xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGObjC.cpp (revision afdb42987ca82869eeaecf6dc25c2b6fb7b8370e)
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Analysis/ObjCARCUtil.h"
27 #include "llvm/BinaryFormat/MachO.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
34 static TryEmitResult
35 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
36 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
37                                    QualType ET,
38                                    RValue Result);
39 
40 /// Given the address of a variable of pointer type, find the correct
41 /// null to store into it.
42 static llvm::Constant *getNullForVariable(Address addr) {
43   llvm::Type *type = addr.getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
59 /// or [NSValue valueWithBytes:objCType:].
60 ///
61 llvm::Value *
62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
63   // Generate the correct selector for this literal's concrete type.
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   const Expr *SubExpr = E->getSubExpr();
67 
68   if (E->isExpressibleAsConstantInitializer()) {
69     ConstantEmitter ConstEmitter(CGM);
70     return ConstEmitter.tryEmitAbstract(E, E->getType());
71   }
72 
73   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
74   Selector Sel = BoxingMethod->getSelector();
75 
76   // Generate a reference to the class pointer, which will be the receiver.
77   // Assumes that the method was introduced in the class that should be
78   // messaged (avoids pulling it out of the result type).
79   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
80   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
81   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
82 
83   CallArgList Args;
84   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
85   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
86 
87   // ObjCBoxedExpr supports boxing of structs and unions
88   // via [NSValue valueWithBytes:objCType:]
89   const QualType ValueType(SubExpr->getType().getCanonicalType());
90   if (ValueType->isObjCBoxableRecordType()) {
91     // Emit CodeGen for first parameter
92     // and cast value to correct type
93     Address Temporary = CreateMemTemp(SubExpr->getType());
94     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
95     llvm::Value *BitCast =
96         Builder.CreateBitCast(Temporary.getPointer(), ConvertType(ArgQT));
97     Args.add(RValue::get(BitCast), ArgQT);
98 
99     // Create char array to store type encoding
100     std::string Str;
101     getContext().getObjCEncodingForType(ValueType, Str);
102     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
103 
104     // Cast type encoding to correct type
105     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
106     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
107     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
108 
109     Args.add(RValue::get(Cast), EncodingQT);
110   } else {
111     Args.add(EmitAnyExpr(SubExpr), ArgQT);
112   }
113 
114   RValue result = Runtime.GenerateMessageSend(
115       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
116       Args, ClassDecl, BoxingMethod);
117   return Builder.CreateBitCast(result.getScalarVal(),
118                                ConvertType(E->getType()));
119 }
120 
121 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
122                                     const ObjCMethodDecl *MethodWithObjects) {
123   ASTContext &Context = CGM.getContext();
124   const ObjCDictionaryLiteral *DLE = nullptr;
125   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
126   if (!ALE)
127     DLE = cast<ObjCDictionaryLiteral>(E);
128 
129   // Optimize empty collections by referencing constants, when available.
130   uint64_t NumElements =
131     ALE ? ALE->getNumElements() : DLE->getNumElements();
132   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
133     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
134     QualType IdTy(CGM.getContext().getObjCIdType());
135     llvm::Constant *Constant =
136         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
137     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
138     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
139     cast<llvm::LoadInst>(Ptr)->setMetadata(
140         CGM.getModule().getMDKindID("invariant.load"),
141         llvm::MDNode::get(getLLVMContext(), None));
142     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
143   }
144 
145   // Compute the type of the array we're initializing.
146   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
147                             NumElements);
148   QualType ElementType = Context.getObjCIdType().withConst();
149   QualType ElementArrayType
150     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
151                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
152 
153   // Allocate the temporary array(s).
154   Address Objects = CreateMemTemp(ElementArrayType, "objects");
155   Address Keys = Address::invalid();
156   if (DLE)
157     Keys = CreateMemTemp(ElementArrayType, "keys");
158 
159   // In ARC, we may need to do extra work to keep all the keys and
160   // values alive until after the call.
161   SmallVector<llvm::Value *, 16> NeededObjects;
162   bool TrackNeededObjects =
163     (getLangOpts().ObjCAutoRefCount &&
164     CGM.getCodeGenOpts().OptimizationLevel != 0);
165 
166   // Perform the actual initialialization of the array(s).
167   for (uint64_t i = 0; i < NumElements; i++) {
168     if (ALE) {
169       // Emit the element and store it to the appropriate array slot.
170       const Expr *Rhs = ALE->getElement(i);
171       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
172                                  ElementType, AlignmentSource::Decl);
173 
174       llvm::Value *value = EmitScalarExpr(Rhs);
175       EmitStoreThroughLValue(RValue::get(value), LV, true);
176       if (TrackNeededObjects) {
177         NeededObjects.push_back(value);
178       }
179     } else {
180       // Emit the key and store it to the appropriate array slot.
181       const Expr *Key = DLE->getKeyValueElement(i).Key;
182       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
183                                     ElementType, AlignmentSource::Decl);
184       llvm::Value *keyValue = EmitScalarExpr(Key);
185       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
186 
187       // Emit the value and store it to the appropriate array slot.
188       const Expr *Value = DLE->getKeyValueElement(i).Value;
189       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
190                                       ElementType, AlignmentSource::Decl);
191       llvm::Value *valueValue = EmitScalarExpr(Value);
192       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
193       if (TrackNeededObjects) {
194         NeededObjects.push_back(keyValue);
195         NeededObjects.push_back(valueValue);
196       }
197     }
198   }
199 
200   // Generate the argument list.
201   CallArgList Args;
202   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
203   const ParmVarDecl *argDecl = *PI++;
204   QualType ArgQT = argDecl->getType().getUnqualifiedType();
205   Args.add(RValue::get(Objects.getPointer()), ArgQT);
206   if (DLE) {
207     argDecl = *PI++;
208     ArgQT = argDecl->getType().getUnqualifiedType();
209     Args.add(RValue::get(Keys.getPointer()), ArgQT);
210   }
211   argDecl = *PI;
212   ArgQT = argDecl->getType().getUnqualifiedType();
213   llvm::Value *Count =
214     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
215   Args.add(RValue::get(Count), ArgQT);
216 
217   // Generate a reference to the class pointer, which will be the receiver.
218   Selector Sel = MethodWithObjects->getSelector();
219   QualType ResultType = E->getType();
220   const ObjCObjectPointerType *InterfacePointerType
221     = ResultType->getAsObjCInterfacePointerType();
222   ObjCInterfaceDecl *Class
223     = InterfacePointerType->getObjectType()->getInterface();
224   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
225   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
226 
227   // Generate the message send.
228   RValue result = Runtime.GenerateMessageSend(
229       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
230       Receiver, Args, Class, MethodWithObjects);
231 
232   // The above message send needs these objects, but in ARC they are
233   // passed in a buffer that is essentially __unsafe_unretained.
234   // Therefore we must prevent the optimizer from releasing them until
235   // after the call.
236   if (TrackNeededObjects) {
237     EmitARCIntrinsicUse(NeededObjects);
238   }
239 
240   return Builder.CreateBitCast(result.getScalarVal(),
241                                ConvertType(E->getType()));
242 }
243 
244 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
245   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
246 }
247 
248 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
249                                             const ObjCDictionaryLiteral *E) {
250   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
251 }
252 
253 /// Emit a selector.
254 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
255   // Untyped selector.
256   // Note that this implementation allows for non-constant strings to be passed
257   // as arguments to @selector().  Currently, the only thing preventing this
258   // behaviour is the type checking in the front end.
259   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
260 }
261 
262 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
263   // FIXME: This should pass the Decl not the name.
264   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
265 }
266 
267 /// Adjust the type of an Objective-C object that doesn't match up due
268 /// to type erasure at various points, e.g., related result types or the use
269 /// of parameterized classes.
270 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
271                                    RValue Result) {
272   if (!ExpT->isObjCRetainableType())
273     return Result;
274 
275   // If the converted types are the same, we're done.
276   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
277   if (ExpLLVMTy == Result.getScalarVal()->getType())
278     return Result;
279 
280   // We have applied a substitution. Cast the rvalue appropriately.
281   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
282                                                ExpLLVMTy));
283 }
284 
285 /// Decide whether to extend the lifetime of the receiver of a
286 /// returns-inner-pointer message.
287 static bool
288 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
289   switch (message->getReceiverKind()) {
290 
291   // For a normal instance message, we should extend unless the
292   // receiver is loaded from a variable with precise lifetime.
293   case ObjCMessageExpr::Instance: {
294     const Expr *receiver = message->getInstanceReceiver();
295 
296     // Look through OVEs.
297     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
298       if (opaque->getSourceExpr())
299         receiver = opaque->getSourceExpr()->IgnoreParens();
300     }
301 
302     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
303     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
304     receiver = ice->getSubExpr()->IgnoreParens();
305 
306     // Look through OVEs.
307     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
308       if (opaque->getSourceExpr())
309         receiver = opaque->getSourceExpr()->IgnoreParens();
310     }
311 
312     // Only __strong variables.
313     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
314       return true;
315 
316     // All ivars and fields have precise lifetime.
317     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
318       return false;
319 
320     // Otherwise, check for variables.
321     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
322     if (!declRef) return true;
323     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
324     if (!var) return true;
325 
326     // All variables have precise lifetime except local variables with
327     // automatic storage duration that aren't specially marked.
328     return (var->hasLocalStorage() &&
329             !var->hasAttr<ObjCPreciseLifetimeAttr>());
330   }
331 
332   case ObjCMessageExpr::Class:
333   case ObjCMessageExpr::SuperClass:
334     // It's never necessary for class objects.
335     return false;
336 
337   case ObjCMessageExpr::SuperInstance:
338     // We generally assume that 'self' lives throughout a method call.
339     return false;
340   }
341 
342   llvm_unreachable("invalid receiver kind");
343 }
344 
345 /// Given an expression of ObjC pointer type, check whether it was
346 /// immediately loaded from an ARC __weak l-value.
347 static const Expr *findWeakLValue(const Expr *E) {
348   assert(E->getType()->isObjCRetainableType());
349   E = E->IgnoreParens();
350   if (auto CE = dyn_cast<CastExpr>(E)) {
351     if (CE->getCastKind() == CK_LValueToRValue) {
352       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
353         return CE->getSubExpr();
354     }
355   }
356 
357   return nullptr;
358 }
359 
360 /// The ObjC runtime may provide entrypoints that are likely to be faster
361 /// than an ordinary message send of the appropriate selector.
362 ///
363 /// The entrypoints are guaranteed to be equivalent to just sending the
364 /// corresponding message.  If the entrypoint is implemented naively as just a
365 /// message send, using it is a trade-off: it sacrifices a few cycles of
366 /// overhead to save a small amount of code.  However, it's possible for
367 /// runtimes to detect and special-case classes that use "standard"
368 /// behavior; if that's dynamically a large proportion of all objects, using
369 /// the entrypoint will also be faster than using a message send.
370 ///
371 /// If the runtime does support a required entrypoint, then this method will
372 /// generate a call and return the resulting value.  Otherwise it will return
373 /// None and the caller can generate a msgSend instead.
374 static Optional<llvm::Value *>
375 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
376                                   llvm::Value *Receiver,
377                                   const CallArgList& Args, Selector Sel,
378                                   const ObjCMethodDecl *method,
379                                   bool isClassMessage) {
380   auto &CGM = CGF.CGM;
381   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
382     return None;
383 
384   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
385   switch (Sel.getMethodFamily()) {
386   case OMF_alloc:
387     if (isClassMessage &&
388         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
389         ResultType->isObjCObjectPointerType()) {
390         // [Foo alloc] -> objc_alloc(Foo) or
391         // [self alloc] -> objc_alloc(self)
392         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
393           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
394         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
395         // [self allocWithZone:nil] -> objc_allocWithZone(self)
396         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
397             Args.size() == 1 && Args.front().getType()->isPointerType() &&
398             Sel.getNameForSlot(0) == "allocWithZone") {
399           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
400           if (isa<llvm::ConstantPointerNull>(arg))
401             return CGF.EmitObjCAllocWithZone(Receiver,
402                                              CGF.ConvertType(ResultType));
403           return None;
404         }
405     }
406     break;
407 
408   case OMF_autorelease:
409     if (ResultType->isObjCObjectPointerType() &&
410         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
411         Runtime.shouldUseARCFunctionsForRetainRelease())
412       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
413     break;
414 
415   case OMF_retain:
416     if (ResultType->isObjCObjectPointerType() &&
417         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
418         Runtime.shouldUseARCFunctionsForRetainRelease())
419       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
420     break;
421 
422   case OMF_release:
423     if (ResultType->isVoidType() &&
424         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
425         Runtime.shouldUseARCFunctionsForRetainRelease()) {
426       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
427       return nullptr;
428     }
429     break;
430 
431   default:
432     break;
433   }
434   return None;
435 }
436 
437 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
438     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
439     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
440     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
441     bool isClassMessage) {
442   if (Optional<llvm::Value *> SpecializedResult =
443           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
444                                             Sel, Method, isClassMessage)) {
445     return RValue::get(*SpecializedResult);
446   }
447   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
448                              Method);
449 }
450 
451 static void AppendFirstImpliedRuntimeProtocols(
452     const ObjCProtocolDecl *PD,
453     llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
454   if (!PD->isNonRuntimeProtocol()) {
455     const auto *Can = PD->getCanonicalDecl();
456     PDs.insert(Can);
457     return;
458   }
459 
460   for (const auto *ParentPD : PD->protocols())
461     AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
462 }
463 
464 std::vector<const ObjCProtocolDecl *>
465 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
466                                       ObjCProtocolDecl::protocol_iterator end) {
467   std::vector<const ObjCProtocolDecl *> RuntimePds;
468   llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
469 
470   for (; begin != end; ++begin) {
471     const auto *It = *begin;
472     const auto *Can = It->getCanonicalDecl();
473     if (Can->isNonRuntimeProtocol())
474       NonRuntimePDs.insert(Can);
475     else
476       RuntimePds.push_back(Can);
477   }
478 
479   // If there are no non-runtime protocols then we can just stop now.
480   if (NonRuntimePDs.empty())
481     return RuntimePds;
482 
483   // Else we have to search through the non-runtime protocol's inheritancy
484   // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
485   // a non-runtime protocol without any parents. These are the "first-implied"
486   // protocols from a non-runtime protocol.
487   llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
488   for (const auto *PD : NonRuntimePDs)
489     AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
490 
491   // Walk the Runtime list to get all protocols implied via the inclusion of
492   // this protocol, e.g. all protocols it inherits from including itself.
493   llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
494   for (const auto *PD : RuntimePds) {
495     const auto *Can = PD->getCanonicalDecl();
496     AllImpliedProtocols.insert(Can);
497     Can->getImpliedProtocols(AllImpliedProtocols);
498   }
499 
500   // Similar to above, walk the list of first-implied protocols to find the set
501   // all the protocols implied excluding the listed protocols themselves since
502   // they are not yet a part of the `RuntimePds` list.
503   for (const auto *PD : FirstImpliedProtos) {
504     PD->getImpliedProtocols(AllImpliedProtocols);
505   }
506 
507   // From the first-implied list we have to finish building the final protocol
508   // list. If a protocol in the first-implied list was already implied via some
509   // inheritance path through some other protocols then it would be redundant to
510   // add it here and so we skip over it.
511   for (const auto *PD : FirstImpliedProtos) {
512     if (!AllImpliedProtocols.contains(PD)) {
513       RuntimePds.push_back(PD);
514     }
515   }
516 
517   return RuntimePds;
518 }
519 
520 /// Instead of '[[MyClass alloc] init]', try to generate
521 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
522 /// caller side, as well as the optimized objc_alloc.
523 static Optional<llvm::Value *>
524 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
525   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
526   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
527     return None;
528 
529   // Match the exact pattern '[[MyClass alloc] init]'.
530   Selector Sel = OME->getSelector();
531   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
532       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
533       Sel.getNameForSlot(0) != "init")
534     return None;
535 
536   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
537   // with 'cls' a Class.
538   auto *SubOME =
539       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
540   if (!SubOME)
541     return None;
542   Selector SubSel = SubOME->getSelector();
543 
544   if (!SubOME->getType()->isObjCObjectPointerType() ||
545       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
546     return None;
547 
548   llvm::Value *Receiver = nullptr;
549   switch (SubOME->getReceiverKind()) {
550   case ObjCMessageExpr::Instance:
551     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
552       return None;
553     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
554     break;
555 
556   case ObjCMessageExpr::Class: {
557     QualType ReceiverType = SubOME->getClassReceiver();
558     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
559     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
560     assert(ID && "null interface should be impossible here");
561     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
562     break;
563   }
564   case ObjCMessageExpr::SuperInstance:
565   case ObjCMessageExpr::SuperClass:
566     return None;
567   }
568 
569   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
570 }
571 
572 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
573                                             ReturnValueSlot Return) {
574   // Only the lookup mechanism and first two arguments of the method
575   // implementation vary between runtimes.  We can get the receiver and
576   // arguments in generic code.
577 
578   bool isDelegateInit = E->isDelegateInitCall();
579 
580   const ObjCMethodDecl *method = E->getMethodDecl();
581 
582   // If the method is -retain, and the receiver's being loaded from
583   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
584   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
585       method->getMethodFamily() == OMF_retain) {
586     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
587       LValue lvalue = EmitLValue(lvalueExpr);
588       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
589       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
590     }
591   }
592 
593   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
594     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
595 
596   // We don't retain the receiver in delegate init calls, and this is
597   // safe because the receiver value is always loaded from 'self',
598   // which we zero out.  We don't want to Block_copy block receivers,
599   // though.
600   bool retainSelf =
601     (!isDelegateInit &&
602      CGM.getLangOpts().ObjCAutoRefCount &&
603      method &&
604      method->hasAttr<NSConsumesSelfAttr>());
605 
606   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
607   bool isSuperMessage = false;
608   bool isClassMessage = false;
609   ObjCInterfaceDecl *OID = nullptr;
610   // Find the receiver
611   QualType ReceiverType;
612   llvm::Value *Receiver = nullptr;
613   switch (E->getReceiverKind()) {
614   case ObjCMessageExpr::Instance:
615     ReceiverType = E->getInstanceReceiver()->getType();
616     isClassMessage = ReceiverType->isObjCClassType();
617     if (retainSelf) {
618       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
619                                                    E->getInstanceReceiver());
620       Receiver = ter.getPointer();
621       if (ter.getInt()) retainSelf = false;
622     } else
623       Receiver = EmitScalarExpr(E->getInstanceReceiver());
624     break;
625 
626   case ObjCMessageExpr::Class: {
627     ReceiverType = E->getClassReceiver();
628     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
629     assert(OID && "Invalid Objective-C class message send");
630     Receiver = Runtime.GetClass(*this, OID);
631     isClassMessage = true;
632     break;
633   }
634 
635   case ObjCMessageExpr::SuperInstance:
636     ReceiverType = E->getSuperType();
637     Receiver = LoadObjCSelf();
638     isSuperMessage = true;
639     break;
640 
641   case ObjCMessageExpr::SuperClass:
642     ReceiverType = E->getSuperType();
643     Receiver = LoadObjCSelf();
644     isSuperMessage = true;
645     isClassMessage = true;
646     break;
647   }
648 
649   if (retainSelf)
650     Receiver = EmitARCRetainNonBlock(Receiver);
651 
652   // In ARC, we sometimes want to "extend the lifetime"
653   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
654   // messages.
655   if (getLangOpts().ObjCAutoRefCount && method &&
656       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
657       shouldExtendReceiverForInnerPointerMessage(E))
658     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
659 
660   QualType ResultType = method ? method->getReturnType() : E->getType();
661 
662   CallArgList Args;
663   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
664 
665   // For delegate init calls in ARC, do an unsafe store of null into
666   // self.  This represents the call taking direct ownership of that
667   // value.  We have to do this after emitting the other call
668   // arguments because they might also reference self, but we don't
669   // have to worry about any of them modifying self because that would
670   // be an undefined read and write of an object in unordered
671   // expressions.
672   if (isDelegateInit) {
673     assert(getLangOpts().ObjCAutoRefCount &&
674            "delegate init calls should only be marked in ARC");
675 
676     // Do an unsafe store of null into self.
677     Address selfAddr =
678       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
679     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
680   }
681 
682   RValue result;
683   if (isSuperMessage) {
684     // super is only valid in an Objective-C method
685     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
686     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
687     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
688                                               E->getSelector(),
689                                               OMD->getClassInterface(),
690                                               isCategoryImpl,
691                                               Receiver,
692                                               isClassMessage,
693                                               Args,
694                                               method);
695   } else {
696     // Call runtime methods directly if we can.
697     result = Runtime.GeneratePossiblySpecializedMessageSend(
698         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
699         method, isClassMessage);
700   }
701 
702   // For delegate init calls in ARC, implicitly store the result of
703   // the call back into self.  This takes ownership of the value.
704   if (isDelegateInit) {
705     Address selfAddr =
706       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
707     llvm::Value *newSelf = result.getScalarVal();
708 
709     // The delegate return type isn't necessarily a matching type; in
710     // fact, it's quite likely to be 'id'.
711     llvm::Type *selfTy = selfAddr.getElementType();
712     newSelf = Builder.CreateBitCast(newSelf, selfTy);
713 
714     Builder.CreateStore(newSelf, selfAddr);
715   }
716 
717   return AdjustObjCObjectType(*this, E->getType(), result);
718 }
719 
720 namespace {
721 struct FinishARCDealloc final : EHScopeStack::Cleanup {
722   void Emit(CodeGenFunction &CGF, Flags flags) override {
723     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
724 
725     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
726     const ObjCInterfaceDecl *iface = impl->getClassInterface();
727     if (!iface->getSuperClass()) return;
728 
729     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
730 
731     // Call [super dealloc] if we have a superclass.
732     llvm::Value *self = CGF.LoadObjCSelf();
733 
734     CallArgList args;
735     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
736                                                       CGF.getContext().VoidTy,
737                                                       method->getSelector(),
738                                                       iface,
739                                                       isCategory,
740                                                       self,
741                                                       /*is class msg*/ false,
742                                                       args,
743                                                       method);
744   }
745 };
746 }
747 
748 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
749 /// the LLVM function and sets the other context used by
750 /// CodeGenFunction.
751 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
752                                       const ObjCContainerDecl *CD) {
753   SourceLocation StartLoc = OMD->getBeginLoc();
754   FunctionArgList args;
755   // Check if we should generate debug info for this method.
756   if (OMD->hasAttr<NoDebugAttr>())
757     DebugInfo = nullptr; // disable debug info indefinitely for this function
758 
759   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
760 
761   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
762   if (OMD->isDirectMethod()) {
763     Fn->setVisibility(llvm::Function::HiddenVisibility);
764     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
765     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
766   } else {
767     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
768   }
769 
770   args.push_back(OMD->getSelfDecl());
771   args.push_back(OMD->getCmdDecl());
772 
773   args.append(OMD->param_begin(), OMD->param_end());
774 
775   CurGD = OMD;
776   CurEHLocation = OMD->getEndLoc();
777 
778   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
779                 OMD->getLocation(), StartLoc);
780 
781   if (OMD->isDirectMethod()) {
782     // This function is a direct call, it has to implement a nil check
783     // on entry.
784     //
785     // TODO: possibly have several entry points to elide the check
786     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
787   }
788 
789   // In ARC, certain methods get an extra cleanup.
790   if (CGM.getLangOpts().ObjCAutoRefCount &&
791       OMD->isInstanceMethod() &&
792       OMD->getSelector().isUnarySelector()) {
793     const IdentifierInfo *ident =
794       OMD->getSelector().getIdentifierInfoForSlot(0);
795     if (ident->isStr("dealloc"))
796       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
797   }
798 }
799 
800 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
801                                               LValue lvalue, QualType type);
802 
803 /// Generate an Objective-C method.  An Objective-C method is a C function with
804 /// its pointer, name, and types registered in the class structure.
805 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
806   StartObjCMethod(OMD, OMD->getClassInterface());
807   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
808   assert(isa<CompoundStmt>(OMD->getBody()));
809   incrementProfileCounter(OMD->getBody());
810   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
811   FinishFunction(OMD->getBodyRBrace());
812 }
813 
814 /// emitStructGetterCall - Call the runtime function to load a property
815 /// into the return value slot.
816 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
817                                  bool isAtomic, bool hasStrong) {
818   ASTContext &Context = CGF.getContext();
819 
820   llvm::Value *src =
821       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
822           .getPointer(CGF);
823 
824   // objc_copyStruct (ReturnValue, &structIvar,
825   //                  sizeof (Type of Ivar), isAtomic, false);
826   CallArgList args;
827 
828   llvm::Value *dest =
829       CGF.Builder.CreateBitCast(CGF.ReturnValue.getPointer(), CGF.VoidPtrTy);
830   args.add(RValue::get(dest), Context.VoidPtrTy);
831 
832   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
833   args.add(RValue::get(src), Context.VoidPtrTy);
834 
835   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
836   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
837   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
838   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
839 
840   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
841   CGCallee callee = CGCallee::forDirect(fn);
842   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
843                callee, ReturnValueSlot(), args);
844 }
845 
846 /// Determine whether the given architecture supports unaligned atomic
847 /// accesses.  They don't have to be fast, just faster than a function
848 /// call and a mutex.
849 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
850   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
851   // currently supported by the backend.)
852   return false;
853 }
854 
855 /// Return the maximum size that permits atomic accesses for the given
856 /// architecture.
857 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
858                                         llvm::Triple::ArchType arch) {
859   // ARM has 8-byte atomic accesses, but it's not clear whether we
860   // want to rely on them here.
861 
862   // In the default case, just assume that any size up to a pointer is
863   // fine given adequate alignment.
864   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
865 }
866 
867 namespace {
868   class PropertyImplStrategy {
869   public:
870     enum StrategyKind {
871       /// The 'native' strategy is to use the architecture's provided
872       /// reads and writes.
873       Native,
874 
875       /// Use objc_setProperty and objc_getProperty.
876       GetSetProperty,
877 
878       /// Use objc_setProperty for the setter, but use expression
879       /// evaluation for the getter.
880       SetPropertyAndExpressionGet,
881 
882       /// Use objc_copyStruct.
883       CopyStruct,
884 
885       /// The 'expression' strategy is to emit normal assignment or
886       /// lvalue-to-rvalue expressions.
887       Expression
888     };
889 
890     StrategyKind getKind() const { return StrategyKind(Kind); }
891 
892     bool hasStrongMember() const { return HasStrong; }
893     bool isAtomic() const { return IsAtomic; }
894     bool isCopy() const { return IsCopy; }
895 
896     CharUnits getIvarSize() const { return IvarSize; }
897     CharUnits getIvarAlignment() const { return IvarAlignment; }
898 
899     PropertyImplStrategy(CodeGenModule &CGM,
900                          const ObjCPropertyImplDecl *propImpl);
901 
902   private:
903     unsigned Kind : 8;
904     unsigned IsAtomic : 1;
905     unsigned IsCopy : 1;
906     unsigned HasStrong : 1;
907 
908     CharUnits IvarSize;
909     CharUnits IvarAlignment;
910   };
911 }
912 
913 /// Pick an implementation strategy for the given property synthesis.
914 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
915                                      const ObjCPropertyImplDecl *propImpl) {
916   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
917   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
918 
919   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
920   IsAtomic = prop->isAtomic();
921   HasStrong = false; // doesn't matter here.
922 
923   // Evaluate the ivar's size and alignment.
924   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
925   QualType ivarType = ivar->getType();
926   auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
927   IvarSize = TInfo.Width;
928   IvarAlignment = TInfo.Align;
929 
930   // If we have a copy property, we always have to use setProperty.
931   // If the property is atomic we need to use getProperty, but in
932   // the nonatomic case we can just use expression.
933   if (IsCopy) {
934     Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
935     return;
936   }
937 
938   // Handle retain.
939   if (setterKind == ObjCPropertyDecl::Retain) {
940     // In GC-only, there's nothing special that needs to be done.
941     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
942       // fallthrough
943 
944     // In ARC, if the property is non-atomic, use expression emission,
945     // which translates to objc_storeStrong.  This isn't required, but
946     // it's slightly nicer.
947     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
948       // Using standard expression emission for the setter is only
949       // acceptable if the ivar is __strong, which won't be true if
950       // the property is annotated with __attribute__((NSObject)).
951       // TODO: falling all the way back to objc_setProperty here is
952       // just laziness, though;  we could still use objc_storeStrong
953       // if we hacked it right.
954       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
955         Kind = Expression;
956       else
957         Kind = SetPropertyAndExpressionGet;
958       return;
959 
960     // Otherwise, we need to at least use setProperty.  However, if
961     // the property isn't atomic, we can use normal expression
962     // emission for the getter.
963     } else if (!IsAtomic) {
964       Kind = SetPropertyAndExpressionGet;
965       return;
966 
967     // Otherwise, we have to use both setProperty and getProperty.
968     } else {
969       Kind = GetSetProperty;
970       return;
971     }
972   }
973 
974   // If we're not atomic, just use expression accesses.
975   if (!IsAtomic) {
976     Kind = Expression;
977     return;
978   }
979 
980   // Properties on bitfield ivars need to be emitted using expression
981   // accesses even if they're nominally atomic.
982   if (ivar->isBitField()) {
983     Kind = Expression;
984     return;
985   }
986 
987   // GC-qualified or ARC-qualified ivars need to be emitted as
988   // expressions.  This actually works out to being atomic anyway,
989   // except for ARC __strong, but that should trigger the above code.
990   if (ivarType.hasNonTrivialObjCLifetime() ||
991       (CGM.getLangOpts().getGC() &&
992        CGM.getContext().getObjCGCAttrKind(ivarType))) {
993     Kind = Expression;
994     return;
995   }
996 
997   // Compute whether the ivar has strong members.
998   if (CGM.getLangOpts().getGC())
999     if (const RecordType *recordType = ivarType->getAs<RecordType>())
1000       HasStrong = recordType->getDecl()->hasObjectMember();
1001 
1002   // We can never access structs with object members with a native
1003   // access, because we need to use write barriers.  This is what
1004   // objc_copyStruct is for.
1005   if (HasStrong) {
1006     Kind = CopyStruct;
1007     return;
1008   }
1009 
1010   // Otherwise, this is target-dependent and based on the size and
1011   // alignment of the ivar.
1012 
1013   // If the size of the ivar is not a power of two, give up.  We don't
1014   // want to get into the business of doing compare-and-swaps.
1015   if (!IvarSize.isPowerOfTwo()) {
1016     Kind = CopyStruct;
1017     return;
1018   }
1019 
1020   llvm::Triple::ArchType arch =
1021     CGM.getTarget().getTriple().getArch();
1022 
1023   // Most architectures require memory to fit within a single cache
1024   // line, so the alignment has to be at least the size of the access.
1025   // Otherwise we have to grab a lock.
1026   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1027     Kind = CopyStruct;
1028     return;
1029   }
1030 
1031   // If the ivar's size exceeds the architecture's maximum atomic
1032   // access size, we have to use CopyStruct.
1033   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1034     Kind = CopyStruct;
1035     return;
1036   }
1037 
1038   // Otherwise, we can use native loads and stores.
1039   Kind = Native;
1040 }
1041 
1042 /// Generate an Objective-C property getter function.
1043 ///
1044 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1045 /// is illegal within a category.
1046 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1047                                          const ObjCPropertyImplDecl *PID) {
1048   llvm::Constant *AtomicHelperFn =
1049       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1050   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1051   assert(OMD && "Invalid call to generate getter (empty method)");
1052   StartObjCMethod(OMD, IMP->getClassInterface());
1053 
1054   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1055 
1056   FinishFunction(OMD->getEndLoc());
1057 }
1058 
1059 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1060   const Expr *getter = propImpl->getGetterCXXConstructor();
1061   if (!getter) return true;
1062 
1063   // Sema only makes only of these when the ivar has a C++ class type,
1064   // so the form is pretty constrained.
1065 
1066   // If the property has a reference type, we might just be binding a
1067   // reference, in which case the result will be a gl-value.  We should
1068   // treat this as a non-trivial operation.
1069   if (getter->isGLValue())
1070     return false;
1071 
1072   // If we selected a trivial copy-constructor, we're okay.
1073   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1074     return (construct->getConstructor()->isTrivial());
1075 
1076   // The constructor might require cleanups (in which case it's never
1077   // trivial).
1078   assert(isa<ExprWithCleanups>(getter));
1079   return false;
1080 }
1081 
1082 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1083 /// copy the ivar into the resturn slot.
1084 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1085                                           llvm::Value *returnAddr,
1086                                           ObjCIvarDecl *ivar,
1087                                           llvm::Constant *AtomicHelperFn) {
1088   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1089   //                           AtomicHelperFn);
1090   CallArgList args;
1091 
1092   // The 1st argument is the return Slot.
1093   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1094 
1095   // The 2nd argument is the address of the ivar.
1096   llvm::Value *ivarAddr =
1097       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1098           .getPointer(CGF);
1099   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1100   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1101 
1102   // Third argument is the helper function.
1103   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1104 
1105   llvm::FunctionCallee copyCppAtomicObjectFn =
1106       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1107   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1108   CGF.EmitCall(
1109       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1110                callee, ReturnValueSlot(), args);
1111 }
1112 
1113 void
1114 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1115                                         const ObjCPropertyImplDecl *propImpl,
1116                                         const ObjCMethodDecl *GetterMethodDecl,
1117                                         llvm::Constant *AtomicHelperFn) {
1118   // If there's a non-trivial 'get' expression, we just have to emit that.
1119   if (!hasTrivialGetExpr(propImpl)) {
1120     if (!AtomicHelperFn) {
1121       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1122                                      propImpl->getGetterCXXConstructor(),
1123                                      /* NRVOCandidate=*/nullptr);
1124       EmitReturnStmt(*ret);
1125     }
1126     else {
1127       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1128       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1129                                     ivar, AtomicHelperFn);
1130     }
1131     return;
1132   }
1133 
1134   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1135   QualType propType = prop->getType();
1136   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1137 
1138   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1139 
1140   // Pick an implementation strategy.
1141   PropertyImplStrategy strategy(CGM, propImpl);
1142   switch (strategy.getKind()) {
1143   case PropertyImplStrategy::Native: {
1144     // We don't need to do anything for a zero-size struct.
1145     if (strategy.getIvarSize().isZero())
1146       return;
1147 
1148     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1149 
1150     // Currently, all atomic accesses have to be through integer
1151     // types, so there's no point in trying to pick a prettier type.
1152     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1153     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1154 
1155     // Perform an atomic load.  This does not impose ordering constraints.
1156     Address ivarAddr = LV.getAddress(*this);
1157     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1158     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1159     load->setAtomic(llvm::AtomicOrdering::Unordered);
1160 
1161     // Store that value into the return address.  Doing this with a
1162     // bitcast is likely to produce some pretty ugly IR, but it's not
1163     // the *most* terrible thing in the world.
1164     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1165     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1166     llvm::Value *ivarVal = load;
1167     if (ivarSize > retTySize) {
1168       bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1169       ivarVal = Builder.CreateTrunc(load, bitcastType);
1170     }
1171     Builder.CreateStore(ivarVal,
1172                         Builder.CreateElementBitCast(ReturnValue, bitcastType));
1173 
1174     // Make sure we don't do an autorelease.
1175     AutoreleaseResult = false;
1176     return;
1177   }
1178 
1179   case PropertyImplStrategy::GetSetProperty: {
1180     llvm::FunctionCallee getPropertyFn =
1181         CGM.getObjCRuntime().GetPropertyGetFunction();
1182     if (!getPropertyFn) {
1183       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1184       return;
1185     }
1186     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1187 
1188     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1189     // FIXME: Can't this be simpler? This might even be worse than the
1190     // corresponding gcc code.
1191     llvm::Value *cmd =
1192       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1193     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1194     llvm::Value *ivarOffset =
1195       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1196 
1197     CallArgList args;
1198     args.add(RValue::get(self), getContext().getObjCIdType());
1199     args.add(RValue::get(cmd), getContext().getObjCSelType());
1200     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1201     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1202              getContext().BoolTy);
1203 
1204     // FIXME: We shouldn't need to get the function info here, the
1205     // runtime already should have computed it to build the function.
1206     llvm::CallBase *CallInstruction;
1207     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1208                              getContext().getObjCIdType(), args),
1209                          callee, ReturnValueSlot(), args, &CallInstruction);
1210     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1211       call->setTailCall();
1212 
1213     // We need to fix the type here. Ivars with copy & retain are
1214     // always objects so we don't need to worry about complex or
1215     // aggregates.
1216     RV = RValue::get(Builder.CreateBitCast(
1217         RV.getScalarVal(),
1218         getTypes().ConvertType(getterMethod->getReturnType())));
1219 
1220     EmitReturnOfRValue(RV, propType);
1221 
1222     // objc_getProperty does an autorelease, so we should suppress ours.
1223     AutoreleaseResult = false;
1224 
1225     return;
1226   }
1227 
1228   case PropertyImplStrategy::CopyStruct:
1229     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1230                          strategy.hasStrongMember());
1231     return;
1232 
1233   case PropertyImplStrategy::Expression:
1234   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1235     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1236 
1237     QualType ivarType = ivar->getType();
1238     switch (getEvaluationKind(ivarType)) {
1239     case TEK_Complex: {
1240       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1241       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1242                          /*init*/ true);
1243       return;
1244     }
1245     case TEK_Aggregate: {
1246       // The return value slot is guaranteed to not be aliased, but
1247       // that's not necessarily the same as "on the stack", so
1248       // we still potentially need objc_memmove_collectable.
1249       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1250                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1251       return;
1252     }
1253     case TEK_Scalar: {
1254       llvm::Value *value;
1255       if (propType->isReferenceType()) {
1256         value = LV.getAddress(*this).getPointer();
1257       } else {
1258         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1259         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1260           if (getLangOpts().ObjCAutoRefCount) {
1261             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1262           } else {
1263             value = EmitARCLoadWeak(LV.getAddress(*this));
1264           }
1265 
1266         // Otherwise we want to do a simple load, suppressing the
1267         // final autorelease.
1268         } else {
1269           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1270           AutoreleaseResult = false;
1271         }
1272 
1273         value = Builder.CreateBitCast(
1274             value, ConvertType(GetterMethodDecl->getReturnType()));
1275       }
1276 
1277       EmitReturnOfRValue(RValue::get(value), propType);
1278       return;
1279     }
1280     }
1281     llvm_unreachable("bad evaluation kind");
1282   }
1283 
1284   }
1285   llvm_unreachable("bad @property implementation strategy!");
1286 }
1287 
1288 /// emitStructSetterCall - Call the runtime function to store the value
1289 /// from the first formal parameter into the given ivar.
1290 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1291                                  ObjCIvarDecl *ivar) {
1292   // objc_copyStruct (&structIvar, &Arg,
1293   //                  sizeof (struct something), true, false);
1294   CallArgList args;
1295 
1296   // The first argument is the address of the ivar.
1297   llvm::Value *ivarAddr =
1298       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1299           .getPointer(CGF);
1300   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1301   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1302 
1303   // The second argument is the address of the parameter variable.
1304   ParmVarDecl *argVar = *OMD->param_begin();
1305   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1306                      argVar->getType().getNonReferenceType(), VK_LValue,
1307                      SourceLocation());
1308   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1309   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1310   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1311 
1312   // The third argument is the sizeof the type.
1313   llvm::Value *size =
1314     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1315   args.add(RValue::get(size), CGF.getContext().getSizeType());
1316 
1317   // The fourth argument is the 'isAtomic' flag.
1318   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1319 
1320   // The fifth argument is the 'hasStrong' flag.
1321   // FIXME: should this really always be false?
1322   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1323 
1324   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1325   CGCallee callee = CGCallee::forDirect(fn);
1326   CGF.EmitCall(
1327       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1328                callee, ReturnValueSlot(), args);
1329 }
1330 
1331 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1332 /// the value from the first formal parameter into the given ivar, using
1333 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1334 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1335                                           ObjCMethodDecl *OMD,
1336                                           ObjCIvarDecl *ivar,
1337                                           llvm::Constant *AtomicHelperFn) {
1338   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1339   //                           AtomicHelperFn);
1340   CallArgList args;
1341 
1342   // The first argument is the address of the ivar.
1343   llvm::Value *ivarAddr =
1344       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1345           .getPointer(CGF);
1346   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1347   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1348 
1349   // The second argument is the address of the parameter variable.
1350   ParmVarDecl *argVar = *OMD->param_begin();
1351   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1352                      argVar->getType().getNonReferenceType(), VK_LValue,
1353                      SourceLocation());
1354   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1355   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1356   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1357 
1358   // Third argument is the helper function.
1359   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1360 
1361   llvm::FunctionCallee fn =
1362       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1363   CGCallee callee = CGCallee::forDirect(fn);
1364   CGF.EmitCall(
1365       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1366                callee, ReturnValueSlot(), args);
1367 }
1368 
1369 
1370 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1371   Expr *setter = PID->getSetterCXXAssignment();
1372   if (!setter) return true;
1373 
1374   // Sema only makes only of these when the ivar has a C++ class type,
1375   // so the form is pretty constrained.
1376 
1377   // An operator call is trivial if the function it calls is trivial.
1378   // This also implies that there's nothing non-trivial going on with
1379   // the arguments, because operator= can only be trivial if it's a
1380   // synthesized assignment operator and therefore both parameters are
1381   // references.
1382   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1383     if (const FunctionDecl *callee
1384           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1385       if (callee->isTrivial())
1386         return true;
1387     return false;
1388   }
1389 
1390   assert(isa<ExprWithCleanups>(setter));
1391   return false;
1392 }
1393 
1394 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1395   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1396     return false;
1397   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1398 }
1399 
1400 void
1401 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1402                                         const ObjCPropertyImplDecl *propImpl,
1403                                         llvm::Constant *AtomicHelperFn) {
1404   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1405   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1406 
1407   // Just use the setter expression if Sema gave us one and it's
1408   // non-trivial.
1409   if (!hasTrivialSetExpr(propImpl)) {
1410     if (!AtomicHelperFn)
1411       // If non-atomic, assignment is called directly.
1412       EmitStmt(propImpl->getSetterCXXAssignment());
1413     else
1414       // If atomic, assignment is called via a locking api.
1415       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1416                                     AtomicHelperFn);
1417     return;
1418   }
1419 
1420   PropertyImplStrategy strategy(CGM, propImpl);
1421   switch (strategy.getKind()) {
1422   case PropertyImplStrategy::Native: {
1423     // We don't need to do anything for a zero-size struct.
1424     if (strategy.getIvarSize().isZero())
1425       return;
1426 
1427     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1428 
1429     LValue ivarLValue =
1430       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1431     Address ivarAddr = ivarLValue.getAddress(*this);
1432 
1433     // Currently, all atomic accesses have to be through integer
1434     // types, so there's no point in trying to pick a prettier type.
1435     llvm::Type *bitcastType =
1436       llvm::Type::getIntNTy(getLLVMContext(),
1437                             getContext().toBits(strategy.getIvarSize()));
1438 
1439     // Cast both arguments to the chosen operation type.
1440     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1441     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1442 
1443     // This bitcast load is likely to cause some nasty IR.
1444     llvm::Value *load = Builder.CreateLoad(argAddr);
1445 
1446     // Perform an atomic store.  There are no memory ordering requirements.
1447     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1448     store->setAtomic(llvm::AtomicOrdering::Unordered);
1449     return;
1450   }
1451 
1452   case PropertyImplStrategy::GetSetProperty:
1453   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1454 
1455     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1456     llvm::FunctionCallee setPropertyFn = nullptr;
1457     if (UseOptimizedSetter(CGM)) {
1458       // 10.8 and iOS 6.0 code and GC is off
1459       setOptimizedPropertyFn =
1460           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1461               strategy.isAtomic(), strategy.isCopy());
1462       if (!setOptimizedPropertyFn) {
1463         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1464         return;
1465       }
1466     }
1467     else {
1468       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1469       if (!setPropertyFn) {
1470         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1471         return;
1472       }
1473     }
1474 
1475     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1476     //                       <is-atomic>, <is-copy>).
1477     llvm::Value *cmd =
1478       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1479     llvm::Value *self =
1480       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1481     llvm::Value *ivarOffset =
1482       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1483     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1484     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1485     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1486 
1487     CallArgList args;
1488     args.add(RValue::get(self), getContext().getObjCIdType());
1489     args.add(RValue::get(cmd), getContext().getObjCSelType());
1490     if (setOptimizedPropertyFn) {
1491       args.add(RValue::get(arg), getContext().getObjCIdType());
1492       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1493       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1494       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1495                callee, ReturnValueSlot(), args);
1496     } else {
1497       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1498       args.add(RValue::get(arg), getContext().getObjCIdType());
1499       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1500                getContext().BoolTy);
1501       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1502                getContext().BoolTy);
1503       // FIXME: We shouldn't need to get the function info here, the runtime
1504       // already should have computed it to build the function.
1505       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1506       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1507                callee, ReturnValueSlot(), args);
1508     }
1509 
1510     return;
1511   }
1512 
1513   case PropertyImplStrategy::CopyStruct:
1514     emitStructSetterCall(*this, setterMethod, ivar);
1515     return;
1516 
1517   case PropertyImplStrategy::Expression:
1518     break;
1519   }
1520 
1521   // Otherwise, fake up some ASTs and emit a normal assignment.
1522   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1523   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1524                    VK_LValue, SourceLocation());
1525   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1526                             CK_LValueToRValue, &self, VK_PRValue,
1527                             FPOptionsOverride());
1528   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1529                           SourceLocation(), SourceLocation(),
1530                           &selfLoad, true, true);
1531 
1532   ParmVarDecl *argDecl = *setterMethod->param_begin();
1533   QualType argType = argDecl->getType().getNonReferenceType();
1534   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1535                   SourceLocation());
1536   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1537                            argType.getUnqualifiedType(), CK_LValueToRValue,
1538                            &arg, VK_PRValue, FPOptionsOverride());
1539 
1540   // The property type can differ from the ivar type in some situations with
1541   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1542   // The following absurdity is just to ensure well-formed IR.
1543   CastKind argCK = CK_NoOp;
1544   if (ivarRef.getType()->isObjCObjectPointerType()) {
1545     if (argLoad.getType()->isObjCObjectPointerType())
1546       argCK = CK_BitCast;
1547     else if (argLoad.getType()->isBlockPointerType())
1548       argCK = CK_BlockPointerToObjCPointerCast;
1549     else
1550       argCK = CK_CPointerToObjCPointerCast;
1551   } else if (ivarRef.getType()->isBlockPointerType()) {
1552      if (argLoad.getType()->isBlockPointerType())
1553       argCK = CK_BitCast;
1554     else
1555       argCK = CK_AnyPointerToBlockPointerCast;
1556   } else if (ivarRef.getType()->isPointerType()) {
1557     argCK = CK_BitCast;
1558   } else if (argLoad.getType()->isAtomicType() &&
1559              !ivarRef.getType()->isAtomicType()) {
1560     argCK = CK_AtomicToNonAtomic;
1561   } else if (!argLoad.getType()->isAtomicType() &&
1562              ivarRef.getType()->isAtomicType()) {
1563     argCK = CK_NonAtomicToAtomic;
1564   }
1565   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1566                            &argLoad, VK_PRValue, FPOptionsOverride());
1567   Expr *finalArg = &argLoad;
1568   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1569                                            argLoad.getType()))
1570     finalArg = &argCast;
1571 
1572   BinaryOperator *assign = BinaryOperator::Create(
1573       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1574       VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1575   EmitStmt(assign);
1576 }
1577 
1578 /// Generate an Objective-C property setter function.
1579 ///
1580 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1581 /// is illegal within a category.
1582 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1583                                          const ObjCPropertyImplDecl *PID) {
1584   llvm::Constant *AtomicHelperFn =
1585       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1586   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1587   assert(OMD && "Invalid call to generate setter (empty method)");
1588   StartObjCMethod(OMD, IMP->getClassInterface());
1589 
1590   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1591 
1592   FinishFunction(OMD->getEndLoc());
1593 }
1594 
1595 namespace {
1596   struct DestroyIvar final : EHScopeStack::Cleanup {
1597   private:
1598     llvm::Value *addr;
1599     const ObjCIvarDecl *ivar;
1600     CodeGenFunction::Destroyer *destroyer;
1601     bool useEHCleanupForArray;
1602   public:
1603     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1604                 CodeGenFunction::Destroyer *destroyer,
1605                 bool useEHCleanupForArray)
1606       : addr(addr), ivar(ivar), destroyer(destroyer),
1607         useEHCleanupForArray(useEHCleanupForArray) {}
1608 
1609     void Emit(CodeGenFunction &CGF, Flags flags) override {
1610       LValue lvalue
1611         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1612       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1613                       flags.isForNormalCleanup() && useEHCleanupForArray);
1614     }
1615   };
1616 }
1617 
1618 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1619 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1620                                       Address addr,
1621                                       QualType type) {
1622   llvm::Value *null = getNullForVariable(addr);
1623   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1624 }
1625 
1626 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1627                                   ObjCImplementationDecl *impl) {
1628   CodeGenFunction::RunCleanupsScope scope(CGF);
1629 
1630   llvm::Value *self = CGF.LoadObjCSelf();
1631 
1632   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1633   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1634        ivar; ivar = ivar->getNextIvar()) {
1635     QualType type = ivar->getType();
1636 
1637     // Check whether the ivar is a destructible type.
1638     QualType::DestructionKind dtorKind = type.isDestructedType();
1639     if (!dtorKind) continue;
1640 
1641     CodeGenFunction::Destroyer *destroyer = nullptr;
1642 
1643     // Use a call to objc_storeStrong to destroy strong ivars, for the
1644     // general benefit of the tools.
1645     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1646       destroyer = destroyARCStrongWithStore;
1647 
1648     // Otherwise use the default for the destruction kind.
1649     } else {
1650       destroyer = CGF.getDestroyer(dtorKind);
1651     }
1652 
1653     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1654 
1655     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1656                                          cleanupKind & EHCleanup);
1657   }
1658 
1659   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1660 }
1661 
1662 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1663                                                  ObjCMethodDecl *MD,
1664                                                  bool ctor) {
1665   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1666   StartObjCMethod(MD, IMP->getClassInterface());
1667 
1668   // Emit .cxx_construct.
1669   if (ctor) {
1670     // Suppress the final autorelease in ARC.
1671     AutoreleaseResult = false;
1672 
1673     for (const auto *IvarInit : IMP->inits()) {
1674       FieldDecl *Field = IvarInit->getAnyMember();
1675       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1676       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1677                                     LoadObjCSelf(), Ivar, 0);
1678       EmitAggExpr(IvarInit->getInit(),
1679                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1680                                           AggValueSlot::DoesNotNeedGCBarriers,
1681                                           AggValueSlot::IsNotAliased,
1682                                           AggValueSlot::DoesNotOverlap));
1683     }
1684     // constructor returns 'self'.
1685     CodeGenTypes &Types = CGM.getTypes();
1686     QualType IdTy(CGM.getContext().getObjCIdType());
1687     llvm::Value *SelfAsId =
1688       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1689     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1690 
1691   // Emit .cxx_destruct.
1692   } else {
1693     emitCXXDestructMethod(*this, IMP);
1694   }
1695   FinishFunction();
1696 }
1697 
1698 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1699   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1700   DeclRefExpr DRE(getContext(), Self,
1701                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1702                   Self->getType(), VK_LValue, SourceLocation());
1703   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1704 }
1705 
1706 QualType CodeGenFunction::TypeOfSelfObject() {
1707   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1708   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1709   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1710     getContext().getCanonicalType(selfDecl->getType()));
1711   return PTy->getPointeeType();
1712 }
1713 
1714 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1715   llvm::FunctionCallee EnumerationMutationFnPtr =
1716       CGM.getObjCRuntime().EnumerationMutationFunction();
1717   if (!EnumerationMutationFnPtr) {
1718     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1719     return;
1720   }
1721   CGCallee EnumerationMutationFn =
1722     CGCallee::forDirect(EnumerationMutationFnPtr);
1723 
1724   CGDebugInfo *DI = getDebugInfo();
1725   if (DI)
1726     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1727 
1728   RunCleanupsScope ForScope(*this);
1729 
1730   // The local variable comes into scope immediately.
1731   AutoVarEmission variable = AutoVarEmission::invalid();
1732   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1733     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1734 
1735   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1736 
1737   // Fast enumeration state.
1738   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1739   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1740   EmitNullInitialization(StatePtr, StateTy);
1741 
1742   // Number of elements in the items array.
1743   static const unsigned NumItems = 16;
1744 
1745   // Fetch the countByEnumeratingWithState:objects:count: selector.
1746   IdentifierInfo *II[] = {
1747     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1748     &CGM.getContext().Idents.get("objects"),
1749     &CGM.getContext().Idents.get("count")
1750   };
1751   Selector FastEnumSel =
1752     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1753 
1754   QualType ItemsTy =
1755     getContext().getConstantArrayType(getContext().getObjCIdType(),
1756                                       llvm::APInt(32, NumItems), nullptr,
1757                                       ArrayType::Normal, 0);
1758   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1759 
1760   // Emit the collection pointer.  In ARC, we do a retain.
1761   llvm::Value *Collection;
1762   if (getLangOpts().ObjCAutoRefCount) {
1763     Collection = EmitARCRetainScalarExpr(S.getCollection());
1764 
1765     // Enter a cleanup to do the release.
1766     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1767   } else {
1768     Collection = EmitScalarExpr(S.getCollection());
1769   }
1770 
1771   // The 'continue' label needs to appear within the cleanup for the
1772   // collection object.
1773   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1774 
1775   // Send it our message:
1776   CallArgList Args;
1777 
1778   // The first argument is a temporary of the enumeration-state type.
1779   Args.add(RValue::get(StatePtr.getPointer()),
1780            getContext().getPointerType(StateTy));
1781 
1782   // The second argument is a temporary array with space for NumItems
1783   // pointers.  We'll actually be loading elements from the array
1784   // pointer written into the control state; this buffer is so that
1785   // collections that *aren't* backed by arrays can still queue up
1786   // batches of elements.
1787   Args.add(RValue::get(ItemsPtr.getPointer()),
1788            getContext().getPointerType(ItemsTy));
1789 
1790   // The third argument is the capacity of that temporary array.
1791   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1792   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1793   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1794 
1795   // Start the enumeration.
1796   RValue CountRV =
1797       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1798                                                getContext().getNSUIntegerType(),
1799                                                FastEnumSel, Collection, Args);
1800 
1801   // The initial number of objects that were returned in the buffer.
1802   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1803 
1804   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1805   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1806 
1807   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1808 
1809   // If the limit pointer was zero to begin with, the collection is
1810   // empty; skip all this. Set the branch weight assuming this has the same
1811   // probability of exiting the loop as any other loop exit.
1812   uint64_t EntryCount = getCurrentProfileCount();
1813   Builder.CreateCondBr(
1814       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1815       LoopInitBB,
1816       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1817 
1818   // Otherwise, initialize the loop.
1819   EmitBlock(LoopInitBB);
1820 
1821   // Save the initial mutations value.  This is the value at an
1822   // address that was written into the state object by
1823   // countByEnumeratingWithState:objects:count:.
1824   Address StateMutationsPtrPtr =
1825       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1826   llvm::Value *StateMutationsPtr
1827     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1828 
1829   llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1830   llvm::Value *initialMutations =
1831     Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1832                               getPointerAlign(), "forcoll.initial-mutations");
1833 
1834   // Start looping.  This is the point we return to whenever we have a
1835   // fresh, non-empty batch of objects.
1836   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1837   EmitBlock(LoopBodyBB);
1838 
1839   // The current index into the buffer.
1840   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1841   index->addIncoming(zero, LoopInitBB);
1842 
1843   // The current buffer size.
1844   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1845   count->addIncoming(initialBufferLimit, LoopInitBB);
1846 
1847   incrementProfileCounter(&S);
1848 
1849   // Check whether the mutations value has changed from where it was
1850   // at start.  StateMutationsPtr should actually be invariant between
1851   // refreshes.
1852   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1853   llvm::Value *currentMutations
1854     = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1855                                 getPointerAlign(), "statemutations");
1856 
1857   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1858   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1859 
1860   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1861                        WasNotMutatedBB, WasMutatedBB);
1862 
1863   // If so, call the enumeration-mutation function.
1864   EmitBlock(WasMutatedBB);
1865   llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1866   llvm::Value *V =
1867     Builder.CreateBitCast(Collection, ObjCIdType);
1868   CallArgList Args2;
1869   Args2.add(RValue::get(V), getContext().getObjCIdType());
1870   // FIXME: We shouldn't need to get the function info here, the runtime already
1871   // should have computed it to build the function.
1872   EmitCall(
1873           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1874            EnumerationMutationFn, ReturnValueSlot(), Args2);
1875 
1876   // Otherwise, or if the mutation function returns, just continue.
1877   EmitBlock(WasNotMutatedBB);
1878 
1879   // Initialize the element variable.
1880   RunCleanupsScope elementVariableScope(*this);
1881   bool elementIsVariable;
1882   LValue elementLValue;
1883   QualType elementType;
1884   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1885     // Initialize the variable, in case it's a __block variable or something.
1886     EmitAutoVarInit(variable);
1887 
1888     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1889     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1890                         D->getType(), VK_LValue, SourceLocation());
1891     elementLValue = EmitLValue(&tempDRE);
1892     elementType = D->getType();
1893     elementIsVariable = true;
1894 
1895     if (D->isARCPseudoStrong())
1896       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1897   } else {
1898     elementLValue = LValue(); // suppress warning
1899     elementType = cast<Expr>(S.getElement())->getType();
1900     elementIsVariable = false;
1901   }
1902   llvm::Type *convertedElementType = ConvertType(elementType);
1903 
1904   // Fetch the buffer out of the enumeration state.
1905   // TODO: this pointer should actually be invariant between
1906   // refreshes, which would help us do certain loop optimizations.
1907   Address StateItemsPtr =
1908       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1909   llvm::Value *EnumStateItems =
1910     Builder.CreateLoad(StateItemsPtr, "stateitems");
1911 
1912   // Fetch the value at the current index from the buffer.
1913   llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1914       ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1915   llvm::Value *CurrentItem =
1916     Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1917 
1918   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1919     // Before using an item from the collection, check that the implicit cast
1920     // from id to the element type is valid. This is done with instrumentation
1921     // roughly corresponding to:
1922     //
1923     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1924     const ObjCObjectPointerType *ObjPtrTy =
1925         elementType->getAsObjCInterfacePointerType();
1926     const ObjCInterfaceType *InterfaceTy =
1927         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1928     if (InterfaceTy) {
1929       SanitizerScope SanScope(this);
1930       auto &C = CGM.getContext();
1931       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1932       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1933       CallArgList IsKindOfClassArgs;
1934       llvm::Value *Cls =
1935           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1936       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1937       llvm::Value *IsClass =
1938           CGM.getObjCRuntime()
1939               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1940                                    IsKindOfClassSel, CurrentItem,
1941                                    IsKindOfClassArgs)
1942               .getScalarVal();
1943       llvm::Constant *StaticData[] = {
1944           EmitCheckSourceLocation(S.getBeginLoc()),
1945           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1946       EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1947                 SanitizerHandler::InvalidObjCCast,
1948                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1949     }
1950   }
1951 
1952   // Cast that value to the right type.
1953   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1954                                       "currentitem");
1955 
1956   // Make sure we have an l-value.  Yes, this gets evaluated every
1957   // time through the loop.
1958   if (!elementIsVariable) {
1959     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1960     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1961   } else {
1962     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1963                            /*isInit*/ true);
1964   }
1965 
1966   // If we do have an element variable, this assignment is the end of
1967   // its initialization.
1968   if (elementIsVariable)
1969     EmitAutoVarCleanups(variable);
1970 
1971   // Perform the loop body, setting up break and continue labels.
1972   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1973   {
1974     RunCleanupsScope Scope(*this);
1975     EmitStmt(S.getBody());
1976   }
1977   BreakContinueStack.pop_back();
1978 
1979   // Destroy the element variable now.
1980   elementVariableScope.ForceCleanup();
1981 
1982   // Check whether there are more elements.
1983   EmitBlock(AfterBody.getBlock());
1984 
1985   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1986 
1987   // First we check in the local buffer.
1988   llvm::Value *indexPlusOne =
1989       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1990 
1991   // If we haven't overrun the buffer yet, we can continue.
1992   // Set the branch weights based on the simplifying assumption that this is
1993   // like a while-loop, i.e., ignoring that the false branch fetches more
1994   // elements and then returns to the loop.
1995   Builder.CreateCondBr(
1996       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1997       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1998 
1999   index->addIncoming(indexPlusOne, AfterBody.getBlock());
2000   count->addIncoming(count, AfterBody.getBlock());
2001 
2002   // Otherwise, we have to fetch more elements.
2003   EmitBlock(FetchMoreBB);
2004 
2005   CountRV =
2006       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2007                                                getContext().getNSUIntegerType(),
2008                                                FastEnumSel, Collection, Args);
2009 
2010   // If we got a zero count, we're done.
2011   llvm::Value *refetchCount = CountRV.getScalarVal();
2012 
2013   // (note that the message send might split FetchMoreBB)
2014   index->addIncoming(zero, Builder.GetInsertBlock());
2015   count->addIncoming(refetchCount, Builder.GetInsertBlock());
2016 
2017   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2018                        EmptyBB, LoopBodyBB);
2019 
2020   // No more elements.
2021   EmitBlock(EmptyBB);
2022 
2023   if (!elementIsVariable) {
2024     // If the element was not a declaration, set it to be null.
2025 
2026     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2027     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2028     EmitStoreThroughLValue(RValue::get(null), elementLValue);
2029   }
2030 
2031   if (DI)
2032     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2033 
2034   ForScope.ForceCleanup();
2035   EmitBlock(LoopEnd.getBlock());
2036 }
2037 
2038 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2039   CGM.getObjCRuntime().EmitTryStmt(*this, S);
2040 }
2041 
2042 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2043   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2044 }
2045 
2046 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2047                                               const ObjCAtSynchronizedStmt &S) {
2048   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2049 }
2050 
2051 namespace {
2052   struct CallObjCRelease final : EHScopeStack::Cleanup {
2053     CallObjCRelease(llvm::Value *object) : object(object) {}
2054     llvm::Value *object;
2055 
2056     void Emit(CodeGenFunction &CGF, Flags flags) override {
2057       // Releases at the end of the full-expression are imprecise.
2058       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2059     }
2060   };
2061 }
2062 
2063 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2064 /// release at the end of the full-expression.
2065 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2066                                                     llvm::Value *object) {
2067   // If we're in a conditional branch, we need to make the cleanup
2068   // conditional.
2069   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2070   return object;
2071 }
2072 
2073 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2074                                                            llvm::Value *value) {
2075   return EmitARCRetainAutorelease(type, value);
2076 }
2077 
2078 /// Given a number of pointers, inform the optimizer that they're
2079 /// being intrinsically used up until this point in the program.
2080 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2081   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2082   if (!fn)
2083     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2084 
2085   // This isn't really a "runtime" function, but as an intrinsic it
2086   // doesn't really matter as long as we align things up.
2087   EmitNounwindRuntimeCall(fn, values);
2088 }
2089 
2090 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2091 /// that has operand bundle "clang.arc.attachedcall".
2092 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2093   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2094   if (!fn)
2095     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2096   EmitNounwindRuntimeCall(fn, values);
2097 }
2098 
2099 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2100   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2101     // If the target runtime doesn't naturally support ARC, emit weak
2102     // references to the runtime support library.  We don't really
2103     // permit this to fail, but we need a particular relocation style.
2104     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2105         !CGM.getTriple().isOSBinFormatCOFF()) {
2106       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2107     }
2108   }
2109 }
2110 
2111 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2112                                          llvm::FunctionCallee RTF) {
2113   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2114 }
2115 
2116 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2117                                        CodeGenModule &CGM) {
2118   llvm::Function *fn = CGM.getIntrinsic(IntID);
2119   setARCRuntimeFunctionLinkage(CGM, fn);
2120   return fn;
2121 }
2122 
2123 /// Perform an operation having the signature
2124 ///   i8* (i8*)
2125 /// where a null input causes a no-op and returns null.
2126 static llvm::Value *emitARCValueOperation(
2127     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2128     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2129     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2130   if (isa<llvm::ConstantPointerNull>(value))
2131     return value;
2132 
2133   if (!fn)
2134     fn = getARCIntrinsic(IntID, CGF.CGM);
2135 
2136   // Cast the argument to 'id'.
2137   llvm::Type *origType = returnType ? returnType : value->getType();
2138   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2139 
2140   // Call the function.
2141   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2142   call->setTailCallKind(tailKind);
2143 
2144   // Cast the result back to the original type.
2145   return CGF.Builder.CreateBitCast(call, origType);
2146 }
2147 
2148 /// Perform an operation having the following signature:
2149 ///   i8* (i8**)
2150 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2151                                          llvm::Function *&fn,
2152                                          llvm::Intrinsic::ID IntID) {
2153   if (!fn)
2154     fn = getARCIntrinsic(IntID, CGF.CGM);
2155 
2156   // Cast the argument to 'id*'.
2157   llvm::Type *origType = addr.getElementType();
2158   addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8PtrTy);
2159 
2160   // Call the function.
2161   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2162 
2163   // Cast the result back to a dereference of the original type.
2164   if (origType != CGF.Int8PtrTy)
2165     result = CGF.Builder.CreateBitCast(result, origType);
2166 
2167   return result;
2168 }
2169 
2170 /// Perform an operation having the following signature:
2171 ///   i8* (i8**, i8*)
2172 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2173                                           llvm::Value *value,
2174                                           llvm::Function *&fn,
2175                                           llvm::Intrinsic::ID IntID,
2176                                           bool ignored) {
2177   assert(addr.getElementType() == value->getType());
2178 
2179   if (!fn)
2180     fn = getARCIntrinsic(IntID, CGF.CGM);
2181 
2182   llvm::Type *origType = value->getType();
2183 
2184   llvm::Value *args[] = {
2185     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2186     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2187   };
2188   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2189 
2190   if (ignored) return nullptr;
2191 
2192   return CGF.Builder.CreateBitCast(result, origType);
2193 }
2194 
2195 /// Perform an operation having the following signature:
2196 ///   void (i8**, i8**)
2197 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2198                                  llvm::Function *&fn,
2199                                  llvm::Intrinsic::ID IntID) {
2200   assert(dst.getType() == src.getType());
2201 
2202   if (!fn)
2203     fn = getARCIntrinsic(IntID, CGF.CGM);
2204 
2205   llvm::Value *args[] = {
2206     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2207     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2208   };
2209   CGF.EmitNounwindRuntimeCall(fn, args);
2210 }
2211 
2212 /// Perform an operation having the signature
2213 ///   i8* (i8*)
2214 /// where a null input causes a no-op and returns null.
2215 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2216                                            llvm::Value *value,
2217                                            llvm::Type *returnType,
2218                                            llvm::FunctionCallee &fn,
2219                                            StringRef fnName) {
2220   if (isa<llvm::ConstantPointerNull>(value))
2221     return value;
2222 
2223   if (!fn) {
2224     llvm::FunctionType *fnType =
2225       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2226     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2227 
2228     // We have Native ARC, so set nonlazybind attribute for performance
2229     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2230       if (fnName == "objc_retain")
2231         f->addFnAttr(llvm::Attribute::NonLazyBind);
2232   }
2233 
2234   // Cast the argument to 'id'.
2235   llvm::Type *origType = returnType ? returnType : value->getType();
2236   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2237 
2238   // Call the function.
2239   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2240 
2241   // Mark calls to objc_autorelease as tail on the assumption that methods
2242   // overriding autorelease do not touch anything on the stack.
2243   if (fnName == "objc_autorelease")
2244     if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2245       Call->setTailCall();
2246 
2247   // Cast the result back to the original type.
2248   return CGF.Builder.CreateBitCast(Inst, origType);
2249 }
2250 
2251 /// Produce the code to do a retain.  Based on the type, calls one of:
2252 ///   call i8* \@objc_retain(i8* %value)
2253 ///   call i8* \@objc_retainBlock(i8* %value)
2254 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2255   if (type->isBlockPointerType())
2256     return EmitARCRetainBlock(value, /*mandatory*/ false);
2257   else
2258     return EmitARCRetainNonBlock(value);
2259 }
2260 
2261 /// Retain the given object, with normal retain semantics.
2262 ///   call i8* \@objc_retain(i8* %value)
2263 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2264   return emitARCValueOperation(*this, value, nullptr,
2265                                CGM.getObjCEntrypoints().objc_retain,
2266                                llvm::Intrinsic::objc_retain);
2267 }
2268 
2269 /// Retain the given block, with _Block_copy semantics.
2270 ///   call i8* \@objc_retainBlock(i8* %value)
2271 ///
2272 /// \param mandatory - If false, emit the call with metadata
2273 /// indicating that it's okay for the optimizer to eliminate this call
2274 /// if it can prove that the block never escapes except down the stack.
2275 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2276                                                  bool mandatory) {
2277   llvm::Value *result
2278     = emitARCValueOperation(*this, value, nullptr,
2279                             CGM.getObjCEntrypoints().objc_retainBlock,
2280                             llvm::Intrinsic::objc_retainBlock);
2281 
2282   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2283   // tell the optimizer that it doesn't need to do this copy if the
2284   // block doesn't escape, where being passed as an argument doesn't
2285   // count as escaping.
2286   if (!mandatory && isa<llvm::Instruction>(result)) {
2287     llvm::CallInst *call
2288       = cast<llvm::CallInst>(result->stripPointerCasts());
2289     assert(call->getCalledOperand() ==
2290            CGM.getObjCEntrypoints().objc_retainBlock);
2291 
2292     call->setMetadata("clang.arc.copy_on_escape",
2293                       llvm::MDNode::get(Builder.getContext(), None));
2294   }
2295 
2296   return result;
2297 }
2298 
2299 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2300   // Fetch the void(void) inline asm which marks that we're going to
2301   // do something with the autoreleased return value.
2302   llvm::InlineAsm *&marker
2303     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2304   if (!marker) {
2305     StringRef assembly
2306       = CGF.CGM.getTargetCodeGenInfo()
2307            .getARCRetainAutoreleasedReturnValueMarker();
2308 
2309     // If we have an empty assembly string, there's nothing to do.
2310     if (assembly.empty()) {
2311 
2312     // Otherwise, at -O0, build an inline asm that we're going to call
2313     // in a moment.
2314     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2315       llvm::FunctionType *type =
2316         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2317 
2318       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2319 
2320     // If we're at -O1 and above, we don't want to litter the code
2321     // with this marker yet, so leave a breadcrumb for the ARC
2322     // optimizer to pick up.
2323     } else {
2324       const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2325       if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2326         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2327         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2328                                           retainRVMarkerKey, str);
2329       }
2330     }
2331   }
2332 
2333   // Call the marker asm if we made one, which we do only at -O0.
2334   if (marker)
2335     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2336 }
2337 
2338 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2339                                                bool IsRetainRV,
2340                                                CodeGenFunction &CGF) {
2341   emitAutoreleasedReturnValueMarker(CGF);
2342 
2343   // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2344   // retainRV or claimRV calls in the IR. We currently do this only when the
2345   // optimization level isn't -O0 since global-isel, which is currently run at
2346   // -O0, doesn't know about the operand bundle.
2347   ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2348   llvm::Function *&EP = IsRetainRV
2349                             ? EPs.objc_retainAutoreleasedReturnValue
2350                             : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2351   llvm::Intrinsic::ID IID =
2352       IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2353                  : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2354   EP = getARCIntrinsic(IID, CGF.CGM);
2355 
2356   llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2357 
2358   // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2359   // the target backend knows how to handle the operand bundle.
2360   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2361       (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2362     llvm::Value *bundleArgs[] = {EP};
2363     llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2364     auto *oldCall = cast<llvm::CallBase>(value);
2365     llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2366         oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2367     newCall->copyMetadata(*oldCall);
2368     oldCall->replaceAllUsesWith(newCall);
2369     oldCall->eraseFromParent();
2370     CGF.EmitARCNoopIntrinsicUse(newCall);
2371     return newCall;
2372   }
2373 
2374   bool isNoTail =
2375       CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2376   llvm::CallInst::TailCallKind tailKind =
2377       isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2378   return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2379 }
2380 
2381 /// Retain the given object which is the result of a function call.
2382 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2383 ///
2384 /// Yes, this function name is one character away from a different
2385 /// call with completely different semantics.
2386 llvm::Value *
2387 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2388   return emitOptimizedARCReturnCall(value, true, *this);
2389 }
2390 
2391 /// Claim a possibly-autoreleased return value at +0.  This is only
2392 /// valid to do in contexts which do not rely on the retain to keep
2393 /// the object valid for all of its uses; for example, when
2394 /// the value is ignored, or when it is being assigned to an
2395 /// __unsafe_unretained variable.
2396 ///
2397 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2398 llvm::Value *
2399 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2400   return emitOptimizedARCReturnCall(value, false, *this);
2401 }
2402 
2403 /// Release the given object.
2404 ///   call void \@objc_release(i8* %value)
2405 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2406                                      ARCPreciseLifetime_t precise) {
2407   if (isa<llvm::ConstantPointerNull>(value)) return;
2408 
2409   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2410   if (!fn)
2411     fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2412 
2413   // Cast the argument to 'id'.
2414   value = Builder.CreateBitCast(value, Int8PtrTy);
2415 
2416   // Call objc_release.
2417   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2418 
2419   if (precise == ARCImpreciseLifetime) {
2420     call->setMetadata("clang.imprecise_release",
2421                       llvm::MDNode::get(Builder.getContext(), None));
2422   }
2423 }
2424 
2425 /// Destroy a __strong variable.
2426 ///
2427 /// At -O0, emit a call to store 'null' into the address;
2428 /// instrumenting tools prefer this because the address is exposed,
2429 /// but it's relatively cumbersome to optimize.
2430 ///
2431 /// At -O1 and above, just load and call objc_release.
2432 ///
2433 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2434 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2435                                            ARCPreciseLifetime_t precise) {
2436   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2437     llvm::Value *null = getNullForVariable(addr);
2438     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2439     return;
2440   }
2441 
2442   llvm::Value *value = Builder.CreateLoad(addr);
2443   EmitARCRelease(value, precise);
2444 }
2445 
2446 /// Store into a strong object.  Always calls this:
2447 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2448 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2449                                                      llvm::Value *value,
2450                                                      bool ignored) {
2451   assert(addr.getElementType() == value->getType());
2452 
2453   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2454   if (!fn)
2455     fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2456 
2457   llvm::Value *args[] = {
2458     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2459     Builder.CreateBitCast(value, Int8PtrTy)
2460   };
2461   EmitNounwindRuntimeCall(fn, args);
2462 
2463   if (ignored) return nullptr;
2464   return value;
2465 }
2466 
2467 /// Store into a strong object.  Sometimes calls this:
2468 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2469 /// Other times, breaks it down into components.
2470 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2471                                                  llvm::Value *newValue,
2472                                                  bool ignored) {
2473   QualType type = dst.getType();
2474   bool isBlock = type->isBlockPointerType();
2475 
2476   // Use a store barrier at -O0 unless this is a block type or the
2477   // lvalue is inadequately aligned.
2478   if (shouldUseFusedARCCalls() &&
2479       !isBlock &&
2480       (dst.getAlignment().isZero() ||
2481        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2482     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2483   }
2484 
2485   // Otherwise, split it out.
2486 
2487   // Retain the new value.
2488   newValue = EmitARCRetain(type, newValue);
2489 
2490   // Read the old value.
2491   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2492 
2493   // Store.  We do this before the release so that any deallocs won't
2494   // see the old value.
2495   EmitStoreOfScalar(newValue, dst);
2496 
2497   // Finally, release the old value.
2498   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2499 
2500   return newValue;
2501 }
2502 
2503 /// Autorelease the given object.
2504 ///   call i8* \@objc_autorelease(i8* %value)
2505 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2506   return emitARCValueOperation(*this, value, nullptr,
2507                                CGM.getObjCEntrypoints().objc_autorelease,
2508                                llvm::Intrinsic::objc_autorelease);
2509 }
2510 
2511 /// Autorelease the given object.
2512 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2513 llvm::Value *
2514 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2515   return emitARCValueOperation(*this, value, nullptr,
2516                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2517                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2518                                llvm::CallInst::TCK_Tail);
2519 }
2520 
2521 /// Do a fused retain/autorelease of the given object.
2522 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2523 llvm::Value *
2524 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2525   return emitARCValueOperation(*this, value, nullptr,
2526                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2527                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2528                                llvm::CallInst::TCK_Tail);
2529 }
2530 
2531 /// Do a fused retain/autorelease of the given object.
2532 ///   call i8* \@objc_retainAutorelease(i8* %value)
2533 /// or
2534 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2535 ///   call i8* \@objc_autorelease(i8* %retain)
2536 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2537                                                        llvm::Value *value) {
2538   if (!type->isBlockPointerType())
2539     return EmitARCRetainAutoreleaseNonBlock(value);
2540 
2541   if (isa<llvm::ConstantPointerNull>(value)) return value;
2542 
2543   llvm::Type *origType = value->getType();
2544   value = Builder.CreateBitCast(value, Int8PtrTy);
2545   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2546   value = EmitARCAutorelease(value);
2547   return Builder.CreateBitCast(value, origType);
2548 }
2549 
2550 /// Do a fused retain/autorelease of the given object.
2551 ///   call i8* \@objc_retainAutorelease(i8* %value)
2552 llvm::Value *
2553 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2554   return emitARCValueOperation(*this, value, nullptr,
2555                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2556                                llvm::Intrinsic::objc_retainAutorelease);
2557 }
2558 
2559 /// i8* \@objc_loadWeak(i8** %addr)
2560 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2561 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2562   return emitARCLoadOperation(*this, addr,
2563                               CGM.getObjCEntrypoints().objc_loadWeak,
2564                               llvm::Intrinsic::objc_loadWeak);
2565 }
2566 
2567 /// i8* \@objc_loadWeakRetained(i8** %addr)
2568 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2569   return emitARCLoadOperation(*this, addr,
2570                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2571                               llvm::Intrinsic::objc_loadWeakRetained);
2572 }
2573 
2574 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2575 /// Returns %value.
2576 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2577                                                llvm::Value *value,
2578                                                bool ignored) {
2579   return emitARCStoreOperation(*this, addr, value,
2580                                CGM.getObjCEntrypoints().objc_storeWeak,
2581                                llvm::Intrinsic::objc_storeWeak, ignored);
2582 }
2583 
2584 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2585 /// Returns %value.  %addr is known to not have a current weak entry.
2586 /// Essentially equivalent to:
2587 ///   *addr = nil; objc_storeWeak(addr, value);
2588 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2589   // If we're initializing to null, just write null to memory; no need
2590   // to get the runtime involved.  But don't do this if optimization
2591   // is enabled, because accounting for this would make the optimizer
2592   // much more complicated.
2593   if (isa<llvm::ConstantPointerNull>(value) &&
2594       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2595     Builder.CreateStore(value, addr);
2596     return;
2597   }
2598 
2599   emitARCStoreOperation(*this, addr, value,
2600                         CGM.getObjCEntrypoints().objc_initWeak,
2601                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2602 }
2603 
2604 /// void \@objc_destroyWeak(i8** %addr)
2605 /// Essentially objc_storeWeak(addr, nil).
2606 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2607   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2608   if (!fn)
2609     fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2610 
2611   // Cast the argument to 'id*'.
2612   addr = Builder.CreateElementBitCast(addr, Int8PtrTy);
2613 
2614   EmitNounwindRuntimeCall(fn, addr.getPointer());
2615 }
2616 
2617 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2618 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2619 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2620 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2621   emitARCCopyOperation(*this, dst, src,
2622                        CGM.getObjCEntrypoints().objc_moveWeak,
2623                        llvm::Intrinsic::objc_moveWeak);
2624 }
2625 
2626 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2627 /// Disregards the current value in %dest.  Essentially
2628 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2629 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2630   emitARCCopyOperation(*this, dst, src,
2631                        CGM.getObjCEntrypoints().objc_copyWeak,
2632                        llvm::Intrinsic::objc_copyWeak);
2633 }
2634 
2635 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2636                                             Address SrcAddr) {
2637   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2638   Object = EmitObjCConsumeObject(Ty, Object);
2639   EmitARCStoreWeak(DstAddr, Object, false);
2640 }
2641 
2642 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2643                                             Address SrcAddr) {
2644   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2645   Object = EmitObjCConsumeObject(Ty, Object);
2646   EmitARCStoreWeak(DstAddr, Object, false);
2647   EmitARCDestroyWeak(SrcAddr);
2648 }
2649 
2650 /// Produce the code to do a objc_autoreleasepool_push.
2651 ///   call i8* \@objc_autoreleasePoolPush(void)
2652 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2653   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2654   if (!fn)
2655     fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2656 
2657   return EmitNounwindRuntimeCall(fn);
2658 }
2659 
2660 /// Produce the code to do a primitive release.
2661 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2662 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2663   assert(value->getType() == Int8PtrTy);
2664 
2665   if (getInvokeDest()) {
2666     // Call the runtime method not the intrinsic if we are handling exceptions
2667     llvm::FunctionCallee &fn =
2668         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2669     if (!fn) {
2670       llvm::FunctionType *fnType =
2671         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2672       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2673       setARCRuntimeFunctionLinkage(CGM, fn);
2674     }
2675 
2676     // objc_autoreleasePoolPop can throw.
2677     EmitRuntimeCallOrInvoke(fn, value);
2678   } else {
2679     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2680     if (!fn)
2681       fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2682 
2683     EmitRuntimeCall(fn, value);
2684   }
2685 }
2686 
2687 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2688 /// Which is: [[NSAutoreleasePool alloc] init];
2689 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2690 /// init is declared as: - (id) init; in its NSObject super class.
2691 ///
2692 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2693   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2694   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2695   // [NSAutoreleasePool alloc]
2696   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2697   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2698   CallArgList Args;
2699   RValue AllocRV =
2700     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2701                                 getContext().getObjCIdType(),
2702                                 AllocSel, Receiver, Args);
2703 
2704   // [Receiver init]
2705   Receiver = AllocRV.getScalarVal();
2706   II = &CGM.getContext().Idents.get("init");
2707   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2708   RValue InitRV =
2709     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2710                                 getContext().getObjCIdType(),
2711                                 InitSel, Receiver, Args);
2712   return InitRV.getScalarVal();
2713 }
2714 
2715 /// Allocate the given objc object.
2716 ///   call i8* \@objc_alloc(i8* %value)
2717 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2718                                             llvm::Type *resultType) {
2719   return emitObjCValueOperation(*this, value, resultType,
2720                                 CGM.getObjCEntrypoints().objc_alloc,
2721                                 "objc_alloc");
2722 }
2723 
2724 /// Allocate the given objc object.
2725 ///   call i8* \@objc_allocWithZone(i8* %value)
2726 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2727                                                     llvm::Type *resultType) {
2728   return emitObjCValueOperation(*this, value, resultType,
2729                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2730                                 "objc_allocWithZone");
2731 }
2732 
2733 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2734                                                 llvm::Type *resultType) {
2735   return emitObjCValueOperation(*this, value, resultType,
2736                                 CGM.getObjCEntrypoints().objc_alloc_init,
2737                                 "objc_alloc_init");
2738 }
2739 
2740 /// Produce the code to do a primitive release.
2741 /// [tmp drain];
2742 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2743   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2744   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2745   CallArgList Args;
2746   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2747                               getContext().VoidTy, DrainSel, Arg, Args);
2748 }
2749 
2750 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2751                                               Address addr,
2752                                               QualType type) {
2753   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2754 }
2755 
2756 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2757                                                 Address addr,
2758                                                 QualType type) {
2759   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2760 }
2761 
2762 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2763                                      Address addr,
2764                                      QualType type) {
2765   CGF.EmitARCDestroyWeak(addr);
2766 }
2767 
2768 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2769                                           QualType type) {
2770   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2771   CGF.EmitARCIntrinsicUse(value);
2772 }
2773 
2774 /// Autorelease the given object.
2775 ///   call i8* \@objc_autorelease(i8* %value)
2776 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2777                                                   llvm::Type *returnType) {
2778   return emitObjCValueOperation(
2779       *this, value, returnType,
2780       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2781       "objc_autorelease");
2782 }
2783 
2784 /// Retain the given object, with normal retain semantics.
2785 ///   call i8* \@objc_retain(i8* %value)
2786 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2787                                                      llvm::Type *returnType) {
2788   return emitObjCValueOperation(
2789       *this, value, returnType,
2790       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2791 }
2792 
2793 /// Release the given object.
2794 ///   call void \@objc_release(i8* %value)
2795 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2796                                       ARCPreciseLifetime_t precise) {
2797   if (isa<llvm::ConstantPointerNull>(value)) return;
2798 
2799   llvm::FunctionCallee &fn =
2800       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2801   if (!fn) {
2802     llvm::FunctionType *fnType =
2803         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2804     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2805     setARCRuntimeFunctionLinkage(CGM, fn);
2806     // We have Native ARC, so set nonlazybind attribute for performance
2807     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2808       f->addFnAttr(llvm::Attribute::NonLazyBind);
2809   }
2810 
2811   // Cast the argument to 'id'.
2812   value = Builder.CreateBitCast(value, Int8PtrTy);
2813 
2814   // Call objc_release.
2815   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2816 
2817   if (precise == ARCImpreciseLifetime) {
2818     call->setMetadata("clang.imprecise_release",
2819                       llvm::MDNode::get(Builder.getContext(), None));
2820   }
2821 }
2822 
2823 namespace {
2824   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2825     llvm::Value *Token;
2826 
2827     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2828 
2829     void Emit(CodeGenFunction &CGF, Flags flags) override {
2830       CGF.EmitObjCAutoreleasePoolPop(Token);
2831     }
2832   };
2833   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2834     llvm::Value *Token;
2835 
2836     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2837 
2838     void Emit(CodeGenFunction &CGF, Flags flags) override {
2839       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2840     }
2841   };
2842 }
2843 
2844 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2845   if (CGM.getLangOpts().ObjCAutoRefCount)
2846     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2847   else
2848     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2849 }
2850 
2851 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2852   switch (lifetime) {
2853   case Qualifiers::OCL_None:
2854   case Qualifiers::OCL_ExplicitNone:
2855   case Qualifiers::OCL_Strong:
2856   case Qualifiers::OCL_Autoreleasing:
2857     return true;
2858 
2859   case Qualifiers::OCL_Weak:
2860     return false;
2861   }
2862 
2863   llvm_unreachable("impossible lifetime!");
2864 }
2865 
2866 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2867                                                   LValue lvalue,
2868                                                   QualType type) {
2869   llvm::Value *result;
2870   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2871   if (shouldRetain) {
2872     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2873   } else {
2874     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2875     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2876   }
2877   return TryEmitResult(result, !shouldRetain);
2878 }
2879 
2880 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2881                                                   const Expr *e) {
2882   e = e->IgnoreParens();
2883   QualType type = e->getType();
2884 
2885   // If we're loading retained from a __strong xvalue, we can avoid
2886   // an extra retain/release pair by zeroing out the source of this
2887   // "move" operation.
2888   if (e->isXValue() &&
2889       !type.isConstQualified() &&
2890       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2891     // Emit the lvalue.
2892     LValue lv = CGF.EmitLValue(e);
2893 
2894     // Load the object pointer.
2895     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2896                                                SourceLocation()).getScalarVal();
2897 
2898     // Set the source pointer to NULL.
2899     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2900 
2901     return TryEmitResult(result, true);
2902   }
2903 
2904   // As a very special optimization, in ARC++, if the l-value is the
2905   // result of a non-volatile assignment, do a simple retain of the
2906   // result of the call to objc_storeWeak instead of reloading.
2907   if (CGF.getLangOpts().CPlusPlus &&
2908       !type.isVolatileQualified() &&
2909       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2910       isa<BinaryOperator>(e) &&
2911       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2912     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2913 
2914   // Try to emit code for scalar constant instead of emitting LValue and
2915   // loading it because we are not guaranteed to have an l-value. One of such
2916   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2917   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2918     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2919     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2920       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2921                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2922   }
2923 
2924   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2925 }
2926 
2927 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2928                                          llvm::Value *value)>
2929   ValueTransform;
2930 
2931 /// Insert code immediately after a call.
2932 
2933 // FIXME: We should find a way to emit the runtime call immediately
2934 // after the call is emitted to eliminate the need for this function.
2935 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2936                                               llvm::Value *value,
2937                                               ValueTransform doAfterCall,
2938                                               ValueTransform doFallback) {
2939   CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2940   auto *callBase = dyn_cast<llvm::CallBase>(value);
2941 
2942   if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2943     // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2944     value = doFallback(CGF, value);
2945   } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2946     // Place the retain immediately following the call.
2947     CGF.Builder.SetInsertPoint(call->getParent(),
2948                                ++llvm::BasicBlock::iterator(call));
2949     value = doAfterCall(CGF, value);
2950   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2951     // Place the retain at the beginning of the normal destination block.
2952     llvm::BasicBlock *BB = invoke->getNormalDest();
2953     CGF.Builder.SetInsertPoint(BB, BB->begin());
2954     value = doAfterCall(CGF, value);
2955 
2956   // Bitcasts can arise because of related-result returns.  Rewrite
2957   // the operand.
2958   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2959     // Change the insert point to avoid emitting the fall-back call after the
2960     // bitcast.
2961     CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2962     llvm::Value *operand = bitcast->getOperand(0);
2963     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2964     bitcast->setOperand(0, operand);
2965     value = bitcast;
2966   } else {
2967     auto *phi = dyn_cast<llvm::PHINode>(value);
2968     if (phi && phi->getNumIncomingValues() == 2 &&
2969         isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2970         isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2971       // Handle phi instructions that are generated when it's necessary to check
2972       // whether the receiver of a message is null.
2973       llvm::Value *inVal = phi->getIncomingValue(0);
2974       inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
2975       phi->setIncomingValue(0, inVal);
2976       value = phi;
2977     } else {
2978       // Generic fall-back case.
2979       // Retain using the non-block variant: we never need to do a copy
2980       // of a block that's been returned to us.
2981       value = doFallback(CGF, value);
2982     }
2983   }
2984 
2985   CGF.Builder.restoreIP(ip);
2986   return value;
2987 }
2988 
2989 /// Given that the given expression is some sort of call (which does
2990 /// not return retained), emit a retain following it.
2991 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2992                                             const Expr *e) {
2993   llvm::Value *value = CGF.EmitScalarExpr(e);
2994   return emitARCOperationAfterCall(CGF, value,
2995            [](CodeGenFunction &CGF, llvm::Value *value) {
2996              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2997            },
2998            [](CodeGenFunction &CGF, llvm::Value *value) {
2999              return CGF.EmitARCRetainNonBlock(value);
3000            });
3001 }
3002 
3003 /// Given that the given expression is some sort of call (which does
3004 /// not return retained), perform an unsafeClaim following it.
3005 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3006                                                  const Expr *e) {
3007   llvm::Value *value = CGF.EmitScalarExpr(e);
3008   return emitARCOperationAfterCall(CGF, value,
3009            [](CodeGenFunction &CGF, llvm::Value *value) {
3010              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3011            },
3012            [](CodeGenFunction &CGF, llvm::Value *value) {
3013              return value;
3014            });
3015 }
3016 
3017 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3018                                                       bool allowUnsafeClaim) {
3019   if (allowUnsafeClaim &&
3020       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3021     return emitARCUnsafeClaimCallResult(*this, E);
3022   } else {
3023     llvm::Value *value = emitARCRetainCallResult(*this, E);
3024     return EmitObjCConsumeObject(E->getType(), value);
3025   }
3026 }
3027 
3028 /// Determine whether it might be important to emit a separate
3029 /// objc_retain_block on the result of the given expression, or
3030 /// whether it's okay to just emit it in a +1 context.
3031 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3032   assert(e->getType()->isBlockPointerType());
3033   e = e->IgnoreParens();
3034 
3035   // For future goodness, emit block expressions directly in +1
3036   // contexts if we can.
3037   if (isa<BlockExpr>(e))
3038     return false;
3039 
3040   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3041     switch (cast->getCastKind()) {
3042     // Emitting these operations in +1 contexts is goodness.
3043     case CK_LValueToRValue:
3044     case CK_ARCReclaimReturnedObject:
3045     case CK_ARCConsumeObject:
3046     case CK_ARCProduceObject:
3047       return false;
3048 
3049     // These operations preserve a block type.
3050     case CK_NoOp:
3051     case CK_BitCast:
3052       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3053 
3054     // These operations are known to be bad (or haven't been considered).
3055     case CK_AnyPointerToBlockPointerCast:
3056     default:
3057       return true;
3058     }
3059   }
3060 
3061   return true;
3062 }
3063 
3064 namespace {
3065 /// A CRTP base class for emitting expressions of retainable object
3066 /// pointer type in ARC.
3067 template <typename Impl, typename Result> class ARCExprEmitter {
3068 protected:
3069   CodeGenFunction &CGF;
3070   Impl &asImpl() { return *static_cast<Impl*>(this); }
3071 
3072   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3073 
3074 public:
3075   Result visit(const Expr *e);
3076   Result visitCastExpr(const CastExpr *e);
3077   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3078   Result visitBlockExpr(const BlockExpr *e);
3079   Result visitBinaryOperator(const BinaryOperator *e);
3080   Result visitBinAssign(const BinaryOperator *e);
3081   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3082   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3083   Result visitBinAssignWeak(const BinaryOperator *e);
3084   Result visitBinAssignStrong(const BinaryOperator *e);
3085 
3086   // Minimal implementation:
3087   //   Result visitLValueToRValue(const Expr *e)
3088   //   Result visitConsumeObject(const Expr *e)
3089   //   Result visitExtendBlockObject(const Expr *e)
3090   //   Result visitReclaimReturnedObject(const Expr *e)
3091   //   Result visitCall(const Expr *e)
3092   //   Result visitExpr(const Expr *e)
3093   //
3094   //   Result emitBitCast(Result result, llvm::Type *resultType)
3095   //   llvm::Value *getValueOfResult(Result result)
3096 };
3097 }
3098 
3099 /// Try to emit a PseudoObjectExpr under special ARC rules.
3100 ///
3101 /// This massively duplicates emitPseudoObjectRValue.
3102 template <typename Impl, typename Result>
3103 Result
3104 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3105   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3106 
3107   // Find the result expression.
3108   const Expr *resultExpr = E->getResultExpr();
3109   assert(resultExpr);
3110   Result result;
3111 
3112   for (PseudoObjectExpr::const_semantics_iterator
3113          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3114     const Expr *semantic = *i;
3115 
3116     // If this semantic expression is an opaque value, bind it
3117     // to the result of its source expression.
3118     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3119       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3120       OVMA opaqueData;
3121 
3122       // If this semantic is the result of the pseudo-object
3123       // expression, try to evaluate the source as +1.
3124       if (ov == resultExpr) {
3125         assert(!OVMA::shouldBindAsLValue(ov));
3126         result = asImpl().visit(ov->getSourceExpr());
3127         opaqueData = OVMA::bind(CGF, ov,
3128                             RValue::get(asImpl().getValueOfResult(result)));
3129 
3130       // Otherwise, just bind it.
3131       } else {
3132         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3133       }
3134       opaques.push_back(opaqueData);
3135 
3136     // Otherwise, if the expression is the result, evaluate it
3137     // and remember the result.
3138     } else if (semantic == resultExpr) {
3139       result = asImpl().visit(semantic);
3140 
3141     // Otherwise, evaluate the expression in an ignored context.
3142     } else {
3143       CGF.EmitIgnoredExpr(semantic);
3144     }
3145   }
3146 
3147   // Unbind all the opaques now.
3148   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3149     opaques[i].unbind(CGF);
3150 
3151   return result;
3152 }
3153 
3154 template <typename Impl, typename Result>
3155 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3156   // The default implementation just forwards the expression to visitExpr.
3157   return asImpl().visitExpr(e);
3158 }
3159 
3160 template <typename Impl, typename Result>
3161 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3162   switch (e->getCastKind()) {
3163 
3164   // No-op casts don't change the type, so we just ignore them.
3165   case CK_NoOp:
3166     return asImpl().visit(e->getSubExpr());
3167 
3168   // These casts can change the type.
3169   case CK_CPointerToObjCPointerCast:
3170   case CK_BlockPointerToObjCPointerCast:
3171   case CK_AnyPointerToBlockPointerCast:
3172   case CK_BitCast: {
3173     llvm::Type *resultType = CGF.ConvertType(e->getType());
3174     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3175     Result result = asImpl().visit(e->getSubExpr());
3176     return asImpl().emitBitCast(result, resultType);
3177   }
3178 
3179   // Handle some casts specially.
3180   case CK_LValueToRValue:
3181     return asImpl().visitLValueToRValue(e->getSubExpr());
3182   case CK_ARCConsumeObject:
3183     return asImpl().visitConsumeObject(e->getSubExpr());
3184   case CK_ARCExtendBlockObject:
3185     return asImpl().visitExtendBlockObject(e->getSubExpr());
3186   case CK_ARCReclaimReturnedObject:
3187     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3188 
3189   // Otherwise, use the default logic.
3190   default:
3191     return asImpl().visitExpr(e);
3192   }
3193 }
3194 
3195 template <typename Impl, typename Result>
3196 Result
3197 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3198   switch (e->getOpcode()) {
3199   case BO_Comma:
3200     CGF.EmitIgnoredExpr(e->getLHS());
3201     CGF.EnsureInsertPoint();
3202     return asImpl().visit(e->getRHS());
3203 
3204   case BO_Assign:
3205     return asImpl().visitBinAssign(e);
3206 
3207   default:
3208     return asImpl().visitExpr(e);
3209   }
3210 }
3211 
3212 template <typename Impl, typename Result>
3213 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3214   switch (e->getLHS()->getType().getObjCLifetime()) {
3215   case Qualifiers::OCL_ExplicitNone:
3216     return asImpl().visitBinAssignUnsafeUnretained(e);
3217 
3218   case Qualifiers::OCL_Weak:
3219     return asImpl().visitBinAssignWeak(e);
3220 
3221   case Qualifiers::OCL_Autoreleasing:
3222     return asImpl().visitBinAssignAutoreleasing(e);
3223 
3224   case Qualifiers::OCL_Strong:
3225     return asImpl().visitBinAssignStrong(e);
3226 
3227   case Qualifiers::OCL_None:
3228     return asImpl().visitExpr(e);
3229   }
3230   llvm_unreachable("bad ObjC ownership qualifier");
3231 }
3232 
3233 /// The default rule for __unsafe_unretained emits the RHS recursively,
3234 /// stores into the unsafe variable, and propagates the result outward.
3235 template <typename Impl, typename Result>
3236 Result ARCExprEmitter<Impl,Result>::
3237                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3238   // Recursively emit the RHS.
3239   // For __block safety, do this before emitting the LHS.
3240   Result result = asImpl().visit(e->getRHS());
3241 
3242   // Perform the store.
3243   LValue lvalue =
3244     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3245   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3246                              lvalue);
3247 
3248   return result;
3249 }
3250 
3251 template <typename Impl, typename Result>
3252 Result
3253 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3254   return asImpl().visitExpr(e);
3255 }
3256 
3257 template <typename Impl, typename Result>
3258 Result
3259 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3260   return asImpl().visitExpr(e);
3261 }
3262 
3263 template <typename Impl, typename Result>
3264 Result
3265 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3266   return asImpl().visitExpr(e);
3267 }
3268 
3269 /// The general expression-emission logic.
3270 template <typename Impl, typename Result>
3271 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3272   // We should *never* see a nested full-expression here, because if
3273   // we fail to emit at +1, our caller must not retain after we close
3274   // out the full-expression.  This isn't as important in the unsafe
3275   // emitter.
3276   assert(!isa<ExprWithCleanups>(e));
3277 
3278   // Look through parens, __extension__, generic selection, etc.
3279   e = e->IgnoreParens();
3280 
3281   // Handle certain kinds of casts.
3282   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3283     return asImpl().visitCastExpr(ce);
3284 
3285   // Handle the comma operator.
3286   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3287     return asImpl().visitBinaryOperator(op);
3288 
3289   // TODO: handle conditional operators here
3290 
3291   // For calls and message sends, use the retained-call logic.
3292   // Delegate inits are a special case in that they're the only
3293   // returns-retained expression that *isn't* surrounded by
3294   // a consume.
3295   } else if (isa<CallExpr>(e) ||
3296              (isa<ObjCMessageExpr>(e) &&
3297               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3298     return asImpl().visitCall(e);
3299 
3300   // Look through pseudo-object expressions.
3301   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3302     return asImpl().visitPseudoObjectExpr(pseudo);
3303   } else if (auto *be = dyn_cast<BlockExpr>(e))
3304     return asImpl().visitBlockExpr(be);
3305 
3306   return asImpl().visitExpr(e);
3307 }
3308 
3309 namespace {
3310 
3311 /// An emitter for +1 results.
3312 struct ARCRetainExprEmitter :
3313   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3314 
3315   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3316 
3317   llvm::Value *getValueOfResult(TryEmitResult result) {
3318     return result.getPointer();
3319   }
3320 
3321   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3322     llvm::Value *value = result.getPointer();
3323     value = CGF.Builder.CreateBitCast(value, resultType);
3324     result.setPointer(value);
3325     return result;
3326   }
3327 
3328   TryEmitResult visitLValueToRValue(const Expr *e) {
3329     return tryEmitARCRetainLoadOfScalar(CGF, e);
3330   }
3331 
3332   /// For consumptions, just emit the subexpression and thus elide
3333   /// the retain/release pair.
3334   TryEmitResult visitConsumeObject(const Expr *e) {
3335     llvm::Value *result = CGF.EmitScalarExpr(e);
3336     return TryEmitResult(result, true);
3337   }
3338 
3339   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3340     TryEmitResult result = visitExpr(e);
3341     // Avoid the block-retain if this is a block literal that doesn't need to be
3342     // copied to the heap.
3343     if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3344         e->getBlockDecl()->canAvoidCopyToHeap())
3345       result.setInt(true);
3346     return result;
3347   }
3348 
3349   /// Block extends are net +0.  Naively, we could just recurse on
3350   /// the subexpression, but actually we need to ensure that the
3351   /// value is copied as a block, so there's a little filter here.
3352   TryEmitResult visitExtendBlockObject(const Expr *e) {
3353     llvm::Value *result; // will be a +0 value
3354 
3355     // If we can't safely assume the sub-expression will produce a
3356     // block-copied value, emit the sub-expression at +0.
3357     if (shouldEmitSeparateBlockRetain(e)) {
3358       result = CGF.EmitScalarExpr(e);
3359 
3360     // Otherwise, try to emit the sub-expression at +1 recursively.
3361     } else {
3362       TryEmitResult subresult = asImpl().visit(e);
3363 
3364       // If that produced a retained value, just use that.
3365       if (subresult.getInt()) {
3366         return subresult;
3367       }
3368 
3369       // Otherwise it's +0.
3370       result = subresult.getPointer();
3371     }
3372 
3373     // Retain the object as a block.
3374     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3375     return TryEmitResult(result, true);
3376   }
3377 
3378   /// For reclaims, emit the subexpression as a retained call and
3379   /// skip the consumption.
3380   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3381     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3382     return TryEmitResult(result, true);
3383   }
3384 
3385   /// When we have an undecorated call, retroactively do a claim.
3386   TryEmitResult visitCall(const Expr *e) {
3387     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3388     return TryEmitResult(result, true);
3389   }
3390 
3391   // TODO: maybe special-case visitBinAssignWeak?
3392 
3393   TryEmitResult visitExpr(const Expr *e) {
3394     // We didn't find an obvious production, so emit what we've got and
3395     // tell the caller that we didn't manage to retain.
3396     llvm::Value *result = CGF.EmitScalarExpr(e);
3397     return TryEmitResult(result, false);
3398   }
3399 };
3400 }
3401 
3402 static TryEmitResult
3403 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3404   return ARCRetainExprEmitter(CGF).visit(e);
3405 }
3406 
3407 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3408                                                 LValue lvalue,
3409                                                 QualType type) {
3410   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3411   llvm::Value *value = result.getPointer();
3412   if (!result.getInt())
3413     value = CGF.EmitARCRetain(type, value);
3414   return value;
3415 }
3416 
3417 /// EmitARCRetainScalarExpr - Semantically equivalent to
3418 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3419 /// best-effort attempt to peephole expressions that naturally produce
3420 /// retained objects.
3421 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3422   // The retain needs to happen within the full-expression.
3423   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3424     RunCleanupsScope scope(*this);
3425     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3426   }
3427 
3428   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3429   llvm::Value *value = result.getPointer();
3430   if (!result.getInt())
3431     value = EmitARCRetain(e->getType(), value);
3432   return value;
3433 }
3434 
3435 llvm::Value *
3436 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3437   // The retain needs to happen within the full-expression.
3438   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3439     RunCleanupsScope scope(*this);
3440     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3441   }
3442 
3443   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3444   llvm::Value *value = result.getPointer();
3445   if (result.getInt())
3446     value = EmitARCAutorelease(value);
3447   else
3448     value = EmitARCRetainAutorelease(e->getType(), value);
3449   return value;
3450 }
3451 
3452 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3453   llvm::Value *result;
3454   bool doRetain;
3455 
3456   if (shouldEmitSeparateBlockRetain(e)) {
3457     result = EmitScalarExpr(e);
3458     doRetain = true;
3459   } else {
3460     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3461     result = subresult.getPointer();
3462     doRetain = !subresult.getInt();
3463   }
3464 
3465   if (doRetain)
3466     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3467   return EmitObjCConsumeObject(e->getType(), result);
3468 }
3469 
3470 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3471   // In ARC, retain and autorelease the expression.
3472   if (getLangOpts().ObjCAutoRefCount) {
3473     // Do so before running any cleanups for the full-expression.
3474     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3475     return EmitARCRetainAutoreleaseScalarExpr(expr);
3476   }
3477 
3478   // Otherwise, use the normal scalar-expression emission.  The
3479   // exception machinery doesn't do anything special with the
3480   // exception like retaining it, so there's no safety associated with
3481   // only running cleanups after the throw has started, and when it
3482   // matters it tends to be substantially inferior code.
3483   return EmitScalarExpr(expr);
3484 }
3485 
3486 namespace {
3487 
3488 /// An emitter for assigning into an __unsafe_unretained context.
3489 struct ARCUnsafeUnretainedExprEmitter :
3490   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3491 
3492   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3493 
3494   llvm::Value *getValueOfResult(llvm::Value *value) {
3495     return value;
3496   }
3497 
3498   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3499     return CGF.Builder.CreateBitCast(value, resultType);
3500   }
3501 
3502   llvm::Value *visitLValueToRValue(const Expr *e) {
3503     return CGF.EmitScalarExpr(e);
3504   }
3505 
3506   /// For consumptions, just emit the subexpression and perform the
3507   /// consumption like normal.
3508   llvm::Value *visitConsumeObject(const Expr *e) {
3509     llvm::Value *value = CGF.EmitScalarExpr(e);
3510     return CGF.EmitObjCConsumeObject(e->getType(), value);
3511   }
3512 
3513   /// No special logic for block extensions.  (This probably can't
3514   /// actually happen in this emitter, though.)
3515   llvm::Value *visitExtendBlockObject(const Expr *e) {
3516     return CGF.EmitARCExtendBlockObject(e);
3517   }
3518 
3519   /// For reclaims, perform an unsafeClaim if that's enabled.
3520   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3521     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3522   }
3523 
3524   /// When we have an undecorated call, just emit it without adding
3525   /// the unsafeClaim.
3526   llvm::Value *visitCall(const Expr *e) {
3527     return CGF.EmitScalarExpr(e);
3528   }
3529 
3530   /// Just do normal scalar emission in the default case.
3531   llvm::Value *visitExpr(const Expr *e) {
3532     return CGF.EmitScalarExpr(e);
3533   }
3534 };
3535 }
3536 
3537 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3538                                                       const Expr *e) {
3539   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3540 }
3541 
3542 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3543 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3544 /// avoiding any spurious retains, including by performing reclaims
3545 /// with objc_unsafeClaimAutoreleasedReturnValue.
3546 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3547   // Look through full-expressions.
3548   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3549     RunCleanupsScope scope(*this);
3550     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3551   }
3552 
3553   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3554 }
3555 
3556 std::pair<LValue,llvm::Value*>
3557 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3558                                               bool ignored) {
3559   // Evaluate the RHS first.  If we're ignoring the result, assume
3560   // that we can emit at an unsafe +0.
3561   llvm::Value *value;
3562   if (ignored) {
3563     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3564   } else {
3565     value = EmitScalarExpr(e->getRHS());
3566   }
3567 
3568   // Emit the LHS and perform the store.
3569   LValue lvalue = EmitLValue(e->getLHS());
3570   EmitStoreOfScalar(value, lvalue);
3571 
3572   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3573 }
3574 
3575 std::pair<LValue,llvm::Value*>
3576 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3577                                     bool ignored) {
3578   // Evaluate the RHS first.
3579   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3580   llvm::Value *value = result.getPointer();
3581 
3582   bool hasImmediateRetain = result.getInt();
3583 
3584   // If we didn't emit a retained object, and the l-value is of block
3585   // type, then we need to emit the block-retain immediately in case
3586   // it invalidates the l-value.
3587   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3588     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3589     hasImmediateRetain = true;
3590   }
3591 
3592   LValue lvalue = EmitLValue(e->getLHS());
3593 
3594   // If the RHS was emitted retained, expand this.
3595   if (hasImmediateRetain) {
3596     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3597     EmitStoreOfScalar(value, lvalue);
3598     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3599   } else {
3600     value = EmitARCStoreStrong(lvalue, value, ignored);
3601   }
3602 
3603   return std::pair<LValue,llvm::Value*>(lvalue, value);
3604 }
3605 
3606 std::pair<LValue,llvm::Value*>
3607 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3608   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3609   LValue lvalue = EmitLValue(e->getLHS());
3610 
3611   EmitStoreOfScalar(value, lvalue);
3612 
3613   return std::pair<LValue,llvm::Value*>(lvalue, value);
3614 }
3615 
3616 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3617                                           const ObjCAutoreleasePoolStmt &ARPS) {
3618   const Stmt *subStmt = ARPS.getSubStmt();
3619   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3620 
3621   CGDebugInfo *DI = getDebugInfo();
3622   if (DI)
3623     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3624 
3625   // Keep track of the current cleanup stack depth.
3626   RunCleanupsScope Scope(*this);
3627   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3628     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3629     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3630   } else {
3631     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3632     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3633   }
3634 
3635   for (const auto *I : S.body())
3636     EmitStmt(I);
3637 
3638   if (DI)
3639     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3640 }
3641 
3642 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3643 /// make sure it survives garbage collection until this point.
3644 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3645   // We just use an inline assembly.
3646   llvm::FunctionType *extenderType
3647     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3648   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3649                                                    /* assembly */ "",
3650                                                    /* constraints */ "r",
3651                                                    /* side effects */ true);
3652 
3653   object = Builder.CreateBitCast(object, VoidPtrTy);
3654   EmitNounwindRuntimeCall(extender, object);
3655 }
3656 
3657 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3658 /// non-trivial copy assignment function, produce following helper function.
3659 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3660 ///
3661 llvm::Constant *
3662 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3663                                         const ObjCPropertyImplDecl *PID) {
3664   if (!getLangOpts().CPlusPlus ||
3665       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3666     return nullptr;
3667   QualType Ty = PID->getPropertyIvarDecl()->getType();
3668   if (!Ty->isRecordType())
3669     return nullptr;
3670   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3671   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3672     return nullptr;
3673   llvm::Constant *HelperFn = nullptr;
3674   if (hasTrivialSetExpr(PID))
3675     return nullptr;
3676   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3677   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3678     return HelperFn;
3679 
3680   ASTContext &C = getContext();
3681   IdentifierInfo *II
3682     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3683 
3684   QualType ReturnTy = C.VoidTy;
3685   QualType DestTy = C.getPointerType(Ty);
3686   QualType SrcTy = Ty;
3687   SrcTy.addConst();
3688   SrcTy = C.getPointerType(SrcTy);
3689 
3690   SmallVector<QualType, 2> ArgTys;
3691   ArgTys.push_back(DestTy);
3692   ArgTys.push_back(SrcTy);
3693   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3694 
3695   FunctionDecl *FD = FunctionDecl::Create(
3696       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3697       FunctionTy, nullptr, SC_Static, false, false, false);
3698 
3699   FunctionArgList args;
3700   ParmVarDecl *Params[2];
3701   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3702       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3703       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3704       /*DefArg=*/nullptr);
3705   args.push_back(Params[0] = DstDecl);
3706   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3707       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3708       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3709       /*DefArg=*/nullptr);
3710   args.push_back(Params[1] = SrcDecl);
3711   FD->setParams(Params);
3712 
3713   const CGFunctionInfo &FI =
3714       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3715 
3716   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3717 
3718   llvm::Function *Fn =
3719     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3720                            "__assign_helper_atomic_property_",
3721                            &CGM.getModule());
3722 
3723   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3724 
3725   StartFunction(FD, ReturnTy, Fn, FI, args);
3726 
3727   DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3728   UnaryOperator *DST = UnaryOperator::Create(
3729       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3730       SourceLocation(), false, FPOptionsOverride());
3731 
3732   DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3733   UnaryOperator *SRC = UnaryOperator::Create(
3734       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3735       SourceLocation(), false, FPOptionsOverride());
3736 
3737   Expr *Args[2] = {DST, SRC};
3738   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3739   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3740       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3741       VK_LValue, SourceLocation(), FPOptionsOverride());
3742 
3743   EmitStmt(TheCall);
3744 
3745   FinishFunction();
3746   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3747   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3748   return HelperFn;
3749 }
3750 
3751 llvm::Constant *
3752 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3753                                             const ObjCPropertyImplDecl *PID) {
3754   if (!getLangOpts().CPlusPlus ||
3755       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3756     return nullptr;
3757   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3758   QualType Ty = PD->getType();
3759   if (!Ty->isRecordType())
3760     return nullptr;
3761   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3762     return nullptr;
3763   llvm::Constant *HelperFn = nullptr;
3764   if (hasTrivialGetExpr(PID))
3765     return nullptr;
3766   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3767   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3768     return HelperFn;
3769 
3770   ASTContext &C = getContext();
3771   IdentifierInfo *II =
3772       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3773 
3774   QualType ReturnTy = C.VoidTy;
3775   QualType DestTy = C.getPointerType(Ty);
3776   QualType SrcTy = Ty;
3777   SrcTy.addConst();
3778   SrcTy = C.getPointerType(SrcTy);
3779 
3780   SmallVector<QualType, 2> ArgTys;
3781   ArgTys.push_back(DestTy);
3782   ArgTys.push_back(SrcTy);
3783   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3784 
3785   FunctionDecl *FD = FunctionDecl::Create(
3786       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3787       FunctionTy, nullptr, SC_Static, false, false, false);
3788 
3789   FunctionArgList args;
3790   ParmVarDecl *Params[2];
3791   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3792       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3793       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3794       /*DefArg=*/nullptr);
3795   args.push_back(Params[0] = DstDecl);
3796   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3797       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3798       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3799       /*DefArg=*/nullptr);
3800   args.push_back(Params[1] = SrcDecl);
3801   FD->setParams(Params);
3802 
3803   const CGFunctionInfo &FI =
3804       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3805 
3806   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3807 
3808   llvm::Function *Fn = llvm::Function::Create(
3809       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3810       &CGM.getModule());
3811 
3812   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3813 
3814   StartFunction(FD, ReturnTy, Fn, FI, args);
3815 
3816   DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3817                       SourceLocation());
3818 
3819   UnaryOperator *SRC = UnaryOperator::Create(
3820       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3821       SourceLocation(), false, FPOptionsOverride());
3822 
3823   CXXConstructExpr *CXXConstExpr =
3824     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3825 
3826   SmallVector<Expr*, 4> ConstructorArgs;
3827   ConstructorArgs.push_back(SRC);
3828   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3829                          CXXConstExpr->arg_end());
3830 
3831   CXXConstructExpr *TheCXXConstructExpr =
3832     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3833                              CXXConstExpr->getConstructor(),
3834                              CXXConstExpr->isElidable(),
3835                              ConstructorArgs,
3836                              CXXConstExpr->hadMultipleCandidates(),
3837                              CXXConstExpr->isListInitialization(),
3838                              CXXConstExpr->isStdInitListInitialization(),
3839                              CXXConstExpr->requiresZeroInitialization(),
3840                              CXXConstExpr->getConstructionKind(),
3841                              SourceRange());
3842 
3843   DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3844                       SourceLocation());
3845 
3846   RValue DV = EmitAnyExpr(&DstExpr);
3847   CharUnits Alignment =
3848       getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3849   EmitAggExpr(TheCXXConstructExpr,
3850               AggValueSlot::forAddr(
3851                   Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3852                   Qualifiers(), AggValueSlot::IsDestructed,
3853                   AggValueSlot::DoesNotNeedGCBarriers,
3854                   AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3855 
3856   FinishFunction();
3857   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3858   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3859   return HelperFn;
3860 }
3861 
3862 llvm::Value *
3863 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3864   // Get selectors for retain/autorelease.
3865   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3866   Selector CopySelector =
3867       getContext().Selectors.getNullarySelector(CopyID);
3868   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3869   Selector AutoreleaseSelector =
3870       getContext().Selectors.getNullarySelector(AutoreleaseID);
3871 
3872   // Emit calls to retain/autorelease.
3873   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3874   llvm::Value *Val = Block;
3875   RValue Result;
3876   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3877                                        Ty, CopySelector,
3878                                        Val, CallArgList(), nullptr, nullptr);
3879   Val = Result.getScalarVal();
3880   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3881                                        Ty, AutoreleaseSelector,
3882                                        Val, CallArgList(), nullptr, nullptr);
3883   Val = Result.getScalarVal();
3884   return Val;
3885 }
3886 
3887 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3888   switch (TT.getOS()) {
3889   case llvm::Triple::Darwin:
3890   case llvm::Triple::MacOSX:
3891     return llvm::MachO::PLATFORM_MACOS;
3892   case llvm::Triple::IOS:
3893     return llvm::MachO::PLATFORM_IOS;
3894   case llvm::Triple::TvOS:
3895     return llvm::MachO::PLATFORM_TVOS;
3896   case llvm::Triple::WatchOS:
3897     return llvm::MachO::PLATFORM_WATCHOS;
3898   case llvm::Triple::DriverKit:
3899     return llvm::MachO::PLATFORM_DRIVERKIT;
3900   default:
3901     return /*Unknown platform*/ 0;
3902   }
3903 }
3904 
3905 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3906                                                  const VersionTuple &Version) {
3907   CodeGenModule &CGM = CGF.CGM;
3908   // Note: we intend to support multi-platform version checks, so reserve
3909   // the room for a dual platform checking invocation that will be
3910   // implemented in the future.
3911   llvm::SmallVector<llvm::Value *, 8> Args;
3912 
3913   auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3914     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3915     Args.push_back(
3916         llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3917     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3918     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3919     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3920   };
3921 
3922   assert(!Version.empty() && "unexpected empty version");
3923   EmitArgs(Version, CGM.getTarget().getTriple());
3924 
3925   if (!CGM.IsPlatformVersionAtLeastFn) {
3926     llvm::FunctionType *FTy = llvm::FunctionType::get(
3927         CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3928         false);
3929     CGM.IsPlatformVersionAtLeastFn =
3930         CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3931   }
3932 
3933   llvm::Value *Check =
3934       CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3935   return CGF.Builder.CreateICmpNE(Check,
3936                                   llvm::Constant::getNullValue(CGM.Int32Ty));
3937 }
3938 
3939 llvm::Value *
3940 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3941   // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3942   if (CGM.getTarget().getTriple().isOSDarwin())
3943     return emitIsPlatformVersionAtLeast(*this, Version);
3944 
3945   if (!CGM.IsOSVersionAtLeastFn) {
3946     llvm::FunctionType *FTy =
3947         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3948     CGM.IsOSVersionAtLeastFn =
3949         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3950   }
3951 
3952   Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3953   llvm::Value *Args[] = {
3954       llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
3955       llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
3956       llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
3957 
3958   llvm::Value *CallRes =
3959       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3960 
3961   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3962 }
3963 
3964 static bool isFoundationNeededForDarwinAvailabilityCheck(
3965     const llvm::Triple &TT, const VersionTuple &TargetVersion) {
3966   VersionTuple FoundationDroppedInVersion;
3967   switch (TT.getOS()) {
3968   case llvm::Triple::IOS:
3969   case llvm::Triple::TvOS:
3970     FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
3971     break;
3972   case llvm::Triple::WatchOS:
3973     FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
3974     break;
3975   case llvm::Triple::Darwin:
3976   case llvm::Triple::MacOSX:
3977     FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
3978     break;
3979   case llvm::Triple::DriverKit:
3980     // DriverKit doesn't need Foundation.
3981     return false;
3982   default:
3983     llvm_unreachable("Unexpected OS");
3984   }
3985   return TargetVersion < FoundationDroppedInVersion;
3986 }
3987 
3988 void CodeGenModule::emitAtAvailableLinkGuard() {
3989   if (!IsPlatformVersionAtLeastFn)
3990     return;
3991   // @available requires CoreFoundation only on Darwin.
3992   if (!Target.getTriple().isOSDarwin())
3993     return;
3994   // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
3995   // watchOS 6+.
3996   if (!isFoundationNeededForDarwinAvailabilityCheck(
3997           Target.getTriple(), Target.getPlatformMinVersion()))
3998     return;
3999   // Add -framework CoreFoundation to the linker commands. We still want to
4000   // emit the core foundation reference down below because otherwise if
4001   // CoreFoundation is not used in the code, the linker won't link the
4002   // framework.
4003   auto &Context = getLLVMContext();
4004   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4005                              llvm::MDString::get(Context, "CoreFoundation")};
4006   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4007   // Emit a reference to a symbol from CoreFoundation to ensure that
4008   // CoreFoundation is linked into the final binary.
4009   llvm::FunctionType *FTy =
4010       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4011   llvm::FunctionCallee CFFunc =
4012       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4013 
4014   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4015   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4016       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4017       llvm::AttributeList(), /*Local=*/true);
4018   llvm::Function *CFLinkCheckFunc =
4019       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4020   if (CFLinkCheckFunc->empty()) {
4021     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4022     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4023     CodeGenFunction CGF(*this);
4024     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4025     CGF.EmitNounwindRuntimeCall(CFFunc,
4026                                 llvm::Constant::getNullValue(VoidPtrTy));
4027     CGF.Builder.CreateUnreachable();
4028     addCompilerUsedGlobal(CFLinkCheckFunc);
4029   }
4030 }
4031 
4032 CGObjCRuntime::~CGObjCRuntime() {}
4033