeClaim if that's enabled.
3341   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3342     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3343   }
3344 
3345   /// When we have an undecorated call, just emit it without adding
3346   /// the unsafeClaim.
3347   llvm::Value *visitCall(const Expr *e) {
3348     return CGF.EmitScalarExpr(e);
3349   }
3350 
3351   /// Just do normal scalar emission in the default case.
3352   llvm::Value *visitExpr(const Expr *e) {
3353     return CGF.EmitScalarExpr(e);
3354   }
3355 };
3356 }
3357 
3358 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3359                                                       const Expr *e) {
3360   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3361 }
3362 
3363 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3364 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3365 /// avoiding any spurious retains, including by performing reclaims
3366 /// with objc_unsafeClaimAutoreleasedReturnValue.
3367 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3368   // Look through full-expressions.
3369   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3370     enterFullExpression(cleanups);
3371     RunCleanupsScope scope(*this);
3372     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3373   }
3374 
3375   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3376 }
3377 
3378 std::pair<LValue,llvm::Value*>
3379 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3380                                               bool ignored) {
3381   // Evaluate the RHS first.  If we're ignoring the result, assume
3382   // that we can emit at an unsafe +0.
3383   llvm::Value *value;
3384   if (ignored) {
3385     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3386   } else {
3387     value = EmitScalarExpr(e->getRHS());
3388   }
3389 
3390   // Emit the LHS and perform the store.
3391   LValue lvalue = EmitLValue(e->getLHS());
3392   EmitStoreOfScalar(value, lvalue);
3393 
3394   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3395 }
3396 
3397 std::pair<LValue,llvm::Value*>
3398 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3399                                     bool ignored) {
3400   // Evaluate the RHS first.
3401   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3402   llvm::Value *value = result.getPointer();
3403 
3404   bool hasImmediateRetain = result.getInt();
3405 
3406   // If we didn't emit a retained object, and the l-value is of block
3407   // type, then we need to emit the block-retain immediately in case
3408   // it invalidates the l-value.
3409   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3410     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3411     hasImmediateRetain = true;
3412   }
3413 
3414   LValue lvalue = EmitLValue(e->getLHS());
3415 
3416   // If the RHS was emitted retained, expand this.
3417   if (hasImmediateRetain) {
3418     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3419     EmitStoreOfScalar(value, lvalue);
3420     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3421   } else {
3422     value = EmitARCStoreStrong(lvalue, value, ignored);
3423   }
3424 
3425   return std::pair<LValue,llvm::Value*>(lvalue, value);
3426 }
3427 
3428 std::pair<LValue,llvm::Value*>
3429 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3430   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3431   LValue lvalue = EmitLValue(e->getLHS());
3432 
3433   EmitStoreOfScalar(value, lvalue);
3434 
3435   return std::pair<LValue,llvm::Value*>(lvalue, value);
3436 }
3437 
3438 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3439                                           const ObjCAutoreleasePoolStmt &ARPS) {
3440   const Stmt *subStmt = ARPS.getSubStmt();
3441   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3442 
3443   CGDebugInfo *DI = getDebugInfo();
3444   if (DI)
3445     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3446 
3447   // Keep track of the current cleanup stack depth.
3448   RunCleanupsScope Scope(*this);
3449   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3450     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3451     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3452   } else {
3453     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3454     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3455   }
3456 
3457   for (const auto *I : S.body())
3458     EmitStmt(I);
3459 
3460   if (DI)
3461     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3462 }
3463 
3464 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3465 /// make sure it survives garbage collection until this point.
3466 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3467   // We just use an inline assembly.
3468   llvm::FunctionType *extenderType
3469     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3470   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3471                                                    /* assembly */ "",
3472                                                    /* constraints */ "r",
3473                                                    /* side effects */ true);
3474 
3475   object = Builder.CreateBitCast(object, VoidPtrTy);
3476   EmitNounwindRuntimeCall(extender, object);
3477 }
3478 
3479 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3480 /// non-trivial copy assignment function, produce following helper function.
3481 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3482 ///
3483 llvm::Constant *
3484 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3485                                         const ObjCPropertyImplDecl *PID) {
3486   if (!getLangOpts().CPlusPlus ||
3487       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3488     return nullptr;
3489   QualType Ty = PID->getPropertyIvarDecl()->getType();
3490   if (!Ty->isRecordType())
3491     return nullptr;
3492   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3493   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3494     return nullptr;
3495   llvm::Constant *HelperFn = nullptr;
3496   if (hasTrivialSetExpr(PID))
3497     return nullptr;
3498   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3499   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3500     return HelperFn;
3501 
3502   ASTContext &C = getContext();
3503   IdentifierInfo *II
3504     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3505 
3506   QualType ReturnTy = C.VoidTy;
3507   QualType DestTy = C.getPointerType(Ty);
3508   QualType SrcTy = Ty;
3509   SrcTy.addConst();
3510   SrcTy = C.getPointerType(SrcTy);
3511 
3512   SmallVector<QualType, 2> ArgTys;
3513   ArgTys.push_back(DestTy);
3514   ArgTys.push_back(SrcTy);
3515   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3516 
3517   FunctionDecl *FD = FunctionDecl::Create(
3518       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3519       FunctionTy, nullptr, SC_Static, false, false);
3520 
3521   FunctionArgList args;
3522   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3523                             ImplicitParamDecl::Other);
3524   args.push_back(&DstDecl);
3525   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3526                             ImplicitParamDecl::Other);
3527   args.push_back(&SrcDecl);
3528 
3529   const CGFunctionInfo &FI =
3530       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3531 
3532   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3533 
3534   llvm::Function *Fn =
3535     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3536                            "__assign_helper_atomic_property_",
3537                            &CGM.getModule());
3538 
3539   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3540 
3541   StartFunction(FD, ReturnTy, Fn, FI, args);
3542 
3543   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3544                       SourceLocation());
3545   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3546                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3547 
3548   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3549                       SourceLocation());
3550   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3551                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3552 
3553   Expr *Args[2] = { &DST, &SRC };
3554   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3555   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3556       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3557       VK_LValue, SourceLocation(), FPOptions());
3558 
3559   EmitStmt(TheCall);
3560 
3561   FinishFunction();
3562   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3563   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3564   return HelperFn;
3565 }
3566 
3567 llvm::Constant *
3568 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3569                                             const ObjCPropertyImplDecl *PID) {
3570   if (!getLangOpts().CPlusPlus ||
3571       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3572     return nullptr;
3573   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3574   QualType Ty = PD->getType();
3575   if (!Ty->isRecordType())
3576     return nullptr;
3577   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3578     return nullptr;
3579   llvm::Constant *HelperFn = nullptr;
3580   if (hasTrivialGetExpr(PID))
3581     return nullptr;
3582   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3583   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3584     return HelperFn;
3585 
3586   ASTContext &C = getContext();
3587   IdentifierInfo *II =
3588       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3589 
3590   QualType ReturnTy = C.VoidTy;
3591   QualType DestTy = C.getPointerType(Ty);
3592   QualType SrcTy = Ty;
3593   SrcTy.addConst();
3594   SrcTy = C.getPointerType(SrcTy);
3595 
3596   SmallVector<QualType, 2> ArgTys;
3597   ArgTys.push_back(DestTy);
3598   ArgTys.push_back(SrcTy);
3599   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3600 
3601   FunctionDecl *FD = FunctionDecl::Create(
3602       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3603       FunctionTy, nullptr, SC_Static, false, false);
3604 
3605   FunctionArgList args;
3606   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3607                             ImplicitParamDecl::Other);
3608   args.push_back(&DstDecl);
3609   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3610                             ImplicitParamDecl::Other);
3611   args.push_back(&SrcDecl);
3612 
3613   const CGFunctionInfo &FI =
3614       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3615 
3616   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3617 
3618   llvm::Function *Fn = llvm::Function::Create(
3619       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3620       &CGM.getModule());
3621 
3622   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3623 
3624   StartFunction(FD, ReturnTy, Fn, FI, args);
3625 
3626   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3627                       SourceLocation());
3628 
3629   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3630                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3631 
3632   CXXConstructExpr *CXXConstExpr =
3633     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3634 
3635   SmallVector<Expr*, 4> ConstructorArgs;
3636   ConstructorArgs.push_back(&SRC);
3637   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3638                          CXXConstExpr->arg_end());
3639 
3640   CXXConstructExpr *TheCXXConstructExpr =
3641     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3642                              CXXConstExpr->getConstructor(),
3643                              CXXConstExpr->isElidable(),
3644                              ConstructorArgs,
3645                              CXXConstExpr->hadMultipleCandidates(),
3646                              CXXConstExpr->isListInitialization(),
3647                              CXXConstExpr->isStdInitListInitialization(),
3648                              CXXConstExpr->requiresZeroInitialization(),
3649                              CXXConstExpr->getConstructionKind(),
3650                              SourceRange());
3651 
3652   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3653                       SourceLocation());
3654 
3655   RValue DV = EmitAnyExpr(&DstExpr);
3656   CharUnits Alignment
3657     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3658   EmitAggExpr(TheCXXConstructExpr,
3659               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3660                                     Qualifiers(),
3661                                     AggValueSlot::IsDestructed,
3662                                     AggValueSlot::DoesNotNeedGCBarriers,
3663                                     AggValueSlot::IsNotAliased,
3664                                     AggValueSlot::DoesNotOverlap));
3665 
3666   FinishFunction();
3667   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3668   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3669   return HelperFn;
3670 }
3671 
3672 llvm::Value *
3673 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3674   // Get selectors for retain/autorelease.
3675   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3676   Selector CopySelector =
3677       getContext().Selectors.getNullarySelector(CopyID);
3678   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3679   Selector AutoreleaseSelector =
3680       getContext().Selectors.getNullarySelector(AutoreleaseID);
3681 
3682   // Emit calls to retain/autorelease.
3683   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3684   llvm::Value *Val = Block;
3685   RValue Result;
3686   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3687                                        Ty, CopySelector,
3688                                        Val, CallArgList(), nullptr, nullptr);
3689   Val = Result.getScalarVal();
3690   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3691                                        Ty, AutoreleaseSelector,
3692                                        Val, CallArgList(), nullptr, nullptr);
3693   Val = Result.getScalarVal();
3694   return Val;
3695 }
3696 
3697 llvm::Value *
3698 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3699   assert(Args.size() == 3 && "Expected 3 argument here!");
3700 
3701   if (!CGM.IsOSVersionAtLeastFn) {
3702     llvm::FunctionType *FTy =
3703         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3704     CGM.IsOSVersionAtLeastFn =
3705         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3706   }
3707 
3708   llvm::Value *CallRes =
3709       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3710 
3711   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3712 }
3713 
3714 void CodeGenModule::emitAtAvailableLinkGuard() {
3715   if (!IsOSVersionAtLeastFn)
3716     return;
3717   // @available requires CoreFoundation only on Darwin.
3718   if (!Target.getTriple().isOSDarwin())
3719     return;
3720   // Add -framework CoreFoundation to the linker commands. We still want to
3721   // emit the core foundation reference down below because otherwise if
3722   // CoreFoundation is not used in the code, the linker won't link the
3723   // framework.
3724   auto &Context = getLLVMContext();
3725   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3726                              llvm::MDString::get(Context, "CoreFoundation")};
3727   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3728   // Emit a reference to a symbol from CoreFoundation to ensure that
3729   // CoreFoundation is linked into the final binary.
3730   llvm::FunctionType *FTy =
3731       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3732   llvm::FunctionCallee CFFunc =
3733       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3734 
3735   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3736   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3737       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3738       llvm::AttributeList(), /*Local=*/true);
3739   llvm::Function *CFLinkCheckFunc =
3740       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3741   if (CFLinkCheckFunc->empty()) {
3742     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3743     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3744     CodeGenFunction CGF(*this);
3745     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3746     CGF.EmitNounwindRuntimeCall(CFFunc,
3747                                 llvm::Constant::getNullValue(VoidPtrTy));
3748     CGF.Builder.CreateUnreachable();
3749     addCompilerUsedGlobal(CFLinkCheckFunc);
3750   }
3751 }
3752 
3753 CGObjCRuntime::~CGObjCRuntime() {}
3754