1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/CodeGenABITypes.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/Analysis/ObjCARCUtil.h" 28 #include "llvm/BinaryFormat/MachO.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include <optional> 33 using namespace clang; 34 using namespace CodeGen; 35 36 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 37 static TryEmitResult 38 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 39 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 40 QualType ET, 41 RValue Result); 42 43 /// Given the address of a variable of pointer type, find the correct 44 /// null to store into it. 45 static llvm::Constant *getNullForVariable(Address addr) { 46 llvm::Type *type = addr.getElementType(); 47 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 48 } 49 50 /// Emits an instance of NSConstantString representing the object. 51 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 52 { 53 llvm::Constant *C = 54 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 55 return C; 56 } 57 58 /// EmitObjCBoxedExpr - This routine generates code to call 59 /// the appropriate expression boxing method. This will either be 60 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 61 /// or [NSValue valueWithBytes:objCType:]. 62 /// 63 llvm::Value * 64 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 65 // Generate the correct selector for this literal's concrete type. 66 // Get the method. 67 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 68 const Expr *SubExpr = E->getSubExpr(); 69 70 if (E->isExpressibleAsConstantInitializer()) { 71 ConstantEmitter ConstEmitter(CGM); 72 return ConstEmitter.tryEmitAbstract(E, E->getType()); 73 } 74 75 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 76 Selector Sel = BoxingMethod->getSelector(); 77 78 // Generate a reference to the class pointer, which will be the receiver. 79 // Assumes that the method was introduced in the class that should be 80 // messaged (avoids pulling it out of the result type). 81 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 82 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 83 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 84 85 CallArgList Args; 86 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 87 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 88 89 // ObjCBoxedExpr supports boxing of structs and unions 90 // via [NSValue valueWithBytes:objCType:] 91 const QualType ValueType(SubExpr->getType().getCanonicalType()); 92 if (ValueType->isObjCBoxableRecordType()) { 93 // Emit CodeGen for first parameter 94 // and cast value to correct type 95 Address Temporary = CreateMemTemp(SubExpr->getType()); 96 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 97 llvm::Value *BitCast = Builder.CreateBitCast( 98 Temporary.emitRawPointer(*this), ConvertType(ArgQT)); 99 Args.add(RValue::get(BitCast), ArgQT); 100 101 // Create char array to store type encoding 102 std::string Str; 103 getContext().getObjCEncodingForType(ValueType, Str); 104 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 105 106 // Cast type encoding to correct type 107 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 108 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 109 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 110 111 Args.add(RValue::get(Cast), EncodingQT); 112 } else { 113 Args.add(EmitAnyExpr(SubExpr), ArgQT); 114 } 115 116 RValue result = Runtime.GenerateMessageSend( 117 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 118 Args, ClassDecl, BoxingMethod); 119 return Builder.CreateBitCast(result.getScalarVal(), 120 ConvertType(E->getType())); 121 } 122 123 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 124 const ObjCMethodDecl *MethodWithObjects) { 125 ASTContext &Context = CGM.getContext(); 126 const ObjCDictionaryLiteral *DLE = nullptr; 127 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 128 if (!ALE) 129 DLE = cast<ObjCDictionaryLiteral>(E); 130 131 // Optimize empty collections by referencing constants, when available. 132 uint64_t NumElements = 133 ALE ? ALE->getNumElements() : DLE->getNumElements(); 134 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 135 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 136 QualType IdTy(CGM.getContext().getObjCIdType()); 137 llvm::Constant *Constant = 138 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 139 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 140 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 141 cast<llvm::LoadInst>(Ptr)->setMetadata( 142 llvm::LLVMContext::MD_invariant_load, 143 llvm::MDNode::get(getLLVMContext(), std::nullopt)); 144 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 145 } 146 147 // Compute the type of the array we're initializing. 148 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 149 NumElements); 150 QualType ElementType = Context.getObjCIdType().withConst(); 151 QualType ElementArrayType = Context.getConstantArrayType( 152 ElementType, APNumElements, nullptr, ArraySizeModifier::Normal, 153 /*IndexTypeQuals=*/0); 154 155 // Allocate the temporary array(s). 156 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 157 Address Keys = Address::invalid(); 158 if (DLE) 159 Keys = CreateMemTemp(ElementArrayType, "keys"); 160 161 // In ARC, we may need to do extra work to keep all the keys and 162 // values alive until after the call. 163 SmallVector<llvm::Value *, 16> NeededObjects; 164 bool TrackNeededObjects = 165 (getLangOpts().ObjCAutoRefCount && 166 CGM.getCodeGenOpts().OptimizationLevel != 0); 167 168 // Perform the actual initialialization of the array(s). 169 for (uint64_t i = 0; i < NumElements; i++) { 170 if (ALE) { 171 // Emit the element and store it to the appropriate array slot. 172 const Expr *Rhs = ALE->getElement(i); 173 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 174 ElementType, AlignmentSource::Decl); 175 176 llvm::Value *value = EmitScalarExpr(Rhs); 177 EmitStoreThroughLValue(RValue::get(value), LV, true); 178 if (TrackNeededObjects) { 179 NeededObjects.push_back(value); 180 } 181 } else { 182 // Emit the key and store it to the appropriate array slot. 183 const Expr *Key = DLE->getKeyValueElement(i).Key; 184 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 185 ElementType, AlignmentSource::Decl); 186 llvm::Value *keyValue = EmitScalarExpr(Key); 187 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 188 189 // Emit the value and store it to the appropriate array slot. 190 const Expr *Value = DLE->getKeyValueElement(i).Value; 191 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 192 ElementType, AlignmentSource::Decl); 193 llvm::Value *valueValue = EmitScalarExpr(Value); 194 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 195 if (TrackNeededObjects) { 196 NeededObjects.push_back(keyValue); 197 NeededObjects.push_back(valueValue); 198 } 199 } 200 } 201 202 // Generate the argument list. 203 CallArgList Args; 204 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 205 const ParmVarDecl *argDecl = *PI++; 206 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 207 Args.add(RValue::get(Objects, *this), ArgQT); 208 if (DLE) { 209 argDecl = *PI++; 210 ArgQT = argDecl->getType().getUnqualifiedType(); 211 Args.add(RValue::get(Keys, *this), ArgQT); 212 } 213 argDecl = *PI; 214 ArgQT = argDecl->getType().getUnqualifiedType(); 215 llvm::Value *Count = 216 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 217 Args.add(RValue::get(Count), ArgQT); 218 219 // Generate a reference to the class pointer, which will be the receiver. 220 Selector Sel = MethodWithObjects->getSelector(); 221 QualType ResultType = E->getType(); 222 const ObjCObjectPointerType *InterfacePointerType 223 = ResultType->getAsObjCInterfacePointerType(); 224 assert(InterfacePointerType && "Unexpected InterfacePointerType - null"); 225 ObjCInterfaceDecl *Class 226 = InterfacePointerType->getObjectType()->getInterface(); 227 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 228 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 229 230 // Generate the message send. 231 RValue result = Runtime.GenerateMessageSend( 232 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 233 Receiver, Args, Class, MethodWithObjects); 234 235 // The above message send needs these objects, but in ARC they are 236 // passed in a buffer that is essentially __unsafe_unretained. 237 // Therefore we must prevent the optimizer from releasing them until 238 // after the call. 239 if (TrackNeededObjects) { 240 EmitARCIntrinsicUse(NeededObjects); 241 } 242 243 return Builder.CreateBitCast(result.getScalarVal(), 244 ConvertType(E->getType())); 245 } 246 247 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 248 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 249 } 250 251 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 252 const ObjCDictionaryLiteral *E) { 253 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 254 } 255 256 /// Emit a selector. 257 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 258 // Untyped selector. 259 // Note that this implementation allows for non-constant strings to be passed 260 // as arguments to @selector(). Currently, the only thing preventing this 261 // behaviour is the type checking in the front end. 262 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 263 } 264 265 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 266 // FIXME: This should pass the Decl not the name. 267 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 268 } 269 270 /// Adjust the type of an Objective-C object that doesn't match up due 271 /// to type erasure at various points, e.g., related result types or the use 272 /// of parameterized classes. 273 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 274 RValue Result) { 275 if (!ExpT->isObjCRetainableType()) 276 return Result; 277 278 // If the converted types are the same, we're done. 279 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 280 if (ExpLLVMTy == Result.getScalarVal()->getType()) 281 return Result; 282 283 // We have applied a substitution. Cast the rvalue appropriately. 284 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 285 ExpLLVMTy)); 286 } 287 288 /// Decide whether to extend the lifetime of the receiver of a 289 /// returns-inner-pointer message. 290 static bool 291 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 292 switch (message->getReceiverKind()) { 293 294 // For a normal instance message, we should extend unless the 295 // receiver is loaded from a variable with precise lifetime. 296 case ObjCMessageExpr::Instance: { 297 const Expr *receiver = message->getInstanceReceiver(); 298 299 // Look through OVEs. 300 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 301 if (opaque->getSourceExpr()) 302 receiver = opaque->getSourceExpr()->IgnoreParens(); 303 } 304 305 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 306 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 307 receiver = ice->getSubExpr()->IgnoreParens(); 308 309 // Look through OVEs. 310 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 311 if (opaque->getSourceExpr()) 312 receiver = opaque->getSourceExpr()->IgnoreParens(); 313 } 314 315 // Only __strong variables. 316 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 317 return true; 318 319 // All ivars and fields have precise lifetime. 320 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 321 return false; 322 323 // Otherwise, check for variables. 324 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 325 if (!declRef) return true; 326 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 327 if (!var) return true; 328 329 // All variables have precise lifetime except local variables with 330 // automatic storage duration that aren't specially marked. 331 return (var->hasLocalStorage() && 332 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 333 } 334 335 case ObjCMessageExpr::Class: 336 case ObjCMessageExpr::SuperClass: 337 // It's never necessary for class objects. 338 return false; 339 340 case ObjCMessageExpr::SuperInstance: 341 // We generally assume that 'self' lives throughout a method call. 342 return false; 343 } 344 345 llvm_unreachable("invalid receiver kind"); 346 } 347 348 /// Given an expression of ObjC pointer type, check whether it was 349 /// immediately loaded from an ARC __weak l-value. 350 static const Expr *findWeakLValue(const Expr *E) { 351 assert(E->getType()->isObjCRetainableType()); 352 E = E->IgnoreParens(); 353 if (auto CE = dyn_cast<CastExpr>(E)) { 354 if (CE->getCastKind() == CK_LValueToRValue) { 355 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 356 return CE->getSubExpr(); 357 } 358 } 359 360 return nullptr; 361 } 362 363 /// The ObjC runtime may provide entrypoints that are likely to be faster 364 /// than an ordinary message send of the appropriate selector. 365 /// 366 /// The entrypoints are guaranteed to be equivalent to just sending the 367 /// corresponding message. If the entrypoint is implemented naively as just a 368 /// message send, using it is a trade-off: it sacrifices a few cycles of 369 /// overhead to save a small amount of code. However, it's possible for 370 /// runtimes to detect and special-case classes that use "standard" 371 /// behavior; if that's dynamically a large proportion of all objects, using 372 /// the entrypoint will also be faster than using a message send. 373 /// 374 /// If the runtime does support a required entrypoint, then this method will 375 /// generate a call and return the resulting value. Otherwise it will return 376 /// std::nullopt and the caller can generate a msgSend instead. 377 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend( 378 CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver, 379 const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method, 380 bool isClassMessage) { 381 auto &CGM = CGF.CGM; 382 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 383 return std::nullopt; 384 385 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 386 switch (Sel.getMethodFamily()) { 387 case OMF_alloc: 388 if (isClassMessage && 389 Runtime.shouldUseRuntimeFunctionsForAlloc() && 390 ResultType->isObjCObjectPointerType()) { 391 // [Foo alloc] -> objc_alloc(Foo) or 392 // [self alloc] -> objc_alloc(self) 393 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 394 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 395 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 396 // [self allocWithZone:nil] -> objc_allocWithZone(self) 397 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 398 Args.size() == 1 && Args.front().getType()->isPointerType() && 399 Sel.getNameForSlot(0) == "allocWithZone") { 400 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 401 if (isa<llvm::ConstantPointerNull>(arg)) 402 return CGF.EmitObjCAllocWithZone(Receiver, 403 CGF.ConvertType(ResultType)); 404 return std::nullopt; 405 } 406 } 407 break; 408 409 case OMF_autorelease: 410 if (ResultType->isObjCObjectPointerType() && 411 CGM.getLangOpts().getGC() == LangOptions::NonGC && 412 Runtime.shouldUseARCFunctionsForRetainRelease()) 413 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 414 break; 415 416 case OMF_retain: 417 if (ResultType->isObjCObjectPointerType() && 418 CGM.getLangOpts().getGC() == LangOptions::NonGC && 419 Runtime.shouldUseARCFunctionsForRetainRelease()) 420 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 421 break; 422 423 case OMF_release: 424 if (ResultType->isVoidType() && 425 CGM.getLangOpts().getGC() == LangOptions::NonGC && 426 Runtime.shouldUseARCFunctionsForRetainRelease()) { 427 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 428 return nullptr; 429 } 430 break; 431 432 default: 433 break; 434 } 435 return std::nullopt; 436 } 437 438 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 439 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 440 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 441 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 442 bool isClassMessage) { 443 if (std::optional<llvm::Value *> SpecializedResult = 444 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 445 Sel, Method, isClassMessage)) { 446 return RValue::get(*SpecializedResult); 447 } 448 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 449 Method); 450 } 451 452 static void AppendFirstImpliedRuntimeProtocols( 453 const ObjCProtocolDecl *PD, 454 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) { 455 if (!PD->isNonRuntimeProtocol()) { 456 const auto *Can = PD->getCanonicalDecl(); 457 PDs.insert(Can); 458 return; 459 } 460 461 for (const auto *ParentPD : PD->protocols()) 462 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs); 463 } 464 465 std::vector<const ObjCProtocolDecl *> 466 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, 467 ObjCProtocolDecl::protocol_iterator end) { 468 std::vector<const ObjCProtocolDecl *> RuntimePds; 469 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs; 470 471 for (; begin != end; ++begin) { 472 const auto *It = *begin; 473 const auto *Can = It->getCanonicalDecl(); 474 if (Can->isNonRuntimeProtocol()) 475 NonRuntimePDs.insert(Can); 476 else 477 RuntimePds.push_back(Can); 478 } 479 480 // If there are no non-runtime protocols then we can just stop now. 481 if (NonRuntimePDs.empty()) 482 return RuntimePds; 483 484 // Else we have to search through the non-runtime protocol's inheritancy 485 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or 486 // a non-runtime protocol without any parents. These are the "first-implied" 487 // protocols from a non-runtime protocol. 488 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos; 489 for (const auto *PD : NonRuntimePDs) 490 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos); 491 492 // Walk the Runtime list to get all protocols implied via the inclusion of 493 // this protocol, e.g. all protocols it inherits from including itself. 494 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols; 495 for (const auto *PD : RuntimePds) { 496 const auto *Can = PD->getCanonicalDecl(); 497 AllImpliedProtocols.insert(Can); 498 Can->getImpliedProtocols(AllImpliedProtocols); 499 } 500 501 // Similar to above, walk the list of first-implied protocols to find the set 502 // all the protocols implied excluding the listed protocols themselves since 503 // they are not yet a part of the `RuntimePds` list. 504 for (const auto *PD : FirstImpliedProtos) { 505 PD->getImpliedProtocols(AllImpliedProtocols); 506 } 507 508 // From the first-implied list we have to finish building the final protocol 509 // list. If a protocol in the first-implied list was already implied via some 510 // inheritance path through some other protocols then it would be redundant to 511 // add it here and so we skip over it. 512 for (const auto *PD : FirstImpliedProtos) { 513 if (!AllImpliedProtocols.contains(PD)) { 514 RuntimePds.push_back(PD); 515 } 516 } 517 518 return RuntimePds; 519 } 520 521 /// Instead of '[[MyClass alloc] init]', try to generate 522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 523 /// caller side, as well as the optimized objc_alloc. 524 static std::optional<llvm::Value *> 525 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 526 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 527 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 528 return std::nullopt; 529 530 // Match the exact pattern '[[MyClass alloc] init]'. 531 Selector Sel = OME->getSelector(); 532 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 533 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 534 Sel.getNameForSlot(0) != "init") 535 return std::nullopt; 536 537 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 538 // with 'cls' a Class. 539 auto *SubOME = 540 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 541 if (!SubOME) 542 return std::nullopt; 543 Selector SubSel = SubOME->getSelector(); 544 545 if (!SubOME->getType()->isObjCObjectPointerType() || 546 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 547 return std::nullopt; 548 549 llvm::Value *Receiver = nullptr; 550 switch (SubOME->getReceiverKind()) { 551 case ObjCMessageExpr::Instance: 552 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 553 return std::nullopt; 554 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 555 break; 556 557 case ObjCMessageExpr::Class: { 558 QualType ReceiverType = SubOME->getClassReceiver(); 559 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 560 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 561 assert(ID && "null interface should be impossible here"); 562 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 563 break; 564 } 565 case ObjCMessageExpr::SuperInstance: 566 case ObjCMessageExpr::SuperClass: 567 return std::nullopt; 568 } 569 570 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 571 } 572 573 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 574 ReturnValueSlot Return) { 575 // Only the lookup mechanism and first two arguments of the method 576 // implementation vary between runtimes. We can get the receiver and 577 // arguments in generic code. 578 579 bool isDelegateInit = E->isDelegateInitCall(); 580 581 const ObjCMethodDecl *method = E->getMethodDecl(); 582 583 // If the method is -retain, and the receiver's being loaded from 584 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 585 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 586 method->getMethodFamily() == OMF_retain) { 587 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 588 LValue lvalue = EmitLValue(lvalueExpr); 589 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 590 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 591 } 592 } 593 594 if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 595 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 596 597 // We don't retain the receiver in delegate init calls, and this is 598 // safe because the receiver value is always loaded from 'self', 599 // which we zero out. We don't want to Block_copy block receivers, 600 // though. 601 bool retainSelf = 602 (!isDelegateInit && 603 CGM.getLangOpts().ObjCAutoRefCount && 604 method && 605 method->hasAttr<NSConsumesSelfAttr>()); 606 607 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 608 bool isSuperMessage = false; 609 bool isClassMessage = false; 610 ObjCInterfaceDecl *OID = nullptr; 611 // Find the receiver 612 QualType ReceiverType; 613 llvm::Value *Receiver = nullptr; 614 switch (E->getReceiverKind()) { 615 case ObjCMessageExpr::Instance: 616 ReceiverType = E->getInstanceReceiver()->getType(); 617 isClassMessage = ReceiverType->isObjCClassType(); 618 if (retainSelf) { 619 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 620 E->getInstanceReceiver()); 621 Receiver = ter.getPointer(); 622 if (ter.getInt()) retainSelf = false; 623 } else 624 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 625 break; 626 627 case ObjCMessageExpr::Class: { 628 ReceiverType = E->getClassReceiver(); 629 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 630 assert(OID && "Invalid Objective-C class message send"); 631 Receiver = Runtime.GetClass(*this, OID); 632 isClassMessage = true; 633 break; 634 } 635 636 case ObjCMessageExpr::SuperInstance: 637 ReceiverType = E->getSuperType(); 638 Receiver = LoadObjCSelf(); 639 isSuperMessage = true; 640 break; 641 642 case ObjCMessageExpr::SuperClass: 643 ReceiverType = E->getSuperType(); 644 Receiver = LoadObjCSelf(); 645 isSuperMessage = true; 646 isClassMessage = true; 647 break; 648 } 649 650 if (retainSelf) 651 Receiver = EmitARCRetainNonBlock(Receiver); 652 653 // In ARC, we sometimes want to "extend the lifetime" 654 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 655 // messages. 656 if (getLangOpts().ObjCAutoRefCount && method && 657 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 658 shouldExtendReceiverForInnerPointerMessage(E)) 659 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 660 661 QualType ResultType = method ? method->getReturnType() : E->getType(); 662 663 CallArgList Args; 664 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 665 666 // For delegate init calls in ARC, do an unsafe store of null into 667 // self. This represents the call taking direct ownership of that 668 // value. We have to do this after emitting the other call 669 // arguments because they might also reference self, but we don't 670 // have to worry about any of them modifying self because that would 671 // be an undefined read and write of an object in unordered 672 // expressions. 673 if (isDelegateInit) { 674 assert(getLangOpts().ObjCAutoRefCount && 675 "delegate init calls should only be marked in ARC"); 676 677 // Do an unsafe store of null into self. 678 Address selfAddr = 679 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 680 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 681 } 682 683 RValue result; 684 if (isSuperMessage) { 685 // super is only valid in an Objective-C method 686 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 687 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 688 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 689 E->getSelector(), 690 OMD->getClassInterface(), 691 isCategoryImpl, 692 Receiver, 693 isClassMessage, 694 Args, 695 method); 696 } else { 697 // Call runtime methods directly if we can. 698 result = Runtime.GeneratePossiblySpecializedMessageSend( 699 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 700 method, isClassMessage); 701 } 702 703 // For delegate init calls in ARC, implicitly store the result of 704 // the call back into self. This takes ownership of the value. 705 if (isDelegateInit) { 706 Address selfAddr = 707 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 708 llvm::Value *newSelf = result.getScalarVal(); 709 710 // The delegate return type isn't necessarily a matching type; in 711 // fact, it's quite likely to be 'id'. 712 llvm::Type *selfTy = selfAddr.getElementType(); 713 newSelf = Builder.CreateBitCast(newSelf, selfTy); 714 715 Builder.CreateStore(newSelf, selfAddr); 716 } 717 718 return AdjustObjCObjectType(*this, E->getType(), result); 719 } 720 721 namespace { 722 struct FinishARCDealloc final : EHScopeStack::Cleanup { 723 void Emit(CodeGenFunction &CGF, Flags flags) override { 724 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 725 726 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 727 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 728 if (!iface->getSuperClass()) return; 729 730 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 731 732 // Call [super dealloc] if we have a superclass. 733 llvm::Value *self = CGF.LoadObjCSelf(); 734 735 CallArgList args; 736 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 737 CGF.getContext().VoidTy, 738 method->getSelector(), 739 iface, 740 isCategory, 741 self, 742 /*is class msg*/ false, 743 args, 744 method); 745 } 746 }; 747 } 748 749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 750 /// the LLVM function and sets the other context used by 751 /// CodeGenFunction. 752 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 753 const ObjCContainerDecl *CD) { 754 SourceLocation StartLoc = OMD->getBeginLoc(); 755 FunctionArgList args; 756 // Check if we should generate debug info for this method. 757 if (OMD->hasAttr<NoDebugAttr>()) 758 DebugInfo = nullptr; // disable debug info indefinitely for this function 759 760 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 761 762 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 763 if (OMD->isDirectMethod()) { 764 Fn->setVisibility(llvm::Function::HiddenVisibility); 765 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false); 766 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 767 } else { 768 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 769 } 770 771 args.push_back(OMD->getSelfDecl()); 772 if (!OMD->isDirectMethod()) 773 args.push_back(OMD->getCmdDecl()); 774 775 args.append(OMD->param_begin(), OMD->param_end()); 776 777 CurGD = OMD; 778 CurEHLocation = OMD->getEndLoc(); 779 780 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 781 OMD->getLocation(), StartLoc); 782 783 if (OMD->isDirectMethod()) { 784 // This function is a direct call, it has to implement a nil check 785 // on entry. 786 // 787 // TODO: possibly have several entry points to elide the check 788 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 789 } 790 791 // In ARC, certain methods get an extra cleanup. 792 if (CGM.getLangOpts().ObjCAutoRefCount && 793 OMD->isInstanceMethod() && 794 OMD->getSelector().isUnarySelector()) { 795 const IdentifierInfo *ident = 796 OMD->getSelector().getIdentifierInfoForSlot(0); 797 if (ident->isStr("dealloc")) 798 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 799 } 800 } 801 802 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 803 LValue lvalue, QualType type); 804 805 /// Generate an Objective-C method. An Objective-C method is a C function with 806 /// its pointer, name, and types registered in the class structure. 807 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 808 StartObjCMethod(OMD, OMD->getClassInterface()); 809 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 810 assert(isa<CompoundStmt>(OMD->getBody())); 811 incrementProfileCounter(OMD->getBody()); 812 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 813 FinishFunction(OMD->getBodyRBrace()); 814 } 815 816 /// emitStructGetterCall - Call the runtime function to load a property 817 /// into the return value slot. 818 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 819 bool isAtomic, bool hasStrong) { 820 ASTContext &Context = CGF.getContext(); 821 822 llvm::Value *src = 823 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 824 .getPointer(CGF); 825 826 // objc_copyStruct (ReturnValue, &structIvar, 827 // sizeof (Type of Ivar), isAtomic, false); 828 CallArgList args; 829 830 llvm::Value *dest = CGF.ReturnValue.emitRawPointer(CGF); 831 args.add(RValue::get(dest), Context.VoidPtrTy); 832 args.add(RValue::get(src), Context.VoidPtrTy); 833 834 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 835 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 836 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 837 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 838 839 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 840 CGCallee callee = CGCallee::forDirect(fn); 841 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 842 callee, ReturnValueSlot(), args); 843 } 844 845 /// Determine whether the given architecture supports unaligned atomic 846 /// accesses. They don't have to be fast, just faster than a function 847 /// call and a mutex. 848 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 849 // FIXME: Allow unaligned atomic load/store on x86. (It is not 850 // currently supported by the backend.) 851 return false; 852 } 853 854 /// Return the maximum size that permits atomic accesses for the given 855 /// architecture. 856 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 857 llvm::Triple::ArchType arch) { 858 // ARM has 8-byte atomic accesses, but it's not clear whether we 859 // want to rely on them here. 860 861 // In the default case, just assume that any size up to a pointer is 862 // fine given adequate alignment. 863 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 864 } 865 866 namespace { 867 class PropertyImplStrategy { 868 public: 869 enum StrategyKind { 870 /// The 'native' strategy is to use the architecture's provided 871 /// reads and writes. 872 Native, 873 874 /// Use objc_setProperty and objc_getProperty. 875 GetSetProperty, 876 877 /// Use objc_setProperty for the setter, but use expression 878 /// evaluation for the getter. 879 SetPropertyAndExpressionGet, 880 881 /// Use objc_copyStruct. 882 CopyStruct, 883 884 /// The 'expression' strategy is to emit normal assignment or 885 /// lvalue-to-rvalue expressions. 886 Expression 887 }; 888 889 StrategyKind getKind() const { return StrategyKind(Kind); } 890 891 bool hasStrongMember() const { return HasStrong; } 892 bool isAtomic() const { return IsAtomic; } 893 bool isCopy() const { return IsCopy; } 894 895 CharUnits getIvarSize() const { return IvarSize; } 896 CharUnits getIvarAlignment() const { return IvarAlignment; } 897 898 PropertyImplStrategy(CodeGenModule &CGM, 899 const ObjCPropertyImplDecl *propImpl); 900 901 private: 902 LLVM_PREFERRED_TYPE(StrategyKind) 903 unsigned Kind : 8; 904 LLVM_PREFERRED_TYPE(bool) 905 unsigned IsAtomic : 1; 906 LLVM_PREFERRED_TYPE(bool) 907 unsigned IsCopy : 1; 908 LLVM_PREFERRED_TYPE(bool) 909 unsigned HasStrong : 1; 910 911 CharUnits IvarSize; 912 CharUnits IvarAlignment; 913 }; 914 } 915 916 /// Pick an implementation strategy for the given property synthesis. 917 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 918 const ObjCPropertyImplDecl *propImpl) { 919 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 920 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 921 922 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 923 IsAtomic = prop->isAtomic(); 924 HasStrong = false; // doesn't matter here. 925 926 // Evaluate the ivar's size and alignment. 927 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 928 QualType ivarType = ivar->getType(); 929 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType); 930 IvarSize = TInfo.Width; 931 IvarAlignment = TInfo.Align; 932 933 // If we have a copy property, we always have to use setProperty. 934 // If the property is atomic we need to use getProperty, but in 935 // the nonatomic case we can just use expression. 936 if (IsCopy) { 937 Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet; 938 return; 939 } 940 941 // Handle retain. 942 if (setterKind == ObjCPropertyDecl::Retain) { 943 // In GC-only, there's nothing special that needs to be done. 944 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 945 // fallthrough 946 947 // In ARC, if the property is non-atomic, use expression emission, 948 // which translates to objc_storeStrong. This isn't required, but 949 // it's slightly nicer. 950 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 951 // Using standard expression emission for the setter is only 952 // acceptable if the ivar is __strong, which won't be true if 953 // the property is annotated with __attribute__((NSObject)). 954 // TODO: falling all the way back to objc_setProperty here is 955 // just laziness, though; we could still use objc_storeStrong 956 // if we hacked it right. 957 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 958 Kind = Expression; 959 else 960 Kind = SetPropertyAndExpressionGet; 961 return; 962 963 // Otherwise, we need to at least use setProperty. However, if 964 // the property isn't atomic, we can use normal expression 965 // emission for the getter. 966 } else if (!IsAtomic) { 967 Kind = SetPropertyAndExpressionGet; 968 return; 969 970 // Otherwise, we have to use both setProperty and getProperty. 971 } else { 972 Kind = GetSetProperty; 973 return; 974 } 975 } 976 977 // If we're not atomic, just use expression accesses. 978 if (!IsAtomic) { 979 Kind = Expression; 980 return; 981 } 982 983 // Properties on bitfield ivars need to be emitted using expression 984 // accesses even if they're nominally atomic. 985 if (ivar->isBitField()) { 986 Kind = Expression; 987 return; 988 } 989 990 // GC-qualified or ARC-qualified ivars need to be emitted as 991 // expressions. This actually works out to being atomic anyway, 992 // except for ARC __strong, but that should trigger the above code. 993 if (ivarType.hasNonTrivialObjCLifetime() || 994 (CGM.getLangOpts().getGC() && 995 CGM.getContext().getObjCGCAttrKind(ivarType))) { 996 Kind = Expression; 997 return; 998 } 999 1000 // Compute whether the ivar has strong members. 1001 if (CGM.getLangOpts().getGC()) 1002 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 1003 HasStrong = recordType->getDecl()->hasObjectMember(); 1004 1005 // We can never access structs with object members with a native 1006 // access, because we need to use write barriers. This is what 1007 // objc_copyStruct is for. 1008 if (HasStrong) { 1009 Kind = CopyStruct; 1010 return; 1011 } 1012 1013 // Otherwise, this is target-dependent and based on the size and 1014 // alignment of the ivar. 1015 1016 // If the size of the ivar is not a power of two, give up. We don't 1017 // want to get into the business of doing compare-and-swaps. 1018 if (!IvarSize.isPowerOfTwo()) { 1019 Kind = CopyStruct; 1020 return; 1021 } 1022 1023 llvm::Triple::ArchType arch = 1024 CGM.getTarget().getTriple().getArch(); 1025 1026 // Most architectures require memory to fit within a single cache 1027 // line, so the alignment has to be at least the size of the access. 1028 // Otherwise we have to grab a lock. 1029 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 1030 Kind = CopyStruct; 1031 return; 1032 } 1033 1034 // If the ivar's size exceeds the architecture's maximum atomic 1035 // access size, we have to use CopyStruct. 1036 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 1037 Kind = CopyStruct; 1038 return; 1039 } 1040 1041 // Otherwise, we can use native loads and stores. 1042 Kind = Native; 1043 } 1044 1045 /// Generate an Objective-C property getter function. 1046 /// 1047 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1048 /// is illegal within a category. 1049 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 1050 const ObjCPropertyImplDecl *PID) { 1051 llvm::Constant *AtomicHelperFn = 1052 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 1053 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 1054 assert(OMD && "Invalid call to generate getter (empty method)"); 1055 StartObjCMethod(OMD, IMP->getClassInterface()); 1056 1057 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 1058 1059 FinishFunction(OMD->getEndLoc()); 1060 } 1061 1062 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 1063 const Expr *getter = propImpl->getGetterCXXConstructor(); 1064 if (!getter) return true; 1065 1066 // Sema only makes only of these when the ivar has a C++ class type, 1067 // so the form is pretty constrained. 1068 1069 // If the property has a reference type, we might just be binding a 1070 // reference, in which case the result will be a gl-value. We should 1071 // treat this as a non-trivial operation. 1072 if (getter->isGLValue()) 1073 return false; 1074 1075 // If we selected a trivial copy-constructor, we're okay. 1076 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 1077 return (construct->getConstructor()->isTrivial()); 1078 1079 // The constructor might require cleanups (in which case it's never 1080 // trivial). 1081 assert(isa<ExprWithCleanups>(getter)); 1082 return false; 1083 } 1084 1085 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1086 /// copy the ivar into the resturn slot. 1087 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1088 llvm::Value *returnAddr, 1089 ObjCIvarDecl *ivar, 1090 llvm::Constant *AtomicHelperFn) { 1091 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1092 // AtomicHelperFn); 1093 CallArgList args; 1094 1095 // The 1st argument is the return Slot. 1096 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1097 1098 // The 2nd argument is the address of the ivar. 1099 llvm::Value *ivarAddr = 1100 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1101 .getPointer(CGF); 1102 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1103 1104 // Third argument is the helper function. 1105 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1106 1107 llvm::FunctionCallee copyCppAtomicObjectFn = 1108 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1109 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1110 CGF.EmitCall( 1111 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1112 callee, ReturnValueSlot(), args); 1113 } 1114 1115 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for 1116 // the `_cmd` selector argument for getter/setter bodies. For direct methods, 1117 // this returns an undefined/poison value; this matches behavior prior to `_cmd` 1118 // being removed from the direct method ABI as the getter/setter caller would 1119 // never load one. For non-direct methods, this emits a load of the implicit 1120 // `_cmd` storage. 1121 static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF, 1122 ObjCMethodDecl *MD) { 1123 if (MD->isDirectMethod()) { 1124 // Direct methods do not have a `_cmd` argument. Emit an undefined/poison 1125 // value. This will be passed to objc_getProperty/objc_setProperty, which 1126 // has not appeared bothered by the `_cmd` argument being undefined before. 1127 llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType()); 1128 return llvm::PoisonValue::get(selType); 1129 } 1130 1131 return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd"); 1132 } 1133 1134 void 1135 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1136 const ObjCPropertyImplDecl *propImpl, 1137 const ObjCMethodDecl *GetterMethodDecl, 1138 llvm::Constant *AtomicHelperFn) { 1139 1140 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1141 1142 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 1143 if (!AtomicHelperFn) { 1144 LValue Src = 1145 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1146 LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType()); 1147 callCStructCopyConstructor(Dst, Src); 1148 } else { 1149 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1150 emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this), 1151 ivar, AtomicHelperFn); 1152 } 1153 return; 1154 } 1155 1156 // If there's a non-trivial 'get' expression, we just have to emit that. 1157 if (!hasTrivialGetExpr(propImpl)) { 1158 if (!AtomicHelperFn) { 1159 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1160 propImpl->getGetterCXXConstructor(), 1161 /* NRVOCandidate=*/nullptr); 1162 EmitReturnStmt(*ret); 1163 } 1164 else { 1165 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1166 emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this), 1167 ivar, AtomicHelperFn); 1168 } 1169 return; 1170 } 1171 1172 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1173 QualType propType = prop->getType(); 1174 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1175 1176 // Pick an implementation strategy. 1177 PropertyImplStrategy strategy(CGM, propImpl); 1178 switch (strategy.getKind()) { 1179 case PropertyImplStrategy::Native: { 1180 // We don't need to do anything for a zero-size struct. 1181 if (strategy.getIvarSize().isZero()) 1182 return; 1183 1184 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1185 1186 // Currently, all atomic accesses have to be through integer 1187 // types, so there's no point in trying to pick a prettier type. 1188 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1189 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1190 1191 // Perform an atomic load. This does not impose ordering constraints. 1192 Address ivarAddr = LV.getAddress(); 1193 ivarAddr = ivarAddr.withElementType(bitcastType); 1194 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1195 load->setAtomic(llvm::AtomicOrdering::Unordered); 1196 1197 // Store that value into the return address. Doing this with a 1198 // bitcast is likely to produce some pretty ugly IR, but it's not 1199 // the *most* terrible thing in the world. 1200 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1201 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1202 llvm::Value *ivarVal = load; 1203 if (ivarSize > retTySize) { 1204 bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1205 ivarVal = Builder.CreateTrunc(load, bitcastType); 1206 } 1207 Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType)); 1208 1209 // Make sure we don't do an autorelease. 1210 AutoreleaseResult = false; 1211 return; 1212 } 1213 1214 case PropertyImplStrategy::GetSetProperty: { 1215 llvm::FunctionCallee getPropertyFn = 1216 CGM.getObjCRuntime().GetPropertyGetFunction(); 1217 if (!getPropertyFn) { 1218 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1219 return; 1220 } 1221 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1222 1223 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1224 // FIXME: Can't this be simpler? This might even be worse than the 1225 // corresponding gcc code. 1226 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod); 1227 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1228 llvm::Value *ivarOffset = 1229 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar); 1230 1231 CallArgList args; 1232 args.add(RValue::get(self), getContext().getObjCIdType()); 1233 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1234 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1235 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1236 getContext().BoolTy); 1237 1238 // FIXME: We shouldn't need to get the function info here, the 1239 // runtime already should have computed it to build the function. 1240 llvm::CallBase *CallInstruction; 1241 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1242 getContext().getObjCIdType(), args), 1243 callee, ReturnValueSlot(), args, &CallInstruction); 1244 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1245 call->setTailCall(); 1246 1247 // We need to fix the type here. Ivars with copy & retain are 1248 // always objects so we don't need to worry about complex or 1249 // aggregates. 1250 RV = RValue::get(Builder.CreateBitCast( 1251 RV.getScalarVal(), 1252 getTypes().ConvertType(getterMethod->getReturnType()))); 1253 1254 EmitReturnOfRValue(RV, propType); 1255 1256 // objc_getProperty does an autorelease, so we should suppress ours. 1257 AutoreleaseResult = false; 1258 1259 return; 1260 } 1261 1262 case PropertyImplStrategy::CopyStruct: 1263 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1264 strategy.hasStrongMember()); 1265 return; 1266 1267 case PropertyImplStrategy::Expression: 1268 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1269 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1270 1271 QualType ivarType = ivar->getType(); 1272 switch (getEvaluationKind(ivarType)) { 1273 case TEK_Complex: { 1274 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1275 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1276 /*init*/ true); 1277 return; 1278 } 1279 case TEK_Aggregate: { 1280 // The return value slot is guaranteed to not be aliased, but 1281 // that's not necessarily the same as "on the stack", so 1282 // we still potentially need objc_memmove_collectable. 1283 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1284 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1285 return; 1286 } 1287 case TEK_Scalar: { 1288 llvm::Value *value; 1289 if (propType->isReferenceType()) { 1290 value = LV.getAddress().emitRawPointer(*this); 1291 } else { 1292 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1293 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1294 if (getLangOpts().ObjCAutoRefCount) { 1295 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1296 } else { 1297 value = EmitARCLoadWeak(LV.getAddress()); 1298 } 1299 1300 // Otherwise we want to do a simple load, suppressing the 1301 // final autorelease. 1302 } else { 1303 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1304 AutoreleaseResult = false; 1305 } 1306 1307 value = Builder.CreateBitCast( 1308 value, ConvertType(GetterMethodDecl->getReturnType())); 1309 } 1310 1311 EmitReturnOfRValue(RValue::get(value), propType); 1312 return; 1313 } 1314 } 1315 llvm_unreachable("bad evaluation kind"); 1316 } 1317 1318 } 1319 llvm_unreachable("bad @property implementation strategy!"); 1320 } 1321 1322 /// emitStructSetterCall - Call the runtime function to store the value 1323 /// from the first formal parameter into the given ivar. 1324 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1325 ObjCIvarDecl *ivar) { 1326 // objc_copyStruct (&structIvar, &Arg, 1327 // sizeof (struct something), true, false); 1328 CallArgList args; 1329 1330 // The first argument is the address of the ivar. 1331 llvm::Value *ivarAddr = 1332 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1333 .getPointer(CGF); 1334 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1335 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1336 1337 // The second argument is the address of the parameter variable. 1338 ParmVarDecl *argVar = *OMD->param_begin(); 1339 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1340 argVar->getType().getNonReferenceType(), VK_LValue, 1341 SourceLocation()); 1342 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1343 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1344 1345 // The third argument is the sizeof the type. 1346 llvm::Value *size = 1347 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1348 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1349 1350 // The fourth argument is the 'isAtomic' flag. 1351 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1352 1353 // The fifth argument is the 'hasStrong' flag. 1354 // FIXME: should this really always be false? 1355 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1356 1357 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1358 CGCallee callee = CGCallee::forDirect(fn); 1359 CGF.EmitCall( 1360 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1361 callee, ReturnValueSlot(), args); 1362 } 1363 1364 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1365 /// the value from the first formal parameter into the given ivar, using 1366 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1367 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1368 ObjCMethodDecl *OMD, 1369 ObjCIvarDecl *ivar, 1370 llvm::Constant *AtomicHelperFn) { 1371 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1372 // AtomicHelperFn); 1373 CallArgList args; 1374 1375 // The first argument is the address of the ivar. 1376 llvm::Value *ivarAddr = 1377 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1378 .getPointer(CGF); 1379 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1380 1381 // The second argument is the address of the parameter variable. 1382 ParmVarDecl *argVar = *OMD->param_begin(); 1383 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1384 argVar->getType().getNonReferenceType(), VK_LValue, 1385 SourceLocation()); 1386 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1387 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1388 1389 // Third argument is the helper function. 1390 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1391 1392 llvm::FunctionCallee fn = 1393 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1394 CGCallee callee = CGCallee::forDirect(fn); 1395 CGF.EmitCall( 1396 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1397 callee, ReturnValueSlot(), args); 1398 } 1399 1400 1401 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1402 Expr *setter = PID->getSetterCXXAssignment(); 1403 if (!setter) return true; 1404 1405 // Sema only makes only of these when the ivar has a C++ class type, 1406 // so the form is pretty constrained. 1407 1408 // An operator call is trivial if the function it calls is trivial. 1409 // This also implies that there's nothing non-trivial going on with 1410 // the arguments, because operator= can only be trivial if it's a 1411 // synthesized assignment operator and therefore both parameters are 1412 // references. 1413 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1414 if (const FunctionDecl *callee 1415 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1416 if (callee->isTrivial()) 1417 return true; 1418 return false; 1419 } 1420 1421 assert(isa<ExprWithCleanups>(setter)); 1422 return false; 1423 } 1424 1425 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1426 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1427 return false; 1428 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1429 } 1430 1431 void 1432 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1433 const ObjCPropertyImplDecl *propImpl, 1434 llvm::Constant *AtomicHelperFn) { 1435 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1436 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1437 1438 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 1439 ParmVarDecl *PVD = *setterMethod->param_begin(); 1440 if (!AtomicHelperFn) { 1441 // Call the move assignment operator instead of calling the copy 1442 // assignment operator and destructor. 1443 LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 1444 /*quals*/ 0); 1445 LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType()); 1446 callCStructMoveAssignmentOperator(Dst, Src); 1447 } else { 1448 // If atomic, assignment is called via a locking api. 1449 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn); 1450 } 1451 // Decativate the destructor for the setter parameter. 1452 DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt); 1453 return; 1454 } 1455 1456 // Just use the setter expression if Sema gave us one and it's 1457 // non-trivial. 1458 if (!hasTrivialSetExpr(propImpl)) { 1459 if (!AtomicHelperFn) 1460 // If non-atomic, assignment is called directly. 1461 EmitStmt(propImpl->getSetterCXXAssignment()); 1462 else 1463 // If atomic, assignment is called via a locking api. 1464 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1465 AtomicHelperFn); 1466 return; 1467 } 1468 1469 PropertyImplStrategy strategy(CGM, propImpl); 1470 switch (strategy.getKind()) { 1471 case PropertyImplStrategy::Native: { 1472 // We don't need to do anything for a zero-size struct. 1473 if (strategy.getIvarSize().isZero()) 1474 return; 1475 1476 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1477 1478 LValue ivarLValue = 1479 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1480 Address ivarAddr = ivarLValue.getAddress(); 1481 1482 // Currently, all atomic accesses have to be through integer 1483 // types, so there's no point in trying to pick a prettier type. 1484 llvm::Type *castType = llvm::Type::getIntNTy( 1485 getLLVMContext(), getContext().toBits(strategy.getIvarSize())); 1486 1487 // Cast both arguments to the chosen operation type. 1488 argAddr = argAddr.withElementType(castType); 1489 ivarAddr = ivarAddr.withElementType(castType); 1490 1491 llvm::Value *load = Builder.CreateLoad(argAddr); 1492 1493 // Perform an atomic store. There are no memory ordering requirements. 1494 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1495 store->setAtomic(llvm::AtomicOrdering::Unordered); 1496 return; 1497 } 1498 1499 case PropertyImplStrategy::GetSetProperty: 1500 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1501 1502 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1503 llvm::FunctionCallee setPropertyFn = nullptr; 1504 if (UseOptimizedSetter(CGM)) { 1505 // 10.8 and iOS 6.0 code and GC is off 1506 setOptimizedPropertyFn = 1507 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1508 strategy.isAtomic(), strategy.isCopy()); 1509 if (!setOptimizedPropertyFn) { 1510 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1511 return; 1512 } 1513 } 1514 else { 1515 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1516 if (!setPropertyFn) { 1517 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1518 return; 1519 } 1520 } 1521 1522 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1523 // <is-atomic>, <is-copy>). 1524 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod); 1525 llvm::Value *self = 1526 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1527 llvm::Value *ivarOffset = 1528 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar); 1529 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1530 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1531 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1532 1533 CallArgList args; 1534 args.add(RValue::get(self), getContext().getObjCIdType()); 1535 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1536 if (setOptimizedPropertyFn) { 1537 args.add(RValue::get(arg), getContext().getObjCIdType()); 1538 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1539 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1540 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1541 callee, ReturnValueSlot(), args); 1542 } else { 1543 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1544 args.add(RValue::get(arg), getContext().getObjCIdType()); 1545 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1546 getContext().BoolTy); 1547 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1548 getContext().BoolTy); 1549 // FIXME: We shouldn't need to get the function info here, the runtime 1550 // already should have computed it to build the function. 1551 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1552 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1553 callee, ReturnValueSlot(), args); 1554 } 1555 1556 return; 1557 } 1558 1559 case PropertyImplStrategy::CopyStruct: 1560 emitStructSetterCall(*this, setterMethod, ivar); 1561 return; 1562 1563 case PropertyImplStrategy::Expression: 1564 break; 1565 } 1566 1567 // Otherwise, fake up some ASTs and emit a normal assignment. 1568 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1569 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1570 VK_LValue, SourceLocation()); 1571 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), 1572 CK_LValueToRValue, &self, VK_PRValue, 1573 FPOptionsOverride()); 1574 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1575 SourceLocation(), SourceLocation(), 1576 &selfLoad, true, true); 1577 1578 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1579 QualType argType = argDecl->getType().getNonReferenceType(); 1580 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1581 SourceLocation()); 1582 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1583 argType.getUnqualifiedType(), CK_LValueToRValue, 1584 &arg, VK_PRValue, FPOptionsOverride()); 1585 1586 // The property type can differ from the ivar type in some situations with 1587 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1588 // The following absurdity is just to ensure well-formed IR. 1589 CastKind argCK = CK_NoOp; 1590 if (ivarRef.getType()->isObjCObjectPointerType()) { 1591 if (argLoad.getType()->isObjCObjectPointerType()) 1592 argCK = CK_BitCast; 1593 else if (argLoad.getType()->isBlockPointerType()) 1594 argCK = CK_BlockPointerToObjCPointerCast; 1595 else 1596 argCK = CK_CPointerToObjCPointerCast; 1597 } else if (ivarRef.getType()->isBlockPointerType()) { 1598 if (argLoad.getType()->isBlockPointerType()) 1599 argCK = CK_BitCast; 1600 else 1601 argCK = CK_AnyPointerToBlockPointerCast; 1602 } else if (ivarRef.getType()->isPointerType()) { 1603 argCK = CK_BitCast; 1604 } else if (argLoad.getType()->isAtomicType() && 1605 !ivarRef.getType()->isAtomicType()) { 1606 argCK = CK_AtomicToNonAtomic; 1607 } else if (!argLoad.getType()->isAtomicType() && 1608 ivarRef.getType()->isAtomicType()) { 1609 argCK = CK_NonAtomicToAtomic; 1610 } 1611 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, 1612 &argLoad, VK_PRValue, FPOptionsOverride()); 1613 Expr *finalArg = &argLoad; 1614 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1615 argLoad.getType())) 1616 finalArg = &argCast; 1617 1618 BinaryOperator *assign = BinaryOperator::Create( 1619 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), 1620 VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1621 EmitStmt(assign); 1622 } 1623 1624 /// Generate an Objective-C property setter function. 1625 /// 1626 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1627 /// is illegal within a category. 1628 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1629 const ObjCPropertyImplDecl *PID) { 1630 llvm::Constant *AtomicHelperFn = 1631 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1632 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1633 assert(OMD && "Invalid call to generate setter (empty method)"); 1634 StartObjCMethod(OMD, IMP->getClassInterface()); 1635 1636 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1637 1638 FinishFunction(OMD->getEndLoc()); 1639 } 1640 1641 namespace { 1642 struct DestroyIvar final : EHScopeStack::Cleanup { 1643 private: 1644 llvm::Value *addr; 1645 const ObjCIvarDecl *ivar; 1646 CodeGenFunction::Destroyer *destroyer; 1647 bool useEHCleanupForArray; 1648 public: 1649 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1650 CodeGenFunction::Destroyer *destroyer, 1651 bool useEHCleanupForArray) 1652 : addr(addr), ivar(ivar), destroyer(destroyer), 1653 useEHCleanupForArray(useEHCleanupForArray) {} 1654 1655 void Emit(CodeGenFunction &CGF, Flags flags) override { 1656 LValue lvalue 1657 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1658 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1659 flags.isForNormalCleanup() && useEHCleanupForArray); 1660 } 1661 }; 1662 } 1663 1664 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1665 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1666 Address addr, 1667 QualType type) { 1668 llvm::Value *null = getNullForVariable(addr); 1669 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1670 } 1671 1672 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1673 ObjCImplementationDecl *impl) { 1674 CodeGenFunction::RunCleanupsScope scope(CGF); 1675 1676 llvm::Value *self = CGF.LoadObjCSelf(); 1677 1678 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1679 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1680 ivar; ivar = ivar->getNextIvar()) { 1681 QualType type = ivar->getType(); 1682 1683 // Check whether the ivar is a destructible type. 1684 QualType::DestructionKind dtorKind = type.isDestructedType(); 1685 if (!dtorKind) continue; 1686 1687 CodeGenFunction::Destroyer *destroyer = nullptr; 1688 1689 // Use a call to objc_storeStrong to destroy strong ivars, for the 1690 // general benefit of the tools. 1691 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1692 destroyer = destroyARCStrongWithStore; 1693 1694 // Otherwise use the default for the destruction kind. 1695 } else { 1696 destroyer = CGF.getDestroyer(dtorKind); 1697 } 1698 1699 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1700 1701 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1702 cleanupKind & EHCleanup); 1703 } 1704 1705 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1706 } 1707 1708 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1709 ObjCMethodDecl *MD, 1710 bool ctor) { 1711 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1712 StartObjCMethod(MD, IMP->getClassInterface()); 1713 1714 // Emit .cxx_construct. 1715 if (ctor) { 1716 // Suppress the final autorelease in ARC. 1717 AutoreleaseResult = false; 1718 1719 for (const auto *IvarInit : IMP->inits()) { 1720 FieldDecl *Field = IvarInit->getAnyMember(); 1721 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1722 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1723 LoadObjCSelf(), Ivar, 0); 1724 EmitAggExpr(IvarInit->getInit(), 1725 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1726 AggValueSlot::DoesNotNeedGCBarriers, 1727 AggValueSlot::IsNotAliased, 1728 AggValueSlot::DoesNotOverlap)); 1729 } 1730 // constructor returns 'self'. 1731 CodeGenTypes &Types = CGM.getTypes(); 1732 QualType IdTy(CGM.getContext().getObjCIdType()); 1733 llvm::Value *SelfAsId = 1734 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1735 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1736 1737 // Emit .cxx_destruct. 1738 } else { 1739 emitCXXDestructMethod(*this, IMP); 1740 } 1741 FinishFunction(); 1742 } 1743 1744 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1745 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1746 DeclRefExpr DRE(getContext(), Self, 1747 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1748 Self->getType(), VK_LValue, SourceLocation()); 1749 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1750 } 1751 1752 QualType CodeGenFunction::TypeOfSelfObject() { 1753 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1754 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1755 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1756 getContext().getCanonicalType(selfDecl->getType())); 1757 return PTy->getPointeeType(); 1758 } 1759 1760 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1761 llvm::FunctionCallee EnumerationMutationFnPtr = 1762 CGM.getObjCRuntime().EnumerationMutationFunction(); 1763 if (!EnumerationMutationFnPtr) { 1764 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1765 return; 1766 } 1767 CGCallee EnumerationMutationFn = 1768 CGCallee::forDirect(EnumerationMutationFnPtr); 1769 1770 CGDebugInfo *DI = getDebugInfo(); 1771 if (DI) 1772 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1773 1774 RunCleanupsScope ForScope(*this); 1775 1776 // The local variable comes into scope immediately. 1777 AutoVarEmission variable = AutoVarEmission::invalid(); 1778 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1779 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1780 1781 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1782 1783 // Fast enumeration state. 1784 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1785 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1786 EmitNullInitialization(StatePtr, StateTy); 1787 1788 // Number of elements in the items array. 1789 static const unsigned NumItems = 16; 1790 1791 // Fetch the countByEnumeratingWithState:objects:count: selector. 1792 const IdentifierInfo *II[] = { 1793 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1794 &CGM.getContext().Idents.get("objects"), 1795 &CGM.getContext().Idents.get("count")}; 1796 Selector FastEnumSel = 1797 CGM.getContext().Selectors.getSelector(std::size(II), &II[0]); 1798 1799 QualType ItemsTy = getContext().getConstantArrayType( 1800 getContext().getObjCIdType(), llvm::APInt(32, NumItems), nullptr, 1801 ArraySizeModifier::Normal, 0); 1802 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1803 1804 // Emit the collection pointer. In ARC, we do a retain. 1805 llvm::Value *Collection; 1806 if (getLangOpts().ObjCAutoRefCount) { 1807 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1808 1809 // Enter a cleanup to do the release. 1810 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1811 } else { 1812 Collection = EmitScalarExpr(S.getCollection()); 1813 } 1814 1815 // The 'continue' label needs to appear within the cleanup for the 1816 // collection object. 1817 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1818 1819 // Send it our message: 1820 CallArgList Args; 1821 1822 // The first argument is a temporary of the enumeration-state type. 1823 Args.add(RValue::get(StatePtr, *this), getContext().getPointerType(StateTy)); 1824 1825 // The second argument is a temporary array with space for NumItems 1826 // pointers. We'll actually be loading elements from the array 1827 // pointer written into the control state; this buffer is so that 1828 // collections that *aren't* backed by arrays can still queue up 1829 // batches of elements. 1830 Args.add(RValue::get(ItemsPtr, *this), getContext().getPointerType(ItemsTy)); 1831 1832 // The third argument is the capacity of that temporary array. 1833 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1834 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1835 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1836 1837 // Start the enumeration. 1838 RValue CountRV = 1839 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1840 getContext().getNSUIntegerType(), 1841 FastEnumSel, Collection, Args); 1842 1843 // The initial number of objects that were returned in the buffer. 1844 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1845 1846 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1847 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1848 1849 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1850 1851 // If the limit pointer was zero to begin with, the collection is 1852 // empty; skip all this. Set the branch weight assuming this has the same 1853 // probability of exiting the loop as any other loop exit. 1854 uint64_t EntryCount = getCurrentProfileCount(); 1855 Builder.CreateCondBr( 1856 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1857 LoopInitBB, 1858 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1859 1860 // Otherwise, initialize the loop. 1861 EmitBlock(LoopInitBB); 1862 1863 // Save the initial mutations value. This is the value at an 1864 // address that was written into the state object by 1865 // countByEnumeratingWithState:objects:count:. 1866 Address StateMutationsPtrPtr = 1867 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1868 llvm::Value *StateMutationsPtr 1869 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1870 1871 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy); 1872 llvm::Value *initialMutations = 1873 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1874 getPointerAlign(), "forcoll.initial-mutations"); 1875 1876 // Start looping. This is the point we return to whenever we have a 1877 // fresh, non-empty batch of objects. 1878 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1879 EmitBlock(LoopBodyBB); 1880 1881 // The current index into the buffer. 1882 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1883 index->addIncoming(zero, LoopInitBB); 1884 1885 // The current buffer size. 1886 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1887 count->addIncoming(initialBufferLimit, LoopInitBB); 1888 1889 incrementProfileCounter(&S); 1890 1891 // Check whether the mutations value has changed from where it was 1892 // at start. StateMutationsPtr should actually be invariant between 1893 // refreshes. 1894 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1895 llvm::Value *currentMutations 1896 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1897 getPointerAlign(), "statemutations"); 1898 1899 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1900 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1901 1902 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1903 WasNotMutatedBB, WasMutatedBB); 1904 1905 // If so, call the enumeration-mutation function. 1906 EmitBlock(WasMutatedBB); 1907 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType()); 1908 llvm::Value *V = 1909 Builder.CreateBitCast(Collection, ObjCIdType); 1910 CallArgList Args2; 1911 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1912 // FIXME: We shouldn't need to get the function info here, the runtime already 1913 // should have computed it to build the function. 1914 EmitCall( 1915 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1916 EnumerationMutationFn, ReturnValueSlot(), Args2); 1917 1918 // Otherwise, or if the mutation function returns, just continue. 1919 EmitBlock(WasNotMutatedBB); 1920 1921 // Initialize the element variable. 1922 RunCleanupsScope elementVariableScope(*this); 1923 bool elementIsVariable; 1924 LValue elementLValue; 1925 QualType elementType; 1926 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1927 // Initialize the variable, in case it's a __block variable or something. 1928 EmitAutoVarInit(variable); 1929 1930 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1931 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1932 D->getType(), VK_LValue, SourceLocation()); 1933 elementLValue = EmitLValue(&tempDRE); 1934 elementType = D->getType(); 1935 elementIsVariable = true; 1936 1937 if (D->isARCPseudoStrong()) 1938 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1939 } else { 1940 elementLValue = LValue(); // suppress warning 1941 elementType = cast<Expr>(S.getElement())->getType(); 1942 elementIsVariable = false; 1943 } 1944 llvm::Type *convertedElementType = ConvertType(elementType); 1945 1946 // Fetch the buffer out of the enumeration state. 1947 // TODO: this pointer should actually be invariant between 1948 // refreshes, which would help us do certain loop optimizations. 1949 Address StateItemsPtr = 1950 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1951 llvm::Value *EnumStateItems = 1952 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1953 1954 // Fetch the value at the current index from the buffer. 1955 llvm::Value *CurrentItemPtr = Builder.CreateInBoundsGEP( 1956 ObjCIdType, EnumStateItems, index, "currentitem.ptr"); 1957 llvm::Value *CurrentItem = 1958 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign()); 1959 1960 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1961 // Before using an item from the collection, check that the implicit cast 1962 // from id to the element type is valid. This is done with instrumentation 1963 // roughly corresponding to: 1964 // 1965 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1966 const ObjCObjectPointerType *ObjPtrTy = 1967 elementType->getAsObjCInterfacePointerType(); 1968 const ObjCInterfaceType *InterfaceTy = 1969 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1970 if (InterfaceTy) { 1971 SanitizerScope SanScope(this); 1972 auto &C = CGM.getContext(); 1973 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1974 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1975 CallArgList IsKindOfClassArgs; 1976 llvm::Value *Cls = 1977 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1978 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1979 llvm::Value *IsClass = 1980 CGM.getObjCRuntime() 1981 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1982 IsKindOfClassSel, CurrentItem, 1983 IsKindOfClassArgs) 1984 .getScalarVal(); 1985 llvm::Constant *StaticData[] = { 1986 EmitCheckSourceLocation(S.getBeginLoc()), 1987 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1988 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1989 SanitizerHandler::InvalidObjCCast, 1990 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 1991 } 1992 } 1993 1994 // Cast that value to the right type. 1995 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1996 "currentitem"); 1997 1998 // Make sure we have an l-value. Yes, this gets evaluated every 1999 // time through the loop. 2000 if (!elementIsVariable) { 2001 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2002 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 2003 } else { 2004 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 2005 /*isInit*/ true); 2006 } 2007 2008 // If we do have an element variable, this assignment is the end of 2009 // its initialization. 2010 if (elementIsVariable) 2011 EmitAutoVarCleanups(variable); 2012 2013 // Perform the loop body, setting up break and continue labels. 2014 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 2015 { 2016 RunCleanupsScope Scope(*this); 2017 EmitStmt(S.getBody()); 2018 } 2019 BreakContinueStack.pop_back(); 2020 2021 // Destroy the element variable now. 2022 elementVariableScope.ForceCleanup(); 2023 2024 // Check whether there are more elements. 2025 EmitBlock(AfterBody.getBlock()); 2026 2027 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 2028 2029 // First we check in the local buffer. 2030 llvm::Value *indexPlusOne = 2031 Builder.CreateNUWAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 2032 2033 // If we haven't overrun the buffer yet, we can continue. 2034 // Set the branch weights based on the simplifying assumption that this is 2035 // like a while-loop, i.e., ignoring that the false branch fetches more 2036 // elements and then returns to the loop. 2037 Builder.CreateCondBr( 2038 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 2039 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 2040 2041 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 2042 count->addIncoming(count, AfterBody.getBlock()); 2043 2044 // Otherwise, we have to fetch more elements. 2045 EmitBlock(FetchMoreBB); 2046 2047 CountRV = 2048 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2049 getContext().getNSUIntegerType(), 2050 FastEnumSel, Collection, Args); 2051 2052 // If we got a zero count, we're done. 2053 llvm::Value *refetchCount = CountRV.getScalarVal(); 2054 2055 // (note that the message send might split FetchMoreBB) 2056 index->addIncoming(zero, Builder.GetInsertBlock()); 2057 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 2058 2059 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 2060 EmptyBB, LoopBodyBB); 2061 2062 // No more elements. 2063 EmitBlock(EmptyBB); 2064 2065 if (!elementIsVariable) { 2066 // If the element was not a declaration, set it to be null. 2067 2068 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 2069 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2070 EmitStoreThroughLValue(RValue::get(null), elementLValue); 2071 } 2072 2073 if (DI) 2074 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 2075 2076 ForScope.ForceCleanup(); 2077 EmitBlock(LoopEnd.getBlock()); 2078 } 2079 2080 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 2081 CGM.getObjCRuntime().EmitTryStmt(*this, S); 2082 } 2083 2084 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 2085 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 2086 } 2087 2088 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 2089 const ObjCAtSynchronizedStmt &S) { 2090 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 2091 } 2092 2093 namespace { 2094 struct CallObjCRelease final : EHScopeStack::Cleanup { 2095 CallObjCRelease(llvm::Value *object) : object(object) {} 2096 llvm::Value *object; 2097 2098 void Emit(CodeGenFunction &CGF, Flags flags) override { 2099 // Releases at the end of the full-expression are imprecise. 2100 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 2101 } 2102 }; 2103 } 2104 2105 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 2106 /// release at the end of the full-expression. 2107 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 2108 llvm::Value *object) { 2109 // If we're in a conditional branch, we need to make the cleanup 2110 // conditional. 2111 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 2112 return object; 2113 } 2114 2115 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 2116 llvm::Value *value) { 2117 return EmitARCRetainAutorelease(type, value); 2118 } 2119 2120 /// Given a number of pointers, inform the optimizer that they're 2121 /// being intrinsically used up until this point in the program. 2122 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2123 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2124 if (!fn) 2125 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2126 2127 // This isn't really a "runtime" function, but as an intrinsic it 2128 // doesn't really matter as long as we align things up. 2129 EmitNounwindRuntimeCall(fn, values); 2130 } 2131 2132 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call 2133 /// that has operand bundle "clang.arc.attachedcall". 2134 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) { 2135 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use; 2136 if (!fn) 2137 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use); 2138 EmitNounwindRuntimeCall(fn, values); 2139 } 2140 2141 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2142 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2143 // If the target runtime doesn't naturally support ARC, emit weak 2144 // references to the runtime support library. We don't really 2145 // permit this to fail, but we need a particular relocation style. 2146 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2147 !CGM.getTriple().isOSBinFormatCOFF()) { 2148 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2149 } 2150 } 2151 } 2152 2153 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2154 llvm::FunctionCallee RTF) { 2155 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2156 } 2157 2158 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID, 2159 CodeGenModule &CGM) { 2160 llvm::Function *fn = CGM.getIntrinsic(IntID); 2161 setARCRuntimeFunctionLinkage(CGM, fn); 2162 return fn; 2163 } 2164 2165 /// Perform an operation having the signature 2166 /// i8* (i8*) 2167 /// where a null input causes a no-op and returns null. 2168 static llvm::Value *emitARCValueOperation( 2169 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2170 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2171 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2172 if (isa<llvm::ConstantPointerNull>(value)) 2173 return value; 2174 2175 if (!fn) 2176 fn = getARCIntrinsic(IntID, CGF.CGM); 2177 2178 // Cast the argument to 'id'. 2179 llvm::Type *origType = returnType ? returnType : value->getType(); 2180 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2181 2182 // Call the function. 2183 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2184 call->setTailCallKind(tailKind); 2185 2186 // Cast the result back to the original type. 2187 return CGF.Builder.CreateBitCast(call, origType); 2188 } 2189 2190 /// Perform an operation having the following signature: 2191 /// i8* (i8**) 2192 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2193 llvm::Function *&fn, 2194 llvm::Intrinsic::ID IntID) { 2195 if (!fn) 2196 fn = getARCIntrinsic(IntID, CGF.CGM); 2197 2198 return CGF.EmitNounwindRuntimeCall(fn, addr.emitRawPointer(CGF)); 2199 } 2200 2201 /// Perform an operation having the following signature: 2202 /// i8* (i8**, i8*) 2203 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2204 llvm::Value *value, 2205 llvm::Function *&fn, 2206 llvm::Intrinsic::ID IntID, 2207 bool ignored) { 2208 assert(addr.getElementType() == value->getType()); 2209 2210 if (!fn) 2211 fn = getARCIntrinsic(IntID, CGF.CGM); 2212 2213 llvm::Type *origType = value->getType(); 2214 2215 llvm::Value *args[] = { 2216 CGF.Builder.CreateBitCast(addr.emitRawPointer(CGF), CGF.Int8PtrPtrTy), 2217 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)}; 2218 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2219 2220 if (ignored) return nullptr; 2221 2222 return CGF.Builder.CreateBitCast(result, origType); 2223 } 2224 2225 /// Perform an operation having the following signature: 2226 /// void (i8**, i8**) 2227 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2228 llvm::Function *&fn, 2229 llvm::Intrinsic::ID IntID) { 2230 assert(dst.getType() == src.getType()); 2231 2232 if (!fn) 2233 fn = getARCIntrinsic(IntID, CGF.CGM); 2234 2235 llvm::Value *args[] = { 2236 CGF.Builder.CreateBitCast(dst.emitRawPointer(CGF), CGF.Int8PtrPtrTy), 2237 CGF.Builder.CreateBitCast(src.emitRawPointer(CGF), CGF.Int8PtrPtrTy)}; 2238 CGF.EmitNounwindRuntimeCall(fn, args); 2239 } 2240 2241 /// Perform an operation having the signature 2242 /// i8* (i8*) 2243 /// where a null input causes a no-op and returns null. 2244 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2245 llvm::Value *value, 2246 llvm::Type *returnType, 2247 llvm::FunctionCallee &fn, 2248 StringRef fnName) { 2249 if (isa<llvm::ConstantPointerNull>(value)) 2250 return value; 2251 2252 if (!fn) { 2253 llvm::FunctionType *fnType = 2254 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2255 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2256 2257 // We have Native ARC, so set nonlazybind attribute for performance 2258 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2259 if (fnName == "objc_retain") 2260 f->addFnAttr(llvm::Attribute::NonLazyBind); 2261 } 2262 2263 // Cast the argument to 'id'. 2264 llvm::Type *origType = returnType ? returnType : value->getType(); 2265 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2266 2267 // Call the function. 2268 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2269 2270 // Mark calls to objc_autorelease as tail on the assumption that methods 2271 // overriding autorelease do not touch anything on the stack. 2272 if (fnName == "objc_autorelease") 2273 if (auto *Call = dyn_cast<llvm::CallInst>(Inst)) 2274 Call->setTailCall(); 2275 2276 // Cast the result back to the original type. 2277 return CGF.Builder.CreateBitCast(Inst, origType); 2278 } 2279 2280 /// Produce the code to do a retain. Based on the type, calls one of: 2281 /// call i8* \@objc_retain(i8* %value) 2282 /// call i8* \@objc_retainBlock(i8* %value) 2283 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2284 if (type->isBlockPointerType()) 2285 return EmitARCRetainBlock(value, /*mandatory*/ false); 2286 else 2287 return EmitARCRetainNonBlock(value); 2288 } 2289 2290 /// Retain the given object, with normal retain semantics. 2291 /// call i8* \@objc_retain(i8* %value) 2292 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2293 return emitARCValueOperation(*this, value, nullptr, 2294 CGM.getObjCEntrypoints().objc_retain, 2295 llvm::Intrinsic::objc_retain); 2296 } 2297 2298 /// Retain the given block, with _Block_copy semantics. 2299 /// call i8* \@objc_retainBlock(i8* %value) 2300 /// 2301 /// \param mandatory - If false, emit the call with metadata 2302 /// indicating that it's okay for the optimizer to eliminate this call 2303 /// if it can prove that the block never escapes except down the stack. 2304 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2305 bool mandatory) { 2306 llvm::Value *result 2307 = emitARCValueOperation(*this, value, nullptr, 2308 CGM.getObjCEntrypoints().objc_retainBlock, 2309 llvm::Intrinsic::objc_retainBlock); 2310 2311 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2312 // tell the optimizer that it doesn't need to do this copy if the 2313 // block doesn't escape, where being passed as an argument doesn't 2314 // count as escaping. 2315 if (!mandatory && isa<llvm::Instruction>(result)) { 2316 llvm::CallInst *call 2317 = cast<llvm::CallInst>(result->stripPointerCasts()); 2318 assert(call->getCalledOperand() == 2319 CGM.getObjCEntrypoints().objc_retainBlock); 2320 2321 call->setMetadata("clang.arc.copy_on_escape", 2322 llvm::MDNode::get(Builder.getContext(), std::nullopt)); 2323 } 2324 2325 return result; 2326 } 2327 2328 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2329 // Fetch the void(void) inline asm which marks that we're going to 2330 // do something with the autoreleased return value. 2331 llvm::InlineAsm *&marker 2332 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2333 if (!marker) { 2334 StringRef assembly 2335 = CGF.CGM.getTargetCodeGenInfo() 2336 .getARCRetainAutoreleasedReturnValueMarker(); 2337 2338 // If we have an empty assembly string, there's nothing to do. 2339 if (assembly.empty()) { 2340 2341 // Otherwise, at -O0, build an inline asm that we're going to call 2342 // in a moment. 2343 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2344 llvm::FunctionType *type = 2345 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2346 2347 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2348 2349 // If we're at -O1 and above, we don't want to litter the code 2350 // with this marker yet, so leave a breadcrumb for the ARC 2351 // optimizer to pick up. 2352 } else { 2353 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr(); 2354 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) { 2355 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2356 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, 2357 retainRVMarkerKey, str); 2358 } 2359 } 2360 } 2361 2362 // Call the marker asm if we made one, which we do only at -O0. 2363 if (marker) 2364 CGF.Builder.CreateCall(marker, std::nullopt, 2365 CGF.getBundlesForFunclet(marker)); 2366 } 2367 2368 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value, 2369 bool IsRetainRV, 2370 CodeGenFunction &CGF) { 2371 emitAutoreleasedReturnValueMarker(CGF); 2372 2373 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting 2374 // retainRV or claimRV calls in the IR. We currently do this only when the 2375 // optimization level isn't -O0 since global-isel, which is currently run at 2376 // -O0, doesn't know about the operand bundle. 2377 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints(); 2378 llvm::Function *&EP = IsRetainRV 2379 ? EPs.objc_retainAutoreleasedReturnValue 2380 : EPs.objc_unsafeClaimAutoreleasedReturnValue; 2381 llvm::Intrinsic::ID IID = 2382 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue 2383 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue; 2384 EP = getARCIntrinsic(IID, CGF.CGM); 2385 2386 llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch(); 2387 2388 // FIXME: Do this on all targets and at -O0 too. This can be enabled only if 2389 // the target backend knows how to handle the operand bundle. 2390 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 && 2391 (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) { 2392 llvm::Value *bundleArgs[] = {EP}; 2393 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs); 2394 auto *oldCall = cast<llvm::CallBase>(value); 2395 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle( 2396 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall); 2397 newCall->copyMetadata(*oldCall); 2398 oldCall->replaceAllUsesWith(newCall); 2399 oldCall->eraseFromParent(); 2400 CGF.EmitARCNoopIntrinsicUse(newCall); 2401 return newCall; 2402 } 2403 2404 bool isNoTail = 2405 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail(); 2406 llvm::CallInst::TailCallKind tailKind = 2407 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None; 2408 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind); 2409 } 2410 2411 /// Retain the given object which is the result of a function call. 2412 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2413 /// 2414 /// Yes, this function name is one character away from a different 2415 /// call with completely different semantics. 2416 llvm::Value * 2417 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2418 return emitOptimizedARCReturnCall(value, true, *this); 2419 } 2420 2421 /// Claim a possibly-autoreleased return value at +0. This is only 2422 /// valid to do in contexts which do not rely on the retain to keep 2423 /// the object valid for all of its uses; for example, when 2424 /// the value is ignored, or when it is being assigned to an 2425 /// __unsafe_unretained variable. 2426 /// 2427 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2428 llvm::Value * 2429 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2430 return emitOptimizedARCReturnCall(value, false, *this); 2431 } 2432 2433 /// Release the given object. 2434 /// call void \@objc_release(i8* %value) 2435 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2436 ARCPreciseLifetime_t precise) { 2437 if (isa<llvm::ConstantPointerNull>(value)) return; 2438 2439 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2440 if (!fn) 2441 fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM); 2442 2443 // Cast the argument to 'id'. 2444 value = Builder.CreateBitCast(value, Int8PtrTy); 2445 2446 // Call objc_release. 2447 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2448 2449 if (precise == ARCImpreciseLifetime) { 2450 call->setMetadata("clang.imprecise_release", 2451 llvm::MDNode::get(Builder.getContext(), std::nullopt)); 2452 } 2453 } 2454 2455 /// Destroy a __strong variable. 2456 /// 2457 /// At -O0, emit a call to store 'null' into the address; 2458 /// instrumenting tools prefer this because the address is exposed, 2459 /// but it's relatively cumbersome to optimize. 2460 /// 2461 /// At -O1 and above, just load and call objc_release. 2462 /// 2463 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2464 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2465 ARCPreciseLifetime_t precise) { 2466 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2467 llvm::Value *null = getNullForVariable(addr); 2468 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2469 return; 2470 } 2471 2472 llvm::Value *value = Builder.CreateLoad(addr); 2473 EmitARCRelease(value, precise); 2474 } 2475 2476 /// Store into a strong object. Always calls this: 2477 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2478 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2479 llvm::Value *value, 2480 bool ignored) { 2481 assert(addr.getElementType() == value->getType()); 2482 2483 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2484 if (!fn) 2485 fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM); 2486 2487 llvm::Value *args[] = { 2488 Builder.CreateBitCast(addr.emitRawPointer(*this), Int8PtrPtrTy), 2489 Builder.CreateBitCast(value, Int8PtrTy)}; 2490 EmitNounwindRuntimeCall(fn, args); 2491 2492 if (ignored) return nullptr; 2493 return value; 2494 } 2495 2496 /// Store into a strong object. Sometimes calls this: 2497 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2498 /// Other times, breaks it down into components. 2499 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2500 llvm::Value *newValue, 2501 bool ignored) { 2502 QualType type = dst.getType(); 2503 bool isBlock = type->isBlockPointerType(); 2504 2505 // Use a store barrier at -O0 unless this is a block type or the 2506 // lvalue is inadequately aligned. 2507 if (shouldUseFusedARCCalls() && 2508 !isBlock && 2509 (dst.getAlignment().isZero() || 2510 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2511 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2512 } 2513 2514 // Otherwise, split it out. 2515 2516 // Retain the new value. 2517 newValue = EmitARCRetain(type, newValue); 2518 2519 // Read the old value. 2520 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2521 2522 // Store. We do this before the release so that any deallocs won't 2523 // see the old value. 2524 EmitStoreOfScalar(newValue, dst); 2525 2526 // Finally, release the old value. 2527 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2528 2529 return newValue; 2530 } 2531 2532 /// Autorelease the given object. 2533 /// call i8* \@objc_autorelease(i8* %value) 2534 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2535 return emitARCValueOperation(*this, value, nullptr, 2536 CGM.getObjCEntrypoints().objc_autorelease, 2537 llvm::Intrinsic::objc_autorelease); 2538 } 2539 2540 /// Autorelease the given object. 2541 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2542 llvm::Value * 2543 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2544 return emitARCValueOperation(*this, value, nullptr, 2545 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2546 llvm::Intrinsic::objc_autoreleaseReturnValue, 2547 llvm::CallInst::TCK_Tail); 2548 } 2549 2550 /// Do a fused retain/autorelease of the given object. 2551 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2552 llvm::Value * 2553 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2554 return emitARCValueOperation(*this, value, nullptr, 2555 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2556 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2557 llvm::CallInst::TCK_Tail); 2558 } 2559 2560 /// Do a fused retain/autorelease of the given object. 2561 /// call i8* \@objc_retainAutorelease(i8* %value) 2562 /// or 2563 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2564 /// call i8* \@objc_autorelease(i8* %retain) 2565 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2566 llvm::Value *value) { 2567 if (!type->isBlockPointerType()) 2568 return EmitARCRetainAutoreleaseNonBlock(value); 2569 2570 if (isa<llvm::ConstantPointerNull>(value)) return value; 2571 2572 llvm::Type *origType = value->getType(); 2573 value = Builder.CreateBitCast(value, Int8PtrTy); 2574 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2575 value = EmitARCAutorelease(value); 2576 return Builder.CreateBitCast(value, origType); 2577 } 2578 2579 /// Do a fused retain/autorelease of the given object. 2580 /// call i8* \@objc_retainAutorelease(i8* %value) 2581 llvm::Value * 2582 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2583 return emitARCValueOperation(*this, value, nullptr, 2584 CGM.getObjCEntrypoints().objc_retainAutorelease, 2585 llvm::Intrinsic::objc_retainAutorelease); 2586 } 2587 2588 /// i8* \@objc_loadWeak(i8** %addr) 2589 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2590 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2591 return emitARCLoadOperation(*this, addr, 2592 CGM.getObjCEntrypoints().objc_loadWeak, 2593 llvm::Intrinsic::objc_loadWeak); 2594 } 2595 2596 /// i8* \@objc_loadWeakRetained(i8** %addr) 2597 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2598 return emitARCLoadOperation(*this, addr, 2599 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2600 llvm::Intrinsic::objc_loadWeakRetained); 2601 } 2602 2603 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2604 /// Returns %value. 2605 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2606 llvm::Value *value, 2607 bool ignored) { 2608 return emitARCStoreOperation(*this, addr, value, 2609 CGM.getObjCEntrypoints().objc_storeWeak, 2610 llvm::Intrinsic::objc_storeWeak, ignored); 2611 } 2612 2613 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2614 /// Returns %value. %addr is known to not have a current weak entry. 2615 /// Essentially equivalent to: 2616 /// *addr = nil; objc_storeWeak(addr, value); 2617 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2618 // If we're initializing to null, just write null to memory; no need 2619 // to get the runtime involved. But don't do this if optimization 2620 // is enabled, because accounting for this would make the optimizer 2621 // much more complicated. 2622 if (isa<llvm::ConstantPointerNull>(value) && 2623 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2624 Builder.CreateStore(value, addr); 2625 return; 2626 } 2627 2628 emitARCStoreOperation(*this, addr, value, 2629 CGM.getObjCEntrypoints().objc_initWeak, 2630 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2631 } 2632 2633 /// void \@objc_destroyWeak(i8** %addr) 2634 /// Essentially objc_storeWeak(addr, nil). 2635 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2636 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2637 if (!fn) 2638 fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM); 2639 2640 EmitNounwindRuntimeCall(fn, addr.emitRawPointer(*this)); 2641 } 2642 2643 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2644 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2645 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2646 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2647 emitARCCopyOperation(*this, dst, src, 2648 CGM.getObjCEntrypoints().objc_moveWeak, 2649 llvm::Intrinsic::objc_moveWeak); 2650 } 2651 2652 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2653 /// Disregards the current value in %dest. Essentially 2654 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2655 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2656 emitARCCopyOperation(*this, dst, src, 2657 CGM.getObjCEntrypoints().objc_copyWeak, 2658 llvm::Intrinsic::objc_copyWeak); 2659 } 2660 2661 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2662 Address SrcAddr) { 2663 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2664 Object = EmitObjCConsumeObject(Ty, Object); 2665 EmitARCStoreWeak(DstAddr, Object, false); 2666 } 2667 2668 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2669 Address SrcAddr) { 2670 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2671 Object = EmitObjCConsumeObject(Ty, Object); 2672 EmitARCStoreWeak(DstAddr, Object, false); 2673 EmitARCDestroyWeak(SrcAddr); 2674 } 2675 2676 /// Produce the code to do a objc_autoreleasepool_push. 2677 /// call i8* \@objc_autoreleasePoolPush(void) 2678 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2679 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2680 if (!fn) 2681 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM); 2682 2683 return EmitNounwindRuntimeCall(fn); 2684 } 2685 2686 /// Produce the code to do a primitive release. 2687 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2688 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2689 assert(value->getType() == Int8PtrTy); 2690 2691 if (getInvokeDest()) { 2692 // Call the runtime method not the intrinsic if we are handling exceptions 2693 llvm::FunctionCallee &fn = 2694 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2695 if (!fn) { 2696 llvm::FunctionType *fnType = 2697 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2698 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2699 setARCRuntimeFunctionLinkage(CGM, fn); 2700 } 2701 2702 // objc_autoreleasePoolPop can throw. 2703 EmitRuntimeCallOrInvoke(fn, value); 2704 } else { 2705 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2706 if (!fn) 2707 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM); 2708 2709 EmitRuntimeCall(fn, value); 2710 } 2711 } 2712 2713 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2714 /// Which is: [[NSAutoreleasePool alloc] init]; 2715 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2716 /// init is declared as: - (id) init; in its NSObject super class. 2717 /// 2718 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2719 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2720 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2721 // [NSAutoreleasePool alloc] 2722 const IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2723 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2724 CallArgList Args; 2725 RValue AllocRV = 2726 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2727 getContext().getObjCIdType(), 2728 AllocSel, Receiver, Args); 2729 2730 // [Receiver init] 2731 Receiver = AllocRV.getScalarVal(); 2732 II = &CGM.getContext().Idents.get("init"); 2733 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2734 RValue InitRV = 2735 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2736 getContext().getObjCIdType(), 2737 InitSel, Receiver, Args); 2738 return InitRV.getScalarVal(); 2739 } 2740 2741 /// Allocate the given objc object. 2742 /// call i8* \@objc_alloc(i8* %value) 2743 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2744 llvm::Type *resultType) { 2745 return emitObjCValueOperation(*this, value, resultType, 2746 CGM.getObjCEntrypoints().objc_alloc, 2747 "objc_alloc"); 2748 } 2749 2750 /// Allocate the given objc object. 2751 /// call i8* \@objc_allocWithZone(i8* %value) 2752 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2753 llvm::Type *resultType) { 2754 return emitObjCValueOperation(*this, value, resultType, 2755 CGM.getObjCEntrypoints().objc_allocWithZone, 2756 "objc_allocWithZone"); 2757 } 2758 2759 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2760 llvm::Type *resultType) { 2761 return emitObjCValueOperation(*this, value, resultType, 2762 CGM.getObjCEntrypoints().objc_alloc_init, 2763 "objc_alloc_init"); 2764 } 2765 2766 /// Produce the code to do a primitive release. 2767 /// [tmp drain]; 2768 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2769 const IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2770 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2771 CallArgList Args; 2772 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2773 getContext().VoidTy, DrainSel, Arg, Args); 2774 } 2775 2776 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2777 Address addr, 2778 QualType type) { 2779 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2780 } 2781 2782 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2783 Address addr, 2784 QualType type) { 2785 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2786 } 2787 2788 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2789 Address addr, 2790 QualType type) { 2791 CGF.EmitARCDestroyWeak(addr); 2792 } 2793 2794 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2795 QualType type) { 2796 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2797 CGF.EmitARCIntrinsicUse(value); 2798 } 2799 2800 /// Autorelease the given object. 2801 /// call i8* \@objc_autorelease(i8* %value) 2802 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2803 llvm::Type *returnType) { 2804 return emitObjCValueOperation( 2805 *this, value, returnType, 2806 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2807 "objc_autorelease"); 2808 } 2809 2810 /// Retain the given object, with normal retain semantics. 2811 /// call i8* \@objc_retain(i8* %value) 2812 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2813 llvm::Type *returnType) { 2814 return emitObjCValueOperation( 2815 *this, value, returnType, 2816 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2817 } 2818 2819 /// Release the given object. 2820 /// call void \@objc_release(i8* %value) 2821 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2822 ARCPreciseLifetime_t precise) { 2823 if (isa<llvm::ConstantPointerNull>(value)) return; 2824 2825 llvm::FunctionCallee &fn = 2826 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2827 if (!fn) { 2828 llvm::FunctionType *fnType = 2829 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2830 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2831 setARCRuntimeFunctionLinkage(CGM, fn); 2832 // We have Native ARC, so set nonlazybind attribute for performance 2833 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2834 f->addFnAttr(llvm::Attribute::NonLazyBind); 2835 } 2836 2837 // Cast the argument to 'id'. 2838 value = Builder.CreateBitCast(value, Int8PtrTy); 2839 2840 // Call objc_release. 2841 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2842 2843 if (precise == ARCImpreciseLifetime) { 2844 call->setMetadata("clang.imprecise_release", 2845 llvm::MDNode::get(Builder.getContext(), std::nullopt)); 2846 } 2847 } 2848 2849 namespace { 2850 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2851 llvm::Value *Token; 2852 2853 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2854 2855 void Emit(CodeGenFunction &CGF, Flags flags) override { 2856 CGF.EmitObjCAutoreleasePoolPop(Token); 2857 } 2858 }; 2859 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2860 llvm::Value *Token; 2861 2862 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2863 2864 void Emit(CodeGenFunction &CGF, Flags flags) override { 2865 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2866 } 2867 }; 2868 } 2869 2870 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2871 if (CGM.getLangOpts().ObjCAutoRefCount) 2872 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2873 else 2874 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2875 } 2876 2877 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2878 switch (lifetime) { 2879 case Qualifiers::OCL_None: 2880 case Qualifiers::OCL_ExplicitNone: 2881 case Qualifiers::OCL_Strong: 2882 case Qualifiers::OCL_Autoreleasing: 2883 return true; 2884 2885 case Qualifiers::OCL_Weak: 2886 return false; 2887 } 2888 2889 llvm_unreachable("impossible lifetime!"); 2890 } 2891 2892 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2893 LValue lvalue, 2894 QualType type) { 2895 llvm::Value *result; 2896 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2897 if (shouldRetain) { 2898 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2899 } else { 2900 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2901 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress()); 2902 } 2903 return TryEmitResult(result, !shouldRetain); 2904 } 2905 2906 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2907 const Expr *e) { 2908 e = e->IgnoreParens(); 2909 QualType type = e->getType(); 2910 2911 // If we're loading retained from a __strong xvalue, we can avoid 2912 // an extra retain/release pair by zeroing out the source of this 2913 // "move" operation. 2914 if (e->isXValue() && 2915 !type.isConstQualified() && 2916 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2917 // Emit the lvalue. 2918 LValue lv = CGF.EmitLValue(e); 2919 2920 // Load the object pointer. 2921 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2922 SourceLocation()).getScalarVal(); 2923 2924 // Set the source pointer to NULL. 2925 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2926 2927 return TryEmitResult(result, true); 2928 } 2929 2930 // As a very special optimization, in ARC++, if the l-value is the 2931 // result of a non-volatile assignment, do a simple retain of the 2932 // result of the call to objc_storeWeak instead of reloading. 2933 if (CGF.getLangOpts().CPlusPlus && 2934 !type.isVolatileQualified() && 2935 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2936 isa<BinaryOperator>(e) && 2937 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2938 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2939 2940 // Try to emit code for scalar constant instead of emitting LValue and 2941 // loading it because we are not guaranteed to have an l-value. One of such 2942 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2943 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2944 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2945 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2946 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2947 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2948 } 2949 2950 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2951 } 2952 2953 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2954 llvm::Value *value)> 2955 ValueTransform; 2956 2957 /// Insert code immediately after a call. 2958 2959 // FIXME: We should find a way to emit the runtime call immediately 2960 // after the call is emitted to eliminate the need for this function. 2961 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2962 llvm::Value *value, 2963 ValueTransform doAfterCall, 2964 ValueTransform doFallback) { 2965 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2966 auto *callBase = dyn_cast<llvm::CallBase>(value); 2967 2968 if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) { 2969 // Fall back if the call base has operand bundle "clang.arc.attachedcall". 2970 value = doFallback(CGF, value); 2971 } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2972 // Place the retain immediately following the call. 2973 CGF.Builder.SetInsertPoint(call->getParent(), 2974 ++llvm::BasicBlock::iterator(call)); 2975 value = doAfterCall(CGF, value); 2976 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2977 // Place the retain at the beginning of the normal destination block. 2978 llvm::BasicBlock *BB = invoke->getNormalDest(); 2979 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2980 value = doAfterCall(CGF, value); 2981 2982 // Bitcasts can arise because of related-result returns. Rewrite 2983 // the operand. 2984 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2985 // Change the insert point to avoid emitting the fall-back call after the 2986 // bitcast. 2987 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator()); 2988 llvm::Value *operand = bitcast->getOperand(0); 2989 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2990 bitcast->setOperand(0, operand); 2991 value = bitcast; 2992 } else { 2993 auto *phi = dyn_cast<llvm::PHINode>(value); 2994 if (phi && phi->getNumIncomingValues() == 2 && 2995 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) && 2996 isa<llvm::CallBase>(phi->getIncomingValue(0))) { 2997 // Handle phi instructions that are generated when it's necessary to check 2998 // whether the receiver of a message is null. 2999 llvm::Value *inVal = phi->getIncomingValue(0); 3000 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback); 3001 phi->setIncomingValue(0, inVal); 3002 value = phi; 3003 } else { 3004 // Generic fall-back case. 3005 // Retain using the non-block variant: we never need to do a copy 3006 // of a block that's been returned to us. 3007 value = doFallback(CGF, value); 3008 } 3009 } 3010 3011 CGF.Builder.restoreIP(ip); 3012 return value; 3013 } 3014 3015 /// Given that the given expression is some sort of call (which does 3016 /// not return retained), emit a retain following it. 3017 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 3018 const Expr *e) { 3019 llvm::Value *value = CGF.EmitScalarExpr(e); 3020 return emitARCOperationAfterCall(CGF, value, 3021 [](CodeGenFunction &CGF, llvm::Value *value) { 3022 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 3023 }, 3024 [](CodeGenFunction &CGF, llvm::Value *value) { 3025 return CGF.EmitARCRetainNonBlock(value); 3026 }); 3027 } 3028 3029 /// Given that the given expression is some sort of call (which does 3030 /// not return retained), perform an unsafeClaim following it. 3031 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 3032 const Expr *e) { 3033 llvm::Value *value = CGF.EmitScalarExpr(e); 3034 return emitARCOperationAfterCall(CGF, value, 3035 [](CodeGenFunction &CGF, llvm::Value *value) { 3036 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 3037 }, 3038 [](CodeGenFunction &CGF, llvm::Value *value) { 3039 return value; 3040 }); 3041 } 3042 3043 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 3044 bool allowUnsafeClaim) { 3045 if (allowUnsafeClaim && 3046 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 3047 return emitARCUnsafeClaimCallResult(*this, E); 3048 } else { 3049 llvm::Value *value = emitARCRetainCallResult(*this, E); 3050 return EmitObjCConsumeObject(E->getType(), value); 3051 } 3052 } 3053 3054 /// Determine whether it might be important to emit a separate 3055 /// objc_retain_block on the result of the given expression, or 3056 /// whether it's okay to just emit it in a +1 context. 3057 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 3058 assert(e->getType()->isBlockPointerType()); 3059 e = e->IgnoreParens(); 3060 3061 // For future goodness, emit block expressions directly in +1 3062 // contexts if we can. 3063 if (isa<BlockExpr>(e)) 3064 return false; 3065 3066 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 3067 switch (cast->getCastKind()) { 3068 // Emitting these operations in +1 contexts is goodness. 3069 case CK_LValueToRValue: 3070 case CK_ARCReclaimReturnedObject: 3071 case CK_ARCConsumeObject: 3072 case CK_ARCProduceObject: 3073 return false; 3074 3075 // These operations preserve a block type. 3076 case CK_NoOp: 3077 case CK_BitCast: 3078 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 3079 3080 // These operations are known to be bad (or haven't been considered). 3081 case CK_AnyPointerToBlockPointerCast: 3082 default: 3083 return true; 3084 } 3085 } 3086 3087 return true; 3088 } 3089 3090 namespace { 3091 /// A CRTP base class for emitting expressions of retainable object 3092 /// pointer type in ARC. 3093 template <typename Impl, typename Result> class ARCExprEmitter { 3094 protected: 3095 CodeGenFunction &CGF; 3096 Impl &asImpl() { return *static_cast<Impl*>(this); } 3097 3098 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 3099 3100 public: 3101 Result visit(const Expr *e); 3102 Result visitCastExpr(const CastExpr *e); 3103 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 3104 Result visitBlockExpr(const BlockExpr *e); 3105 Result visitBinaryOperator(const BinaryOperator *e); 3106 Result visitBinAssign(const BinaryOperator *e); 3107 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 3108 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 3109 Result visitBinAssignWeak(const BinaryOperator *e); 3110 Result visitBinAssignStrong(const BinaryOperator *e); 3111 3112 // Minimal implementation: 3113 // Result visitLValueToRValue(const Expr *e) 3114 // Result visitConsumeObject(const Expr *e) 3115 // Result visitExtendBlockObject(const Expr *e) 3116 // Result visitReclaimReturnedObject(const Expr *e) 3117 // Result visitCall(const Expr *e) 3118 // Result visitExpr(const Expr *e) 3119 // 3120 // Result emitBitCast(Result result, llvm::Type *resultType) 3121 // llvm::Value *getValueOfResult(Result result) 3122 }; 3123 } 3124 3125 /// Try to emit a PseudoObjectExpr under special ARC rules. 3126 /// 3127 /// This massively duplicates emitPseudoObjectRValue. 3128 template <typename Impl, typename Result> 3129 Result 3130 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 3131 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3132 3133 // Find the result expression. 3134 const Expr *resultExpr = E->getResultExpr(); 3135 assert(resultExpr); 3136 Result result; 3137 3138 for (PseudoObjectExpr::const_semantics_iterator 3139 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3140 const Expr *semantic = *i; 3141 3142 // If this semantic expression is an opaque value, bind it 3143 // to the result of its source expression. 3144 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3145 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3146 OVMA opaqueData; 3147 3148 // If this semantic is the result of the pseudo-object 3149 // expression, try to evaluate the source as +1. 3150 if (ov == resultExpr) { 3151 assert(!OVMA::shouldBindAsLValue(ov)); 3152 result = asImpl().visit(ov->getSourceExpr()); 3153 opaqueData = OVMA::bind(CGF, ov, 3154 RValue::get(asImpl().getValueOfResult(result))); 3155 3156 // Otherwise, just bind it. 3157 } else { 3158 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3159 } 3160 opaques.push_back(opaqueData); 3161 3162 // Otherwise, if the expression is the result, evaluate it 3163 // and remember the result. 3164 } else if (semantic == resultExpr) { 3165 result = asImpl().visit(semantic); 3166 3167 // Otherwise, evaluate the expression in an ignored context. 3168 } else { 3169 CGF.EmitIgnoredExpr(semantic); 3170 } 3171 } 3172 3173 // Unbind all the opaques now. 3174 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3175 opaques[i].unbind(CGF); 3176 3177 return result; 3178 } 3179 3180 template <typename Impl, typename Result> 3181 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3182 // The default implementation just forwards the expression to visitExpr. 3183 return asImpl().visitExpr(e); 3184 } 3185 3186 template <typename Impl, typename Result> 3187 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3188 switch (e->getCastKind()) { 3189 3190 // No-op casts don't change the type, so we just ignore them. 3191 case CK_NoOp: 3192 return asImpl().visit(e->getSubExpr()); 3193 3194 // These casts can change the type. 3195 case CK_CPointerToObjCPointerCast: 3196 case CK_BlockPointerToObjCPointerCast: 3197 case CK_AnyPointerToBlockPointerCast: 3198 case CK_BitCast: { 3199 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3200 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3201 Result result = asImpl().visit(e->getSubExpr()); 3202 return asImpl().emitBitCast(result, resultType); 3203 } 3204 3205 // Handle some casts specially. 3206 case CK_LValueToRValue: 3207 return asImpl().visitLValueToRValue(e->getSubExpr()); 3208 case CK_ARCConsumeObject: 3209 return asImpl().visitConsumeObject(e->getSubExpr()); 3210 case CK_ARCExtendBlockObject: 3211 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3212 case CK_ARCReclaimReturnedObject: 3213 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3214 3215 // Otherwise, use the default logic. 3216 default: 3217 return asImpl().visitExpr(e); 3218 } 3219 } 3220 3221 template <typename Impl, typename Result> 3222 Result 3223 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3224 switch (e->getOpcode()) { 3225 case BO_Comma: 3226 CGF.EmitIgnoredExpr(e->getLHS()); 3227 CGF.EnsureInsertPoint(); 3228 return asImpl().visit(e->getRHS()); 3229 3230 case BO_Assign: 3231 return asImpl().visitBinAssign(e); 3232 3233 default: 3234 return asImpl().visitExpr(e); 3235 } 3236 } 3237 3238 template <typename Impl, typename Result> 3239 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3240 switch (e->getLHS()->getType().getObjCLifetime()) { 3241 case Qualifiers::OCL_ExplicitNone: 3242 return asImpl().visitBinAssignUnsafeUnretained(e); 3243 3244 case Qualifiers::OCL_Weak: 3245 return asImpl().visitBinAssignWeak(e); 3246 3247 case Qualifiers::OCL_Autoreleasing: 3248 return asImpl().visitBinAssignAutoreleasing(e); 3249 3250 case Qualifiers::OCL_Strong: 3251 return asImpl().visitBinAssignStrong(e); 3252 3253 case Qualifiers::OCL_None: 3254 return asImpl().visitExpr(e); 3255 } 3256 llvm_unreachable("bad ObjC ownership qualifier"); 3257 } 3258 3259 /// The default rule for __unsafe_unretained emits the RHS recursively, 3260 /// stores into the unsafe variable, and propagates the result outward. 3261 template <typename Impl, typename Result> 3262 Result ARCExprEmitter<Impl,Result>:: 3263 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3264 // Recursively emit the RHS. 3265 // For __block safety, do this before emitting the LHS. 3266 Result result = asImpl().visit(e->getRHS()); 3267 3268 // Perform the store. 3269 LValue lvalue = 3270 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3271 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3272 lvalue); 3273 3274 return result; 3275 } 3276 3277 template <typename Impl, typename Result> 3278 Result 3279 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3280 return asImpl().visitExpr(e); 3281 } 3282 3283 template <typename Impl, typename Result> 3284 Result 3285 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3286 return asImpl().visitExpr(e); 3287 } 3288 3289 template <typename Impl, typename Result> 3290 Result 3291 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3292 return asImpl().visitExpr(e); 3293 } 3294 3295 /// The general expression-emission logic. 3296 template <typename Impl, typename Result> 3297 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3298 // We should *never* see a nested full-expression here, because if 3299 // we fail to emit at +1, our caller must not retain after we close 3300 // out the full-expression. This isn't as important in the unsafe 3301 // emitter. 3302 assert(!isa<ExprWithCleanups>(e)); 3303 3304 // Look through parens, __extension__, generic selection, etc. 3305 e = e->IgnoreParens(); 3306 3307 // Handle certain kinds of casts. 3308 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3309 return asImpl().visitCastExpr(ce); 3310 3311 // Handle the comma operator. 3312 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3313 return asImpl().visitBinaryOperator(op); 3314 3315 // TODO: handle conditional operators here 3316 3317 // For calls and message sends, use the retained-call logic. 3318 // Delegate inits are a special case in that they're the only 3319 // returns-retained expression that *isn't* surrounded by 3320 // a consume. 3321 } else if (isa<CallExpr>(e) || 3322 (isa<ObjCMessageExpr>(e) && 3323 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3324 return asImpl().visitCall(e); 3325 3326 // Look through pseudo-object expressions. 3327 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3328 return asImpl().visitPseudoObjectExpr(pseudo); 3329 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3330 return asImpl().visitBlockExpr(be); 3331 3332 return asImpl().visitExpr(e); 3333 } 3334 3335 namespace { 3336 3337 /// An emitter for +1 results. 3338 struct ARCRetainExprEmitter : 3339 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3340 3341 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3342 3343 llvm::Value *getValueOfResult(TryEmitResult result) { 3344 return result.getPointer(); 3345 } 3346 3347 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3348 llvm::Value *value = result.getPointer(); 3349 value = CGF.Builder.CreateBitCast(value, resultType); 3350 result.setPointer(value); 3351 return result; 3352 } 3353 3354 TryEmitResult visitLValueToRValue(const Expr *e) { 3355 return tryEmitARCRetainLoadOfScalar(CGF, e); 3356 } 3357 3358 /// For consumptions, just emit the subexpression and thus elide 3359 /// the retain/release pair. 3360 TryEmitResult visitConsumeObject(const Expr *e) { 3361 llvm::Value *result = CGF.EmitScalarExpr(e); 3362 return TryEmitResult(result, true); 3363 } 3364 3365 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3366 TryEmitResult result = visitExpr(e); 3367 // Avoid the block-retain if this is a block literal that doesn't need to be 3368 // copied to the heap. 3369 if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks && 3370 e->getBlockDecl()->canAvoidCopyToHeap()) 3371 result.setInt(true); 3372 return result; 3373 } 3374 3375 /// Block extends are net +0. Naively, we could just recurse on 3376 /// the subexpression, but actually we need to ensure that the 3377 /// value is copied as a block, so there's a little filter here. 3378 TryEmitResult visitExtendBlockObject(const Expr *e) { 3379 llvm::Value *result; // will be a +0 value 3380 3381 // If we can't safely assume the sub-expression will produce a 3382 // block-copied value, emit the sub-expression at +0. 3383 if (shouldEmitSeparateBlockRetain(e)) { 3384 result = CGF.EmitScalarExpr(e); 3385 3386 // Otherwise, try to emit the sub-expression at +1 recursively. 3387 } else { 3388 TryEmitResult subresult = asImpl().visit(e); 3389 3390 // If that produced a retained value, just use that. 3391 if (subresult.getInt()) { 3392 return subresult; 3393 } 3394 3395 // Otherwise it's +0. 3396 result = subresult.getPointer(); 3397 } 3398 3399 // Retain the object as a block. 3400 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3401 return TryEmitResult(result, true); 3402 } 3403 3404 /// For reclaims, emit the subexpression as a retained call and 3405 /// skip the consumption. 3406 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3407 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3408 return TryEmitResult(result, true); 3409 } 3410 3411 /// When we have an undecorated call, retroactively do a claim. 3412 TryEmitResult visitCall(const Expr *e) { 3413 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3414 return TryEmitResult(result, true); 3415 } 3416 3417 // TODO: maybe special-case visitBinAssignWeak? 3418 3419 TryEmitResult visitExpr(const Expr *e) { 3420 // We didn't find an obvious production, so emit what we've got and 3421 // tell the caller that we didn't manage to retain. 3422 llvm::Value *result = CGF.EmitScalarExpr(e); 3423 return TryEmitResult(result, false); 3424 } 3425 }; 3426 } 3427 3428 static TryEmitResult 3429 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3430 return ARCRetainExprEmitter(CGF).visit(e); 3431 } 3432 3433 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3434 LValue lvalue, 3435 QualType type) { 3436 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3437 llvm::Value *value = result.getPointer(); 3438 if (!result.getInt()) 3439 value = CGF.EmitARCRetain(type, value); 3440 return value; 3441 } 3442 3443 /// EmitARCRetainScalarExpr - Semantically equivalent to 3444 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3445 /// best-effort attempt to peephole expressions that naturally produce 3446 /// retained objects. 3447 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3448 // The retain needs to happen within the full-expression. 3449 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3450 RunCleanupsScope scope(*this); 3451 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3452 } 3453 3454 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3455 llvm::Value *value = result.getPointer(); 3456 if (!result.getInt()) 3457 value = EmitARCRetain(e->getType(), value); 3458 return value; 3459 } 3460 3461 llvm::Value * 3462 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3463 // The retain needs to happen within the full-expression. 3464 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3465 RunCleanupsScope scope(*this); 3466 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3467 } 3468 3469 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3470 llvm::Value *value = result.getPointer(); 3471 if (result.getInt()) 3472 value = EmitARCAutorelease(value); 3473 else 3474 value = EmitARCRetainAutorelease(e->getType(), value); 3475 return value; 3476 } 3477 3478 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3479 llvm::Value *result; 3480 bool doRetain; 3481 3482 if (shouldEmitSeparateBlockRetain(e)) { 3483 result = EmitScalarExpr(e); 3484 doRetain = true; 3485 } else { 3486 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3487 result = subresult.getPointer(); 3488 doRetain = !subresult.getInt(); 3489 } 3490 3491 if (doRetain) 3492 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3493 return EmitObjCConsumeObject(e->getType(), result); 3494 } 3495 3496 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3497 // In ARC, retain and autorelease the expression. 3498 if (getLangOpts().ObjCAutoRefCount) { 3499 // Do so before running any cleanups for the full-expression. 3500 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3501 return EmitARCRetainAutoreleaseScalarExpr(expr); 3502 } 3503 3504 // Otherwise, use the normal scalar-expression emission. The 3505 // exception machinery doesn't do anything special with the 3506 // exception like retaining it, so there's no safety associated with 3507 // only running cleanups after the throw has started, and when it 3508 // matters it tends to be substantially inferior code. 3509 return EmitScalarExpr(expr); 3510 } 3511 3512 namespace { 3513 3514 /// An emitter for assigning into an __unsafe_unretained context. 3515 struct ARCUnsafeUnretainedExprEmitter : 3516 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3517 3518 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3519 3520 llvm::Value *getValueOfResult(llvm::Value *value) { 3521 return value; 3522 } 3523 3524 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3525 return CGF.Builder.CreateBitCast(value, resultType); 3526 } 3527 3528 llvm::Value *visitLValueToRValue(const Expr *e) { 3529 return CGF.EmitScalarExpr(e); 3530 } 3531 3532 /// For consumptions, just emit the subexpression and perform the 3533 /// consumption like normal. 3534 llvm::Value *visitConsumeObject(const Expr *e) { 3535 llvm::Value *value = CGF.EmitScalarExpr(e); 3536 return CGF.EmitObjCConsumeObject(e->getType(), value); 3537 } 3538 3539 /// No special logic for block extensions. (This probably can't 3540 /// actually happen in this emitter, though.) 3541 llvm::Value *visitExtendBlockObject(const Expr *e) { 3542 return CGF.EmitARCExtendBlockObject(e); 3543 } 3544 3545 /// For reclaims, perform an unsafeClaim if that's enabled. 3546 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3547 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3548 } 3549 3550 /// When we have an undecorated call, just emit it without adding 3551 /// the unsafeClaim. 3552 llvm::Value *visitCall(const Expr *e) { 3553 return CGF.EmitScalarExpr(e); 3554 } 3555 3556 /// Just do normal scalar emission in the default case. 3557 llvm::Value *visitExpr(const Expr *e) { 3558 return CGF.EmitScalarExpr(e); 3559 } 3560 }; 3561 } 3562 3563 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3564 const Expr *e) { 3565 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3566 } 3567 3568 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3569 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3570 /// avoiding any spurious retains, including by performing reclaims 3571 /// with objc_unsafeClaimAutoreleasedReturnValue. 3572 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3573 // Look through full-expressions. 3574 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3575 RunCleanupsScope scope(*this); 3576 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3577 } 3578 3579 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3580 } 3581 3582 std::pair<LValue,llvm::Value*> 3583 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3584 bool ignored) { 3585 // Evaluate the RHS first. If we're ignoring the result, assume 3586 // that we can emit at an unsafe +0. 3587 llvm::Value *value; 3588 if (ignored) { 3589 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3590 } else { 3591 value = EmitScalarExpr(e->getRHS()); 3592 } 3593 3594 // Emit the LHS and perform the store. 3595 LValue lvalue = EmitLValue(e->getLHS()); 3596 EmitStoreOfScalar(value, lvalue); 3597 3598 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3599 } 3600 3601 std::pair<LValue,llvm::Value*> 3602 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3603 bool ignored) { 3604 // Evaluate the RHS first. 3605 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3606 llvm::Value *value = result.getPointer(); 3607 3608 bool hasImmediateRetain = result.getInt(); 3609 3610 // If we didn't emit a retained object, and the l-value is of block 3611 // type, then we need to emit the block-retain immediately in case 3612 // it invalidates the l-value. 3613 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3614 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3615 hasImmediateRetain = true; 3616 } 3617 3618 LValue lvalue = EmitLValue(e->getLHS()); 3619 3620 // If the RHS was emitted retained, expand this. 3621 if (hasImmediateRetain) { 3622 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3623 EmitStoreOfScalar(value, lvalue); 3624 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3625 } else { 3626 value = EmitARCStoreStrong(lvalue, value, ignored); 3627 } 3628 3629 return std::pair<LValue,llvm::Value*>(lvalue, value); 3630 } 3631 3632 std::pair<LValue,llvm::Value*> 3633 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3634 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3635 LValue lvalue = EmitLValue(e->getLHS()); 3636 3637 EmitStoreOfScalar(value, lvalue); 3638 3639 return std::pair<LValue,llvm::Value*>(lvalue, value); 3640 } 3641 3642 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3643 const ObjCAutoreleasePoolStmt &ARPS) { 3644 const Stmt *subStmt = ARPS.getSubStmt(); 3645 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3646 3647 CGDebugInfo *DI = getDebugInfo(); 3648 if (DI) 3649 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3650 3651 // Keep track of the current cleanup stack depth. 3652 RunCleanupsScope Scope(*this); 3653 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3654 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3655 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3656 } else { 3657 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3658 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3659 } 3660 3661 for (const auto *I : S.body()) 3662 EmitStmt(I); 3663 3664 if (DI) 3665 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3666 } 3667 3668 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3669 /// make sure it survives garbage collection until this point. 3670 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3671 // We just use an inline assembly. 3672 llvm::FunctionType *extenderType 3673 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3674 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3675 /* assembly */ "", 3676 /* constraints */ "r", 3677 /* side effects */ true); 3678 3679 EmitNounwindRuntimeCall(extender, object); 3680 } 3681 3682 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3683 /// non-trivial copy assignment function, produce following helper function. 3684 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3685 /// 3686 llvm::Constant * 3687 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3688 const ObjCPropertyImplDecl *PID) { 3689 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3690 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3691 return nullptr; 3692 3693 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3694 ASTContext &C = getContext(); 3695 3696 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 3697 // Call the move assignment operator instead of calling the copy assignment 3698 // operator and destructor. 3699 CharUnits Alignment = C.getTypeAlignInChars(Ty); 3700 llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator( 3701 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty); 3702 return Fn; 3703 } 3704 3705 if (!getLangOpts().CPlusPlus || 3706 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3707 return nullptr; 3708 if (!Ty->isRecordType()) 3709 return nullptr; 3710 llvm::Constant *HelperFn = nullptr; 3711 if (hasTrivialSetExpr(PID)) 3712 return nullptr; 3713 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3714 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3715 return HelperFn; 3716 3717 const IdentifierInfo *II = 3718 &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3719 3720 QualType ReturnTy = C.VoidTy; 3721 QualType DestTy = C.getPointerType(Ty); 3722 QualType SrcTy = Ty; 3723 SrcTy.addConst(); 3724 SrcTy = C.getPointerType(SrcTy); 3725 3726 SmallVector<QualType, 2> ArgTys; 3727 ArgTys.push_back(DestTy); 3728 ArgTys.push_back(SrcTy); 3729 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3730 3731 FunctionDecl *FD = FunctionDecl::Create( 3732 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3733 FunctionTy, nullptr, SC_Static, false, false, false); 3734 3735 FunctionArgList args; 3736 ParmVarDecl *Params[2]; 3737 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3738 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3739 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3740 /*DefArg=*/nullptr); 3741 args.push_back(Params[0] = DstDecl); 3742 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3743 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3744 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3745 /*DefArg=*/nullptr); 3746 args.push_back(Params[1] = SrcDecl); 3747 FD->setParams(Params); 3748 3749 const CGFunctionInfo &FI = 3750 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3751 3752 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3753 3754 llvm::Function *Fn = 3755 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3756 "__assign_helper_atomic_property_", 3757 &CGM.getModule()); 3758 3759 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3760 3761 StartFunction(FD, ReturnTy, Fn, FI, args); 3762 3763 DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation()); 3764 UnaryOperator *DST = UnaryOperator::Create( 3765 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3766 SourceLocation(), false, FPOptionsOverride()); 3767 3768 DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation()); 3769 UnaryOperator *SRC = UnaryOperator::Create( 3770 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3771 SourceLocation(), false, FPOptionsOverride()); 3772 3773 Expr *Args[2] = {DST, SRC}; 3774 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3775 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3776 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3777 VK_LValue, SourceLocation(), FPOptionsOverride()); 3778 3779 EmitStmt(TheCall); 3780 3781 FinishFunction(); 3782 HelperFn = Fn; 3783 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3784 return HelperFn; 3785 } 3786 3787 llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3788 const ObjCPropertyImplDecl *PID) { 3789 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3790 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3791 return nullptr; 3792 3793 QualType Ty = PD->getType(); 3794 ASTContext &C = getContext(); 3795 3796 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 3797 CharUnits Alignment = C.getTypeAlignInChars(Ty); 3798 llvm::Constant *Fn = getNonTrivialCStructCopyConstructor( 3799 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty); 3800 return Fn; 3801 } 3802 3803 if (!getLangOpts().CPlusPlus || 3804 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3805 return nullptr; 3806 if (!Ty->isRecordType()) 3807 return nullptr; 3808 llvm::Constant *HelperFn = nullptr; 3809 if (hasTrivialGetExpr(PID)) 3810 return nullptr; 3811 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3812 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3813 return HelperFn; 3814 3815 const IdentifierInfo *II = 3816 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3817 3818 QualType ReturnTy = C.VoidTy; 3819 QualType DestTy = C.getPointerType(Ty); 3820 QualType SrcTy = Ty; 3821 SrcTy.addConst(); 3822 SrcTy = C.getPointerType(SrcTy); 3823 3824 SmallVector<QualType, 2> ArgTys; 3825 ArgTys.push_back(DestTy); 3826 ArgTys.push_back(SrcTy); 3827 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3828 3829 FunctionDecl *FD = FunctionDecl::Create( 3830 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3831 FunctionTy, nullptr, SC_Static, false, false, false); 3832 3833 FunctionArgList args; 3834 ParmVarDecl *Params[2]; 3835 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3836 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3837 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3838 /*DefArg=*/nullptr); 3839 args.push_back(Params[0] = DstDecl); 3840 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3841 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3842 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3843 /*DefArg=*/nullptr); 3844 args.push_back(Params[1] = SrcDecl); 3845 FD->setParams(Params); 3846 3847 const CGFunctionInfo &FI = 3848 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3849 3850 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3851 3852 llvm::Function *Fn = llvm::Function::Create( 3853 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3854 &CGM.getModule()); 3855 3856 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3857 3858 StartFunction(FD, ReturnTy, Fn, FI, args); 3859 3860 DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue, 3861 SourceLocation()); 3862 3863 UnaryOperator *SRC = UnaryOperator::Create( 3864 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3865 SourceLocation(), false, FPOptionsOverride()); 3866 3867 CXXConstructExpr *CXXConstExpr = 3868 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3869 3870 SmallVector<Expr*, 4> ConstructorArgs; 3871 ConstructorArgs.push_back(SRC); 3872 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3873 CXXConstExpr->arg_end()); 3874 3875 CXXConstructExpr *TheCXXConstructExpr = 3876 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3877 CXXConstExpr->getConstructor(), 3878 CXXConstExpr->isElidable(), 3879 ConstructorArgs, 3880 CXXConstExpr->hadMultipleCandidates(), 3881 CXXConstExpr->isListInitialization(), 3882 CXXConstExpr->isStdInitListInitialization(), 3883 CXXConstExpr->requiresZeroInitialization(), 3884 CXXConstExpr->getConstructionKind(), 3885 SourceRange()); 3886 3887 DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue, 3888 SourceLocation()); 3889 3890 RValue DV = EmitAnyExpr(&DstExpr); 3891 CharUnits Alignment = 3892 getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3893 EmitAggExpr(TheCXXConstructExpr, 3894 AggValueSlot::forAddr( 3895 Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment), 3896 Qualifiers(), AggValueSlot::IsDestructed, 3897 AggValueSlot::DoesNotNeedGCBarriers, 3898 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 3899 3900 FinishFunction(); 3901 HelperFn = Fn; 3902 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3903 return HelperFn; 3904 } 3905 3906 llvm::Value * 3907 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3908 // Get selectors for retain/autorelease. 3909 const IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3910 Selector CopySelector = 3911 getContext().Selectors.getNullarySelector(CopyID); 3912 const IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3913 Selector AutoreleaseSelector = 3914 getContext().Selectors.getNullarySelector(AutoreleaseID); 3915 3916 // Emit calls to retain/autorelease. 3917 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3918 llvm::Value *Val = Block; 3919 RValue Result; 3920 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3921 Ty, CopySelector, 3922 Val, CallArgList(), nullptr, nullptr); 3923 Val = Result.getScalarVal(); 3924 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3925 Ty, AutoreleaseSelector, 3926 Val, CallArgList(), nullptr, nullptr); 3927 Val = Result.getScalarVal(); 3928 return Val; 3929 } 3930 3931 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) { 3932 switch (TT.getOS()) { 3933 case llvm::Triple::Darwin: 3934 case llvm::Triple::MacOSX: 3935 return llvm::MachO::PLATFORM_MACOS; 3936 case llvm::Triple::IOS: 3937 return llvm::MachO::PLATFORM_IOS; 3938 case llvm::Triple::TvOS: 3939 return llvm::MachO::PLATFORM_TVOS; 3940 case llvm::Triple::WatchOS: 3941 return llvm::MachO::PLATFORM_WATCHOS; 3942 case llvm::Triple::XROS: 3943 return llvm::MachO::PLATFORM_XROS; 3944 case llvm::Triple::DriverKit: 3945 return llvm::MachO::PLATFORM_DRIVERKIT; 3946 default: 3947 return llvm::MachO::PLATFORM_UNKNOWN; 3948 } 3949 } 3950 3951 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF, 3952 const VersionTuple &Version) { 3953 CodeGenModule &CGM = CGF.CGM; 3954 // Note: we intend to support multi-platform version checks, so reserve 3955 // the room for a dual platform checking invocation that will be 3956 // implemented in the future. 3957 llvm::SmallVector<llvm::Value *, 8> Args; 3958 3959 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) { 3960 std::optional<unsigned> Min = Version.getMinor(), 3961 SMin = Version.getSubminor(); 3962 Args.push_back( 3963 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT))); 3964 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor())); 3965 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0))); 3966 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))); 3967 }; 3968 3969 assert(!Version.empty() && "unexpected empty version"); 3970 EmitArgs(Version, CGM.getTarget().getTriple()); 3971 3972 if (!CGM.IsPlatformVersionAtLeastFn) { 3973 llvm::FunctionType *FTy = llvm::FunctionType::get( 3974 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}, 3975 false); 3976 CGM.IsPlatformVersionAtLeastFn = 3977 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast"); 3978 } 3979 3980 llvm::Value *Check = 3981 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args); 3982 return CGF.Builder.CreateICmpNE(Check, 3983 llvm::Constant::getNullValue(CGM.Int32Ty)); 3984 } 3985 3986 llvm::Value * 3987 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) { 3988 // Darwin uses the new __isPlatformVersionAtLeast family of routines. 3989 if (CGM.getTarget().getTriple().isOSDarwin()) 3990 return emitIsPlatformVersionAtLeast(*this, Version); 3991 3992 if (!CGM.IsOSVersionAtLeastFn) { 3993 llvm::FunctionType *FTy = 3994 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3995 CGM.IsOSVersionAtLeastFn = 3996 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3997 } 3998 3999 std::optional<unsigned> Min = Version.getMinor(), 4000 SMin = Version.getSubminor(); 4001 llvm::Value *Args[] = { 4002 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()), 4003 llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)), 4004 llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))}; 4005 4006 llvm::Value *CallRes = 4007 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 4008 4009 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 4010 } 4011 4012 static bool isFoundationNeededForDarwinAvailabilityCheck( 4013 const llvm::Triple &TT, const VersionTuple &TargetVersion) { 4014 VersionTuple FoundationDroppedInVersion; 4015 switch (TT.getOS()) { 4016 case llvm::Triple::IOS: 4017 case llvm::Triple::TvOS: 4018 FoundationDroppedInVersion = VersionTuple(/*Major=*/13); 4019 break; 4020 case llvm::Triple::WatchOS: 4021 FoundationDroppedInVersion = VersionTuple(/*Major=*/6); 4022 break; 4023 case llvm::Triple::Darwin: 4024 case llvm::Triple::MacOSX: 4025 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15); 4026 break; 4027 case llvm::Triple::XROS: 4028 // XROS doesn't need Foundation. 4029 return false; 4030 case llvm::Triple::DriverKit: 4031 // DriverKit doesn't need Foundation. 4032 return false; 4033 default: 4034 llvm_unreachable("Unexpected OS"); 4035 } 4036 return TargetVersion < FoundationDroppedInVersion; 4037 } 4038 4039 void CodeGenModule::emitAtAvailableLinkGuard() { 4040 if (!IsPlatformVersionAtLeastFn) 4041 return; 4042 // @available requires CoreFoundation only on Darwin. 4043 if (!Target.getTriple().isOSDarwin()) 4044 return; 4045 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or 4046 // watchOS 6+. 4047 if (!isFoundationNeededForDarwinAvailabilityCheck( 4048 Target.getTriple(), Target.getPlatformMinVersion())) 4049 return; 4050 // Add -framework CoreFoundation to the linker commands. We still want to 4051 // emit the core foundation reference down below because otherwise if 4052 // CoreFoundation is not used in the code, the linker won't link the 4053 // framework. 4054 auto &Context = getLLVMContext(); 4055 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 4056 llvm::MDString::get(Context, "CoreFoundation")}; 4057 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 4058 // Emit a reference to a symbol from CoreFoundation to ensure that 4059 // CoreFoundation is linked into the final binary. 4060 llvm::FunctionType *FTy = 4061 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 4062 llvm::FunctionCallee CFFunc = 4063 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 4064 4065 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 4066 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 4067 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 4068 llvm::AttributeList(), /*Local=*/true); 4069 llvm::Function *CFLinkCheckFunc = 4070 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 4071 if (CFLinkCheckFunc->empty()) { 4072 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 4073 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 4074 CodeGenFunction CGF(*this); 4075 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 4076 CGF.EmitNounwindRuntimeCall(CFFunc, 4077 llvm::Constant::getNullValue(VoidPtrTy)); 4078 CGF.Builder.CreateUnreachable(); 4079 addCompilerUsedGlobal(CFLinkCheckFunc); 4080 } 4081 } 4082 4083 CGObjCRuntime::~CGObjCRuntime() {} 4084