1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 31 static TryEmitResult 32 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 33 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 34 QualType ET, 35 RValue Result); 36 37 /// Given the address of a variable of pointer type, find the correct 38 /// null to store into it. 39 static llvm::Constant *getNullForVariable(Address addr) { 40 llvm::Type *type = addr.getElementType(); 41 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 42 } 43 44 /// Emits an instance of NSConstantString representing the object. 45 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 46 { 47 llvm::Constant *C = 48 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 49 // FIXME: This bitcast should just be made an invariant on the Runtime. 50 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 51 } 52 53 /// EmitObjCBoxedExpr - This routine generates code to call 54 /// the appropriate expression boxing method. This will either be 55 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 56 /// or [NSValue valueWithBytes:objCType:]. 57 /// 58 llvm::Value * 59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 60 // Generate the correct selector for this literal's concrete type. 61 // Get the method. 62 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 63 const Expr *SubExpr = E->getSubExpr(); 64 65 if (E->isExpressibleAsConstantInitializer()) { 66 ConstantEmitter ConstEmitter(CGM); 67 return ConstEmitter.tryEmitAbstract(E, E->getType()); 68 } 69 70 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 71 Selector Sel = BoxingMethod->getSelector(); 72 73 // Generate a reference to the class pointer, which will be the receiver. 74 // Assumes that the method was introduced in the class that should be 75 // messaged (avoids pulling it out of the result type). 76 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 77 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 78 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 79 80 CallArgList Args; 81 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 82 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 83 84 // ObjCBoxedExpr supports boxing of structs and unions 85 // via [NSValue valueWithBytes:objCType:] 86 const QualType ValueType(SubExpr->getType().getCanonicalType()); 87 if (ValueType->isObjCBoxableRecordType()) { 88 // Emit CodeGen for first parameter 89 // and cast value to correct type 90 Address Temporary = CreateMemTemp(SubExpr->getType()); 91 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 92 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 93 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 94 95 // Create char array to store type encoding 96 std::string Str; 97 getContext().getObjCEncodingForType(ValueType, Str); 98 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 99 100 // Cast type encoding to correct type 101 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 102 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 103 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 104 105 Args.add(RValue::get(Cast), EncodingQT); 106 } else { 107 Args.add(EmitAnyExpr(SubExpr), ArgQT); 108 } 109 110 RValue result = Runtime.GenerateMessageSend( 111 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 112 Args, ClassDecl, BoxingMethod); 113 return Builder.CreateBitCast(result.getScalarVal(), 114 ConvertType(E->getType())); 115 } 116 117 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 118 const ObjCMethodDecl *MethodWithObjects) { 119 ASTContext &Context = CGM.getContext(); 120 const ObjCDictionaryLiteral *DLE = nullptr; 121 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 122 if (!ALE) 123 DLE = cast<ObjCDictionaryLiteral>(E); 124 125 // Optimize empty collections by referencing constants, when available. 126 uint64_t NumElements = 127 ALE ? ALE->getNumElements() : DLE->getNumElements(); 128 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 129 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 130 QualType IdTy(CGM.getContext().getObjCIdType()); 131 llvm::Constant *Constant = 132 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 133 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 134 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 135 cast<llvm::LoadInst>(Ptr)->setMetadata( 136 CGM.getModule().getMDKindID("invariant.load"), 137 llvm::MDNode::get(getLLVMContext(), None)); 138 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 139 } 140 141 // Compute the type of the array we're initializing. 142 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 143 NumElements); 144 QualType ElementType = Context.getObjCIdType().withConst(); 145 QualType ElementArrayType 146 = Context.getConstantArrayType(ElementType, APNumElements, 147 ArrayType::Normal, /*IndexTypeQuals=*/0); 148 149 // Allocate the temporary array(s). 150 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 151 Address Keys = Address::invalid(); 152 if (DLE) 153 Keys = CreateMemTemp(ElementArrayType, "keys"); 154 155 // In ARC, we may need to do extra work to keep all the keys and 156 // values alive until after the call. 157 SmallVector<llvm::Value *, 16> NeededObjects; 158 bool TrackNeededObjects = 159 (getLangOpts().ObjCAutoRefCount && 160 CGM.getCodeGenOpts().OptimizationLevel != 0); 161 162 // Perform the actual initialialization of the array(s). 163 for (uint64_t i = 0; i < NumElements; i++) { 164 if (ALE) { 165 // Emit the element and store it to the appropriate array slot. 166 const Expr *Rhs = ALE->getElement(i); 167 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 168 ElementType, AlignmentSource::Decl); 169 170 llvm::Value *value = EmitScalarExpr(Rhs); 171 EmitStoreThroughLValue(RValue::get(value), LV, true); 172 if (TrackNeededObjects) { 173 NeededObjects.push_back(value); 174 } 175 } else { 176 // Emit the key and store it to the appropriate array slot. 177 const Expr *Key = DLE->getKeyValueElement(i).Key; 178 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 179 ElementType, AlignmentSource::Decl); 180 llvm::Value *keyValue = EmitScalarExpr(Key); 181 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 182 183 // Emit the value and store it to the appropriate array slot. 184 const Expr *Value = DLE->getKeyValueElement(i).Value; 185 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 186 ElementType, AlignmentSource::Decl); 187 llvm::Value *valueValue = EmitScalarExpr(Value); 188 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 189 if (TrackNeededObjects) { 190 NeededObjects.push_back(keyValue); 191 NeededObjects.push_back(valueValue); 192 } 193 } 194 } 195 196 // Generate the argument list. 197 CallArgList Args; 198 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 199 const ParmVarDecl *argDecl = *PI++; 200 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 201 Args.add(RValue::get(Objects.getPointer()), ArgQT); 202 if (DLE) { 203 argDecl = *PI++; 204 ArgQT = argDecl->getType().getUnqualifiedType(); 205 Args.add(RValue::get(Keys.getPointer()), ArgQT); 206 } 207 argDecl = *PI; 208 ArgQT = argDecl->getType().getUnqualifiedType(); 209 llvm::Value *Count = 210 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 211 Args.add(RValue::get(Count), ArgQT); 212 213 // Generate a reference to the class pointer, which will be the receiver. 214 Selector Sel = MethodWithObjects->getSelector(); 215 QualType ResultType = E->getType(); 216 const ObjCObjectPointerType *InterfacePointerType 217 = ResultType->getAsObjCInterfacePointerType(); 218 ObjCInterfaceDecl *Class 219 = InterfacePointerType->getObjectType()->getInterface(); 220 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 221 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 222 223 // Generate the message send. 224 RValue result = Runtime.GenerateMessageSend( 225 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 226 Receiver, Args, Class, MethodWithObjects); 227 228 // The above message send needs these objects, but in ARC they are 229 // passed in a buffer that is essentially __unsafe_unretained. 230 // Therefore we must prevent the optimizer from releasing them until 231 // after the call. 232 if (TrackNeededObjects) { 233 EmitARCIntrinsicUse(NeededObjects); 234 } 235 236 return Builder.CreateBitCast(result.getScalarVal(), 237 ConvertType(E->getType())); 238 } 239 240 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 241 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 242 } 243 244 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 245 const ObjCDictionaryLiteral *E) { 246 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 247 } 248 249 /// Emit a selector. 250 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 251 // Untyped selector. 252 // Note that this implementation allows for non-constant strings to be passed 253 // as arguments to @selector(). Currently, the only thing preventing this 254 // behaviour is the type checking in the front end. 255 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 256 } 257 258 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 259 // FIXME: This should pass the Decl not the name. 260 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 261 } 262 263 /// Adjust the type of an Objective-C object that doesn't match up due 264 /// to type erasure at various points, e.g., related result types or the use 265 /// of parameterized classes. 266 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 267 RValue Result) { 268 if (!ExpT->isObjCRetainableType()) 269 return Result; 270 271 // If the converted types are the same, we're done. 272 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 273 if (ExpLLVMTy == Result.getScalarVal()->getType()) 274 return Result; 275 276 // We have applied a substitution. Cast the rvalue appropriately. 277 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 278 ExpLLVMTy)); 279 } 280 281 /// Decide whether to extend the lifetime of the receiver of a 282 /// returns-inner-pointer message. 283 static bool 284 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 285 switch (message->getReceiverKind()) { 286 287 // For a normal instance message, we should extend unless the 288 // receiver is loaded from a variable with precise lifetime. 289 case ObjCMessageExpr::Instance: { 290 const Expr *receiver = message->getInstanceReceiver(); 291 292 // Look through OVEs. 293 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 294 if (opaque->getSourceExpr()) 295 receiver = opaque->getSourceExpr()->IgnoreParens(); 296 } 297 298 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 299 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 300 receiver = ice->getSubExpr()->IgnoreParens(); 301 302 // Look through OVEs. 303 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 304 if (opaque->getSourceExpr()) 305 receiver = opaque->getSourceExpr()->IgnoreParens(); 306 } 307 308 // Only __strong variables. 309 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 310 return true; 311 312 // All ivars and fields have precise lifetime. 313 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 314 return false; 315 316 // Otherwise, check for variables. 317 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 318 if (!declRef) return true; 319 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 320 if (!var) return true; 321 322 // All variables have precise lifetime except local variables with 323 // automatic storage duration that aren't specially marked. 324 return (var->hasLocalStorage() && 325 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 326 } 327 328 case ObjCMessageExpr::Class: 329 case ObjCMessageExpr::SuperClass: 330 // It's never necessary for class objects. 331 return false; 332 333 case ObjCMessageExpr::SuperInstance: 334 // We generally assume that 'self' lives throughout a method call. 335 return false; 336 } 337 338 llvm_unreachable("invalid receiver kind"); 339 } 340 341 /// Given an expression of ObjC pointer type, check whether it was 342 /// immediately loaded from an ARC __weak l-value. 343 static const Expr *findWeakLValue(const Expr *E) { 344 assert(E->getType()->isObjCRetainableType()); 345 E = E->IgnoreParens(); 346 if (auto CE = dyn_cast<CastExpr>(E)) { 347 if (CE->getCastKind() == CK_LValueToRValue) { 348 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 349 return CE->getSubExpr(); 350 } 351 } 352 353 return nullptr; 354 } 355 356 /// The ObjC runtime may provide entrypoints that are likely to be faster 357 /// than an ordinary message send of the appropriate selector. 358 /// 359 /// The entrypoints are guaranteed to be equivalent to just sending the 360 /// corresponding message. If the entrypoint is implemented naively as just a 361 /// message send, using it is a trade-off: it sacrifices a few cycles of 362 /// overhead to save a small amount of code. However, it's possible for 363 /// runtimes to detect and special-case classes that use "standard" 364 /// behavior; if that's dynamically a large proportion of all objects, using 365 /// the entrypoint will also be faster than using a message send. 366 /// 367 /// If the runtime does support a required entrypoint, then this method will 368 /// generate a call and return the resulting value. Otherwise it will return 369 /// None and the caller can generate a msgSend instead. 370 static Optional<llvm::Value *> 371 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 372 llvm::Value *Receiver, 373 const CallArgList& Args, Selector Sel, 374 const ObjCMethodDecl *method, 375 bool isClassMessage) { 376 auto &CGM = CGF.CGM; 377 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 378 return None; 379 380 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 381 switch (Sel.getMethodFamily()) { 382 case OMF_alloc: 383 if (isClassMessage && 384 Runtime.shouldUseRuntimeFunctionsForAlloc() && 385 ResultType->isObjCObjectPointerType()) { 386 // [Foo alloc] -> objc_alloc(Foo) or 387 // [self alloc] -> objc_alloc(self) 388 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 389 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 390 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 391 // [self allocWithZone:nil] -> objc_allocWithZone(self) 392 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 393 Args.size() == 1 && Args.front().getType()->isPointerType() && 394 Sel.getNameForSlot(0) == "allocWithZone") { 395 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 396 if (isa<llvm::ConstantPointerNull>(arg)) 397 return CGF.EmitObjCAllocWithZone(Receiver, 398 CGF.ConvertType(ResultType)); 399 return None; 400 } 401 } 402 break; 403 404 case OMF_autorelease: 405 if (ResultType->isObjCObjectPointerType() && 406 CGM.getLangOpts().getGC() == LangOptions::NonGC && 407 Runtime.shouldUseARCFunctionsForRetainRelease()) 408 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 409 break; 410 411 case OMF_retain: 412 if (ResultType->isObjCObjectPointerType() && 413 CGM.getLangOpts().getGC() == LangOptions::NonGC && 414 Runtime.shouldUseARCFunctionsForRetainRelease()) 415 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 416 break; 417 418 case OMF_release: 419 if (ResultType->isVoidType() && 420 CGM.getLangOpts().getGC() == LangOptions::NonGC && 421 Runtime.shouldUseARCFunctionsForRetainRelease()) { 422 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 423 return nullptr; 424 } 425 break; 426 427 default: 428 break; 429 } 430 return None; 431 } 432 433 /// Instead of '[[MyClass alloc] init]', try to generate 434 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 435 /// caller side, as well as the optimized objc_alloc. 436 static Optional<llvm::Value *> 437 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 438 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 439 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 440 return None; 441 442 // Match the exact pattern '[[MyClass alloc] init]'. 443 Selector Sel = OME->getSelector(); 444 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 445 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 446 Sel.getNameForSlot(0) != "init") 447 return None; 448 449 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' or 450 // we are in an ObjC class method and 'receiver' is '[self alloc]'. 451 auto *SubOME = 452 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 453 if (!SubOME) 454 return None; 455 Selector SubSel = SubOME->getSelector(); 456 457 // Check if we are in an ObjC class method and the receiver expression is 458 // 'self'. 459 const Expr *SelfInClassMethod = nullptr; 460 if (const auto *CurMD = dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 461 if (CurMD->isClassMethod()) 462 if ((SelfInClassMethod = SubOME->getInstanceReceiver())) 463 if (!SelfInClassMethod->isObjCSelfExpr()) 464 SelfInClassMethod = nullptr; 465 466 if ((SubOME->getReceiverKind() != ObjCMessageExpr::Class && 467 !SelfInClassMethod) || !SubOME->getType()->isObjCObjectPointerType() || 468 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 469 return None; 470 471 llvm::Value *Receiver; 472 if (SelfInClassMethod) { 473 Receiver = CGF.EmitScalarExpr(SelfInClassMethod); 474 } else { 475 QualType ReceiverType = SubOME->getClassReceiver(); 476 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 477 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 478 assert(ID && "null interface should be impossible here"); 479 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 480 } 481 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 482 } 483 484 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 485 ReturnValueSlot Return) { 486 // Only the lookup mechanism and first two arguments of the method 487 // implementation vary between runtimes. We can get the receiver and 488 // arguments in generic code. 489 490 bool isDelegateInit = E->isDelegateInitCall(); 491 492 const ObjCMethodDecl *method = E->getMethodDecl(); 493 494 // If the method is -retain, and the receiver's being loaded from 495 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 496 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 497 method->getMethodFamily() == OMF_retain) { 498 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 499 LValue lvalue = EmitLValue(lvalueExpr); 500 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 501 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 502 } 503 } 504 505 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 506 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 507 508 // We don't retain the receiver in delegate init calls, and this is 509 // safe because the receiver value is always loaded from 'self', 510 // which we zero out. We don't want to Block_copy block receivers, 511 // though. 512 bool retainSelf = 513 (!isDelegateInit && 514 CGM.getLangOpts().ObjCAutoRefCount && 515 method && 516 method->hasAttr<NSConsumesSelfAttr>()); 517 518 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 519 bool isSuperMessage = false; 520 bool isClassMessage = false; 521 ObjCInterfaceDecl *OID = nullptr; 522 // Find the receiver 523 QualType ReceiverType; 524 llvm::Value *Receiver = nullptr; 525 switch (E->getReceiverKind()) { 526 case ObjCMessageExpr::Instance: 527 ReceiverType = E->getInstanceReceiver()->getType(); 528 if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(CurFuncDecl)) 529 if (OMD->isClassMethod()) 530 if (E->getInstanceReceiver()->isObjCSelfExpr()) 531 isClassMessage = true; 532 if (retainSelf) { 533 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 534 E->getInstanceReceiver()); 535 Receiver = ter.getPointer(); 536 if (ter.getInt()) retainSelf = false; 537 } else 538 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 539 break; 540 541 case ObjCMessageExpr::Class: { 542 ReceiverType = E->getClassReceiver(); 543 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 544 assert(ObjTy && "Invalid Objective-C class message send"); 545 OID = ObjTy->getInterface(); 546 assert(OID && "Invalid Objective-C class message send"); 547 Receiver = Runtime.GetClass(*this, OID); 548 isClassMessage = true; 549 break; 550 } 551 552 case ObjCMessageExpr::SuperInstance: 553 ReceiverType = E->getSuperType(); 554 Receiver = LoadObjCSelf(); 555 isSuperMessage = true; 556 break; 557 558 case ObjCMessageExpr::SuperClass: 559 ReceiverType = E->getSuperType(); 560 Receiver = LoadObjCSelf(); 561 isSuperMessage = true; 562 isClassMessage = true; 563 break; 564 } 565 566 if (retainSelf) 567 Receiver = EmitARCRetainNonBlock(Receiver); 568 569 // In ARC, we sometimes want to "extend the lifetime" 570 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 571 // messages. 572 if (getLangOpts().ObjCAutoRefCount && method && 573 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 574 shouldExtendReceiverForInnerPointerMessage(E)) 575 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 576 577 QualType ResultType = method ? method->getReturnType() : E->getType(); 578 579 CallArgList Args; 580 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 581 582 // For delegate init calls in ARC, do an unsafe store of null into 583 // self. This represents the call taking direct ownership of that 584 // value. We have to do this after emitting the other call 585 // arguments because they might also reference self, but we don't 586 // have to worry about any of them modifying self because that would 587 // be an undefined read and write of an object in unordered 588 // expressions. 589 if (isDelegateInit) { 590 assert(getLangOpts().ObjCAutoRefCount && 591 "delegate init calls should only be marked in ARC"); 592 593 // Do an unsafe store of null into self. 594 Address selfAddr = 595 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 596 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 597 } 598 599 RValue result; 600 if (isSuperMessage) { 601 // super is only valid in an Objective-C method 602 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 603 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 604 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 605 E->getSelector(), 606 OMD->getClassInterface(), 607 isCategoryImpl, 608 Receiver, 609 isClassMessage, 610 Args, 611 method); 612 } else { 613 // Call runtime methods directly if we can. 614 if (Optional<llvm::Value *> SpecializedResult = 615 tryGenerateSpecializedMessageSend(*this, ResultType, Receiver, Args, 616 E->getSelector(), method, 617 isClassMessage)) { 618 result = RValue::get(SpecializedResult.getValue()); 619 } else { 620 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 621 E->getSelector(), Receiver, Args, 622 OID, method); 623 } 624 } 625 626 // For delegate init calls in ARC, implicitly store the result of 627 // the call back into self. This takes ownership of the value. 628 if (isDelegateInit) { 629 Address selfAddr = 630 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 631 llvm::Value *newSelf = result.getScalarVal(); 632 633 // The delegate return type isn't necessarily a matching type; in 634 // fact, it's quite likely to be 'id'. 635 llvm::Type *selfTy = selfAddr.getElementType(); 636 newSelf = Builder.CreateBitCast(newSelf, selfTy); 637 638 Builder.CreateStore(newSelf, selfAddr); 639 } 640 641 return AdjustObjCObjectType(*this, E->getType(), result); 642 } 643 644 namespace { 645 struct FinishARCDealloc final : EHScopeStack::Cleanup { 646 void Emit(CodeGenFunction &CGF, Flags flags) override { 647 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 648 649 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 650 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 651 if (!iface->getSuperClass()) return; 652 653 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 654 655 // Call [super dealloc] if we have a superclass. 656 llvm::Value *self = CGF.LoadObjCSelf(); 657 658 CallArgList args; 659 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 660 CGF.getContext().VoidTy, 661 method->getSelector(), 662 iface, 663 isCategory, 664 self, 665 /*is class msg*/ false, 666 args, 667 method); 668 } 669 }; 670 } 671 672 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 673 /// the LLVM function and sets the other context used by 674 /// CodeGenFunction. 675 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 676 const ObjCContainerDecl *CD) { 677 SourceLocation StartLoc = OMD->getBeginLoc(); 678 FunctionArgList args; 679 // Check if we should generate debug info for this method. 680 if (OMD->hasAttr<NoDebugAttr>()) 681 DebugInfo = nullptr; // disable debug info indefinitely for this function 682 683 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 684 685 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 686 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 687 688 args.push_back(OMD->getSelfDecl()); 689 args.push_back(OMD->getCmdDecl()); 690 691 args.append(OMD->param_begin(), OMD->param_end()); 692 693 CurGD = OMD; 694 CurEHLocation = OMD->getEndLoc(); 695 696 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 697 OMD->getLocation(), StartLoc); 698 699 // In ARC, certain methods get an extra cleanup. 700 if (CGM.getLangOpts().ObjCAutoRefCount && 701 OMD->isInstanceMethod() && 702 OMD->getSelector().isUnarySelector()) { 703 const IdentifierInfo *ident = 704 OMD->getSelector().getIdentifierInfoForSlot(0); 705 if (ident->isStr("dealloc")) 706 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 707 } 708 } 709 710 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 711 LValue lvalue, QualType type); 712 713 /// Generate an Objective-C method. An Objective-C method is a C function with 714 /// its pointer, name, and types registered in the class structure. 715 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 716 StartObjCMethod(OMD, OMD->getClassInterface()); 717 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 718 assert(isa<CompoundStmt>(OMD->getBody())); 719 incrementProfileCounter(OMD->getBody()); 720 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 721 FinishFunction(OMD->getBodyRBrace()); 722 } 723 724 /// emitStructGetterCall - Call the runtime function to load a property 725 /// into the return value slot. 726 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 727 bool isAtomic, bool hasStrong) { 728 ASTContext &Context = CGF.getContext(); 729 730 Address src = 731 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 732 .getAddress(); 733 734 // objc_copyStruct (ReturnValue, &structIvar, 735 // sizeof (Type of Ivar), isAtomic, false); 736 CallArgList args; 737 738 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 739 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 740 741 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 742 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 743 744 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 745 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 746 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 747 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 748 749 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 750 CGCallee callee = CGCallee::forDirect(fn); 751 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 752 callee, ReturnValueSlot(), args); 753 } 754 755 /// Determine whether the given architecture supports unaligned atomic 756 /// accesses. They don't have to be fast, just faster than a function 757 /// call and a mutex. 758 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 759 // FIXME: Allow unaligned atomic load/store on x86. (It is not 760 // currently supported by the backend.) 761 return 0; 762 } 763 764 /// Return the maximum size that permits atomic accesses for the given 765 /// architecture. 766 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 767 llvm::Triple::ArchType arch) { 768 // ARM has 8-byte atomic accesses, but it's not clear whether we 769 // want to rely on them here. 770 771 // In the default case, just assume that any size up to a pointer is 772 // fine given adequate alignment. 773 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 774 } 775 776 namespace { 777 class PropertyImplStrategy { 778 public: 779 enum StrategyKind { 780 /// The 'native' strategy is to use the architecture's provided 781 /// reads and writes. 782 Native, 783 784 /// Use objc_setProperty and objc_getProperty. 785 GetSetProperty, 786 787 /// Use objc_setProperty for the setter, but use expression 788 /// evaluation for the getter. 789 SetPropertyAndExpressionGet, 790 791 /// Use objc_copyStruct. 792 CopyStruct, 793 794 /// The 'expression' strategy is to emit normal assignment or 795 /// lvalue-to-rvalue expressions. 796 Expression 797 }; 798 799 StrategyKind getKind() const { return StrategyKind(Kind); } 800 801 bool hasStrongMember() const { return HasStrong; } 802 bool isAtomic() const { return IsAtomic; } 803 bool isCopy() const { return IsCopy; } 804 805 CharUnits getIvarSize() const { return IvarSize; } 806 CharUnits getIvarAlignment() const { return IvarAlignment; } 807 808 PropertyImplStrategy(CodeGenModule &CGM, 809 const ObjCPropertyImplDecl *propImpl); 810 811 private: 812 unsigned Kind : 8; 813 unsigned IsAtomic : 1; 814 unsigned IsCopy : 1; 815 unsigned HasStrong : 1; 816 817 CharUnits IvarSize; 818 CharUnits IvarAlignment; 819 }; 820 } 821 822 /// Pick an implementation strategy for the given property synthesis. 823 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 824 const ObjCPropertyImplDecl *propImpl) { 825 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 826 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 827 828 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 829 IsAtomic = prop->isAtomic(); 830 HasStrong = false; // doesn't matter here. 831 832 // Evaluate the ivar's size and alignment. 833 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 834 QualType ivarType = ivar->getType(); 835 std::tie(IvarSize, IvarAlignment) = 836 CGM.getContext().getTypeInfoInChars(ivarType); 837 838 // If we have a copy property, we always have to use getProperty/setProperty. 839 // TODO: we could actually use setProperty and an expression for non-atomics. 840 if (IsCopy) { 841 Kind = GetSetProperty; 842 return; 843 } 844 845 // Handle retain. 846 if (setterKind == ObjCPropertyDecl::Retain) { 847 // In GC-only, there's nothing special that needs to be done. 848 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 849 // fallthrough 850 851 // In ARC, if the property is non-atomic, use expression emission, 852 // which translates to objc_storeStrong. This isn't required, but 853 // it's slightly nicer. 854 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 855 // Using standard expression emission for the setter is only 856 // acceptable if the ivar is __strong, which won't be true if 857 // the property is annotated with __attribute__((NSObject)). 858 // TODO: falling all the way back to objc_setProperty here is 859 // just laziness, though; we could still use objc_storeStrong 860 // if we hacked it right. 861 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 862 Kind = Expression; 863 else 864 Kind = SetPropertyAndExpressionGet; 865 return; 866 867 // Otherwise, we need to at least use setProperty. However, if 868 // the property isn't atomic, we can use normal expression 869 // emission for the getter. 870 } else if (!IsAtomic) { 871 Kind = SetPropertyAndExpressionGet; 872 return; 873 874 // Otherwise, we have to use both setProperty and getProperty. 875 } else { 876 Kind = GetSetProperty; 877 return; 878 } 879 } 880 881 // If we're not atomic, just use expression accesses. 882 if (!IsAtomic) { 883 Kind = Expression; 884 return; 885 } 886 887 // Properties on bitfield ivars need to be emitted using expression 888 // accesses even if they're nominally atomic. 889 if (ivar->isBitField()) { 890 Kind = Expression; 891 return; 892 } 893 894 // GC-qualified or ARC-qualified ivars need to be emitted as 895 // expressions. This actually works out to being atomic anyway, 896 // except for ARC __strong, but that should trigger the above code. 897 if (ivarType.hasNonTrivialObjCLifetime() || 898 (CGM.getLangOpts().getGC() && 899 CGM.getContext().getObjCGCAttrKind(ivarType))) { 900 Kind = Expression; 901 return; 902 } 903 904 // Compute whether the ivar has strong members. 905 if (CGM.getLangOpts().getGC()) 906 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 907 HasStrong = recordType->getDecl()->hasObjectMember(); 908 909 // We can never access structs with object members with a native 910 // access, because we need to use write barriers. This is what 911 // objc_copyStruct is for. 912 if (HasStrong) { 913 Kind = CopyStruct; 914 return; 915 } 916 917 // Otherwise, this is target-dependent and based on the size and 918 // alignment of the ivar. 919 920 // If the size of the ivar is not a power of two, give up. We don't 921 // want to get into the business of doing compare-and-swaps. 922 if (!IvarSize.isPowerOfTwo()) { 923 Kind = CopyStruct; 924 return; 925 } 926 927 llvm::Triple::ArchType arch = 928 CGM.getTarget().getTriple().getArch(); 929 930 // Most architectures require memory to fit within a single cache 931 // line, so the alignment has to be at least the size of the access. 932 // Otherwise we have to grab a lock. 933 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 934 Kind = CopyStruct; 935 return; 936 } 937 938 // If the ivar's size exceeds the architecture's maximum atomic 939 // access size, we have to use CopyStruct. 940 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 941 Kind = CopyStruct; 942 return; 943 } 944 945 // Otherwise, we can use native loads and stores. 946 Kind = Native; 947 } 948 949 /// Generate an Objective-C property getter function. 950 /// 951 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 952 /// is illegal within a category. 953 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 954 const ObjCPropertyImplDecl *PID) { 955 llvm::Constant *AtomicHelperFn = 956 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 957 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 958 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 959 assert(OMD && "Invalid call to generate getter (empty method)"); 960 StartObjCMethod(OMD, IMP->getClassInterface()); 961 962 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 963 964 FinishFunction(); 965 } 966 967 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 968 const Expr *getter = propImpl->getGetterCXXConstructor(); 969 if (!getter) return true; 970 971 // Sema only makes only of these when the ivar has a C++ class type, 972 // so the form is pretty constrained. 973 974 // If the property has a reference type, we might just be binding a 975 // reference, in which case the result will be a gl-value. We should 976 // treat this as a non-trivial operation. 977 if (getter->isGLValue()) 978 return false; 979 980 // If we selected a trivial copy-constructor, we're okay. 981 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 982 return (construct->getConstructor()->isTrivial()); 983 984 // The constructor might require cleanups (in which case it's never 985 // trivial). 986 assert(isa<ExprWithCleanups>(getter)); 987 return false; 988 } 989 990 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 991 /// copy the ivar into the resturn slot. 992 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 993 llvm::Value *returnAddr, 994 ObjCIvarDecl *ivar, 995 llvm::Constant *AtomicHelperFn) { 996 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 997 // AtomicHelperFn); 998 CallArgList args; 999 1000 // The 1st argument is the return Slot. 1001 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1002 1003 // The 2nd argument is the address of the ivar. 1004 llvm::Value *ivarAddr = 1005 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1006 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1007 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1008 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1009 1010 // Third argument is the helper function. 1011 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1012 1013 llvm::FunctionCallee copyCppAtomicObjectFn = 1014 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1015 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1016 CGF.EmitCall( 1017 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1018 callee, ReturnValueSlot(), args); 1019 } 1020 1021 void 1022 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1023 const ObjCPropertyImplDecl *propImpl, 1024 const ObjCMethodDecl *GetterMethodDecl, 1025 llvm::Constant *AtomicHelperFn) { 1026 // If there's a non-trivial 'get' expression, we just have to emit that. 1027 if (!hasTrivialGetExpr(propImpl)) { 1028 if (!AtomicHelperFn) { 1029 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1030 propImpl->getGetterCXXConstructor(), 1031 /* NRVOCandidate=*/nullptr); 1032 EmitReturnStmt(*ret); 1033 } 1034 else { 1035 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1036 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1037 ivar, AtomicHelperFn); 1038 } 1039 return; 1040 } 1041 1042 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1043 QualType propType = prop->getType(); 1044 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 1045 1046 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1047 1048 // Pick an implementation strategy. 1049 PropertyImplStrategy strategy(CGM, propImpl); 1050 switch (strategy.getKind()) { 1051 case PropertyImplStrategy::Native: { 1052 // We don't need to do anything for a zero-size struct. 1053 if (strategy.getIvarSize().isZero()) 1054 return; 1055 1056 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1057 1058 // Currently, all atomic accesses have to be through integer 1059 // types, so there's no point in trying to pick a prettier type. 1060 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1061 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1062 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1063 1064 // Perform an atomic load. This does not impose ordering constraints. 1065 Address ivarAddr = LV.getAddress(); 1066 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1067 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1068 load->setAtomic(llvm::AtomicOrdering::Unordered); 1069 1070 // Store that value into the return address. Doing this with a 1071 // bitcast is likely to produce some pretty ugly IR, but it's not 1072 // the *most* terrible thing in the world. 1073 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1074 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1075 llvm::Value *ivarVal = load; 1076 if (ivarSize > retTySize) { 1077 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1078 ivarVal = Builder.CreateTrunc(load, newTy); 1079 bitcastType = newTy->getPointerTo(); 1080 } 1081 Builder.CreateStore(ivarVal, 1082 Builder.CreateBitCast(ReturnValue, bitcastType)); 1083 1084 // Make sure we don't do an autorelease. 1085 AutoreleaseResult = false; 1086 return; 1087 } 1088 1089 case PropertyImplStrategy::GetSetProperty: { 1090 llvm::FunctionCallee getPropertyFn = 1091 CGM.getObjCRuntime().GetPropertyGetFunction(); 1092 if (!getPropertyFn) { 1093 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1094 return; 1095 } 1096 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1097 1098 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1099 // FIXME: Can't this be simpler? This might even be worse than the 1100 // corresponding gcc code. 1101 llvm::Value *cmd = 1102 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1103 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1104 llvm::Value *ivarOffset = 1105 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1106 1107 CallArgList args; 1108 args.add(RValue::get(self), getContext().getObjCIdType()); 1109 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1110 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1111 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1112 getContext().BoolTy); 1113 1114 // FIXME: We shouldn't need to get the function info here, the 1115 // runtime already should have computed it to build the function. 1116 llvm::CallBase *CallInstruction; 1117 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1118 getContext().getObjCIdType(), args), 1119 callee, ReturnValueSlot(), args, &CallInstruction); 1120 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1121 call->setTailCall(); 1122 1123 // We need to fix the type here. Ivars with copy & retain are 1124 // always objects so we don't need to worry about complex or 1125 // aggregates. 1126 RV = RValue::get(Builder.CreateBitCast( 1127 RV.getScalarVal(), 1128 getTypes().ConvertType(getterMethod->getReturnType()))); 1129 1130 EmitReturnOfRValue(RV, propType); 1131 1132 // objc_getProperty does an autorelease, so we should suppress ours. 1133 AutoreleaseResult = false; 1134 1135 return; 1136 } 1137 1138 case PropertyImplStrategy::CopyStruct: 1139 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1140 strategy.hasStrongMember()); 1141 return; 1142 1143 case PropertyImplStrategy::Expression: 1144 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1145 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1146 1147 QualType ivarType = ivar->getType(); 1148 switch (getEvaluationKind(ivarType)) { 1149 case TEK_Complex: { 1150 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1151 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1152 /*init*/ true); 1153 return; 1154 } 1155 case TEK_Aggregate: { 1156 // The return value slot is guaranteed to not be aliased, but 1157 // that's not necessarily the same as "on the stack", so 1158 // we still potentially need objc_memmove_collectable. 1159 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1160 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1161 return; 1162 } 1163 case TEK_Scalar: { 1164 llvm::Value *value; 1165 if (propType->isReferenceType()) { 1166 value = LV.getAddress().getPointer(); 1167 } else { 1168 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1169 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1170 if (getLangOpts().ObjCAutoRefCount) { 1171 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1172 } else { 1173 value = EmitARCLoadWeak(LV.getAddress()); 1174 } 1175 1176 // Otherwise we want to do a simple load, suppressing the 1177 // final autorelease. 1178 } else { 1179 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1180 AutoreleaseResult = false; 1181 } 1182 1183 value = Builder.CreateBitCast( 1184 value, ConvertType(GetterMethodDecl->getReturnType())); 1185 } 1186 1187 EmitReturnOfRValue(RValue::get(value), propType); 1188 return; 1189 } 1190 } 1191 llvm_unreachable("bad evaluation kind"); 1192 } 1193 1194 } 1195 llvm_unreachable("bad @property implementation strategy!"); 1196 } 1197 1198 /// emitStructSetterCall - Call the runtime function to store the value 1199 /// from the first formal parameter into the given ivar. 1200 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1201 ObjCIvarDecl *ivar) { 1202 // objc_copyStruct (&structIvar, &Arg, 1203 // sizeof (struct something), true, false); 1204 CallArgList args; 1205 1206 // The first argument is the address of the ivar. 1207 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1208 CGF.LoadObjCSelf(), ivar, 0) 1209 .getPointer(); 1210 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1211 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1212 1213 // The second argument is the address of the parameter variable. 1214 ParmVarDecl *argVar = *OMD->param_begin(); 1215 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1216 argVar->getType().getNonReferenceType(), VK_LValue, 1217 SourceLocation()); 1218 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1219 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1220 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1221 1222 // The third argument is the sizeof the type. 1223 llvm::Value *size = 1224 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1225 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1226 1227 // The fourth argument is the 'isAtomic' flag. 1228 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1229 1230 // The fifth argument is the 'hasStrong' flag. 1231 // FIXME: should this really always be false? 1232 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1233 1234 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1235 CGCallee callee = CGCallee::forDirect(fn); 1236 CGF.EmitCall( 1237 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1238 callee, ReturnValueSlot(), args); 1239 } 1240 1241 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1242 /// the value from the first formal parameter into the given ivar, using 1243 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1244 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1245 ObjCMethodDecl *OMD, 1246 ObjCIvarDecl *ivar, 1247 llvm::Constant *AtomicHelperFn) { 1248 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1249 // AtomicHelperFn); 1250 CallArgList args; 1251 1252 // The first argument is the address of the ivar. 1253 llvm::Value *ivarAddr = 1254 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1255 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1256 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1257 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1258 1259 // The second argument is the address of the parameter variable. 1260 ParmVarDecl *argVar = *OMD->param_begin(); 1261 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1262 argVar->getType().getNonReferenceType(), VK_LValue, 1263 SourceLocation()); 1264 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1265 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1266 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1267 1268 // Third argument is the helper function. 1269 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1270 1271 llvm::FunctionCallee fn = 1272 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1273 CGCallee callee = CGCallee::forDirect(fn); 1274 CGF.EmitCall( 1275 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1276 callee, ReturnValueSlot(), args); 1277 } 1278 1279 1280 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1281 Expr *setter = PID->getSetterCXXAssignment(); 1282 if (!setter) return true; 1283 1284 // Sema only makes only of these when the ivar has a C++ class type, 1285 // so the form is pretty constrained. 1286 1287 // An operator call is trivial if the function it calls is trivial. 1288 // This also implies that there's nothing non-trivial going on with 1289 // the arguments, because operator= can only be trivial if it's a 1290 // synthesized assignment operator and therefore both parameters are 1291 // references. 1292 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1293 if (const FunctionDecl *callee 1294 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1295 if (callee->isTrivial()) 1296 return true; 1297 return false; 1298 } 1299 1300 assert(isa<ExprWithCleanups>(setter)); 1301 return false; 1302 } 1303 1304 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1305 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1306 return false; 1307 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1308 } 1309 1310 void 1311 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1312 const ObjCPropertyImplDecl *propImpl, 1313 llvm::Constant *AtomicHelperFn) { 1314 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1315 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1316 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1317 1318 // Just use the setter expression if Sema gave us one and it's 1319 // non-trivial. 1320 if (!hasTrivialSetExpr(propImpl)) { 1321 if (!AtomicHelperFn) 1322 // If non-atomic, assignment is called directly. 1323 EmitStmt(propImpl->getSetterCXXAssignment()); 1324 else 1325 // If atomic, assignment is called via a locking api. 1326 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1327 AtomicHelperFn); 1328 return; 1329 } 1330 1331 PropertyImplStrategy strategy(CGM, propImpl); 1332 switch (strategy.getKind()) { 1333 case PropertyImplStrategy::Native: { 1334 // We don't need to do anything for a zero-size struct. 1335 if (strategy.getIvarSize().isZero()) 1336 return; 1337 1338 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1339 1340 LValue ivarLValue = 1341 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1342 Address ivarAddr = ivarLValue.getAddress(); 1343 1344 // Currently, all atomic accesses have to be through integer 1345 // types, so there's no point in trying to pick a prettier type. 1346 llvm::Type *bitcastType = 1347 llvm::Type::getIntNTy(getLLVMContext(), 1348 getContext().toBits(strategy.getIvarSize())); 1349 1350 // Cast both arguments to the chosen operation type. 1351 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1352 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1353 1354 // This bitcast load is likely to cause some nasty IR. 1355 llvm::Value *load = Builder.CreateLoad(argAddr); 1356 1357 // Perform an atomic store. There are no memory ordering requirements. 1358 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1359 store->setAtomic(llvm::AtomicOrdering::Unordered); 1360 return; 1361 } 1362 1363 case PropertyImplStrategy::GetSetProperty: 1364 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1365 1366 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1367 llvm::FunctionCallee setPropertyFn = nullptr; 1368 if (UseOptimizedSetter(CGM)) { 1369 // 10.8 and iOS 6.0 code and GC is off 1370 setOptimizedPropertyFn = 1371 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1372 strategy.isAtomic(), strategy.isCopy()); 1373 if (!setOptimizedPropertyFn) { 1374 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1375 return; 1376 } 1377 } 1378 else { 1379 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1380 if (!setPropertyFn) { 1381 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1382 return; 1383 } 1384 } 1385 1386 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1387 // <is-atomic>, <is-copy>). 1388 llvm::Value *cmd = 1389 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1390 llvm::Value *self = 1391 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1392 llvm::Value *ivarOffset = 1393 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1394 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1395 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1396 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1397 1398 CallArgList args; 1399 args.add(RValue::get(self), getContext().getObjCIdType()); 1400 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1401 if (setOptimizedPropertyFn) { 1402 args.add(RValue::get(arg), getContext().getObjCIdType()); 1403 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1404 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1405 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1406 callee, ReturnValueSlot(), args); 1407 } else { 1408 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1409 args.add(RValue::get(arg), getContext().getObjCIdType()); 1410 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1411 getContext().BoolTy); 1412 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1413 getContext().BoolTy); 1414 // FIXME: We shouldn't need to get the function info here, the runtime 1415 // already should have computed it to build the function. 1416 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1417 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1418 callee, ReturnValueSlot(), args); 1419 } 1420 1421 return; 1422 } 1423 1424 case PropertyImplStrategy::CopyStruct: 1425 emitStructSetterCall(*this, setterMethod, ivar); 1426 return; 1427 1428 case PropertyImplStrategy::Expression: 1429 break; 1430 } 1431 1432 // Otherwise, fake up some ASTs and emit a normal assignment. 1433 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1434 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1435 VK_LValue, SourceLocation()); 1436 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1437 selfDecl->getType(), CK_LValueToRValue, &self, 1438 VK_RValue); 1439 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1440 SourceLocation(), SourceLocation(), 1441 &selfLoad, true, true); 1442 1443 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1444 QualType argType = argDecl->getType().getNonReferenceType(); 1445 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1446 SourceLocation()); 1447 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1448 argType.getUnqualifiedType(), CK_LValueToRValue, 1449 &arg, VK_RValue); 1450 1451 // The property type can differ from the ivar type in some situations with 1452 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1453 // The following absurdity is just to ensure well-formed IR. 1454 CastKind argCK = CK_NoOp; 1455 if (ivarRef.getType()->isObjCObjectPointerType()) { 1456 if (argLoad.getType()->isObjCObjectPointerType()) 1457 argCK = CK_BitCast; 1458 else if (argLoad.getType()->isBlockPointerType()) 1459 argCK = CK_BlockPointerToObjCPointerCast; 1460 else 1461 argCK = CK_CPointerToObjCPointerCast; 1462 } else if (ivarRef.getType()->isBlockPointerType()) { 1463 if (argLoad.getType()->isBlockPointerType()) 1464 argCK = CK_BitCast; 1465 else 1466 argCK = CK_AnyPointerToBlockPointerCast; 1467 } else if (ivarRef.getType()->isPointerType()) { 1468 argCK = CK_BitCast; 1469 } 1470 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1471 ivarRef.getType(), argCK, &argLoad, 1472 VK_RValue); 1473 Expr *finalArg = &argLoad; 1474 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1475 argLoad.getType())) 1476 finalArg = &argCast; 1477 1478 1479 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1480 ivarRef.getType(), VK_RValue, OK_Ordinary, 1481 SourceLocation(), FPOptions()); 1482 EmitStmt(&assign); 1483 } 1484 1485 /// Generate an Objective-C property setter function. 1486 /// 1487 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1488 /// is illegal within a category. 1489 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1490 const ObjCPropertyImplDecl *PID) { 1491 llvm::Constant *AtomicHelperFn = 1492 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1493 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1494 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1495 assert(OMD && "Invalid call to generate setter (empty method)"); 1496 StartObjCMethod(OMD, IMP->getClassInterface()); 1497 1498 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1499 1500 FinishFunction(); 1501 } 1502 1503 namespace { 1504 struct DestroyIvar final : EHScopeStack::Cleanup { 1505 private: 1506 llvm::Value *addr; 1507 const ObjCIvarDecl *ivar; 1508 CodeGenFunction::Destroyer *destroyer; 1509 bool useEHCleanupForArray; 1510 public: 1511 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1512 CodeGenFunction::Destroyer *destroyer, 1513 bool useEHCleanupForArray) 1514 : addr(addr), ivar(ivar), destroyer(destroyer), 1515 useEHCleanupForArray(useEHCleanupForArray) {} 1516 1517 void Emit(CodeGenFunction &CGF, Flags flags) override { 1518 LValue lvalue 1519 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1520 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1521 flags.isForNormalCleanup() && useEHCleanupForArray); 1522 } 1523 }; 1524 } 1525 1526 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1527 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1528 Address addr, 1529 QualType type) { 1530 llvm::Value *null = getNullForVariable(addr); 1531 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1532 } 1533 1534 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1535 ObjCImplementationDecl *impl) { 1536 CodeGenFunction::RunCleanupsScope scope(CGF); 1537 1538 llvm::Value *self = CGF.LoadObjCSelf(); 1539 1540 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1541 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1542 ivar; ivar = ivar->getNextIvar()) { 1543 QualType type = ivar->getType(); 1544 1545 // Check whether the ivar is a destructible type. 1546 QualType::DestructionKind dtorKind = type.isDestructedType(); 1547 if (!dtorKind) continue; 1548 1549 CodeGenFunction::Destroyer *destroyer = nullptr; 1550 1551 // Use a call to objc_storeStrong to destroy strong ivars, for the 1552 // general benefit of the tools. 1553 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1554 destroyer = destroyARCStrongWithStore; 1555 1556 // Otherwise use the default for the destruction kind. 1557 } else { 1558 destroyer = CGF.getDestroyer(dtorKind); 1559 } 1560 1561 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1562 1563 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1564 cleanupKind & EHCleanup); 1565 } 1566 1567 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1568 } 1569 1570 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1571 ObjCMethodDecl *MD, 1572 bool ctor) { 1573 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1574 StartObjCMethod(MD, IMP->getClassInterface()); 1575 1576 // Emit .cxx_construct. 1577 if (ctor) { 1578 // Suppress the final autorelease in ARC. 1579 AutoreleaseResult = false; 1580 1581 for (const auto *IvarInit : IMP->inits()) { 1582 FieldDecl *Field = IvarInit->getAnyMember(); 1583 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1584 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1585 LoadObjCSelf(), Ivar, 0); 1586 EmitAggExpr(IvarInit->getInit(), 1587 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1588 AggValueSlot::DoesNotNeedGCBarriers, 1589 AggValueSlot::IsNotAliased, 1590 AggValueSlot::DoesNotOverlap)); 1591 } 1592 // constructor returns 'self'. 1593 CodeGenTypes &Types = CGM.getTypes(); 1594 QualType IdTy(CGM.getContext().getObjCIdType()); 1595 llvm::Value *SelfAsId = 1596 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1597 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1598 1599 // Emit .cxx_destruct. 1600 } else { 1601 emitCXXDestructMethod(*this, IMP); 1602 } 1603 FinishFunction(); 1604 } 1605 1606 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1607 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1608 DeclRefExpr DRE(getContext(), Self, 1609 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1610 Self->getType(), VK_LValue, SourceLocation()); 1611 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1612 } 1613 1614 QualType CodeGenFunction::TypeOfSelfObject() { 1615 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1616 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1617 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1618 getContext().getCanonicalType(selfDecl->getType())); 1619 return PTy->getPointeeType(); 1620 } 1621 1622 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1623 llvm::FunctionCallee EnumerationMutationFnPtr = 1624 CGM.getObjCRuntime().EnumerationMutationFunction(); 1625 if (!EnumerationMutationFnPtr) { 1626 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1627 return; 1628 } 1629 CGCallee EnumerationMutationFn = 1630 CGCallee::forDirect(EnumerationMutationFnPtr); 1631 1632 CGDebugInfo *DI = getDebugInfo(); 1633 if (DI) 1634 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1635 1636 RunCleanupsScope ForScope(*this); 1637 1638 // The local variable comes into scope immediately. 1639 AutoVarEmission variable = AutoVarEmission::invalid(); 1640 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1641 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1642 1643 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1644 1645 // Fast enumeration state. 1646 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1647 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1648 EmitNullInitialization(StatePtr, StateTy); 1649 1650 // Number of elements in the items array. 1651 static const unsigned NumItems = 16; 1652 1653 // Fetch the countByEnumeratingWithState:objects:count: selector. 1654 IdentifierInfo *II[] = { 1655 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1656 &CGM.getContext().Idents.get("objects"), 1657 &CGM.getContext().Idents.get("count") 1658 }; 1659 Selector FastEnumSel = 1660 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1661 1662 QualType ItemsTy = 1663 getContext().getConstantArrayType(getContext().getObjCIdType(), 1664 llvm::APInt(32, NumItems), 1665 ArrayType::Normal, 0); 1666 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1667 1668 // Emit the collection pointer. In ARC, we do a retain. 1669 llvm::Value *Collection; 1670 if (getLangOpts().ObjCAutoRefCount) { 1671 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1672 1673 // Enter a cleanup to do the release. 1674 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1675 } else { 1676 Collection = EmitScalarExpr(S.getCollection()); 1677 } 1678 1679 // The 'continue' label needs to appear within the cleanup for the 1680 // collection object. 1681 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1682 1683 // Send it our message: 1684 CallArgList Args; 1685 1686 // The first argument is a temporary of the enumeration-state type. 1687 Args.add(RValue::get(StatePtr.getPointer()), 1688 getContext().getPointerType(StateTy)); 1689 1690 // The second argument is a temporary array with space for NumItems 1691 // pointers. We'll actually be loading elements from the array 1692 // pointer written into the control state; this buffer is so that 1693 // collections that *aren't* backed by arrays can still queue up 1694 // batches of elements. 1695 Args.add(RValue::get(ItemsPtr.getPointer()), 1696 getContext().getPointerType(ItemsTy)); 1697 1698 // The third argument is the capacity of that temporary array. 1699 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1700 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1701 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1702 1703 // Start the enumeration. 1704 RValue CountRV = 1705 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1706 getContext().getNSUIntegerType(), 1707 FastEnumSel, Collection, Args); 1708 1709 // The initial number of objects that were returned in the buffer. 1710 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1711 1712 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1713 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1714 1715 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1716 1717 // If the limit pointer was zero to begin with, the collection is 1718 // empty; skip all this. Set the branch weight assuming this has the same 1719 // probability of exiting the loop as any other loop exit. 1720 uint64_t EntryCount = getCurrentProfileCount(); 1721 Builder.CreateCondBr( 1722 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1723 LoopInitBB, 1724 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1725 1726 // Otherwise, initialize the loop. 1727 EmitBlock(LoopInitBB); 1728 1729 // Save the initial mutations value. This is the value at an 1730 // address that was written into the state object by 1731 // countByEnumeratingWithState:objects:count:. 1732 Address StateMutationsPtrPtr = 1733 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1734 llvm::Value *StateMutationsPtr 1735 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1736 1737 llvm::Value *initialMutations = 1738 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1739 "forcoll.initial-mutations"); 1740 1741 // Start looping. This is the point we return to whenever we have a 1742 // fresh, non-empty batch of objects. 1743 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1744 EmitBlock(LoopBodyBB); 1745 1746 // The current index into the buffer. 1747 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1748 index->addIncoming(zero, LoopInitBB); 1749 1750 // The current buffer size. 1751 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1752 count->addIncoming(initialBufferLimit, LoopInitBB); 1753 1754 incrementProfileCounter(&S); 1755 1756 // Check whether the mutations value has changed from where it was 1757 // at start. StateMutationsPtr should actually be invariant between 1758 // refreshes. 1759 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1760 llvm::Value *currentMutations 1761 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1762 "statemutations"); 1763 1764 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1765 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1766 1767 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1768 WasNotMutatedBB, WasMutatedBB); 1769 1770 // If so, call the enumeration-mutation function. 1771 EmitBlock(WasMutatedBB); 1772 llvm::Value *V = 1773 Builder.CreateBitCast(Collection, 1774 ConvertType(getContext().getObjCIdType())); 1775 CallArgList Args2; 1776 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1777 // FIXME: We shouldn't need to get the function info here, the runtime already 1778 // should have computed it to build the function. 1779 EmitCall( 1780 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1781 EnumerationMutationFn, ReturnValueSlot(), Args2); 1782 1783 // Otherwise, or if the mutation function returns, just continue. 1784 EmitBlock(WasNotMutatedBB); 1785 1786 // Initialize the element variable. 1787 RunCleanupsScope elementVariableScope(*this); 1788 bool elementIsVariable; 1789 LValue elementLValue; 1790 QualType elementType; 1791 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1792 // Initialize the variable, in case it's a __block variable or something. 1793 EmitAutoVarInit(variable); 1794 1795 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1796 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1797 D->getType(), VK_LValue, SourceLocation()); 1798 elementLValue = EmitLValue(&tempDRE); 1799 elementType = D->getType(); 1800 elementIsVariable = true; 1801 1802 if (D->isARCPseudoStrong()) 1803 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1804 } else { 1805 elementLValue = LValue(); // suppress warning 1806 elementType = cast<Expr>(S.getElement())->getType(); 1807 elementIsVariable = false; 1808 } 1809 llvm::Type *convertedElementType = ConvertType(elementType); 1810 1811 // Fetch the buffer out of the enumeration state. 1812 // TODO: this pointer should actually be invariant between 1813 // refreshes, which would help us do certain loop optimizations. 1814 Address StateItemsPtr = 1815 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1816 llvm::Value *EnumStateItems = 1817 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1818 1819 // Fetch the value at the current index from the buffer. 1820 llvm::Value *CurrentItemPtr = 1821 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1822 llvm::Value *CurrentItem = 1823 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1824 1825 // Cast that value to the right type. 1826 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1827 "currentitem"); 1828 1829 // Make sure we have an l-value. Yes, this gets evaluated every 1830 // time through the loop. 1831 if (!elementIsVariable) { 1832 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1833 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1834 } else { 1835 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1836 /*isInit*/ true); 1837 } 1838 1839 // If we do have an element variable, this assignment is the end of 1840 // its initialization. 1841 if (elementIsVariable) 1842 EmitAutoVarCleanups(variable); 1843 1844 // Perform the loop body, setting up break and continue labels. 1845 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1846 { 1847 RunCleanupsScope Scope(*this); 1848 EmitStmt(S.getBody()); 1849 } 1850 BreakContinueStack.pop_back(); 1851 1852 // Destroy the element variable now. 1853 elementVariableScope.ForceCleanup(); 1854 1855 // Check whether there are more elements. 1856 EmitBlock(AfterBody.getBlock()); 1857 1858 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1859 1860 // First we check in the local buffer. 1861 llvm::Value *indexPlusOne = 1862 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1863 1864 // If we haven't overrun the buffer yet, we can continue. 1865 // Set the branch weights based on the simplifying assumption that this is 1866 // like a while-loop, i.e., ignoring that the false branch fetches more 1867 // elements and then returns to the loop. 1868 Builder.CreateCondBr( 1869 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1870 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1871 1872 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1873 count->addIncoming(count, AfterBody.getBlock()); 1874 1875 // Otherwise, we have to fetch more elements. 1876 EmitBlock(FetchMoreBB); 1877 1878 CountRV = 1879 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1880 getContext().getNSUIntegerType(), 1881 FastEnumSel, Collection, Args); 1882 1883 // If we got a zero count, we're done. 1884 llvm::Value *refetchCount = CountRV.getScalarVal(); 1885 1886 // (note that the message send might split FetchMoreBB) 1887 index->addIncoming(zero, Builder.GetInsertBlock()); 1888 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1889 1890 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1891 EmptyBB, LoopBodyBB); 1892 1893 // No more elements. 1894 EmitBlock(EmptyBB); 1895 1896 if (!elementIsVariable) { 1897 // If the element was not a declaration, set it to be null. 1898 1899 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1900 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1901 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1902 } 1903 1904 if (DI) 1905 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1906 1907 ForScope.ForceCleanup(); 1908 EmitBlock(LoopEnd.getBlock()); 1909 } 1910 1911 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1912 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1913 } 1914 1915 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1916 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1917 } 1918 1919 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1920 const ObjCAtSynchronizedStmt &S) { 1921 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1922 } 1923 1924 namespace { 1925 struct CallObjCRelease final : EHScopeStack::Cleanup { 1926 CallObjCRelease(llvm::Value *object) : object(object) {} 1927 llvm::Value *object; 1928 1929 void Emit(CodeGenFunction &CGF, Flags flags) override { 1930 // Releases at the end of the full-expression are imprecise. 1931 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1932 } 1933 }; 1934 } 1935 1936 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1937 /// release at the end of the full-expression. 1938 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1939 llvm::Value *object) { 1940 // If we're in a conditional branch, we need to make the cleanup 1941 // conditional. 1942 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1943 return object; 1944 } 1945 1946 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1947 llvm::Value *value) { 1948 return EmitARCRetainAutorelease(type, value); 1949 } 1950 1951 /// Given a number of pointers, inform the optimizer that they're 1952 /// being intrinsically used up until this point in the program. 1953 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1954 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1955 if (!fn) 1956 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 1957 1958 // This isn't really a "runtime" function, but as an intrinsic it 1959 // doesn't really matter as long as we align things up. 1960 EmitNounwindRuntimeCall(fn, values); 1961 } 1962 1963 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 1964 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 1965 // If the target runtime doesn't naturally support ARC, emit weak 1966 // references to the runtime support library. We don't really 1967 // permit this to fail, but we need a particular relocation style. 1968 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 1969 !CGM.getTriple().isOSBinFormatCOFF()) { 1970 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1971 } 1972 } 1973 } 1974 1975 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 1976 llvm::FunctionCallee RTF) { 1977 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 1978 } 1979 1980 /// Perform an operation having the signature 1981 /// i8* (i8*) 1982 /// where a null input causes a no-op and returns null. 1983 static llvm::Value *emitARCValueOperation( 1984 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 1985 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 1986 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 1987 if (isa<llvm::ConstantPointerNull>(value)) 1988 return value; 1989 1990 if (!fn) { 1991 fn = CGF.CGM.getIntrinsic(IntID); 1992 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1993 } 1994 1995 // Cast the argument to 'id'. 1996 llvm::Type *origType = returnType ? returnType : value->getType(); 1997 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1998 1999 // Call the function. 2000 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2001 call->setTailCallKind(tailKind); 2002 2003 // Cast the result back to the original type. 2004 return CGF.Builder.CreateBitCast(call, origType); 2005 } 2006 2007 /// Perform an operation having the following signature: 2008 /// i8* (i8**) 2009 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2010 llvm::Function *&fn, 2011 llvm::Intrinsic::ID IntID) { 2012 if (!fn) { 2013 fn = CGF.CGM.getIntrinsic(IntID); 2014 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2015 } 2016 2017 // Cast the argument to 'id*'. 2018 llvm::Type *origType = addr.getElementType(); 2019 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 2020 2021 // Call the function. 2022 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2023 2024 // Cast the result back to a dereference of the original type. 2025 if (origType != CGF.Int8PtrTy) 2026 result = CGF.Builder.CreateBitCast(result, origType); 2027 2028 return result; 2029 } 2030 2031 /// Perform an operation having the following signature: 2032 /// i8* (i8**, i8*) 2033 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2034 llvm::Value *value, 2035 llvm::Function *&fn, 2036 llvm::Intrinsic::ID IntID, 2037 bool ignored) { 2038 assert(addr.getElementType() == value->getType()); 2039 2040 if (!fn) { 2041 fn = CGF.CGM.getIntrinsic(IntID); 2042 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2043 } 2044 2045 llvm::Type *origType = value->getType(); 2046 2047 llvm::Value *args[] = { 2048 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2049 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2050 }; 2051 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2052 2053 if (ignored) return nullptr; 2054 2055 return CGF.Builder.CreateBitCast(result, origType); 2056 } 2057 2058 /// Perform an operation having the following signature: 2059 /// void (i8**, i8**) 2060 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2061 llvm::Function *&fn, 2062 llvm::Intrinsic::ID IntID) { 2063 assert(dst.getType() == src.getType()); 2064 2065 if (!fn) { 2066 fn = CGF.CGM.getIntrinsic(IntID); 2067 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2068 } 2069 2070 llvm::Value *args[] = { 2071 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2072 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2073 }; 2074 CGF.EmitNounwindRuntimeCall(fn, args); 2075 } 2076 2077 /// Perform an operation having the signature 2078 /// i8* (i8*) 2079 /// where a null input causes a no-op and returns null. 2080 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2081 llvm::Value *value, 2082 llvm::Type *returnType, 2083 llvm::FunctionCallee &fn, 2084 StringRef fnName) { 2085 if (isa<llvm::ConstantPointerNull>(value)) 2086 return value; 2087 2088 if (!fn) { 2089 llvm::FunctionType *fnType = 2090 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2091 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2092 2093 // We have Native ARC, so set nonlazybind attribute for performance 2094 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2095 if (fnName == "objc_retain") 2096 f->addFnAttr(llvm::Attribute::NonLazyBind); 2097 } 2098 2099 // Cast the argument to 'id'. 2100 llvm::Type *origType = returnType ? returnType : value->getType(); 2101 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2102 2103 // Call the function. 2104 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2105 2106 // Cast the result back to the original type. 2107 return CGF.Builder.CreateBitCast(Inst, origType); 2108 } 2109 2110 /// Produce the code to do a retain. Based on the type, calls one of: 2111 /// call i8* \@objc_retain(i8* %value) 2112 /// call i8* \@objc_retainBlock(i8* %value) 2113 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2114 if (type->isBlockPointerType()) 2115 return EmitARCRetainBlock(value, /*mandatory*/ false); 2116 else 2117 return EmitARCRetainNonBlock(value); 2118 } 2119 2120 /// Retain the given object, with normal retain semantics. 2121 /// call i8* \@objc_retain(i8* %value) 2122 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2123 return emitARCValueOperation(*this, value, nullptr, 2124 CGM.getObjCEntrypoints().objc_retain, 2125 llvm::Intrinsic::objc_retain); 2126 } 2127 2128 /// Retain the given block, with _Block_copy semantics. 2129 /// call i8* \@objc_retainBlock(i8* %value) 2130 /// 2131 /// \param mandatory - If false, emit the call with metadata 2132 /// indicating that it's okay for the optimizer to eliminate this call 2133 /// if it can prove that the block never escapes except down the stack. 2134 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2135 bool mandatory) { 2136 llvm::Value *result 2137 = emitARCValueOperation(*this, value, nullptr, 2138 CGM.getObjCEntrypoints().objc_retainBlock, 2139 llvm::Intrinsic::objc_retainBlock); 2140 2141 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2142 // tell the optimizer that it doesn't need to do this copy if the 2143 // block doesn't escape, where being passed as an argument doesn't 2144 // count as escaping. 2145 if (!mandatory && isa<llvm::Instruction>(result)) { 2146 llvm::CallInst *call 2147 = cast<llvm::CallInst>(result->stripPointerCasts()); 2148 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 2149 2150 call->setMetadata("clang.arc.copy_on_escape", 2151 llvm::MDNode::get(Builder.getContext(), None)); 2152 } 2153 2154 return result; 2155 } 2156 2157 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2158 // Fetch the void(void) inline asm which marks that we're going to 2159 // do something with the autoreleased return value. 2160 llvm::InlineAsm *&marker 2161 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2162 if (!marker) { 2163 StringRef assembly 2164 = CGF.CGM.getTargetCodeGenInfo() 2165 .getARCRetainAutoreleasedReturnValueMarker(); 2166 2167 // If we have an empty assembly string, there's nothing to do. 2168 if (assembly.empty()) { 2169 2170 // Otherwise, at -O0, build an inline asm that we're going to call 2171 // in a moment. 2172 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2173 llvm::FunctionType *type = 2174 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2175 2176 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2177 2178 // If we're at -O1 and above, we don't want to litter the code 2179 // with this marker yet, so leave a breadcrumb for the ARC 2180 // optimizer to pick up. 2181 } else { 2182 const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker"; 2183 if (!CGF.CGM.getModule().getModuleFlag(markerKey)) { 2184 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2185 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str); 2186 } 2187 } 2188 } 2189 2190 // Call the marker asm if we made one, which we do only at -O0. 2191 if (marker) 2192 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2193 } 2194 2195 /// Retain the given object which is the result of a function call. 2196 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2197 /// 2198 /// Yes, this function name is one character away from a different 2199 /// call with completely different semantics. 2200 llvm::Value * 2201 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2202 emitAutoreleasedReturnValueMarker(*this); 2203 llvm::CallInst::TailCallKind tailKind = 2204 CGM.getTargetCodeGenInfo() 2205 .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() 2206 ? llvm::CallInst::TCK_NoTail 2207 : llvm::CallInst::TCK_None; 2208 return emitARCValueOperation( 2209 *this, value, nullptr, 2210 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2211 llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind); 2212 } 2213 2214 /// Claim a possibly-autoreleased return value at +0. This is only 2215 /// valid to do in contexts which do not rely on the retain to keep 2216 /// the object valid for all of its uses; for example, when 2217 /// the value is ignored, or when it is being assigned to an 2218 /// __unsafe_unretained variable. 2219 /// 2220 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2221 llvm::Value * 2222 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2223 emitAutoreleasedReturnValueMarker(*this); 2224 return emitARCValueOperation(*this, value, nullptr, 2225 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2226 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue); 2227 } 2228 2229 /// Release the given object. 2230 /// call void \@objc_release(i8* %value) 2231 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2232 ARCPreciseLifetime_t precise) { 2233 if (isa<llvm::ConstantPointerNull>(value)) return; 2234 2235 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2236 if (!fn) { 2237 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2238 setARCRuntimeFunctionLinkage(CGM, fn); 2239 } 2240 2241 // Cast the argument to 'id'. 2242 value = Builder.CreateBitCast(value, Int8PtrTy); 2243 2244 // Call objc_release. 2245 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2246 2247 if (precise == ARCImpreciseLifetime) { 2248 call->setMetadata("clang.imprecise_release", 2249 llvm::MDNode::get(Builder.getContext(), None)); 2250 } 2251 } 2252 2253 /// Destroy a __strong variable. 2254 /// 2255 /// At -O0, emit a call to store 'null' into the address; 2256 /// instrumenting tools prefer this because the address is exposed, 2257 /// but it's relatively cumbersome to optimize. 2258 /// 2259 /// At -O1 and above, just load and call objc_release. 2260 /// 2261 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2262 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2263 ARCPreciseLifetime_t precise) { 2264 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2265 llvm::Value *null = getNullForVariable(addr); 2266 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2267 return; 2268 } 2269 2270 llvm::Value *value = Builder.CreateLoad(addr); 2271 EmitARCRelease(value, precise); 2272 } 2273 2274 /// Store into a strong object. Always calls this: 2275 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2276 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2277 llvm::Value *value, 2278 bool ignored) { 2279 assert(addr.getElementType() == value->getType()); 2280 2281 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2282 if (!fn) { 2283 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2284 setARCRuntimeFunctionLinkage(CGM, fn); 2285 } 2286 2287 llvm::Value *args[] = { 2288 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2289 Builder.CreateBitCast(value, Int8PtrTy) 2290 }; 2291 EmitNounwindRuntimeCall(fn, args); 2292 2293 if (ignored) return nullptr; 2294 return value; 2295 } 2296 2297 /// Store into a strong object. Sometimes calls this: 2298 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2299 /// Other times, breaks it down into components. 2300 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2301 llvm::Value *newValue, 2302 bool ignored) { 2303 QualType type = dst.getType(); 2304 bool isBlock = type->isBlockPointerType(); 2305 2306 // Use a store barrier at -O0 unless this is a block type or the 2307 // lvalue is inadequately aligned. 2308 if (shouldUseFusedARCCalls() && 2309 !isBlock && 2310 (dst.getAlignment().isZero() || 2311 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2312 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2313 } 2314 2315 // Otherwise, split it out. 2316 2317 // Retain the new value. 2318 newValue = EmitARCRetain(type, newValue); 2319 2320 // Read the old value. 2321 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2322 2323 // Store. We do this before the release so that any deallocs won't 2324 // see the old value. 2325 EmitStoreOfScalar(newValue, dst); 2326 2327 // Finally, release the old value. 2328 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2329 2330 return newValue; 2331 } 2332 2333 /// Autorelease the given object. 2334 /// call i8* \@objc_autorelease(i8* %value) 2335 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2336 return emitARCValueOperation(*this, value, nullptr, 2337 CGM.getObjCEntrypoints().objc_autorelease, 2338 llvm::Intrinsic::objc_autorelease); 2339 } 2340 2341 /// Autorelease the given object. 2342 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2343 llvm::Value * 2344 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2345 return emitARCValueOperation(*this, value, nullptr, 2346 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2347 llvm::Intrinsic::objc_autoreleaseReturnValue, 2348 llvm::CallInst::TCK_Tail); 2349 } 2350 2351 /// Do a fused retain/autorelease of the given object. 2352 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2353 llvm::Value * 2354 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2355 return emitARCValueOperation(*this, value, nullptr, 2356 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2357 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2358 llvm::CallInst::TCK_Tail); 2359 } 2360 2361 /// Do a fused retain/autorelease of the given object. 2362 /// call i8* \@objc_retainAutorelease(i8* %value) 2363 /// or 2364 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2365 /// call i8* \@objc_autorelease(i8* %retain) 2366 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2367 llvm::Value *value) { 2368 if (!type->isBlockPointerType()) 2369 return EmitARCRetainAutoreleaseNonBlock(value); 2370 2371 if (isa<llvm::ConstantPointerNull>(value)) return value; 2372 2373 llvm::Type *origType = value->getType(); 2374 value = Builder.CreateBitCast(value, Int8PtrTy); 2375 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2376 value = EmitARCAutorelease(value); 2377 return Builder.CreateBitCast(value, origType); 2378 } 2379 2380 /// Do a fused retain/autorelease of the given object. 2381 /// call i8* \@objc_retainAutorelease(i8* %value) 2382 llvm::Value * 2383 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2384 return emitARCValueOperation(*this, value, nullptr, 2385 CGM.getObjCEntrypoints().objc_retainAutorelease, 2386 llvm::Intrinsic::objc_retainAutorelease); 2387 } 2388 2389 /// i8* \@objc_loadWeak(i8** %addr) 2390 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2391 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2392 return emitARCLoadOperation(*this, addr, 2393 CGM.getObjCEntrypoints().objc_loadWeak, 2394 llvm::Intrinsic::objc_loadWeak); 2395 } 2396 2397 /// i8* \@objc_loadWeakRetained(i8** %addr) 2398 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2399 return emitARCLoadOperation(*this, addr, 2400 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2401 llvm::Intrinsic::objc_loadWeakRetained); 2402 } 2403 2404 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2405 /// Returns %value. 2406 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2407 llvm::Value *value, 2408 bool ignored) { 2409 return emitARCStoreOperation(*this, addr, value, 2410 CGM.getObjCEntrypoints().objc_storeWeak, 2411 llvm::Intrinsic::objc_storeWeak, ignored); 2412 } 2413 2414 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2415 /// Returns %value. %addr is known to not have a current weak entry. 2416 /// Essentially equivalent to: 2417 /// *addr = nil; objc_storeWeak(addr, value); 2418 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2419 // If we're initializing to null, just write null to memory; no need 2420 // to get the runtime involved. But don't do this if optimization 2421 // is enabled, because accounting for this would make the optimizer 2422 // much more complicated. 2423 if (isa<llvm::ConstantPointerNull>(value) && 2424 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2425 Builder.CreateStore(value, addr); 2426 return; 2427 } 2428 2429 emitARCStoreOperation(*this, addr, value, 2430 CGM.getObjCEntrypoints().objc_initWeak, 2431 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2432 } 2433 2434 /// void \@objc_destroyWeak(i8** %addr) 2435 /// Essentially objc_storeWeak(addr, nil). 2436 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2437 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2438 if (!fn) { 2439 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2440 setARCRuntimeFunctionLinkage(CGM, fn); 2441 } 2442 2443 // Cast the argument to 'id*'. 2444 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2445 2446 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2447 } 2448 2449 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2450 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2451 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2452 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2453 emitARCCopyOperation(*this, dst, src, 2454 CGM.getObjCEntrypoints().objc_moveWeak, 2455 llvm::Intrinsic::objc_moveWeak); 2456 } 2457 2458 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2459 /// Disregards the current value in %dest. Essentially 2460 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2461 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2462 emitARCCopyOperation(*this, dst, src, 2463 CGM.getObjCEntrypoints().objc_copyWeak, 2464 llvm::Intrinsic::objc_copyWeak); 2465 } 2466 2467 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2468 Address SrcAddr) { 2469 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2470 Object = EmitObjCConsumeObject(Ty, Object); 2471 EmitARCStoreWeak(DstAddr, Object, false); 2472 } 2473 2474 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2475 Address SrcAddr) { 2476 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2477 Object = EmitObjCConsumeObject(Ty, Object); 2478 EmitARCStoreWeak(DstAddr, Object, false); 2479 EmitARCDestroyWeak(SrcAddr); 2480 } 2481 2482 /// Produce the code to do a objc_autoreleasepool_push. 2483 /// call i8* \@objc_autoreleasePoolPush(void) 2484 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2485 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2486 if (!fn) { 2487 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2488 setARCRuntimeFunctionLinkage(CGM, fn); 2489 } 2490 2491 return EmitNounwindRuntimeCall(fn); 2492 } 2493 2494 /// Produce the code to do a primitive release. 2495 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2496 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2497 assert(value->getType() == Int8PtrTy); 2498 2499 if (getInvokeDest()) { 2500 // Call the runtime method not the intrinsic if we are handling exceptions 2501 llvm::FunctionCallee &fn = 2502 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2503 if (!fn) { 2504 llvm::FunctionType *fnType = 2505 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2506 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2507 setARCRuntimeFunctionLinkage(CGM, fn); 2508 } 2509 2510 // objc_autoreleasePoolPop can throw. 2511 EmitRuntimeCallOrInvoke(fn, value); 2512 } else { 2513 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2514 if (!fn) { 2515 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2516 setARCRuntimeFunctionLinkage(CGM, fn); 2517 } 2518 2519 EmitRuntimeCall(fn, value); 2520 } 2521 } 2522 2523 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2524 /// Which is: [[NSAutoreleasePool alloc] init]; 2525 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2526 /// init is declared as: - (id) init; in its NSObject super class. 2527 /// 2528 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2529 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2530 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2531 // [NSAutoreleasePool alloc] 2532 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2533 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2534 CallArgList Args; 2535 RValue AllocRV = 2536 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2537 getContext().getObjCIdType(), 2538 AllocSel, Receiver, Args); 2539 2540 // [Receiver init] 2541 Receiver = AllocRV.getScalarVal(); 2542 II = &CGM.getContext().Idents.get("init"); 2543 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2544 RValue InitRV = 2545 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2546 getContext().getObjCIdType(), 2547 InitSel, Receiver, Args); 2548 return InitRV.getScalarVal(); 2549 } 2550 2551 /// Allocate the given objc object. 2552 /// call i8* \@objc_alloc(i8* %value) 2553 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2554 llvm::Type *resultType) { 2555 return emitObjCValueOperation(*this, value, resultType, 2556 CGM.getObjCEntrypoints().objc_alloc, 2557 "objc_alloc"); 2558 } 2559 2560 /// Allocate the given objc object. 2561 /// call i8* \@objc_allocWithZone(i8* %value) 2562 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2563 llvm::Type *resultType) { 2564 return emitObjCValueOperation(*this, value, resultType, 2565 CGM.getObjCEntrypoints().objc_allocWithZone, 2566 "objc_allocWithZone"); 2567 } 2568 2569 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2570 llvm::Type *resultType) { 2571 return emitObjCValueOperation(*this, value, resultType, 2572 CGM.getObjCEntrypoints().objc_alloc_init, 2573 "objc_alloc_init"); 2574 } 2575 2576 /// Produce the code to do a primitive release. 2577 /// [tmp drain]; 2578 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2579 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2580 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2581 CallArgList Args; 2582 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2583 getContext().VoidTy, DrainSel, Arg, Args); 2584 } 2585 2586 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2587 Address addr, 2588 QualType type) { 2589 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2590 } 2591 2592 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2593 Address addr, 2594 QualType type) { 2595 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2596 } 2597 2598 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2599 Address addr, 2600 QualType type) { 2601 CGF.EmitARCDestroyWeak(addr); 2602 } 2603 2604 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2605 QualType type) { 2606 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2607 CGF.EmitARCIntrinsicUse(value); 2608 } 2609 2610 /// Autorelease the given object. 2611 /// call i8* \@objc_autorelease(i8* %value) 2612 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2613 llvm::Type *returnType) { 2614 return emitObjCValueOperation( 2615 *this, value, returnType, 2616 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2617 "objc_autorelease"); 2618 } 2619 2620 /// Retain the given object, with normal retain semantics. 2621 /// call i8* \@objc_retain(i8* %value) 2622 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2623 llvm::Type *returnType) { 2624 return emitObjCValueOperation( 2625 *this, value, returnType, 2626 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2627 } 2628 2629 /// Release the given object. 2630 /// call void \@objc_release(i8* %value) 2631 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2632 ARCPreciseLifetime_t precise) { 2633 if (isa<llvm::ConstantPointerNull>(value)) return; 2634 2635 llvm::FunctionCallee &fn = 2636 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2637 if (!fn) { 2638 llvm::FunctionType *fnType = 2639 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2640 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2641 setARCRuntimeFunctionLinkage(CGM, fn); 2642 // We have Native ARC, so set nonlazybind attribute for performance 2643 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2644 f->addFnAttr(llvm::Attribute::NonLazyBind); 2645 } 2646 2647 // Cast the argument to 'id'. 2648 value = Builder.CreateBitCast(value, Int8PtrTy); 2649 2650 // Call objc_release. 2651 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2652 2653 if (precise == ARCImpreciseLifetime) { 2654 call->setMetadata("clang.imprecise_release", 2655 llvm::MDNode::get(Builder.getContext(), None)); 2656 } 2657 } 2658 2659 namespace { 2660 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2661 llvm::Value *Token; 2662 2663 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2664 2665 void Emit(CodeGenFunction &CGF, Flags flags) override { 2666 CGF.EmitObjCAutoreleasePoolPop(Token); 2667 } 2668 }; 2669 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2670 llvm::Value *Token; 2671 2672 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2673 2674 void Emit(CodeGenFunction &CGF, Flags flags) override { 2675 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2676 } 2677 }; 2678 } 2679 2680 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2681 if (CGM.getLangOpts().ObjCAutoRefCount) 2682 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2683 else 2684 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2685 } 2686 2687 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2688 switch (lifetime) { 2689 case Qualifiers::OCL_None: 2690 case Qualifiers::OCL_ExplicitNone: 2691 case Qualifiers::OCL_Strong: 2692 case Qualifiers::OCL_Autoreleasing: 2693 return true; 2694 2695 case Qualifiers::OCL_Weak: 2696 return false; 2697 } 2698 2699 llvm_unreachable("impossible lifetime!"); 2700 } 2701 2702 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2703 LValue lvalue, 2704 QualType type) { 2705 llvm::Value *result; 2706 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2707 if (shouldRetain) { 2708 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2709 } else { 2710 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2711 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress()); 2712 } 2713 return TryEmitResult(result, !shouldRetain); 2714 } 2715 2716 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2717 const Expr *e) { 2718 e = e->IgnoreParens(); 2719 QualType type = e->getType(); 2720 2721 // If we're loading retained from a __strong xvalue, we can avoid 2722 // an extra retain/release pair by zeroing out the source of this 2723 // "move" operation. 2724 if (e->isXValue() && 2725 !type.isConstQualified() && 2726 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2727 // Emit the lvalue. 2728 LValue lv = CGF.EmitLValue(e); 2729 2730 // Load the object pointer. 2731 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2732 SourceLocation()).getScalarVal(); 2733 2734 // Set the source pointer to NULL. 2735 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2736 2737 return TryEmitResult(result, true); 2738 } 2739 2740 // As a very special optimization, in ARC++, if the l-value is the 2741 // result of a non-volatile assignment, do a simple retain of the 2742 // result of the call to objc_storeWeak instead of reloading. 2743 if (CGF.getLangOpts().CPlusPlus && 2744 !type.isVolatileQualified() && 2745 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2746 isa<BinaryOperator>(e) && 2747 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2748 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2749 2750 // Try to emit code for scalar constant instead of emitting LValue and 2751 // loading it because we are not guaranteed to have an l-value. One of such 2752 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2753 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2754 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2755 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2756 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2757 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2758 } 2759 2760 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2761 } 2762 2763 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2764 llvm::Value *value)> 2765 ValueTransform; 2766 2767 /// Insert code immediately after a call. 2768 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2769 llvm::Value *value, 2770 ValueTransform doAfterCall, 2771 ValueTransform doFallback) { 2772 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2773 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2774 2775 // Place the retain immediately following the call. 2776 CGF.Builder.SetInsertPoint(call->getParent(), 2777 ++llvm::BasicBlock::iterator(call)); 2778 value = doAfterCall(CGF, value); 2779 2780 CGF.Builder.restoreIP(ip); 2781 return value; 2782 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2783 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2784 2785 // Place the retain at the beginning of the normal destination block. 2786 llvm::BasicBlock *BB = invoke->getNormalDest(); 2787 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2788 value = doAfterCall(CGF, value); 2789 2790 CGF.Builder.restoreIP(ip); 2791 return value; 2792 2793 // Bitcasts can arise because of related-result returns. Rewrite 2794 // the operand. 2795 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2796 llvm::Value *operand = bitcast->getOperand(0); 2797 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2798 bitcast->setOperand(0, operand); 2799 return bitcast; 2800 2801 // Generic fall-back case. 2802 } else { 2803 // Retain using the non-block variant: we never need to do a copy 2804 // of a block that's been returned to us. 2805 return doFallback(CGF, value); 2806 } 2807 } 2808 2809 /// Given that the given expression is some sort of call (which does 2810 /// not return retained), emit a retain following it. 2811 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2812 const Expr *e) { 2813 llvm::Value *value = CGF.EmitScalarExpr(e); 2814 return emitARCOperationAfterCall(CGF, value, 2815 [](CodeGenFunction &CGF, llvm::Value *value) { 2816 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2817 }, 2818 [](CodeGenFunction &CGF, llvm::Value *value) { 2819 return CGF.EmitARCRetainNonBlock(value); 2820 }); 2821 } 2822 2823 /// Given that the given expression is some sort of call (which does 2824 /// not return retained), perform an unsafeClaim following it. 2825 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2826 const Expr *e) { 2827 llvm::Value *value = CGF.EmitScalarExpr(e); 2828 return emitARCOperationAfterCall(CGF, value, 2829 [](CodeGenFunction &CGF, llvm::Value *value) { 2830 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2831 }, 2832 [](CodeGenFunction &CGF, llvm::Value *value) { 2833 return value; 2834 }); 2835 } 2836 2837 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2838 bool allowUnsafeClaim) { 2839 if (allowUnsafeClaim && 2840 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2841 return emitARCUnsafeClaimCallResult(*this, E); 2842 } else { 2843 llvm::Value *value = emitARCRetainCallResult(*this, E); 2844 return EmitObjCConsumeObject(E->getType(), value); 2845 } 2846 } 2847 2848 /// Determine whether it might be important to emit a separate 2849 /// objc_retain_block on the result of the given expression, or 2850 /// whether it's okay to just emit it in a +1 context. 2851 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2852 assert(e->getType()->isBlockPointerType()); 2853 e = e->IgnoreParens(); 2854 2855 // For future goodness, emit block expressions directly in +1 2856 // contexts if we can. 2857 if (isa<BlockExpr>(e)) 2858 return false; 2859 2860 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2861 switch (cast->getCastKind()) { 2862 // Emitting these operations in +1 contexts is goodness. 2863 case CK_LValueToRValue: 2864 case CK_ARCReclaimReturnedObject: 2865 case CK_ARCConsumeObject: 2866 case CK_ARCProduceObject: 2867 return false; 2868 2869 // These operations preserve a block type. 2870 case CK_NoOp: 2871 case CK_BitCast: 2872 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2873 2874 // These operations are known to be bad (or haven't been considered). 2875 case CK_AnyPointerToBlockPointerCast: 2876 default: 2877 return true; 2878 } 2879 } 2880 2881 return true; 2882 } 2883 2884 namespace { 2885 /// A CRTP base class for emitting expressions of retainable object 2886 /// pointer type in ARC. 2887 template <typename Impl, typename Result> class ARCExprEmitter { 2888 protected: 2889 CodeGenFunction &CGF; 2890 Impl &asImpl() { return *static_cast<Impl*>(this); } 2891 2892 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2893 2894 public: 2895 Result visit(const Expr *e); 2896 Result visitCastExpr(const CastExpr *e); 2897 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2898 Result visitBlockExpr(const BlockExpr *e); 2899 Result visitBinaryOperator(const BinaryOperator *e); 2900 Result visitBinAssign(const BinaryOperator *e); 2901 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2902 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2903 Result visitBinAssignWeak(const BinaryOperator *e); 2904 Result visitBinAssignStrong(const BinaryOperator *e); 2905 2906 // Minimal implementation: 2907 // Result visitLValueToRValue(const Expr *e) 2908 // Result visitConsumeObject(const Expr *e) 2909 // Result visitExtendBlockObject(const Expr *e) 2910 // Result visitReclaimReturnedObject(const Expr *e) 2911 // Result visitCall(const Expr *e) 2912 // Result visitExpr(const Expr *e) 2913 // 2914 // Result emitBitCast(Result result, llvm::Type *resultType) 2915 // llvm::Value *getValueOfResult(Result result) 2916 }; 2917 } 2918 2919 /// Try to emit a PseudoObjectExpr under special ARC rules. 2920 /// 2921 /// This massively duplicates emitPseudoObjectRValue. 2922 template <typename Impl, typename Result> 2923 Result 2924 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2925 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2926 2927 // Find the result expression. 2928 const Expr *resultExpr = E->getResultExpr(); 2929 assert(resultExpr); 2930 Result result; 2931 2932 for (PseudoObjectExpr::const_semantics_iterator 2933 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2934 const Expr *semantic = *i; 2935 2936 // If this semantic expression is an opaque value, bind it 2937 // to the result of its source expression. 2938 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2939 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2940 OVMA opaqueData; 2941 2942 // If this semantic is the result of the pseudo-object 2943 // expression, try to evaluate the source as +1. 2944 if (ov == resultExpr) { 2945 assert(!OVMA::shouldBindAsLValue(ov)); 2946 result = asImpl().visit(ov->getSourceExpr()); 2947 opaqueData = OVMA::bind(CGF, ov, 2948 RValue::get(asImpl().getValueOfResult(result))); 2949 2950 // Otherwise, just bind it. 2951 } else { 2952 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2953 } 2954 opaques.push_back(opaqueData); 2955 2956 // Otherwise, if the expression is the result, evaluate it 2957 // and remember the result. 2958 } else if (semantic == resultExpr) { 2959 result = asImpl().visit(semantic); 2960 2961 // Otherwise, evaluate the expression in an ignored context. 2962 } else { 2963 CGF.EmitIgnoredExpr(semantic); 2964 } 2965 } 2966 2967 // Unbind all the opaques now. 2968 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2969 opaques[i].unbind(CGF); 2970 2971 return result; 2972 } 2973 2974 template <typename Impl, typename Result> 2975 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 2976 // The default implementation just forwards the expression to visitExpr. 2977 return asImpl().visitExpr(e); 2978 } 2979 2980 template <typename Impl, typename Result> 2981 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2982 switch (e->getCastKind()) { 2983 2984 // No-op casts don't change the type, so we just ignore them. 2985 case CK_NoOp: 2986 return asImpl().visit(e->getSubExpr()); 2987 2988 // These casts can change the type. 2989 case CK_CPointerToObjCPointerCast: 2990 case CK_BlockPointerToObjCPointerCast: 2991 case CK_AnyPointerToBlockPointerCast: 2992 case CK_BitCast: { 2993 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2994 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2995 Result result = asImpl().visit(e->getSubExpr()); 2996 return asImpl().emitBitCast(result, resultType); 2997 } 2998 2999 // Handle some casts specially. 3000 case CK_LValueToRValue: 3001 return asImpl().visitLValueToRValue(e->getSubExpr()); 3002 case CK_ARCConsumeObject: 3003 return asImpl().visitConsumeObject(e->getSubExpr()); 3004 case CK_ARCExtendBlockObject: 3005 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3006 case CK_ARCReclaimReturnedObject: 3007 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3008 3009 // Otherwise, use the default logic. 3010 default: 3011 return asImpl().visitExpr(e); 3012 } 3013 } 3014 3015 template <typename Impl, typename Result> 3016 Result 3017 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3018 switch (e->getOpcode()) { 3019 case BO_Comma: 3020 CGF.EmitIgnoredExpr(e->getLHS()); 3021 CGF.EnsureInsertPoint(); 3022 return asImpl().visit(e->getRHS()); 3023 3024 case BO_Assign: 3025 return asImpl().visitBinAssign(e); 3026 3027 default: 3028 return asImpl().visitExpr(e); 3029 } 3030 } 3031 3032 template <typename Impl, typename Result> 3033 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3034 switch (e->getLHS()->getType().getObjCLifetime()) { 3035 case Qualifiers::OCL_ExplicitNone: 3036 return asImpl().visitBinAssignUnsafeUnretained(e); 3037 3038 case Qualifiers::OCL_Weak: 3039 return asImpl().visitBinAssignWeak(e); 3040 3041 case Qualifiers::OCL_Autoreleasing: 3042 return asImpl().visitBinAssignAutoreleasing(e); 3043 3044 case Qualifiers::OCL_Strong: 3045 return asImpl().visitBinAssignStrong(e); 3046 3047 case Qualifiers::OCL_None: 3048 return asImpl().visitExpr(e); 3049 } 3050 llvm_unreachable("bad ObjC ownership qualifier"); 3051 } 3052 3053 /// The default rule for __unsafe_unretained emits the RHS recursively, 3054 /// stores into the unsafe variable, and propagates the result outward. 3055 template <typename Impl, typename Result> 3056 Result ARCExprEmitter<Impl,Result>:: 3057 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3058 // Recursively emit the RHS. 3059 // For __block safety, do this before emitting the LHS. 3060 Result result = asImpl().visit(e->getRHS()); 3061 3062 // Perform the store. 3063 LValue lvalue = 3064 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3065 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3066 lvalue); 3067 3068 return result; 3069 } 3070 3071 template <typename Impl, typename Result> 3072 Result 3073 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3074 return asImpl().visitExpr(e); 3075 } 3076 3077 template <typename Impl, typename Result> 3078 Result 3079 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3080 return asImpl().visitExpr(e); 3081 } 3082 3083 template <typename Impl, typename Result> 3084 Result 3085 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3086 return asImpl().visitExpr(e); 3087 } 3088 3089 /// The general expression-emission logic. 3090 template <typename Impl, typename Result> 3091 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3092 // We should *never* see a nested full-expression here, because if 3093 // we fail to emit at +1, our caller must not retain after we close 3094 // out the full-expression. This isn't as important in the unsafe 3095 // emitter. 3096 assert(!isa<ExprWithCleanups>(e)); 3097 3098 // Look through parens, __extension__, generic selection, etc. 3099 e = e->IgnoreParens(); 3100 3101 // Handle certain kinds of casts. 3102 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3103 return asImpl().visitCastExpr(ce); 3104 3105 // Handle the comma operator. 3106 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3107 return asImpl().visitBinaryOperator(op); 3108 3109 // TODO: handle conditional operators here 3110 3111 // For calls and message sends, use the retained-call logic. 3112 // Delegate inits are a special case in that they're the only 3113 // returns-retained expression that *isn't* surrounded by 3114 // a consume. 3115 } else if (isa<CallExpr>(e) || 3116 (isa<ObjCMessageExpr>(e) && 3117 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3118 return asImpl().visitCall(e); 3119 3120 // Look through pseudo-object expressions. 3121 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3122 return asImpl().visitPseudoObjectExpr(pseudo); 3123 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3124 return asImpl().visitBlockExpr(be); 3125 3126 return asImpl().visitExpr(e); 3127 } 3128 3129 namespace { 3130 3131 /// An emitter for +1 results. 3132 struct ARCRetainExprEmitter : 3133 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3134 3135 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3136 3137 llvm::Value *getValueOfResult(TryEmitResult result) { 3138 return result.getPointer(); 3139 } 3140 3141 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3142 llvm::Value *value = result.getPointer(); 3143 value = CGF.Builder.CreateBitCast(value, resultType); 3144 result.setPointer(value); 3145 return result; 3146 } 3147 3148 TryEmitResult visitLValueToRValue(const Expr *e) { 3149 return tryEmitARCRetainLoadOfScalar(CGF, e); 3150 } 3151 3152 /// For consumptions, just emit the subexpression and thus elide 3153 /// the retain/release pair. 3154 TryEmitResult visitConsumeObject(const Expr *e) { 3155 llvm::Value *result = CGF.EmitScalarExpr(e); 3156 return TryEmitResult(result, true); 3157 } 3158 3159 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3160 TryEmitResult result = visitExpr(e); 3161 // Avoid the block-retain if this is a block literal that doesn't need to be 3162 // copied to the heap. 3163 if (e->getBlockDecl()->canAvoidCopyToHeap()) 3164 result.setInt(true); 3165 return result; 3166 } 3167 3168 /// Block extends are net +0. Naively, we could just recurse on 3169 /// the subexpression, but actually we need to ensure that the 3170 /// value is copied as a block, so there's a little filter here. 3171 TryEmitResult visitExtendBlockObject(const Expr *e) { 3172 llvm::Value *result; // will be a +0 value 3173 3174 // If we can't safely assume the sub-expression will produce a 3175 // block-copied value, emit the sub-expression at +0. 3176 if (shouldEmitSeparateBlockRetain(e)) { 3177 result = CGF.EmitScalarExpr(e); 3178 3179 // Otherwise, try to emit the sub-expression at +1 recursively. 3180 } else { 3181 TryEmitResult subresult = asImpl().visit(e); 3182 3183 // If that produced a retained value, just use that. 3184 if (subresult.getInt()) { 3185 return subresult; 3186 } 3187 3188 // Otherwise it's +0. 3189 result = subresult.getPointer(); 3190 } 3191 3192 // Retain the object as a block. 3193 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3194 return TryEmitResult(result, true); 3195 } 3196 3197 /// For reclaims, emit the subexpression as a retained call and 3198 /// skip the consumption. 3199 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3200 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3201 return TryEmitResult(result, true); 3202 } 3203 3204 /// When we have an undecorated call, retroactively do a claim. 3205 TryEmitResult visitCall(const Expr *e) { 3206 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3207 return TryEmitResult(result, true); 3208 } 3209 3210 // TODO: maybe special-case visitBinAssignWeak? 3211 3212 TryEmitResult visitExpr(const Expr *e) { 3213 // We didn't find an obvious production, so emit what we've got and 3214 // tell the caller that we didn't manage to retain. 3215 llvm::Value *result = CGF.EmitScalarExpr(e); 3216 return TryEmitResult(result, false); 3217 } 3218 }; 3219 } 3220 3221 static TryEmitResult 3222 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3223 return ARCRetainExprEmitter(CGF).visit(e); 3224 } 3225 3226 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3227 LValue lvalue, 3228 QualType type) { 3229 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3230 llvm::Value *value = result.getPointer(); 3231 if (!result.getInt()) 3232 value = CGF.EmitARCRetain(type, value); 3233 return value; 3234 } 3235 3236 /// EmitARCRetainScalarExpr - Semantically equivalent to 3237 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3238 /// best-effort attempt to peephole expressions that naturally produce 3239 /// retained objects. 3240 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3241 // The retain needs to happen within the full-expression. 3242 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3243 enterFullExpression(cleanups); 3244 RunCleanupsScope scope(*this); 3245 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3246 } 3247 3248 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3249 llvm::Value *value = result.getPointer(); 3250 if (!result.getInt()) 3251 value = EmitARCRetain(e->getType(), value); 3252 return value; 3253 } 3254 3255 llvm::Value * 3256 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3257 // The retain needs to happen within the full-expression. 3258 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3259 enterFullExpression(cleanups); 3260 RunCleanupsScope scope(*this); 3261 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3262 } 3263 3264 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3265 llvm::Value *value = result.getPointer(); 3266 if (result.getInt()) 3267 value = EmitARCAutorelease(value); 3268 else 3269 value = EmitARCRetainAutorelease(e->getType(), value); 3270 return value; 3271 } 3272 3273 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3274 llvm::Value *result; 3275 bool doRetain; 3276 3277 if (shouldEmitSeparateBlockRetain(e)) { 3278 result = EmitScalarExpr(e); 3279 doRetain = true; 3280 } else { 3281 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3282 result = subresult.getPointer(); 3283 doRetain = !subresult.getInt(); 3284 } 3285 3286 if (doRetain) 3287 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3288 return EmitObjCConsumeObject(e->getType(), result); 3289 } 3290 3291 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3292 // In ARC, retain and autorelease the expression. 3293 if (getLangOpts().ObjCAutoRefCount) { 3294 // Do so before running any cleanups for the full-expression. 3295 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3296 return EmitARCRetainAutoreleaseScalarExpr(expr); 3297 } 3298 3299 // Otherwise, use the normal scalar-expression emission. The 3300 // exception machinery doesn't do anything special with the 3301 // exception like retaining it, so there's no safety associated with 3302 // only running cleanups after the throw has started, and when it 3303 // matters it tends to be substantially inferior code. 3304 return EmitScalarExpr(expr); 3305 } 3306 3307 namespace { 3308 3309 /// An emitter for assigning into an __unsafe_unretained context. 3310 struct ARCUnsafeUnretainedExprEmitter : 3311 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3312 3313 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3314 3315 llvm::Value *getValueOfResult(llvm::Value *value) { 3316 return value; 3317 } 3318 3319 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3320 return CGF.Builder.CreateBitCast(value, resultType); 3321 } 3322 3323 llvm::Value *visitLValueToRValue(const Expr *e) { 3324 return CGF.EmitScalarExpr(e); 3325 } 3326 3327 /// For consumptions, just emit the subexpression and perform the 3328 /// consumption like normal. 3329 llvm::Value *visitConsumeObject(const Expr *e) { 3330 llvm::Value *value = CGF.EmitScalarExpr(e); 3331 return CGF.EmitObjCConsumeObject(e->getType(), value); 3332 } 3333 3334 /// No special logic for block extensions. (This probably can't 3335 /// actually happen in this emitter, though.) 3336 llvm::Value *visitExtendBlockObject(const Expr *e) { 3337 return CGF.EmitARCExtendBlockObject(e); 3338 } 3339 3340 /// For reclaims, perform an unsafeClaim if that's enabled. 3341 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3342 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3343 } 3344 3345 /// When we have an undecorated call, just emit it without adding 3346 /// the unsafeClaim. 3347 llvm::Value *visitCall(const Expr *e) { 3348 return CGF.EmitScalarExpr(e); 3349 } 3350 3351 /// Just do normal scalar emission in the default case. 3352 llvm::Value *visitExpr(const Expr *e) { 3353 return CGF.EmitScalarExpr(e); 3354 } 3355 }; 3356 } 3357 3358 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3359 const Expr *e) { 3360 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3361 } 3362 3363 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3364 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3365 /// avoiding any spurious retains, including by performing reclaims 3366 /// with objc_unsafeClaimAutoreleasedReturnValue. 3367 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3368 // Look through full-expressions. 3369 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3370 enterFullExpression(cleanups); 3371 RunCleanupsScope scope(*this); 3372 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3373 } 3374 3375 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3376 } 3377 3378 std::pair<LValue,llvm::Value*> 3379 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3380 bool ignored) { 3381 // Evaluate the RHS first. If we're ignoring the result, assume 3382 // that we can emit at an unsafe +0. 3383 llvm::Value *value; 3384 if (ignored) { 3385 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3386 } else { 3387 value = EmitScalarExpr(e->getRHS()); 3388 } 3389 3390 // Emit the LHS and perform the store. 3391 LValue lvalue = EmitLValue(e->getLHS()); 3392 EmitStoreOfScalar(value, lvalue); 3393 3394 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3395 } 3396 3397 std::pair<LValue,llvm::Value*> 3398 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3399 bool ignored) { 3400 // Evaluate the RHS first. 3401 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3402 llvm::Value *value = result.getPointer(); 3403 3404 bool hasImmediateRetain = result.getInt(); 3405 3406 // If we didn't emit a retained object, and the l-value is of block 3407 // type, then we need to emit the block-retain immediately in case 3408 // it invalidates the l-value. 3409 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3410 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3411 hasImmediateRetain = true; 3412 } 3413 3414 LValue lvalue = EmitLValue(e->getLHS()); 3415 3416 // If the RHS was emitted retained, expand this. 3417 if (hasImmediateRetain) { 3418 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3419 EmitStoreOfScalar(value, lvalue); 3420 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3421 } else { 3422 value = EmitARCStoreStrong(lvalue, value, ignored); 3423 } 3424 3425 return std::pair<LValue,llvm::Value*>(lvalue, value); 3426 } 3427 3428 std::pair<LValue,llvm::Value*> 3429 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3430 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3431 LValue lvalue = EmitLValue(e->getLHS()); 3432 3433 EmitStoreOfScalar(value, lvalue); 3434 3435 return std::pair<LValue,llvm::Value*>(lvalue, value); 3436 } 3437 3438 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3439 const ObjCAutoreleasePoolStmt &ARPS) { 3440 const Stmt *subStmt = ARPS.getSubStmt(); 3441 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3442 3443 CGDebugInfo *DI = getDebugInfo(); 3444 if (DI) 3445 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3446 3447 // Keep track of the current cleanup stack depth. 3448 RunCleanupsScope Scope(*this); 3449 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3450 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3451 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3452 } else { 3453 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3454 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3455 } 3456 3457 for (const auto *I : S.body()) 3458 EmitStmt(I); 3459 3460 if (DI) 3461 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3462 } 3463 3464 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3465 /// make sure it survives garbage collection until this point. 3466 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3467 // We just use an inline assembly. 3468 llvm::FunctionType *extenderType 3469 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3470 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3471 /* assembly */ "", 3472 /* constraints */ "r", 3473 /* side effects */ true); 3474 3475 object = Builder.CreateBitCast(object, VoidPtrTy); 3476 EmitNounwindRuntimeCall(extender, object); 3477 } 3478 3479 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3480 /// non-trivial copy assignment function, produce following helper function. 3481 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3482 /// 3483 llvm::Constant * 3484 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3485 const ObjCPropertyImplDecl *PID) { 3486 if (!getLangOpts().CPlusPlus || 3487 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3488 return nullptr; 3489 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3490 if (!Ty->isRecordType()) 3491 return nullptr; 3492 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3493 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3494 return nullptr; 3495 llvm::Constant *HelperFn = nullptr; 3496 if (hasTrivialSetExpr(PID)) 3497 return nullptr; 3498 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3499 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3500 return HelperFn; 3501 3502 ASTContext &C = getContext(); 3503 IdentifierInfo *II 3504 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3505 3506 QualType ReturnTy = C.VoidTy; 3507 QualType DestTy = C.getPointerType(Ty); 3508 QualType SrcTy = Ty; 3509 SrcTy.addConst(); 3510 SrcTy = C.getPointerType(SrcTy); 3511 3512 SmallVector<QualType, 2> ArgTys; 3513 ArgTys.push_back(DestTy); 3514 ArgTys.push_back(SrcTy); 3515 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3516 3517 FunctionDecl *FD = FunctionDecl::Create( 3518 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3519 FunctionTy, nullptr, SC_Static, false, false); 3520 3521 FunctionArgList args; 3522 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3523 ImplicitParamDecl::Other); 3524 args.push_back(&DstDecl); 3525 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3526 ImplicitParamDecl::Other); 3527 args.push_back(&SrcDecl); 3528 3529 const CGFunctionInfo &FI = 3530 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3531 3532 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3533 3534 llvm::Function *Fn = 3535 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3536 "__assign_helper_atomic_property_", 3537 &CGM.getModule()); 3538 3539 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3540 3541 StartFunction(FD, ReturnTy, Fn, FI, args); 3542 3543 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3544 SourceLocation()); 3545 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3546 VK_LValue, OK_Ordinary, SourceLocation(), false); 3547 3548 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3549 SourceLocation()); 3550 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3551 VK_LValue, OK_Ordinary, SourceLocation(), false); 3552 3553 Expr *Args[2] = { &DST, &SRC }; 3554 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3555 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3556 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3557 VK_LValue, SourceLocation(), FPOptions()); 3558 3559 EmitStmt(TheCall); 3560 3561 FinishFunction(); 3562 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3563 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3564 return HelperFn; 3565 } 3566 3567 llvm::Constant * 3568 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3569 const ObjCPropertyImplDecl *PID) { 3570 if (!getLangOpts().CPlusPlus || 3571 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3572 return nullptr; 3573 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3574 QualType Ty = PD->getType(); 3575 if (!Ty->isRecordType()) 3576 return nullptr; 3577 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3578 return nullptr; 3579 llvm::Constant *HelperFn = nullptr; 3580 if (hasTrivialGetExpr(PID)) 3581 return nullptr; 3582 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3583 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3584 return HelperFn; 3585 3586 ASTContext &C = getContext(); 3587 IdentifierInfo *II = 3588 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3589 3590 QualType ReturnTy = C.VoidTy; 3591 QualType DestTy = C.getPointerType(Ty); 3592 QualType SrcTy = Ty; 3593 SrcTy.addConst(); 3594 SrcTy = C.getPointerType(SrcTy); 3595 3596 SmallVector<QualType, 2> ArgTys; 3597 ArgTys.push_back(DestTy); 3598 ArgTys.push_back(SrcTy); 3599 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3600 3601 FunctionDecl *FD = FunctionDecl::Create( 3602 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3603 FunctionTy, nullptr, SC_Static, false, false); 3604 3605 FunctionArgList args; 3606 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3607 ImplicitParamDecl::Other); 3608 args.push_back(&DstDecl); 3609 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3610 ImplicitParamDecl::Other); 3611 args.push_back(&SrcDecl); 3612 3613 const CGFunctionInfo &FI = 3614 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3615 3616 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3617 3618 llvm::Function *Fn = llvm::Function::Create( 3619 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3620 &CGM.getModule()); 3621 3622 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3623 3624 StartFunction(FD, ReturnTy, Fn, FI, args); 3625 3626 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3627 SourceLocation()); 3628 3629 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3630 VK_LValue, OK_Ordinary, SourceLocation(), false); 3631 3632 CXXConstructExpr *CXXConstExpr = 3633 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3634 3635 SmallVector<Expr*, 4> ConstructorArgs; 3636 ConstructorArgs.push_back(&SRC); 3637 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3638 CXXConstExpr->arg_end()); 3639 3640 CXXConstructExpr *TheCXXConstructExpr = 3641 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3642 CXXConstExpr->getConstructor(), 3643 CXXConstExpr->isElidable(), 3644 ConstructorArgs, 3645 CXXConstExpr->hadMultipleCandidates(), 3646 CXXConstExpr->isListInitialization(), 3647 CXXConstExpr->isStdInitListInitialization(), 3648 CXXConstExpr->requiresZeroInitialization(), 3649 CXXConstExpr->getConstructionKind(), 3650 SourceRange()); 3651 3652 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3653 SourceLocation()); 3654 3655 RValue DV = EmitAnyExpr(&DstExpr); 3656 CharUnits Alignment 3657 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3658 EmitAggExpr(TheCXXConstructExpr, 3659 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3660 Qualifiers(), 3661 AggValueSlot::IsDestructed, 3662 AggValueSlot::DoesNotNeedGCBarriers, 3663 AggValueSlot::IsNotAliased, 3664 AggValueSlot::DoesNotOverlap)); 3665 3666 FinishFunction(); 3667 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3668 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3669 return HelperFn; 3670 } 3671 3672 llvm::Value * 3673 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3674 // Get selectors for retain/autorelease. 3675 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3676 Selector CopySelector = 3677 getContext().Selectors.getNullarySelector(CopyID); 3678 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3679 Selector AutoreleaseSelector = 3680 getContext().Selectors.getNullarySelector(AutoreleaseID); 3681 3682 // Emit calls to retain/autorelease. 3683 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3684 llvm::Value *Val = Block; 3685 RValue Result; 3686 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3687 Ty, CopySelector, 3688 Val, CallArgList(), nullptr, nullptr); 3689 Val = Result.getScalarVal(); 3690 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3691 Ty, AutoreleaseSelector, 3692 Val, CallArgList(), nullptr, nullptr); 3693 Val = Result.getScalarVal(); 3694 return Val; 3695 } 3696 3697 llvm::Value * 3698 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3699 assert(Args.size() == 3 && "Expected 3 argument here!"); 3700 3701 if (!CGM.IsOSVersionAtLeastFn) { 3702 llvm::FunctionType *FTy = 3703 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3704 CGM.IsOSVersionAtLeastFn = 3705 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3706 } 3707 3708 llvm::Value *CallRes = 3709 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3710 3711 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3712 } 3713 3714 void CodeGenModule::emitAtAvailableLinkGuard() { 3715 if (!IsOSVersionAtLeastFn) 3716 return; 3717 // @available requires CoreFoundation only on Darwin. 3718 if (!Target.getTriple().isOSDarwin()) 3719 return; 3720 // Add -framework CoreFoundation to the linker commands. We still want to 3721 // emit the core foundation reference down below because otherwise if 3722 // CoreFoundation is not used in the code, the linker won't link the 3723 // framework. 3724 auto &Context = getLLVMContext(); 3725 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3726 llvm::MDString::get(Context, "CoreFoundation")}; 3727 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3728 // Emit a reference to a symbol from CoreFoundation to ensure that 3729 // CoreFoundation is linked into the final binary. 3730 llvm::FunctionType *FTy = 3731 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3732 llvm::FunctionCallee CFFunc = 3733 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3734 3735 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3736 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 3737 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 3738 llvm::AttributeList(), /*Local=*/true); 3739 llvm::Function *CFLinkCheckFunc = 3740 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 3741 if (CFLinkCheckFunc->empty()) { 3742 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3743 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3744 CodeGenFunction CGF(*this); 3745 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3746 CGF.EmitNounwindRuntimeCall(CFFunc, 3747 llvm::Constant::getNullValue(VoidPtrTy)); 3748 CGF.Builder.CreateUnreachable(); 3749 addCompilerUsedGlobal(CFLinkCheckFunc); 3750 } 3751 } 3752 3753 CGObjCRuntime::~CGObjCRuntime() {} 3754