1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/CodeGenABITypes.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/Analysis/ObjCARCUtil.h" 28 #include "llvm/BinaryFormat/MachO.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include <optional> 33 using namespace clang; 34 using namespace CodeGen; 35 36 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 37 static TryEmitResult 38 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 39 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 40 QualType ET, 41 RValue Result); 42 43 /// Given the address of a variable of pointer type, find the correct 44 /// null to store into it. 45 static llvm::Constant *getNullForVariable(Address addr) { 46 llvm::Type *type = addr.getElementType(); 47 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 48 } 49 50 /// Emits an instance of NSConstantString representing the object. 51 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 52 { 53 llvm::Constant *C = 54 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 55 return C; 56 } 57 58 /// EmitObjCBoxedExpr - This routine generates code to call 59 /// the appropriate expression boxing method. This will either be 60 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 61 /// or [NSValue valueWithBytes:objCType:]. 62 /// 63 llvm::Value * 64 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 65 // Generate the correct selector for this literal's concrete type. 66 // Get the method. 67 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 68 const Expr *SubExpr = E->getSubExpr(); 69 70 if (E->isExpressibleAsConstantInitializer()) { 71 ConstantEmitter ConstEmitter(CGM); 72 return ConstEmitter.tryEmitAbstract(E, E->getType()); 73 } 74 75 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 76 Selector Sel = BoxingMethod->getSelector(); 77 78 // Generate a reference to the class pointer, which will be the receiver. 79 // Assumes that the method was introduced in the class that should be 80 // messaged (avoids pulling it out of the result type). 81 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 82 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 83 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 84 85 CallArgList Args; 86 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 87 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 88 89 // ObjCBoxedExpr supports boxing of structs and unions 90 // via [NSValue valueWithBytes:objCType:] 91 const QualType ValueType(SubExpr->getType().getCanonicalType()); 92 if (ValueType->isObjCBoxableRecordType()) { 93 // Emit CodeGen for first parameter 94 // and cast value to correct type 95 Address Temporary = CreateMemTemp(SubExpr->getType()); 96 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 97 llvm::Value *BitCast = 98 Builder.CreateBitCast(Temporary.getPointer(), ConvertType(ArgQT)); 99 Args.add(RValue::get(BitCast), ArgQT); 100 101 // Create char array to store type encoding 102 std::string Str; 103 getContext().getObjCEncodingForType(ValueType, Str); 104 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 105 106 // Cast type encoding to correct type 107 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 108 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 109 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 110 111 Args.add(RValue::get(Cast), EncodingQT); 112 } else { 113 Args.add(EmitAnyExpr(SubExpr), ArgQT); 114 } 115 116 RValue result = Runtime.GenerateMessageSend( 117 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 118 Args, ClassDecl, BoxingMethod); 119 return Builder.CreateBitCast(result.getScalarVal(), 120 ConvertType(E->getType())); 121 } 122 123 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 124 const ObjCMethodDecl *MethodWithObjects) { 125 ASTContext &Context = CGM.getContext(); 126 const ObjCDictionaryLiteral *DLE = nullptr; 127 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 128 if (!ALE) 129 DLE = cast<ObjCDictionaryLiteral>(E); 130 131 // Optimize empty collections by referencing constants, when available. 132 uint64_t NumElements = 133 ALE ? ALE->getNumElements() : DLE->getNumElements(); 134 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 135 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 136 QualType IdTy(CGM.getContext().getObjCIdType()); 137 llvm::Constant *Constant = 138 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 139 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 140 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 141 cast<llvm::LoadInst>(Ptr)->setMetadata( 142 llvm::LLVMContext::MD_invariant_load, 143 llvm::MDNode::get(getLLVMContext(), std::nullopt)); 144 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 145 } 146 147 // Compute the type of the array we're initializing. 148 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 149 NumElements); 150 QualType ElementType = Context.getObjCIdType().withConst(); 151 QualType ElementArrayType = Context.getConstantArrayType( 152 ElementType, APNumElements, nullptr, ArraySizeModifier::Normal, 153 /*IndexTypeQuals=*/0); 154 155 // Allocate the temporary array(s). 156 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 157 Address Keys = Address::invalid(); 158 if (DLE) 159 Keys = CreateMemTemp(ElementArrayType, "keys"); 160 161 // In ARC, we may need to do extra work to keep all the keys and 162 // values alive until after the call. 163 SmallVector<llvm::Value *, 16> NeededObjects; 164 bool TrackNeededObjects = 165 (getLangOpts().ObjCAutoRefCount && 166 CGM.getCodeGenOpts().OptimizationLevel != 0); 167 168 // Perform the actual initialialization of the array(s). 169 for (uint64_t i = 0; i < NumElements; i++) { 170 if (ALE) { 171 // Emit the element and store it to the appropriate array slot. 172 const Expr *Rhs = ALE->getElement(i); 173 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 174 ElementType, AlignmentSource::Decl); 175 176 llvm::Value *value = EmitScalarExpr(Rhs); 177 EmitStoreThroughLValue(RValue::get(value), LV, true); 178 if (TrackNeededObjects) { 179 NeededObjects.push_back(value); 180 } 181 } else { 182 // Emit the key and store it to the appropriate array slot. 183 const Expr *Key = DLE->getKeyValueElement(i).Key; 184 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 185 ElementType, AlignmentSource::Decl); 186 llvm::Value *keyValue = EmitScalarExpr(Key); 187 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 188 189 // Emit the value and store it to the appropriate array slot. 190 const Expr *Value = DLE->getKeyValueElement(i).Value; 191 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 192 ElementType, AlignmentSource::Decl); 193 llvm::Value *valueValue = EmitScalarExpr(Value); 194 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 195 if (TrackNeededObjects) { 196 NeededObjects.push_back(keyValue); 197 NeededObjects.push_back(valueValue); 198 } 199 } 200 } 201 202 // Generate the argument list. 203 CallArgList Args; 204 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 205 const ParmVarDecl *argDecl = *PI++; 206 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 207 Args.add(RValue::get(Objects.getPointer()), ArgQT); 208 if (DLE) { 209 argDecl = *PI++; 210 ArgQT = argDecl->getType().getUnqualifiedType(); 211 Args.add(RValue::get(Keys.getPointer()), ArgQT); 212 } 213 argDecl = *PI; 214 ArgQT = argDecl->getType().getUnqualifiedType(); 215 llvm::Value *Count = 216 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 217 Args.add(RValue::get(Count), ArgQT); 218 219 // Generate a reference to the class pointer, which will be the receiver. 220 Selector Sel = MethodWithObjects->getSelector(); 221 QualType ResultType = E->getType(); 222 const ObjCObjectPointerType *InterfacePointerType 223 = ResultType->getAsObjCInterfacePointerType(); 224 assert(InterfacePointerType && "Unexpected InterfacePointerType - null"); 225 ObjCInterfaceDecl *Class 226 = InterfacePointerType->getObjectType()->getInterface(); 227 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 228 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 229 230 // Generate the message send. 231 RValue result = Runtime.GenerateMessageSend( 232 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 233 Receiver, Args, Class, MethodWithObjects); 234 235 // The above message send needs these objects, but in ARC they are 236 // passed in a buffer that is essentially __unsafe_unretained. 237 // Therefore we must prevent the optimizer from releasing them until 238 // after the call. 239 if (TrackNeededObjects) { 240 EmitARCIntrinsicUse(NeededObjects); 241 } 242 243 return Builder.CreateBitCast(result.getScalarVal(), 244 ConvertType(E->getType())); 245 } 246 247 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 248 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 249 } 250 251 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 252 const ObjCDictionaryLiteral *E) { 253 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 254 } 255 256 /// Emit a selector. 257 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 258 // Untyped selector. 259 // Note that this implementation allows for non-constant strings to be passed 260 // as arguments to @selector(). Currently, the only thing preventing this 261 // behaviour is the type checking in the front end. 262 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 263 } 264 265 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 266 // FIXME: This should pass the Decl not the name. 267 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 268 } 269 270 /// Adjust the type of an Objective-C object that doesn't match up due 271 /// to type erasure at various points, e.g., related result types or the use 272 /// of parameterized classes. 273 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 274 RValue Result) { 275 if (!ExpT->isObjCRetainableType()) 276 return Result; 277 278 // If the converted types are the same, we're done. 279 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 280 if (ExpLLVMTy == Result.getScalarVal()->getType()) 281 return Result; 282 283 // We have applied a substitution. Cast the rvalue appropriately. 284 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 285 ExpLLVMTy)); 286 } 287 288 /// Decide whether to extend the lifetime of the receiver of a 289 /// returns-inner-pointer message. 290 static bool 291 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 292 switch (message->getReceiverKind()) { 293 294 // For a normal instance message, we should extend unless the 295 // receiver is loaded from a variable with precise lifetime. 296 case ObjCMessageExpr::Instance: { 297 const Expr *receiver = message->getInstanceReceiver(); 298 299 // Look through OVEs. 300 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 301 if (opaque->getSourceExpr()) 302 receiver = opaque->getSourceExpr()->IgnoreParens(); 303 } 304 305 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 306 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 307 receiver = ice->getSubExpr()->IgnoreParens(); 308 309 // Look through OVEs. 310 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 311 if (opaque->getSourceExpr()) 312 receiver = opaque->getSourceExpr()->IgnoreParens(); 313 } 314 315 // Only __strong variables. 316 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 317 return true; 318 319 // All ivars and fields have precise lifetime. 320 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 321 return false; 322 323 // Otherwise, check for variables. 324 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 325 if (!declRef) return true; 326 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 327 if (!var) return true; 328 329 // All variables have precise lifetime except local variables with 330 // automatic storage duration that aren't specially marked. 331 return (var->hasLocalStorage() && 332 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 333 } 334 335 case ObjCMessageExpr::Class: 336 case ObjCMessageExpr::SuperClass: 337 // It's never necessary for class objects. 338 return false; 339 340 case ObjCMessageExpr::SuperInstance: 341 // We generally assume that 'self' lives throughout a method call. 342 return false; 343 } 344 345 llvm_unreachable("invalid receiver kind"); 346 } 347 348 /// Given an expression of ObjC pointer type, check whether it was 349 /// immediately loaded from an ARC __weak l-value. 350 static const Expr *findWeakLValue(const Expr *E) { 351 assert(E->getType()->isObjCRetainableType()); 352 E = E->IgnoreParens(); 353 if (auto CE = dyn_cast<CastExpr>(E)) { 354 if (CE->getCastKind() == CK_LValueToRValue) { 355 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 356 return CE->getSubExpr(); 357 } 358 } 359 360 return nullptr; 361 } 362 363 /// The ObjC runtime may provide entrypoints that are likely to be faster 364 /// than an ordinary message send of the appropriate selector. 365 /// 366 /// The entrypoints are guaranteed to be equivalent to just sending the 367 /// corresponding message. If the entrypoint is implemented naively as just a 368 /// message send, using it is a trade-off: it sacrifices a few cycles of 369 /// overhead to save a small amount of code. However, it's possible for 370 /// runtimes to detect and special-case classes that use "standard" 371 /// behavior; if that's dynamically a large proportion of all objects, using 372 /// the entrypoint will also be faster than using a message send. 373 /// 374 /// If the runtime does support a required entrypoint, then this method will 375 /// generate a call and return the resulting value. Otherwise it will return 376 /// std::nullopt and the caller can generate a msgSend instead. 377 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend( 378 CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver, 379 const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method, 380 bool isClassMessage) { 381 auto &CGM = CGF.CGM; 382 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 383 return std::nullopt; 384 385 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 386 switch (Sel.getMethodFamily()) { 387 case OMF_alloc: 388 if (isClassMessage && 389 Runtime.shouldUseRuntimeFunctionsForAlloc() && 390 ResultType->isObjCObjectPointerType()) { 391 // [Foo alloc] -> objc_alloc(Foo) or 392 // [self alloc] -> objc_alloc(self) 393 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 394 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 395 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 396 // [self allocWithZone:nil] -> objc_allocWithZone(self) 397 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 398 Args.size() == 1 && Args.front().getType()->isPointerType() && 399 Sel.getNameForSlot(0) == "allocWithZone") { 400 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 401 if (isa<llvm::ConstantPointerNull>(arg)) 402 return CGF.EmitObjCAllocWithZone(Receiver, 403 CGF.ConvertType(ResultType)); 404 return std::nullopt; 405 } 406 } 407 break; 408 409 case OMF_autorelease: 410 if (ResultType->isObjCObjectPointerType() && 411 CGM.getLangOpts().getGC() == LangOptions::NonGC && 412 Runtime.shouldUseARCFunctionsForRetainRelease()) 413 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 414 break; 415 416 case OMF_retain: 417 if (ResultType->isObjCObjectPointerType() && 418 CGM.getLangOpts().getGC() == LangOptions::NonGC && 419 Runtime.shouldUseARCFunctionsForRetainRelease()) 420 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 421 break; 422 423 case OMF_release: 424 if (ResultType->isVoidType() && 425 CGM.getLangOpts().getGC() == LangOptions::NonGC && 426 Runtime.shouldUseARCFunctionsForRetainRelease()) { 427 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 428 return nullptr; 429 } 430 break; 431 432 default: 433 break; 434 } 435 return std::nullopt; 436 } 437 438 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 439 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 440 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 441 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 442 bool isClassMessage) { 443 if (std::optional<llvm::Value *> SpecializedResult = 444 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 445 Sel, Method, isClassMessage)) { 446 return RValue::get(*SpecializedResult); 447 } 448 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 449 Method); 450 } 451 452 static void AppendFirstImpliedRuntimeProtocols( 453 const ObjCProtocolDecl *PD, 454 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) { 455 if (!PD->isNonRuntimeProtocol()) { 456 const auto *Can = PD->getCanonicalDecl(); 457 PDs.insert(Can); 458 return; 459 } 460 461 for (const auto *ParentPD : PD->protocols()) 462 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs); 463 } 464 465 std::vector<const ObjCProtocolDecl *> 466 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, 467 ObjCProtocolDecl::protocol_iterator end) { 468 std::vector<const ObjCProtocolDecl *> RuntimePds; 469 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs; 470 471 for (; begin != end; ++begin) { 472 const auto *It = *begin; 473 const auto *Can = It->getCanonicalDecl(); 474 if (Can->isNonRuntimeProtocol()) 475 NonRuntimePDs.insert(Can); 476 else 477 RuntimePds.push_back(Can); 478 } 479 480 // If there are no non-runtime protocols then we can just stop now. 481 if (NonRuntimePDs.empty()) 482 return RuntimePds; 483 484 // Else we have to search through the non-runtime protocol's inheritancy 485 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or 486 // a non-runtime protocol without any parents. These are the "first-implied" 487 // protocols from a non-runtime protocol. 488 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos; 489 for (const auto *PD : NonRuntimePDs) 490 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos); 491 492 // Walk the Runtime list to get all protocols implied via the inclusion of 493 // this protocol, e.g. all protocols it inherits from including itself. 494 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols; 495 for (const auto *PD : RuntimePds) { 496 const auto *Can = PD->getCanonicalDecl(); 497 AllImpliedProtocols.insert(Can); 498 Can->getImpliedProtocols(AllImpliedProtocols); 499 } 500 501 // Similar to above, walk the list of first-implied protocols to find the set 502 // all the protocols implied excluding the listed protocols themselves since 503 // they are not yet a part of the `RuntimePds` list. 504 for (const auto *PD : FirstImpliedProtos) { 505 PD->getImpliedProtocols(AllImpliedProtocols); 506 } 507 508 // From the first-implied list we have to finish building the final protocol 509 // list. If a protocol in the first-implied list was already implied via some 510 // inheritance path through some other protocols then it would be redundant to 511 // add it here and so we skip over it. 512 for (const auto *PD : FirstImpliedProtos) { 513 if (!AllImpliedProtocols.contains(PD)) { 514 RuntimePds.push_back(PD); 515 } 516 } 517 518 return RuntimePds; 519 } 520 521 /// Instead of '[[MyClass alloc] init]', try to generate 522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 523 /// caller side, as well as the optimized objc_alloc. 524 static std::optional<llvm::Value *> 525 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 526 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 527 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 528 return std::nullopt; 529 530 // Match the exact pattern '[[MyClass alloc] init]'. 531 Selector Sel = OME->getSelector(); 532 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 533 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 534 Sel.getNameForSlot(0) != "init") 535 return std::nullopt; 536 537 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 538 // with 'cls' a Class. 539 auto *SubOME = 540 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 541 if (!SubOME) 542 return std::nullopt; 543 Selector SubSel = SubOME->getSelector(); 544 545 if (!SubOME->getType()->isObjCObjectPointerType() || 546 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 547 return std::nullopt; 548 549 llvm::Value *Receiver = nullptr; 550 switch (SubOME->getReceiverKind()) { 551 case ObjCMessageExpr::Instance: 552 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 553 return std::nullopt; 554 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 555 break; 556 557 case ObjCMessageExpr::Class: { 558 QualType ReceiverType = SubOME->getClassReceiver(); 559 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 560 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 561 assert(ID && "null interface should be impossible here"); 562 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 563 break; 564 } 565 case ObjCMessageExpr::SuperInstance: 566 case ObjCMessageExpr::SuperClass: 567 return std::nullopt; 568 } 569 570 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 571 } 572 573 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 574 ReturnValueSlot Return) { 575 // Only the lookup mechanism and first two arguments of the method 576 // implementation vary between runtimes. We can get the receiver and 577 // arguments in generic code. 578 579 bool isDelegateInit = E->isDelegateInitCall(); 580 581 const ObjCMethodDecl *method = E->getMethodDecl(); 582 583 // If the method is -retain, and the receiver's being loaded from 584 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 585 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 586 method->getMethodFamily() == OMF_retain) { 587 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 588 LValue lvalue = EmitLValue(lvalueExpr); 589 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 590 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 591 } 592 } 593 594 if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 595 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 596 597 // We don't retain the receiver in delegate init calls, and this is 598 // safe because the receiver value is always loaded from 'self', 599 // which we zero out. We don't want to Block_copy block receivers, 600 // though. 601 bool retainSelf = 602 (!isDelegateInit && 603 CGM.getLangOpts().ObjCAutoRefCount && 604 method && 605 method->hasAttr<NSConsumesSelfAttr>()); 606 607 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 608 bool isSuperMessage = false; 609 bool isClassMessage = false; 610 ObjCInterfaceDecl *OID = nullptr; 611 // Find the receiver 612 QualType ReceiverType; 613 llvm::Value *Receiver = nullptr; 614 switch (E->getReceiverKind()) { 615 case ObjCMessageExpr::Instance: 616 ReceiverType = E->getInstanceReceiver()->getType(); 617 isClassMessage = ReceiverType->isObjCClassType(); 618 if (retainSelf) { 619 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 620 E->getInstanceReceiver()); 621 Receiver = ter.getPointer(); 622 if (ter.getInt()) retainSelf = false; 623 } else 624 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 625 break; 626 627 case ObjCMessageExpr::Class: { 628 ReceiverType = E->getClassReceiver(); 629 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 630 assert(OID && "Invalid Objective-C class message send"); 631 Receiver = Runtime.GetClass(*this, OID); 632 isClassMessage = true; 633 break; 634 } 635 636 case ObjCMessageExpr::SuperInstance: 637 ReceiverType = E->getSuperType(); 638 Receiver = LoadObjCSelf(); 639 isSuperMessage = true; 640 break; 641 642 case ObjCMessageExpr::SuperClass: 643 ReceiverType = E->getSuperType(); 644 Receiver = LoadObjCSelf(); 645 isSuperMessage = true; 646 isClassMessage = true; 647 break; 648 } 649 650 if (retainSelf) 651 Receiver = EmitARCRetainNonBlock(Receiver); 652 653 // In ARC, we sometimes want to "extend the lifetime" 654 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 655 // messages. 656 if (getLangOpts().ObjCAutoRefCount && method && 657 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 658 shouldExtendReceiverForInnerPointerMessage(E)) 659 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 660 661 QualType ResultType = method ? method->getReturnType() : E->getType(); 662 663 CallArgList Args; 664 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 665 666 // For delegate init calls in ARC, do an unsafe store of null into 667 // self. This represents the call taking direct ownership of that 668 // value. We have to do this after emitting the other call 669 // arguments because they might also reference self, but we don't 670 // have to worry about any of them modifying self because that would 671 // be an undefined read and write of an object in unordered 672 // expressions. 673 if (isDelegateInit) { 674 assert(getLangOpts().ObjCAutoRefCount && 675 "delegate init calls should only be marked in ARC"); 676 677 // Do an unsafe store of null into self. 678 Address selfAddr = 679 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 680 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 681 } 682 683 RValue result; 684 if (isSuperMessage) { 685 // super is only valid in an Objective-C method 686 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 687 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 688 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 689 E->getSelector(), 690 OMD->getClassInterface(), 691 isCategoryImpl, 692 Receiver, 693 isClassMessage, 694 Args, 695 method); 696 } else { 697 // Call runtime methods directly if we can. 698 result = Runtime.GeneratePossiblySpecializedMessageSend( 699 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 700 method, isClassMessage); 701 } 702 703 // For delegate init calls in ARC, implicitly store the result of 704 // the call back into self. This takes ownership of the value. 705 if (isDelegateInit) { 706 Address selfAddr = 707 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 708 llvm::Value *newSelf = result.getScalarVal(); 709 710 // The delegate return type isn't necessarily a matching type; in 711 // fact, it's quite likely to be 'id'. 712 llvm::Type *selfTy = selfAddr.getElementType(); 713 newSelf = Builder.CreateBitCast(newSelf, selfTy); 714 715 Builder.CreateStore(newSelf, selfAddr); 716 } 717 718 return AdjustObjCObjectType(*this, E->getType(), result); 719 } 720 721 namespace { 722 struct FinishARCDealloc final : EHScopeStack::Cleanup { 723 void Emit(CodeGenFunction &CGF, Flags flags) override { 724 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 725 726 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 727 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 728 if (!iface->getSuperClass()) return; 729 730 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 731 732 // Call [super dealloc] if we have a superclass. 733 llvm::Value *self = CGF.LoadObjCSelf(); 734 735 CallArgList args; 736 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 737 CGF.getContext().VoidTy, 738 method->getSelector(), 739 iface, 740 isCategory, 741 self, 742 /*is class msg*/ false, 743 args, 744 method); 745 } 746 }; 747 } 748 749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 750 /// the LLVM function and sets the other context used by 751 /// CodeGenFunction. 752 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 753 const ObjCContainerDecl *CD) { 754 SourceLocation StartLoc = OMD->getBeginLoc(); 755 FunctionArgList args; 756 // Check if we should generate debug info for this method. 757 if (OMD->hasAttr<NoDebugAttr>()) 758 DebugInfo = nullptr; // disable debug info indefinitely for this function 759 760 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 761 762 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 763 if (OMD->isDirectMethod()) { 764 Fn->setVisibility(llvm::Function::HiddenVisibility); 765 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false); 766 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 767 } else { 768 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 769 } 770 771 args.push_back(OMD->getSelfDecl()); 772 if (!OMD->isDirectMethod()) 773 args.push_back(OMD->getCmdDecl()); 774 775 args.append(OMD->param_begin(), OMD->param_end()); 776 777 CurGD = OMD; 778 CurEHLocation = OMD->getEndLoc(); 779 780 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 781 OMD->getLocation(), StartLoc); 782 783 if (OMD->isDirectMethod()) { 784 // This function is a direct call, it has to implement a nil check 785 // on entry. 786 // 787 // TODO: possibly have several entry points to elide the check 788 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 789 } 790 791 // In ARC, certain methods get an extra cleanup. 792 if (CGM.getLangOpts().ObjCAutoRefCount && 793 OMD->isInstanceMethod() && 794 OMD->getSelector().isUnarySelector()) { 795 const IdentifierInfo *ident = 796 OMD->getSelector().getIdentifierInfoForSlot(0); 797 if (ident->isStr("dealloc")) 798 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 799 } 800 } 801 802 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 803 LValue lvalue, QualType type); 804 805 /// Generate an Objective-C method. An Objective-C method is a C function with 806 /// its pointer, name, and types registered in the class structure. 807 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 808 StartObjCMethod(OMD, OMD->getClassInterface()); 809 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 810 assert(isa<CompoundStmt>(OMD->getBody())); 811 incrementProfileCounter(OMD->getBody()); 812 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 813 FinishFunction(OMD->getBodyRBrace()); 814 } 815 816 /// emitStructGetterCall - Call the runtime function to load a property 817 /// into the return value slot. 818 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 819 bool isAtomic, bool hasStrong) { 820 ASTContext &Context = CGF.getContext(); 821 822 llvm::Value *src = 823 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 824 .getPointer(CGF); 825 826 // objc_copyStruct (ReturnValue, &structIvar, 827 // sizeof (Type of Ivar), isAtomic, false); 828 CallArgList args; 829 830 llvm::Value *dest = CGF.ReturnValue.getPointer(); 831 args.add(RValue::get(dest), Context.VoidPtrTy); 832 args.add(RValue::get(src), Context.VoidPtrTy); 833 834 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 835 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 836 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 837 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 838 839 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 840 CGCallee callee = CGCallee::forDirect(fn); 841 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 842 callee, ReturnValueSlot(), args); 843 } 844 845 /// Determine whether the given architecture supports unaligned atomic 846 /// accesses. They don't have to be fast, just faster than a function 847 /// call and a mutex. 848 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 849 // FIXME: Allow unaligned atomic load/store on x86. (It is not 850 // currently supported by the backend.) 851 return false; 852 } 853 854 /// Return the maximum size that permits atomic accesses for the given 855 /// architecture. 856 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 857 llvm::Triple::ArchType arch) { 858 // ARM has 8-byte atomic accesses, but it's not clear whether we 859 // want to rely on them here. 860 861 // In the default case, just assume that any size up to a pointer is 862 // fine given adequate alignment. 863 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 864 } 865 866 namespace { 867 class PropertyImplStrategy { 868 public: 869 enum StrategyKind { 870 /// The 'native' strategy is to use the architecture's provided 871 /// reads and writes. 872 Native, 873 874 /// Use objc_setProperty and objc_getProperty. 875 GetSetProperty, 876 877 /// Use objc_setProperty for the setter, but use expression 878 /// evaluation for the getter. 879 SetPropertyAndExpressionGet, 880 881 /// Use objc_copyStruct. 882 CopyStruct, 883 884 /// The 'expression' strategy is to emit normal assignment or 885 /// lvalue-to-rvalue expressions. 886 Expression 887 }; 888 889 StrategyKind getKind() const { return StrategyKind(Kind); } 890 891 bool hasStrongMember() const { return HasStrong; } 892 bool isAtomic() const { return IsAtomic; } 893 bool isCopy() const { return IsCopy; } 894 895 CharUnits getIvarSize() const { return IvarSize; } 896 CharUnits getIvarAlignment() const { return IvarAlignment; } 897 898 PropertyImplStrategy(CodeGenModule &CGM, 899 const ObjCPropertyImplDecl *propImpl); 900 901 private: 902 unsigned Kind : 8; 903 unsigned IsAtomic : 1; 904 unsigned IsCopy : 1; 905 unsigned HasStrong : 1; 906 907 CharUnits IvarSize; 908 CharUnits IvarAlignment; 909 }; 910 } 911 912 /// Pick an implementation strategy for the given property synthesis. 913 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 914 const ObjCPropertyImplDecl *propImpl) { 915 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 916 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 917 918 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 919 IsAtomic = prop->isAtomic(); 920 HasStrong = false; // doesn't matter here. 921 922 // Evaluate the ivar's size and alignment. 923 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 924 QualType ivarType = ivar->getType(); 925 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType); 926 IvarSize = TInfo.Width; 927 IvarAlignment = TInfo.Align; 928 929 // If we have a copy property, we always have to use setProperty. 930 // If the property is atomic we need to use getProperty, but in 931 // the nonatomic case we can just use expression. 932 if (IsCopy) { 933 Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet; 934 return; 935 } 936 937 // Handle retain. 938 if (setterKind == ObjCPropertyDecl::Retain) { 939 // In GC-only, there's nothing special that needs to be done. 940 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 941 // fallthrough 942 943 // In ARC, if the property is non-atomic, use expression emission, 944 // which translates to objc_storeStrong. This isn't required, but 945 // it's slightly nicer. 946 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 947 // Using standard expression emission for the setter is only 948 // acceptable if the ivar is __strong, which won't be true if 949 // the property is annotated with __attribute__((NSObject)). 950 // TODO: falling all the way back to objc_setProperty here is 951 // just laziness, though; we could still use objc_storeStrong 952 // if we hacked it right. 953 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 954 Kind = Expression; 955 else 956 Kind = SetPropertyAndExpressionGet; 957 return; 958 959 // Otherwise, we need to at least use setProperty. However, if 960 // the property isn't atomic, we can use normal expression 961 // emission for the getter. 962 } else if (!IsAtomic) { 963 Kind = SetPropertyAndExpressionGet; 964 return; 965 966 // Otherwise, we have to use both setProperty and getProperty. 967 } else { 968 Kind = GetSetProperty; 969 return; 970 } 971 } 972 973 // If we're not atomic, just use expression accesses. 974 if (!IsAtomic) { 975 Kind = Expression; 976 return; 977 } 978 979 // Properties on bitfield ivars need to be emitted using expression 980 // accesses even if they're nominally atomic. 981 if (ivar->isBitField()) { 982 Kind = Expression; 983 return; 984 } 985 986 // GC-qualified or ARC-qualified ivars need to be emitted as 987 // expressions. This actually works out to being atomic anyway, 988 // except for ARC __strong, but that should trigger the above code. 989 if (ivarType.hasNonTrivialObjCLifetime() || 990 (CGM.getLangOpts().getGC() && 991 CGM.getContext().getObjCGCAttrKind(ivarType))) { 992 Kind = Expression; 993 return; 994 } 995 996 // Compute whether the ivar has strong members. 997 if (CGM.getLangOpts().getGC()) 998 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 999 HasStrong = recordType->getDecl()->hasObjectMember(); 1000 1001 // We can never access structs with object members with a native 1002 // access, because we need to use write barriers. This is what 1003 // objc_copyStruct is for. 1004 if (HasStrong) { 1005 Kind = CopyStruct; 1006 return; 1007 } 1008 1009 // Otherwise, this is target-dependent and based on the size and 1010 // alignment of the ivar. 1011 1012 // If the size of the ivar is not a power of two, give up. We don't 1013 // want to get into the business of doing compare-and-swaps. 1014 if (!IvarSize.isPowerOfTwo()) { 1015 Kind = CopyStruct; 1016 return; 1017 } 1018 1019 llvm::Triple::ArchType arch = 1020 CGM.getTarget().getTriple().getArch(); 1021 1022 // Most architectures require memory to fit within a single cache 1023 // line, so the alignment has to be at least the size of the access. 1024 // Otherwise we have to grab a lock. 1025 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 1026 Kind = CopyStruct; 1027 return; 1028 } 1029 1030 // If the ivar's size exceeds the architecture's maximum atomic 1031 // access size, we have to use CopyStruct. 1032 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 1033 Kind = CopyStruct; 1034 return; 1035 } 1036 1037 // Otherwise, we can use native loads and stores. 1038 Kind = Native; 1039 } 1040 1041 /// Generate an Objective-C property getter function. 1042 /// 1043 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1044 /// is illegal within a category. 1045 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 1046 const ObjCPropertyImplDecl *PID) { 1047 llvm::Constant *AtomicHelperFn = 1048 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 1049 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 1050 assert(OMD && "Invalid call to generate getter (empty method)"); 1051 StartObjCMethod(OMD, IMP->getClassInterface()); 1052 1053 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 1054 1055 FinishFunction(OMD->getEndLoc()); 1056 } 1057 1058 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 1059 const Expr *getter = propImpl->getGetterCXXConstructor(); 1060 if (!getter) return true; 1061 1062 // Sema only makes only of these when the ivar has a C++ class type, 1063 // so the form is pretty constrained. 1064 1065 // If the property has a reference type, we might just be binding a 1066 // reference, in which case the result will be a gl-value. We should 1067 // treat this as a non-trivial operation. 1068 if (getter->isGLValue()) 1069 return false; 1070 1071 // If we selected a trivial copy-constructor, we're okay. 1072 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 1073 return (construct->getConstructor()->isTrivial()); 1074 1075 // The constructor might require cleanups (in which case it's never 1076 // trivial). 1077 assert(isa<ExprWithCleanups>(getter)); 1078 return false; 1079 } 1080 1081 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1082 /// copy the ivar into the resturn slot. 1083 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1084 llvm::Value *returnAddr, 1085 ObjCIvarDecl *ivar, 1086 llvm::Constant *AtomicHelperFn) { 1087 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1088 // AtomicHelperFn); 1089 CallArgList args; 1090 1091 // The 1st argument is the return Slot. 1092 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1093 1094 // The 2nd argument is the address of the ivar. 1095 llvm::Value *ivarAddr = 1096 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1097 .getPointer(CGF); 1098 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1099 1100 // Third argument is the helper function. 1101 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1102 1103 llvm::FunctionCallee copyCppAtomicObjectFn = 1104 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1105 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1106 CGF.EmitCall( 1107 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1108 callee, ReturnValueSlot(), args); 1109 } 1110 1111 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for 1112 // the `_cmd` selector argument for getter/setter bodies. For direct methods, 1113 // this returns an undefined/poison value; this matches behavior prior to `_cmd` 1114 // being removed from the direct method ABI as the getter/setter caller would 1115 // never load one. For non-direct methods, this emits a load of the implicit 1116 // `_cmd` storage. 1117 static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF, 1118 ObjCMethodDecl *MD) { 1119 if (MD->isDirectMethod()) { 1120 // Direct methods do not have a `_cmd` argument. Emit an undefined/poison 1121 // value. This will be passed to objc_getProperty/objc_setProperty, which 1122 // has not appeared bothered by the `_cmd` argument being undefined before. 1123 llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType()); 1124 return llvm::PoisonValue::get(selType); 1125 } 1126 1127 return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd"); 1128 } 1129 1130 void 1131 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1132 const ObjCPropertyImplDecl *propImpl, 1133 const ObjCMethodDecl *GetterMethodDecl, 1134 llvm::Constant *AtomicHelperFn) { 1135 1136 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1137 1138 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 1139 if (!AtomicHelperFn) { 1140 LValue Src = 1141 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1142 LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType()); 1143 callCStructCopyConstructor(Dst, Src); 1144 } else { 1145 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1146 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), ivar, 1147 AtomicHelperFn); 1148 } 1149 return; 1150 } 1151 1152 // If there's a non-trivial 'get' expression, we just have to emit that. 1153 if (!hasTrivialGetExpr(propImpl)) { 1154 if (!AtomicHelperFn) { 1155 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1156 propImpl->getGetterCXXConstructor(), 1157 /* NRVOCandidate=*/nullptr); 1158 EmitReturnStmt(*ret); 1159 } 1160 else { 1161 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1162 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1163 ivar, AtomicHelperFn); 1164 } 1165 return; 1166 } 1167 1168 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1169 QualType propType = prop->getType(); 1170 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1171 1172 // Pick an implementation strategy. 1173 PropertyImplStrategy strategy(CGM, propImpl); 1174 switch (strategy.getKind()) { 1175 case PropertyImplStrategy::Native: { 1176 // We don't need to do anything for a zero-size struct. 1177 if (strategy.getIvarSize().isZero()) 1178 return; 1179 1180 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1181 1182 // Currently, all atomic accesses have to be through integer 1183 // types, so there's no point in trying to pick a prettier type. 1184 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1185 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1186 1187 // Perform an atomic load. This does not impose ordering constraints. 1188 Address ivarAddr = LV.getAddress(*this); 1189 ivarAddr = ivarAddr.withElementType(bitcastType); 1190 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1191 load->setAtomic(llvm::AtomicOrdering::Unordered); 1192 1193 // Store that value into the return address. Doing this with a 1194 // bitcast is likely to produce some pretty ugly IR, but it's not 1195 // the *most* terrible thing in the world. 1196 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1197 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1198 llvm::Value *ivarVal = load; 1199 if (ivarSize > retTySize) { 1200 bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1201 ivarVal = Builder.CreateTrunc(load, bitcastType); 1202 } 1203 Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType)); 1204 1205 // Make sure we don't do an autorelease. 1206 AutoreleaseResult = false; 1207 return; 1208 } 1209 1210 case PropertyImplStrategy::GetSetProperty: { 1211 llvm::FunctionCallee getPropertyFn = 1212 CGM.getObjCRuntime().GetPropertyGetFunction(); 1213 if (!getPropertyFn) { 1214 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1215 return; 1216 } 1217 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1218 1219 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1220 // FIXME: Can't this be simpler? This might even be worse than the 1221 // corresponding gcc code. 1222 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod); 1223 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1224 llvm::Value *ivarOffset = 1225 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar); 1226 1227 CallArgList args; 1228 args.add(RValue::get(self), getContext().getObjCIdType()); 1229 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1230 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1231 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1232 getContext().BoolTy); 1233 1234 // FIXME: We shouldn't need to get the function info here, the 1235 // runtime already should have computed it to build the function. 1236 llvm::CallBase *CallInstruction; 1237 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1238 getContext().getObjCIdType(), args), 1239 callee, ReturnValueSlot(), args, &CallInstruction); 1240 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1241 call->setTailCall(); 1242 1243 // We need to fix the type here. Ivars with copy & retain are 1244 // always objects so we don't need to worry about complex or 1245 // aggregates. 1246 RV = RValue::get(Builder.CreateBitCast( 1247 RV.getScalarVal(), 1248 getTypes().ConvertType(getterMethod->getReturnType()))); 1249 1250 EmitReturnOfRValue(RV, propType); 1251 1252 // objc_getProperty does an autorelease, so we should suppress ours. 1253 AutoreleaseResult = false; 1254 1255 return; 1256 } 1257 1258 case PropertyImplStrategy::CopyStruct: 1259 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1260 strategy.hasStrongMember()); 1261 return; 1262 1263 case PropertyImplStrategy::Expression: 1264 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1265 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1266 1267 QualType ivarType = ivar->getType(); 1268 switch (getEvaluationKind(ivarType)) { 1269 case TEK_Complex: { 1270 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1271 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1272 /*init*/ true); 1273 return; 1274 } 1275 case TEK_Aggregate: { 1276 // The return value slot is guaranteed to not be aliased, but 1277 // that's not necessarily the same as "on the stack", so 1278 // we still potentially need objc_memmove_collectable. 1279 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1280 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1281 return; 1282 } 1283 case TEK_Scalar: { 1284 llvm::Value *value; 1285 if (propType->isReferenceType()) { 1286 value = LV.getAddress(*this).getPointer(); 1287 } else { 1288 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1289 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1290 if (getLangOpts().ObjCAutoRefCount) { 1291 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1292 } else { 1293 value = EmitARCLoadWeak(LV.getAddress(*this)); 1294 } 1295 1296 // Otherwise we want to do a simple load, suppressing the 1297 // final autorelease. 1298 } else { 1299 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1300 AutoreleaseResult = false; 1301 } 1302 1303 value = Builder.CreateBitCast( 1304 value, ConvertType(GetterMethodDecl->getReturnType())); 1305 } 1306 1307 EmitReturnOfRValue(RValue::get(value), propType); 1308 return; 1309 } 1310 } 1311 llvm_unreachable("bad evaluation kind"); 1312 } 1313 1314 } 1315 llvm_unreachable("bad @property implementation strategy!"); 1316 } 1317 1318 /// emitStructSetterCall - Call the runtime function to store the value 1319 /// from the first formal parameter into the given ivar. 1320 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1321 ObjCIvarDecl *ivar) { 1322 // objc_copyStruct (&structIvar, &Arg, 1323 // sizeof (struct something), true, false); 1324 CallArgList args; 1325 1326 // The first argument is the address of the ivar. 1327 llvm::Value *ivarAddr = 1328 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1329 .getPointer(CGF); 1330 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1331 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1332 1333 // The second argument is the address of the parameter variable. 1334 ParmVarDecl *argVar = *OMD->param_begin(); 1335 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1336 argVar->getType().getNonReferenceType(), VK_LValue, 1337 SourceLocation()); 1338 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1339 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1340 1341 // The third argument is the sizeof the type. 1342 llvm::Value *size = 1343 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1344 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1345 1346 // The fourth argument is the 'isAtomic' flag. 1347 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1348 1349 // The fifth argument is the 'hasStrong' flag. 1350 // FIXME: should this really always be false? 1351 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1352 1353 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1354 CGCallee callee = CGCallee::forDirect(fn); 1355 CGF.EmitCall( 1356 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1357 callee, ReturnValueSlot(), args); 1358 } 1359 1360 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1361 /// the value from the first formal parameter into the given ivar, using 1362 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1363 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1364 ObjCMethodDecl *OMD, 1365 ObjCIvarDecl *ivar, 1366 llvm::Constant *AtomicHelperFn) { 1367 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1368 // AtomicHelperFn); 1369 CallArgList args; 1370 1371 // The first argument is the address of the ivar. 1372 llvm::Value *ivarAddr = 1373 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1374 .getPointer(CGF); 1375 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1376 1377 // The second argument is the address of the parameter variable. 1378 ParmVarDecl *argVar = *OMD->param_begin(); 1379 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1380 argVar->getType().getNonReferenceType(), VK_LValue, 1381 SourceLocation()); 1382 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1383 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1384 1385 // Third argument is the helper function. 1386 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1387 1388 llvm::FunctionCallee fn = 1389 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1390 CGCallee callee = CGCallee::forDirect(fn); 1391 CGF.EmitCall( 1392 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1393 callee, ReturnValueSlot(), args); 1394 } 1395 1396 1397 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1398 Expr *setter = PID->getSetterCXXAssignment(); 1399 if (!setter) return true; 1400 1401 // Sema only makes only of these when the ivar has a C++ class type, 1402 // so the form is pretty constrained. 1403 1404 // An operator call is trivial if the function it calls is trivial. 1405 // This also implies that there's nothing non-trivial going on with 1406 // the arguments, because operator= can only be trivial if it's a 1407 // synthesized assignment operator and therefore both parameters are 1408 // references. 1409 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1410 if (const FunctionDecl *callee 1411 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1412 if (callee->isTrivial()) 1413 return true; 1414 return false; 1415 } 1416 1417 assert(isa<ExprWithCleanups>(setter)); 1418 return false; 1419 } 1420 1421 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1422 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1423 return false; 1424 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1425 } 1426 1427 void 1428 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1429 const ObjCPropertyImplDecl *propImpl, 1430 llvm::Constant *AtomicHelperFn) { 1431 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1432 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1433 1434 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 1435 ParmVarDecl *PVD = *setterMethod->param_begin(); 1436 if (!AtomicHelperFn) { 1437 // Call the move assignment operator instead of calling the copy 1438 // assignment operator and destructor. 1439 LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 1440 /*quals*/ 0); 1441 LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType()); 1442 callCStructMoveAssignmentOperator(Dst, Src); 1443 } else { 1444 // If atomic, assignment is called via a locking api. 1445 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn); 1446 } 1447 // Decativate the destructor for the setter parameter. 1448 DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt); 1449 return; 1450 } 1451 1452 // Just use the setter expression if Sema gave us one and it's 1453 // non-trivial. 1454 if (!hasTrivialSetExpr(propImpl)) { 1455 if (!AtomicHelperFn) 1456 // If non-atomic, assignment is called directly. 1457 EmitStmt(propImpl->getSetterCXXAssignment()); 1458 else 1459 // If atomic, assignment is called via a locking api. 1460 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1461 AtomicHelperFn); 1462 return; 1463 } 1464 1465 PropertyImplStrategy strategy(CGM, propImpl); 1466 switch (strategy.getKind()) { 1467 case PropertyImplStrategy::Native: { 1468 // We don't need to do anything for a zero-size struct. 1469 if (strategy.getIvarSize().isZero()) 1470 return; 1471 1472 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1473 1474 LValue ivarLValue = 1475 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1476 Address ivarAddr = ivarLValue.getAddress(*this); 1477 1478 // Currently, all atomic accesses have to be through integer 1479 // types, so there's no point in trying to pick a prettier type. 1480 llvm::Type *castType = llvm::Type::getIntNTy( 1481 getLLVMContext(), getContext().toBits(strategy.getIvarSize())); 1482 1483 // Cast both arguments to the chosen operation type. 1484 argAddr = argAddr.withElementType(castType); 1485 ivarAddr = ivarAddr.withElementType(castType); 1486 1487 llvm::Value *load = Builder.CreateLoad(argAddr); 1488 1489 // Perform an atomic store. There are no memory ordering requirements. 1490 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1491 store->setAtomic(llvm::AtomicOrdering::Unordered); 1492 return; 1493 } 1494 1495 case PropertyImplStrategy::GetSetProperty: 1496 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1497 1498 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1499 llvm::FunctionCallee setPropertyFn = nullptr; 1500 if (UseOptimizedSetter(CGM)) { 1501 // 10.8 and iOS 6.0 code and GC is off 1502 setOptimizedPropertyFn = 1503 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1504 strategy.isAtomic(), strategy.isCopy()); 1505 if (!setOptimizedPropertyFn) { 1506 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1507 return; 1508 } 1509 } 1510 else { 1511 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1512 if (!setPropertyFn) { 1513 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1514 return; 1515 } 1516 } 1517 1518 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1519 // <is-atomic>, <is-copy>). 1520 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod); 1521 llvm::Value *self = 1522 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1523 llvm::Value *ivarOffset = 1524 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar); 1525 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1526 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1527 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1528 1529 CallArgList args; 1530 args.add(RValue::get(self), getContext().getObjCIdType()); 1531 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1532 if (setOptimizedPropertyFn) { 1533 args.add(RValue::get(arg), getContext().getObjCIdType()); 1534 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1535 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1536 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1537 callee, ReturnValueSlot(), args); 1538 } else { 1539 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1540 args.add(RValue::get(arg), getContext().getObjCIdType()); 1541 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1542 getContext().BoolTy); 1543 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1544 getContext().BoolTy); 1545 // FIXME: We shouldn't need to get the function info here, the runtime 1546 // already should have computed it to build the function. 1547 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1548 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1549 callee, ReturnValueSlot(), args); 1550 } 1551 1552 return; 1553 } 1554 1555 case PropertyImplStrategy::CopyStruct: 1556 emitStructSetterCall(*this, setterMethod, ivar); 1557 return; 1558 1559 case PropertyImplStrategy::Expression: 1560 break; 1561 } 1562 1563 // Otherwise, fake up some ASTs and emit a normal assignment. 1564 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1565 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1566 VK_LValue, SourceLocation()); 1567 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), 1568 CK_LValueToRValue, &self, VK_PRValue, 1569 FPOptionsOverride()); 1570 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1571 SourceLocation(), SourceLocation(), 1572 &selfLoad, true, true); 1573 1574 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1575 QualType argType = argDecl->getType().getNonReferenceType(); 1576 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1577 SourceLocation()); 1578 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1579 argType.getUnqualifiedType(), CK_LValueToRValue, 1580 &arg, VK_PRValue, FPOptionsOverride()); 1581 1582 // The property type can differ from the ivar type in some situations with 1583 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1584 // The following absurdity is just to ensure well-formed IR. 1585 CastKind argCK = CK_NoOp; 1586 if (ivarRef.getType()->isObjCObjectPointerType()) { 1587 if (argLoad.getType()->isObjCObjectPointerType()) 1588 argCK = CK_BitCast; 1589 else if (argLoad.getType()->isBlockPointerType()) 1590 argCK = CK_BlockPointerToObjCPointerCast; 1591 else 1592 argCK = CK_CPointerToObjCPointerCast; 1593 } else if (ivarRef.getType()->isBlockPointerType()) { 1594 if (argLoad.getType()->isBlockPointerType()) 1595 argCK = CK_BitCast; 1596 else 1597 argCK = CK_AnyPointerToBlockPointerCast; 1598 } else if (ivarRef.getType()->isPointerType()) { 1599 argCK = CK_BitCast; 1600 } else if (argLoad.getType()->isAtomicType() && 1601 !ivarRef.getType()->isAtomicType()) { 1602 argCK = CK_AtomicToNonAtomic; 1603 } else if (!argLoad.getType()->isAtomicType() && 1604 ivarRef.getType()->isAtomicType()) { 1605 argCK = CK_NonAtomicToAtomic; 1606 } 1607 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, 1608 &argLoad, VK_PRValue, FPOptionsOverride()); 1609 Expr *finalArg = &argLoad; 1610 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1611 argLoad.getType())) 1612 finalArg = &argCast; 1613 1614 BinaryOperator *assign = BinaryOperator::Create( 1615 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), 1616 VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1617 EmitStmt(assign); 1618 } 1619 1620 /// Generate an Objective-C property setter function. 1621 /// 1622 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1623 /// is illegal within a category. 1624 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1625 const ObjCPropertyImplDecl *PID) { 1626 llvm::Constant *AtomicHelperFn = 1627 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1628 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1629 assert(OMD && "Invalid call to generate setter (empty method)"); 1630 StartObjCMethod(OMD, IMP->getClassInterface()); 1631 1632 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1633 1634 FinishFunction(OMD->getEndLoc()); 1635 } 1636 1637 namespace { 1638 struct DestroyIvar final : EHScopeStack::Cleanup { 1639 private: 1640 llvm::Value *addr; 1641 const ObjCIvarDecl *ivar; 1642 CodeGenFunction::Destroyer *destroyer; 1643 bool useEHCleanupForArray; 1644 public: 1645 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1646 CodeGenFunction::Destroyer *destroyer, 1647 bool useEHCleanupForArray) 1648 : addr(addr), ivar(ivar), destroyer(destroyer), 1649 useEHCleanupForArray(useEHCleanupForArray) {} 1650 1651 void Emit(CodeGenFunction &CGF, Flags flags) override { 1652 LValue lvalue 1653 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1654 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1655 flags.isForNormalCleanup() && useEHCleanupForArray); 1656 } 1657 }; 1658 } 1659 1660 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1661 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1662 Address addr, 1663 QualType type) { 1664 llvm::Value *null = getNullForVariable(addr); 1665 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1666 } 1667 1668 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1669 ObjCImplementationDecl *impl) { 1670 CodeGenFunction::RunCleanupsScope scope(CGF); 1671 1672 llvm::Value *self = CGF.LoadObjCSelf(); 1673 1674 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1675 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1676 ivar; ivar = ivar->getNextIvar()) { 1677 QualType type = ivar->getType(); 1678 1679 // Check whether the ivar is a destructible type. 1680 QualType::DestructionKind dtorKind = type.isDestructedType(); 1681 if (!dtorKind) continue; 1682 1683 CodeGenFunction::Destroyer *destroyer = nullptr; 1684 1685 // Use a call to objc_storeStrong to destroy strong ivars, for the 1686 // general benefit of the tools. 1687 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1688 destroyer = destroyARCStrongWithStore; 1689 1690 // Otherwise use the default for the destruction kind. 1691 } else { 1692 destroyer = CGF.getDestroyer(dtorKind); 1693 } 1694 1695 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1696 1697 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1698 cleanupKind & EHCleanup); 1699 } 1700 1701 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1702 } 1703 1704 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1705 ObjCMethodDecl *MD, 1706 bool ctor) { 1707 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1708 StartObjCMethod(MD, IMP->getClassInterface()); 1709 1710 // Emit .cxx_construct. 1711 if (ctor) { 1712 // Suppress the final autorelease in ARC. 1713 AutoreleaseResult = false; 1714 1715 for (const auto *IvarInit : IMP->inits()) { 1716 FieldDecl *Field = IvarInit->getAnyMember(); 1717 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1718 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1719 LoadObjCSelf(), Ivar, 0); 1720 EmitAggExpr(IvarInit->getInit(), 1721 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1722 AggValueSlot::DoesNotNeedGCBarriers, 1723 AggValueSlot::IsNotAliased, 1724 AggValueSlot::DoesNotOverlap)); 1725 } 1726 // constructor returns 'self'. 1727 CodeGenTypes &Types = CGM.getTypes(); 1728 QualType IdTy(CGM.getContext().getObjCIdType()); 1729 llvm::Value *SelfAsId = 1730 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1731 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1732 1733 // Emit .cxx_destruct. 1734 } else { 1735 emitCXXDestructMethod(*this, IMP); 1736 } 1737 FinishFunction(); 1738 } 1739 1740 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1741 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1742 DeclRefExpr DRE(getContext(), Self, 1743 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1744 Self->getType(), VK_LValue, SourceLocation()); 1745 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1746 } 1747 1748 QualType CodeGenFunction::TypeOfSelfObject() { 1749 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1750 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1751 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1752 getContext().getCanonicalType(selfDecl->getType())); 1753 return PTy->getPointeeType(); 1754 } 1755 1756 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1757 llvm::FunctionCallee EnumerationMutationFnPtr = 1758 CGM.getObjCRuntime().EnumerationMutationFunction(); 1759 if (!EnumerationMutationFnPtr) { 1760 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1761 return; 1762 } 1763 CGCallee EnumerationMutationFn = 1764 CGCallee::forDirect(EnumerationMutationFnPtr); 1765 1766 CGDebugInfo *DI = getDebugInfo(); 1767 if (DI) 1768 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1769 1770 RunCleanupsScope ForScope(*this); 1771 1772 // The local variable comes into scope immediately. 1773 AutoVarEmission variable = AutoVarEmission::invalid(); 1774 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1775 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1776 1777 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1778 1779 // Fast enumeration state. 1780 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1781 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1782 EmitNullInitialization(StatePtr, StateTy); 1783 1784 // Number of elements in the items array. 1785 static const unsigned NumItems = 16; 1786 1787 // Fetch the countByEnumeratingWithState:objects:count: selector. 1788 IdentifierInfo *II[] = { 1789 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1790 &CGM.getContext().Idents.get("objects"), 1791 &CGM.getContext().Idents.get("count") 1792 }; 1793 Selector FastEnumSel = 1794 CGM.getContext().Selectors.getSelector(std::size(II), &II[0]); 1795 1796 QualType ItemsTy = getContext().getConstantArrayType( 1797 getContext().getObjCIdType(), llvm::APInt(32, NumItems), nullptr, 1798 ArraySizeModifier::Normal, 0); 1799 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1800 1801 // Emit the collection pointer. In ARC, we do a retain. 1802 llvm::Value *Collection; 1803 if (getLangOpts().ObjCAutoRefCount) { 1804 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1805 1806 // Enter a cleanup to do the release. 1807 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1808 } else { 1809 Collection = EmitScalarExpr(S.getCollection()); 1810 } 1811 1812 // The 'continue' label needs to appear within the cleanup for the 1813 // collection object. 1814 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1815 1816 // Send it our message: 1817 CallArgList Args; 1818 1819 // The first argument is a temporary of the enumeration-state type. 1820 Args.add(RValue::get(StatePtr.getPointer()), 1821 getContext().getPointerType(StateTy)); 1822 1823 // The second argument is a temporary array with space for NumItems 1824 // pointers. We'll actually be loading elements from the array 1825 // pointer written into the control state; this buffer is so that 1826 // collections that *aren't* backed by arrays can still queue up 1827 // batches of elements. 1828 Args.add(RValue::get(ItemsPtr.getPointer()), 1829 getContext().getPointerType(ItemsTy)); 1830 1831 // The third argument is the capacity of that temporary array. 1832 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1833 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1834 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1835 1836 // Start the enumeration. 1837 RValue CountRV = 1838 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1839 getContext().getNSUIntegerType(), 1840 FastEnumSel, Collection, Args); 1841 1842 // The initial number of objects that were returned in the buffer. 1843 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1844 1845 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1846 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1847 1848 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1849 1850 // If the limit pointer was zero to begin with, the collection is 1851 // empty; skip all this. Set the branch weight assuming this has the same 1852 // probability of exiting the loop as any other loop exit. 1853 uint64_t EntryCount = getCurrentProfileCount(); 1854 Builder.CreateCondBr( 1855 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1856 LoopInitBB, 1857 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1858 1859 // Otherwise, initialize the loop. 1860 EmitBlock(LoopInitBB); 1861 1862 // Save the initial mutations value. This is the value at an 1863 // address that was written into the state object by 1864 // countByEnumeratingWithState:objects:count:. 1865 Address StateMutationsPtrPtr = 1866 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1867 llvm::Value *StateMutationsPtr 1868 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1869 1870 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy); 1871 llvm::Value *initialMutations = 1872 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1873 getPointerAlign(), "forcoll.initial-mutations"); 1874 1875 // Start looping. This is the point we return to whenever we have a 1876 // fresh, non-empty batch of objects. 1877 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1878 EmitBlock(LoopBodyBB); 1879 1880 // The current index into the buffer. 1881 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1882 index->addIncoming(zero, LoopInitBB); 1883 1884 // The current buffer size. 1885 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1886 count->addIncoming(initialBufferLimit, LoopInitBB); 1887 1888 incrementProfileCounter(&S); 1889 1890 // Check whether the mutations value has changed from where it was 1891 // at start. StateMutationsPtr should actually be invariant between 1892 // refreshes. 1893 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1894 llvm::Value *currentMutations 1895 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1896 getPointerAlign(), "statemutations"); 1897 1898 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1899 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1900 1901 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1902 WasNotMutatedBB, WasMutatedBB); 1903 1904 // If so, call the enumeration-mutation function. 1905 EmitBlock(WasMutatedBB); 1906 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType()); 1907 llvm::Value *V = 1908 Builder.CreateBitCast(Collection, ObjCIdType); 1909 CallArgList Args2; 1910 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1911 // FIXME: We shouldn't need to get the function info here, the runtime already 1912 // should have computed it to build the function. 1913 EmitCall( 1914 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1915 EnumerationMutationFn, ReturnValueSlot(), Args2); 1916 1917 // Otherwise, or if the mutation function returns, just continue. 1918 EmitBlock(WasNotMutatedBB); 1919 1920 // Initialize the element variable. 1921 RunCleanupsScope elementVariableScope(*this); 1922 bool elementIsVariable; 1923 LValue elementLValue; 1924 QualType elementType; 1925 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1926 // Initialize the variable, in case it's a __block variable or something. 1927 EmitAutoVarInit(variable); 1928 1929 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1930 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1931 D->getType(), VK_LValue, SourceLocation()); 1932 elementLValue = EmitLValue(&tempDRE); 1933 elementType = D->getType(); 1934 elementIsVariable = true; 1935 1936 if (D->isARCPseudoStrong()) 1937 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1938 } else { 1939 elementLValue = LValue(); // suppress warning 1940 elementType = cast<Expr>(S.getElement())->getType(); 1941 elementIsVariable = false; 1942 } 1943 llvm::Type *convertedElementType = ConvertType(elementType); 1944 1945 // Fetch the buffer out of the enumeration state. 1946 // TODO: this pointer should actually be invariant between 1947 // refreshes, which would help us do certain loop optimizations. 1948 Address StateItemsPtr = 1949 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1950 llvm::Value *EnumStateItems = 1951 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1952 1953 // Fetch the value at the current index from the buffer. 1954 llvm::Value *CurrentItemPtr = Builder.CreateGEP( 1955 ObjCIdType, EnumStateItems, index, "currentitem.ptr"); 1956 llvm::Value *CurrentItem = 1957 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign()); 1958 1959 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1960 // Before using an item from the collection, check that the implicit cast 1961 // from id to the element type is valid. This is done with instrumentation 1962 // roughly corresponding to: 1963 // 1964 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1965 const ObjCObjectPointerType *ObjPtrTy = 1966 elementType->getAsObjCInterfacePointerType(); 1967 const ObjCInterfaceType *InterfaceTy = 1968 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1969 if (InterfaceTy) { 1970 SanitizerScope SanScope(this); 1971 auto &C = CGM.getContext(); 1972 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1973 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1974 CallArgList IsKindOfClassArgs; 1975 llvm::Value *Cls = 1976 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1977 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1978 llvm::Value *IsClass = 1979 CGM.getObjCRuntime() 1980 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1981 IsKindOfClassSel, CurrentItem, 1982 IsKindOfClassArgs) 1983 .getScalarVal(); 1984 llvm::Constant *StaticData[] = { 1985 EmitCheckSourceLocation(S.getBeginLoc()), 1986 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1987 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1988 SanitizerHandler::InvalidObjCCast, 1989 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 1990 } 1991 } 1992 1993 // Cast that value to the right type. 1994 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1995 "currentitem"); 1996 1997 // Make sure we have an l-value. Yes, this gets evaluated every 1998 // time through the loop. 1999 if (!elementIsVariable) { 2000 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2001 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 2002 } else { 2003 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 2004 /*isInit*/ true); 2005 } 2006 2007 // If we do have an element variable, this assignment is the end of 2008 // its initialization. 2009 if (elementIsVariable) 2010 EmitAutoVarCleanups(variable); 2011 2012 // Perform the loop body, setting up break and continue labels. 2013 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 2014 { 2015 RunCleanupsScope Scope(*this); 2016 EmitStmt(S.getBody()); 2017 } 2018 BreakContinueStack.pop_back(); 2019 2020 // Destroy the element variable now. 2021 elementVariableScope.ForceCleanup(); 2022 2023 // Check whether there are more elements. 2024 EmitBlock(AfterBody.getBlock()); 2025 2026 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 2027 2028 // First we check in the local buffer. 2029 llvm::Value *indexPlusOne = 2030 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 2031 2032 // If we haven't overrun the buffer yet, we can continue. 2033 // Set the branch weights based on the simplifying assumption that this is 2034 // like a while-loop, i.e., ignoring that the false branch fetches more 2035 // elements and then returns to the loop. 2036 Builder.CreateCondBr( 2037 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 2038 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 2039 2040 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 2041 count->addIncoming(count, AfterBody.getBlock()); 2042 2043 // Otherwise, we have to fetch more elements. 2044 EmitBlock(FetchMoreBB); 2045 2046 CountRV = 2047 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2048 getContext().getNSUIntegerType(), 2049 FastEnumSel, Collection, Args); 2050 2051 // If we got a zero count, we're done. 2052 llvm::Value *refetchCount = CountRV.getScalarVal(); 2053 2054 // (note that the message send might split FetchMoreBB) 2055 index->addIncoming(zero, Builder.GetInsertBlock()); 2056 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 2057 2058 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 2059 EmptyBB, LoopBodyBB); 2060 2061 // No more elements. 2062 EmitBlock(EmptyBB); 2063 2064 if (!elementIsVariable) { 2065 // If the element was not a declaration, set it to be null. 2066 2067 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 2068 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2069 EmitStoreThroughLValue(RValue::get(null), elementLValue); 2070 } 2071 2072 if (DI) 2073 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 2074 2075 ForScope.ForceCleanup(); 2076 EmitBlock(LoopEnd.getBlock()); 2077 } 2078 2079 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 2080 CGM.getObjCRuntime().EmitTryStmt(*this, S); 2081 } 2082 2083 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 2084 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 2085 } 2086 2087 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 2088 const ObjCAtSynchronizedStmt &S) { 2089 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 2090 } 2091 2092 namespace { 2093 struct CallObjCRelease final : EHScopeStack::Cleanup { 2094 CallObjCRelease(llvm::Value *object) : object(object) {} 2095 llvm::Value *object; 2096 2097 void Emit(CodeGenFunction &CGF, Flags flags) override { 2098 // Releases at the end of the full-expression are imprecise. 2099 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 2100 } 2101 }; 2102 } 2103 2104 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 2105 /// release at the end of the full-expression. 2106 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 2107 llvm::Value *object) { 2108 // If we're in a conditional branch, we need to make the cleanup 2109 // conditional. 2110 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 2111 return object; 2112 } 2113 2114 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 2115 llvm::Value *value) { 2116 return EmitARCRetainAutorelease(type, value); 2117 } 2118 2119 /// Given a number of pointers, inform the optimizer that they're 2120 /// being intrinsically used up until this point in the program. 2121 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2122 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2123 if (!fn) 2124 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2125 2126 // This isn't really a "runtime" function, but as an intrinsic it 2127 // doesn't really matter as long as we align things up. 2128 EmitNounwindRuntimeCall(fn, values); 2129 } 2130 2131 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call 2132 /// that has operand bundle "clang.arc.attachedcall". 2133 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) { 2134 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use; 2135 if (!fn) 2136 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use); 2137 EmitNounwindRuntimeCall(fn, values); 2138 } 2139 2140 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2141 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2142 // If the target runtime doesn't naturally support ARC, emit weak 2143 // references to the runtime support library. We don't really 2144 // permit this to fail, but we need a particular relocation style. 2145 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2146 !CGM.getTriple().isOSBinFormatCOFF()) { 2147 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2148 } 2149 } 2150 } 2151 2152 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2153 llvm::FunctionCallee RTF) { 2154 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2155 } 2156 2157 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID, 2158 CodeGenModule &CGM) { 2159 llvm::Function *fn = CGM.getIntrinsic(IntID); 2160 setARCRuntimeFunctionLinkage(CGM, fn); 2161 return fn; 2162 } 2163 2164 /// Perform an operation having the signature 2165 /// i8* (i8*) 2166 /// where a null input causes a no-op and returns null. 2167 static llvm::Value *emitARCValueOperation( 2168 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2169 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2170 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2171 if (isa<llvm::ConstantPointerNull>(value)) 2172 return value; 2173 2174 if (!fn) 2175 fn = getARCIntrinsic(IntID, CGF.CGM); 2176 2177 // Cast the argument to 'id'. 2178 llvm::Type *origType = returnType ? returnType : value->getType(); 2179 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2180 2181 // Call the function. 2182 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2183 call->setTailCallKind(tailKind); 2184 2185 // Cast the result back to the original type. 2186 return CGF.Builder.CreateBitCast(call, origType); 2187 } 2188 2189 /// Perform an operation having the following signature: 2190 /// i8* (i8**) 2191 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2192 llvm::Function *&fn, 2193 llvm::Intrinsic::ID IntID) { 2194 if (!fn) 2195 fn = getARCIntrinsic(IntID, CGF.CGM); 2196 2197 return CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2198 } 2199 2200 /// Perform an operation having the following signature: 2201 /// i8* (i8**, i8*) 2202 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2203 llvm::Value *value, 2204 llvm::Function *&fn, 2205 llvm::Intrinsic::ID IntID, 2206 bool ignored) { 2207 assert(addr.getElementType() == value->getType()); 2208 2209 if (!fn) 2210 fn = getARCIntrinsic(IntID, CGF.CGM); 2211 2212 llvm::Type *origType = value->getType(); 2213 2214 llvm::Value *args[] = { 2215 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2216 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2217 }; 2218 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2219 2220 if (ignored) return nullptr; 2221 2222 return CGF.Builder.CreateBitCast(result, origType); 2223 } 2224 2225 /// Perform an operation having the following signature: 2226 /// void (i8**, i8**) 2227 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2228 llvm::Function *&fn, 2229 llvm::Intrinsic::ID IntID) { 2230 assert(dst.getType() == src.getType()); 2231 2232 if (!fn) 2233 fn = getARCIntrinsic(IntID, CGF.CGM); 2234 2235 llvm::Value *args[] = { 2236 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2237 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2238 }; 2239 CGF.EmitNounwindRuntimeCall(fn, args); 2240 } 2241 2242 /// Perform an operation having the signature 2243 /// i8* (i8*) 2244 /// where a null input causes a no-op and returns null. 2245 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2246 llvm::Value *value, 2247 llvm::Type *returnType, 2248 llvm::FunctionCallee &fn, 2249 StringRef fnName) { 2250 if (isa<llvm::ConstantPointerNull>(value)) 2251 return value; 2252 2253 if (!fn) { 2254 llvm::FunctionType *fnType = 2255 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2256 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2257 2258 // We have Native ARC, so set nonlazybind attribute for performance 2259 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2260 if (fnName == "objc_retain") 2261 f->addFnAttr(llvm::Attribute::NonLazyBind); 2262 } 2263 2264 // Cast the argument to 'id'. 2265 llvm::Type *origType = returnType ? returnType : value->getType(); 2266 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2267 2268 // Call the function. 2269 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2270 2271 // Mark calls to objc_autorelease as tail on the assumption that methods 2272 // overriding autorelease do not touch anything on the stack. 2273 if (fnName == "objc_autorelease") 2274 if (auto *Call = dyn_cast<llvm::CallInst>(Inst)) 2275 Call->setTailCall(); 2276 2277 // Cast the result back to the original type. 2278 return CGF.Builder.CreateBitCast(Inst, origType); 2279 } 2280 2281 /// Produce the code to do a retain. Based on the type, calls one of: 2282 /// call i8* \@objc_retain(i8* %value) 2283 /// call i8* \@objc_retainBlock(i8* %value) 2284 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2285 if (type->isBlockPointerType()) 2286 return EmitARCRetainBlock(value, /*mandatory*/ false); 2287 else 2288 return EmitARCRetainNonBlock(value); 2289 } 2290 2291 /// Retain the given object, with normal retain semantics. 2292 /// call i8* \@objc_retain(i8* %value) 2293 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2294 return emitARCValueOperation(*this, value, nullptr, 2295 CGM.getObjCEntrypoints().objc_retain, 2296 llvm::Intrinsic::objc_retain); 2297 } 2298 2299 /// Retain the given block, with _Block_copy semantics. 2300 /// call i8* \@objc_retainBlock(i8* %value) 2301 /// 2302 /// \param mandatory - If false, emit the call with metadata 2303 /// indicating that it's okay for the optimizer to eliminate this call 2304 /// if it can prove that the block never escapes except down the stack. 2305 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2306 bool mandatory) { 2307 llvm::Value *result 2308 = emitARCValueOperation(*this, value, nullptr, 2309 CGM.getObjCEntrypoints().objc_retainBlock, 2310 llvm::Intrinsic::objc_retainBlock); 2311 2312 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2313 // tell the optimizer that it doesn't need to do this copy if the 2314 // block doesn't escape, where being passed as an argument doesn't 2315 // count as escaping. 2316 if (!mandatory && isa<llvm::Instruction>(result)) { 2317 llvm::CallInst *call 2318 = cast<llvm::CallInst>(result->stripPointerCasts()); 2319 assert(call->getCalledOperand() == 2320 CGM.getObjCEntrypoints().objc_retainBlock); 2321 2322 call->setMetadata("clang.arc.copy_on_escape", 2323 llvm::MDNode::get(Builder.getContext(), std::nullopt)); 2324 } 2325 2326 return result; 2327 } 2328 2329 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2330 // Fetch the void(void) inline asm which marks that we're going to 2331 // do something with the autoreleased return value. 2332 llvm::InlineAsm *&marker 2333 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2334 if (!marker) { 2335 StringRef assembly 2336 = CGF.CGM.getTargetCodeGenInfo() 2337 .getARCRetainAutoreleasedReturnValueMarker(); 2338 2339 // If we have an empty assembly string, there's nothing to do. 2340 if (assembly.empty()) { 2341 2342 // Otherwise, at -O0, build an inline asm that we're going to call 2343 // in a moment. 2344 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2345 llvm::FunctionType *type = 2346 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2347 2348 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2349 2350 // If we're at -O1 and above, we don't want to litter the code 2351 // with this marker yet, so leave a breadcrumb for the ARC 2352 // optimizer to pick up. 2353 } else { 2354 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr(); 2355 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) { 2356 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2357 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, 2358 retainRVMarkerKey, str); 2359 } 2360 } 2361 } 2362 2363 // Call the marker asm if we made one, which we do only at -O0. 2364 if (marker) 2365 CGF.Builder.CreateCall(marker, std::nullopt, 2366 CGF.getBundlesForFunclet(marker)); 2367 } 2368 2369 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value, 2370 bool IsRetainRV, 2371 CodeGenFunction &CGF) { 2372 emitAutoreleasedReturnValueMarker(CGF); 2373 2374 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting 2375 // retainRV or claimRV calls in the IR. We currently do this only when the 2376 // optimization level isn't -O0 since global-isel, which is currently run at 2377 // -O0, doesn't know about the operand bundle. 2378 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints(); 2379 llvm::Function *&EP = IsRetainRV 2380 ? EPs.objc_retainAutoreleasedReturnValue 2381 : EPs.objc_unsafeClaimAutoreleasedReturnValue; 2382 llvm::Intrinsic::ID IID = 2383 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue 2384 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue; 2385 EP = getARCIntrinsic(IID, CGF.CGM); 2386 2387 llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch(); 2388 2389 // FIXME: Do this on all targets and at -O0 too. This can be enabled only if 2390 // the target backend knows how to handle the operand bundle. 2391 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 && 2392 (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) { 2393 llvm::Value *bundleArgs[] = {EP}; 2394 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs); 2395 auto *oldCall = cast<llvm::CallBase>(value); 2396 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle( 2397 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall); 2398 newCall->copyMetadata(*oldCall); 2399 oldCall->replaceAllUsesWith(newCall); 2400 oldCall->eraseFromParent(); 2401 CGF.EmitARCNoopIntrinsicUse(newCall); 2402 return newCall; 2403 } 2404 2405 bool isNoTail = 2406 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail(); 2407 llvm::CallInst::TailCallKind tailKind = 2408 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None; 2409 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind); 2410 } 2411 2412 /// Retain the given object which is the result of a function call. 2413 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2414 /// 2415 /// Yes, this function name is one character away from a different 2416 /// call with completely different semantics. 2417 llvm::Value * 2418 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2419 return emitOptimizedARCReturnCall(value, true, *this); 2420 } 2421 2422 /// Claim a possibly-autoreleased return value at +0. This is only 2423 /// valid to do in contexts which do not rely on the retain to keep 2424 /// the object valid for all of its uses; for example, when 2425 /// the value is ignored, or when it is being assigned to an 2426 /// __unsafe_unretained variable. 2427 /// 2428 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2429 llvm::Value * 2430 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2431 return emitOptimizedARCReturnCall(value, false, *this); 2432 } 2433 2434 /// Release the given object. 2435 /// call void \@objc_release(i8* %value) 2436 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2437 ARCPreciseLifetime_t precise) { 2438 if (isa<llvm::ConstantPointerNull>(value)) return; 2439 2440 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2441 if (!fn) 2442 fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM); 2443 2444 // Cast the argument to 'id'. 2445 value = Builder.CreateBitCast(value, Int8PtrTy); 2446 2447 // Call objc_release. 2448 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2449 2450 if (precise == ARCImpreciseLifetime) { 2451 call->setMetadata("clang.imprecise_release", 2452 llvm::MDNode::get(Builder.getContext(), std::nullopt)); 2453 } 2454 } 2455 2456 /// Destroy a __strong variable. 2457 /// 2458 /// At -O0, emit a call to store 'null' into the address; 2459 /// instrumenting tools prefer this because the address is exposed, 2460 /// but it's relatively cumbersome to optimize. 2461 /// 2462 /// At -O1 and above, just load and call objc_release. 2463 /// 2464 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2465 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2466 ARCPreciseLifetime_t precise) { 2467 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2468 llvm::Value *null = getNullForVariable(addr); 2469 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2470 return; 2471 } 2472 2473 llvm::Value *value = Builder.CreateLoad(addr); 2474 EmitARCRelease(value, precise); 2475 } 2476 2477 /// Store into a strong object. Always calls this: 2478 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2479 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2480 llvm::Value *value, 2481 bool ignored) { 2482 assert(addr.getElementType() == value->getType()); 2483 2484 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2485 if (!fn) 2486 fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM); 2487 2488 llvm::Value *args[] = { 2489 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2490 Builder.CreateBitCast(value, Int8PtrTy) 2491 }; 2492 EmitNounwindRuntimeCall(fn, args); 2493 2494 if (ignored) return nullptr; 2495 return value; 2496 } 2497 2498 /// Store into a strong object. Sometimes calls this: 2499 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2500 /// Other times, breaks it down into components. 2501 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2502 llvm::Value *newValue, 2503 bool ignored) { 2504 QualType type = dst.getType(); 2505 bool isBlock = type->isBlockPointerType(); 2506 2507 // Use a store barrier at -O0 unless this is a block type or the 2508 // lvalue is inadequately aligned. 2509 if (shouldUseFusedARCCalls() && 2510 !isBlock && 2511 (dst.getAlignment().isZero() || 2512 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2513 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2514 } 2515 2516 // Otherwise, split it out. 2517 2518 // Retain the new value. 2519 newValue = EmitARCRetain(type, newValue); 2520 2521 // Read the old value. 2522 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2523 2524 // Store. We do this before the release so that any deallocs won't 2525 // see the old value. 2526 EmitStoreOfScalar(newValue, dst); 2527 2528 // Finally, release the old value. 2529 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2530 2531 return newValue; 2532 } 2533 2534 /// Autorelease the given object. 2535 /// call i8* \@objc_autorelease(i8* %value) 2536 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2537 return emitARCValueOperation(*this, value, nullptr, 2538 CGM.getObjCEntrypoints().objc_autorelease, 2539 llvm::Intrinsic::objc_autorelease); 2540 } 2541 2542 /// Autorelease the given object. 2543 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2544 llvm::Value * 2545 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2546 return emitARCValueOperation(*this, value, nullptr, 2547 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2548 llvm::Intrinsic::objc_autoreleaseReturnValue, 2549 llvm::CallInst::TCK_Tail); 2550 } 2551 2552 /// Do a fused retain/autorelease of the given object. 2553 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2554 llvm::Value * 2555 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2556 return emitARCValueOperation(*this, value, nullptr, 2557 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2558 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2559 llvm::CallInst::TCK_Tail); 2560 } 2561 2562 /// Do a fused retain/autorelease of the given object. 2563 /// call i8* \@objc_retainAutorelease(i8* %value) 2564 /// or 2565 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2566 /// call i8* \@objc_autorelease(i8* %retain) 2567 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2568 llvm::Value *value) { 2569 if (!type->isBlockPointerType()) 2570 return EmitARCRetainAutoreleaseNonBlock(value); 2571 2572 if (isa<llvm::ConstantPointerNull>(value)) return value; 2573 2574 llvm::Type *origType = value->getType(); 2575 value = Builder.CreateBitCast(value, Int8PtrTy); 2576 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2577 value = EmitARCAutorelease(value); 2578 return Builder.CreateBitCast(value, origType); 2579 } 2580 2581 /// Do a fused retain/autorelease of the given object. 2582 /// call i8* \@objc_retainAutorelease(i8* %value) 2583 llvm::Value * 2584 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2585 return emitARCValueOperation(*this, value, nullptr, 2586 CGM.getObjCEntrypoints().objc_retainAutorelease, 2587 llvm::Intrinsic::objc_retainAutorelease); 2588 } 2589 2590 /// i8* \@objc_loadWeak(i8** %addr) 2591 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2592 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2593 return emitARCLoadOperation(*this, addr, 2594 CGM.getObjCEntrypoints().objc_loadWeak, 2595 llvm::Intrinsic::objc_loadWeak); 2596 } 2597 2598 /// i8* \@objc_loadWeakRetained(i8** %addr) 2599 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2600 return emitARCLoadOperation(*this, addr, 2601 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2602 llvm::Intrinsic::objc_loadWeakRetained); 2603 } 2604 2605 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2606 /// Returns %value. 2607 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2608 llvm::Value *value, 2609 bool ignored) { 2610 return emitARCStoreOperation(*this, addr, value, 2611 CGM.getObjCEntrypoints().objc_storeWeak, 2612 llvm::Intrinsic::objc_storeWeak, ignored); 2613 } 2614 2615 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2616 /// Returns %value. %addr is known to not have a current weak entry. 2617 /// Essentially equivalent to: 2618 /// *addr = nil; objc_storeWeak(addr, value); 2619 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2620 // If we're initializing to null, just write null to memory; no need 2621 // to get the runtime involved. But don't do this if optimization 2622 // is enabled, because accounting for this would make the optimizer 2623 // much more complicated. 2624 if (isa<llvm::ConstantPointerNull>(value) && 2625 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2626 Builder.CreateStore(value, addr); 2627 return; 2628 } 2629 2630 emitARCStoreOperation(*this, addr, value, 2631 CGM.getObjCEntrypoints().objc_initWeak, 2632 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2633 } 2634 2635 /// void \@objc_destroyWeak(i8** %addr) 2636 /// Essentially objc_storeWeak(addr, nil). 2637 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2638 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2639 if (!fn) 2640 fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM); 2641 2642 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2643 } 2644 2645 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2646 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2647 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2648 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2649 emitARCCopyOperation(*this, dst, src, 2650 CGM.getObjCEntrypoints().objc_moveWeak, 2651 llvm::Intrinsic::objc_moveWeak); 2652 } 2653 2654 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2655 /// Disregards the current value in %dest. Essentially 2656 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2657 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2658 emitARCCopyOperation(*this, dst, src, 2659 CGM.getObjCEntrypoints().objc_copyWeak, 2660 llvm::Intrinsic::objc_copyWeak); 2661 } 2662 2663 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2664 Address SrcAddr) { 2665 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2666 Object = EmitObjCConsumeObject(Ty, Object); 2667 EmitARCStoreWeak(DstAddr, Object, false); 2668 } 2669 2670 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2671 Address SrcAddr) { 2672 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2673 Object = EmitObjCConsumeObject(Ty, Object); 2674 EmitARCStoreWeak(DstAddr, Object, false); 2675 EmitARCDestroyWeak(SrcAddr); 2676 } 2677 2678 /// Produce the code to do a objc_autoreleasepool_push. 2679 /// call i8* \@objc_autoreleasePoolPush(void) 2680 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2681 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2682 if (!fn) 2683 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM); 2684 2685 return EmitNounwindRuntimeCall(fn); 2686 } 2687 2688 /// Produce the code to do a primitive release. 2689 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2690 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2691 assert(value->getType() == Int8PtrTy); 2692 2693 if (getInvokeDest()) { 2694 // Call the runtime method not the intrinsic if we are handling exceptions 2695 llvm::FunctionCallee &fn = 2696 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2697 if (!fn) { 2698 llvm::FunctionType *fnType = 2699 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2700 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2701 setARCRuntimeFunctionLinkage(CGM, fn); 2702 } 2703 2704 // objc_autoreleasePoolPop can throw. 2705 EmitRuntimeCallOrInvoke(fn, value); 2706 } else { 2707 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2708 if (!fn) 2709 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM); 2710 2711 EmitRuntimeCall(fn, value); 2712 } 2713 } 2714 2715 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2716 /// Which is: [[NSAutoreleasePool alloc] init]; 2717 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2718 /// init is declared as: - (id) init; in its NSObject super class. 2719 /// 2720 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2721 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2722 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2723 // [NSAutoreleasePool alloc] 2724 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2725 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2726 CallArgList Args; 2727 RValue AllocRV = 2728 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2729 getContext().getObjCIdType(), 2730 AllocSel, Receiver, Args); 2731 2732 // [Receiver init] 2733 Receiver = AllocRV.getScalarVal(); 2734 II = &CGM.getContext().Idents.get("init"); 2735 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2736 RValue InitRV = 2737 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2738 getContext().getObjCIdType(), 2739 InitSel, Receiver, Args); 2740 return InitRV.getScalarVal(); 2741 } 2742 2743 /// Allocate the given objc object. 2744 /// call i8* \@objc_alloc(i8* %value) 2745 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2746 llvm::Type *resultType) { 2747 return emitObjCValueOperation(*this, value, resultType, 2748 CGM.getObjCEntrypoints().objc_alloc, 2749 "objc_alloc"); 2750 } 2751 2752 /// Allocate the given objc object. 2753 /// call i8* \@objc_allocWithZone(i8* %value) 2754 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2755 llvm::Type *resultType) { 2756 return emitObjCValueOperation(*this, value, resultType, 2757 CGM.getObjCEntrypoints().objc_allocWithZone, 2758 "objc_allocWithZone"); 2759 } 2760 2761 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2762 llvm::Type *resultType) { 2763 return emitObjCValueOperation(*this, value, resultType, 2764 CGM.getObjCEntrypoints().objc_alloc_init, 2765 "objc_alloc_init"); 2766 } 2767 2768 /// Produce the code to do a primitive release. 2769 /// [tmp drain]; 2770 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2771 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2772 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2773 CallArgList Args; 2774 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2775 getContext().VoidTy, DrainSel, Arg, Args); 2776 } 2777 2778 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2779 Address addr, 2780 QualType type) { 2781 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2782 } 2783 2784 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2785 Address addr, 2786 QualType type) { 2787 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2788 } 2789 2790 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2791 Address addr, 2792 QualType type) { 2793 CGF.EmitARCDestroyWeak(addr); 2794 } 2795 2796 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2797 QualType type) { 2798 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2799 CGF.EmitARCIntrinsicUse(value); 2800 } 2801 2802 /// Autorelease the given object. 2803 /// call i8* \@objc_autorelease(i8* %value) 2804 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2805 llvm::Type *returnType) { 2806 return emitObjCValueOperation( 2807 *this, value, returnType, 2808 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2809 "objc_autorelease"); 2810 } 2811 2812 /// Retain the given object, with normal retain semantics. 2813 /// call i8* \@objc_retain(i8* %value) 2814 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2815 llvm::Type *returnType) { 2816 return emitObjCValueOperation( 2817 *this, value, returnType, 2818 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2819 } 2820 2821 /// Release the given object. 2822 /// call void \@objc_release(i8* %value) 2823 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2824 ARCPreciseLifetime_t precise) { 2825 if (isa<llvm::ConstantPointerNull>(value)) return; 2826 2827 llvm::FunctionCallee &fn = 2828 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2829 if (!fn) { 2830 llvm::FunctionType *fnType = 2831 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2832 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2833 setARCRuntimeFunctionLinkage(CGM, fn); 2834 // We have Native ARC, so set nonlazybind attribute for performance 2835 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2836 f->addFnAttr(llvm::Attribute::NonLazyBind); 2837 } 2838 2839 // Cast the argument to 'id'. 2840 value = Builder.CreateBitCast(value, Int8PtrTy); 2841 2842 // Call objc_release. 2843 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2844 2845 if (precise == ARCImpreciseLifetime) { 2846 call->setMetadata("clang.imprecise_release", 2847 llvm::MDNode::get(Builder.getContext(), std::nullopt)); 2848 } 2849 } 2850 2851 namespace { 2852 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2853 llvm::Value *Token; 2854 2855 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2856 2857 void Emit(CodeGenFunction &CGF, Flags flags) override { 2858 CGF.EmitObjCAutoreleasePoolPop(Token); 2859 } 2860 }; 2861 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2862 llvm::Value *Token; 2863 2864 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2865 2866 void Emit(CodeGenFunction &CGF, Flags flags) override { 2867 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2868 } 2869 }; 2870 } 2871 2872 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2873 if (CGM.getLangOpts().ObjCAutoRefCount) 2874 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2875 else 2876 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2877 } 2878 2879 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2880 switch (lifetime) { 2881 case Qualifiers::OCL_None: 2882 case Qualifiers::OCL_ExplicitNone: 2883 case Qualifiers::OCL_Strong: 2884 case Qualifiers::OCL_Autoreleasing: 2885 return true; 2886 2887 case Qualifiers::OCL_Weak: 2888 return false; 2889 } 2890 2891 llvm_unreachable("impossible lifetime!"); 2892 } 2893 2894 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2895 LValue lvalue, 2896 QualType type) { 2897 llvm::Value *result; 2898 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2899 if (shouldRetain) { 2900 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2901 } else { 2902 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2903 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2904 } 2905 return TryEmitResult(result, !shouldRetain); 2906 } 2907 2908 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2909 const Expr *e) { 2910 e = e->IgnoreParens(); 2911 QualType type = e->getType(); 2912 2913 // If we're loading retained from a __strong xvalue, we can avoid 2914 // an extra retain/release pair by zeroing out the source of this 2915 // "move" operation. 2916 if (e->isXValue() && 2917 !type.isConstQualified() && 2918 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2919 // Emit the lvalue. 2920 LValue lv = CGF.EmitLValue(e); 2921 2922 // Load the object pointer. 2923 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2924 SourceLocation()).getScalarVal(); 2925 2926 // Set the source pointer to NULL. 2927 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2928 2929 return TryEmitResult(result, true); 2930 } 2931 2932 // As a very special optimization, in ARC++, if the l-value is the 2933 // result of a non-volatile assignment, do a simple retain of the 2934 // result of the call to objc_storeWeak instead of reloading. 2935 if (CGF.getLangOpts().CPlusPlus && 2936 !type.isVolatileQualified() && 2937 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2938 isa<BinaryOperator>(e) && 2939 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2940 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2941 2942 // Try to emit code for scalar constant instead of emitting LValue and 2943 // loading it because we are not guaranteed to have an l-value. One of such 2944 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2945 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2946 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2947 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2948 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2949 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2950 } 2951 2952 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2953 } 2954 2955 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2956 llvm::Value *value)> 2957 ValueTransform; 2958 2959 /// Insert code immediately after a call. 2960 2961 // FIXME: We should find a way to emit the runtime call immediately 2962 // after the call is emitted to eliminate the need for this function. 2963 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2964 llvm::Value *value, 2965 ValueTransform doAfterCall, 2966 ValueTransform doFallback) { 2967 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2968 auto *callBase = dyn_cast<llvm::CallBase>(value); 2969 2970 if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) { 2971 // Fall back if the call base has operand bundle "clang.arc.attachedcall". 2972 value = doFallback(CGF, value); 2973 } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2974 // Place the retain immediately following the call. 2975 CGF.Builder.SetInsertPoint(call->getParent(), 2976 ++llvm::BasicBlock::iterator(call)); 2977 value = doAfterCall(CGF, value); 2978 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2979 // Place the retain at the beginning of the normal destination block. 2980 llvm::BasicBlock *BB = invoke->getNormalDest(); 2981 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2982 value = doAfterCall(CGF, value); 2983 2984 // Bitcasts can arise because of related-result returns. Rewrite 2985 // the operand. 2986 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2987 // Change the insert point to avoid emitting the fall-back call after the 2988 // bitcast. 2989 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator()); 2990 llvm::Value *operand = bitcast->getOperand(0); 2991 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2992 bitcast->setOperand(0, operand); 2993 value = bitcast; 2994 } else { 2995 auto *phi = dyn_cast<llvm::PHINode>(value); 2996 if (phi && phi->getNumIncomingValues() == 2 && 2997 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) && 2998 isa<llvm::CallBase>(phi->getIncomingValue(0))) { 2999 // Handle phi instructions that are generated when it's necessary to check 3000 // whether the receiver of a message is null. 3001 llvm::Value *inVal = phi->getIncomingValue(0); 3002 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback); 3003 phi->setIncomingValue(0, inVal); 3004 value = phi; 3005 } else { 3006 // Generic fall-back case. 3007 // Retain using the non-block variant: we never need to do a copy 3008 // of a block that's been returned to us. 3009 value = doFallback(CGF, value); 3010 } 3011 } 3012 3013 CGF.Builder.restoreIP(ip); 3014 return value; 3015 } 3016 3017 /// Given that the given expression is some sort of call (which does 3018 /// not return retained), emit a retain following it. 3019 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 3020 const Expr *e) { 3021 llvm::Value *value = CGF.EmitScalarExpr(e); 3022 return emitARCOperationAfterCall(CGF, value, 3023 [](CodeGenFunction &CGF, llvm::Value *value) { 3024 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 3025 }, 3026 [](CodeGenFunction &CGF, llvm::Value *value) { 3027 return CGF.EmitARCRetainNonBlock(value); 3028 }); 3029 } 3030 3031 /// Given that the given expression is some sort of call (which does 3032 /// not return retained), perform an unsafeClaim following it. 3033 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 3034 const Expr *e) { 3035 llvm::Value *value = CGF.EmitScalarExpr(e); 3036 return emitARCOperationAfterCall(CGF, value, 3037 [](CodeGenFunction &CGF, llvm::Value *value) { 3038 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 3039 }, 3040 [](CodeGenFunction &CGF, llvm::Value *value) { 3041 return value; 3042 }); 3043 } 3044 3045 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 3046 bool allowUnsafeClaim) { 3047 if (allowUnsafeClaim && 3048 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 3049 return emitARCUnsafeClaimCallResult(*this, E); 3050 } else { 3051 llvm::Value *value = emitARCRetainCallResult(*this, E); 3052 return EmitObjCConsumeObject(E->getType(), value); 3053 } 3054 } 3055 3056 /// Determine whether it might be important to emit a separate 3057 /// objc_retain_block on the result of the given expression, or 3058 /// whether it's okay to just emit it in a +1 context. 3059 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 3060 assert(e->getType()->isBlockPointerType()); 3061 e = e->IgnoreParens(); 3062 3063 // For future goodness, emit block expressions directly in +1 3064 // contexts if we can. 3065 if (isa<BlockExpr>(e)) 3066 return false; 3067 3068 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 3069 switch (cast->getCastKind()) { 3070 // Emitting these operations in +1 contexts is goodness. 3071 case CK_LValueToRValue: 3072 case CK_ARCReclaimReturnedObject: 3073 case CK_ARCConsumeObject: 3074 case CK_ARCProduceObject: 3075 return false; 3076 3077 // These operations preserve a block type. 3078 case CK_NoOp: 3079 case CK_BitCast: 3080 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 3081 3082 // These operations are known to be bad (or haven't been considered). 3083 case CK_AnyPointerToBlockPointerCast: 3084 default: 3085 return true; 3086 } 3087 } 3088 3089 return true; 3090 } 3091 3092 namespace { 3093 /// A CRTP base class for emitting expressions of retainable object 3094 /// pointer type in ARC. 3095 template <typename Impl, typename Result> class ARCExprEmitter { 3096 protected: 3097 CodeGenFunction &CGF; 3098 Impl &asImpl() { return *static_cast<Impl*>(this); } 3099 3100 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 3101 3102 public: 3103 Result visit(const Expr *e); 3104 Result visitCastExpr(const CastExpr *e); 3105 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 3106 Result visitBlockExpr(const BlockExpr *e); 3107 Result visitBinaryOperator(const BinaryOperator *e); 3108 Result visitBinAssign(const BinaryOperator *e); 3109 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 3110 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 3111 Result visitBinAssignWeak(const BinaryOperator *e); 3112 Result visitBinAssignStrong(const BinaryOperator *e); 3113 3114 // Minimal implementation: 3115 // Result visitLValueToRValue(const Expr *e) 3116 // Result visitConsumeObject(const Expr *e) 3117 // Result visitExtendBlockObject(const Expr *e) 3118 // Result visitReclaimReturnedObject(const Expr *e) 3119 // Result visitCall(const Expr *e) 3120 // Result visitExpr(const Expr *e) 3121 // 3122 // Result emitBitCast(Result result, llvm::Type *resultType) 3123 // llvm::Value *getValueOfResult(Result result) 3124 }; 3125 } 3126 3127 /// Try to emit a PseudoObjectExpr under special ARC rules. 3128 /// 3129 /// This massively duplicates emitPseudoObjectRValue. 3130 template <typename Impl, typename Result> 3131 Result 3132 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 3133 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3134 3135 // Find the result expression. 3136 const Expr *resultExpr = E->getResultExpr(); 3137 assert(resultExpr); 3138 Result result; 3139 3140 for (PseudoObjectExpr::const_semantics_iterator 3141 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3142 const Expr *semantic = *i; 3143 3144 // If this semantic expression is an opaque value, bind it 3145 // to the result of its source expression. 3146 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3147 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3148 OVMA opaqueData; 3149 3150 // If this semantic is the result of the pseudo-object 3151 // expression, try to evaluate the source as +1. 3152 if (ov == resultExpr) { 3153 assert(!OVMA::shouldBindAsLValue(ov)); 3154 result = asImpl().visit(ov->getSourceExpr()); 3155 opaqueData = OVMA::bind(CGF, ov, 3156 RValue::get(asImpl().getValueOfResult(result))); 3157 3158 // Otherwise, just bind it. 3159 } else { 3160 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3161 } 3162 opaques.push_back(opaqueData); 3163 3164 // Otherwise, if the expression is the result, evaluate it 3165 // and remember the result. 3166 } else if (semantic == resultExpr) { 3167 result = asImpl().visit(semantic); 3168 3169 // Otherwise, evaluate the expression in an ignored context. 3170 } else { 3171 CGF.EmitIgnoredExpr(semantic); 3172 } 3173 } 3174 3175 // Unbind all the opaques now. 3176 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3177 opaques[i].unbind(CGF); 3178 3179 return result; 3180 } 3181 3182 template <typename Impl, typename Result> 3183 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3184 // The default implementation just forwards the expression to visitExpr. 3185 return asImpl().visitExpr(e); 3186 } 3187 3188 template <typename Impl, typename Result> 3189 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3190 switch (e->getCastKind()) { 3191 3192 // No-op casts don't change the type, so we just ignore them. 3193 case CK_NoOp: 3194 return asImpl().visit(e->getSubExpr()); 3195 3196 // These casts can change the type. 3197 case CK_CPointerToObjCPointerCast: 3198 case CK_BlockPointerToObjCPointerCast: 3199 case CK_AnyPointerToBlockPointerCast: 3200 case CK_BitCast: { 3201 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3202 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3203 Result result = asImpl().visit(e->getSubExpr()); 3204 return asImpl().emitBitCast(result, resultType); 3205 } 3206 3207 // Handle some casts specially. 3208 case CK_LValueToRValue: 3209 return asImpl().visitLValueToRValue(e->getSubExpr()); 3210 case CK_ARCConsumeObject: 3211 return asImpl().visitConsumeObject(e->getSubExpr()); 3212 case CK_ARCExtendBlockObject: 3213 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3214 case CK_ARCReclaimReturnedObject: 3215 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3216 3217 // Otherwise, use the default logic. 3218 default: 3219 return asImpl().visitExpr(e); 3220 } 3221 } 3222 3223 template <typename Impl, typename Result> 3224 Result 3225 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3226 switch (e->getOpcode()) { 3227 case BO_Comma: 3228 CGF.EmitIgnoredExpr(e->getLHS()); 3229 CGF.EnsureInsertPoint(); 3230 return asImpl().visit(e->getRHS()); 3231 3232 case BO_Assign: 3233 return asImpl().visitBinAssign(e); 3234 3235 default: 3236 return asImpl().visitExpr(e); 3237 } 3238 } 3239 3240 template <typename Impl, typename Result> 3241 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3242 switch (e->getLHS()->getType().getObjCLifetime()) { 3243 case Qualifiers::OCL_ExplicitNone: 3244 return asImpl().visitBinAssignUnsafeUnretained(e); 3245 3246 case Qualifiers::OCL_Weak: 3247 return asImpl().visitBinAssignWeak(e); 3248 3249 case Qualifiers::OCL_Autoreleasing: 3250 return asImpl().visitBinAssignAutoreleasing(e); 3251 3252 case Qualifiers::OCL_Strong: 3253 return asImpl().visitBinAssignStrong(e); 3254 3255 case Qualifiers::OCL_None: 3256 return asImpl().visitExpr(e); 3257 } 3258 llvm_unreachable("bad ObjC ownership qualifier"); 3259 } 3260 3261 /// The default rule for __unsafe_unretained emits the RHS recursively, 3262 /// stores into the unsafe variable, and propagates the result outward. 3263 template <typename Impl, typename Result> 3264 Result ARCExprEmitter<Impl,Result>:: 3265 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3266 // Recursively emit the RHS. 3267 // For __block safety, do this before emitting the LHS. 3268 Result result = asImpl().visit(e->getRHS()); 3269 3270 // Perform the store. 3271 LValue lvalue = 3272 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3273 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3274 lvalue); 3275 3276 return result; 3277 } 3278 3279 template <typename Impl, typename Result> 3280 Result 3281 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3282 return asImpl().visitExpr(e); 3283 } 3284 3285 template <typename Impl, typename Result> 3286 Result 3287 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3288 return asImpl().visitExpr(e); 3289 } 3290 3291 template <typename Impl, typename Result> 3292 Result 3293 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3294 return asImpl().visitExpr(e); 3295 } 3296 3297 /// The general expression-emission logic. 3298 template <typename Impl, typename Result> 3299 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3300 // We should *never* see a nested full-expression here, because if 3301 // we fail to emit at +1, our caller must not retain after we close 3302 // out the full-expression. This isn't as important in the unsafe 3303 // emitter. 3304 assert(!isa<ExprWithCleanups>(e)); 3305 3306 // Look through parens, __extension__, generic selection, etc. 3307 e = e->IgnoreParens(); 3308 3309 // Handle certain kinds of casts. 3310 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3311 return asImpl().visitCastExpr(ce); 3312 3313 // Handle the comma operator. 3314 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3315 return asImpl().visitBinaryOperator(op); 3316 3317 // TODO: handle conditional operators here 3318 3319 // For calls and message sends, use the retained-call logic. 3320 // Delegate inits are a special case in that they're the only 3321 // returns-retained expression that *isn't* surrounded by 3322 // a consume. 3323 } else if (isa<CallExpr>(e) || 3324 (isa<ObjCMessageExpr>(e) && 3325 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3326 return asImpl().visitCall(e); 3327 3328 // Look through pseudo-object expressions. 3329 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3330 return asImpl().visitPseudoObjectExpr(pseudo); 3331 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3332 return asImpl().visitBlockExpr(be); 3333 3334 return asImpl().visitExpr(e); 3335 } 3336 3337 namespace { 3338 3339 /// An emitter for +1 results. 3340 struct ARCRetainExprEmitter : 3341 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3342 3343 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3344 3345 llvm::Value *getValueOfResult(TryEmitResult result) { 3346 return result.getPointer(); 3347 } 3348 3349 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3350 llvm::Value *value = result.getPointer(); 3351 value = CGF.Builder.CreateBitCast(value, resultType); 3352 result.setPointer(value); 3353 return result; 3354 } 3355 3356 TryEmitResult visitLValueToRValue(const Expr *e) { 3357 return tryEmitARCRetainLoadOfScalar(CGF, e); 3358 } 3359 3360 /// For consumptions, just emit the subexpression and thus elide 3361 /// the retain/release pair. 3362 TryEmitResult visitConsumeObject(const Expr *e) { 3363 llvm::Value *result = CGF.EmitScalarExpr(e); 3364 return TryEmitResult(result, true); 3365 } 3366 3367 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3368 TryEmitResult result = visitExpr(e); 3369 // Avoid the block-retain if this is a block literal that doesn't need to be 3370 // copied to the heap. 3371 if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks && 3372 e->getBlockDecl()->canAvoidCopyToHeap()) 3373 result.setInt(true); 3374 return result; 3375 } 3376 3377 /// Block extends are net +0. Naively, we could just recurse on 3378 /// the subexpression, but actually we need to ensure that the 3379 /// value is copied as a block, so there's a little filter here. 3380 TryEmitResult visitExtendBlockObject(const Expr *e) { 3381 llvm::Value *result; // will be a +0 value 3382 3383 // If we can't safely assume the sub-expression will produce a 3384 // block-copied value, emit the sub-expression at +0. 3385 if (shouldEmitSeparateBlockRetain(e)) { 3386 result = CGF.EmitScalarExpr(e); 3387 3388 // Otherwise, try to emit the sub-expression at +1 recursively. 3389 } else { 3390 TryEmitResult subresult = asImpl().visit(e); 3391 3392 // If that produced a retained value, just use that. 3393 if (subresult.getInt()) { 3394 return subresult; 3395 } 3396 3397 // Otherwise it's +0. 3398 result = subresult.getPointer(); 3399 } 3400 3401 // Retain the object as a block. 3402 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3403 return TryEmitResult(result, true); 3404 } 3405 3406 /// For reclaims, emit the subexpression as a retained call and 3407 /// skip the consumption. 3408 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3409 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3410 return TryEmitResult(result, true); 3411 } 3412 3413 /// When we have an undecorated call, retroactively do a claim. 3414 TryEmitResult visitCall(const Expr *e) { 3415 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3416 return TryEmitResult(result, true); 3417 } 3418 3419 // TODO: maybe special-case visitBinAssignWeak? 3420 3421 TryEmitResult visitExpr(const Expr *e) { 3422 // We didn't find an obvious production, so emit what we've got and 3423 // tell the caller that we didn't manage to retain. 3424 llvm::Value *result = CGF.EmitScalarExpr(e); 3425 return TryEmitResult(result, false); 3426 } 3427 }; 3428 } 3429 3430 static TryEmitResult 3431 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3432 return ARCRetainExprEmitter(CGF).visit(e); 3433 } 3434 3435 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3436 LValue lvalue, 3437 QualType type) { 3438 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3439 llvm::Value *value = result.getPointer(); 3440 if (!result.getInt()) 3441 value = CGF.EmitARCRetain(type, value); 3442 return value; 3443 } 3444 3445 /// EmitARCRetainScalarExpr - Semantically equivalent to 3446 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3447 /// best-effort attempt to peephole expressions that naturally produce 3448 /// retained objects. 3449 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3450 // The retain needs to happen within the full-expression. 3451 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3452 RunCleanupsScope scope(*this); 3453 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3454 } 3455 3456 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3457 llvm::Value *value = result.getPointer(); 3458 if (!result.getInt()) 3459 value = EmitARCRetain(e->getType(), value); 3460 return value; 3461 } 3462 3463 llvm::Value * 3464 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3465 // The retain needs to happen within the full-expression. 3466 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3467 RunCleanupsScope scope(*this); 3468 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3469 } 3470 3471 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3472 llvm::Value *value = result.getPointer(); 3473 if (result.getInt()) 3474 value = EmitARCAutorelease(value); 3475 else 3476 value = EmitARCRetainAutorelease(e->getType(), value); 3477 return value; 3478 } 3479 3480 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3481 llvm::Value *result; 3482 bool doRetain; 3483 3484 if (shouldEmitSeparateBlockRetain(e)) { 3485 result = EmitScalarExpr(e); 3486 doRetain = true; 3487 } else { 3488 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3489 result = subresult.getPointer(); 3490 doRetain = !subresult.getInt(); 3491 } 3492 3493 if (doRetain) 3494 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3495 return EmitObjCConsumeObject(e->getType(), result); 3496 } 3497 3498 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3499 // In ARC, retain and autorelease the expression. 3500 if (getLangOpts().ObjCAutoRefCount) { 3501 // Do so before running any cleanups for the full-expression. 3502 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3503 return EmitARCRetainAutoreleaseScalarExpr(expr); 3504 } 3505 3506 // Otherwise, use the normal scalar-expression emission. The 3507 // exception machinery doesn't do anything special with the 3508 // exception like retaining it, so there's no safety associated with 3509 // only running cleanups after the throw has started, and when it 3510 // matters it tends to be substantially inferior code. 3511 return EmitScalarExpr(expr); 3512 } 3513 3514 namespace { 3515 3516 /// An emitter for assigning into an __unsafe_unretained context. 3517 struct ARCUnsafeUnretainedExprEmitter : 3518 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3519 3520 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3521 3522 llvm::Value *getValueOfResult(llvm::Value *value) { 3523 return value; 3524 } 3525 3526 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3527 return CGF.Builder.CreateBitCast(value, resultType); 3528 } 3529 3530 llvm::Value *visitLValueToRValue(const Expr *e) { 3531 return CGF.EmitScalarExpr(e); 3532 } 3533 3534 /// For consumptions, just emit the subexpression and perform the 3535 /// consumption like normal. 3536 llvm::Value *visitConsumeObject(const Expr *e) { 3537 llvm::Value *value = CGF.EmitScalarExpr(e); 3538 return CGF.EmitObjCConsumeObject(e->getType(), value); 3539 } 3540 3541 /// No special logic for block extensions. (This probably can't 3542 /// actually happen in this emitter, though.) 3543 llvm::Value *visitExtendBlockObject(const Expr *e) { 3544 return CGF.EmitARCExtendBlockObject(e); 3545 } 3546 3547 /// For reclaims, perform an unsafeClaim if that's enabled. 3548 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3549 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3550 } 3551 3552 /// When we have an undecorated call, just emit it without adding 3553 /// the unsafeClaim. 3554 llvm::Value *visitCall(const Expr *e) { 3555 return CGF.EmitScalarExpr(e); 3556 } 3557 3558 /// Just do normal scalar emission in the default case. 3559 llvm::Value *visitExpr(const Expr *e) { 3560 return CGF.EmitScalarExpr(e); 3561 } 3562 }; 3563 } 3564 3565 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3566 const Expr *e) { 3567 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3568 } 3569 3570 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3571 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3572 /// avoiding any spurious retains, including by performing reclaims 3573 /// with objc_unsafeClaimAutoreleasedReturnValue. 3574 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3575 // Look through full-expressions. 3576 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3577 RunCleanupsScope scope(*this); 3578 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3579 } 3580 3581 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3582 } 3583 3584 std::pair<LValue,llvm::Value*> 3585 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3586 bool ignored) { 3587 // Evaluate the RHS first. If we're ignoring the result, assume 3588 // that we can emit at an unsafe +0. 3589 llvm::Value *value; 3590 if (ignored) { 3591 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3592 } else { 3593 value = EmitScalarExpr(e->getRHS()); 3594 } 3595 3596 // Emit the LHS and perform the store. 3597 LValue lvalue = EmitLValue(e->getLHS()); 3598 EmitStoreOfScalar(value, lvalue); 3599 3600 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3601 } 3602 3603 std::pair<LValue,llvm::Value*> 3604 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3605 bool ignored) { 3606 // Evaluate the RHS first. 3607 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3608 llvm::Value *value = result.getPointer(); 3609 3610 bool hasImmediateRetain = result.getInt(); 3611 3612 // If we didn't emit a retained object, and the l-value is of block 3613 // type, then we need to emit the block-retain immediately in case 3614 // it invalidates the l-value. 3615 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3616 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3617 hasImmediateRetain = true; 3618 } 3619 3620 LValue lvalue = EmitLValue(e->getLHS()); 3621 3622 // If the RHS was emitted retained, expand this. 3623 if (hasImmediateRetain) { 3624 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3625 EmitStoreOfScalar(value, lvalue); 3626 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3627 } else { 3628 value = EmitARCStoreStrong(lvalue, value, ignored); 3629 } 3630 3631 return std::pair<LValue,llvm::Value*>(lvalue, value); 3632 } 3633 3634 std::pair<LValue,llvm::Value*> 3635 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3636 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3637 LValue lvalue = EmitLValue(e->getLHS()); 3638 3639 EmitStoreOfScalar(value, lvalue); 3640 3641 return std::pair<LValue,llvm::Value*>(lvalue, value); 3642 } 3643 3644 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3645 const ObjCAutoreleasePoolStmt &ARPS) { 3646 const Stmt *subStmt = ARPS.getSubStmt(); 3647 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3648 3649 CGDebugInfo *DI = getDebugInfo(); 3650 if (DI) 3651 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3652 3653 // Keep track of the current cleanup stack depth. 3654 RunCleanupsScope Scope(*this); 3655 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3656 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3657 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3658 } else { 3659 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3660 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3661 } 3662 3663 for (const auto *I : S.body()) 3664 EmitStmt(I); 3665 3666 if (DI) 3667 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3668 } 3669 3670 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3671 /// make sure it survives garbage collection until this point. 3672 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3673 // We just use an inline assembly. 3674 llvm::FunctionType *extenderType 3675 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3676 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3677 /* assembly */ "", 3678 /* constraints */ "r", 3679 /* side effects */ true); 3680 3681 EmitNounwindRuntimeCall(extender, object); 3682 } 3683 3684 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3685 /// non-trivial copy assignment function, produce following helper function. 3686 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3687 /// 3688 llvm::Constant * 3689 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3690 const ObjCPropertyImplDecl *PID) { 3691 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3692 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3693 return nullptr; 3694 3695 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3696 ASTContext &C = getContext(); 3697 3698 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 3699 // Call the move assignment operator instead of calling the copy assignment 3700 // operator and destructor. 3701 CharUnits Alignment = C.getTypeAlignInChars(Ty); 3702 llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator( 3703 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty); 3704 return Fn; 3705 } 3706 3707 if (!getLangOpts().CPlusPlus || 3708 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3709 return nullptr; 3710 if (!Ty->isRecordType()) 3711 return nullptr; 3712 llvm::Constant *HelperFn = nullptr; 3713 if (hasTrivialSetExpr(PID)) 3714 return nullptr; 3715 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3716 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3717 return HelperFn; 3718 3719 IdentifierInfo *II 3720 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3721 3722 QualType ReturnTy = C.VoidTy; 3723 QualType DestTy = C.getPointerType(Ty); 3724 QualType SrcTy = Ty; 3725 SrcTy.addConst(); 3726 SrcTy = C.getPointerType(SrcTy); 3727 3728 SmallVector<QualType, 2> ArgTys; 3729 ArgTys.push_back(DestTy); 3730 ArgTys.push_back(SrcTy); 3731 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3732 3733 FunctionDecl *FD = FunctionDecl::Create( 3734 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3735 FunctionTy, nullptr, SC_Static, false, false, false); 3736 3737 FunctionArgList args; 3738 ParmVarDecl *Params[2]; 3739 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3740 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3741 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3742 /*DefArg=*/nullptr); 3743 args.push_back(Params[0] = DstDecl); 3744 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3745 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3746 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3747 /*DefArg=*/nullptr); 3748 args.push_back(Params[1] = SrcDecl); 3749 FD->setParams(Params); 3750 3751 const CGFunctionInfo &FI = 3752 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3753 3754 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3755 3756 llvm::Function *Fn = 3757 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3758 "__assign_helper_atomic_property_", 3759 &CGM.getModule()); 3760 3761 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3762 3763 StartFunction(FD, ReturnTy, Fn, FI, args); 3764 3765 DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation()); 3766 UnaryOperator *DST = UnaryOperator::Create( 3767 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3768 SourceLocation(), false, FPOptionsOverride()); 3769 3770 DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation()); 3771 UnaryOperator *SRC = UnaryOperator::Create( 3772 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3773 SourceLocation(), false, FPOptionsOverride()); 3774 3775 Expr *Args[2] = {DST, SRC}; 3776 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3777 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3778 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3779 VK_LValue, SourceLocation(), FPOptionsOverride()); 3780 3781 EmitStmt(TheCall); 3782 3783 FinishFunction(); 3784 HelperFn = Fn; 3785 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3786 return HelperFn; 3787 } 3788 3789 llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3790 const ObjCPropertyImplDecl *PID) { 3791 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3792 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3793 return nullptr; 3794 3795 QualType Ty = PD->getType(); 3796 ASTContext &C = getContext(); 3797 3798 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 3799 CharUnits Alignment = C.getTypeAlignInChars(Ty); 3800 llvm::Constant *Fn = getNonTrivialCStructCopyConstructor( 3801 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty); 3802 return Fn; 3803 } 3804 3805 if (!getLangOpts().CPlusPlus || 3806 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3807 return nullptr; 3808 if (!Ty->isRecordType()) 3809 return nullptr; 3810 llvm::Constant *HelperFn = nullptr; 3811 if (hasTrivialGetExpr(PID)) 3812 return nullptr; 3813 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3814 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3815 return HelperFn; 3816 3817 IdentifierInfo *II = 3818 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3819 3820 QualType ReturnTy = C.VoidTy; 3821 QualType DestTy = C.getPointerType(Ty); 3822 QualType SrcTy = Ty; 3823 SrcTy.addConst(); 3824 SrcTy = C.getPointerType(SrcTy); 3825 3826 SmallVector<QualType, 2> ArgTys; 3827 ArgTys.push_back(DestTy); 3828 ArgTys.push_back(SrcTy); 3829 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3830 3831 FunctionDecl *FD = FunctionDecl::Create( 3832 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3833 FunctionTy, nullptr, SC_Static, false, false, false); 3834 3835 FunctionArgList args; 3836 ParmVarDecl *Params[2]; 3837 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3838 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3839 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3840 /*DefArg=*/nullptr); 3841 args.push_back(Params[0] = DstDecl); 3842 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3843 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3844 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3845 /*DefArg=*/nullptr); 3846 args.push_back(Params[1] = SrcDecl); 3847 FD->setParams(Params); 3848 3849 const CGFunctionInfo &FI = 3850 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3851 3852 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3853 3854 llvm::Function *Fn = llvm::Function::Create( 3855 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3856 &CGM.getModule()); 3857 3858 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3859 3860 StartFunction(FD, ReturnTy, Fn, FI, args); 3861 3862 DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue, 3863 SourceLocation()); 3864 3865 UnaryOperator *SRC = UnaryOperator::Create( 3866 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3867 SourceLocation(), false, FPOptionsOverride()); 3868 3869 CXXConstructExpr *CXXConstExpr = 3870 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3871 3872 SmallVector<Expr*, 4> ConstructorArgs; 3873 ConstructorArgs.push_back(SRC); 3874 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3875 CXXConstExpr->arg_end()); 3876 3877 CXXConstructExpr *TheCXXConstructExpr = 3878 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3879 CXXConstExpr->getConstructor(), 3880 CXXConstExpr->isElidable(), 3881 ConstructorArgs, 3882 CXXConstExpr->hadMultipleCandidates(), 3883 CXXConstExpr->isListInitialization(), 3884 CXXConstExpr->isStdInitListInitialization(), 3885 CXXConstExpr->requiresZeroInitialization(), 3886 CXXConstExpr->getConstructionKind(), 3887 SourceRange()); 3888 3889 DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue, 3890 SourceLocation()); 3891 3892 RValue DV = EmitAnyExpr(&DstExpr); 3893 CharUnits Alignment = 3894 getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3895 EmitAggExpr(TheCXXConstructExpr, 3896 AggValueSlot::forAddr( 3897 Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment), 3898 Qualifiers(), AggValueSlot::IsDestructed, 3899 AggValueSlot::DoesNotNeedGCBarriers, 3900 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 3901 3902 FinishFunction(); 3903 HelperFn = Fn; 3904 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3905 return HelperFn; 3906 } 3907 3908 llvm::Value * 3909 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3910 // Get selectors for retain/autorelease. 3911 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3912 Selector CopySelector = 3913 getContext().Selectors.getNullarySelector(CopyID); 3914 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3915 Selector AutoreleaseSelector = 3916 getContext().Selectors.getNullarySelector(AutoreleaseID); 3917 3918 // Emit calls to retain/autorelease. 3919 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3920 llvm::Value *Val = Block; 3921 RValue Result; 3922 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3923 Ty, CopySelector, 3924 Val, CallArgList(), nullptr, nullptr); 3925 Val = Result.getScalarVal(); 3926 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3927 Ty, AutoreleaseSelector, 3928 Val, CallArgList(), nullptr, nullptr); 3929 Val = Result.getScalarVal(); 3930 return Val; 3931 } 3932 3933 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) { 3934 switch (TT.getOS()) { 3935 case llvm::Triple::Darwin: 3936 case llvm::Triple::MacOSX: 3937 return llvm::MachO::PLATFORM_MACOS; 3938 case llvm::Triple::IOS: 3939 return llvm::MachO::PLATFORM_IOS; 3940 case llvm::Triple::TvOS: 3941 return llvm::MachO::PLATFORM_TVOS; 3942 case llvm::Triple::WatchOS: 3943 return llvm::MachO::PLATFORM_WATCHOS; 3944 case llvm::Triple::XROS: 3945 return llvm::MachO::PLATFORM_XROS; 3946 case llvm::Triple::DriverKit: 3947 return llvm::MachO::PLATFORM_DRIVERKIT; 3948 default: 3949 return llvm::MachO::PLATFORM_UNKNOWN; 3950 } 3951 } 3952 3953 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF, 3954 const VersionTuple &Version) { 3955 CodeGenModule &CGM = CGF.CGM; 3956 // Note: we intend to support multi-platform version checks, so reserve 3957 // the room for a dual platform checking invocation that will be 3958 // implemented in the future. 3959 llvm::SmallVector<llvm::Value *, 8> Args; 3960 3961 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) { 3962 std::optional<unsigned> Min = Version.getMinor(), 3963 SMin = Version.getSubminor(); 3964 Args.push_back( 3965 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT))); 3966 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor())); 3967 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0))); 3968 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))); 3969 }; 3970 3971 assert(!Version.empty() && "unexpected empty version"); 3972 EmitArgs(Version, CGM.getTarget().getTriple()); 3973 3974 if (!CGM.IsPlatformVersionAtLeastFn) { 3975 llvm::FunctionType *FTy = llvm::FunctionType::get( 3976 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}, 3977 false); 3978 CGM.IsPlatformVersionAtLeastFn = 3979 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast"); 3980 } 3981 3982 llvm::Value *Check = 3983 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args); 3984 return CGF.Builder.CreateICmpNE(Check, 3985 llvm::Constant::getNullValue(CGM.Int32Ty)); 3986 } 3987 3988 llvm::Value * 3989 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) { 3990 // Darwin uses the new __isPlatformVersionAtLeast family of routines. 3991 if (CGM.getTarget().getTriple().isOSDarwin()) 3992 return emitIsPlatformVersionAtLeast(*this, Version); 3993 3994 if (!CGM.IsOSVersionAtLeastFn) { 3995 llvm::FunctionType *FTy = 3996 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3997 CGM.IsOSVersionAtLeastFn = 3998 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3999 } 4000 4001 std::optional<unsigned> Min = Version.getMinor(), 4002 SMin = Version.getSubminor(); 4003 llvm::Value *Args[] = { 4004 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()), 4005 llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)), 4006 llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))}; 4007 4008 llvm::Value *CallRes = 4009 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 4010 4011 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 4012 } 4013 4014 static bool isFoundationNeededForDarwinAvailabilityCheck( 4015 const llvm::Triple &TT, const VersionTuple &TargetVersion) { 4016 VersionTuple FoundationDroppedInVersion; 4017 switch (TT.getOS()) { 4018 case llvm::Triple::IOS: 4019 case llvm::Triple::TvOS: 4020 FoundationDroppedInVersion = VersionTuple(/*Major=*/13); 4021 break; 4022 case llvm::Triple::WatchOS: 4023 FoundationDroppedInVersion = VersionTuple(/*Major=*/6); 4024 break; 4025 case llvm::Triple::Darwin: 4026 case llvm::Triple::MacOSX: 4027 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15); 4028 break; 4029 case llvm::Triple::XROS: 4030 // XROS doesn't need Foundation. 4031 return false; 4032 case llvm::Triple::DriverKit: 4033 // DriverKit doesn't need Foundation. 4034 return false; 4035 default: 4036 llvm_unreachable("Unexpected OS"); 4037 } 4038 return TargetVersion < FoundationDroppedInVersion; 4039 } 4040 4041 void CodeGenModule::emitAtAvailableLinkGuard() { 4042 if (!IsPlatformVersionAtLeastFn) 4043 return; 4044 // @available requires CoreFoundation only on Darwin. 4045 if (!Target.getTriple().isOSDarwin()) 4046 return; 4047 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or 4048 // watchOS 6+. 4049 if (!isFoundationNeededForDarwinAvailabilityCheck( 4050 Target.getTriple(), Target.getPlatformMinVersion())) 4051 return; 4052 // Add -framework CoreFoundation to the linker commands. We still want to 4053 // emit the core foundation reference down below because otherwise if 4054 // CoreFoundation is not used in the code, the linker won't link the 4055 // framework. 4056 auto &Context = getLLVMContext(); 4057 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 4058 llvm::MDString::get(Context, "CoreFoundation")}; 4059 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 4060 // Emit a reference to a symbol from CoreFoundation to ensure that 4061 // CoreFoundation is linked into the final binary. 4062 llvm::FunctionType *FTy = 4063 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 4064 llvm::FunctionCallee CFFunc = 4065 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 4066 4067 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 4068 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 4069 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 4070 llvm::AttributeList(), /*Local=*/true); 4071 llvm::Function *CFLinkCheckFunc = 4072 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 4073 if (CFLinkCheckFunc->empty()) { 4074 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 4075 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 4076 CodeGenFunction CGF(*this); 4077 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 4078 CGF.EmitNounwindRuntimeCall(CFFunc, 4079 llvm::Constant::getNullValue(VoidPtrTy)); 4080 CGF.Builder.CreateUnreachable(); 4081 addCompilerUsedGlobal(CFLinkCheckFunc); 4082 } 4083 } 4084 4085 CGObjCRuntime::~CGObjCRuntime() {} 4086