xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGObjC.cpp (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/CodeGenABITypes.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Analysis/ObjCARCUtil.h"
28 #include "llvm/BinaryFormat/MachO.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include <optional>
33 using namespace clang;
34 using namespace CodeGen;
35 
36 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37 static TryEmitResult
38 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
39 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
40                                    QualType ET,
41                                    RValue Result);
42 
43 /// Given the address of a variable of pointer type, find the correct
44 /// null to store into it.
45 static llvm::Constant *getNullForVariable(Address addr) {
46   llvm::Type *type = addr.getElementType();
47   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
48 }
49 
50 /// Emits an instance of NSConstantString representing the object.
51 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
52 {
53   llvm::Constant *C =
54       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
55   return C;
56 }
57 
58 /// EmitObjCBoxedExpr - This routine generates code to call
59 /// the appropriate expression boxing method. This will either be
60 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
61 /// or [NSValue valueWithBytes:objCType:].
62 ///
63 llvm::Value *
64 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
65   // Generate the correct selector for this literal's concrete type.
66   // Get the method.
67   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
68   const Expr *SubExpr = E->getSubExpr();
69 
70   if (E->isExpressibleAsConstantInitializer()) {
71     ConstantEmitter ConstEmitter(CGM);
72     return ConstEmitter.tryEmitAbstract(E, E->getType());
73   }
74 
75   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
76   Selector Sel = BoxingMethod->getSelector();
77 
78   // Generate a reference to the class pointer, which will be the receiver.
79   // Assumes that the method was introduced in the class that should be
80   // messaged (avoids pulling it out of the result type).
81   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
82   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
83   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
84 
85   CallArgList Args;
86   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
87   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
88 
89   // ObjCBoxedExpr supports boxing of structs and unions
90   // via [NSValue valueWithBytes:objCType:]
91   const QualType ValueType(SubExpr->getType().getCanonicalType());
92   if (ValueType->isObjCBoxableRecordType()) {
93     // Emit CodeGen for first parameter
94     // and cast value to correct type
95     Address Temporary = CreateMemTemp(SubExpr->getType());
96     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
97     llvm::Value *BitCast = Builder.CreateBitCast(
98         Temporary.emitRawPointer(*this), ConvertType(ArgQT));
99     Args.add(RValue::get(BitCast), ArgQT);
100 
101     // Create char array to store type encoding
102     std::string Str;
103     getContext().getObjCEncodingForType(ValueType, Str);
104     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
105 
106     // Cast type encoding to correct type
107     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
108     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
109     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
110 
111     Args.add(RValue::get(Cast), EncodingQT);
112   } else {
113     Args.add(EmitAnyExpr(SubExpr), ArgQT);
114   }
115 
116   RValue result = Runtime.GenerateMessageSend(
117       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
118       Args, ClassDecl, BoxingMethod);
119   return Builder.CreateBitCast(result.getScalarVal(),
120                                ConvertType(E->getType()));
121 }
122 
123 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
124                                     const ObjCMethodDecl *MethodWithObjects) {
125   ASTContext &Context = CGM.getContext();
126   const ObjCDictionaryLiteral *DLE = nullptr;
127   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
128   if (!ALE)
129     DLE = cast<ObjCDictionaryLiteral>(E);
130 
131   // Optimize empty collections by referencing constants, when available.
132   uint64_t NumElements =
133     ALE ? ALE->getNumElements() : DLE->getNumElements();
134   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
135     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
136     QualType IdTy(CGM.getContext().getObjCIdType());
137     llvm::Constant *Constant =
138         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
139     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
140     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
141     cast<llvm::LoadInst>(Ptr)->setMetadata(
142         llvm::LLVMContext::MD_invariant_load,
143         llvm::MDNode::get(getLLVMContext(), std::nullopt));
144     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
145   }
146 
147   // Compute the type of the array we're initializing.
148   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
149                             NumElements);
150   QualType ElementType = Context.getObjCIdType().withConst();
151   QualType ElementArrayType = Context.getConstantArrayType(
152       ElementType, APNumElements, nullptr, ArraySizeModifier::Normal,
153       /*IndexTypeQuals=*/0);
154 
155   // Allocate the temporary array(s).
156   Address Objects = CreateMemTemp(ElementArrayType, "objects");
157   Address Keys = Address::invalid();
158   if (DLE)
159     Keys = CreateMemTemp(ElementArrayType, "keys");
160 
161   // In ARC, we may need to do extra work to keep all the keys and
162   // values alive until after the call.
163   SmallVector<llvm::Value *, 16> NeededObjects;
164   bool TrackNeededObjects =
165     (getLangOpts().ObjCAutoRefCount &&
166     CGM.getCodeGenOpts().OptimizationLevel != 0);
167 
168   // Perform the actual initialialization of the array(s).
169   for (uint64_t i = 0; i < NumElements; i++) {
170     if (ALE) {
171       // Emit the element and store it to the appropriate array slot.
172       const Expr *Rhs = ALE->getElement(i);
173       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
174                                  ElementType, AlignmentSource::Decl);
175 
176       llvm::Value *value = EmitScalarExpr(Rhs);
177       EmitStoreThroughLValue(RValue::get(value), LV, true);
178       if (TrackNeededObjects) {
179         NeededObjects.push_back(value);
180       }
181     } else {
182       // Emit the key and store it to the appropriate array slot.
183       const Expr *Key = DLE->getKeyValueElement(i).Key;
184       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
185                                     ElementType, AlignmentSource::Decl);
186       llvm::Value *keyValue = EmitScalarExpr(Key);
187       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
188 
189       // Emit the value and store it to the appropriate array slot.
190       const Expr *Value = DLE->getKeyValueElement(i).Value;
191       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
192                                       ElementType, AlignmentSource::Decl);
193       llvm::Value *valueValue = EmitScalarExpr(Value);
194       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
195       if (TrackNeededObjects) {
196         NeededObjects.push_back(keyValue);
197         NeededObjects.push_back(valueValue);
198       }
199     }
200   }
201 
202   // Generate the argument list.
203   CallArgList Args;
204   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
205   const ParmVarDecl *argDecl = *PI++;
206   QualType ArgQT = argDecl->getType().getUnqualifiedType();
207   Args.add(RValue::get(Objects, *this), ArgQT);
208   if (DLE) {
209     argDecl = *PI++;
210     ArgQT = argDecl->getType().getUnqualifiedType();
211     Args.add(RValue::get(Keys, *this), ArgQT);
212   }
213   argDecl = *PI;
214   ArgQT = argDecl->getType().getUnqualifiedType();
215   llvm::Value *Count =
216     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
217   Args.add(RValue::get(Count), ArgQT);
218 
219   // Generate a reference to the class pointer, which will be the receiver.
220   Selector Sel = MethodWithObjects->getSelector();
221   QualType ResultType = E->getType();
222   const ObjCObjectPointerType *InterfacePointerType
223     = ResultType->getAsObjCInterfacePointerType();
224   assert(InterfacePointerType && "Unexpected InterfacePointerType - null");
225   ObjCInterfaceDecl *Class
226     = InterfacePointerType->getObjectType()->getInterface();
227   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
229 
230   // Generate the message send.
231   RValue result = Runtime.GenerateMessageSend(
232       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
233       Receiver, Args, Class, MethodWithObjects);
234 
235   // The above message send needs these objects, but in ARC they are
236   // passed in a buffer that is essentially __unsafe_unretained.
237   // Therefore we must prevent the optimizer from releasing them until
238   // after the call.
239   if (TrackNeededObjects) {
240     EmitARCIntrinsicUse(NeededObjects);
241   }
242 
243   return Builder.CreateBitCast(result.getScalarVal(),
244                                ConvertType(E->getType()));
245 }
246 
247 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
248   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
249 }
250 
251 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
252                                             const ObjCDictionaryLiteral *E) {
253   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
254 }
255 
256 /// Emit a selector.
257 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
258   // Untyped selector.
259   // Note that this implementation allows for non-constant strings to be passed
260   // as arguments to @selector().  Currently, the only thing preventing this
261   // behaviour is the type checking in the front end.
262   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
263 }
264 
265 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
266   // FIXME: This should pass the Decl not the name.
267   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
268 }
269 
270 /// Adjust the type of an Objective-C object that doesn't match up due
271 /// to type erasure at various points, e.g., related result types or the use
272 /// of parameterized classes.
273 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
274                                    RValue Result) {
275   if (!ExpT->isObjCRetainableType())
276     return Result;
277 
278   // If the converted types are the same, we're done.
279   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
280   if (ExpLLVMTy == Result.getScalarVal()->getType())
281     return Result;
282 
283   // We have applied a substitution. Cast the rvalue appropriately.
284   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
285                                                ExpLLVMTy));
286 }
287 
288 /// Decide whether to extend the lifetime of the receiver of a
289 /// returns-inner-pointer message.
290 static bool
291 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
292   switch (message->getReceiverKind()) {
293 
294   // For a normal instance message, we should extend unless the
295   // receiver is loaded from a variable with precise lifetime.
296   case ObjCMessageExpr::Instance: {
297     const Expr *receiver = message->getInstanceReceiver();
298 
299     // Look through OVEs.
300     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
301       if (opaque->getSourceExpr())
302         receiver = opaque->getSourceExpr()->IgnoreParens();
303     }
304 
305     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
306     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307     receiver = ice->getSubExpr()->IgnoreParens();
308 
309     // Look through OVEs.
310     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
311       if (opaque->getSourceExpr())
312         receiver = opaque->getSourceExpr()->IgnoreParens();
313     }
314 
315     // Only __strong variables.
316     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317       return true;
318 
319     // All ivars and fields have precise lifetime.
320     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
321       return false;
322 
323     // Otherwise, check for variables.
324     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325     if (!declRef) return true;
326     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
327     if (!var) return true;
328 
329     // All variables have precise lifetime except local variables with
330     // automatic storage duration that aren't specially marked.
331     return (var->hasLocalStorage() &&
332             !var->hasAttr<ObjCPreciseLifetimeAttr>());
333   }
334 
335   case ObjCMessageExpr::Class:
336   case ObjCMessageExpr::SuperClass:
337     // It's never necessary for class objects.
338     return false;
339 
340   case ObjCMessageExpr::SuperInstance:
341     // We generally assume that 'self' lives throughout a method call.
342     return false;
343   }
344 
345   llvm_unreachable("invalid receiver kind");
346 }
347 
348 /// Given an expression of ObjC pointer type, check whether it was
349 /// immediately loaded from an ARC __weak l-value.
350 static const Expr *findWeakLValue(const Expr *E) {
351   assert(E->getType()->isObjCRetainableType());
352   E = E->IgnoreParens();
353   if (auto CE = dyn_cast<CastExpr>(E)) {
354     if (CE->getCastKind() == CK_LValueToRValue) {
355       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356         return CE->getSubExpr();
357     }
358   }
359 
360   return nullptr;
361 }
362 
363 /// The ObjC runtime may provide entrypoints that are likely to be faster
364 /// than an ordinary message send of the appropriate selector.
365 ///
366 /// The entrypoints are guaranteed to be equivalent to just sending the
367 /// corresponding message.  If the entrypoint is implemented naively as just a
368 /// message send, using it is a trade-off: it sacrifices a few cycles of
369 /// overhead to save a small amount of code.  However, it's possible for
370 /// runtimes to detect and special-case classes that use "standard"
371 /// behavior; if that's dynamically a large proportion of all objects, using
372 /// the entrypoint will also be faster than using a message send.
373 ///
374 /// If the runtime does support a required entrypoint, then this method will
375 /// generate a call and return the resulting value.  Otherwise it will return
376 /// std::nullopt and the caller can generate a msgSend instead.
377 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378     CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379     const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380     bool isClassMessage) {
381   auto &CGM = CGF.CGM;
382   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383     return std::nullopt;
384 
385   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386   switch (Sel.getMethodFamily()) {
387   case OMF_alloc:
388     if (isClassMessage &&
389         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390         ResultType->isObjCObjectPointerType()) {
391         // [Foo alloc] -> objc_alloc(Foo) or
392         // [self alloc] -> objc_alloc(self)
393         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
394           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
395         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396         // [self allocWithZone:nil] -> objc_allocWithZone(self)
397         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398             Args.size() == 1 && Args.front().getType()->isPointerType() &&
399             Sel.getNameForSlot(0) == "allocWithZone") {
400           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401           if (isa<llvm::ConstantPointerNull>(arg))
402             return CGF.EmitObjCAllocWithZone(Receiver,
403                                              CGF.ConvertType(ResultType));
404           return std::nullopt;
405         }
406     }
407     break;
408 
409   case OMF_autorelease:
410     if (ResultType->isObjCObjectPointerType() &&
411         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412         Runtime.shouldUseARCFunctionsForRetainRelease())
413       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
414     break;
415 
416   case OMF_retain:
417     if (ResultType->isObjCObjectPointerType() &&
418         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419         Runtime.shouldUseARCFunctionsForRetainRelease())
420       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
421     break;
422 
423   case OMF_release:
424     if (ResultType->isVoidType() &&
425         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426         Runtime.shouldUseARCFunctionsForRetainRelease()) {
427       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
428       return nullptr;
429     }
430     break;
431 
432   default:
433     break;
434   }
435   return std::nullopt;
436 }
437 
438 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442     bool isClassMessage) {
443   if (std::optional<llvm::Value *> SpecializedResult =
444           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445                                             Sel, Method, isClassMessage)) {
446     return RValue::get(*SpecializedResult);
447   }
448   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
449                              Method);
450 }
451 
452 static void AppendFirstImpliedRuntimeProtocols(
453     const ObjCProtocolDecl *PD,
454     llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455   if (!PD->isNonRuntimeProtocol()) {
456     const auto *Can = PD->getCanonicalDecl();
457     PDs.insert(Can);
458     return;
459   }
460 
461   for (const auto *ParentPD : PD->protocols())
462     AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
463 }
464 
465 std::vector<const ObjCProtocolDecl *>
466 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
467                                       ObjCProtocolDecl::protocol_iterator end) {
468   std::vector<const ObjCProtocolDecl *> RuntimePds;
469   llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
470 
471   for (; begin != end; ++begin) {
472     const auto *It = *begin;
473     const auto *Can = It->getCanonicalDecl();
474     if (Can->isNonRuntimeProtocol())
475       NonRuntimePDs.insert(Can);
476     else
477       RuntimePds.push_back(Can);
478   }
479 
480   // If there are no non-runtime protocols then we can just stop now.
481   if (NonRuntimePDs.empty())
482     return RuntimePds;
483 
484   // Else we have to search through the non-runtime protocol's inheritancy
485   // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486   // a non-runtime protocol without any parents. These are the "first-implied"
487   // protocols from a non-runtime protocol.
488   llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489   for (const auto *PD : NonRuntimePDs)
490     AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
491 
492   // Walk the Runtime list to get all protocols implied via the inclusion of
493   // this protocol, e.g. all protocols it inherits from including itself.
494   llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495   for (const auto *PD : RuntimePds) {
496     const auto *Can = PD->getCanonicalDecl();
497     AllImpliedProtocols.insert(Can);
498     Can->getImpliedProtocols(AllImpliedProtocols);
499   }
500 
501   // Similar to above, walk the list of first-implied protocols to find the set
502   // all the protocols implied excluding the listed protocols themselves since
503   // they are not yet a part of the `RuntimePds` list.
504   for (const auto *PD : FirstImpliedProtos) {
505     PD->getImpliedProtocols(AllImpliedProtocols);
506   }
507 
508   // From the first-implied list we have to finish building the final protocol
509   // list. If a protocol in the first-implied list was already implied via some
510   // inheritance path through some other protocols then it would be redundant to
511   // add it here and so we skip over it.
512   for (const auto *PD : FirstImpliedProtos) {
513     if (!AllImpliedProtocols.contains(PD)) {
514       RuntimePds.push_back(PD);
515     }
516   }
517 
518   return RuntimePds;
519 }
520 
521 /// Instead of '[[MyClass alloc] init]', try to generate
522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523 /// caller side, as well as the optimized objc_alloc.
524 static std::optional<llvm::Value *>
525 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
526   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528     return std::nullopt;
529 
530   // Match the exact pattern '[[MyClass alloc] init]'.
531   Selector Sel = OME->getSelector();
532   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
533       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534       Sel.getNameForSlot(0) != "init")
535     return std::nullopt;
536 
537   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538   // with 'cls' a Class.
539   auto *SubOME =
540       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
541   if (!SubOME)
542     return std::nullopt;
543   Selector SubSel = SubOME->getSelector();
544 
545   if (!SubOME->getType()->isObjCObjectPointerType() ||
546       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
547     return std::nullopt;
548 
549   llvm::Value *Receiver = nullptr;
550   switch (SubOME->getReceiverKind()) {
551   case ObjCMessageExpr::Instance:
552     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553       return std::nullopt;
554     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
555     break;
556 
557   case ObjCMessageExpr::Class: {
558     QualType ReceiverType = SubOME->getClassReceiver();
559     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561     assert(ID && "null interface should be impossible here");
562     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
563     break;
564   }
565   case ObjCMessageExpr::SuperInstance:
566   case ObjCMessageExpr::SuperClass:
567     return std::nullopt;
568   }
569 
570   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
571 }
572 
573 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
574                                             ReturnValueSlot Return) {
575   // Only the lookup mechanism and first two arguments of the method
576   // implementation vary between runtimes.  We can get the receiver and
577   // arguments in generic code.
578 
579   bool isDelegateInit = E->isDelegateInitCall();
580 
581   const ObjCMethodDecl *method = E->getMethodDecl();
582 
583   // If the method is -retain, and the receiver's being loaded from
584   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586       method->getMethodFamily() == OMF_retain) {
587     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
588       LValue lvalue = EmitLValue(lvalueExpr);
589       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
590       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
591     }
592   }
593 
594   if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
595     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
596 
597   // We don't retain the receiver in delegate init calls, and this is
598   // safe because the receiver value is always loaded from 'self',
599   // which we zero out.  We don't want to Block_copy block receivers,
600   // though.
601   bool retainSelf =
602     (!isDelegateInit &&
603      CGM.getLangOpts().ObjCAutoRefCount &&
604      method &&
605      method->hasAttr<NSConsumesSelfAttr>());
606 
607   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608   bool isSuperMessage = false;
609   bool isClassMessage = false;
610   ObjCInterfaceDecl *OID = nullptr;
611   // Find the receiver
612   QualType ReceiverType;
613   llvm::Value *Receiver = nullptr;
614   switch (E->getReceiverKind()) {
615   case ObjCMessageExpr::Instance:
616     ReceiverType = E->getInstanceReceiver()->getType();
617     isClassMessage = ReceiverType->isObjCClassType();
618     if (retainSelf) {
619       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
620                                                    E->getInstanceReceiver());
621       Receiver = ter.getPointer();
622       if (ter.getInt()) retainSelf = false;
623     } else
624       Receiver = EmitScalarExpr(E->getInstanceReceiver());
625     break;
626 
627   case ObjCMessageExpr::Class: {
628     ReceiverType = E->getClassReceiver();
629     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630     assert(OID && "Invalid Objective-C class message send");
631     Receiver = Runtime.GetClass(*this, OID);
632     isClassMessage = true;
633     break;
634   }
635 
636   case ObjCMessageExpr::SuperInstance:
637     ReceiverType = E->getSuperType();
638     Receiver = LoadObjCSelf();
639     isSuperMessage = true;
640     break;
641 
642   case ObjCMessageExpr::SuperClass:
643     ReceiverType = E->getSuperType();
644     Receiver = LoadObjCSelf();
645     isSuperMessage = true;
646     isClassMessage = true;
647     break;
648   }
649 
650   if (retainSelf)
651     Receiver = EmitARCRetainNonBlock(Receiver);
652 
653   // In ARC, we sometimes want to "extend the lifetime"
654   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655   // messages.
656   if (getLangOpts().ObjCAutoRefCount && method &&
657       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
658       shouldExtendReceiverForInnerPointerMessage(E))
659     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
660 
661   QualType ResultType = method ? method->getReturnType() : E->getType();
662 
663   CallArgList Args;
664   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
665 
666   // For delegate init calls in ARC, do an unsafe store of null into
667   // self.  This represents the call taking direct ownership of that
668   // value.  We have to do this after emitting the other call
669   // arguments because they might also reference self, but we don't
670   // have to worry about any of them modifying self because that would
671   // be an undefined read and write of an object in unordered
672   // expressions.
673   if (isDelegateInit) {
674     assert(getLangOpts().ObjCAutoRefCount &&
675            "delegate init calls should only be marked in ARC");
676 
677     // Do an unsafe store of null into self.
678     Address selfAddr =
679       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
680     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
681   }
682 
683   RValue result;
684   if (isSuperMessage) {
685     // super is only valid in an Objective-C method
686     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
687     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
689                                               E->getSelector(),
690                                               OMD->getClassInterface(),
691                                               isCategoryImpl,
692                                               Receiver,
693                                               isClassMessage,
694                                               Args,
695                                               method);
696   } else {
697     // Call runtime methods directly if we can.
698     result = Runtime.GeneratePossiblySpecializedMessageSend(
699         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
700         method, isClassMessage);
701   }
702 
703   // For delegate init calls in ARC, implicitly store the result of
704   // the call back into self.  This takes ownership of the value.
705   if (isDelegateInit) {
706     Address selfAddr =
707       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
708     llvm::Value *newSelf = result.getScalarVal();
709 
710     // The delegate return type isn't necessarily a matching type; in
711     // fact, it's quite likely to be 'id'.
712     llvm::Type *selfTy = selfAddr.getElementType();
713     newSelf = Builder.CreateBitCast(newSelf, selfTy);
714 
715     Builder.CreateStore(newSelf, selfAddr);
716   }
717 
718   return AdjustObjCObjectType(*this, E->getType(), result);
719 }
720 
721 namespace {
722 struct FinishARCDealloc final : EHScopeStack::Cleanup {
723   void Emit(CodeGenFunction &CGF, Flags flags) override {
724     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
725 
726     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727     const ObjCInterfaceDecl *iface = impl->getClassInterface();
728     if (!iface->getSuperClass()) return;
729 
730     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
731 
732     // Call [super dealloc] if we have a superclass.
733     llvm::Value *self = CGF.LoadObjCSelf();
734 
735     CallArgList args;
736     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
737                                                       CGF.getContext().VoidTy,
738                                                       method->getSelector(),
739                                                       iface,
740                                                       isCategory,
741                                                       self,
742                                                       /*is class msg*/ false,
743                                                       args,
744                                                       method);
745   }
746 };
747 }
748 
749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750 /// the LLVM function and sets the other context used by
751 /// CodeGenFunction.
752 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
753                                       const ObjCContainerDecl *CD) {
754   SourceLocation StartLoc = OMD->getBeginLoc();
755   FunctionArgList args;
756   // Check if we should generate debug info for this method.
757   if (OMD->hasAttr<NoDebugAttr>())
758     DebugInfo = nullptr; // disable debug info indefinitely for this function
759 
760   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
761 
762   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
763   if (OMD->isDirectMethod()) {
764     Fn->setVisibility(llvm::Function::HiddenVisibility);
765     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
766     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
767   } else {
768     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
769   }
770 
771   args.push_back(OMD->getSelfDecl());
772   if (!OMD->isDirectMethod())
773     args.push_back(OMD->getCmdDecl());
774 
775   args.append(OMD->param_begin(), OMD->param_end());
776 
777   CurGD = OMD;
778   CurEHLocation = OMD->getEndLoc();
779 
780   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
781                 OMD->getLocation(), StartLoc);
782 
783   if (OMD->isDirectMethod()) {
784     // This function is a direct call, it has to implement a nil check
785     // on entry.
786     //
787     // TODO: possibly have several entry points to elide the check
788     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
789   }
790 
791   // In ARC, certain methods get an extra cleanup.
792   if (CGM.getLangOpts().ObjCAutoRefCount &&
793       OMD->isInstanceMethod() &&
794       OMD->getSelector().isUnarySelector()) {
795     const IdentifierInfo *ident =
796       OMD->getSelector().getIdentifierInfoForSlot(0);
797     if (ident->isStr("dealloc"))
798       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
799   }
800 }
801 
802 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803                                               LValue lvalue, QualType type);
804 
805 /// Generate an Objective-C method.  An Objective-C method is a C function with
806 /// its pointer, name, and types registered in the class structure.
807 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
808   StartObjCMethod(OMD, OMD->getClassInterface());
809   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
810   assert(isa<CompoundStmt>(OMD->getBody()));
811   incrementProfileCounter(OMD->getBody());
812   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
813   FinishFunction(OMD->getBodyRBrace());
814 }
815 
816 /// emitStructGetterCall - Call the runtime function to load a property
817 /// into the return value slot.
818 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
819                                  bool isAtomic, bool hasStrong) {
820   ASTContext &Context = CGF.getContext();
821 
822   llvm::Value *src =
823       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
824           .getPointer(CGF);
825 
826   // objc_copyStruct (ReturnValue, &structIvar,
827   //                  sizeof (Type of Ivar), isAtomic, false);
828   CallArgList args;
829 
830   llvm::Value *dest = CGF.ReturnValue.emitRawPointer(CGF);
831   args.add(RValue::get(dest), Context.VoidPtrTy);
832   args.add(RValue::get(src), Context.VoidPtrTy);
833 
834   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
835   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
836   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
837   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
838 
839   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
840   CGCallee callee = CGCallee::forDirect(fn);
841   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
842                callee, ReturnValueSlot(), args);
843 }
844 
845 /// Determine whether the given architecture supports unaligned atomic
846 /// accesses.  They don't have to be fast, just faster than a function
847 /// call and a mutex.
848 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
849   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
850   // currently supported by the backend.)
851   return false;
852 }
853 
854 /// Return the maximum size that permits atomic accesses for the given
855 /// architecture.
856 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
857                                         llvm::Triple::ArchType arch) {
858   // ARM has 8-byte atomic accesses, but it's not clear whether we
859   // want to rely on them here.
860 
861   // In the default case, just assume that any size up to a pointer is
862   // fine given adequate alignment.
863   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
864 }
865 
866 namespace {
867   class PropertyImplStrategy {
868   public:
869     enum StrategyKind {
870       /// The 'native' strategy is to use the architecture's provided
871       /// reads and writes.
872       Native,
873 
874       /// Use objc_setProperty and objc_getProperty.
875       GetSetProperty,
876 
877       /// Use objc_setProperty for the setter, but use expression
878       /// evaluation for the getter.
879       SetPropertyAndExpressionGet,
880 
881       /// Use objc_copyStruct.
882       CopyStruct,
883 
884       /// The 'expression' strategy is to emit normal assignment or
885       /// lvalue-to-rvalue expressions.
886       Expression
887     };
888 
889     StrategyKind getKind() const { return StrategyKind(Kind); }
890 
891     bool hasStrongMember() const { return HasStrong; }
892     bool isAtomic() const { return IsAtomic; }
893     bool isCopy() const { return IsCopy; }
894 
895     CharUnits getIvarSize() const { return IvarSize; }
896     CharUnits getIvarAlignment() const { return IvarAlignment; }
897 
898     PropertyImplStrategy(CodeGenModule &CGM,
899                          const ObjCPropertyImplDecl *propImpl);
900 
901   private:
902     LLVM_PREFERRED_TYPE(StrategyKind)
903     unsigned Kind : 8;
904     LLVM_PREFERRED_TYPE(bool)
905     unsigned IsAtomic : 1;
906     LLVM_PREFERRED_TYPE(bool)
907     unsigned IsCopy : 1;
908     LLVM_PREFERRED_TYPE(bool)
909     unsigned HasStrong : 1;
910 
911     CharUnits IvarSize;
912     CharUnits IvarAlignment;
913   };
914 }
915 
916 /// Pick an implementation strategy for the given property synthesis.
917 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
918                                      const ObjCPropertyImplDecl *propImpl) {
919   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
920   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
921 
922   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
923   IsAtomic = prop->isAtomic();
924   HasStrong = false; // doesn't matter here.
925 
926   // Evaluate the ivar's size and alignment.
927   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
928   QualType ivarType = ivar->getType();
929   auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
930   IvarSize = TInfo.Width;
931   IvarAlignment = TInfo.Align;
932 
933   // If we have a copy property, we always have to use setProperty.
934   // If the property is atomic we need to use getProperty, but in
935   // the nonatomic case we can just use expression.
936   if (IsCopy) {
937     Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
938     return;
939   }
940 
941   // Handle retain.
942   if (setterKind == ObjCPropertyDecl::Retain) {
943     // In GC-only, there's nothing special that needs to be done.
944     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
945       // fallthrough
946 
947     // In ARC, if the property is non-atomic, use expression emission,
948     // which translates to objc_storeStrong.  This isn't required, but
949     // it's slightly nicer.
950     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
951       // Using standard expression emission for the setter is only
952       // acceptable if the ivar is __strong, which won't be true if
953       // the property is annotated with __attribute__((NSObject)).
954       // TODO: falling all the way back to objc_setProperty here is
955       // just laziness, though;  we could still use objc_storeStrong
956       // if we hacked it right.
957       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
958         Kind = Expression;
959       else
960         Kind = SetPropertyAndExpressionGet;
961       return;
962 
963     // Otherwise, we need to at least use setProperty.  However, if
964     // the property isn't atomic, we can use normal expression
965     // emission for the getter.
966     } else if (!IsAtomic) {
967       Kind = SetPropertyAndExpressionGet;
968       return;
969 
970     // Otherwise, we have to use both setProperty and getProperty.
971     } else {
972       Kind = GetSetProperty;
973       return;
974     }
975   }
976 
977   // If we're not atomic, just use expression accesses.
978   if (!IsAtomic) {
979     Kind = Expression;
980     return;
981   }
982 
983   // Properties on bitfield ivars need to be emitted using expression
984   // accesses even if they're nominally atomic.
985   if (ivar->isBitField()) {
986     Kind = Expression;
987     return;
988   }
989 
990   // GC-qualified or ARC-qualified ivars need to be emitted as
991   // expressions.  This actually works out to being atomic anyway,
992   // except for ARC __strong, but that should trigger the above code.
993   if (ivarType.hasNonTrivialObjCLifetime() ||
994       (CGM.getLangOpts().getGC() &&
995        CGM.getContext().getObjCGCAttrKind(ivarType))) {
996     Kind = Expression;
997     return;
998   }
999 
1000   // Compute whether the ivar has strong members.
1001   if (CGM.getLangOpts().getGC())
1002     if (const RecordType *recordType = ivarType->getAs<RecordType>())
1003       HasStrong = recordType->getDecl()->hasObjectMember();
1004 
1005   // We can never access structs with object members with a native
1006   // access, because we need to use write barriers.  This is what
1007   // objc_copyStruct is for.
1008   if (HasStrong) {
1009     Kind = CopyStruct;
1010     return;
1011   }
1012 
1013   // Otherwise, this is target-dependent and based on the size and
1014   // alignment of the ivar.
1015 
1016   // If the size of the ivar is not a power of two, give up.  We don't
1017   // want to get into the business of doing compare-and-swaps.
1018   if (!IvarSize.isPowerOfTwo()) {
1019     Kind = CopyStruct;
1020     return;
1021   }
1022 
1023   llvm::Triple::ArchType arch =
1024     CGM.getTarget().getTriple().getArch();
1025 
1026   // Most architectures require memory to fit within a single cache
1027   // line, so the alignment has to be at least the size of the access.
1028   // Otherwise we have to grab a lock.
1029   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1030     Kind = CopyStruct;
1031     return;
1032   }
1033 
1034   // If the ivar's size exceeds the architecture's maximum atomic
1035   // access size, we have to use CopyStruct.
1036   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1037     Kind = CopyStruct;
1038     return;
1039   }
1040 
1041   // Otherwise, we can use native loads and stores.
1042   Kind = Native;
1043 }
1044 
1045 /// Generate an Objective-C property getter function.
1046 ///
1047 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1048 /// is illegal within a category.
1049 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1050                                          const ObjCPropertyImplDecl *PID) {
1051   llvm::Constant *AtomicHelperFn =
1052       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1053   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1054   assert(OMD && "Invalid call to generate getter (empty method)");
1055   StartObjCMethod(OMD, IMP->getClassInterface());
1056 
1057   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1058 
1059   FinishFunction(OMD->getEndLoc());
1060 }
1061 
1062 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1063   const Expr *getter = propImpl->getGetterCXXConstructor();
1064   if (!getter) return true;
1065 
1066   // Sema only makes only of these when the ivar has a C++ class type,
1067   // so the form is pretty constrained.
1068 
1069   // If the property has a reference type, we might just be binding a
1070   // reference, in which case the result will be a gl-value.  We should
1071   // treat this as a non-trivial operation.
1072   if (getter->isGLValue())
1073     return false;
1074 
1075   // If we selected a trivial copy-constructor, we're okay.
1076   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1077     return (construct->getConstructor()->isTrivial());
1078 
1079   // The constructor might require cleanups (in which case it's never
1080   // trivial).
1081   assert(isa<ExprWithCleanups>(getter));
1082   return false;
1083 }
1084 
1085 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1086 /// copy the ivar into the resturn slot.
1087 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1088                                           llvm::Value *returnAddr,
1089                                           ObjCIvarDecl *ivar,
1090                                           llvm::Constant *AtomicHelperFn) {
1091   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1092   //                           AtomicHelperFn);
1093   CallArgList args;
1094 
1095   // The 1st argument is the return Slot.
1096   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1097 
1098   // The 2nd argument is the address of the ivar.
1099   llvm::Value *ivarAddr =
1100       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1101           .getPointer(CGF);
1102   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1103 
1104   // Third argument is the helper function.
1105   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1106 
1107   llvm::FunctionCallee copyCppAtomicObjectFn =
1108       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1109   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1110   CGF.EmitCall(
1111       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1112                callee, ReturnValueSlot(), args);
1113 }
1114 
1115 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1116 // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1117 // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1118 // being removed from the direct method ABI as the getter/setter caller would
1119 // never load one. For non-direct methods, this emits a load of the implicit
1120 // `_cmd` storage.
1121 static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1122                                                    ObjCMethodDecl *MD) {
1123   if (MD->isDirectMethod()) {
1124     // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1125     // value. This will be passed to objc_getProperty/objc_setProperty, which
1126     // has not appeared bothered by the `_cmd` argument being undefined before.
1127     llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1128     return llvm::PoisonValue::get(selType);
1129   }
1130 
1131   return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1132 }
1133 
1134 void
1135 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1136                                         const ObjCPropertyImplDecl *propImpl,
1137                                         const ObjCMethodDecl *GetterMethodDecl,
1138                                         llvm::Constant *AtomicHelperFn) {
1139 
1140   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1141 
1142   if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1143     if (!AtomicHelperFn) {
1144       LValue Src =
1145           EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1146       LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1147       callCStructCopyConstructor(Dst, Src);
1148     } else {
1149       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1150       emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1151                                     ivar, AtomicHelperFn);
1152     }
1153     return;
1154   }
1155 
1156   // If there's a non-trivial 'get' expression, we just have to emit that.
1157   if (!hasTrivialGetExpr(propImpl)) {
1158     if (!AtomicHelperFn) {
1159       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1160                                      propImpl->getGetterCXXConstructor(),
1161                                      /* NRVOCandidate=*/nullptr);
1162       EmitReturnStmt(*ret);
1163     }
1164     else {
1165       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1166       emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1167                                     ivar, AtomicHelperFn);
1168     }
1169     return;
1170   }
1171 
1172   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1173   QualType propType = prop->getType();
1174   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1175 
1176   // Pick an implementation strategy.
1177   PropertyImplStrategy strategy(CGM, propImpl);
1178   switch (strategy.getKind()) {
1179   case PropertyImplStrategy::Native: {
1180     // We don't need to do anything for a zero-size struct.
1181     if (strategy.getIvarSize().isZero())
1182       return;
1183 
1184     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1185 
1186     // Currently, all atomic accesses have to be through integer
1187     // types, so there's no point in trying to pick a prettier type.
1188     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1189     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1190 
1191     // Perform an atomic load.  This does not impose ordering constraints.
1192     Address ivarAddr = LV.getAddress();
1193     ivarAddr = ivarAddr.withElementType(bitcastType);
1194     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1195     load->setAtomic(llvm::AtomicOrdering::Unordered);
1196 
1197     // Store that value into the return address.  Doing this with a
1198     // bitcast is likely to produce some pretty ugly IR, but it's not
1199     // the *most* terrible thing in the world.
1200     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1201     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1202     llvm::Value *ivarVal = load;
1203     if (ivarSize > retTySize) {
1204       bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1205       ivarVal = Builder.CreateTrunc(load, bitcastType);
1206     }
1207     Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType));
1208 
1209     // Make sure we don't do an autorelease.
1210     AutoreleaseResult = false;
1211     return;
1212   }
1213 
1214   case PropertyImplStrategy::GetSetProperty: {
1215     llvm::FunctionCallee getPropertyFn =
1216         CGM.getObjCRuntime().GetPropertyGetFunction();
1217     if (!getPropertyFn) {
1218       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1219       return;
1220     }
1221     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1222 
1223     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1224     // FIXME: Can't this be simpler? This might even be worse than the
1225     // corresponding gcc code.
1226     llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1227     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1228     llvm::Value *ivarOffset =
1229         EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1230 
1231     CallArgList args;
1232     args.add(RValue::get(self), getContext().getObjCIdType());
1233     args.add(RValue::get(cmd), getContext().getObjCSelType());
1234     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1235     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1236              getContext().BoolTy);
1237 
1238     // FIXME: We shouldn't need to get the function info here, the
1239     // runtime already should have computed it to build the function.
1240     llvm::CallBase *CallInstruction;
1241     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1242                              getContext().getObjCIdType(), args),
1243                          callee, ReturnValueSlot(), args, &CallInstruction);
1244     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1245       call->setTailCall();
1246 
1247     // We need to fix the type here. Ivars with copy & retain are
1248     // always objects so we don't need to worry about complex or
1249     // aggregates.
1250     RV = RValue::get(Builder.CreateBitCast(
1251         RV.getScalarVal(),
1252         getTypes().ConvertType(getterMethod->getReturnType())));
1253 
1254     EmitReturnOfRValue(RV, propType);
1255 
1256     // objc_getProperty does an autorelease, so we should suppress ours.
1257     AutoreleaseResult = false;
1258 
1259     return;
1260   }
1261 
1262   case PropertyImplStrategy::CopyStruct:
1263     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1264                          strategy.hasStrongMember());
1265     return;
1266 
1267   case PropertyImplStrategy::Expression:
1268   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1269     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1270 
1271     QualType ivarType = ivar->getType();
1272     switch (getEvaluationKind(ivarType)) {
1273     case TEK_Complex: {
1274       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1275       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1276                          /*init*/ true);
1277       return;
1278     }
1279     case TEK_Aggregate: {
1280       // The return value slot is guaranteed to not be aliased, but
1281       // that's not necessarily the same as "on the stack", so
1282       // we still potentially need objc_memmove_collectable.
1283       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1284                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1285       return;
1286     }
1287     case TEK_Scalar: {
1288       llvm::Value *value;
1289       if (propType->isReferenceType()) {
1290         value = LV.getAddress().emitRawPointer(*this);
1291       } else {
1292         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1293         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1294           if (getLangOpts().ObjCAutoRefCount) {
1295             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1296           } else {
1297             value = EmitARCLoadWeak(LV.getAddress());
1298           }
1299 
1300         // Otherwise we want to do a simple load, suppressing the
1301         // final autorelease.
1302         } else {
1303           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1304           AutoreleaseResult = false;
1305         }
1306 
1307         value = Builder.CreateBitCast(
1308             value, ConvertType(GetterMethodDecl->getReturnType()));
1309       }
1310 
1311       EmitReturnOfRValue(RValue::get(value), propType);
1312       return;
1313     }
1314     }
1315     llvm_unreachable("bad evaluation kind");
1316   }
1317 
1318   }
1319   llvm_unreachable("bad @property implementation strategy!");
1320 }
1321 
1322 /// emitStructSetterCall - Call the runtime function to store the value
1323 /// from the first formal parameter into the given ivar.
1324 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1325                                  ObjCIvarDecl *ivar) {
1326   // objc_copyStruct (&structIvar, &Arg,
1327   //                  sizeof (struct something), true, false);
1328   CallArgList args;
1329 
1330   // The first argument is the address of the ivar.
1331   llvm::Value *ivarAddr =
1332       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1333           .getPointer(CGF);
1334   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1335   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1336 
1337   // The second argument is the address of the parameter variable.
1338   ParmVarDecl *argVar = *OMD->param_begin();
1339   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1340                      argVar->getType().getNonReferenceType(), VK_LValue,
1341                      SourceLocation());
1342   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1343   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1344 
1345   // The third argument is the sizeof the type.
1346   llvm::Value *size =
1347     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1348   args.add(RValue::get(size), CGF.getContext().getSizeType());
1349 
1350   // The fourth argument is the 'isAtomic' flag.
1351   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1352 
1353   // The fifth argument is the 'hasStrong' flag.
1354   // FIXME: should this really always be false?
1355   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1356 
1357   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1358   CGCallee callee = CGCallee::forDirect(fn);
1359   CGF.EmitCall(
1360       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1361                callee, ReturnValueSlot(), args);
1362 }
1363 
1364 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1365 /// the value from the first formal parameter into the given ivar, using
1366 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1367 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1368                                           ObjCMethodDecl *OMD,
1369                                           ObjCIvarDecl *ivar,
1370                                           llvm::Constant *AtomicHelperFn) {
1371   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1372   //                           AtomicHelperFn);
1373   CallArgList args;
1374 
1375   // The first argument is the address of the ivar.
1376   llvm::Value *ivarAddr =
1377       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1378           .getPointer(CGF);
1379   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1380 
1381   // The second argument is the address of the parameter variable.
1382   ParmVarDecl *argVar = *OMD->param_begin();
1383   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1384                      argVar->getType().getNonReferenceType(), VK_LValue,
1385                      SourceLocation());
1386   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1387   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1388 
1389   // Third argument is the helper function.
1390   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1391 
1392   llvm::FunctionCallee fn =
1393       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1394   CGCallee callee = CGCallee::forDirect(fn);
1395   CGF.EmitCall(
1396       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1397                callee, ReturnValueSlot(), args);
1398 }
1399 
1400 
1401 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1402   Expr *setter = PID->getSetterCXXAssignment();
1403   if (!setter) return true;
1404 
1405   // Sema only makes only of these when the ivar has a C++ class type,
1406   // so the form is pretty constrained.
1407 
1408   // An operator call is trivial if the function it calls is trivial.
1409   // This also implies that there's nothing non-trivial going on with
1410   // the arguments, because operator= can only be trivial if it's a
1411   // synthesized assignment operator and therefore both parameters are
1412   // references.
1413   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1414     if (const FunctionDecl *callee
1415           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1416       if (callee->isTrivial())
1417         return true;
1418     return false;
1419   }
1420 
1421   assert(isa<ExprWithCleanups>(setter));
1422   return false;
1423 }
1424 
1425 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1426   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1427     return false;
1428   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1429 }
1430 
1431 void
1432 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1433                                         const ObjCPropertyImplDecl *propImpl,
1434                                         llvm::Constant *AtomicHelperFn) {
1435   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1436   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1437 
1438   if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1439     ParmVarDecl *PVD = *setterMethod->param_begin();
1440     if (!AtomicHelperFn) {
1441       // Call the move assignment operator instead of calling the copy
1442       // assignment operator and destructor.
1443       LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar,
1444                                      /*quals*/ 0);
1445       LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1446       callCStructMoveAssignmentOperator(Dst, Src);
1447     } else {
1448       // If atomic, assignment is called via a locking api.
1449       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1450     }
1451     // Decativate the destructor for the setter parameter.
1452     DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1453     return;
1454   }
1455 
1456   // Just use the setter expression if Sema gave us one and it's
1457   // non-trivial.
1458   if (!hasTrivialSetExpr(propImpl)) {
1459     if (!AtomicHelperFn)
1460       // If non-atomic, assignment is called directly.
1461       EmitStmt(propImpl->getSetterCXXAssignment());
1462     else
1463       // If atomic, assignment is called via a locking api.
1464       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1465                                     AtomicHelperFn);
1466     return;
1467   }
1468 
1469   PropertyImplStrategy strategy(CGM, propImpl);
1470   switch (strategy.getKind()) {
1471   case PropertyImplStrategy::Native: {
1472     // We don't need to do anything for a zero-size struct.
1473     if (strategy.getIvarSize().isZero())
1474       return;
1475 
1476     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1477 
1478     LValue ivarLValue =
1479       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1480     Address ivarAddr = ivarLValue.getAddress();
1481 
1482     // Currently, all atomic accesses have to be through integer
1483     // types, so there's no point in trying to pick a prettier type.
1484     llvm::Type *castType = llvm::Type::getIntNTy(
1485         getLLVMContext(), getContext().toBits(strategy.getIvarSize()));
1486 
1487     // Cast both arguments to the chosen operation type.
1488     argAddr = argAddr.withElementType(castType);
1489     ivarAddr = ivarAddr.withElementType(castType);
1490 
1491     llvm::Value *load = Builder.CreateLoad(argAddr);
1492 
1493     // Perform an atomic store.  There are no memory ordering requirements.
1494     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1495     store->setAtomic(llvm::AtomicOrdering::Unordered);
1496     return;
1497   }
1498 
1499   case PropertyImplStrategy::GetSetProperty:
1500   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1501 
1502     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1503     llvm::FunctionCallee setPropertyFn = nullptr;
1504     if (UseOptimizedSetter(CGM)) {
1505       // 10.8 and iOS 6.0 code and GC is off
1506       setOptimizedPropertyFn =
1507           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1508               strategy.isAtomic(), strategy.isCopy());
1509       if (!setOptimizedPropertyFn) {
1510         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1511         return;
1512       }
1513     }
1514     else {
1515       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1516       if (!setPropertyFn) {
1517         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1518         return;
1519       }
1520     }
1521 
1522     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1523     //                       <is-atomic>, <is-copy>).
1524     llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1525     llvm::Value *self =
1526       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1527     llvm::Value *ivarOffset =
1528         EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1529     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1530     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1531     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1532 
1533     CallArgList args;
1534     args.add(RValue::get(self), getContext().getObjCIdType());
1535     args.add(RValue::get(cmd), getContext().getObjCSelType());
1536     if (setOptimizedPropertyFn) {
1537       args.add(RValue::get(arg), getContext().getObjCIdType());
1538       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1539       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1540       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1541                callee, ReturnValueSlot(), args);
1542     } else {
1543       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1544       args.add(RValue::get(arg), getContext().getObjCIdType());
1545       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1546                getContext().BoolTy);
1547       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1548                getContext().BoolTy);
1549       // FIXME: We shouldn't need to get the function info here, the runtime
1550       // already should have computed it to build the function.
1551       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1552       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1553                callee, ReturnValueSlot(), args);
1554     }
1555 
1556     return;
1557   }
1558 
1559   case PropertyImplStrategy::CopyStruct:
1560     emitStructSetterCall(*this, setterMethod, ivar);
1561     return;
1562 
1563   case PropertyImplStrategy::Expression:
1564     break;
1565   }
1566 
1567   // Otherwise, fake up some ASTs and emit a normal assignment.
1568   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1569   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1570                    VK_LValue, SourceLocation());
1571   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1572                             CK_LValueToRValue, &self, VK_PRValue,
1573                             FPOptionsOverride());
1574   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1575                           SourceLocation(), SourceLocation(),
1576                           &selfLoad, true, true);
1577 
1578   ParmVarDecl *argDecl = *setterMethod->param_begin();
1579   QualType argType = argDecl->getType().getNonReferenceType();
1580   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1581                   SourceLocation());
1582   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1583                            argType.getUnqualifiedType(), CK_LValueToRValue,
1584                            &arg, VK_PRValue, FPOptionsOverride());
1585 
1586   // The property type can differ from the ivar type in some situations with
1587   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1588   // The following absurdity is just to ensure well-formed IR.
1589   CastKind argCK = CK_NoOp;
1590   if (ivarRef.getType()->isObjCObjectPointerType()) {
1591     if (argLoad.getType()->isObjCObjectPointerType())
1592       argCK = CK_BitCast;
1593     else if (argLoad.getType()->isBlockPointerType())
1594       argCK = CK_BlockPointerToObjCPointerCast;
1595     else
1596       argCK = CK_CPointerToObjCPointerCast;
1597   } else if (ivarRef.getType()->isBlockPointerType()) {
1598      if (argLoad.getType()->isBlockPointerType())
1599       argCK = CK_BitCast;
1600     else
1601       argCK = CK_AnyPointerToBlockPointerCast;
1602   } else if (ivarRef.getType()->isPointerType()) {
1603     argCK = CK_BitCast;
1604   } else if (argLoad.getType()->isAtomicType() &&
1605              !ivarRef.getType()->isAtomicType()) {
1606     argCK = CK_AtomicToNonAtomic;
1607   } else if (!argLoad.getType()->isAtomicType() &&
1608              ivarRef.getType()->isAtomicType()) {
1609     argCK = CK_NonAtomicToAtomic;
1610   }
1611   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1612                            &argLoad, VK_PRValue, FPOptionsOverride());
1613   Expr *finalArg = &argLoad;
1614   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1615                                            argLoad.getType()))
1616     finalArg = &argCast;
1617 
1618   BinaryOperator *assign = BinaryOperator::Create(
1619       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1620       VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1621   EmitStmt(assign);
1622 }
1623 
1624 /// Generate an Objective-C property setter function.
1625 ///
1626 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1627 /// is illegal within a category.
1628 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1629                                          const ObjCPropertyImplDecl *PID) {
1630   llvm::Constant *AtomicHelperFn =
1631       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1632   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1633   assert(OMD && "Invalid call to generate setter (empty method)");
1634   StartObjCMethod(OMD, IMP->getClassInterface());
1635 
1636   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1637 
1638   FinishFunction(OMD->getEndLoc());
1639 }
1640 
1641 namespace {
1642   struct DestroyIvar final : EHScopeStack::Cleanup {
1643   private:
1644     llvm::Value *addr;
1645     const ObjCIvarDecl *ivar;
1646     CodeGenFunction::Destroyer *destroyer;
1647     bool useEHCleanupForArray;
1648   public:
1649     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1650                 CodeGenFunction::Destroyer *destroyer,
1651                 bool useEHCleanupForArray)
1652       : addr(addr), ivar(ivar), destroyer(destroyer),
1653         useEHCleanupForArray(useEHCleanupForArray) {}
1654 
1655     void Emit(CodeGenFunction &CGF, Flags flags) override {
1656       LValue lvalue
1657         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1658       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1659                       flags.isForNormalCleanup() && useEHCleanupForArray);
1660     }
1661   };
1662 }
1663 
1664 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1665 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1666                                       Address addr,
1667                                       QualType type) {
1668   llvm::Value *null = getNullForVariable(addr);
1669   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1670 }
1671 
1672 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1673                                   ObjCImplementationDecl *impl) {
1674   CodeGenFunction::RunCleanupsScope scope(CGF);
1675 
1676   llvm::Value *self = CGF.LoadObjCSelf();
1677 
1678   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1679   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1680        ivar; ivar = ivar->getNextIvar()) {
1681     QualType type = ivar->getType();
1682 
1683     // Check whether the ivar is a destructible type.
1684     QualType::DestructionKind dtorKind = type.isDestructedType();
1685     if (!dtorKind) continue;
1686 
1687     CodeGenFunction::Destroyer *destroyer = nullptr;
1688 
1689     // Use a call to objc_storeStrong to destroy strong ivars, for the
1690     // general benefit of the tools.
1691     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1692       destroyer = destroyARCStrongWithStore;
1693 
1694     // Otherwise use the default for the destruction kind.
1695     } else {
1696       destroyer = CGF.getDestroyer(dtorKind);
1697     }
1698 
1699     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1700 
1701     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1702                                          cleanupKind & EHCleanup);
1703   }
1704 
1705   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1706 }
1707 
1708 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1709                                                  ObjCMethodDecl *MD,
1710                                                  bool ctor) {
1711   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1712   StartObjCMethod(MD, IMP->getClassInterface());
1713 
1714   // Emit .cxx_construct.
1715   if (ctor) {
1716     // Suppress the final autorelease in ARC.
1717     AutoreleaseResult = false;
1718 
1719     for (const auto *IvarInit : IMP->inits()) {
1720       FieldDecl *Field = IvarInit->getAnyMember();
1721       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1722       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1723                                     LoadObjCSelf(), Ivar, 0);
1724       EmitAggExpr(IvarInit->getInit(),
1725                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1726                                           AggValueSlot::DoesNotNeedGCBarriers,
1727                                           AggValueSlot::IsNotAliased,
1728                                           AggValueSlot::DoesNotOverlap));
1729     }
1730     // constructor returns 'self'.
1731     CodeGenTypes &Types = CGM.getTypes();
1732     QualType IdTy(CGM.getContext().getObjCIdType());
1733     llvm::Value *SelfAsId =
1734       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1735     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1736 
1737   // Emit .cxx_destruct.
1738   } else {
1739     emitCXXDestructMethod(*this, IMP);
1740   }
1741   FinishFunction();
1742 }
1743 
1744 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1745   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1746   DeclRefExpr DRE(getContext(), Self,
1747                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1748                   Self->getType(), VK_LValue, SourceLocation());
1749   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1750 }
1751 
1752 QualType CodeGenFunction::TypeOfSelfObject() {
1753   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1754   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1755   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1756     getContext().getCanonicalType(selfDecl->getType()));
1757   return PTy->getPointeeType();
1758 }
1759 
1760 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1761   llvm::FunctionCallee EnumerationMutationFnPtr =
1762       CGM.getObjCRuntime().EnumerationMutationFunction();
1763   if (!EnumerationMutationFnPtr) {
1764     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1765     return;
1766   }
1767   CGCallee EnumerationMutationFn =
1768     CGCallee::forDirect(EnumerationMutationFnPtr);
1769 
1770   CGDebugInfo *DI = getDebugInfo();
1771   if (DI)
1772     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1773 
1774   RunCleanupsScope ForScope(*this);
1775 
1776   // The local variable comes into scope immediately.
1777   AutoVarEmission variable = AutoVarEmission::invalid();
1778   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1779     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1780 
1781   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1782 
1783   // Fast enumeration state.
1784   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1785   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1786   EmitNullInitialization(StatePtr, StateTy);
1787 
1788   // Number of elements in the items array.
1789   static const unsigned NumItems = 16;
1790 
1791   // Fetch the countByEnumeratingWithState:objects:count: selector.
1792   const IdentifierInfo *II[] = {
1793       &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1794       &CGM.getContext().Idents.get("objects"),
1795       &CGM.getContext().Idents.get("count")};
1796   Selector FastEnumSel =
1797       CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1798 
1799   QualType ItemsTy = getContext().getConstantArrayType(
1800       getContext().getObjCIdType(), llvm::APInt(32, NumItems), nullptr,
1801       ArraySizeModifier::Normal, 0);
1802   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1803 
1804   // Emit the collection pointer.  In ARC, we do a retain.
1805   llvm::Value *Collection;
1806   if (getLangOpts().ObjCAutoRefCount) {
1807     Collection = EmitARCRetainScalarExpr(S.getCollection());
1808 
1809     // Enter a cleanup to do the release.
1810     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1811   } else {
1812     Collection = EmitScalarExpr(S.getCollection());
1813   }
1814 
1815   // The 'continue' label needs to appear within the cleanup for the
1816   // collection object.
1817   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1818 
1819   // Send it our message:
1820   CallArgList Args;
1821 
1822   // The first argument is a temporary of the enumeration-state type.
1823   Args.add(RValue::get(StatePtr, *this), getContext().getPointerType(StateTy));
1824 
1825   // The second argument is a temporary array with space for NumItems
1826   // pointers.  We'll actually be loading elements from the array
1827   // pointer written into the control state; this buffer is so that
1828   // collections that *aren't* backed by arrays can still queue up
1829   // batches of elements.
1830   Args.add(RValue::get(ItemsPtr, *this), getContext().getPointerType(ItemsTy));
1831 
1832   // The third argument is the capacity of that temporary array.
1833   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1834   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1835   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1836 
1837   // Start the enumeration.
1838   RValue CountRV =
1839       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1840                                                getContext().getNSUIntegerType(),
1841                                                FastEnumSel, Collection, Args);
1842 
1843   // The initial number of objects that were returned in the buffer.
1844   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1845 
1846   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1847   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1848 
1849   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1850 
1851   // If the limit pointer was zero to begin with, the collection is
1852   // empty; skip all this. Set the branch weight assuming this has the same
1853   // probability of exiting the loop as any other loop exit.
1854   uint64_t EntryCount = getCurrentProfileCount();
1855   Builder.CreateCondBr(
1856       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1857       LoopInitBB,
1858       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1859 
1860   // Otherwise, initialize the loop.
1861   EmitBlock(LoopInitBB);
1862 
1863   // Save the initial mutations value.  This is the value at an
1864   // address that was written into the state object by
1865   // countByEnumeratingWithState:objects:count:.
1866   Address StateMutationsPtrPtr =
1867       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1868   llvm::Value *StateMutationsPtr
1869     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1870 
1871   llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1872   llvm::Value *initialMutations =
1873     Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1874                               getPointerAlign(), "forcoll.initial-mutations");
1875 
1876   // Start looping.  This is the point we return to whenever we have a
1877   // fresh, non-empty batch of objects.
1878   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1879   EmitBlock(LoopBodyBB);
1880 
1881   // The current index into the buffer.
1882   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1883   index->addIncoming(zero, LoopInitBB);
1884 
1885   // The current buffer size.
1886   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1887   count->addIncoming(initialBufferLimit, LoopInitBB);
1888 
1889   incrementProfileCounter(&S);
1890 
1891   // Check whether the mutations value has changed from where it was
1892   // at start.  StateMutationsPtr should actually be invariant between
1893   // refreshes.
1894   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1895   llvm::Value *currentMutations
1896     = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1897                                 getPointerAlign(), "statemutations");
1898 
1899   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1900   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1901 
1902   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1903                        WasNotMutatedBB, WasMutatedBB);
1904 
1905   // If so, call the enumeration-mutation function.
1906   EmitBlock(WasMutatedBB);
1907   llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1908   llvm::Value *V =
1909     Builder.CreateBitCast(Collection, ObjCIdType);
1910   CallArgList Args2;
1911   Args2.add(RValue::get(V), getContext().getObjCIdType());
1912   // FIXME: We shouldn't need to get the function info here, the runtime already
1913   // should have computed it to build the function.
1914   EmitCall(
1915           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1916            EnumerationMutationFn, ReturnValueSlot(), Args2);
1917 
1918   // Otherwise, or if the mutation function returns, just continue.
1919   EmitBlock(WasNotMutatedBB);
1920 
1921   // Initialize the element variable.
1922   RunCleanupsScope elementVariableScope(*this);
1923   bool elementIsVariable;
1924   LValue elementLValue;
1925   QualType elementType;
1926   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1927     // Initialize the variable, in case it's a __block variable or something.
1928     EmitAutoVarInit(variable);
1929 
1930     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1931     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1932                         D->getType(), VK_LValue, SourceLocation());
1933     elementLValue = EmitLValue(&tempDRE);
1934     elementType = D->getType();
1935     elementIsVariable = true;
1936 
1937     if (D->isARCPseudoStrong())
1938       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1939   } else {
1940     elementLValue = LValue(); // suppress warning
1941     elementType = cast<Expr>(S.getElement())->getType();
1942     elementIsVariable = false;
1943   }
1944   llvm::Type *convertedElementType = ConvertType(elementType);
1945 
1946   // Fetch the buffer out of the enumeration state.
1947   // TODO: this pointer should actually be invariant between
1948   // refreshes, which would help us do certain loop optimizations.
1949   Address StateItemsPtr =
1950       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1951   llvm::Value *EnumStateItems =
1952     Builder.CreateLoad(StateItemsPtr, "stateitems");
1953 
1954   // Fetch the value at the current index from the buffer.
1955   llvm::Value *CurrentItemPtr = Builder.CreateInBoundsGEP(
1956       ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1957   llvm::Value *CurrentItem =
1958     Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1959 
1960   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1961     // Before using an item from the collection, check that the implicit cast
1962     // from id to the element type is valid. This is done with instrumentation
1963     // roughly corresponding to:
1964     //
1965     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1966     const ObjCObjectPointerType *ObjPtrTy =
1967         elementType->getAsObjCInterfacePointerType();
1968     const ObjCInterfaceType *InterfaceTy =
1969         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1970     if (InterfaceTy) {
1971       SanitizerScope SanScope(this);
1972       auto &C = CGM.getContext();
1973       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1974       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1975       CallArgList IsKindOfClassArgs;
1976       llvm::Value *Cls =
1977           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1978       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1979       llvm::Value *IsClass =
1980           CGM.getObjCRuntime()
1981               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1982                                    IsKindOfClassSel, CurrentItem,
1983                                    IsKindOfClassArgs)
1984               .getScalarVal();
1985       llvm::Constant *StaticData[] = {
1986           EmitCheckSourceLocation(S.getBeginLoc()),
1987           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1988       EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1989                 SanitizerHandler::InvalidObjCCast,
1990                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1991     }
1992   }
1993 
1994   // Cast that value to the right type.
1995   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1996                                       "currentitem");
1997 
1998   // Make sure we have an l-value.  Yes, this gets evaluated every
1999   // time through the loop.
2000   if (!elementIsVariable) {
2001     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2002     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2003   } else {
2004     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2005                            /*isInit*/ true);
2006   }
2007 
2008   // If we do have an element variable, this assignment is the end of
2009   // its initialization.
2010   if (elementIsVariable)
2011     EmitAutoVarCleanups(variable);
2012 
2013   // Perform the loop body, setting up break and continue labels.
2014   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2015   {
2016     RunCleanupsScope Scope(*this);
2017     EmitStmt(S.getBody());
2018   }
2019   BreakContinueStack.pop_back();
2020 
2021   // Destroy the element variable now.
2022   elementVariableScope.ForceCleanup();
2023 
2024   // Check whether there are more elements.
2025   EmitBlock(AfterBody.getBlock());
2026 
2027   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2028 
2029   // First we check in the local buffer.
2030   llvm::Value *indexPlusOne =
2031       Builder.CreateNUWAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2032 
2033   // If we haven't overrun the buffer yet, we can continue.
2034   // Set the branch weights based on the simplifying assumption that this is
2035   // like a while-loop, i.e., ignoring that the false branch fetches more
2036   // elements and then returns to the loop.
2037   Builder.CreateCondBr(
2038       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2039       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2040 
2041   index->addIncoming(indexPlusOne, AfterBody.getBlock());
2042   count->addIncoming(count, AfterBody.getBlock());
2043 
2044   // Otherwise, we have to fetch more elements.
2045   EmitBlock(FetchMoreBB);
2046 
2047   CountRV =
2048       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2049                                                getContext().getNSUIntegerType(),
2050                                                FastEnumSel, Collection, Args);
2051 
2052   // If we got a zero count, we're done.
2053   llvm::Value *refetchCount = CountRV.getScalarVal();
2054 
2055   // (note that the message send might split FetchMoreBB)
2056   index->addIncoming(zero, Builder.GetInsertBlock());
2057   count->addIncoming(refetchCount, Builder.GetInsertBlock());
2058 
2059   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2060                        EmptyBB, LoopBodyBB);
2061 
2062   // No more elements.
2063   EmitBlock(EmptyBB);
2064 
2065   if (!elementIsVariable) {
2066     // If the element was not a declaration, set it to be null.
2067 
2068     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2069     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2070     EmitStoreThroughLValue(RValue::get(null), elementLValue);
2071   }
2072 
2073   if (DI)
2074     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2075 
2076   ForScope.ForceCleanup();
2077   EmitBlock(LoopEnd.getBlock());
2078 }
2079 
2080 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2081   CGM.getObjCRuntime().EmitTryStmt(*this, S);
2082 }
2083 
2084 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2085   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2086 }
2087 
2088 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2089                                               const ObjCAtSynchronizedStmt &S) {
2090   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2091 }
2092 
2093 namespace {
2094   struct CallObjCRelease final : EHScopeStack::Cleanup {
2095     CallObjCRelease(llvm::Value *object) : object(object) {}
2096     llvm::Value *object;
2097 
2098     void Emit(CodeGenFunction &CGF, Flags flags) override {
2099       // Releases at the end of the full-expression are imprecise.
2100       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2101     }
2102   };
2103 }
2104 
2105 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2106 /// release at the end of the full-expression.
2107 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2108                                                     llvm::Value *object) {
2109   // If we're in a conditional branch, we need to make the cleanup
2110   // conditional.
2111   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2112   return object;
2113 }
2114 
2115 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2116                                                            llvm::Value *value) {
2117   return EmitARCRetainAutorelease(type, value);
2118 }
2119 
2120 /// Given a number of pointers, inform the optimizer that they're
2121 /// being intrinsically used up until this point in the program.
2122 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2123   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2124   if (!fn)
2125     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2126 
2127   // This isn't really a "runtime" function, but as an intrinsic it
2128   // doesn't really matter as long as we align things up.
2129   EmitNounwindRuntimeCall(fn, values);
2130 }
2131 
2132 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2133 /// that has operand bundle "clang.arc.attachedcall".
2134 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2135   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2136   if (!fn)
2137     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2138   EmitNounwindRuntimeCall(fn, values);
2139 }
2140 
2141 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2142   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2143     // If the target runtime doesn't naturally support ARC, emit weak
2144     // references to the runtime support library.  We don't really
2145     // permit this to fail, but we need a particular relocation style.
2146     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2147         !CGM.getTriple().isOSBinFormatCOFF()) {
2148       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2149     }
2150   }
2151 }
2152 
2153 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2154                                          llvm::FunctionCallee RTF) {
2155   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2156 }
2157 
2158 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2159                                        CodeGenModule &CGM) {
2160   llvm::Function *fn = CGM.getIntrinsic(IntID);
2161   setARCRuntimeFunctionLinkage(CGM, fn);
2162   return fn;
2163 }
2164 
2165 /// Perform an operation having the signature
2166 ///   i8* (i8*)
2167 /// where a null input causes a no-op and returns null.
2168 static llvm::Value *emitARCValueOperation(
2169     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2170     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2171     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2172   if (isa<llvm::ConstantPointerNull>(value))
2173     return value;
2174 
2175   if (!fn)
2176     fn = getARCIntrinsic(IntID, CGF.CGM);
2177 
2178   // Cast the argument to 'id'.
2179   llvm::Type *origType = returnType ? returnType : value->getType();
2180   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2181 
2182   // Call the function.
2183   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2184   call->setTailCallKind(tailKind);
2185 
2186   // Cast the result back to the original type.
2187   return CGF.Builder.CreateBitCast(call, origType);
2188 }
2189 
2190 /// Perform an operation having the following signature:
2191 ///   i8* (i8**)
2192 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2193                                          llvm::Function *&fn,
2194                                          llvm::Intrinsic::ID IntID) {
2195   if (!fn)
2196     fn = getARCIntrinsic(IntID, CGF.CGM);
2197 
2198   return CGF.EmitNounwindRuntimeCall(fn, addr.emitRawPointer(CGF));
2199 }
2200 
2201 /// Perform an operation having the following signature:
2202 ///   i8* (i8**, i8*)
2203 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2204                                           llvm::Value *value,
2205                                           llvm::Function *&fn,
2206                                           llvm::Intrinsic::ID IntID,
2207                                           bool ignored) {
2208   assert(addr.getElementType() == value->getType());
2209 
2210   if (!fn)
2211     fn = getARCIntrinsic(IntID, CGF.CGM);
2212 
2213   llvm::Type *origType = value->getType();
2214 
2215   llvm::Value *args[] = {
2216       CGF.Builder.CreateBitCast(addr.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2217       CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)};
2218   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2219 
2220   if (ignored) return nullptr;
2221 
2222   return CGF.Builder.CreateBitCast(result, origType);
2223 }
2224 
2225 /// Perform an operation having the following signature:
2226 ///   void (i8**, i8**)
2227 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2228                                  llvm::Function *&fn,
2229                                  llvm::Intrinsic::ID IntID) {
2230   assert(dst.getType() == src.getType());
2231 
2232   if (!fn)
2233     fn = getARCIntrinsic(IntID, CGF.CGM);
2234 
2235   llvm::Value *args[] = {
2236       CGF.Builder.CreateBitCast(dst.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2237       CGF.Builder.CreateBitCast(src.emitRawPointer(CGF), CGF.Int8PtrPtrTy)};
2238   CGF.EmitNounwindRuntimeCall(fn, args);
2239 }
2240 
2241 /// Perform an operation having the signature
2242 ///   i8* (i8*)
2243 /// where a null input causes a no-op and returns null.
2244 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2245                                            llvm::Value *value,
2246                                            llvm::Type *returnType,
2247                                            llvm::FunctionCallee &fn,
2248                                            StringRef fnName) {
2249   if (isa<llvm::ConstantPointerNull>(value))
2250     return value;
2251 
2252   if (!fn) {
2253     llvm::FunctionType *fnType =
2254       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2255     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2256 
2257     // We have Native ARC, so set nonlazybind attribute for performance
2258     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2259       if (fnName == "objc_retain")
2260         f->addFnAttr(llvm::Attribute::NonLazyBind);
2261   }
2262 
2263   // Cast the argument to 'id'.
2264   llvm::Type *origType = returnType ? returnType : value->getType();
2265   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2266 
2267   // Call the function.
2268   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2269 
2270   // Mark calls to objc_autorelease as tail on the assumption that methods
2271   // overriding autorelease do not touch anything on the stack.
2272   if (fnName == "objc_autorelease")
2273     if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2274       Call->setTailCall();
2275 
2276   // Cast the result back to the original type.
2277   return CGF.Builder.CreateBitCast(Inst, origType);
2278 }
2279 
2280 /// Produce the code to do a retain.  Based on the type, calls one of:
2281 ///   call i8* \@objc_retain(i8* %value)
2282 ///   call i8* \@objc_retainBlock(i8* %value)
2283 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2284   if (type->isBlockPointerType())
2285     return EmitARCRetainBlock(value, /*mandatory*/ false);
2286   else
2287     return EmitARCRetainNonBlock(value);
2288 }
2289 
2290 /// Retain the given object, with normal retain semantics.
2291 ///   call i8* \@objc_retain(i8* %value)
2292 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2293   return emitARCValueOperation(*this, value, nullptr,
2294                                CGM.getObjCEntrypoints().objc_retain,
2295                                llvm::Intrinsic::objc_retain);
2296 }
2297 
2298 /// Retain the given block, with _Block_copy semantics.
2299 ///   call i8* \@objc_retainBlock(i8* %value)
2300 ///
2301 /// \param mandatory - If false, emit the call with metadata
2302 /// indicating that it's okay for the optimizer to eliminate this call
2303 /// if it can prove that the block never escapes except down the stack.
2304 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2305                                                  bool mandatory) {
2306   llvm::Value *result
2307     = emitARCValueOperation(*this, value, nullptr,
2308                             CGM.getObjCEntrypoints().objc_retainBlock,
2309                             llvm::Intrinsic::objc_retainBlock);
2310 
2311   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2312   // tell the optimizer that it doesn't need to do this copy if the
2313   // block doesn't escape, where being passed as an argument doesn't
2314   // count as escaping.
2315   if (!mandatory && isa<llvm::Instruction>(result)) {
2316     llvm::CallInst *call
2317       = cast<llvm::CallInst>(result->stripPointerCasts());
2318     assert(call->getCalledOperand() ==
2319            CGM.getObjCEntrypoints().objc_retainBlock);
2320 
2321     call->setMetadata("clang.arc.copy_on_escape",
2322                       llvm::MDNode::get(Builder.getContext(), std::nullopt));
2323   }
2324 
2325   return result;
2326 }
2327 
2328 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2329   // Fetch the void(void) inline asm which marks that we're going to
2330   // do something with the autoreleased return value.
2331   llvm::InlineAsm *&marker
2332     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2333   if (!marker) {
2334     StringRef assembly
2335       = CGF.CGM.getTargetCodeGenInfo()
2336            .getARCRetainAutoreleasedReturnValueMarker();
2337 
2338     // If we have an empty assembly string, there's nothing to do.
2339     if (assembly.empty()) {
2340 
2341     // Otherwise, at -O0, build an inline asm that we're going to call
2342     // in a moment.
2343     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2344       llvm::FunctionType *type =
2345         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2346 
2347       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2348 
2349     // If we're at -O1 and above, we don't want to litter the code
2350     // with this marker yet, so leave a breadcrumb for the ARC
2351     // optimizer to pick up.
2352     } else {
2353       const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2354       if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2355         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2356         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2357                                           retainRVMarkerKey, str);
2358       }
2359     }
2360   }
2361 
2362   // Call the marker asm if we made one, which we do only at -O0.
2363   if (marker)
2364     CGF.Builder.CreateCall(marker, std::nullopt,
2365                            CGF.getBundlesForFunclet(marker));
2366 }
2367 
2368 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2369                                                bool IsRetainRV,
2370                                                CodeGenFunction &CGF) {
2371   emitAutoreleasedReturnValueMarker(CGF);
2372 
2373   // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2374   // retainRV or claimRV calls in the IR. We currently do this only when the
2375   // optimization level isn't -O0 since global-isel, which is currently run at
2376   // -O0, doesn't know about the operand bundle.
2377   ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2378   llvm::Function *&EP = IsRetainRV
2379                             ? EPs.objc_retainAutoreleasedReturnValue
2380                             : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2381   llvm::Intrinsic::ID IID =
2382       IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2383                  : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2384   EP = getARCIntrinsic(IID, CGF.CGM);
2385 
2386   llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2387 
2388   // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2389   // the target backend knows how to handle the operand bundle.
2390   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2391       (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2392     llvm::Value *bundleArgs[] = {EP};
2393     llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2394     auto *oldCall = cast<llvm::CallBase>(value);
2395     llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2396         oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2397     newCall->copyMetadata(*oldCall);
2398     oldCall->replaceAllUsesWith(newCall);
2399     oldCall->eraseFromParent();
2400     CGF.EmitARCNoopIntrinsicUse(newCall);
2401     return newCall;
2402   }
2403 
2404   bool isNoTail =
2405       CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2406   llvm::CallInst::TailCallKind tailKind =
2407       isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2408   return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2409 }
2410 
2411 /// Retain the given object which is the result of a function call.
2412 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2413 ///
2414 /// Yes, this function name is one character away from a different
2415 /// call with completely different semantics.
2416 llvm::Value *
2417 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2418   return emitOptimizedARCReturnCall(value, true, *this);
2419 }
2420 
2421 /// Claim a possibly-autoreleased return value at +0.  This is only
2422 /// valid to do in contexts which do not rely on the retain to keep
2423 /// the object valid for all of its uses; for example, when
2424 /// the value is ignored, or when it is being assigned to an
2425 /// __unsafe_unretained variable.
2426 ///
2427 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2428 llvm::Value *
2429 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2430   return emitOptimizedARCReturnCall(value, false, *this);
2431 }
2432 
2433 /// Release the given object.
2434 ///   call void \@objc_release(i8* %value)
2435 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2436                                      ARCPreciseLifetime_t precise) {
2437   if (isa<llvm::ConstantPointerNull>(value)) return;
2438 
2439   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2440   if (!fn)
2441     fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2442 
2443   // Cast the argument to 'id'.
2444   value = Builder.CreateBitCast(value, Int8PtrTy);
2445 
2446   // Call objc_release.
2447   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2448 
2449   if (precise == ARCImpreciseLifetime) {
2450     call->setMetadata("clang.imprecise_release",
2451                       llvm::MDNode::get(Builder.getContext(), std::nullopt));
2452   }
2453 }
2454 
2455 /// Destroy a __strong variable.
2456 ///
2457 /// At -O0, emit a call to store 'null' into the address;
2458 /// instrumenting tools prefer this because the address is exposed,
2459 /// but it's relatively cumbersome to optimize.
2460 ///
2461 /// At -O1 and above, just load and call objc_release.
2462 ///
2463 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2464 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2465                                            ARCPreciseLifetime_t precise) {
2466   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2467     llvm::Value *null = getNullForVariable(addr);
2468     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2469     return;
2470   }
2471 
2472   llvm::Value *value = Builder.CreateLoad(addr);
2473   EmitARCRelease(value, precise);
2474 }
2475 
2476 /// Store into a strong object.  Always calls this:
2477 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2478 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2479                                                      llvm::Value *value,
2480                                                      bool ignored) {
2481   assert(addr.getElementType() == value->getType());
2482 
2483   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2484   if (!fn)
2485     fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2486 
2487   llvm::Value *args[] = {
2488       Builder.CreateBitCast(addr.emitRawPointer(*this), Int8PtrPtrTy),
2489       Builder.CreateBitCast(value, Int8PtrTy)};
2490   EmitNounwindRuntimeCall(fn, args);
2491 
2492   if (ignored) return nullptr;
2493   return value;
2494 }
2495 
2496 /// Store into a strong object.  Sometimes calls this:
2497 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2498 /// Other times, breaks it down into components.
2499 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2500                                                  llvm::Value *newValue,
2501                                                  bool ignored) {
2502   QualType type = dst.getType();
2503   bool isBlock = type->isBlockPointerType();
2504 
2505   // Use a store barrier at -O0 unless this is a block type or the
2506   // lvalue is inadequately aligned.
2507   if (shouldUseFusedARCCalls() &&
2508       !isBlock &&
2509       (dst.getAlignment().isZero() ||
2510        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2511     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2512   }
2513 
2514   // Otherwise, split it out.
2515 
2516   // Retain the new value.
2517   newValue = EmitARCRetain(type, newValue);
2518 
2519   // Read the old value.
2520   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2521 
2522   // Store.  We do this before the release so that any deallocs won't
2523   // see the old value.
2524   EmitStoreOfScalar(newValue, dst);
2525 
2526   // Finally, release the old value.
2527   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2528 
2529   return newValue;
2530 }
2531 
2532 /// Autorelease the given object.
2533 ///   call i8* \@objc_autorelease(i8* %value)
2534 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2535   return emitARCValueOperation(*this, value, nullptr,
2536                                CGM.getObjCEntrypoints().objc_autorelease,
2537                                llvm::Intrinsic::objc_autorelease);
2538 }
2539 
2540 /// Autorelease the given object.
2541 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2542 llvm::Value *
2543 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2544   return emitARCValueOperation(*this, value, nullptr,
2545                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2546                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2547                                llvm::CallInst::TCK_Tail);
2548 }
2549 
2550 /// Do a fused retain/autorelease of the given object.
2551 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2552 llvm::Value *
2553 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2554   return emitARCValueOperation(*this, value, nullptr,
2555                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2556                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2557                                llvm::CallInst::TCK_Tail);
2558 }
2559 
2560 /// Do a fused retain/autorelease of the given object.
2561 ///   call i8* \@objc_retainAutorelease(i8* %value)
2562 /// or
2563 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2564 ///   call i8* \@objc_autorelease(i8* %retain)
2565 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2566                                                        llvm::Value *value) {
2567   if (!type->isBlockPointerType())
2568     return EmitARCRetainAutoreleaseNonBlock(value);
2569 
2570   if (isa<llvm::ConstantPointerNull>(value)) return value;
2571 
2572   llvm::Type *origType = value->getType();
2573   value = Builder.CreateBitCast(value, Int8PtrTy);
2574   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2575   value = EmitARCAutorelease(value);
2576   return Builder.CreateBitCast(value, origType);
2577 }
2578 
2579 /// Do a fused retain/autorelease of the given object.
2580 ///   call i8* \@objc_retainAutorelease(i8* %value)
2581 llvm::Value *
2582 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2583   return emitARCValueOperation(*this, value, nullptr,
2584                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2585                                llvm::Intrinsic::objc_retainAutorelease);
2586 }
2587 
2588 /// i8* \@objc_loadWeak(i8** %addr)
2589 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2590 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2591   return emitARCLoadOperation(*this, addr,
2592                               CGM.getObjCEntrypoints().objc_loadWeak,
2593                               llvm::Intrinsic::objc_loadWeak);
2594 }
2595 
2596 /// i8* \@objc_loadWeakRetained(i8** %addr)
2597 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2598   return emitARCLoadOperation(*this, addr,
2599                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2600                               llvm::Intrinsic::objc_loadWeakRetained);
2601 }
2602 
2603 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2604 /// Returns %value.
2605 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2606                                                llvm::Value *value,
2607                                                bool ignored) {
2608   return emitARCStoreOperation(*this, addr, value,
2609                                CGM.getObjCEntrypoints().objc_storeWeak,
2610                                llvm::Intrinsic::objc_storeWeak, ignored);
2611 }
2612 
2613 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2614 /// Returns %value.  %addr is known to not have a current weak entry.
2615 /// Essentially equivalent to:
2616 ///   *addr = nil; objc_storeWeak(addr, value);
2617 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2618   // If we're initializing to null, just write null to memory; no need
2619   // to get the runtime involved.  But don't do this if optimization
2620   // is enabled, because accounting for this would make the optimizer
2621   // much more complicated.
2622   if (isa<llvm::ConstantPointerNull>(value) &&
2623       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2624     Builder.CreateStore(value, addr);
2625     return;
2626   }
2627 
2628   emitARCStoreOperation(*this, addr, value,
2629                         CGM.getObjCEntrypoints().objc_initWeak,
2630                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2631 }
2632 
2633 /// void \@objc_destroyWeak(i8** %addr)
2634 /// Essentially objc_storeWeak(addr, nil).
2635 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2636   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2637   if (!fn)
2638     fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2639 
2640   EmitNounwindRuntimeCall(fn, addr.emitRawPointer(*this));
2641 }
2642 
2643 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2644 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2645 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2646 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2647   emitARCCopyOperation(*this, dst, src,
2648                        CGM.getObjCEntrypoints().objc_moveWeak,
2649                        llvm::Intrinsic::objc_moveWeak);
2650 }
2651 
2652 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2653 /// Disregards the current value in %dest.  Essentially
2654 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2655 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2656   emitARCCopyOperation(*this, dst, src,
2657                        CGM.getObjCEntrypoints().objc_copyWeak,
2658                        llvm::Intrinsic::objc_copyWeak);
2659 }
2660 
2661 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2662                                             Address SrcAddr) {
2663   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2664   Object = EmitObjCConsumeObject(Ty, Object);
2665   EmitARCStoreWeak(DstAddr, Object, false);
2666 }
2667 
2668 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2669                                             Address SrcAddr) {
2670   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2671   Object = EmitObjCConsumeObject(Ty, Object);
2672   EmitARCStoreWeak(DstAddr, Object, false);
2673   EmitARCDestroyWeak(SrcAddr);
2674 }
2675 
2676 /// Produce the code to do a objc_autoreleasepool_push.
2677 ///   call i8* \@objc_autoreleasePoolPush(void)
2678 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2679   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2680   if (!fn)
2681     fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2682 
2683   return EmitNounwindRuntimeCall(fn);
2684 }
2685 
2686 /// Produce the code to do a primitive release.
2687 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2688 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2689   assert(value->getType() == Int8PtrTy);
2690 
2691   if (getInvokeDest()) {
2692     // Call the runtime method not the intrinsic if we are handling exceptions
2693     llvm::FunctionCallee &fn =
2694         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2695     if (!fn) {
2696       llvm::FunctionType *fnType =
2697         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2698       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2699       setARCRuntimeFunctionLinkage(CGM, fn);
2700     }
2701 
2702     // objc_autoreleasePoolPop can throw.
2703     EmitRuntimeCallOrInvoke(fn, value);
2704   } else {
2705     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2706     if (!fn)
2707       fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2708 
2709     EmitRuntimeCall(fn, value);
2710   }
2711 }
2712 
2713 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2714 /// Which is: [[NSAutoreleasePool alloc] init];
2715 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2716 /// init is declared as: - (id) init; in its NSObject super class.
2717 ///
2718 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2719   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2720   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2721   // [NSAutoreleasePool alloc]
2722   const IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2723   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2724   CallArgList Args;
2725   RValue AllocRV =
2726     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2727                                 getContext().getObjCIdType(),
2728                                 AllocSel, Receiver, Args);
2729 
2730   // [Receiver init]
2731   Receiver = AllocRV.getScalarVal();
2732   II = &CGM.getContext().Idents.get("init");
2733   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2734   RValue InitRV =
2735     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2736                                 getContext().getObjCIdType(),
2737                                 InitSel, Receiver, Args);
2738   return InitRV.getScalarVal();
2739 }
2740 
2741 /// Allocate the given objc object.
2742 ///   call i8* \@objc_alloc(i8* %value)
2743 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2744                                             llvm::Type *resultType) {
2745   return emitObjCValueOperation(*this, value, resultType,
2746                                 CGM.getObjCEntrypoints().objc_alloc,
2747                                 "objc_alloc");
2748 }
2749 
2750 /// Allocate the given objc object.
2751 ///   call i8* \@objc_allocWithZone(i8* %value)
2752 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2753                                                     llvm::Type *resultType) {
2754   return emitObjCValueOperation(*this, value, resultType,
2755                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2756                                 "objc_allocWithZone");
2757 }
2758 
2759 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2760                                                 llvm::Type *resultType) {
2761   return emitObjCValueOperation(*this, value, resultType,
2762                                 CGM.getObjCEntrypoints().objc_alloc_init,
2763                                 "objc_alloc_init");
2764 }
2765 
2766 /// Produce the code to do a primitive release.
2767 /// [tmp drain];
2768 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2769   const IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2770   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2771   CallArgList Args;
2772   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2773                               getContext().VoidTy, DrainSel, Arg, Args);
2774 }
2775 
2776 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2777                                               Address addr,
2778                                               QualType type) {
2779   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2780 }
2781 
2782 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2783                                                 Address addr,
2784                                                 QualType type) {
2785   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2786 }
2787 
2788 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2789                                      Address addr,
2790                                      QualType type) {
2791   CGF.EmitARCDestroyWeak(addr);
2792 }
2793 
2794 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2795                                           QualType type) {
2796   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2797   CGF.EmitARCIntrinsicUse(value);
2798 }
2799 
2800 /// Autorelease the given object.
2801 ///   call i8* \@objc_autorelease(i8* %value)
2802 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2803                                                   llvm::Type *returnType) {
2804   return emitObjCValueOperation(
2805       *this, value, returnType,
2806       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2807       "objc_autorelease");
2808 }
2809 
2810 /// Retain the given object, with normal retain semantics.
2811 ///   call i8* \@objc_retain(i8* %value)
2812 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2813                                                      llvm::Type *returnType) {
2814   return emitObjCValueOperation(
2815       *this, value, returnType,
2816       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2817 }
2818 
2819 /// Release the given object.
2820 ///   call void \@objc_release(i8* %value)
2821 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2822                                       ARCPreciseLifetime_t precise) {
2823   if (isa<llvm::ConstantPointerNull>(value)) return;
2824 
2825   llvm::FunctionCallee &fn =
2826       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2827   if (!fn) {
2828     llvm::FunctionType *fnType =
2829         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2830     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2831     setARCRuntimeFunctionLinkage(CGM, fn);
2832     // We have Native ARC, so set nonlazybind attribute for performance
2833     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2834       f->addFnAttr(llvm::Attribute::NonLazyBind);
2835   }
2836 
2837   // Cast the argument to 'id'.
2838   value = Builder.CreateBitCast(value, Int8PtrTy);
2839 
2840   // Call objc_release.
2841   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2842 
2843   if (precise == ARCImpreciseLifetime) {
2844     call->setMetadata("clang.imprecise_release",
2845                       llvm::MDNode::get(Builder.getContext(), std::nullopt));
2846   }
2847 }
2848 
2849 namespace {
2850   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2851     llvm::Value *Token;
2852 
2853     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2854 
2855     void Emit(CodeGenFunction &CGF, Flags flags) override {
2856       CGF.EmitObjCAutoreleasePoolPop(Token);
2857     }
2858   };
2859   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2860     llvm::Value *Token;
2861 
2862     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2863 
2864     void Emit(CodeGenFunction &CGF, Flags flags) override {
2865       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2866     }
2867   };
2868 }
2869 
2870 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2871   if (CGM.getLangOpts().ObjCAutoRefCount)
2872     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2873   else
2874     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2875 }
2876 
2877 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2878   switch (lifetime) {
2879   case Qualifiers::OCL_None:
2880   case Qualifiers::OCL_ExplicitNone:
2881   case Qualifiers::OCL_Strong:
2882   case Qualifiers::OCL_Autoreleasing:
2883     return true;
2884 
2885   case Qualifiers::OCL_Weak:
2886     return false;
2887   }
2888 
2889   llvm_unreachable("impossible lifetime!");
2890 }
2891 
2892 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2893                                                   LValue lvalue,
2894                                                   QualType type) {
2895   llvm::Value *result;
2896   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2897   if (shouldRetain) {
2898     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2899   } else {
2900     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2901     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2902   }
2903   return TryEmitResult(result, !shouldRetain);
2904 }
2905 
2906 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2907                                                   const Expr *e) {
2908   e = e->IgnoreParens();
2909   QualType type = e->getType();
2910 
2911   // If we're loading retained from a __strong xvalue, we can avoid
2912   // an extra retain/release pair by zeroing out the source of this
2913   // "move" operation.
2914   if (e->isXValue() &&
2915       !type.isConstQualified() &&
2916       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2917     // Emit the lvalue.
2918     LValue lv = CGF.EmitLValue(e);
2919 
2920     // Load the object pointer.
2921     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2922                                                SourceLocation()).getScalarVal();
2923 
2924     // Set the source pointer to NULL.
2925     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2926 
2927     return TryEmitResult(result, true);
2928   }
2929 
2930   // As a very special optimization, in ARC++, if the l-value is the
2931   // result of a non-volatile assignment, do a simple retain of the
2932   // result of the call to objc_storeWeak instead of reloading.
2933   if (CGF.getLangOpts().CPlusPlus &&
2934       !type.isVolatileQualified() &&
2935       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2936       isa<BinaryOperator>(e) &&
2937       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2938     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2939 
2940   // Try to emit code for scalar constant instead of emitting LValue and
2941   // loading it because we are not guaranteed to have an l-value. One of such
2942   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2943   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2944     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2945     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2946       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2947                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2948   }
2949 
2950   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2951 }
2952 
2953 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2954                                          llvm::Value *value)>
2955   ValueTransform;
2956 
2957 /// Insert code immediately after a call.
2958 
2959 // FIXME: We should find a way to emit the runtime call immediately
2960 // after the call is emitted to eliminate the need for this function.
2961 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2962                                               llvm::Value *value,
2963                                               ValueTransform doAfterCall,
2964                                               ValueTransform doFallback) {
2965   CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2966   auto *callBase = dyn_cast<llvm::CallBase>(value);
2967 
2968   if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2969     // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2970     value = doFallback(CGF, value);
2971   } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2972     // Place the retain immediately following the call.
2973     CGF.Builder.SetInsertPoint(call->getParent(),
2974                                ++llvm::BasicBlock::iterator(call));
2975     value = doAfterCall(CGF, value);
2976   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2977     // Place the retain at the beginning of the normal destination block.
2978     llvm::BasicBlock *BB = invoke->getNormalDest();
2979     CGF.Builder.SetInsertPoint(BB, BB->begin());
2980     value = doAfterCall(CGF, value);
2981 
2982   // Bitcasts can arise because of related-result returns.  Rewrite
2983   // the operand.
2984   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2985     // Change the insert point to avoid emitting the fall-back call after the
2986     // bitcast.
2987     CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2988     llvm::Value *operand = bitcast->getOperand(0);
2989     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2990     bitcast->setOperand(0, operand);
2991     value = bitcast;
2992   } else {
2993     auto *phi = dyn_cast<llvm::PHINode>(value);
2994     if (phi && phi->getNumIncomingValues() == 2 &&
2995         isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2996         isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2997       // Handle phi instructions that are generated when it's necessary to check
2998       // whether the receiver of a message is null.
2999       llvm::Value *inVal = phi->getIncomingValue(0);
3000       inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3001       phi->setIncomingValue(0, inVal);
3002       value = phi;
3003     } else {
3004       // Generic fall-back case.
3005       // Retain using the non-block variant: we never need to do a copy
3006       // of a block that's been returned to us.
3007       value = doFallback(CGF, value);
3008     }
3009   }
3010 
3011   CGF.Builder.restoreIP(ip);
3012   return value;
3013 }
3014 
3015 /// Given that the given expression is some sort of call (which does
3016 /// not return retained), emit a retain following it.
3017 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3018                                             const Expr *e) {
3019   llvm::Value *value = CGF.EmitScalarExpr(e);
3020   return emitARCOperationAfterCall(CGF, value,
3021            [](CodeGenFunction &CGF, llvm::Value *value) {
3022              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3023            },
3024            [](CodeGenFunction &CGF, llvm::Value *value) {
3025              return CGF.EmitARCRetainNonBlock(value);
3026            });
3027 }
3028 
3029 /// Given that the given expression is some sort of call (which does
3030 /// not return retained), perform an unsafeClaim following it.
3031 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3032                                                  const Expr *e) {
3033   llvm::Value *value = CGF.EmitScalarExpr(e);
3034   return emitARCOperationAfterCall(CGF, value,
3035            [](CodeGenFunction &CGF, llvm::Value *value) {
3036              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3037            },
3038            [](CodeGenFunction &CGF, llvm::Value *value) {
3039              return value;
3040            });
3041 }
3042 
3043 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3044                                                       bool allowUnsafeClaim) {
3045   if (allowUnsafeClaim &&
3046       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3047     return emitARCUnsafeClaimCallResult(*this, E);
3048   } else {
3049     llvm::Value *value = emitARCRetainCallResult(*this, E);
3050     return EmitObjCConsumeObject(E->getType(), value);
3051   }
3052 }
3053 
3054 /// Determine whether it might be important to emit a separate
3055 /// objc_retain_block on the result of the given expression, or
3056 /// whether it's okay to just emit it in a +1 context.
3057 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3058   assert(e->getType()->isBlockPointerType());
3059   e = e->IgnoreParens();
3060 
3061   // For future goodness, emit block expressions directly in +1
3062   // contexts if we can.
3063   if (isa<BlockExpr>(e))
3064     return false;
3065 
3066   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3067     switch (cast->getCastKind()) {
3068     // Emitting these operations in +1 contexts is goodness.
3069     case CK_LValueToRValue:
3070     case CK_ARCReclaimReturnedObject:
3071     case CK_ARCConsumeObject:
3072     case CK_ARCProduceObject:
3073       return false;
3074 
3075     // These operations preserve a block type.
3076     case CK_NoOp:
3077     case CK_BitCast:
3078       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3079 
3080     // These operations are known to be bad (or haven't been considered).
3081     case CK_AnyPointerToBlockPointerCast:
3082     default:
3083       return true;
3084     }
3085   }
3086 
3087   return true;
3088 }
3089 
3090 namespace {
3091 /// A CRTP base class for emitting expressions of retainable object
3092 /// pointer type in ARC.
3093 template <typename Impl, typename Result> class ARCExprEmitter {
3094 protected:
3095   CodeGenFunction &CGF;
3096   Impl &asImpl() { return *static_cast<Impl*>(this); }
3097 
3098   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3099 
3100 public:
3101   Result visit(const Expr *e);
3102   Result visitCastExpr(const CastExpr *e);
3103   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3104   Result visitBlockExpr(const BlockExpr *e);
3105   Result visitBinaryOperator(const BinaryOperator *e);
3106   Result visitBinAssign(const BinaryOperator *e);
3107   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3108   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3109   Result visitBinAssignWeak(const BinaryOperator *e);
3110   Result visitBinAssignStrong(const BinaryOperator *e);
3111 
3112   // Minimal implementation:
3113   //   Result visitLValueToRValue(const Expr *e)
3114   //   Result visitConsumeObject(const Expr *e)
3115   //   Result visitExtendBlockObject(const Expr *e)
3116   //   Result visitReclaimReturnedObject(const Expr *e)
3117   //   Result visitCall(const Expr *e)
3118   //   Result visitExpr(const Expr *e)
3119   //
3120   //   Result emitBitCast(Result result, llvm::Type *resultType)
3121   //   llvm::Value *getValueOfResult(Result result)
3122 };
3123 }
3124 
3125 /// Try to emit a PseudoObjectExpr under special ARC rules.
3126 ///
3127 /// This massively duplicates emitPseudoObjectRValue.
3128 template <typename Impl, typename Result>
3129 Result
3130 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3131   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3132 
3133   // Find the result expression.
3134   const Expr *resultExpr = E->getResultExpr();
3135   assert(resultExpr);
3136   Result result;
3137 
3138   for (PseudoObjectExpr::const_semantics_iterator
3139          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3140     const Expr *semantic = *i;
3141 
3142     // If this semantic expression is an opaque value, bind it
3143     // to the result of its source expression.
3144     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3145       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3146       OVMA opaqueData;
3147 
3148       // If this semantic is the result of the pseudo-object
3149       // expression, try to evaluate the source as +1.
3150       if (ov == resultExpr) {
3151         assert(!OVMA::shouldBindAsLValue(ov));
3152         result = asImpl().visit(ov->getSourceExpr());
3153         opaqueData = OVMA::bind(CGF, ov,
3154                             RValue::get(asImpl().getValueOfResult(result)));
3155 
3156       // Otherwise, just bind it.
3157       } else {
3158         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3159       }
3160       opaques.push_back(opaqueData);
3161 
3162     // Otherwise, if the expression is the result, evaluate it
3163     // and remember the result.
3164     } else if (semantic == resultExpr) {
3165       result = asImpl().visit(semantic);
3166 
3167     // Otherwise, evaluate the expression in an ignored context.
3168     } else {
3169       CGF.EmitIgnoredExpr(semantic);
3170     }
3171   }
3172 
3173   // Unbind all the opaques now.
3174   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3175     opaques[i].unbind(CGF);
3176 
3177   return result;
3178 }
3179 
3180 template <typename Impl, typename Result>
3181 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3182   // The default implementation just forwards the expression to visitExpr.
3183   return asImpl().visitExpr(e);
3184 }
3185 
3186 template <typename Impl, typename Result>
3187 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3188   switch (e->getCastKind()) {
3189 
3190   // No-op casts don't change the type, so we just ignore them.
3191   case CK_NoOp:
3192     return asImpl().visit(e->getSubExpr());
3193 
3194   // These casts can change the type.
3195   case CK_CPointerToObjCPointerCast:
3196   case CK_BlockPointerToObjCPointerCast:
3197   case CK_AnyPointerToBlockPointerCast:
3198   case CK_BitCast: {
3199     llvm::Type *resultType = CGF.ConvertType(e->getType());
3200     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3201     Result result = asImpl().visit(e->getSubExpr());
3202     return asImpl().emitBitCast(result, resultType);
3203   }
3204 
3205   // Handle some casts specially.
3206   case CK_LValueToRValue:
3207     return asImpl().visitLValueToRValue(e->getSubExpr());
3208   case CK_ARCConsumeObject:
3209     return asImpl().visitConsumeObject(e->getSubExpr());
3210   case CK_ARCExtendBlockObject:
3211     return asImpl().visitExtendBlockObject(e->getSubExpr());
3212   case CK_ARCReclaimReturnedObject:
3213     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3214 
3215   // Otherwise, use the default logic.
3216   default:
3217     return asImpl().visitExpr(e);
3218   }
3219 }
3220 
3221 template <typename Impl, typename Result>
3222 Result
3223 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3224   switch (e->getOpcode()) {
3225   case BO_Comma:
3226     CGF.EmitIgnoredExpr(e->getLHS());
3227     CGF.EnsureInsertPoint();
3228     return asImpl().visit(e->getRHS());
3229 
3230   case BO_Assign:
3231     return asImpl().visitBinAssign(e);
3232 
3233   default:
3234     return asImpl().visitExpr(e);
3235   }
3236 }
3237 
3238 template <typename Impl, typename Result>
3239 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3240   switch (e->getLHS()->getType().getObjCLifetime()) {
3241   case Qualifiers::OCL_ExplicitNone:
3242     return asImpl().visitBinAssignUnsafeUnretained(e);
3243 
3244   case Qualifiers::OCL_Weak:
3245     return asImpl().visitBinAssignWeak(e);
3246 
3247   case Qualifiers::OCL_Autoreleasing:
3248     return asImpl().visitBinAssignAutoreleasing(e);
3249 
3250   case Qualifiers::OCL_Strong:
3251     return asImpl().visitBinAssignStrong(e);
3252 
3253   case Qualifiers::OCL_None:
3254     return asImpl().visitExpr(e);
3255   }
3256   llvm_unreachable("bad ObjC ownership qualifier");
3257 }
3258 
3259 /// The default rule for __unsafe_unretained emits the RHS recursively,
3260 /// stores into the unsafe variable, and propagates the result outward.
3261 template <typename Impl, typename Result>
3262 Result ARCExprEmitter<Impl,Result>::
3263                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3264   // Recursively emit the RHS.
3265   // For __block safety, do this before emitting the LHS.
3266   Result result = asImpl().visit(e->getRHS());
3267 
3268   // Perform the store.
3269   LValue lvalue =
3270     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3271   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3272                              lvalue);
3273 
3274   return result;
3275 }
3276 
3277 template <typename Impl, typename Result>
3278 Result
3279 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3280   return asImpl().visitExpr(e);
3281 }
3282 
3283 template <typename Impl, typename Result>
3284 Result
3285 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3286   return asImpl().visitExpr(e);
3287 }
3288 
3289 template <typename Impl, typename Result>
3290 Result
3291 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3292   return asImpl().visitExpr(e);
3293 }
3294 
3295 /// The general expression-emission logic.
3296 template <typename Impl, typename Result>
3297 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3298   // We should *never* see a nested full-expression here, because if
3299   // we fail to emit at +1, our caller must not retain after we close
3300   // out the full-expression.  This isn't as important in the unsafe
3301   // emitter.
3302   assert(!isa<ExprWithCleanups>(e));
3303 
3304   // Look through parens, __extension__, generic selection, etc.
3305   e = e->IgnoreParens();
3306 
3307   // Handle certain kinds of casts.
3308   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3309     return asImpl().visitCastExpr(ce);
3310 
3311   // Handle the comma operator.
3312   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3313     return asImpl().visitBinaryOperator(op);
3314 
3315   // TODO: handle conditional operators here
3316 
3317   // For calls and message sends, use the retained-call logic.
3318   // Delegate inits are a special case in that they're the only
3319   // returns-retained expression that *isn't* surrounded by
3320   // a consume.
3321   } else if (isa<CallExpr>(e) ||
3322              (isa<ObjCMessageExpr>(e) &&
3323               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3324     return asImpl().visitCall(e);
3325 
3326   // Look through pseudo-object expressions.
3327   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3328     return asImpl().visitPseudoObjectExpr(pseudo);
3329   } else if (auto *be = dyn_cast<BlockExpr>(e))
3330     return asImpl().visitBlockExpr(be);
3331 
3332   return asImpl().visitExpr(e);
3333 }
3334 
3335 namespace {
3336 
3337 /// An emitter for +1 results.
3338 struct ARCRetainExprEmitter :
3339   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3340 
3341   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3342 
3343   llvm::Value *getValueOfResult(TryEmitResult result) {
3344     return result.getPointer();
3345   }
3346 
3347   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3348     llvm::Value *value = result.getPointer();
3349     value = CGF.Builder.CreateBitCast(value, resultType);
3350     result.setPointer(value);
3351     return result;
3352   }
3353 
3354   TryEmitResult visitLValueToRValue(const Expr *e) {
3355     return tryEmitARCRetainLoadOfScalar(CGF, e);
3356   }
3357 
3358   /// For consumptions, just emit the subexpression and thus elide
3359   /// the retain/release pair.
3360   TryEmitResult visitConsumeObject(const Expr *e) {
3361     llvm::Value *result = CGF.EmitScalarExpr(e);
3362     return TryEmitResult(result, true);
3363   }
3364 
3365   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3366     TryEmitResult result = visitExpr(e);
3367     // Avoid the block-retain if this is a block literal that doesn't need to be
3368     // copied to the heap.
3369     if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3370         e->getBlockDecl()->canAvoidCopyToHeap())
3371       result.setInt(true);
3372     return result;
3373   }
3374 
3375   /// Block extends are net +0.  Naively, we could just recurse on
3376   /// the subexpression, but actually we need to ensure that the
3377   /// value is copied as a block, so there's a little filter here.
3378   TryEmitResult visitExtendBlockObject(const Expr *e) {
3379     llvm::Value *result; // will be a +0 value
3380 
3381     // If we can't safely assume the sub-expression will produce a
3382     // block-copied value, emit the sub-expression at +0.
3383     if (shouldEmitSeparateBlockRetain(e)) {
3384       result = CGF.EmitScalarExpr(e);
3385 
3386     // Otherwise, try to emit the sub-expression at +1 recursively.
3387     } else {
3388       TryEmitResult subresult = asImpl().visit(e);
3389 
3390       // If that produced a retained value, just use that.
3391       if (subresult.getInt()) {
3392         return subresult;
3393       }
3394 
3395       // Otherwise it's +0.
3396       result = subresult.getPointer();
3397     }
3398 
3399     // Retain the object as a block.
3400     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3401     return TryEmitResult(result, true);
3402   }
3403 
3404   /// For reclaims, emit the subexpression as a retained call and
3405   /// skip the consumption.
3406   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3407     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3408     return TryEmitResult(result, true);
3409   }
3410 
3411   /// When we have an undecorated call, retroactively do a claim.
3412   TryEmitResult visitCall(const Expr *e) {
3413     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3414     return TryEmitResult(result, true);
3415   }
3416 
3417   // TODO: maybe special-case visitBinAssignWeak?
3418 
3419   TryEmitResult visitExpr(const Expr *e) {
3420     // We didn't find an obvious production, so emit what we've got and
3421     // tell the caller that we didn't manage to retain.
3422     llvm::Value *result = CGF.EmitScalarExpr(e);
3423     return TryEmitResult(result, false);
3424   }
3425 };
3426 }
3427 
3428 static TryEmitResult
3429 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3430   return ARCRetainExprEmitter(CGF).visit(e);
3431 }
3432 
3433 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3434                                                 LValue lvalue,
3435                                                 QualType type) {
3436   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3437   llvm::Value *value = result.getPointer();
3438   if (!result.getInt())
3439     value = CGF.EmitARCRetain(type, value);
3440   return value;
3441 }
3442 
3443 /// EmitARCRetainScalarExpr - Semantically equivalent to
3444 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3445 /// best-effort attempt to peephole expressions that naturally produce
3446 /// retained objects.
3447 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3448   // The retain needs to happen within the full-expression.
3449   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3450     RunCleanupsScope scope(*this);
3451     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3452   }
3453 
3454   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3455   llvm::Value *value = result.getPointer();
3456   if (!result.getInt())
3457     value = EmitARCRetain(e->getType(), value);
3458   return value;
3459 }
3460 
3461 llvm::Value *
3462 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3463   // The retain needs to happen within the full-expression.
3464   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3465     RunCleanupsScope scope(*this);
3466     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3467   }
3468 
3469   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3470   llvm::Value *value = result.getPointer();
3471   if (result.getInt())
3472     value = EmitARCAutorelease(value);
3473   else
3474     value = EmitARCRetainAutorelease(e->getType(), value);
3475   return value;
3476 }
3477 
3478 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3479   llvm::Value *result;
3480   bool doRetain;
3481 
3482   if (shouldEmitSeparateBlockRetain(e)) {
3483     result = EmitScalarExpr(e);
3484     doRetain = true;
3485   } else {
3486     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3487     result = subresult.getPointer();
3488     doRetain = !subresult.getInt();
3489   }
3490 
3491   if (doRetain)
3492     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3493   return EmitObjCConsumeObject(e->getType(), result);
3494 }
3495 
3496 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3497   // In ARC, retain and autorelease the expression.
3498   if (getLangOpts().ObjCAutoRefCount) {
3499     // Do so before running any cleanups for the full-expression.
3500     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3501     return EmitARCRetainAutoreleaseScalarExpr(expr);
3502   }
3503 
3504   // Otherwise, use the normal scalar-expression emission.  The
3505   // exception machinery doesn't do anything special with the
3506   // exception like retaining it, so there's no safety associated with
3507   // only running cleanups after the throw has started, and when it
3508   // matters it tends to be substantially inferior code.
3509   return EmitScalarExpr(expr);
3510 }
3511 
3512 namespace {
3513 
3514 /// An emitter for assigning into an __unsafe_unretained context.
3515 struct ARCUnsafeUnretainedExprEmitter :
3516   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3517 
3518   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3519 
3520   llvm::Value *getValueOfResult(llvm::Value *value) {
3521     return value;
3522   }
3523 
3524   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3525     return CGF.Builder.CreateBitCast(value, resultType);
3526   }
3527 
3528   llvm::Value *visitLValueToRValue(const Expr *e) {
3529     return CGF.EmitScalarExpr(e);
3530   }
3531 
3532   /// For consumptions, just emit the subexpression and perform the
3533   /// consumption like normal.
3534   llvm::Value *visitConsumeObject(const Expr *e) {
3535     llvm::Value *value = CGF.EmitScalarExpr(e);
3536     return CGF.EmitObjCConsumeObject(e->getType(), value);
3537   }
3538 
3539   /// No special logic for block extensions.  (This probably can't
3540   /// actually happen in this emitter, though.)
3541   llvm::Value *visitExtendBlockObject(const Expr *e) {
3542     return CGF.EmitARCExtendBlockObject(e);
3543   }
3544 
3545   /// For reclaims, perform an unsafeClaim if that's enabled.
3546   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3547     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3548   }
3549 
3550   /// When we have an undecorated call, just emit it without adding
3551   /// the unsafeClaim.
3552   llvm::Value *visitCall(const Expr *e) {
3553     return CGF.EmitScalarExpr(e);
3554   }
3555 
3556   /// Just do normal scalar emission in the default case.
3557   llvm::Value *visitExpr(const Expr *e) {
3558     return CGF.EmitScalarExpr(e);
3559   }
3560 };
3561 }
3562 
3563 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3564                                                       const Expr *e) {
3565   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3566 }
3567 
3568 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3569 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3570 /// avoiding any spurious retains, including by performing reclaims
3571 /// with objc_unsafeClaimAutoreleasedReturnValue.
3572 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3573   // Look through full-expressions.
3574   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3575     RunCleanupsScope scope(*this);
3576     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3577   }
3578 
3579   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3580 }
3581 
3582 std::pair<LValue,llvm::Value*>
3583 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3584                                               bool ignored) {
3585   // Evaluate the RHS first.  If we're ignoring the result, assume
3586   // that we can emit at an unsafe +0.
3587   llvm::Value *value;
3588   if (ignored) {
3589     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3590   } else {
3591     value = EmitScalarExpr(e->getRHS());
3592   }
3593 
3594   // Emit the LHS and perform the store.
3595   LValue lvalue = EmitLValue(e->getLHS());
3596   EmitStoreOfScalar(value, lvalue);
3597 
3598   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3599 }
3600 
3601 std::pair<LValue,llvm::Value*>
3602 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3603                                     bool ignored) {
3604   // Evaluate the RHS first.
3605   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3606   llvm::Value *value = result.getPointer();
3607 
3608   bool hasImmediateRetain = result.getInt();
3609 
3610   // If we didn't emit a retained object, and the l-value is of block
3611   // type, then we need to emit the block-retain immediately in case
3612   // it invalidates the l-value.
3613   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3614     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3615     hasImmediateRetain = true;
3616   }
3617 
3618   LValue lvalue = EmitLValue(e->getLHS());
3619 
3620   // If the RHS was emitted retained, expand this.
3621   if (hasImmediateRetain) {
3622     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3623     EmitStoreOfScalar(value, lvalue);
3624     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3625   } else {
3626     value = EmitARCStoreStrong(lvalue, value, ignored);
3627   }
3628 
3629   return std::pair<LValue,llvm::Value*>(lvalue, value);
3630 }
3631 
3632 std::pair<LValue,llvm::Value*>
3633 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3634   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3635   LValue lvalue = EmitLValue(e->getLHS());
3636 
3637   EmitStoreOfScalar(value, lvalue);
3638 
3639   return std::pair<LValue,llvm::Value*>(lvalue, value);
3640 }
3641 
3642 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3643                                           const ObjCAutoreleasePoolStmt &ARPS) {
3644   const Stmt *subStmt = ARPS.getSubStmt();
3645   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3646 
3647   CGDebugInfo *DI = getDebugInfo();
3648   if (DI)
3649     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3650 
3651   // Keep track of the current cleanup stack depth.
3652   RunCleanupsScope Scope(*this);
3653   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3654     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3655     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3656   } else {
3657     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3658     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3659   }
3660 
3661   for (const auto *I : S.body())
3662     EmitStmt(I);
3663 
3664   if (DI)
3665     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3666 }
3667 
3668 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3669 /// make sure it survives garbage collection until this point.
3670 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3671   // We just use an inline assembly.
3672   llvm::FunctionType *extenderType
3673     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3674   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3675                                                    /* assembly */ "",
3676                                                    /* constraints */ "r",
3677                                                    /* side effects */ true);
3678 
3679   EmitNounwindRuntimeCall(extender, object);
3680 }
3681 
3682 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3683 /// non-trivial copy assignment function, produce following helper function.
3684 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3685 ///
3686 llvm::Constant *
3687 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3688                                         const ObjCPropertyImplDecl *PID) {
3689   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3690   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3691     return nullptr;
3692 
3693   QualType Ty = PID->getPropertyIvarDecl()->getType();
3694   ASTContext &C = getContext();
3695 
3696   if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3697     // Call the move assignment operator instead of calling the copy assignment
3698     // operator and destructor.
3699     CharUnits Alignment = C.getTypeAlignInChars(Ty);
3700     llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3701         CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3702     return Fn;
3703   }
3704 
3705   if (!getLangOpts().CPlusPlus ||
3706       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3707     return nullptr;
3708   if (!Ty->isRecordType())
3709     return nullptr;
3710   llvm::Constant *HelperFn = nullptr;
3711   if (hasTrivialSetExpr(PID))
3712     return nullptr;
3713   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3714   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3715     return HelperFn;
3716 
3717   const IdentifierInfo *II =
3718       &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3719 
3720   QualType ReturnTy = C.VoidTy;
3721   QualType DestTy = C.getPointerType(Ty);
3722   QualType SrcTy = Ty;
3723   SrcTy.addConst();
3724   SrcTy = C.getPointerType(SrcTy);
3725 
3726   SmallVector<QualType, 2> ArgTys;
3727   ArgTys.push_back(DestTy);
3728   ArgTys.push_back(SrcTy);
3729   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3730 
3731   FunctionDecl *FD = FunctionDecl::Create(
3732       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3733       FunctionTy, nullptr, SC_Static, false, false, false);
3734 
3735   FunctionArgList args;
3736   ParmVarDecl *Params[2];
3737   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3738       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3739       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3740       /*DefArg=*/nullptr);
3741   args.push_back(Params[0] = DstDecl);
3742   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3743       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3744       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3745       /*DefArg=*/nullptr);
3746   args.push_back(Params[1] = SrcDecl);
3747   FD->setParams(Params);
3748 
3749   const CGFunctionInfo &FI =
3750       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3751 
3752   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3753 
3754   llvm::Function *Fn =
3755     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3756                            "__assign_helper_atomic_property_",
3757                            &CGM.getModule());
3758 
3759   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3760 
3761   StartFunction(FD, ReturnTy, Fn, FI, args);
3762 
3763   DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3764   UnaryOperator *DST = UnaryOperator::Create(
3765       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3766       SourceLocation(), false, FPOptionsOverride());
3767 
3768   DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3769   UnaryOperator *SRC = UnaryOperator::Create(
3770       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3771       SourceLocation(), false, FPOptionsOverride());
3772 
3773   Expr *Args[2] = {DST, SRC};
3774   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3775   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3776       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3777       VK_LValue, SourceLocation(), FPOptionsOverride());
3778 
3779   EmitStmt(TheCall);
3780 
3781   FinishFunction();
3782   HelperFn = Fn;
3783   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3784   return HelperFn;
3785 }
3786 
3787 llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3788     const ObjCPropertyImplDecl *PID) {
3789   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3790   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3791     return nullptr;
3792 
3793   QualType Ty = PD->getType();
3794   ASTContext &C = getContext();
3795 
3796   if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3797     CharUnits Alignment = C.getTypeAlignInChars(Ty);
3798     llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3799         CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3800     return Fn;
3801   }
3802 
3803   if (!getLangOpts().CPlusPlus ||
3804       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3805     return nullptr;
3806   if (!Ty->isRecordType())
3807     return nullptr;
3808   llvm::Constant *HelperFn = nullptr;
3809   if (hasTrivialGetExpr(PID))
3810     return nullptr;
3811   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3812   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3813     return HelperFn;
3814 
3815   const IdentifierInfo *II =
3816       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3817 
3818   QualType ReturnTy = C.VoidTy;
3819   QualType DestTy = C.getPointerType(Ty);
3820   QualType SrcTy = Ty;
3821   SrcTy.addConst();
3822   SrcTy = C.getPointerType(SrcTy);
3823 
3824   SmallVector<QualType, 2> ArgTys;
3825   ArgTys.push_back(DestTy);
3826   ArgTys.push_back(SrcTy);
3827   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3828 
3829   FunctionDecl *FD = FunctionDecl::Create(
3830       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3831       FunctionTy, nullptr, SC_Static, false, false, false);
3832 
3833   FunctionArgList args;
3834   ParmVarDecl *Params[2];
3835   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3836       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3837       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3838       /*DefArg=*/nullptr);
3839   args.push_back(Params[0] = DstDecl);
3840   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3841       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3842       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3843       /*DefArg=*/nullptr);
3844   args.push_back(Params[1] = SrcDecl);
3845   FD->setParams(Params);
3846 
3847   const CGFunctionInfo &FI =
3848       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3849 
3850   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3851 
3852   llvm::Function *Fn = llvm::Function::Create(
3853       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3854       &CGM.getModule());
3855 
3856   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3857 
3858   StartFunction(FD, ReturnTy, Fn, FI, args);
3859 
3860   DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3861                       SourceLocation());
3862 
3863   UnaryOperator *SRC = UnaryOperator::Create(
3864       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3865       SourceLocation(), false, FPOptionsOverride());
3866 
3867   CXXConstructExpr *CXXConstExpr =
3868     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3869 
3870   SmallVector<Expr*, 4> ConstructorArgs;
3871   ConstructorArgs.push_back(SRC);
3872   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3873                          CXXConstExpr->arg_end());
3874 
3875   CXXConstructExpr *TheCXXConstructExpr =
3876     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3877                              CXXConstExpr->getConstructor(),
3878                              CXXConstExpr->isElidable(),
3879                              ConstructorArgs,
3880                              CXXConstExpr->hadMultipleCandidates(),
3881                              CXXConstExpr->isListInitialization(),
3882                              CXXConstExpr->isStdInitListInitialization(),
3883                              CXXConstExpr->requiresZeroInitialization(),
3884                              CXXConstExpr->getConstructionKind(),
3885                              SourceRange());
3886 
3887   DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3888                       SourceLocation());
3889 
3890   RValue DV = EmitAnyExpr(&DstExpr);
3891   CharUnits Alignment =
3892       getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3893   EmitAggExpr(TheCXXConstructExpr,
3894               AggValueSlot::forAddr(
3895                   Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3896                   Qualifiers(), AggValueSlot::IsDestructed,
3897                   AggValueSlot::DoesNotNeedGCBarriers,
3898                   AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3899 
3900   FinishFunction();
3901   HelperFn = Fn;
3902   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3903   return HelperFn;
3904 }
3905 
3906 llvm::Value *
3907 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3908   // Get selectors for retain/autorelease.
3909   const IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3910   Selector CopySelector =
3911       getContext().Selectors.getNullarySelector(CopyID);
3912   const IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3913   Selector AutoreleaseSelector =
3914       getContext().Selectors.getNullarySelector(AutoreleaseID);
3915 
3916   // Emit calls to retain/autorelease.
3917   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3918   llvm::Value *Val = Block;
3919   RValue Result;
3920   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3921                                        Ty, CopySelector,
3922                                        Val, CallArgList(), nullptr, nullptr);
3923   Val = Result.getScalarVal();
3924   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3925                                        Ty, AutoreleaseSelector,
3926                                        Val, CallArgList(), nullptr, nullptr);
3927   Val = Result.getScalarVal();
3928   return Val;
3929 }
3930 
3931 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3932   switch (TT.getOS()) {
3933   case llvm::Triple::Darwin:
3934   case llvm::Triple::MacOSX:
3935     return llvm::MachO::PLATFORM_MACOS;
3936   case llvm::Triple::IOS:
3937     return llvm::MachO::PLATFORM_IOS;
3938   case llvm::Triple::TvOS:
3939     return llvm::MachO::PLATFORM_TVOS;
3940   case llvm::Triple::WatchOS:
3941     return llvm::MachO::PLATFORM_WATCHOS;
3942   case llvm::Triple::XROS:
3943     return llvm::MachO::PLATFORM_XROS;
3944   case llvm::Triple::DriverKit:
3945     return llvm::MachO::PLATFORM_DRIVERKIT;
3946   default:
3947     return llvm::MachO::PLATFORM_UNKNOWN;
3948   }
3949 }
3950 
3951 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3952                                                  const VersionTuple &Version) {
3953   CodeGenModule &CGM = CGF.CGM;
3954   // Note: we intend to support multi-platform version checks, so reserve
3955   // the room for a dual platform checking invocation that will be
3956   // implemented in the future.
3957   llvm::SmallVector<llvm::Value *, 8> Args;
3958 
3959   auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3960     std::optional<unsigned> Min = Version.getMinor(),
3961                             SMin = Version.getSubminor();
3962     Args.push_back(
3963         llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3964     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3965     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3966     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3967   };
3968 
3969   assert(!Version.empty() && "unexpected empty version");
3970   EmitArgs(Version, CGM.getTarget().getTriple());
3971 
3972   if (!CGM.IsPlatformVersionAtLeastFn) {
3973     llvm::FunctionType *FTy = llvm::FunctionType::get(
3974         CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3975         false);
3976     CGM.IsPlatformVersionAtLeastFn =
3977         CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3978   }
3979 
3980   llvm::Value *Check =
3981       CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3982   return CGF.Builder.CreateICmpNE(Check,
3983                                   llvm::Constant::getNullValue(CGM.Int32Ty));
3984 }
3985 
3986 llvm::Value *
3987 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3988   // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3989   if (CGM.getTarget().getTriple().isOSDarwin())
3990     return emitIsPlatformVersionAtLeast(*this, Version);
3991 
3992   if (!CGM.IsOSVersionAtLeastFn) {
3993     llvm::FunctionType *FTy =
3994         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3995     CGM.IsOSVersionAtLeastFn =
3996         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3997   }
3998 
3999   std::optional<unsigned> Min = Version.getMinor(),
4000                           SMin = Version.getSubminor();
4001   llvm::Value *Args[] = {
4002       llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4003       llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4004       llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4005 
4006   llvm::Value *CallRes =
4007       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
4008 
4009   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4010 }
4011 
4012 static bool isFoundationNeededForDarwinAvailabilityCheck(
4013     const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4014   VersionTuple FoundationDroppedInVersion;
4015   switch (TT.getOS()) {
4016   case llvm::Triple::IOS:
4017   case llvm::Triple::TvOS:
4018     FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4019     break;
4020   case llvm::Triple::WatchOS:
4021     FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4022     break;
4023   case llvm::Triple::Darwin:
4024   case llvm::Triple::MacOSX:
4025     FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4026     break;
4027   case llvm::Triple::XROS:
4028     // XROS doesn't need Foundation.
4029     return false;
4030   case llvm::Triple::DriverKit:
4031     // DriverKit doesn't need Foundation.
4032     return false;
4033   default:
4034     llvm_unreachable("Unexpected OS");
4035   }
4036   return TargetVersion < FoundationDroppedInVersion;
4037 }
4038 
4039 void CodeGenModule::emitAtAvailableLinkGuard() {
4040   if (!IsPlatformVersionAtLeastFn)
4041     return;
4042   // @available requires CoreFoundation only on Darwin.
4043   if (!Target.getTriple().isOSDarwin())
4044     return;
4045   // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4046   // watchOS 6+.
4047   if (!isFoundationNeededForDarwinAvailabilityCheck(
4048           Target.getTriple(), Target.getPlatformMinVersion()))
4049     return;
4050   // Add -framework CoreFoundation to the linker commands. We still want to
4051   // emit the core foundation reference down below because otherwise if
4052   // CoreFoundation is not used in the code, the linker won't link the
4053   // framework.
4054   auto &Context = getLLVMContext();
4055   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4056                              llvm::MDString::get(Context, "CoreFoundation")};
4057   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4058   // Emit a reference to a symbol from CoreFoundation to ensure that
4059   // CoreFoundation is linked into the final binary.
4060   llvm::FunctionType *FTy =
4061       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4062   llvm::FunctionCallee CFFunc =
4063       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4064 
4065   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4066   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4067       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4068       llvm::AttributeList(), /*Local=*/true);
4069   llvm::Function *CFLinkCheckFunc =
4070       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4071   if (CFLinkCheckFunc->empty()) {
4072     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4073     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4074     CodeGenFunction CGF(*this);
4075     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4076     CGF.EmitNounwindRuntimeCall(CFFunc,
4077                                 llvm::Constant::getNullValue(VoidPtrTy));
4078     CGF.Builder.CreateUnreachable();
4079     addCompilerUsedGlobal(CFLinkCheckFunc);
4080   }
4081 }
4082 
4083 CGObjCRuntime::~CGObjCRuntime() {}
4084