xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGObjC.cpp (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/CodeGenABITypes.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Analysis/ObjCARCUtil.h"
28 #include "llvm/BinaryFormat/MachO.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include <optional>
33 using namespace clang;
34 using namespace CodeGen;
35 
36 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37 static TryEmitResult
38 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
39 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
40                                    QualType ET,
41                                    RValue Result);
42 
43 /// Given the address of a variable of pointer type, find the correct
44 /// null to store into it.
45 static llvm::Constant *getNullForVariable(Address addr) {
46   llvm::Type *type = addr.getElementType();
47   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
48 }
49 
50 /// Emits an instance of NSConstantString representing the object.
51 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
52 {
53   llvm::Constant *C =
54       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
55   return C;
56 }
57 
58 /// EmitObjCBoxedExpr - This routine generates code to call
59 /// the appropriate expression boxing method. This will either be
60 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
61 /// or [NSValue valueWithBytes:objCType:].
62 ///
63 llvm::Value *
64 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
65   // Generate the correct selector for this literal's concrete type.
66   // Get the method.
67   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
68   const Expr *SubExpr = E->getSubExpr();
69 
70   if (E->isExpressibleAsConstantInitializer()) {
71     ConstantEmitter ConstEmitter(CGM);
72     return ConstEmitter.tryEmitAbstract(E, E->getType());
73   }
74 
75   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
76   Selector Sel = BoxingMethod->getSelector();
77 
78   // Generate a reference to the class pointer, which will be the receiver.
79   // Assumes that the method was introduced in the class that should be
80   // messaged (avoids pulling it out of the result type).
81   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
82   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
83   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
84 
85   CallArgList Args;
86   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
87   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
88 
89   // ObjCBoxedExpr supports boxing of structs and unions
90   // via [NSValue valueWithBytes:objCType:]
91   const QualType ValueType(SubExpr->getType().getCanonicalType());
92   if (ValueType->isObjCBoxableRecordType()) {
93     // Emit CodeGen for first parameter
94     // and cast value to correct type
95     Address Temporary = CreateMemTemp(SubExpr->getType());
96     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
97     llvm::Value *BitCast =
98         Builder.CreateBitCast(Temporary.getPointer(), ConvertType(ArgQT));
99     Args.add(RValue::get(BitCast), ArgQT);
100 
101     // Create char array to store type encoding
102     std::string Str;
103     getContext().getObjCEncodingForType(ValueType, Str);
104     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
105 
106     // Cast type encoding to correct type
107     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
108     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
109     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
110 
111     Args.add(RValue::get(Cast), EncodingQT);
112   } else {
113     Args.add(EmitAnyExpr(SubExpr), ArgQT);
114   }
115 
116   RValue result = Runtime.GenerateMessageSend(
117       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
118       Args, ClassDecl, BoxingMethod);
119   return Builder.CreateBitCast(result.getScalarVal(),
120                                ConvertType(E->getType()));
121 }
122 
123 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
124                                     const ObjCMethodDecl *MethodWithObjects) {
125   ASTContext &Context = CGM.getContext();
126   const ObjCDictionaryLiteral *DLE = nullptr;
127   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
128   if (!ALE)
129     DLE = cast<ObjCDictionaryLiteral>(E);
130 
131   // Optimize empty collections by referencing constants, when available.
132   uint64_t NumElements =
133     ALE ? ALE->getNumElements() : DLE->getNumElements();
134   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
135     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
136     QualType IdTy(CGM.getContext().getObjCIdType());
137     llvm::Constant *Constant =
138         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
139     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
140     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
141     cast<llvm::LoadInst>(Ptr)->setMetadata(
142         llvm::LLVMContext::MD_invariant_load,
143         llvm::MDNode::get(getLLVMContext(), std::nullopt));
144     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
145   }
146 
147   // Compute the type of the array we're initializing.
148   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
149                             NumElements);
150   QualType ElementType = Context.getObjCIdType().withConst();
151   QualType ElementArrayType = Context.getConstantArrayType(
152       ElementType, APNumElements, nullptr, ArraySizeModifier::Normal,
153       /*IndexTypeQuals=*/0);
154 
155   // Allocate the temporary array(s).
156   Address Objects = CreateMemTemp(ElementArrayType, "objects");
157   Address Keys = Address::invalid();
158   if (DLE)
159     Keys = CreateMemTemp(ElementArrayType, "keys");
160 
161   // In ARC, we may need to do extra work to keep all the keys and
162   // values alive until after the call.
163   SmallVector<llvm::Value *, 16> NeededObjects;
164   bool TrackNeededObjects =
165     (getLangOpts().ObjCAutoRefCount &&
166     CGM.getCodeGenOpts().OptimizationLevel != 0);
167 
168   // Perform the actual initialialization of the array(s).
169   for (uint64_t i = 0; i < NumElements; i++) {
170     if (ALE) {
171       // Emit the element and store it to the appropriate array slot.
172       const Expr *Rhs = ALE->getElement(i);
173       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
174                                  ElementType, AlignmentSource::Decl);
175 
176       llvm::Value *value = EmitScalarExpr(Rhs);
177       EmitStoreThroughLValue(RValue::get(value), LV, true);
178       if (TrackNeededObjects) {
179         NeededObjects.push_back(value);
180       }
181     } else {
182       // Emit the key and store it to the appropriate array slot.
183       const Expr *Key = DLE->getKeyValueElement(i).Key;
184       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
185                                     ElementType, AlignmentSource::Decl);
186       llvm::Value *keyValue = EmitScalarExpr(Key);
187       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
188 
189       // Emit the value and store it to the appropriate array slot.
190       const Expr *Value = DLE->getKeyValueElement(i).Value;
191       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
192                                       ElementType, AlignmentSource::Decl);
193       llvm::Value *valueValue = EmitScalarExpr(Value);
194       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
195       if (TrackNeededObjects) {
196         NeededObjects.push_back(keyValue);
197         NeededObjects.push_back(valueValue);
198       }
199     }
200   }
201 
202   // Generate the argument list.
203   CallArgList Args;
204   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
205   const ParmVarDecl *argDecl = *PI++;
206   QualType ArgQT = argDecl->getType().getUnqualifiedType();
207   Args.add(RValue::get(Objects.getPointer()), ArgQT);
208   if (DLE) {
209     argDecl = *PI++;
210     ArgQT = argDecl->getType().getUnqualifiedType();
211     Args.add(RValue::get(Keys.getPointer()), ArgQT);
212   }
213   argDecl = *PI;
214   ArgQT = argDecl->getType().getUnqualifiedType();
215   llvm::Value *Count =
216     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
217   Args.add(RValue::get(Count), ArgQT);
218 
219   // Generate a reference to the class pointer, which will be the receiver.
220   Selector Sel = MethodWithObjects->getSelector();
221   QualType ResultType = E->getType();
222   const ObjCObjectPointerType *InterfacePointerType
223     = ResultType->getAsObjCInterfacePointerType();
224   assert(InterfacePointerType && "Unexpected InterfacePointerType - null");
225   ObjCInterfaceDecl *Class
226     = InterfacePointerType->getObjectType()->getInterface();
227   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
229 
230   // Generate the message send.
231   RValue result = Runtime.GenerateMessageSend(
232       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
233       Receiver, Args, Class, MethodWithObjects);
234 
235   // The above message send needs these objects, but in ARC they are
236   // passed in a buffer that is essentially __unsafe_unretained.
237   // Therefore we must prevent the optimizer from releasing them until
238   // after the call.
239   if (TrackNeededObjects) {
240     EmitARCIntrinsicUse(NeededObjects);
241   }
242 
243   return Builder.CreateBitCast(result.getScalarVal(),
244                                ConvertType(E->getType()));
245 }
246 
247 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
248   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
249 }
250 
251 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
252                                             const ObjCDictionaryLiteral *E) {
253   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
254 }
255 
256 /// Emit a selector.
257 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
258   // Untyped selector.
259   // Note that this implementation allows for non-constant strings to be passed
260   // as arguments to @selector().  Currently, the only thing preventing this
261   // behaviour is the type checking in the front end.
262   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
263 }
264 
265 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
266   // FIXME: This should pass the Decl not the name.
267   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
268 }
269 
270 /// Adjust the type of an Objective-C object that doesn't match up due
271 /// to type erasure at various points, e.g., related result types or the use
272 /// of parameterized classes.
273 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
274                                    RValue Result) {
275   if (!ExpT->isObjCRetainableType())
276     return Result;
277 
278   // If the converted types are the same, we're done.
279   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
280   if (ExpLLVMTy == Result.getScalarVal()->getType())
281     return Result;
282 
283   // We have applied a substitution. Cast the rvalue appropriately.
284   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
285                                                ExpLLVMTy));
286 }
287 
288 /// Decide whether to extend the lifetime of the receiver of a
289 /// returns-inner-pointer message.
290 static bool
291 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
292   switch (message->getReceiverKind()) {
293 
294   // For a normal instance message, we should extend unless the
295   // receiver is loaded from a variable with precise lifetime.
296   case ObjCMessageExpr::Instance: {
297     const Expr *receiver = message->getInstanceReceiver();
298 
299     // Look through OVEs.
300     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
301       if (opaque->getSourceExpr())
302         receiver = opaque->getSourceExpr()->IgnoreParens();
303     }
304 
305     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
306     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307     receiver = ice->getSubExpr()->IgnoreParens();
308 
309     // Look through OVEs.
310     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
311       if (opaque->getSourceExpr())
312         receiver = opaque->getSourceExpr()->IgnoreParens();
313     }
314 
315     // Only __strong variables.
316     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317       return true;
318 
319     // All ivars and fields have precise lifetime.
320     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
321       return false;
322 
323     // Otherwise, check for variables.
324     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325     if (!declRef) return true;
326     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
327     if (!var) return true;
328 
329     // All variables have precise lifetime except local variables with
330     // automatic storage duration that aren't specially marked.
331     return (var->hasLocalStorage() &&
332             !var->hasAttr<ObjCPreciseLifetimeAttr>());
333   }
334 
335   case ObjCMessageExpr::Class:
336   case ObjCMessageExpr::SuperClass:
337     // It's never necessary for class objects.
338     return false;
339 
340   case ObjCMessageExpr::SuperInstance:
341     // We generally assume that 'self' lives throughout a method call.
342     return false;
343   }
344 
345   llvm_unreachable("invalid receiver kind");
346 }
347 
348 /// Given an expression of ObjC pointer type, check whether it was
349 /// immediately loaded from an ARC __weak l-value.
350 static const Expr *findWeakLValue(const Expr *E) {
351   assert(E->getType()->isObjCRetainableType());
352   E = E->IgnoreParens();
353   if (auto CE = dyn_cast<CastExpr>(E)) {
354     if (CE->getCastKind() == CK_LValueToRValue) {
355       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356         return CE->getSubExpr();
357     }
358   }
359 
360   return nullptr;
361 }
362 
363 /// The ObjC runtime may provide entrypoints that are likely to be faster
364 /// than an ordinary message send of the appropriate selector.
365 ///
366 /// The entrypoints are guaranteed to be equivalent to just sending the
367 /// corresponding message.  If the entrypoint is implemented naively as just a
368 /// message send, using it is a trade-off: it sacrifices a few cycles of
369 /// overhead to save a small amount of code.  However, it's possible for
370 /// runtimes to detect and special-case classes that use "standard"
371 /// behavior; if that's dynamically a large proportion of all objects, using
372 /// the entrypoint will also be faster than using a message send.
373 ///
374 /// If the runtime does support a required entrypoint, then this method will
375 /// generate a call and return the resulting value.  Otherwise it will return
376 /// std::nullopt and the caller can generate a msgSend instead.
377 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378     CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379     const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380     bool isClassMessage) {
381   auto &CGM = CGF.CGM;
382   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383     return std::nullopt;
384 
385   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386   switch (Sel.getMethodFamily()) {
387   case OMF_alloc:
388     if (isClassMessage &&
389         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390         ResultType->isObjCObjectPointerType()) {
391         // [Foo alloc] -> objc_alloc(Foo) or
392         // [self alloc] -> objc_alloc(self)
393         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
394           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
395         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396         // [self allocWithZone:nil] -> objc_allocWithZone(self)
397         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398             Args.size() == 1 && Args.front().getType()->isPointerType() &&
399             Sel.getNameForSlot(0) == "allocWithZone") {
400           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401           if (isa<llvm::ConstantPointerNull>(arg))
402             return CGF.EmitObjCAllocWithZone(Receiver,
403                                              CGF.ConvertType(ResultType));
404           return std::nullopt;
405         }
406     }
407     break;
408 
409   case OMF_autorelease:
410     if (ResultType->isObjCObjectPointerType() &&
411         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412         Runtime.shouldUseARCFunctionsForRetainRelease())
413       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
414     break;
415 
416   case OMF_retain:
417     if (ResultType->isObjCObjectPointerType() &&
418         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419         Runtime.shouldUseARCFunctionsForRetainRelease())
420       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
421     break;
422 
423   case OMF_release:
424     if (ResultType->isVoidType() &&
425         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426         Runtime.shouldUseARCFunctionsForRetainRelease()) {
427       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
428       return nullptr;
429     }
430     break;
431 
432   default:
433     break;
434   }
435   return std::nullopt;
436 }
437 
438 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442     bool isClassMessage) {
443   if (std::optional<llvm::Value *> SpecializedResult =
444           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445                                             Sel, Method, isClassMessage)) {
446     return RValue::get(*SpecializedResult);
447   }
448   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
449                              Method);
450 }
451 
452 static void AppendFirstImpliedRuntimeProtocols(
453     const ObjCProtocolDecl *PD,
454     llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455   if (!PD->isNonRuntimeProtocol()) {
456     const auto *Can = PD->getCanonicalDecl();
457     PDs.insert(Can);
458     return;
459   }
460 
461   for (const auto *ParentPD : PD->protocols())
462     AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
463 }
464 
465 std::vector<const ObjCProtocolDecl *>
466 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
467                                       ObjCProtocolDecl::protocol_iterator end) {
468   std::vector<const ObjCProtocolDecl *> RuntimePds;
469   llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
470 
471   for (; begin != end; ++begin) {
472     const auto *It = *begin;
473     const auto *Can = It->getCanonicalDecl();
474     if (Can->isNonRuntimeProtocol())
475       NonRuntimePDs.insert(Can);
476     else
477       RuntimePds.push_back(Can);
478   }
479 
480   // If there are no non-runtime protocols then we can just stop now.
481   if (NonRuntimePDs.empty())
482     return RuntimePds;
483 
484   // Else we have to search through the non-runtime protocol's inheritancy
485   // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486   // a non-runtime protocol without any parents. These are the "first-implied"
487   // protocols from a non-runtime protocol.
488   llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489   for (const auto *PD : NonRuntimePDs)
490     AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
491 
492   // Walk the Runtime list to get all protocols implied via the inclusion of
493   // this protocol, e.g. all protocols it inherits from including itself.
494   llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495   for (const auto *PD : RuntimePds) {
496     const auto *Can = PD->getCanonicalDecl();
497     AllImpliedProtocols.insert(Can);
498     Can->getImpliedProtocols(AllImpliedProtocols);
499   }
500 
501   // Similar to above, walk the list of first-implied protocols to find the set
502   // all the protocols implied excluding the listed protocols themselves since
503   // they are not yet a part of the `RuntimePds` list.
504   for (const auto *PD : FirstImpliedProtos) {
505     PD->getImpliedProtocols(AllImpliedProtocols);
506   }
507 
508   // From the first-implied list we have to finish building the final protocol
509   // list. If a protocol in the first-implied list was already implied via some
510   // inheritance path through some other protocols then it would be redundant to
511   // add it here and so we skip over it.
512   for (const auto *PD : FirstImpliedProtos) {
513     if (!AllImpliedProtocols.contains(PD)) {
514       RuntimePds.push_back(PD);
515     }
516   }
517 
518   return RuntimePds;
519 }
520 
521 /// Instead of '[[MyClass alloc] init]', try to generate
522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523 /// caller side, as well as the optimized objc_alloc.
524 static std::optional<llvm::Value *>
525 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
526   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528     return std::nullopt;
529 
530   // Match the exact pattern '[[MyClass alloc] init]'.
531   Selector Sel = OME->getSelector();
532   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
533       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534       Sel.getNameForSlot(0) != "init")
535     return std::nullopt;
536 
537   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538   // with 'cls' a Class.
539   auto *SubOME =
540       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
541   if (!SubOME)
542     return std::nullopt;
543   Selector SubSel = SubOME->getSelector();
544 
545   if (!SubOME->getType()->isObjCObjectPointerType() ||
546       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
547     return std::nullopt;
548 
549   llvm::Value *Receiver = nullptr;
550   switch (SubOME->getReceiverKind()) {
551   case ObjCMessageExpr::Instance:
552     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553       return std::nullopt;
554     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
555     break;
556 
557   case ObjCMessageExpr::Class: {
558     QualType ReceiverType = SubOME->getClassReceiver();
559     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561     assert(ID && "null interface should be impossible here");
562     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
563     break;
564   }
565   case ObjCMessageExpr::SuperInstance:
566   case ObjCMessageExpr::SuperClass:
567     return std::nullopt;
568   }
569 
570   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
571 }
572 
573 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
574                                             ReturnValueSlot Return) {
575   // Only the lookup mechanism and first two arguments of the method
576   // implementation vary between runtimes.  We can get the receiver and
577   // arguments in generic code.
578 
579   bool isDelegateInit = E->isDelegateInitCall();
580 
581   const ObjCMethodDecl *method = E->getMethodDecl();
582 
583   // If the method is -retain, and the receiver's being loaded from
584   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586       method->getMethodFamily() == OMF_retain) {
587     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
588       LValue lvalue = EmitLValue(lvalueExpr);
589       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
590       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
591     }
592   }
593 
594   if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
595     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
596 
597   // We don't retain the receiver in delegate init calls, and this is
598   // safe because the receiver value is always loaded from 'self',
599   // which we zero out.  We don't want to Block_copy block receivers,
600   // though.
601   bool retainSelf =
602     (!isDelegateInit &&
603      CGM.getLangOpts().ObjCAutoRefCount &&
604      method &&
605      method->hasAttr<NSConsumesSelfAttr>());
606 
607   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608   bool isSuperMessage = false;
609   bool isClassMessage = false;
610   ObjCInterfaceDecl *OID = nullptr;
611   // Find the receiver
612   QualType ReceiverType;
613   llvm::Value *Receiver = nullptr;
614   switch (E->getReceiverKind()) {
615   case ObjCMessageExpr::Instance:
616     ReceiverType = E->getInstanceReceiver()->getType();
617     isClassMessage = ReceiverType->isObjCClassType();
618     if (retainSelf) {
619       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
620                                                    E->getInstanceReceiver());
621       Receiver = ter.getPointer();
622       if (ter.getInt()) retainSelf = false;
623     } else
624       Receiver = EmitScalarExpr(E->getInstanceReceiver());
625     break;
626 
627   case ObjCMessageExpr::Class: {
628     ReceiverType = E->getClassReceiver();
629     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630     assert(OID && "Invalid Objective-C class message send");
631     Receiver = Runtime.GetClass(*this, OID);
632     isClassMessage = true;
633     break;
634   }
635 
636   case ObjCMessageExpr::SuperInstance:
637     ReceiverType = E->getSuperType();
638     Receiver = LoadObjCSelf();
639     isSuperMessage = true;
640     break;
641 
642   case ObjCMessageExpr::SuperClass:
643     ReceiverType = E->getSuperType();
644     Receiver = LoadObjCSelf();
645     isSuperMessage = true;
646     isClassMessage = true;
647     break;
648   }
649 
650   if (retainSelf)
651     Receiver = EmitARCRetainNonBlock(Receiver);
652 
653   // In ARC, we sometimes want to "extend the lifetime"
654   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655   // messages.
656   if (getLangOpts().ObjCAutoRefCount && method &&
657       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
658       shouldExtendReceiverForInnerPointerMessage(E))
659     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
660 
661   QualType ResultType = method ? method->getReturnType() : E->getType();
662 
663   CallArgList Args;
664   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
665 
666   // For delegate init calls in ARC, do an unsafe store of null into
667   // self.  This represents the call taking direct ownership of that
668   // value.  We have to do this after emitting the other call
669   // arguments because they might also reference self, but we don't
670   // have to worry about any of them modifying self because that would
671   // be an undefined read and write of an object in unordered
672   // expressions.
673   if (isDelegateInit) {
674     assert(getLangOpts().ObjCAutoRefCount &&
675            "delegate init calls should only be marked in ARC");
676 
677     // Do an unsafe store of null into self.
678     Address selfAddr =
679       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
680     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
681   }
682 
683   RValue result;
684   if (isSuperMessage) {
685     // super is only valid in an Objective-C method
686     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
687     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
689                                               E->getSelector(),
690                                               OMD->getClassInterface(),
691                                               isCategoryImpl,
692                                               Receiver,
693                                               isClassMessage,
694                                               Args,
695                                               method);
696   } else {
697     // Call runtime methods directly if we can.
698     result = Runtime.GeneratePossiblySpecializedMessageSend(
699         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
700         method, isClassMessage);
701   }
702 
703   // For delegate init calls in ARC, implicitly store the result of
704   // the call back into self.  This takes ownership of the value.
705   if (isDelegateInit) {
706     Address selfAddr =
707       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
708     llvm::Value *newSelf = result.getScalarVal();
709 
710     // The delegate return type isn't necessarily a matching type; in
711     // fact, it's quite likely to be 'id'.
712     llvm::Type *selfTy = selfAddr.getElementType();
713     newSelf = Builder.CreateBitCast(newSelf, selfTy);
714 
715     Builder.CreateStore(newSelf, selfAddr);
716   }
717 
718   return AdjustObjCObjectType(*this, E->getType(), result);
719 }
720 
721 namespace {
722 struct FinishARCDealloc final : EHScopeStack::Cleanup {
723   void Emit(CodeGenFunction &CGF, Flags flags) override {
724     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
725 
726     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727     const ObjCInterfaceDecl *iface = impl->getClassInterface();
728     if (!iface->getSuperClass()) return;
729 
730     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
731 
732     // Call [super dealloc] if we have a superclass.
733     llvm::Value *self = CGF.LoadObjCSelf();
734 
735     CallArgList args;
736     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
737                                                       CGF.getContext().VoidTy,
738                                                       method->getSelector(),
739                                                       iface,
740                                                       isCategory,
741                                                       self,
742                                                       /*is class msg*/ false,
743                                                       args,
744                                                       method);
745   }
746 };
747 }
748 
749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750 /// the LLVM function and sets the other context used by
751 /// CodeGenFunction.
752 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
753                                       const ObjCContainerDecl *CD) {
754   SourceLocation StartLoc = OMD->getBeginLoc();
755   FunctionArgList args;
756   // Check if we should generate debug info for this method.
757   if (OMD->hasAttr<NoDebugAttr>())
758     DebugInfo = nullptr; // disable debug info indefinitely for this function
759 
760   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
761 
762   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
763   if (OMD->isDirectMethod()) {
764     Fn->setVisibility(llvm::Function::HiddenVisibility);
765     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
766     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
767   } else {
768     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
769   }
770 
771   args.push_back(OMD->getSelfDecl());
772   if (!OMD->isDirectMethod())
773     args.push_back(OMD->getCmdDecl());
774 
775   args.append(OMD->param_begin(), OMD->param_end());
776 
777   CurGD = OMD;
778   CurEHLocation = OMD->getEndLoc();
779 
780   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
781                 OMD->getLocation(), StartLoc);
782 
783   if (OMD->isDirectMethod()) {
784     // This function is a direct call, it has to implement a nil check
785     // on entry.
786     //
787     // TODO: possibly have several entry points to elide the check
788     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
789   }
790 
791   // In ARC, certain methods get an extra cleanup.
792   if (CGM.getLangOpts().ObjCAutoRefCount &&
793       OMD->isInstanceMethod() &&
794       OMD->getSelector().isUnarySelector()) {
795     const IdentifierInfo *ident =
796       OMD->getSelector().getIdentifierInfoForSlot(0);
797     if (ident->isStr("dealloc"))
798       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
799   }
800 }
801 
802 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803                                               LValue lvalue, QualType type);
804 
805 /// Generate an Objective-C method.  An Objective-C method is a C function with
806 /// its pointer, name, and types registered in the class structure.
807 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
808   StartObjCMethod(OMD, OMD->getClassInterface());
809   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
810   assert(isa<CompoundStmt>(OMD->getBody()));
811   incrementProfileCounter(OMD->getBody());
812   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
813   FinishFunction(OMD->getBodyRBrace());
814 }
815 
816 /// emitStructGetterCall - Call the runtime function to load a property
817 /// into the return value slot.
818 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
819                                  bool isAtomic, bool hasStrong) {
820   ASTContext &Context = CGF.getContext();
821 
822   llvm::Value *src =
823       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
824           .getPointer(CGF);
825 
826   // objc_copyStruct (ReturnValue, &structIvar,
827   //                  sizeof (Type of Ivar), isAtomic, false);
828   CallArgList args;
829 
830   llvm::Value *dest = CGF.ReturnValue.getPointer();
831   args.add(RValue::get(dest), Context.VoidPtrTy);
832   args.add(RValue::get(src), Context.VoidPtrTy);
833 
834   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
835   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
836   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
837   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
838 
839   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
840   CGCallee callee = CGCallee::forDirect(fn);
841   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
842                callee, ReturnValueSlot(), args);
843 }
844 
845 /// Determine whether the given architecture supports unaligned atomic
846 /// accesses.  They don't have to be fast, just faster than a function
847 /// call and a mutex.
848 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
849   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
850   // currently supported by the backend.)
851   return false;
852 }
853 
854 /// Return the maximum size that permits atomic accesses for the given
855 /// architecture.
856 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
857                                         llvm::Triple::ArchType arch) {
858   // ARM has 8-byte atomic accesses, but it's not clear whether we
859   // want to rely on them here.
860 
861   // In the default case, just assume that any size up to a pointer is
862   // fine given adequate alignment.
863   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
864 }
865 
866 namespace {
867   class PropertyImplStrategy {
868   public:
869     enum StrategyKind {
870       /// The 'native' strategy is to use the architecture's provided
871       /// reads and writes.
872       Native,
873 
874       /// Use objc_setProperty and objc_getProperty.
875       GetSetProperty,
876 
877       /// Use objc_setProperty for the setter, but use expression
878       /// evaluation for the getter.
879       SetPropertyAndExpressionGet,
880 
881       /// Use objc_copyStruct.
882       CopyStruct,
883 
884       /// The 'expression' strategy is to emit normal assignment or
885       /// lvalue-to-rvalue expressions.
886       Expression
887     };
888 
889     StrategyKind getKind() const { return StrategyKind(Kind); }
890 
891     bool hasStrongMember() const { return HasStrong; }
892     bool isAtomic() const { return IsAtomic; }
893     bool isCopy() const { return IsCopy; }
894 
895     CharUnits getIvarSize() const { return IvarSize; }
896     CharUnits getIvarAlignment() const { return IvarAlignment; }
897 
898     PropertyImplStrategy(CodeGenModule &CGM,
899                          const ObjCPropertyImplDecl *propImpl);
900 
901   private:
902     unsigned Kind : 8;
903     unsigned IsAtomic : 1;
904     unsigned IsCopy : 1;
905     unsigned HasStrong : 1;
906 
907     CharUnits IvarSize;
908     CharUnits IvarAlignment;
909   };
910 }
911 
912 /// Pick an implementation strategy for the given property synthesis.
913 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
914                                      const ObjCPropertyImplDecl *propImpl) {
915   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
916   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
917 
918   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
919   IsAtomic = prop->isAtomic();
920   HasStrong = false; // doesn't matter here.
921 
922   // Evaluate the ivar's size and alignment.
923   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
924   QualType ivarType = ivar->getType();
925   auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
926   IvarSize = TInfo.Width;
927   IvarAlignment = TInfo.Align;
928 
929   // If we have a copy property, we always have to use setProperty.
930   // If the property is atomic we need to use getProperty, but in
931   // the nonatomic case we can just use expression.
932   if (IsCopy) {
933     Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
934     return;
935   }
936 
937   // Handle retain.
938   if (setterKind == ObjCPropertyDecl::Retain) {
939     // In GC-only, there's nothing special that needs to be done.
940     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
941       // fallthrough
942 
943     // In ARC, if the property is non-atomic, use expression emission,
944     // which translates to objc_storeStrong.  This isn't required, but
945     // it's slightly nicer.
946     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
947       // Using standard expression emission for the setter is only
948       // acceptable if the ivar is __strong, which won't be true if
949       // the property is annotated with __attribute__((NSObject)).
950       // TODO: falling all the way back to objc_setProperty here is
951       // just laziness, though;  we could still use objc_storeStrong
952       // if we hacked it right.
953       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
954         Kind = Expression;
955       else
956         Kind = SetPropertyAndExpressionGet;
957       return;
958 
959     // Otherwise, we need to at least use setProperty.  However, if
960     // the property isn't atomic, we can use normal expression
961     // emission for the getter.
962     } else if (!IsAtomic) {
963       Kind = SetPropertyAndExpressionGet;
964       return;
965 
966     // Otherwise, we have to use both setProperty and getProperty.
967     } else {
968       Kind = GetSetProperty;
969       return;
970     }
971   }
972 
973   // If we're not atomic, just use expression accesses.
974   if (!IsAtomic) {
975     Kind = Expression;
976     return;
977   }
978 
979   // Properties on bitfield ivars need to be emitted using expression
980   // accesses even if they're nominally atomic.
981   if (ivar->isBitField()) {
982     Kind = Expression;
983     return;
984   }
985 
986   // GC-qualified or ARC-qualified ivars need to be emitted as
987   // expressions.  This actually works out to being atomic anyway,
988   // except for ARC __strong, but that should trigger the above code.
989   if (ivarType.hasNonTrivialObjCLifetime() ||
990       (CGM.getLangOpts().getGC() &&
991        CGM.getContext().getObjCGCAttrKind(ivarType))) {
992     Kind = Expression;
993     return;
994   }
995 
996   // Compute whether the ivar has strong members.
997   if (CGM.getLangOpts().getGC())
998     if (const RecordType *recordType = ivarType->getAs<RecordType>())
999       HasStrong = recordType->getDecl()->hasObjectMember();
1000 
1001   // We can never access structs with object members with a native
1002   // access, because we need to use write barriers.  This is what
1003   // objc_copyStruct is for.
1004   if (HasStrong) {
1005     Kind = CopyStruct;
1006     return;
1007   }
1008 
1009   // Otherwise, this is target-dependent and based on the size and
1010   // alignment of the ivar.
1011 
1012   // If the size of the ivar is not a power of two, give up.  We don't
1013   // want to get into the business of doing compare-and-swaps.
1014   if (!IvarSize.isPowerOfTwo()) {
1015     Kind = CopyStruct;
1016     return;
1017   }
1018 
1019   llvm::Triple::ArchType arch =
1020     CGM.getTarget().getTriple().getArch();
1021 
1022   // Most architectures require memory to fit within a single cache
1023   // line, so the alignment has to be at least the size of the access.
1024   // Otherwise we have to grab a lock.
1025   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1026     Kind = CopyStruct;
1027     return;
1028   }
1029 
1030   // If the ivar's size exceeds the architecture's maximum atomic
1031   // access size, we have to use CopyStruct.
1032   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1033     Kind = CopyStruct;
1034     return;
1035   }
1036 
1037   // Otherwise, we can use native loads and stores.
1038   Kind = Native;
1039 }
1040 
1041 /// Generate an Objective-C property getter function.
1042 ///
1043 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1044 /// is illegal within a category.
1045 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1046                                          const ObjCPropertyImplDecl *PID) {
1047   llvm::Constant *AtomicHelperFn =
1048       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1049   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1050   assert(OMD && "Invalid call to generate getter (empty method)");
1051   StartObjCMethod(OMD, IMP->getClassInterface());
1052 
1053   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1054 
1055   FinishFunction(OMD->getEndLoc());
1056 }
1057 
1058 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1059   const Expr *getter = propImpl->getGetterCXXConstructor();
1060   if (!getter) return true;
1061 
1062   // Sema only makes only of these when the ivar has a C++ class type,
1063   // so the form is pretty constrained.
1064 
1065   // If the property has a reference type, we might just be binding a
1066   // reference, in which case the result will be a gl-value.  We should
1067   // treat this as a non-trivial operation.
1068   if (getter->isGLValue())
1069     return false;
1070 
1071   // If we selected a trivial copy-constructor, we're okay.
1072   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1073     return (construct->getConstructor()->isTrivial());
1074 
1075   // The constructor might require cleanups (in which case it's never
1076   // trivial).
1077   assert(isa<ExprWithCleanups>(getter));
1078   return false;
1079 }
1080 
1081 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1082 /// copy the ivar into the resturn slot.
1083 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1084                                           llvm::Value *returnAddr,
1085                                           ObjCIvarDecl *ivar,
1086                                           llvm::Constant *AtomicHelperFn) {
1087   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1088   //                           AtomicHelperFn);
1089   CallArgList args;
1090 
1091   // The 1st argument is the return Slot.
1092   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1093 
1094   // The 2nd argument is the address of the ivar.
1095   llvm::Value *ivarAddr =
1096       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1097           .getPointer(CGF);
1098   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1099 
1100   // Third argument is the helper function.
1101   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1102 
1103   llvm::FunctionCallee copyCppAtomicObjectFn =
1104       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1105   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1106   CGF.EmitCall(
1107       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1108                callee, ReturnValueSlot(), args);
1109 }
1110 
1111 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1112 // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1113 // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1114 // being removed from the direct method ABI as the getter/setter caller would
1115 // never load one. For non-direct methods, this emits a load of the implicit
1116 // `_cmd` storage.
1117 static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1118                                                    ObjCMethodDecl *MD) {
1119   if (MD->isDirectMethod()) {
1120     // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1121     // value. This will be passed to objc_getProperty/objc_setProperty, which
1122     // has not appeared bothered by the `_cmd` argument being undefined before.
1123     llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1124     return llvm::PoisonValue::get(selType);
1125   }
1126 
1127   return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1128 }
1129 
1130 void
1131 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1132                                         const ObjCPropertyImplDecl *propImpl,
1133                                         const ObjCMethodDecl *GetterMethodDecl,
1134                                         llvm::Constant *AtomicHelperFn) {
1135 
1136   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1137 
1138   if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1139     if (!AtomicHelperFn) {
1140       LValue Src =
1141           EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1142       LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1143       callCStructCopyConstructor(Dst, Src);
1144     } else {
1145       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1146       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), ivar,
1147                                     AtomicHelperFn);
1148     }
1149     return;
1150   }
1151 
1152   // If there's a non-trivial 'get' expression, we just have to emit that.
1153   if (!hasTrivialGetExpr(propImpl)) {
1154     if (!AtomicHelperFn) {
1155       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1156                                      propImpl->getGetterCXXConstructor(),
1157                                      /* NRVOCandidate=*/nullptr);
1158       EmitReturnStmt(*ret);
1159     }
1160     else {
1161       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1162       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1163                                     ivar, AtomicHelperFn);
1164     }
1165     return;
1166   }
1167 
1168   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1169   QualType propType = prop->getType();
1170   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1171 
1172   // Pick an implementation strategy.
1173   PropertyImplStrategy strategy(CGM, propImpl);
1174   switch (strategy.getKind()) {
1175   case PropertyImplStrategy::Native: {
1176     // We don't need to do anything for a zero-size struct.
1177     if (strategy.getIvarSize().isZero())
1178       return;
1179 
1180     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1181 
1182     // Currently, all atomic accesses have to be through integer
1183     // types, so there's no point in trying to pick a prettier type.
1184     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1185     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1186 
1187     // Perform an atomic load.  This does not impose ordering constraints.
1188     Address ivarAddr = LV.getAddress(*this);
1189     ivarAddr = ivarAddr.withElementType(bitcastType);
1190     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1191     load->setAtomic(llvm::AtomicOrdering::Unordered);
1192 
1193     // Store that value into the return address.  Doing this with a
1194     // bitcast is likely to produce some pretty ugly IR, but it's not
1195     // the *most* terrible thing in the world.
1196     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1197     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1198     llvm::Value *ivarVal = load;
1199     if (ivarSize > retTySize) {
1200       bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1201       ivarVal = Builder.CreateTrunc(load, bitcastType);
1202     }
1203     Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType));
1204 
1205     // Make sure we don't do an autorelease.
1206     AutoreleaseResult = false;
1207     return;
1208   }
1209 
1210   case PropertyImplStrategy::GetSetProperty: {
1211     llvm::FunctionCallee getPropertyFn =
1212         CGM.getObjCRuntime().GetPropertyGetFunction();
1213     if (!getPropertyFn) {
1214       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1215       return;
1216     }
1217     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1218 
1219     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1220     // FIXME: Can't this be simpler? This might even be worse than the
1221     // corresponding gcc code.
1222     llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1223     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1224     llvm::Value *ivarOffset =
1225         EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1226 
1227     CallArgList args;
1228     args.add(RValue::get(self), getContext().getObjCIdType());
1229     args.add(RValue::get(cmd), getContext().getObjCSelType());
1230     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1231     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1232              getContext().BoolTy);
1233 
1234     // FIXME: We shouldn't need to get the function info here, the
1235     // runtime already should have computed it to build the function.
1236     llvm::CallBase *CallInstruction;
1237     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1238                              getContext().getObjCIdType(), args),
1239                          callee, ReturnValueSlot(), args, &CallInstruction);
1240     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1241       call->setTailCall();
1242 
1243     // We need to fix the type here. Ivars with copy & retain are
1244     // always objects so we don't need to worry about complex or
1245     // aggregates.
1246     RV = RValue::get(Builder.CreateBitCast(
1247         RV.getScalarVal(),
1248         getTypes().ConvertType(getterMethod->getReturnType())));
1249 
1250     EmitReturnOfRValue(RV, propType);
1251 
1252     // objc_getProperty does an autorelease, so we should suppress ours.
1253     AutoreleaseResult = false;
1254 
1255     return;
1256   }
1257 
1258   case PropertyImplStrategy::CopyStruct:
1259     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1260                          strategy.hasStrongMember());
1261     return;
1262 
1263   case PropertyImplStrategy::Expression:
1264   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1265     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1266 
1267     QualType ivarType = ivar->getType();
1268     switch (getEvaluationKind(ivarType)) {
1269     case TEK_Complex: {
1270       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1271       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1272                          /*init*/ true);
1273       return;
1274     }
1275     case TEK_Aggregate: {
1276       // The return value slot is guaranteed to not be aliased, but
1277       // that's not necessarily the same as "on the stack", so
1278       // we still potentially need objc_memmove_collectable.
1279       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1280                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1281       return;
1282     }
1283     case TEK_Scalar: {
1284       llvm::Value *value;
1285       if (propType->isReferenceType()) {
1286         value = LV.getAddress(*this).getPointer();
1287       } else {
1288         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1289         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1290           if (getLangOpts().ObjCAutoRefCount) {
1291             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1292           } else {
1293             value = EmitARCLoadWeak(LV.getAddress(*this));
1294           }
1295 
1296         // Otherwise we want to do a simple load, suppressing the
1297         // final autorelease.
1298         } else {
1299           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1300           AutoreleaseResult = false;
1301         }
1302 
1303         value = Builder.CreateBitCast(
1304             value, ConvertType(GetterMethodDecl->getReturnType()));
1305       }
1306 
1307       EmitReturnOfRValue(RValue::get(value), propType);
1308       return;
1309     }
1310     }
1311     llvm_unreachable("bad evaluation kind");
1312   }
1313 
1314   }
1315   llvm_unreachable("bad @property implementation strategy!");
1316 }
1317 
1318 /// emitStructSetterCall - Call the runtime function to store the value
1319 /// from the first formal parameter into the given ivar.
1320 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1321                                  ObjCIvarDecl *ivar) {
1322   // objc_copyStruct (&structIvar, &Arg,
1323   //                  sizeof (struct something), true, false);
1324   CallArgList args;
1325 
1326   // The first argument is the address of the ivar.
1327   llvm::Value *ivarAddr =
1328       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1329           .getPointer(CGF);
1330   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1331   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1332 
1333   // The second argument is the address of the parameter variable.
1334   ParmVarDecl *argVar = *OMD->param_begin();
1335   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1336                      argVar->getType().getNonReferenceType(), VK_LValue,
1337                      SourceLocation());
1338   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1339   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1340 
1341   // The third argument is the sizeof the type.
1342   llvm::Value *size =
1343     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1344   args.add(RValue::get(size), CGF.getContext().getSizeType());
1345 
1346   // The fourth argument is the 'isAtomic' flag.
1347   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1348 
1349   // The fifth argument is the 'hasStrong' flag.
1350   // FIXME: should this really always be false?
1351   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1352 
1353   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1354   CGCallee callee = CGCallee::forDirect(fn);
1355   CGF.EmitCall(
1356       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1357                callee, ReturnValueSlot(), args);
1358 }
1359 
1360 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1361 /// the value from the first formal parameter into the given ivar, using
1362 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1363 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1364                                           ObjCMethodDecl *OMD,
1365                                           ObjCIvarDecl *ivar,
1366                                           llvm::Constant *AtomicHelperFn) {
1367   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1368   //                           AtomicHelperFn);
1369   CallArgList args;
1370 
1371   // The first argument is the address of the ivar.
1372   llvm::Value *ivarAddr =
1373       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1374           .getPointer(CGF);
1375   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1376 
1377   // The second argument is the address of the parameter variable.
1378   ParmVarDecl *argVar = *OMD->param_begin();
1379   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1380                      argVar->getType().getNonReferenceType(), VK_LValue,
1381                      SourceLocation());
1382   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1383   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1384 
1385   // Third argument is the helper function.
1386   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1387 
1388   llvm::FunctionCallee fn =
1389       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1390   CGCallee callee = CGCallee::forDirect(fn);
1391   CGF.EmitCall(
1392       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1393                callee, ReturnValueSlot(), args);
1394 }
1395 
1396 
1397 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1398   Expr *setter = PID->getSetterCXXAssignment();
1399   if (!setter) return true;
1400 
1401   // Sema only makes only of these when the ivar has a C++ class type,
1402   // so the form is pretty constrained.
1403 
1404   // An operator call is trivial if the function it calls is trivial.
1405   // This also implies that there's nothing non-trivial going on with
1406   // the arguments, because operator= can only be trivial if it's a
1407   // synthesized assignment operator and therefore both parameters are
1408   // references.
1409   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1410     if (const FunctionDecl *callee
1411           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1412       if (callee->isTrivial())
1413         return true;
1414     return false;
1415   }
1416 
1417   assert(isa<ExprWithCleanups>(setter));
1418   return false;
1419 }
1420 
1421 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1422   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1423     return false;
1424   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1425 }
1426 
1427 void
1428 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1429                                         const ObjCPropertyImplDecl *propImpl,
1430                                         llvm::Constant *AtomicHelperFn) {
1431   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1432   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1433 
1434   if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1435     ParmVarDecl *PVD = *setterMethod->param_begin();
1436     if (!AtomicHelperFn) {
1437       // Call the move assignment operator instead of calling the copy
1438       // assignment operator and destructor.
1439       LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar,
1440                                      /*quals*/ 0);
1441       LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1442       callCStructMoveAssignmentOperator(Dst, Src);
1443     } else {
1444       // If atomic, assignment is called via a locking api.
1445       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1446     }
1447     // Decativate the destructor for the setter parameter.
1448     DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1449     return;
1450   }
1451 
1452   // Just use the setter expression if Sema gave us one and it's
1453   // non-trivial.
1454   if (!hasTrivialSetExpr(propImpl)) {
1455     if (!AtomicHelperFn)
1456       // If non-atomic, assignment is called directly.
1457       EmitStmt(propImpl->getSetterCXXAssignment());
1458     else
1459       // If atomic, assignment is called via a locking api.
1460       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1461                                     AtomicHelperFn);
1462     return;
1463   }
1464 
1465   PropertyImplStrategy strategy(CGM, propImpl);
1466   switch (strategy.getKind()) {
1467   case PropertyImplStrategy::Native: {
1468     // We don't need to do anything for a zero-size struct.
1469     if (strategy.getIvarSize().isZero())
1470       return;
1471 
1472     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1473 
1474     LValue ivarLValue =
1475       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1476     Address ivarAddr = ivarLValue.getAddress(*this);
1477 
1478     // Currently, all atomic accesses have to be through integer
1479     // types, so there's no point in trying to pick a prettier type.
1480     llvm::Type *castType = llvm::Type::getIntNTy(
1481         getLLVMContext(), getContext().toBits(strategy.getIvarSize()));
1482 
1483     // Cast both arguments to the chosen operation type.
1484     argAddr = argAddr.withElementType(castType);
1485     ivarAddr = ivarAddr.withElementType(castType);
1486 
1487     llvm::Value *load = Builder.CreateLoad(argAddr);
1488 
1489     // Perform an atomic store.  There are no memory ordering requirements.
1490     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1491     store->setAtomic(llvm::AtomicOrdering::Unordered);
1492     return;
1493   }
1494 
1495   case PropertyImplStrategy::GetSetProperty:
1496   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1497 
1498     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1499     llvm::FunctionCallee setPropertyFn = nullptr;
1500     if (UseOptimizedSetter(CGM)) {
1501       // 10.8 and iOS 6.0 code and GC is off
1502       setOptimizedPropertyFn =
1503           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1504               strategy.isAtomic(), strategy.isCopy());
1505       if (!setOptimizedPropertyFn) {
1506         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1507         return;
1508       }
1509     }
1510     else {
1511       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1512       if (!setPropertyFn) {
1513         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1514         return;
1515       }
1516     }
1517 
1518     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1519     //                       <is-atomic>, <is-copy>).
1520     llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1521     llvm::Value *self =
1522       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1523     llvm::Value *ivarOffset =
1524         EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1525     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1526     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1527     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1528 
1529     CallArgList args;
1530     args.add(RValue::get(self), getContext().getObjCIdType());
1531     args.add(RValue::get(cmd), getContext().getObjCSelType());
1532     if (setOptimizedPropertyFn) {
1533       args.add(RValue::get(arg), getContext().getObjCIdType());
1534       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1535       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1536       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1537                callee, ReturnValueSlot(), args);
1538     } else {
1539       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1540       args.add(RValue::get(arg), getContext().getObjCIdType());
1541       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1542                getContext().BoolTy);
1543       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1544                getContext().BoolTy);
1545       // FIXME: We shouldn't need to get the function info here, the runtime
1546       // already should have computed it to build the function.
1547       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1548       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1549                callee, ReturnValueSlot(), args);
1550     }
1551 
1552     return;
1553   }
1554 
1555   case PropertyImplStrategy::CopyStruct:
1556     emitStructSetterCall(*this, setterMethod, ivar);
1557     return;
1558 
1559   case PropertyImplStrategy::Expression:
1560     break;
1561   }
1562 
1563   // Otherwise, fake up some ASTs and emit a normal assignment.
1564   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1565   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1566                    VK_LValue, SourceLocation());
1567   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1568                             CK_LValueToRValue, &self, VK_PRValue,
1569                             FPOptionsOverride());
1570   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1571                           SourceLocation(), SourceLocation(),
1572                           &selfLoad, true, true);
1573 
1574   ParmVarDecl *argDecl = *setterMethod->param_begin();
1575   QualType argType = argDecl->getType().getNonReferenceType();
1576   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1577                   SourceLocation());
1578   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1579                            argType.getUnqualifiedType(), CK_LValueToRValue,
1580                            &arg, VK_PRValue, FPOptionsOverride());
1581 
1582   // The property type can differ from the ivar type in some situations with
1583   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1584   // The following absurdity is just to ensure well-formed IR.
1585   CastKind argCK = CK_NoOp;
1586   if (ivarRef.getType()->isObjCObjectPointerType()) {
1587     if (argLoad.getType()->isObjCObjectPointerType())
1588       argCK = CK_BitCast;
1589     else if (argLoad.getType()->isBlockPointerType())
1590       argCK = CK_BlockPointerToObjCPointerCast;
1591     else
1592       argCK = CK_CPointerToObjCPointerCast;
1593   } else if (ivarRef.getType()->isBlockPointerType()) {
1594      if (argLoad.getType()->isBlockPointerType())
1595       argCK = CK_BitCast;
1596     else
1597       argCK = CK_AnyPointerToBlockPointerCast;
1598   } else if (ivarRef.getType()->isPointerType()) {
1599     argCK = CK_BitCast;
1600   } else if (argLoad.getType()->isAtomicType() &&
1601              !ivarRef.getType()->isAtomicType()) {
1602     argCK = CK_AtomicToNonAtomic;
1603   } else if (!argLoad.getType()->isAtomicType() &&
1604              ivarRef.getType()->isAtomicType()) {
1605     argCK = CK_NonAtomicToAtomic;
1606   }
1607   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1608                            &argLoad, VK_PRValue, FPOptionsOverride());
1609   Expr *finalArg = &argLoad;
1610   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1611                                            argLoad.getType()))
1612     finalArg = &argCast;
1613 
1614   BinaryOperator *assign = BinaryOperator::Create(
1615       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1616       VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1617   EmitStmt(assign);
1618 }
1619 
1620 /// Generate an Objective-C property setter function.
1621 ///
1622 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1623 /// is illegal within a category.
1624 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1625                                          const ObjCPropertyImplDecl *PID) {
1626   llvm::Constant *AtomicHelperFn =
1627       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1628   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1629   assert(OMD && "Invalid call to generate setter (empty method)");
1630   StartObjCMethod(OMD, IMP->getClassInterface());
1631 
1632   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1633 
1634   FinishFunction(OMD->getEndLoc());
1635 }
1636 
1637 namespace {
1638   struct DestroyIvar final : EHScopeStack::Cleanup {
1639   private:
1640     llvm::Value *addr;
1641     const ObjCIvarDecl *ivar;
1642     CodeGenFunction::Destroyer *destroyer;
1643     bool useEHCleanupForArray;
1644   public:
1645     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1646                 CodeGenFunction::Destroyer *destroyer,
1647                 bool useEHCleanupForArray)
1648       : addr(addr), ivar(ivar), destroyer(destroyer),
1649         useEHCleanupForArray(useEHCleanupForArray) {}
1650 
1651     void Emit(CodeGenFunction &CGF, Flags flags) override {
1652       LValue lvalue
1653         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1654       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1655                       flags.isForNormalCleanup() && useEHCleanupForArray);
1656     }
1657   };
1658 }
1659 
1660 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1661 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1662                                       Address addr,
1663                                       QualType type) {
1664   llvm::Value *null = getNullForVariable(addr);
1665   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1666 }
1667 
1668 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1669                                   ObjCImplementationDecl *impl) {
1670   CodeGenFunction::RunCleanupsScope scope(CGF);
1671 
1672   llvm::Value *self = CGF.LoadObjCSelf();
1673 
1674   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1675   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1676        ivar; ivar = ivar->getNextIvar()) {
1677     QualType type = ivar->getType();
1678 
1679     // Check whether the ivar is a destructible type.
1680     QualType::DestructionKind dtorKind = type.isDestructedType();
1681     if (!dtorKind) continue;
1682 
1683     CodeGenFunction::Destroyer *destroyer = nullptr;
1684 
1685     // Use a call to objc_storeStrong to destroy strong ivars, for the
1686     // general benefit of the tools.
1687     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1688       destroyer = destroyARCStrongWithStore;
1689 
1690     // Otherwise use the default for the destruction kind.
1691     } else {
1692       destroyer = CGF.getDestroyer(dtorKind);
1693     }
1694 
1695     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1696 
1697     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1698                                          cleanupKind & EHCleanup);
1699   }
1700 
1701   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1702 }
1703 
1704 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1705                                                  ObjCMethodDecl *MD,
1706                                                  bool ctor) {
1707   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1708   StartObjCMethod(MD, IMP->getClassInterface());
1709 
1710   // Emit .cxx_construct.
1711   if (ctor) {
1712     // Suppress the final autorelease in ARC.
1713     AutoreleaseResult = false;
1714 
1715     for (const auto *IvarInit : IMP->inits()) {
1716       FieldDecl *Field = IvarInit->getAnyMember();
1717       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1718       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1719                                     LoadObjCSelf(), Ivar, 0);
1720       EmitAggExpr(IvarInit->getInit(),
1721                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1722                                           AggValueSlot::DoesNotNeedGCBarriers,
1723                                           AggValueSlot::IsNotAliased,
1724                                           AggValueSlot::DoesNotOverlap));
1725     }
1726     // constructor returns 'self'.
1727     CodeGenTypes &Types = CGM.getTypes();
1728     QualType IdTy(CGM.getContext().getObjCIdType());
1729     llvm::Value *SelfAsId =
1730       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1731     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1732 
1733   // Emit .cxx_destruct.
1734   } else {
1735     emitCXXDestructMethod(*this, IMP);
1736   }
1737   FinishFunction();
1738 }
1739 
1740 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1741   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1742   DeclRefExpr DRE(getContext(), Self,
1743                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1744                   Self->getType(), VK_LValue, SourceLocation());
1745   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1746 }
1747 
1748 QualType CodeGenFunction::TypeOfSelfObject() {
1749   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1750   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1751   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1752     getContext().getCanonicalType(selfDecl->getType()));
1753   return PTy->getPointeeType();
1754 }
1755 
1756 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1757   llvm::FunctionCallee EnumerationMutationFnPtr =
1758       CGM.getObjCRuntime().EnumerationMutationFunction();
1759   if (!EnumerationMutationFnPtr) {
1760     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1761     return;
1762   }
1763   CGCallee EnumerationMutationFn =
1764     CGCallee::forDirect(EnumerationMutationFnPtr);
1765 
1766   CGDebugInfo *DI = getDebugInfo();
1767   if (DI)
1768     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1769 
1770   RunCleanupsScope ForScope(*this);
1771 
1772   // The local variable comes into scope immediately.
1773   AutoVarEmission variable = AutoVarEmission::invalid();
1774   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1775     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1776 
1777   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1778 
1779   // Fast enumeration state.
1780   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1781   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1782   EmitNullInitialization(StatePtr, StateTy);
1783 
1784   // Number of elements in the items array.
1785   static const unsigned NumItems = 16;
1786 
1787   // Fetch the countByEnumeratingWithState:objects:count: selector.
1788   IdentifierInfo *II[] = {
1789     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1790     &CGM.getContext().Idents.get("objects"),
1791     &CGM.getContext().Idents.get("count")
1792   };
1793   Selector FastEnumSel =
1794       CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1795 
1796   QualType ItemsTy = getContext().getConstantArrayType(
1797       getContext().getObjCIdType(), llvm::APInt(32, NumItems), nullptr,
1798       ArraySizeModifier::Normal, 0);
1799   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1800 
1801   // Emit the collection pointer.  In ARC, we do a retain.
1802   llvm::Value *Collection;
1803   if (getLangOpts().ObjCAutoRefCount) {
1804     Collection = EmitARCRetainScalarExpr(S.getCollection());
1805 
1806     // Enter a cleanup to do the release.
1807     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1808   } else {
1809     Collection = EmitScalarExpr(S.getCollection());
1810   }
1811 
1812   // The 'continue' label needs to appear within the cleanup for the
1813   // collection object.
1814   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1815 
1816   // Send it our message:
1817   CallArgList Args;
1818 
1819   // The first argument is a temporary of the enumeration-state type.
1820   Args.add(RValue::get(StatePtr.getPointer()),
1821            getContext().getPointerType(StateTy));
1822 
1823   // The second argument is a temporary array with space for NumItems
1824   // pointers.  We'll actually be loading elements from the array
1825   // pointer written into the control state; this buffer is so that
1826   // collections that *aren't* backed by arrays can still queue up
1827   // batches of elements.
1828   Args.add(RValue::get(ItemsPtr.getPointer()),
1829            getContext().getPointerType(ItemsTy));
1830 
1831   // The third argument is the capacity of that temporary array.
1832   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1833   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1834   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1835 
1836   // Start the enumeration.
1837   RValue CountRV =
1838       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1839                                                getContext().getNSUIntegerType(),
1840                                                FastEnumSel, Collection, Args);
1841 
1842   // The initial number of objects that were returned in the buffer.
1843   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1844 
1845   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1846   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1847 
1848   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1849 
1850   // If the limit pointer was zero to begin with, the collection is
1851   // empty; skip all this. Set the branch weight assuming this has the same
1852   // probability of exiting the loop as any other loop exit.
1853   uint64_t EntryCount = getCurrentProfileCount();
1854   Builder.CreateCondBr(
1855       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1856       LoopInitBB,
1857       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1858 
1859   // Otherwise, initialize the loop.
1860   EmitBlock(LoopInitBB);
1861 
1862   // Save the initial mutations value.  This is the value at an
1863   // address that was written into the state object by
1864   // countByEnumeratingWithState:objects:count:.
1865   Address StateMutationsPtrPtr =
1866       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1867   llvm::Value *StateMutationsPtr
1868     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1869 
1870   llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1871   llvm::Value *initialMutations =
1872     Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1873                               getPointerAlign(), "forcoll.initial-mutations");
1874 
1875   // Start looping.  This is the point we return to whenever we have a
1876   // fresh, non-empty batch of objects.
1877   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1878   EmitBlock(LoopBodyBB);
1879 
1880   // The current index into the buffer.
1881   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1882   index->addIncoming(zero, LoopInitBB);
1883 
1884   // The current buffer size.
1885   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1886   count->addIncoming(initialBufferLimit, LoopInitBB);
1887 
1888   incrementProfileCounter(&S);
1889 
1890   // Check whether the mutations value has changed from where it was
1891   // at start.  StateMutationsPtr should actually be invariant between
1892   // refreshes.
1893   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1894   llvm::Value *currentMutations
1895     = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1896                                 getPointerAlign(), "statemutations");
1897 
1898   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1899   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1900 
1901   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1902                        WasNotMutatedBB, WasMutatedBB);
1903 
1904   // If so, call the enumeration-mutation function.
1905   EmitBlock(WasMutatedBB);
1906   llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1907   llvm::Value *V =
1908     Builder.CreateBitCast(Collection, ObjCIdType);
1909   CallArgList Args2;
1910   Args2.add(RValue::get(V), getContext().getObjCIdType());
1911   // FIXME: We shouldn't need to get the function info here, the runtime already
1912   // should have computed it to build the function.
1913   EmitCall(
1914           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1915            EnumerationMutationFn, ReturnValueSlot(), Args2);
1916 
1917   // Otherwise, or if the mutation function returns, just continue.
1918   EmitBlock(WasNotMutatedBB);
1919 
1920   // Initialize the element variable.
1921   RunCleanupsScope elementVariableScope(*this);
1922   bool elementIsVariable;
1923   LValue elementLValue;
1924   QualType elementType;
1925   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1926     // Initialize the variable, in case it's a __block variable or something.
1927     EmitAutoVarInit(variable);
1928 
1929     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1930     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1931                         D->getType(), VK_LValue, SourceLocation());
1932     elementLValue = EmitLValue(&tempDRE);
1933     elementType = D->getType();
1934     elementIsVariable = true;
1935 
1936     if (D->isARCPseudoStrong())
1937       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1938   } else {
1939     elementLValue = LValue(); // suppress warning
1940     elementType = cast<Expr>(S.getElement())->getType();
1941     elementIsVariable = false;
1942   }
1943   llvm::Type *convertedElementType = ConvertType(elementType);
1944 
1945   // Fetch the buffer out of the enumeration state.
1946   // TODO: this pointer should actually be invariant between
1947   // refreshes, which would help us do certain loop optimizations.
1948   Address StateItemsPtr =
1949       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1950   llvm::Value *EnumStateItems =
1951     Builder.CreateLoad(StateItemsPtr, "stateitems");
1952 
1953   // Fetch the value at the current index from the buffer.
1954   llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1955       ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1956   llvm::Value *CurrentItem =
1957     Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1958 
1959   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1960     // Before using an item from the collection, check that the implicit cast
1961     // from id to the element type is valid. This is done with instrumentation
1962     // roughly corresponding to:
1963     //
1964     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1965     const ObjCObjectPointerType *ObjPtrTy =
1966         elementType->getAsObjCInterfacePointerType();
1967     const ObjCInterfaceType *InterfaceTy =
1968         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1969     if (InterfaceTy) {
1970       SanitizerScope SanScope(this);
1971       auto &C = CGM.getContext();
1972       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1973       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1974       CallArgList IsKindOfClassArgs;
1975       llvm::Value *Cls =
1976           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1977       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1978       llvm::Value *IsClass =
1979           CGM.getObjCRuntime()
1980               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1981                                    IsKindOfClassSel, CurrentItem,
1982                                    IsKindOfClassArgs)
1983               .getScalarVal();
1984       llvm::Constant *StaticData[] = {
1985           EmitCheckSourceLocation(S.getBeginLoc()),
1986           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1987       EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1988                 SanitizerHandler::InvalidObjCCast,
1989                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1990     }
1991   }
1992 
1993   // Cast that value to the right type.
1994   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1995                                       "currentitem");
1996 
1997   // Make sure we have an l-value.  Yes, this gets evaluated every
1998   // time through the loop.
1999   if (!elementIsVariable) {
2000     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2001     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2002   } else {
2003     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2004                            /*isInit*/ true);
2005   }
2006 
2007   // If we do have an element variable, this assignment is the end of
2008   // its initialization.
2009   if (elementIsVariable)
2010     EmitAutoVarCleanups(variable);
2011 
2012   // Perform the loop body, setting up break and continue labels.
2013   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2014   {
2015     RunCleanupsScope Scope(*this);
2016     EmitStmt(S.getBody());
2017   }
2018   BreakContinueStack.pop_back();
2019 
2020   // Destroy the element variable now.
2021   elementVariableScope.ForceCleanup();
2022 
2023   // Check whether there are more elements.
2024   EmitBlock(AfterBody.getBlock());
2025 
2026   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2027 
2028   // First we check in the local buffer.
2029   llvm::Value *indexPlusOne =
2030       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2031 
2032   // If we haven't overrun the buffer yet, we can continue.
2033   // Set the branch weights based on the simplifying assumption that this is
2034   // like a while-loop, i.e., ignoring that the false branch fetches more
2035   // elements and then returns to the loop.
2036   Builder.CreateCondBr(
2037       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2038       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2039 
2040   index->addIncoming(indexPlusOne, AfterBody.getBlock());
2041   count->addIncoming(count, AfterBody.getBlock());
2042 
2043   // Otherwise, we have to fetch more elements.
2044   EmitBlock(FetchMoreBB);
2045 
2046   CountRV =
2047       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2048                                                getContext().getNSUIntegerType(),
2049                                                FastEnumSel, Collection, Args);
2050 
2051   // If we got a zero count, we're done.
2052   llvm::Value *refetchCount = CountRV.getScalarVal();
2053 
2054   // (note that the message send might split FetchMoreBB)
2055   index->addIncoming(zero, Builder.GetInsertBlock());
2056   count->addIncoming(refetchCount, Builder.GetInsertBlock());
2057 
2058   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2059                        EmptyBB, LoopBodyBB);
2060 
2061   // No more elements.
2062   EmitBlock(EmptyBB);
2063 
2064   if (!elementIsVariable) {
2065     // If the element was not a declaration, set it to be null.
2066 
2067     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2068     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2069     EmitStoreThroughLValue(RValue::get(null), elementLValue);
2070   }
2071 
2072   if (DI)
2073     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2074 
2075   ForScope.ForceCleanup();
2076   EmitBlock(LoopEnd.getBlock());
2077 }
2078 
2079 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2080   CGM.getObjCRuntime().EmitTryStmt(*this, S);
2081 }
2082 
2083 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2084   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2085 }
2086 
2087 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2088                                               const ObjCAtSynchronizedStmt &S) {
2089   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2090 }
2091 
2092 namespace {
2093   struct CallObjCRelease final : EHScopeStack::Cleanup {
2094     CallObjCRelease(llvm::Value *object) : object(object) {}
2095     llvm::Value *object;
2096 
2097     void Emit(CodeGenFunction &CGF, Flags flags) override {
2098       // Releases at the end of the full-expression are imprecise.
2099       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2100     }
2101   };
2102 }
2103 
2104 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2105 /// release at the end of the full-expression.
2106 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2107                                                     llvm::Value *object) {
2108   // If we're in a conditional branch, we need to make the cleanup
2109   // conditional.
2110   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2111   return object;
2112 }
2113 
2114 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2115                                                            llvm::Value *value) {
2116   return EmitARCRetainAutorelease(type, value);
2117 }
2118 
2119 /// Given a number of pointers, inform the optimizer that they're
2120 /// being intrinsically used up until this point in the program.
2121 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2122   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2123   if (!fn)
2124     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2125 
2126   // This isn't really a "runtime" function, but as an intrinsic it
2127   // doesn't really matter as long as we align things up.
2128   EmitNounwindRuntimeCall(fn, values);
2129 }
2130 
2131 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2132 /// that has operand bundle "clang.arc.attachedcall".
2133 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2134   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2135   if (!fn)
2136     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2137   EmitNounwindRuntimeCall(fn, values);
2138 }
2139 
2140 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2141   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2142     // If the target runtime doesn't naturally support ARC, emit weak
2143     // references to the runtime support library.  We don't really
2144     // permit this to fail, but we need a particular relocation style.
2145     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2146         !CGM.getTriple().isOSBinFormatCOFF()) {
2147       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2148     }
2149   }
2150 }
2151 
2152 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2153                                          llvm::FunctionCallee RTF) {
2154   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2155 }
2156 
2157 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2158                                        CodeGenModule &CGM) {
2159   llvm::Function *fn = CGM.getIntrinsic(IntID);
2160   setARCRuntimeFunctionLinkage(CGM, fn);
2161   return fn;
2162 }
2163 
2164 /// Perform an operation having the signature
2165 ///   i8* (i8*)
2166 /// where a null input causes a no-op and returns null.
2167 static llvm::Value *emitARCValueOperation(
2168     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2169     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2170     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2171   if (isa<llvm::ConstantPointerNull>(value))
2172     return value;
2173 
2174   if (!fn)
2175     fn = getARCIntrinsic(IntID, CGF.CGM);
2176 
2177   // Cast the argument to 'id'.
2178   llvm::Type *origType = returnType ? returnType : value->getType();
2179   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2180 
2181   // Call the function.
2182   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2183   call->setTailCallKind(tailKind);
2184 
2185   // Cast the result back to the original type.
2186   return CGF.Builder.CreateBitCast(call, origType);
2187 }
2188 
2189 /// Perform an operation having the following signature:
2190 ///   i8* (i8**)
2191 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2192                                          llvm::Function *&fn,
2193                                          llvm::Intrinsic::ID IntID) {
2194   if (!fn)
2195     fn = getARCIntrinsic(IntID, CGF.CGM);
2196 
2197   return CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2198 }
2199 
2200 /// Perform an operation having the following signature:
2201 ///   i8* (i8**, i8*)
2202 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2203                                           llvm::Value *value,
2204                                           llvm::Function *&fn,
2205                                           llvm::Intrinsic::ID IntID,
2206                                           bool ignored) {
2207   assert(addr.getElementType() == value->getType());
2208 
2209   if (!fn)
2210     fn = getARCIntrinsic(IntID, CGF.CGM);
2211 
2212   llvm::Type *origType = value->getType();
2213 
2214   llvm::Value *args[] = {
2215     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2216     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2217   };
2218   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2219 
2220   if (ignored) return nullptr;
2221 
2222   return CGF.Builder.CreateBitCast(result, origType);
2223 }
2224 
2225 /// Perform an operation having the following signature:
2226 ///   void (i8**, i8**)
2227 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2228                                  llvm::Function *&fn,
2229                                  llvm::Intrinsic::ID IntID) {
2230   assert(dst.getType() == src.getType());
2231 
2232   if (!fn)
2233     fn = getARCIntrinsic(IntID, CGF.CGM);
2234 
2235   llvm::Value *args[] = {
2236     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2237     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2238   };
2239   CGF.EmitNounwindRuntimeCall(fn, args);
2240 }
2241 
2242 /// Perform an operation having the signature
2243 ///   i8* (i8*)
2244 /// where a null input causes a no-op and returns null.
2245 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2246                                            llvm::Value *value,
2247                                            llvm::Type *returnType,
2248                                            llvm::FunctionCallee &fn,
2249                                            StringRef fnName) {
2250   if (isa<llvm::ConstantPointerNull>(value))
2251     return value;
2252 
2253   if (!fn) {
2254     llvm::FunctionType *fnType =
2255       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2256     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2257 
2258     // We have Native ARC, so set nonlazybind attribute for performance
2259     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2260       if (fnName == "objc_retain")
2261         f->addFnAttr(llvm::Attribute::NonLazyBind);
2262   }
2263 
2264   // Cast the argument to 'id'.
2265   llvm::Type *origType = returnType ? returnType : value->getType();
2266   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2267 
2268   // Call the function.
2269   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2270 
2271   // Mark calls to objc_autorelease as tail on the assumption that methods
2272   // overriding autorelease do not touch anything on the stack.
2273   if (fnName == "objc_autorelease")
2274     if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2275       Call->setTailCall();
2276 
2277   // Cast the result back to the original type.
2278   return CGF.Builder.CreateBitCast(Inst, origType);
2279 }
2280 
2281 /// Produce the code to do a retain.  Based on the type, calls one of:
2282 ///   call i8* \@objc_retain(i8* %value)
2283 ///   call i8* \@objc_retainBlock(i8* %value)
2284 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2285   if (type->isBlockPointerType())
2286     return EmitARCRetainBlock(value, /*mandatory*/ false);
2287   else
2288     return EmitARCRetainNonBlock(value);
2289 }
2290 
2291 /// Retain the given object, with normal retain semantics.
2292 ///   call i8* \@objc_retain(i8* %value)
2293 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2294   return emitARCValueOperation(*this, value, nullptr,
2295                                CGM.getObjCEntrypoints().objc_retain,
2296                                llvm::Intrinsic::objc_retain);
2297 }
2298 
2299 /// Retain the given block, with _Block_copy semantics.
2300 ///   call i8* \@objc_retainBlock(i8* %value)
2301 ///
2302 /// \param mandatory - If false, emit the call with metadata
2303 /// indicating that it's okay for the optimizer to eliminate this call
2304 /// if it can prove that the block never escapes except down the stack.
2305 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2306                                                  bool mandatory) {
2307   llvm::Value *result
2308     = emitARCValueOperation(*this, value, nullptr,
2309                             CGM.getObjCEntrypoints().objc_retainBlock,
2310                             llvm::Intrinsic::objc_retainBlock);
2311 
2312   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2313   // tell the optimizer that it doesn't need to do this copy if the
2314   // block doesn't escape, where being passed as an argument doesn't
2315   // count as escaping.
2316   if (!mandatory && isa<llvm::Instruction>(result)) {
2317     llvm::CallInst *call
2318       = cast<llvm::CallInst>(result->stripPointerCasts());
2319     assert(call->getCalledOperand() ==
2320            CGM.getObjCEntrypoints().objc_retainBlock);
2321 
2322     call->setMetadata("clang.arc.copy_on_escape",
2323                       llvm::MDNode::get(Builder.getContext(), std::nullopt));
2324   }
2325 
2326   return result;
2327 }
2328 
2329 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2330   // Fetch the void(void) inline asm which marks that we're going to
2331   // do something with the autoreleased return value.
2332   llvm::InlineAsm *&marker
2333     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2334   if (!marker) {
2335     StringRef assembly
2336       = CGF.CGM.getTargetCodeGenInfo()
2337            .getARCRetainAutoreleasedReturnValueMarker();
2338 
2339     // If we have an empty assembly string, there's nothing to do.
2340     if (assembly.empty()) {
2341 
2342     // Otherwise, at -O0, build an inline asm that we're going to call
2343     // in a moment.
2344     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2345       llvm::FunctionType *type =
2346         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2347 
2348       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2349 
2350     // If we're at -O1 and above, we don't want to litter the code
2351     // with this marker yet, so leave a breadcrumb for the ARC
2352     // optimizer to pick up.
2353     } else {
2354       const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2355       if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2356         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2357         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2358                                           retainRVMarkerKey, str);
2359       }
2360     }
2361   }
2362 
2363   // Call the marker asm if we made one, which we do only at -O0.
2364   if (marker)
2365     CGF.Builder.CreateCall(marker, std::nullopt,
2366                            CGF.getBundlesForFunclet(marker));
2367 }
2368 
2369 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2370                                                bool IsRetainRV,
2371                                                CodeGenFunction &CGF) {
2372   emitAutoreleasedReturnValueMarker(CGF);
2373 
2374   // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2375   // retainRV or claimRV calls in the IR. We currently do this only when the
2376   // optimization level isn't -O0 since global-isel, which is currently run at
2377   // -O0, doesn't know about the operand bundle.
2378   ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2379   llvm::Function *&EP = IsRetainRV
2380                             ? EPs.objc_retainAutoreleasedReturnValue
2381                             : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2382   llvm::Intrinsic::ID IID =
2383       IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2384                  : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2385   EP = getARCIntrinsic(IID, CGF.CGM);
2386 
2387   llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2388 
2389   // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2390   // the target backend knows how to handle the operand bundle.
2391   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2392       (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2393     llvm::Value *bundleArgs[] = {EP};
2394     llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2395     auto *oldCall = cast<llvm::CallBase>(value);
2396     llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2397         oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2398     newCall->copyMetadata(*oldCall);
2399     oldCall->replaceAllUsesWith(newCall);
2400     oldCall->eraseFromParent();
2401     CGF.EmitARCNoopIntrinsicUse(newCall);
2402     return newCall;
2403   }
2404 
2405   bool isNoTail =
2406       CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2407   llvm::CallInst::TailCallKind tailKind =
2408       isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2409   return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2410 }
2411 
2412 /// Retain the given object which is the result of a function call.
2413 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2414 ///
2415 /// Yes, this function name is one character away from a different
2416 /// call with completely different semantics.
2417 llvm::Value *
2418 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2419   return emitOptimizedARCReturnCall(value, true, *this);
2420 }
2421 
2422 /// Claim a possibly-autoreleased return value at +0.  This is only
2423 /// valid to do in contexts which do not rely on the retain to keep
2424 /// the object valid for all of its uses; for example, when
2425 /// the value is ignored, or when it is being assigned to an
2426 /// __unsafe_unretained variable.
2427 ///
2428 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2429 llvm::Value *
2430 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2431   return emitOptimizedARCReturnCall(value, false, *this);
2432 }
2433 
2434 /// Release the given object.
2435 ///   call void \@objc_release(i8* %value)
2436 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2437                                      ARCPreciseLifetime_t precise) {
2438   if (isa<llvm::ConstantPointerNull>(value)) return;
2439 
2440   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2441   if (!fn)
2442     fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2443 
2444   // Cast the argument to 'id'.
2445   value = Builder.CreateBitCast(value, Int8PtrTy);
2446 
2447   // Call objc_release.
2448   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2449 
2450   if (precise == ARCImpreciseLifetime) {
2451     call->setMetadata("clang.imprecise_release",
2452                       llvm::MDNode::get(Builder.getContext(), std::nullopt));
2453   }
2454 }
2455 
2456 /// Destroy a __strong variable.
2457 ///
2458 /// At -O0, emit a call to store 'null' into the address;
2459 /// instrumenting tools prefer this because the address is exposed,
2460 /// but it's relatively cumbersome to optimize.
2461 ///
2462 /// At -O1 and above, just load and call objc_release.
2463 ///
2464 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2465 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2466                                            ARCPreciseLifetime_t precise) {
2467   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2468     llvm::Value *null = getNullForVariable(addr);
2469     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2470     return;
2471   }
2472 
2473   llvm::Value *value = Builder.CreateLoad(addr);
2474   EmitARCRelease(value, precise);
2475 }
2476 
2477 /// Store into a strong object.  Always calls this:
2478 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2479 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2480                                                      llvm::Value *value,
2481                                                      bool ignored) {
2482   assert(addr.getElementType() == value->getType());
2483 
2484   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2485   if (!fn)
2486     fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2487 
2488   llvm::Value *args[] = {
2489     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2490     Builder.CreateBitCast(value, Int8PtrTy)
2491   };
2492   EmitNounwindRuntimeCall(fn, args);
2493 
2494   if (ignored) return nullptr;
2495   return value;
2496 }
2497 
2498 /// Store into a strong object.  Sometimes calls this:
2499 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2500 /// Other times, breaks it down into components.
2501 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2502                                                  llvm::Value *newValue,
2503                                                  bool ignored) {
2504   QualType type = dst.getType();
2505   bool isBlock = type->isBlockPointerType();
2506 
2507   // Use a store barrier at -O0 unless this is a block type or the
2508   // lvalue is inadequately aligned.
2509   if (shouldUseFusedARCCalls() &&
2510       !isBlock &&
2511       (dst.getAlignment().isZero() ||
2512        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2513     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2514   }
2515 
2516   // Otherwise, split it out.
2517 
2518   // Retain the new value.
2519   newValue = EmitARCRetain(type, newValue);
2520 
2521   // Read the old value.
2522   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2523 
2524   // Store.  We do this before the release so that any deallocs won't
2525   // see the old value.
2526   EmitStoreOfScalar(newValue, dst);
2527 
2528   // Finally, release the old value.
2529   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2530 
2531   return newValue;
2532 }
2533 
2534 /// Autorelease the given object.
2535 ///   call i8* \@objc_autorelease(i8* %value)
2536 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2537   return emitARCValueOperation(*this, value, nullptr,
2538                                CGM.getObjCEntrypoints().objc_autorelease,
2539                                llvm::Intrinsic::objc_autorelease);
2540 }
2541 
2542 /// Autorelease the given object.
2543 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2544 llvm::Value *
2545 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2546   return emitARCValueOperation(*this, value, nullptr,
2547                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2548                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2549                                llvm::CallInst::TCK_Tail);
2550 }
2551 
2552 /// Do a fused retain/autorelease of the given object.
2553 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2554 llvm::Value *
2555 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2556   return emitARCValueOperation(*this, value, nullptr,
2557                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2558                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2559                                llvm::CallInst::TCK_Tail);
2560 }
2561 
2562 /// Do a fused retain/autorelease of the given object.
2563 ///   call i8* \@objc_retainAutorelease(i8* %value)
2564 /// or
2565 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2566 ///   call i8* \@objc_autorelease(i8* %retain)
2567 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2568                                                        llvm::Value *value) {
2569   if (!type->isBlockPointerType())
2570     return EmitARCRetainAutoreleaseNonBlock(value);
2571 
2572   if (isa<llvm::ConstantPointerNull>(value)) return value;
2573 
2574   llvm::Type *origType = value->getType();
2575   value = Builder.CreateBitCast(value, Int8PtrTy);
2576   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2577   value = EmitARCAutorelease(value);
2578   return Builder.CreateBitCast(value, origType);
2579 }
2580 
2581 /// Do a fused retain/autorelease of the given object.
2582 ///   call i8* \@objc_retainAutorelease(i8* %value)
2583 llvm::Value *
2584 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2585   return emitARCValueOperation(*this, value, nullptr,
2586                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2587                                llvm::Intrinsic::objc_retainAutorelease);
2588 }
2589 
2590 /// i8* \@objc_loadWeak(i8** %addr)
2591 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2592 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2593   return emitARCLoadOperation(*this, addr,
2594                               CGM.getObjCEntrypoints().objc_loadWeak,
2595                               llvm::Intrinsic::objc_loadWeak);
2596 }
2597 
2598 /// i8* \@objc_loadWeakRetained(i8** %addr)
2599 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2600   return emitARCLoadOperation(*this, addr,
2601                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2602                               llvm::Intrinsic::objc_loadWeakRetained);
2603 }
2604 
2605 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2606 /// Returns %value.
2607 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2608                                                llvm::Value *value,
2609                                                bool ignored) {
2610   return emitARCStoreOperation(*this, addr, value,
2611                                CGM.getObjCEntrypoints().objc_storeWeak,
2612                                llvm::Intrinsic::objc_storeWeak, ignored);
2613 }
2614 
2615 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2616 /// Returns %value.  %addr is known to not have a current weak entry.
2617 /// Essentially equivalent to:
2618 ///   *addr = nil; objc_storeWeak(addr, value);
2619 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2620   // If we're initializing to null, just write null to memory; no need
2621   // to get the runtime involved.  But don't do this if optimization
2622   // is enabled, because accounting for this would make the optimizer
2623   // much more complicated.
2624   if (isa<llvm::ConstantPointerNull>(value) &&
2625       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2626     Builder.CreateStore(value, addr);
2627     return;
2628   }
2629 
2630   emitARCStoreOperation(*this, addr, value,
2631                         CGM.getObjCEntrypoints().objc_initWeak,
2632                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2633 }
2634 
2635 /// void \@objc_destroyWeak(i8** %addr)
2636 /// Essentially objc_storeWeak(addr, nil).
2637 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2638   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2639   if (!fn)
2640     fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2641 
2642   EmitNounwindRuntimeCall(fn, addr.getPointer());
2643 }
2644 
2645 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2646 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2647 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2648 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2649   emitARCCopyOperation(*this, dst, src,
2650                        CGM.getObjCEntrypoints().objc_moveWeak,
2651                        llvm::Intrinsic::objc_moveWeak);
2652 }
2653 
2654 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2655 /// Disregards the current value in %dest.  Essentially
2656 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2657 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2658   emitARCCopyOperation(*this, dst, src,
2659                        CGM.getObjCEntrypoints().objc_copyWeak,
2660                        llvm::Intrinsic::objc_copyWeak);
2661 }
2662 
2663 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2664                                             Address SrcAddr) {
2665   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2666   Object = EmitObjCConsumeObject(Ty, Object);
2667   EmitARCStoreWeak(DstAddr, Object, false);
2668 }
2669 
2670 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2671                                             Address SrcAddr) {
2672   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2673   Object = EmitObjCConsumeObject(Ty, Object);
2674   EmitARCStoreWeak(DstAddr, Object, false);
2675   EmitARCDestroyWeak(SrcAddr);
2676 }
2677 
2678 /// Produce the code to do a objc_autoreleasepool_push.
2679 ///   call i8* \@objc_autoreleasePoolPush(void)
2680 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2681   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2682   if (!fn)
2683     fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2684 
2685   return EmitNounwindRuntimeCall(fn);
2686 }
2687 
2688 /// Produce the code to do a primitive release.
2689 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2690 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2691   assert(value->getType() == Int8PtrTy);
2692 
2693   if (getInvokeDest()) {
2694     // Call the runtime method not the intrinsic if we are handling exceptions
2695     llvm::FunctionCallee &fn =
2696         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2697     if (!fn) {
2698       llvm::FunctionType *fnType =
2699         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2700       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2701       setARCRuntimeFunctionLinkage(CGM, fn);
2702     }
2703 
2704     // objc_autoreleasePoolPop can throw.
2705     EmitRuntimeCallOrInvoke(fn, value);
2706   } else {
2707     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2708     if (!fn)
2709       fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2710 
2711     EmitRuntimeCall(fn, value);
2712   }
2713 }
2714 
2715 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2716 /// Which is: [[NSAutoreleasePool alloc] init];
2717 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2718 /// init is declared as: - (id) init; in its NSObject super class.
2719 ///
2720 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2721   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2722   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2723   // [NSAutoreleasePool alloc]
2724   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2725   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2726   CallArgList Args;
2727   RValue AllocRV =
2728     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2729                                 getContext().getObjCIdType(),
2730                                 AllocSel, Receiver, Args);
2731 
2732   // [Receiver init]
2733   Receiver = AllocRV.getScalarVal();
2734   II = &CGM.getContext().Idents.get("init");
2735   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2736   RValue InitRV =
2737     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2738                                 getContext().getObjCIdType(),
2739                                 InitSel, Receiver, Args);
2740   return InitRV.getScalarVal();
2741 }
2742 
2743 /// Allocate the given objc object.
2744 ///   call i8* \@objc_alloc(i8* %value)
2745 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2746                                             llvm::Type *resultType) {
2747   return emitObjCValueOperation(*this, value, resultType,
2748                                 CGM.getObjCEntrypoints().objc_alloc,
2749                                 "objc_alloc");
2750 }
2751 
2752 /// Allocate the given objc object.
2753 ///   call i8* \@objc_allocWithZone(i8* %value)
2754 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2755                                                     llvm::Type *resultType) {
2756   return emitObjCValueOperation(*this, value, resultType,
2757                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2758                                 "objc_allocWithZone");
2759 }
2760 
2761 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2762                                                 llvm::Type *resultType) {
2763   return emitObjCValueOperation(*this, value, resultType,
2764                                 CGM.getObjCEntrypoints().objc_alloc_init,
2765                                 "objc_alloc_init");
2766 }
2767 
2768 /// Produce the code to do a primitive release.
2769 /// [tmp drain];
2770 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2771   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2772   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2773   CallArgList Args;
2774   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2775                               getContext().VoidTy, DrainSel, Arg, Args);
2776 }
2777 
2778 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2779                                               Address addr,
2780                                               QualType type) {
2781   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2782 }
2783 
2784 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2785                                                 Address addr,
2786                                                 QualType type) {
2787   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2788 }
2789 
2790 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2791                                      Address addr,
2792                                      QualType type) {
2793   CGF.EmitARCDestroyWeak(addr);
2794 }
2795 
2796 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2797                                           QualType type) {
2798   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2799   CGF.EmitARCIntrinsicUse(value);
2800 }
2801 
2802 /// Autorelease the given object.
2803 ///   call i8* \@objc_autorelease(i8* %value)
2804 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2805                                                   llvm::Type *returnType) {
2806   return emitObjCValueOperation(
2807       *this, value, returnType,
2808       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2809       "objc_autorelease");
2810 }
2811 
2812 /// Retain the given object, with normal retain semantics.
2813 ///   call i8* \@objc_retain(i8* %value)
2814 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2815                                                      llvm::Type *returnType) {
2816   return emitObjCValueOperation(
2817       *this, value, returnType,
2818       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2819 }
2820 
2821 /// Release the given object.
2822 ///   call void \@objc_release(i8* %value)
2823 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2824                                       ARCPreciseLifetime_t precise) {
2825   if (isa<llvm::ConstantPointerNull>(value)) return;
2826 
2827   llvm::FunctionCallee &fn =
2828       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2829   if (!fn) {
2830     llvm::FunctionType *fnType =
2831         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2832     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2833     setARCRuntimeFunctionLinkage(CGM, fn);
2834     // We have Native ARC, so set nonlazybind attribute for performance
2835     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2836       f->addFnAttr(llvm::Attribute::NonLazyBind);
2837   }
2838 
2839   // Cast the argument to 'id'.
2840   value = Builder.CreateBitCast(value, Int8PtrTy);
2841 
2842   // Call objc_release.
2843   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2844 
2845   if (precise == ARCImpreciseLifetime) {
2846     call->setMetadata("clang.imprecise_release",
2847                       llvm::MDNode::get(Builder.getContext(), std::nullopt));
2848   }
2849 }
2850 
2851 namespace {
2852   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2853     llvm::Value *Token;
2854 
2855     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2856 
2857     void Emit(CodeGenFunction &CGF, Flags flags) override {
2858       CGF.EmitObjCAutoreleasePoolPop(Token);
2859     }
2860   };
2861   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2862     llvm::Value *Token;
2863 
2864     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2865 
2866     void Emit(CodeGenFunction &CGF, Flags flags) override {
2867       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2868     }
2869   };
2870 }
2871 
2872 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2873   if (CGM.getLangOpts().ObjCAutoRefCount)
2874     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2875   else
2876     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2877 }
2878 
2879 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2880   switch (lifetime) {
2881   case Qualifiers::OCL_None:
2882   case Qualifiers::OCL_ExplicitNone:
2883   case Qualifiers::OCL_Strong:
2884   case Qualifiers::OCL_Autoreleasing:
2885     return true;
2886 
2887   case Qualifiers::OCL_Weak:
2888     return false;
2889   }
2890 
2891   llvm_unreachable("impossible lifetime!");
2892 }
2893 
2894 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2895                                                   LValue lvalue,
2896                                                   QualType type) {
2897   llvm::Value *result;
2898   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2899   if (shouldRetain) {
2900     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2901   } else {
2902     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2903     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2904   }
2905   return TryEmitResult(result, !shouldRetain);
2906 }
2907 
2908 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2909                                                   const Expr *e) {
2910   e = e->IgnoreParens();
2911   QualType type = e->getType();
2912 
2913   // If we're loading retained from a __strong xvalue, we can avoid
2914   // an extra retain/release pair by zeroing out the source of this
2915   // "move" operation.
2916   if (e->isXValue() &&
2917       !type.isConstQualified() &&
2918       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2919     // Emit the lvalue.
2920     LValue lv = CGF.EmitLValue(e);
2921 
2922     // Load the object pointer.
2923     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2924                                                SourceLocation()).getScalarVal();
2925 
2926     // Set the source pointer to NULL.
2927     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2928 
2929     return TryEmitResult(result, true);
2930   }
2931 
2932   // As a very special optimization, in ARC++, if the l-value is the
2933   // result of a non-volatile assignment, do a simple retain of the
2934   // result of the call to objc_storeWeak instead of reloading.
2935   if (CGF.getLangOpts().CPlusPlus &&
2936       !type.isVolatileQualified() &&
2937       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2938       isa<BinaryOperator>(e) &&
2939       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2940     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2941 
2942   // Try to emit code for scalar constant instead of emitting LValue and
2943   // loading it because we are not guaranteed to have an l-value. One of such
2944   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2945   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2946     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2947     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2948       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2949                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2950   }
2951 
2952   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2953 }
2954 
2955 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2956                                          llvm::Value *value)>
2957   ValueTransform;
2958 
2959 /// Insert code immediately after a call.
2960 
2961 // FIXME: We should find a way to emit the runtime call immediately
2962 // after the call is emitted to eliminate the need for this function.
2963 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2964                                               llvm::Value *value,
2965                                               ValueTransform doAfterCall,
2966                                               ValueTransform doFallback) {
2967   CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2968   auto *callBase = dyn_cast<llvm::CallBase>(value);
2969 
2970   if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2971     // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2972     value = doFallback(CGF, value);
2973   } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2974     // Place the retain immediately following the call.
2975     CGF.Builder.SetInsertPoint(call->getParent(),
2976                                ++llvm::BasicBlock::iterator(call));
2977     value = doAfterCall(CGF, value);
2978   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2979     // Place the retain at the beginning of the normal destination block.
2980     llvm::BasicBlock *BB = invoke->getNormalDest();
2981     CGF.Builder.SetInsertPoint(BB, BB->begin());
2982     value = doAfterCall(CGF, value);
2983 
2984   // Bitcasts can arise because of related-result returns.  Rewrite
2985   // the operand.
2986   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2987     // Change the insert point to avoid emitting the fall-back call after the
2988     // bitcast.
2989     CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2990     llvm::Value *operand = bitcast->getOperand(0);
2991     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2992     bitcast->setOperand(0, operand);
2993     value = bitcast;
2994   } else {
2995     auto *phi = dyn_cast<llvm::PHINode>(value);
2996     if (phi && phi->getNumIncomingValues() == 2 &&
2997         isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2998         isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2999       // Handle phi instructions that are generated when it's necessary to check
3000       // whether the receiver of a message is null.
3001       llvm::Value *inVal = phi->getIncomingValue(0);
3002       inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3003       phi->setIncomingValue(0, inVal);
3004       value = phi;
3005     } else {
3006       // Generic fall-back case.
3007       // Retain using the non-block variant: we never need to do a copy
3008       // of a block that's been returned to us.
3009       value = doFallback(CGF, value);
3010     }
3011   }
3012 
3013   CGF.Builder.restoreIP(ip);
3014   return value;
3015 }
3016 
3017 /// Given that the given expression is some sort of call (which does
3018 /// not return retained), emit a retain following it.
3019 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3020                                             const Expr *e) {
3021   llvm::Value *value = CGF.EmitScalarExpr(e);
3022   return emitARCOperationAfterCall(CGF, value,
3023            [](CodeGenFunction &CGF, llvm::Value *value) {
3024              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3025            },
3026            [](CodeGenFunction &CGF, llvm::Value *value) {
3027              return CGF.EmitARCRetainNonBlock(value);
3028            });
3029 }
3030 
3031 /// Given that the given expression is some sort of call (which does
3032 /// not return retained), perform an unsafeClaim following it.
3033 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3034                                                  const Expr *e) {
3035   llvm::Value *value = CGF.EmitScalarExpr(e);
3036   return emitARCOperationAfterCall(CGF, value,
3037            [](CodeGenFunction &CGF, llvm::Value *value) {
3038              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3039            },
3040            [](CodeGenFunction &CGF, llvm::Value *value) {
3041              return value;
3042            });
3043 }
3044 
3045 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3046                                                       bool allowUnsafeClaim) {
3047   if (allowUnsafeClaim &&
3048       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3049     return emitARCUnsafeClaimCallResult(*this, E);
3050   } else {
3051     llvm::Value *value = emitARCRetainCallResult(*this, E);
3052     return EmitObjCConsumeObject(E->getType(), value);
3053   }
3054 }
3055 
3056 /// Determine whether it might be important to emit a separate
3057 /// objc_retain_block on the result of the given expression, or
3058 /// whether it's okay to just emit it in a +1 context.
3059 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3060   assert(e->getType()->isBlockPointerType());
3061   e = e->IgnoreParens();
3062 
3063   // For future goodness, emit block expressions directly in +1
3064   // contexts if we can.
3065   if (isa<BlockExpr>(e))
3066     return false;
3067 
3068   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3069     switch (cast->getCastKind()) {
3070     // Emitting these operations in +1 contexts is goodness.
3071     case CK_LValueToRValue:
3072     case CK_ARCReclaimReturnedObject:
3073     case CK_ARCConsumeObject:
3074     case CK_ARCProduceObject:
3075       return false;
3076 
3077     // These operations preserve a block type.
3078     case CK_NoOp:
3079     case CK_BitCast:
3080       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3081 
3082     // These operations are known to be bad (or haven't been considered).
3083     case CK_AnyPointerToBlockPointerCast:
3084     default:
3085       return true;
3086     }
3087   }
3088 
3089   return true;
3090 }
3091 
3092 namespace {
3093 /// A CRTP base class for emitting expressions of retainable object
3094 /// pointer type in ARC.
3095 template <typename Impl, typename Result> class ARCExprEmitter {
3096 protected:
3097   CodeGenFunction &CGF;
3098   Impl &asImpl() { return *static_cast<Impl*>(this); }
3099 
3100   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3101 
3102 public:
3103   Result visit(const Expr *e);
3104   Result visitCastExpr(const CastExpr *e);
3105   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3106   Result visitBlockExpr(const BlockExpr *e);
3107   Result visitBinaryOperator(const BinaryOperator *e);
3108   Result visitBinAssign(const BinaryOperator *e);
3109   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3110   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3111   Result visitBinAssignWeak(const BinaryOperator *e);
3112   Result visitBinAssignStrong(const BinaryOperator *e);
3113 
3114   // Minimal implementation:
3115   //   Result visitLValueToRValue(const Expr *e)
3116   //   Result visitConsumeObject(const Expr *e)
3117   //   Result visitExtendBlockObject(const Expr *e)
3118   //   Result visitReclaimReturnedObject(const Expr *e)
3119   //   Result visitCall(const Expr *e)
3120   //   Result visitExpr(const Expr *e)
3121   //
3122   //   Result emitBitCast(Result result, llvm::Type *resultType)
3123   //   llvm::Value *getValueOfResult(Result result)
3124 };
3125 }
3126 
3127 /// Try to emit a PseudoObjectExpr under special ARC rules.
3128 ///
3129 /// This massively duplicates emitPseudoObjectRValue.
3130 template <typename Impl, typename Result>
3131 Result
3132 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3133   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3134 
3135   // Find the result expression.
3136   const Expr *resultExpr = E->getResultExpr();
3137   assert(resultExpr);
3138   Result result;
3139 
3140   for (PseudoObjectExpr::const_semantics_iterator
3141          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3142     const Expr *semantic = *i;
3143 
3144     // If this semantic expression is an opaque value, bind it
3145     // to the result of its source expression.
3146     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3147       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3148       OVMA opaqueData;
3149 
3150       // If this semantic is the result of the pseudo-object
3151       // expression, try to evaluate the source as +1.
3152       if (ov == resultExpr) {
3153         assert(!OVMA::shouldBindAsLValue(ov));
3154         result = asImpl().visit(ov->getSourceExpr());
3155         opaqueData = OVMA::bind(CGF, ov,
3156                             RValue::get(asImpl().getValueOfResult(result)));
3157 
3158       // Otherwise, just bind it.
3159       } else {
3160         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3161       }
3162       opaques.push_back(opaqueData);
3163 
3164     // Otherwise, if the expression is the result, evaluate it
3165     // and remember the result.
3166     } else if (semantic == resultExpr) {
3167       result = asImpl().visit(semantic);
3168 
3169     // Otherwise, evaluate the expression in an ignored context.
3170     } else {
3171       CGF.EmitIgnoredExpr(semantic);
3172     }
3173   }
3174 
3175   // Unbind all the opaques now.
3176   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3177     opaques[i].unbind(CGF);
3178 
3179   return result;
3180 }
3181 
3182 template <typename Impl, typename Result>
3183 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3184   // The default implementation just forwards the expression to visitExpr.
3185   return asImpl().visitExpr(e);
3186 }
3187 
3188 template <typename Impl, typename Result>
3189 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3190   switch (e->getCastKind()) {
3191 
3192   // No-op casts don't change the type, so we just ignore them.
3193   case CK_NoOp:
3194     return asImpl().visit(e->getSubExpr());
3195 
3196   // These casts can change the type.
3197   case CK_CPointerToObjCPointerCast:
3198   case CK_BlockPointerToObjCPointerCast:
3199   case CK_AnyPointerToBlockPointerCast:
3200   case CK_BitCast: {
3201     llvm::Type *resultType = CGF.ConvertType(e->getType());
3202     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3203     Result result = asImpl().visit(e->getSubExpr());
3204     return asImpl().emitBitCast(result, resultType);
3205   }
3206 
3207   // Handle some casts specially.
3208   case CK_LValueToRValue:
3209     return asImpl().visitLValueToRValue(e->getSubExpr());
3210   case CK_ARCConsumeObject:
3211     return asImpl().visitConsumeObject(e->getSubExpr());
3212   case CK_ARCExtendBlockObject:
3213     return asImpl().visitExtendBlockObject(e->getSubExpr());
3214   case CK_ARCReclaimReturnedObject:
3215     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3216 
3217   // Otherwise, use the default logic.
3218   default:
3219     return asImpl().visitExpr(e);
3220   }
3221 }
3222 
3223 template <typename Impl, typename Result>
3224 Result
3225 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3226   switch (e->getOpcode()) {
3227   case BO_Comma:
3228     CGF.EmitIgnoredExpr(e->getLHS());
3229     CGF.EnsureInsertPoint();
3230     return asImpl().visit(e->getRHS());
3231 
3232   case BO_Assign:
3233     return asImpl().visitBinAssign(e);
3234 
3235   default:
3236     return asImpl().visitExpr(e);
3237   }
3238 }
3239 
3240 template <typename Impl, typename Result>
3241 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3242   switch (e->getLHS()->getType().getObjCLifetime()) {
3243   case Qualifiers::OCL_ExplicitNone:
3244     return asImpl().visitBinAssignUnsafeUnretained(e);
3245 
3246   case Qualifiers::OCL_Weak:
3247     return asImpl().visitBinAssignWeak(e);
3248 
3249   case Qualifiers::OCL_Autoreleasing:
3250     return asImpl().visitBinAssignAutoreleasing(e);
3251 
3252   case Qualifiers::OCL_Strong:
3253     return asImpl().visitBinAssignStrong(e);
3254 
3255   case Qualifiers::OCL_None:
3256     return asImpl().visitExpr(e);
3257   }
3258   llvm_unreachable("bad ObjC ownership qualifier");
3259 }
3260 
3261 /// The default rule for __unsafe_unretained emits the RHS recursively,
3262 /// stores into the unsafe variable, and propagates the result outward.
3263 template <typename Impl, typename Result>
3264 Result ARCExprEmitter<Impl,Result>::
3265                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3266   // Recursively emit the RHS.
3267   // For __block safety, do this before emitting the LHS.
3268   Result result = asImpl().visit(e->getRHS());
3269 
3270   // Perform the store.
3271   LValue lvalue =
3272     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3273   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3274                              lvalue);
3275 
3276   return result;
3277 }
3278 
3279 template <typename Impl, typename Result>
3280 Result
3281 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3282   return asImpl().visitExpr(e);
3283 }
3284 
3285 template <typename Impl, typename Result>
3286 Result
3287 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3288   return asImpl().visitExpr(e);
3289 }
3290 
3291 template <typename Impl, typename Result>
3292 Result
3293 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3294   return asImpl().visitExpr(e);
3295 }
3296 
3297 /// The general expression-emission logic.
3298 template <typename Impl, typename Result>
3299 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3300   // We should *never* see a nested full-expression here, because if
3301   // we fail to emit at +1, our caller must not retain after we close
3302   // out the full-expression.  This isn't as important in the unsafe
3303   // emitter.
3304   assert(!isa<ExprWithCleanups>(e));
3305 
3306   // Look through parens, __extension__, generic selection, etc.
3307   e = e->IgnoreParens();
3308 
3309   // Handle certain kinds of casts.
3310   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3311     return asImpl().visitCastExpr(ce);
3312 
3313   // Handle the comma operator.
3314   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3315     return asImpl().visitBinaryOperator(op);
3316 
3317   // TODO: handle conditional operators here
3318 
3319   // For calls and message sends, use the retained-call logic.
3320   // Delegate inits are a special case in that they're the only
3321   // returns-retained expression that *isn't* surrounded by
3322   // a consume.
3323   } else if (isa<CallExpr>(e) ||
3324              (isa<ObjCMessageExpr>(e) &&
3325               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3326     return asImpl().visitCall(e);
3327 
3328   // Look through pseudo-object expressions.
3329   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3330     return asImpl().visitPseudoObjectExpr(pseudo);
3331   } else if (auto *be = dyn_cast<BlockExpr>(e))
3332     return asImpl().visitBlockExpr(be);
3333 
3334   return asImpl().visitExpr(e);
3335 }
3336 
3337 namespace {
3338 
3339 /// An emitter for +1 results.
3340 struct ARCRetainExprEmitter :
3341   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3342 
3343   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3344 
3345   llvm::Value *getValueOfResult(TryEmitResult result) {
3346     return result.getPointer();
3347   }
3348 
3349   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3350     llvm::Value *value = result.getPointer();
3351     value = CGF.Builder.CreateBitCast(value, resultType);
3352     result.setPointer(value);
3353     return result;
3354   }
3355 
3356   TryEmitResult visitLValueToRValue(const Expr *e) {
3357     return tryEmitARCRetainLoadOfScalar(CGF, e);
3358   }
3359 
3360   /// For consumptions, just emit the subexpression and thus elide
3361   /// the retain/release pair.
3362   TryEmitResult visitConsumeObject(const Expr *e) {
3363     llvm::Value *result = CGF.EmitScalarExpr(e);
3364     return TryEmitResult(result, true);
3365   }
3366 
3367   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3368     TryEmitResult result = visitExpr(e);
3369     // Avoid the block-retain if this is a block literal that doesn't need to be
3370     // copied to the heap.
3371     if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3372         e->getBlockDecl()->canAvoidCopyToHeap())
3373       result.setInt(true);
3374     return result;
3375   }
3376 
3377   /// Block extends are net +0.  Naively, we could just recurse on
3378   /// the subexpression, but actually we need to ensure that the
3379   /// value is copied as a block, so there's a little filter here.
3380   TryEmitResult visitExtendBlockObject(const Expr *e) {
3381     llvm::Value *result; // will be a +0 value
3382 
3383     // If we can't safely assume the sub-expression will produce a
3384     // block-copied value, emit the sub-expression at +0.
3385     if (shouldEmitSeparateBlockRetain(e)) {
3386       result = CGF.EmitScalarExpr(e);
3387 
3388     // Otherwise, try to emit the sub-expression at +1 recursively.
3389     } else {
3390       TryEmitResult subresult = asImpl().visit(e);
3391 
3392       // If that produced a retained value, just use that.
3393       if (subresult.getInt()) {
3394         return subresult;
3395       }
3396 
3397       // Otherwise it's +0.
3398       result = subresult.getPointer();
3399     }
3400 
3401     // Retain the object as a block.
3402     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3403     return TryEmitResult(result, true);
3404   }
3405 
3406   /// For reclaims, emit the subexpression as a retained call and
3407   /// skip the consumption.
3408   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3409     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3410     return TryEmitResult(result, true);
3411   }
3412 
3413   /// When we have an undecorated call, retroactively do a claim.
3414   TryEmitResult visitCall(const Expr *e) {
3415     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3416     return TryEmitResult(result, true);
3417   }
3418 
3419   // TODO: maybe special-case visitBinAssignWeak?
3420 
3421   TryEmitResult visitExpr(const Expr *e) {
3422     // We didn't find an obvious production, so emit what we've got and
3423     // tell the caller that we didn't manage to retain.
3424     llvm::Value *result = CGF.EmitScalarExpr(e);
3425     return TryEmitResult(result, false);
3426   }
3427 };
3428 }
3429 
3430 static TryEmitResult
3431 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3432   return ARCRetainExprEmitter(CGF).visit(e);
3433 }
3434 
3435 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3436                                                 LValue lvalue,
3437                                                 QualType type) {
3438   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3439   llvm::Value *value = result.getPointer();
3440   if (!result.getInt())
3441     value = CGF.EmitARCRetain(type, value);
3442   return value;
3443 }
3444 
3445 /// EmitARCRetainScalarExpr - Semantically equivalent to
3446 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3447 /// best-effort attempt to peephole expressions that naturally produce
3448 /// retained objects.
3449 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3450   // The retain needs to happen within the full-expression.
3451   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3452     RunCleanupsScope scope(*this);
3453     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3454   }
3455 
3456   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3457   llvm::Value *value = result.getPointer();
3458   if (!result.getInt())
3459     value = EmitARCRetain(e->getType(), value);
3460   return value;
3461 }
3462 
3463 llvm::Value *
3464 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3465   // The retain needs to happen within the full-expression.
3466   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3467     RunCleanupsScope scope(*this);
3468     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3469   }
3470 
3471   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3472   llvm::Value *value = result.getPointer();
3473   if (result.getInt())
3474     value = EmitARCAutorelease(value);
3475   else
3476     value = EmitARCRetainAutorelease(e->getType(), value);
3477   return value;
3478 }
3479 
3480 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3481   llvm::Value *result;
3482   bool doRetain;
3483 
3484   if (shouldEmitSeparateBlockRetain(e)) {
3485     result = EmitScalarExpr(e);
3486     doRetain = true;
3487   } else {
3488     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3489     result = subresult.getPointer();
3490     doRetain = !subresult.getInt();
3491   }
3492 
3493   if (doRetain)
3494     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3495   return EmitObjCConsumeObject(e->getType(), result);
3496 }
3497 
3498 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3499   // In ARC, retain and autorelease the expression.
3500   if (getLangOpts().ObjCAutoRefCount) {
3501     // Do so before running any cleanups for the full-expression.
3502     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3503     return EmitARCRetainAutoreleaseScalarExpr(expr);
3504   }
3505 
3506   // Otherwise, use the normal scalar-expression emission.  The
3507   // exception machinery doesn't do anything special with the
3508   // exception like retaining it, so there's no safety associated with
3509   // only running cleanups after the throw has started, and when it
3510   // matters it tends to be substantially inferior code.
3511   return EmitScalarExpr(expr);
3512 }
3513 
3514 namespace {
3515 
3516 /// An emitter for assigning into an __unsafe_unretained context.
3517 struct ARCUnsafeUnretainedExprEmitter :
3518   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3519 
3520   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3521 
3522   llvm::Value *getValueOfResult(llvm::Value *value) {
3523     return value;
3524   }
3525 
3526   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3527     return CGF.Builder.CreateBitCast(value, resultType);
3528   }
3529 
3530   llvm::Value *visitLValueToRValue(const Expr *e) {
3531     return CGF.EmitScalarExpr(e);
3532   }
3533 
3534   /// For consumptions, just emit the subexpression and perform the
3535   /// consumption like normal.
3536   llvm::Value *visitConsumeObject(const Expr *e) {
3537     llvm::Value *value = CGF.EmitScalarExpr(e);
3538     return CGF.EmitObjCConsumeObject(e->getType(), value);
3539   }
3540 
3541   /// No special logic for block extensions.  (This probably can't
3542   /// actually happen in this emitter, though.)
3543   llvm::Value *visitExtendBlockObject(const Expr *e) {
3544     return CGF.EmitARCExtendBlockObject(e);
3545   }
3546 
3547   /// For reclaims, perform an unsafeClaim if that's enabled.
3548   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3549     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3550   }
3551 
3552   /// When we have an undecorated call, just emit it without adding
3553   /// the unsafeClaim.
3554   llvm::Value *visitCall(const Expr *e) {
3555     return CGF.EmitScalarExpr(e);
3556   }
3557 
3558   /// Just do normal scalar emission in the default case.
3559   llvm::Value *visitExpr(const Expr *e) {
3560     return CGF.EmitScalarExpr(e);
3561   }
3562 };
3563 }
3564 
3565 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3566                                                       const Expr *e) {
3567   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3568 }
3569 
3570 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3571 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3572 /// avoiding any spurious retains, including by performing reclaims
3573 /// with objc_unsafeClaimAutoreleasedReturnValue.
3574 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3575   // Look through full-expressions.
3576   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3577     RunCleanupsScope scope(*this);
3578     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3579   }
3580 
3581   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3582 }
3583 
3584 std::pair<LValue,llvm::Value*>
3585 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3586                                               bool ignored) {
3587   // Evaluate the RHS first.  If we're ignoring the result, assume
3588   // that we can emit at an unsafe +0.
3589   llvm::Value *value;
3590   if (ignored) {
3591     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3592   } else {
3593     value = EmitScalarExpr(e->getRHS());
3594   }
3595 
3596   // Emit the LHS and perform the store.
3597   LValue lvalue = EmitLValue(e->getLHS());
3598   EmitStoreOfScalar(value, lvalue);
3599 
3600   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3601 }
3602 
3603 std::pair<LValue,llvm::Value*>
3604 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3605                                     bool ignored) {
3606   // Evaluate the RHS first.
3607   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3608   llvm::Value *value = result.getPointer();
3609 
3610   bool hasImmediateRetain = result.getInt();
3611 
3612   // If we didn't emit a retained object, and the l-value is of block
3613   // type, then we need to emit the block-retain immediately in case
3614   // it invalidates the l-value.
3615   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3616     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3617     hasImmediateRetain = true;
3618   }
3619 
3620   LValue lvalue = EmitLValue(e->getLHS());
3621 
3622   // If the RHS was emitted retained, expand this.
3623   if (hasImmediateRetain) {
3624     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3625     EmitStoreOfScalar(value, lvalue);
3626     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3627   } else {
3628     value = EmitARCStoreStrong(lvalue, value, ignored);
3629   }
3630 
3631   return std::pair<LValue,llvm::Value*>(lvalue, value);
3632 }
3633 
3634 std::pair<LValue,llvm::Value*>
3635 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3636   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3637   LValue lvalue = EmitLValue(e->getLHS());
3638 
3639   EmitStoreOfScalar(value, lvalue);
3640 
3641   return std::pair<LValue,llvm::Value*>(lvalue, value);
3642 }
3643 
3644 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3645                                           const ObjCAutoreleasePoolStmt &ARPS) {
3646   const Stmt *subStmt = ARPS.getSubStmt();
3647   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3648 
3649   CGDebugInfo *DI = getDebugInfo();
3650   if (DI)
3651     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3652 
3653   // Keep track of the current cleanup stack depth.
3654   RunCleanupsScope Scope(*this);
3655   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3656     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3657     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3658   } else {
3659     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3660     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3661   }
3662 
3663   for (const auto *I : S.body())
3664     EmitStmt(I);
3665 
3666   if (DI)
3667     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3668 }
3669 
3670 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3671 /// make sure it survives garbage collection until this point.
3672 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3673   // We just use an inline assembly.
3674   llvm::FunctionType *extenderType
3675     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3676   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3677                                                    /* assembly */ "",
3678                                                    /* constraints */ "r",
3679                                                    /* side effects */ true);
3680 
3681   EmitNounwindRuntimeCall(extender, object);
3682 }
3683 
3684 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3685 /// non-trivial copy assignment function, produce following helper function.
3686 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3687 ///
3688 llvm::Constant *
3689 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3690                                         const ObjCPropertyImplDecl *PID) {
3691   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3692   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3693     return nullptr;
3694 
3695   QualType Ty = PID->getPropertyIvarDecl()->getType();
3696   ASTContext &C = getContext();
3697 
3698   if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3699     // Call the move assignment operator instead of calling the copy assignment
3700     // operator and destructor.
3701     CharUnits Alignment = C.getTypeAlignInChars(Ty);
3702     llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3703         CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3704     return Fn;
3705   }
3706 
3707   if (!getLangOpts().CPlusPlus ||
3708       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3709     return nullptr;
3710   if (!Ty->isRecordType())
3711     return nullptr;
3712   llvm::Constant *HelperFn = nullptr;
3713   if (hasTrivialSetExpr(PID))
3714     return nullptr;
3715   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3716   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3717     return HelperFn;
3718 
3719   IdentifierInfo *II
3720     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3721 
3722   QualType ReturnTy = C.VoidTy;
3723   QualType DestTy = C.getPointerType(Ty);
3724   QualType SrcTy = Ty;
3725   SrcTy.addConst();
3726   SrcTy = C.getPointerType(SrcTy);
3727 
3728   SmallVector<QualType, 2> ArgTys;
3729   ArgTys.push_back(DestTy);
3730   ArgTys.push_back(SrcTy);
3731   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3732 
3733   FunctionDecl *FD = FunctionDecl::Create(
3734       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3735       FunctionTy, nullptr, SC_Static, false, false, false);
3736 
3737   FunctionArgList args;
3738   ParmVarDecl *Params[2];
3739   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3740       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3741       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3742       /*DefArg=*/nullptr);
3743   args.push_back(Params[0] = DstDecl);
3744   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3745       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3746       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3747       /*DefArg=*/nullptr);
3748   args.push_back(Params[1] = SrcDecl);
3749   FD->setParams(Params);
3750 
3751   const CGFunctionInfo &FI =
3752       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3753 
3754   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3755 
3756   llvm::Function *Fn =
3757     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3758                            "__assign_helper_atomic_property_",
3759                            &CGM.getModule());
3760 
3761   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3762 
3763   StartFunction(FD, ReturnTy, Fn, FI, args);
3764 
3765   DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3766   UnaryOperator *DST = UnaryOperator::Create(
3767       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3768       SourceLocation(), false, FPOptionsOverride());
3769 
3770   DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3771   UnaryOperator *SRC = UnaryOperator::Create(
3772       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3773       SourceLocation(), false, FPOptionsOverride());
3774 
3775   Expr *Args[2] = {DST, SRC};
3776   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3777   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3778       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3779       VK_LValue, SourceLocation(), FPOptionsOverride());
3780 
3781   EmitStmt(TheCall);
3782 
3783   FinishFunction();
3784   HelperFn = Fn;
3785   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3786   return HelperFn;
3787 }
3788 
3789 llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3790     const ObjCPropertyImplDecl *PID) {
3791   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3792   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3793     return nullptr;
3794 
3795   QualType Ty = PD->getType();
3796   ASTContext &C = getContext();
3797 
3798   if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3799     CharUnits Alignment = C.getTypeAlignInChars(Ty);
3800     llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3801         CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3802     return Fn;
3803   }
3804 
3805   if (!getLangOpts().CPlusPlus ||
3806       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3807     return nullptr;
3808   if (!Ty->isRecordType())
3809     return nullptr;
3810   llvm::Constant *HelperFn = nullptr;
3811   if (hasTrivialGetExpr(PID))
3812     return nullptr;
3813   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3814   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3815     return HelperFn;
3816 
3817   IdentifierInfo *II =
3818       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3819 
3820   QualType ReturnTy = C.VoidTy;
3821   QualType DestTy = C.getPointerType(Ty);
3822   QualType SrcTy = Ty;
3823   SrcTy.addConst();
3824   SrcTy = C.getPointerType(SrcTy);
3825 
3826   SmallVector<QualType, 2> ArgTys;
3827   ArgTys.push_back(DestTy);
3828   ArgTys.push_back(SrcTy);
3829   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3830 
3831   FunctionDecl *FD = FunctionDecl::Create(
3832       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3833       FunctionTy, nullptr, SC_Static, false, false, false);
3834 
3835   FunctionArgList args;
3836   ParmVarDecl *Params[2];
3837   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3838       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3839       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3840       /*DefArg=*/nullptr);
3841   args.push_back(Params[0] = DstDecl);
3842   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3843       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3844       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3845       /*DefArg=*/nullptr);
3846   args.push_back(Params[1] = SrcDecl);
3847   FD->setParams(Params);
3848 
3849   const CGFunctionInfo &FI =
3850       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3851 
3852   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3853 
3854   llvm::Function *Fn = llvm::Function::Create(
3855       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3856       &CGM.getModule());
3857 
3858   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3859 
3860   StartFunction(FD, ReturnTy, Fn, FI, args);
3861 
3862   DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3863                       SourceLocation());
3864 
3865   UnaryOperator *SRC = UnaryOperator::Create(
3866       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3867       SourceLocation(), false, FPOptionsOverride());
3868 
3869   CXXConstructExpr *CXXConstExpr =
3870     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3871 
3872   SmallVector<Expr*, 4> ConstructorArgs;
3873   ConstructorArgs.push_back(SRC);
3874   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3875                          CXXConstExpr->arg_end());
3876 
3877   CXXConstructExpr *TheCXXConstructExpr =
3878     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3879                              CXXConstExpr->getConstructor(),
3880                              CXXConstExpr->isElidable(),
3881                              ConstructorArgs,
3882                              CXXConstExpr->hadMultipleCandidates(),
3883                              CXXConstExpr->isListInitialization(),
3884                              CXXConstExpr->isStdInitListInitialization(),
3885                              CXXConstExpr->requiresZeroInitialization(),
3886                              CXXConstExpr->getConstructionKind(),
3887                              SourceRange());
3888 
3889   DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3890                       SourceLocation());
3891 
3892   RValue DV = EmitAnyExpr(&DstExpr);
3893   CharUnits Alignment =
3894       getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3895   EmitAggExpr(TheCXXConstructExpr,
3896               AggValueSlot::forAddr(
3897                   Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3898                   Qualifiers(), AggValueSlot::IsDestructed,
3899                   AggValueSlot::DoesNotNeedGCBarriers,
3900                   AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3901 
3902   FinishFunction();
3903   HelperFn = Fn;
3904   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3905   return HelperFn;
3906 }
3907 
3908 llvm::Value *
3909 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3910   // Get selectors for retain/autorelease.
3911   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3912   Selector CopySelector =
3913       getContext().Selectors.getNullarySelector(CopyID);
3914   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3915   Selector AutoreleaseSelector =
3916       getContext().Selectors.getNullarySelector(AutoreleaseID);
3917 
3918   // Emit calls to retain/autorelease.
3919   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3920   llvm::Value *Val = Block;
3921   RValue Result;
3922   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3923                                        Ty, CopySelector,
3924                                        Val, CallArgList(), nullptr, nullptr);
3925   Val = Result.getScalarVal();
3926   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3927                                        Ty, AutoreleaseSelector,
3928                                        Val, CallArgList(), nullptr, nullptr);
3929   Val = Result.getScalarVal();
3930   return Val;
3931 }
3932 
3933 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3934   switch (TT.getOS()) {
3935   case llvm::Triple::Darwin:
3936   case llvm::Triple::MacOSX:
3937     return llvm::MachO::PLATFORM_MACOS;
3938   case llvm::Triple::IOS:
3939     return llvm::MachO::PLATFORM_IOS;
3940   case llvm::Triple::TvOS:
3941     return llvm::MachO::PLATFORM_TVOS;
3942   case llvm::Triple::WatchOS:
3943     return llvm::MachO::PLATFORM_WATCHOS;
3944   case llvm::Triple::XROS:
3945     return llvm::MachO::PLATFORM_XROS;
3946   case llvm::Triple::DriverKit:
3947     return llvm::MachO::PLATFORM_DRIVERKIT;
3948   default:
3949     return llvm::MachO::PLATFORM_UNKNOWN;
3950   }
3951 }
3952 
3953 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3954                                                  const VersionTuple &Version) {
3955   CodeGenModule &CGM = CGF.CGM;
3956   // Note: we intend to support multi-platform version checks, so reserve
3957   // the room for a dual platform checking invocation that will be
3958   // implemented in the future.
3959   llvm::SmallVector<llvm::Value *, 8> Args;
3960 
3961   auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3962     std::optional<unsigned> Min = Version.getMinor(),
3963                             SMin = Version.getSubminor();
3964     Args.push_back(
3965         llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3966     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3967     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3968     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3969   };
3970 
3971   assert(!Version.empty() && "unexpected empty version");
3972   EmitArgs(Version, CGM.getTarget().getTriple());
3973 
3974   if (!CGM.IsPlatformVersionAtLeastFn) {
3975     llvm::FunctionType *FTy = llvm::FunctionType::get(
3976         CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3977         false);
3978     CGM.IsPlatformVersionAtLeastFn =
3979         CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3980   }
3981 
3982   llvm::Value *Check =
3983       CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3984   return CGF.Builder.CreateICmpNE(Check,
3985                                   llvm::Constant::getNullValue(CGM.Int32Ty));
3986 }
3987 
3988 llvm::Value *
3989 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3990   // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3991   if (CGM.getTarget().getTriple().isOSDarwin())
3992     return emitIsPlatformVersionAtLeast(*this, Version);
3993 
3994   if (!CGM.IsOSVersionAtLeastFn) {
3995     llvm::FunctionType *FTy =
3996         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3997     CGM.IsOSVersionAtLeastFn =
3998         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3999   }
4000 
4001   std::optional<unsigned> Min = Version.getMinor(),
4002                           SMin = Version.getSubminor();
4003   llvm::Value *Args[] = {
4004       llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4005       llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4006       llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4007 
4008   llvm::Value *CallRes =
4009       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
4010 
4011   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4012 }
4013 
4014 static bool isFoundationNeededForDarwinAvailabilityCheck(
4015     const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4016   VersionTuple FoundationDroppedInVersion;
4017   switch (TT.getOS()) {
4018   case llvm::Triple::IOS:
4019   case llvm::Triple::TvOS:
4020     FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4021     break;
4022   case llvm::Triple::WatchOS:
4023     FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4024     break;
4025   case llvm::Triple::Darwin:
4026   case llvm::Triple::MacOSX:
4027     FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4028     break;
4029   case llvm::Triple::XROS:
4030     // XROS doesn't need Foundation.
4031     return false;
4032   case llvm::Triple::DriverKit:
4033     // DriverKit doesn't need Foundation.
4034     return false;
4035   default:
4036     llvm_unreachable("Unexpected OS");
4037   }
4038   return TargetVersion < FoundationDroppedInVersion;
4039 }
4040 
4041 void CodeGenModule::emitAtAvailableLinkGuard() {
4042   if (!IsPlatformVersionAtLeastFn)
4043     return;
4044   // @available requires CoreFoundation only on Darwin.
4045   if (!Target.getTriple().isOSDarwin())
4046     return;
4047   // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4048   // watchOS 6+.
4049   if (!isFoundationNeededForDarwinAvailabilityCheck(
4050           Target.getTriple(), Target.getPlatformMinVersion()))
4051     return;
4052   // Add -framework CoreFoundation to the linker commands. We still want to
4053   // emit the core foundation reference down below because otherwise if
4054   // CoreFoundation is not used in the code, the linker won't link the
4055   // framework.
4056   auto &Context = getLLVMContext();
4057   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4058                              llvm::MDString::get(Context, "CoreFoundation")};
4059   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4060   // Emit a reference to a symbol from CoreFoundation to ensure that
4061   // CoreFoundation is linked into the final binary.
4062   llvm::FunctionType *FTy =
4063       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4064   llvm::FunctionCallee CFFunc =
4065       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4066 
4067   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4068   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4069       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4070       llvm::AttributeList(), /*Local=*/true);
4071   llvm::Function *CFLinkCheckFunc =
4072       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4073   if (CFLinkCheckFunc->empty()) {
4074     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4075     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4076     CodeGenFunction CGF(*this);
4077     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4078     CGF.EmitNounwindRuntimeCall(CFFunc,
4079                                 llvm::Constant::getNullValue(VoidPtrTy));
4080     CGF.Builder.CreateUnreachable();
4081     addCompilerUsedGlobal(CFLinkCheckFunc);
4082   }
4083 }
4084 
4085 CGObjCRuntime::~CGObjCRuntime() {}
4086