xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGObjC.cpp (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/CodeGenABITypes.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Analysis/ObjCARCUtil.h"
28 #include "llvm/BinaryFormat/MachO.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include <optional>
33 using namespace clang;
34 using namespace CodeGen;
35 
36 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37 static TryEmitResult
38 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
39 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
40                                    QualType ET,
41                                    RValue Result);
42 
43 /// Given the address of a variable of pointer type, find the correct
44 /// null to store into it.
45 static llvm::Constant *getNullForVariable(Address addr) {
46   llvm::Type *type = addr.getElementType();
47   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
48 }
49 
50 /// Emits an instance of NSConstantString representing the object.
51 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
52 {
53   llvm::Constant *C =
54       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
55   // FIXME: This bitcast should just be made an invariant on the Runtime.
56   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
57 }
58 
59 /// EmitObjCBoxedExpr - This routine generates code to call
60 /// the appropriate expression boxing method. This will either be
61 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
62 /// or [NSValue valueWithBytes:objCType:].
63 ///
64 llvm::Value *
65 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
66   // Generate the correct selector for this literal's concrete type.
67   // Get the method.
68   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
69   const Expr *SubExpr = E->getSubExpr();
70 
71   if (E->isExpressibleAsConstantInitializer()) {
72     ConstantEmitter ConstEmitter(CGM);
73     return ConstEmitter.tryEmitAbstract(E, E->getType());
74   }
75 
76   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
77   Selector Sel = BoxingMethod->getSelector();
78 
79   // Generate a reference to the class pointer, which will be the receiver.
80   // Assumes that the method was introduced in the class that should be
81   // messaged (avoids pulling it out of the result type).
82   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
83   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
84   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
85 
86   CallArgList Args;
87   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
88   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
89 
90   // ObjCBoxedExpr supports boxing of structs and unions
91   // via [NSValue valueWithBytes:objCType:]
92   const QualType ValueType(SubExpr->getType().getCanonicalType());
93   if (ValueType->isObjCBoxableRecordType()) {
94     // Emit CodeGen for first parameter
95     // and cast value to correct type
96     Address Temporary = CreateMemTemp(SubExpr->getType());
97     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
98     llvm::Value *BitCast =
99         Builder.CreateBitCast(Temporary.getPointer(), ConvertType(ArgQT));
100     Args.add(RValue::get(BitCast), ArgQT);
101 
102     // Create char array to store type encoding
103     std::string Str;
104     getContext().getObjCEncodingForType(ValueType, Str);
105     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
106 
107     // Cast type encoding to correct type
108     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
109     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
110     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
111 
112     Args.add(RValue::get(Cast), EncodingQT);
113   } else {
114     Args.add(EmitAnyExpr(SubExpr), ArgQT);
115   }
116 
117   RValue result = Runtime.GenerateMessageSend(
118       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
119       Args, ClassDecl, BoxingMethod);
120   return Builder.CreateBitCast(result.getScalarVal(),
121                                ConvertType(E->getType()));
122 }
123 
124 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
125                                     const ObjCMethodDecl *MethodWithObjects) {
126   ASTContext &Context = CGM.getContext();
127   const ObjCDictionaryLiteral *DLE = nullptr;
128   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
129   if (!ALE)
130     DLE = cast<ObjCDictionaryLiteral>(E);
131 
132   // Optimize empty collections by referencing constants, when available.
133   uint64_t NumElements =
134     ALE ? ALE->getNumElements() : DLE->getNumElements();
135   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
136     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
137     QualType IdTy(CGM.getContext().getObjCIdType());
138     llvm::Constant *Constant =
139         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
140     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
141     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
142     cast<llvm::LoadInst>(Ptr)->setMetadata(
143         llvm::LLVMContext::MD_invariant_load,
144         llvm::MDNode::get(getLLVMContext(), std::nullopt));
145     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
146   }
147 
148   // Compute the type of the array we're initializing.
149   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
150                             NumElements);
151   QualType ElementType = Context.getObjCIdType().withConst();
152   QualType ElementArrayType
153     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
154                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
155 
156   // Allocate the temporary array(s).
157   Address Objects = CreateMemTemp(ElementArrayType, "objects");
158   Address Keys = Address::invalid();
159   if (DLE)
160     Keys = CreateMemTemp(ElementArrayType, "keys");
161 
162   // In ARC, we may need to do extra work to keep all the keys and
163   // values alive until after the call.
164   SmallVector<llvm::Value *, 16> NeededObjects;
165   bool TrackNeededObjects =
166     (getLangOpts().ObjCAutoRefCount &&
167     CGM.getCodeGenOpts().OptimizationLevel != 0);
168 
169   // Perform the actual initialialization of the array(s).
170   for (uint64_t i = 0; i < NumElements; i++) {
171     if (ALE) {
172       // Emit the element and store it to the appropriate array slot.
173       const Expr *Rhs = ALE->getElement(i);
174       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
175                                  ElementType, AlignmentSource::Decl);
176 
177       llvm::Value *value = EmitScalarExpr(Rhs);
178       EmitStoreThroughLValue(RValue::get(value), LV, true);
179       if (TrackNeededObjects) {
180         NeededObjects.push_back(value);
181       }
182     } else {
183       // Emit the key and store it to the appropriate array slot.
184       const Expr *Key = DLE->getKeyValueElement(i).Key;
185       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
186                                     ElementType, AlignmentSource::Decl);
187       llvm::Value *keyValue = EmitScalarExpr(Key);
188       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
189 
190       // Emit the value and store it to the appropriate array slot.
191       const Expr *Value = DLE->getKeyValueElement(i).Value;
192       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
193                                       ElementType, AlignmentSource::Decl);
194       llvm::Value *valueValue = EmitScalarExpr(Value);
195       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
196       if (TrackNeededObjects) {
197         NeededObjects.push_back(keyValue);
198         NeededObjects.push_back(valueValue);
199       }
200     }
201   }
202 
203   // Generate the argument list.
204   CallArgList Args;
205   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
206   const ParmVarDecl *argDecl = *PI++;
207   QualType ArgQT = argDecl->getType().getUnqualifiedType();
208   Args.add(RValue::get(Objects.getPointer()), ArgQT);
209   if (DLE) {
210     argDecl = *PI++;
211     ArgQT = argDecl->getType().getUnqualifiedType();
212     Args.add(RValue::get(Keys.getPointer()), ArgQT);
213   }
214   argDecl = *PI;
215   ArgQT = argDecl->getType().getUnqualifiedType();
216   llvm::Value *Count =
217     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
218   Args.add(RValue::get(Count), ArgQT);
219 
220   // Generate a reference to the class pointer, which will be the receiver.
221   Selector Sel = MethodWithObjects->getSelector();
222   QualType ResultType = E->getType();
223   const ObjCObjectPointerType *InterfacePointerType
224     = ResultType->getAsObjCInterfacePointerType();
225   ObjCInterfaceDecl *Class
226     = InterfacePointerType->getObjectType()->getInterface();
227   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
229 
230   // Generate the message send.
231   RValue result = Runtime.GenerateMessageSend(
232       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
233       Receiver, Args, Class, MethodWithObjects);
234 
235   // The above message send needs these objects, but in ARC they are
236   // passed in a buffer that is essentially __unsafe_unretained.
237   // Therefore we must prevent the optimizer from releasing them until
238   // after the call.
239   if (TrackNeededObjects) {
240     EmitARCIntrinsicUse(NeededObjects);
241   }
242 
243   return Builder.CreateBitCast(result.getScalarVal(),
244                                ConvertType(E->getType()));
245 }
246 
247 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
248   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
249 }
250 
251 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
252                                             const ObjCDictionaryLiteral *E) {
253   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
254 }
255 
256 /// Emit a selector.
257 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
258   // Untyped selector.
259   // Note that this implementation allows for non-constant strings to be passed
260   // as arguments to @selector().  Currently, the only thing preventing this
261   // behaviour is the type checking in the front end.
262   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
263 }
264 
265 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
266   // FIXME: This should pass the Decl not the name.
267   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
268 }
269 
270 /// Adjust the type of an Objective-C object that doesn't match up due
271 /// to type erasure at various points, e.g., related result types or the use
272 /// of parameterized classes.
273 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
274                                    RValue Result) {
275   if (!ExpT->isObjCRetainableType())
276     return Result;
277 
278   // If the converted types are the same, we're done.
279   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
280   if (ExpLLVMTy == Result.getScalarVal()->getType())
281     return Result;
282 
283   // We have applied a substitution. Cast the rvalue appropriately.
284   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
285                                                ExpLLVMTy));
286 }
287 
288 /// Decide whether to extend the lifetime of the receiver of a
289 /// returns-inner-pointer message.
290 static bool
291 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
292   switch (message->getReceiverKind()) {
293 
294   // For a normal instance message, we should extend unless the
295   // receiver is loaded from a variable with precise lifetime.
296   case ObjCMessageExpr::Instance: {
297     const Expr *receiver = message->getInstanceReceiver();
298 
299     // Look through OVEs.
300     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
301       if (opaque->getSourceExpr())
302         receiver = opaque->getSourceExpr()->IgnoreParens();
303     }
304 
305     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
306     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307     receiver = ice->getSubExpr()->IgnoreParens();
308 
309     // Look through OVEs.
310     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
311       if (opaque->getSourceExpr())
312         receiver = opaque->getSourceExpr()->IgnoreParens();
313     }
314 
315     // Only __strong variables.
316     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317       return true;
318 
319     // All ivars and fields have precise lifetime.
320     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
321       return false;
322 
323     // Otherwise, check for variables.
324     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325     if (!declRef) return true;
326     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
327     if (!var) return true;
328 
329     // All variables have precise lifetime except local variables with
330     // automatic storage duration that aren't specially marked.
331     return (var->hasLocalStorage() &&
332             !var->hasAttr<ObjCPreciseLifetimeAttr>());
333   }
334 
335   case ObjCMessageExpr::Class:
336   case ObjCMessageExpr::SuperClass:
337     // It's never necessary for class objects.
338     return false;
339 
340   case ObjCMessageExpr::SuperInstance:
341     // We generally assume that 'self' lives throughout a method call.
342     return false;
343   }
344 
345   llvm_unreachable("invalid receiver kind");
346 }
347 
348 /// Given an expression of ObjC pointer type, check whether it was
349 /// immediately loaded from an ARC __weak l-value.
350 static const Expr *findWeakLValue(const Expr *E) {
351   assert(E->getType()->isObjCRetainableType());
352   E = E->IgnoreParens();
353   if (auto CE = dyn_cast<CastExpr>(E)) {
354     if (CE->getCastKind() == CK_LValueToRValue) {
355       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356         return CE->getSubExpr();
357     }
358   }
359 
360   return nullptr;
361 }
362 
363 /// The ObjC runtime may provide entrypoints that are likely to be faster
364 /// than an ordinary message send of the appropriate selector.
365 ///
366 /// The entrypoints are guaranteed to be equivalent to just sending the
367 /// corresponding message.  If the entrypoint is implemented naively as just a
368 /// message send, using it is a trade-off: it sacrifices a few cycles of
369 /// overhead to save a small amount of code.  However, it's possible for
370 /// runtimes to detect and special-case classes that use "standard"
371 /// behavior; if that's dynamically a large proportion of all objects, using
372 /// the entrypoint will also be faster than using a message send.
373 ///
374 /// If the runtime does support a required entrypoint, then this method will
375 /// generate a call and return the resulting value.  Otherwise it will return
376 /// std::nullopt and the caller can generate a msgSend instead.
377 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378     CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379     const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380     bool isClassMessage) {
381   auto &CGM = CGF.CGM;
382   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383     return std::nullopt;
384 
385   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386   switch (Sel.getMethodFamily()) {
387   case OMF_alloc:
388     if (isClassMessage &&
389         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390         ResultType->isObjCObjectPointerType()) {
391         // [Foo alloc] -> objc_alloc(Foo) or
392         // [self alloc] -> objc_alloc(self)
393         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
394           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
395         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396         // [self allocWithZone:nil] -> objc_allocWithZone(self)
397         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398             Args.size() == 1 && Args.front().getType()->isPointerType() &&
399             Sel.getNameForSlot(0) == "allocWithZone") {
400           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401           if (isa<llvm::ConstantPointerNull>(arg))
402             return CGF.EmitObjCAllocWithZone(Receiver,
403                                              CGF.ConvertType(ResultType));
404           return std::nullopt;
405         }
406     }
407     break;
408 
409   case OMF_autorelease:
410     if (ResultType->isObjCObjectPointerType() &&
411         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412         Runtime.shouldUseARCFunctionsForRetainRelease())
413       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
414     break;
415 
416   case OMF_retain:
417     if (ResultType->isObjCObjectPointerType() &&
418         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419         Runtime.shouldUseARCFunctionsForRetainRelease())
420       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
421     break;
422 
423   case OMF_release:
424     if (ResultType->isVoidType() &&
425         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426         Runtime.shouldUseARCFunctionsForRetainRelease()) {
427       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
428       return nullptr;
429     }
430     break;
431 
432   default:
433     break;
434   }
435   return std::nullopt;
436 }
437 
438 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442     bool isClassMessage) {
443   if (std::optional<llvm::Value *> SpecializedResult =
444           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445                                             Sel, Method, isClassMessage)) {
446     return RValue::get(*SpecializedResult);
447   }
448   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
449                              Method);
450 }
451 
452 static void AppendFirstImpliedRuntimeProtocols(
453     const ObjCProtocolDecl *PD,
454     llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455   if (!PD->isNonRuntimeProtocol()) {
456     const auto *Can = PD->getCanonicalDecl();
457     PDs.insert(Can);
458     return;
459   }
460 
461   for (const auto *ParentPD : PD->protocols())
462     AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
463 }
464 
465 std::vector<const ObjCProtocolDecl *>
466 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
467                                       ObjCProtocolDecl::protocol_iterator end) {
468   std::vector<const ObjCProtocolDecl *> RuntimePds;
469   llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
470 
471   for (; begin != end; ++begin) {
472     const auto *It = *begin;
473     const auto *Can = It->getCanonicalDecl();
474     if (Can->isNonRuntimeProtocol())
475       NonRuntimePDs.insert(Can);
476     else
477       RuntimePds.push_back(Can);
478   }
479 
480   // If there are no non-runtime protocols then we can just stop now.
481   if (NonRuntimePDs.empty())
482     return RuntimePds;
483 
484   // Else we have to search through the non-runtime protocol's inheritancy
485   // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486   // a non-runtime protocol without any parents. These are the "first-implied"
487   // protocols from a non-runtime protocol.
488   llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489   for (const auto *PD : NonRuntimePDs)
490     AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
491 
492   // Walk the Runtime list to get all protocols implied via the inclusion of
493   // this protocol, e.g. all protocols it inherits from including itself.
494   llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495   for (const auto *PD : RuntimePds) {
496     const auto *Can = PD->getCanonicalDecl();
497     AllImpliedProtocols.insert(Can);
498     Can->getImpliedProtocols(AllImpliedProtocols);
499   }
500 
501   // Similar to above, walk the list of first-implied protocols to find the set
502   // all the protocols implied excluding the listed protocols themselves since
503   // they are not yet a part of the `RuntimePds` list.
504   for (const auto *PD : FirstImpliedProtos) {
505     PD->getImpliedProtocols(AllImpliedProtocols);
506   }
507 
508   // From the first-implied list we have to finish building the final protocol
509   // list. If a protocol in the first-implied list was already implied via some
510   // inheritance path through some other protocols then it would be redundant to
511   // add it here and so we skip over it.
512   for (const auto *PD : FirstImpliedProtos) {
513     if (!AllImpliedProtocols.contains(PD)) {
514       RuntimePds.push_back(PD);
515     }
516   }
517 
518   return RuntimePds;
519 }
520 
521 /// Instead of '[[MyClass alloc] init]', try to generate
522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523 /// caller side, as well as the optimized objc_alloc.
524 static std::optional<llvm::Value *>
525 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
526   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528     return std::nullopt;
529 
530   // Match the exact pattern '[[MyClass alloc] init]'.
531   Selector Sel = OME->getSelector();
532   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
533       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534       Sel.getNameForSlot(0) != "init")
535     return std::nullopt;
536 
537   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538   // with 'cls' a Class.
539   auto *SubOME =
540       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
541   if (!SubOME)
542     return std::nullopt;
543   Selector SubSel = SubOME->getSelector();
544 
545   if (!SubOME->getType()->isObjCObjectPointerType() ||
546       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
547     return std::nullopt;
548 
549   llvm::Value *Receiver = nullptr;
550   switch (SubOME->getReceiverKind()) {
551   case ObjCMessageExpr::Instance:
552     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553       return std::nullopt;
554     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
555     break;
556 
557   case ObjCMessageExpr::Class: {
558     QualType ReceiverType = SubOME->getClassReceiver();
559     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561     assert(ID && "null interface should be impossible here");
562     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
563     break;
564   }
565   case ObjCMessageExpr::SuperInstance:
566   case ObjCMessageExpr::SuperClass:
567     return std::nullopt;
568   }
569 
570   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
571 }
572 
573 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
574                                             ReturnValueSlot Return) {
575   // Only the lookup mechanism and first two arguments of the method
576   // implementation vary between runtimes.  We can get the receiver and
577   // arguments in generic code.
578 
579   bool isDelegateInit = E->isDelegateInitCall();
580 
581   const ObjCMethodDecl *method = E->getMethodDecl();
582 
583   // If the method is -retain, and the receiver's being loaded from
584   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586       method->getMethodFamily() == OMF_retain) {
587     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
588       LValue lvalue = EmitLValue(lvalueExpr);
589       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
590       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
591     }
592   }
593 
594   if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
595     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
596 
597   // We don't retain the receiver in delegate init calls, and this is
598   // safe because the receiver value is always loaded from 'self',
599   // which we zero out.  We don't want to Block_copy block receivers,
600   // though.
601   bool retainSelf =
602     (!isDelegateInit &&
603      CGM.getLangOpts().ObjCAutoRefCount &&
604      method &&
605      method->hasAttr<NSConsumesSelfAttr>());
606 
607   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608   bool isSuperMessage = false;
609   bool isClassMessage = false;
610   ObjCInterfaceDecl *OID = nullptr;
611   // Find the receiver
612   QualType ReceiverType;
613   llvm::Value *Receiver = nullptr;
614   switch (E->getReceiverKind()) {
615   case ObjCMessageExpr::Instance:
616     ReceiverType = E->getInstanceReceiver()->getType();
617     isClassMessage = ReceiverType->isObjCClassType();
618     if (retainSelf) {
619       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
620                                                    E->getInstanceReceiver());
621       Receiver = ter.getPointer();
622       if (ter.getInt()) retainSelf = false;
623     } else
624       Receiver = EmitScalarExpr(E->getInstanceReceiver());
625     break;
626 
627   case ObjCMessageExpr::Class: {
628     ReceiverType = E->getClassReceiver();
629     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630     assert(OID && "Invalid Objective-C class message send");
631     Receiver = Runtime.GetClass(*this, OID);
632     isClassMessage = true;
633     break;
634   }
635 
636   case ObjCMessageExpr::SuperInstance:
637     ReceiverType = E->getSuperType();
638     Receiver = LoadObjCSelf();
639     isSuperMessage = true;
640     break;
641 
642   case ObjCMessageExpr::SuperClass:
643     ReceiverType = E->getSuperType();
644     Receiver = LoadObjCSelf();
645     isSuperMessage = true;
646     isClassMessage = true;
647     break;
648   }
649 
650   if (retainSelf)
651     Receiver = EmitARCRetainNonBlock(Receiver);
652 
653   // In ARC, we sometimes want to "extend the lifetime"
654   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655   // messages.
656   if (getLangOpts().ObjCAutoRefCount && method &&
657       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
658       shouldExtendReceiverForInnerPointerMessage(E))
659     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
660 
661   QualType ResultType = method ? method->getReturnType() : E->getType();
662 
663   CallArgList Args;
664   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
665 
666   // For delegate init calls in ARC, do an unsafe store of null into
667   // self.  This represents the call taking direct ownership of that
668   // value.  We have to do this after emitting the other call
669   // arguments because they might also reference self, but we don't
670   // have to worry about any of them modifying self because that would
671   // be an undefined read and write of an object in unordered
672   // expressions.
673   if (isDelegateInit) {
674     assert(getLangOpts().ObjCAutoRefCount &&
675            "delegate init calls should only be marked in ARC");
676 
677     // Do an unsafe store of null into self.
678     Address selfAddr =
679       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
680     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
681   }
682 
683   RValue result;
684   if (isSuperMessage) {
685     // super is only valid in an Objective-C method
686     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
687     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
689                                               E->getSelector(),
690                                               OMD->getClassInterface(),
691                                               isCategoryImpl,
692                                               Receiver,
693                                               isClassMessage,
694                                               Args,
695                                               method);
696   } else {
697     // Call runtime methods directly if we can.
698     result = Runtime.GeneratePossiblySpecializedMessageSend(
699         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
700         method, isClassMessage);
701   }
702 
703   // For delegate init calls in ARC, implicitly store the result of
704   // the call back into self.  This takes ownership of the value.
705   if (isDelegateInit) {
706     Address selfAddr =
707       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
708     llvm::Value *newSelf = result.getScalarVal();
709 
710     // The delegate return type isn't necessarily a matching type; in
711     // fact, it's quite likely to be 'id'.
712     llvm::Type *selfTy = selfAddr.getElementType();
713     newSelf = Builder.CreateBitCast(newSelf, selfTy);
714 
715     Builder.CreateStore(newSelf, selfAddr);
716   }
717 
718   return AdjustObjCObjectType(*this, E->getType(), result);
719 }
720 
721 namespace {
722 struct FinishARCDealloc final : EHScopeStack::Cleanup {
723   void Emit(CodeGenFunction &CGF, Flags flags) override {
724     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
725 
726     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727     const ObjCInterfaceDecl *iface = impl->getClassInterface();
728     if (!iface->getSuperClass()) return;
729 
730     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
731 
732     // Call [super dealloc] if we have a superclass.
733     llvm::Value *self = CGF.LoadObjCSelf();
734 
735     CallArgList args;
736     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
737                                                       CGF.getContext().VoidTy,
738                                                       method->getSelector(),
739                                                       iface,
740                                                       isCategory,
741                                                       self,
742                                                       /*is class msg*/ false,
743                                                       args,
744                                                       method);
745   }
746 };
747 }
748 
749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750 /// the LLVM function and sets the other context used by
751 /// CodeGenFunction.
752 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
753                                       const ObjCContainerDecl *CD) {
754   SourceLocation StartLoc = OMD->getBeginLoc();
755   FunctionArgList args;
756   // Check if we should generate debug info for this method.
757   if (OMD->hasAttr<NoDebugAttr>())
758     DebugInfo = nullptr; // disable debug info indefinitely for this function
759 
760   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
761 
762   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
763   if (OMD->isDirectMethod()) {
764     Fn->setVisibility(llvm::Function::HiddenVisibility);
765     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
766     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
767   } else {
768     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
769   }
770 
771   args.push_back(OMD->getSelfDecl());
772   if (!OMD->isDirectMethod())
773     args.push_back(OMD->getCmdDecl());
774 
775   args.append(OMD->param_begin(), OMD->param_end());
776 
777   CurGD = OMD;
778   CurEHLocation = OMD->getEndLoc();
779 
780   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
781                 OMD->getLocation(), StartLoc);
782 
783   if (OMD->isDirectMethod()) {
784     // This function is a direct call, it has to implement a nil check
785     // on entry.
786     //
787     // TODO: possibly have several entry points to elide the check
788     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
789   }
790 
791   // In ARC, certain methods get an extra cleanup.
792   if (CGM.getLangOpts().ObjCAutoRefCount &&
793       OMD->isInstanceMethod() &&
794       OMD->getSelector().isUnarySelector()) {
795     const IdentifierInfo *ident =
796       OMD->getSelector().getIdentifierInfoForSlot(0);
797     if (ident->isStr("dealloc"))
798       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
799   }
800 }
801 
802 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803                                               LValue lvalue, QualType type);
804 
805 /// Generate an Objective-C method.  An Objective-C method is a C function with
806 /// its pointer, name, and types registered in the class structure.
807 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
808   StartObjCMethod(OMD, OMD->getClassInterface());
809   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
810   assert(isa<CompoundStmt>(OMD->getBody()));
811   incrementProfileCounter(OMD->getBody());
812   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
813   FinishFunction(OMD->getBodyRBrace());
814 }
815 
816 /// emitStructGetterCall - Call the runtime function to load a property
817 /// into the return value slot.
818 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
819                                  bool isAtomic, bool hasStrong) {
820   ASTContext &Context = CGF.getContext();
821 
822   llvm::Value *src =
823       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
824           .getPointer(CGF);
825 
826   // objc_copyStruct (ReturnValue, &structIvar,
827   //                  sizeof (Type of Ivar), isAtomic, false);
828   CallArgList args;
829 
830   llvm::Value *dest =
831       CGF.Builder.CreateBitCast(CGF.ReturnValue.getPointer(), CGF.VoidPtrTy);
832   args.add(RValue::get(dest), Context.VoidPtrTy);
833 
834   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
835   args.add(RValue::get(src), Context.VoidPtrTy);
836 
837   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
838   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
839   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
840   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
841 
842   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
843   CGCallee callee = CGCallee::forDirect(fn);
844   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
845                callee, ReturnValueSlot(), args);
846 }
847 
848 /// Determine whether the given architecture supports unaligned atomic
849 /// accesses.  They don't have to be fast, just faster than a function
850 /// call and a mutex.
851 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
852   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
853   // currently supported by the backend.)
854   return false;
855 }
856 
857 /// Return the maximum size that permits atomic accesses for the given
858 /// architecture.
859 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
860                                         llvm::Triple::ArchType arch) {
861   // ARM has 8-byte atomic accesses, but it's not clear whether we
862   // want to rely on them here.
863 
864   // In the default case, just assume that any size up to a pointer is
865   // fine given adequate alignment.
866   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
867 }
868 
869 namespace {
870   class PropertyImplStrategy {
871   public:
872     enum StrategyKind {
873       /// The 'native' strategy is to use the architecture's provided
874       /// reads and writes.
875       Native,
876 
877       /// Use objc_setProperty and objc_getProperty.
878       GetSetProperty,
879 
880       /// Use objc_setProperty for the setter, but use expression
881       /// evaluation for the getter.
882       SetPropertyAndExpressionGet,
883 
884       /// Use objc_copyStruct.
885       CopyStruct,
886 
887       /// The 'expression' strategy is to emit normal assignment or
888       /// lvalue-to-rvalue expressions.
889       Expression
890     };
891 
892     StrategyKind getKind() const { return StrategyKind(Kind); }
893 
894     bool hasStrongMember() const { return HasStrong; }
895     bool isAtomic() const { return IsAtomic; }
896     bool isCopy() const { return IsCopy; }
897 
898     CharUnits getIvarSize() const { return IvarSize; }
899     CharUnits getIvarAlignment() const { return IvarAlignment; }
900 
901     PropertyImplStrategy(CodeGenModule &CGM,
902                          const ObjCPropertyImplDecl *propImpl);
903 
904   private:
905     unsigned Kind : 8;
906     unsigned IsAtomic : 1;
907     unsigned IsCopy : 1;
908     unsigned HasStrong : 1;
909 
910     CharUnits IvarSize;
911     CharUnits IvarAlignment;
912   };
913 }
914 
915 /// Pick an implementation strategy for the given property synthesis.
916 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
917                                      const ObjCPropertyImplDecl *propImpl) {
918   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
919   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
920 
921   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
922   IsAtomic = prop->isAtomic();
923   HasStrong = false; // doesn't matter here.
924 
925   // Evaluate the ivar's size and alignment.
926   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
927   QualType ivarType = ivar->getType();
928   auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
929   IvarSize = TInfo.Width;
930   IvarAlignment = TInfo.Align;
931 
932   // If we have a copy property, we always have to use setProperty.
933   // If the property is atomic we need to use getProperty, but in
934   // the nonatomic case we can just use expression.
935   if (IsCopy) {
936     Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
937     return;
938   }
939 
940   // Handle retain.
941   if (setterKind == ObjCPropertyDecl::Retain) {
942     // In GC-only, there's nothing special that needs to be done.
943     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
944       // fallthrough
945 
946     // In ARC, if the property is non-atomic, use expression emission,
947     // which translates to objc_storeStrong.  This isn't required, but
948     // it's slightly nicer.
949     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
950       // Using standard expression emission for the setter is only
951       // acceptable if the ivar is __strong, which won't be true if
952       // the property is annotated with __attribute__((NSObject)).
953       // TODO: falling all the way back to objc_setProperty here is
954       // just laziness, though;  we could still use objc_storeStrong
955       // if we hacked it right.
956       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
957         Kind = Expression;
958       else
959         Kind = SetPropertyAndExpressionGet;
960       return;
961 
962     // Otherwise, we need to at least use setProperty.  However, if
963     // the property isn't atomic, we can use normal expression
964     // emission for the getter.
965     } else if (!IsAtomic) {
966       Kind = SetPropertyAndExpressionGet;
967       return;
968 
969     // Otherwise, we have to use both setProperty and getProperty.
970     } else {
971       Kind = GetSetProperty;
972       return;
973     }
974   }
975 
976   // If we're not atomic, just use expression accesses.
977   if (!IsAtomic) {
978     Kind = Expression;
979     return;
980   }
981 
982   // Properties on bitfield ivars need to be emitted using expression
983   // accesses even if they're nominally atomic.
984   if (ivar->isBitField()) {
985     Kind = Expression;
986     return;
987   }
988 
989   // GC-qualified or ARC-qualified ivars need to be emitted as
990   // expressions.  This actually works out to being atomic anyway,
991   // except for ARC __strong, but that should trigger the above code.
992   if (ivarType.hasNonTrivialObjCLifetime() ||
993       (CGM.getLangOpts().getGC() &&
994        CGM.getContext().getObjCGCAttrKind(ivarType))) {
995     Kind = Expression;
996     return;
997   }
998 
999   // Compute whether the ivar has strong members.
1000   if (CGM.getLangOpts().getGC())
1001     if (const RecordType *recordType = ivarType->getAs<RecordType>())
1002       HasStrong = recordType->getDecl()->hasObjectMember();
1003 
1004   // We can never access structs with object members with a native
1005   // access, because we need to use write barriers.  This is what
1006   // objc_copyStruct is for.
1007   if (HasStrong) {
1008     Kind = CopyStruct;
1009     return;
1010   }
1011 
1012   // Otherwise, this is target-dependent and based on the size and
1013   // alignment of the ivar.
1014 
1015   // If the size of the ivar is not a power of two, give up.  We don't
1016   // want to get into the business of doing compare-and-swaps.
1017   if (!IvarSize.isPowerOfTwo()) {
1018     Kind = CopyStruct;
1019     return;
1020   }
1021 
1022   llvm::Triple::ArchType arch =
1023     CGM.getTarget().getTriple().getArch();
1024 
1025   // Most architectures require memory to fit within a single cache
1026   // line, so the alignment has to be at least the size of the access.
1027   // Otherwise we have to grab a lock.
1028   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1029     Kind = CopyStruct;
1030     return;
1031   }
1032 
1033   // If the ivar's size exceeds the architecture's maximum atomic
1034   // access size, we have to use CopyStruct.
1035   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1036     Kind = CopyStruct;
1037     return;
1038   }
1039 
1040   // Otherwise, we can use native loads and stores.
1041   Kind = Native;
1042 }
1043 
1044 /// Generate an Objective-C property getter function.
1045 ///
1046 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1047 /// is illegal within a category.
1048 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1049                                          const ObjCPropertyImplDecl *PID) {
1050   llvm::Constant *AtomicHelperFn =
1051       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1052   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1053   assert(OMD && "Invalid call to generate getter (empty method)");
1054   StartObjCMethod(OMD, IMP->getClassInterface());
1055 
1056   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1057 
1058   FinishFunction(OMD->getEndLoc());
1059 }
1060 
1061 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1062   const Expr *getter = propImpl->getGetterCXXConstructor();
1063   if (!getter) return true;
1064 
1065   // Sema only makes only of these when the ivar has a C++ class type,
1066   // so the form is pretty constrained.
1067 
1068   // If the property has a reference type, we might just be binding a
1069   // reference, in which case the result will be a gl-value.  We should
1070   // treat this as a non-trivial operation.
1071   if (getter->isGLValue())
1072     return false;
1073 
1074   // If we selected a trivial copy-constructor, we're okay.
1075   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1076     return (construct->getConstructor()->isTrivial());
1077 
1078   // The constructor might require cleanups (in which case it's never
1079   // trivial).
1080   assert(isa<ExprWithCleanups>(getter));
1081   return false;
1082 }
1083 
1084 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1085 /// copy the ivar into the resturn slot.
1086 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1087                                           llvm::Value *returnAddr,
1088                                           ObjCIvarDecl *ivar,
1089                                           llvm::Constant *AtomicHelperFn) {
1090   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1091   //                           AtomicHelperFn);
1092   CallArgList args;
1093 
1094   // The 1st argument is the return Slot.
1095   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1096 
1097   // The 2nd argument is the address of the ivar.
1098   llvm::Value *ivarAddr =
1099       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1100           .getPointer(CGF);
1101   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1102   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1103 
1104   // Third argument is the helper function.
1105   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1106 
1107   llvm::FunctionCallee copyCppAtomicObjectFn =
1108       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1109   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1110   CGF.EmitCall(
1111       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1112                callee, ReturnValueSlot(), args);
1113 }
1114 
1115 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1116 // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1117 // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1118 // being removed from the direct method ABI as the getter/setter caller would
1119 // never load one. For non-direct methods, this emits a load of the implicit
1120 // `_cmd` storage.
1121 static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1122                                                    ObjCMethodDecl *MD) {
1123   if (MD->isDirectMethod()) {
1124     // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1125     // value. This will be passed to objc_getProperty/objc_setProperty, which
1126     // has not appeared bothered by the `_cmd` argument being undefined before.
1127     llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1128     return llvm::PoisonValue::get(selType);
1129   }
1130 
1131   return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1132 }
1133 
1134 void
1135 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1136                                         const ObjCPropertyImplDecl *propImpl,
1137                                         const ObjCMethodDecl *GetterMethodDecl,
1138                                         llvm::Constant *AtomicHelperFn) {
1139 
1140   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1141 
1142   if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1143     if (!AtomicHelperFn) {
1144       LValue Src =
1145           EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1146       LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1147       callCStructCopyConstructor(Dst, Src);
1148     } else {
1149       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1150       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), ivar,
1151                                     AtomicHelperFn);
1152     }
1153     return;
1154   }
1155 
1156   // If there's a non-trivial 'get' expression, we just have to emit that.
1157   if (!hasTrivialGetExpr(propImpl)) {
1158     if (!AtomicHelperFn) {
1159       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1160                                      propImpl->getGetterCXXConstructor(),
1161                                      /* NRVOCandidate=*/nullptr);
1162       EmitReturnStmt(*ret);
1163     }
1164     else {
1165       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1166       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1167                                     ivar, AtomicHelperFn);
1168     }
1169     return;
1170   }
1171 
1172   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1173   QualType propType = prop->getType();
1174   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1175 
1176   // Pick an implementation strategy.
1177   PropertyImplStrategy strategy(CGM, propImpl);
1178   switch (strategy.getKind()) {
1179   case PropertyImplStrategy::Native: {
1180     // We don't need to do anything for a zero-size struct.
1181     if (strategy.getIvarSize().isZero())
1182       return;
1183 
1184     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1185 
1186     // Currently, all atomic accesses have to be through integer
1187     // types, so there's no point in trying to pick a prettier type.
1188     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1189     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1190 
1191     // Perform an atomic load.  This does not impose ordering constraints.
1192     Address ivarAddr = LV.getAddress(*this);
1193     ivarAddr = ivarAddr.withElementType(bitcastType);
1194     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1195     load->setAtomic(llvm::AtomicOrdering::Unordered);
1196 
1197     // Store that value into the return address.  Doing this with a
1198     // bitcast is likely to produce some pretty ugly IR, but it's not
1199     // the *most* terrible thing in the world.
1200     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1201     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1202     llvm::Value *ivarVal = load;
1203     if (ivarSize > retTySize) {
1204       bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1205       ivarVal = Builder.CreateTrunc(load, bitcastType);
1206     }
1207     Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType));
1208 
1209     // Make sure we don't do an autorelease.
1210     AutoreleaseResult = false;
1211     return;
1212   }
1213 
1214   case PropertyImplStrategy::GetSetProperty: {
1215     llvm::FunctionCallee getPropertyFn =
1216         CGM.getObjCRuntime().GetPropertyGetFunction();
1217     if (!getPropertyFn) {
1218       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1219       return;
1220     }
1221     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1222 
1223     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1224     // FIXME: Can't this be simpler? This might even be worse than the
1225     // corresponding gcc code.
1226     llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1227     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1228     llvm::Value *ivarOffset =
1229         EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1230 
1231     CallArgList args;
1232     args.add(RValue::get(self), getContext().getObjCIdType());
1233     args.add(RValue::get(cmd), getContext().getObjCSelType());
1234     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1235     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1236              getContext().BoolTy);
1237 
1238     // FIXME: We shouldn't need to get the function info here, the
1239     // runtime already should have computed it to build the function.
1240     llvm::CallBase *CallInstruction;
1241     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1242                              getContext().getObjCIdType(), args),
1243                          callee, ReturnValueSlot(), args, &CallInstruction);
1244     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1245       call->setTailCall();
1246 
1247     // We need to fix the type here. Ivars with copy & retain are
1248     // always objects so we don't need to worry about complex or
1249     // aggregates.
1250     RV = RValue::get(Builder.CreateBitCast(
1251         RV.getScalarVal(),
1252         getTypes().ConvertType(getterMethod->getReturnType())));
1253 
1254     EmitReturnOfRValue(RV, propType);
1255 
1256     // objc_getProperty does an autorelease, so we should suppress ours.
1257     AutoreleaseResult = false;
1258 
1259     return;
1260   }
1261 
1262   case PropertyImplStrategy::CopyStruct:
1263     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1264                          strategy.hasStrongMember());
1265     return;
1266 
1267   case PropertyImplStrategy::Expression:
1268   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1269     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1270 
1271     QualType ivarType = ivar->getType();
1272     switch (getEvaluationKind(ivarType)) {
1273     case TEK_Complex: {
1274       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1275       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1276                          /*init*/ true);
1277       return;
1278     }
1279     case TEK_Aggregate: {
1280       // The return value slot is guaranteed to not be aliased, but
1281       // that's not necessarily the same as "on the stack", so
1282       // we still potentially need objc_memmove_collectable.
1283       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1284                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1285       return;
1286     }
1287     case TEK_Scalar: {
1288       llvm::Value *value;
1289       if (propType->isReferenceType()) {
1290         value = LV.getAddress(*this).getPointer();
1291       } else {
1292         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1293         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1294           if (getLangOpts().ObjCAutoRefCount) {
1295             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1296           } else {
1297             value = EmitARCLoadWeak(LV.getAddress(*this));
1298           }
1299 
1300         // Otherwise we want to do a simple load, suppressing the
1301         // final autorelease.
1302         } else {
1303           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1304           AutoreleaseResult = false;
1305         }
1306 
1307         value = Builder.CreateBitCast(
1308             value, ConvertType(GetterMethodDecl->getReturnType()));
1309       }
1310 
1311       EmitReturnOfRValue(RValue::get(value), propType);
1312       return;
1313     }
1314     }
1315     llvm_unreachable("bad evaluation kind");
1316   }
1317 
1318   }
1319   llvm_unreachable("bad @property implementation strategy!");
1320 }
1321 
1322 /// emitStructSetterCall - Call the runtime function to store the value
1323 /// from the first formal parameter into the given ivar.
1324 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1325                                  ObjCIvarDecl *ivar) {
1326   // objc_copyStruct (&structIvar, &Arg,
1327   //                  sizeof (struct something), true, false);
1328   CallArgList args;
1329 
1330   // The first argument is the address of the ivar.
1331   llvm::Value *ivarAddr =
1332       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1333           .getPointer(CGF);
1334   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1335   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1336 
1337   // The second argument is the address of the parameter variable.
1338   ParmVarDecl *argVar = *OMD->param_begin();
1339   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1340                      argVar->getType().getNonReferenceType(), VK_LValue,
1341                      SourceLocation());
1342   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1343   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1344   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1345 
1346   // The third argument is the sizeof the type.
1347   llvm::Value *size =
1348     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1349   args.add(RValue::get(size), CGF.getContext().getSizeType());
1350 
1351   // The fourth argument is the 'isAtomic' flag.
1352   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1353 
1354   // The fifth argument is the 'hasStrong' flag.
1355   // FIXME: should this really always be false?
1356   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1357 
1358   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1359   CGCallee callee = CGCallee::forDirect(fn);
1360   CGF.EmitCall(
1361       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1362                callee, ReturnValueSlot(), args);
1363 }
1364 
1365 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1366 /// the value from the first formal parameter into the given ivar, using
1367 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1368 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1369                                           ObjCMethodDecl *OMD,
1370                                           ObjCIvarDecl *ivar,
1371                                           llvm::Constant *AtomicHelperFn) {
1372   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1373   //                           AtomicHelperFn);
1374   CallArgList args;
1375 
1376   // The first argument is the address of the ivar.
1377   llvm::Value *ivarAddr =
1378       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1379           .getPointer(CGF);
1380   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1381   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1382 
1383   // The second argument is the address of the parameter variable.
1384   ParmVarDecl *argVar = *OMD->param_begin();
1385   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1386                      argVar->getType().getNonReferenceType(), VK_LValue,
1387                      SourceLocation());
1388   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1389   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1390   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1391 
1392   // Third argument is the helper function.
1393   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1394 
1395   llvm::FunctionCallee fn =
1396       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1397   CGCallee callee = CGCallee::forDirect(fn);
1398   CGF.EmitCall(
1399       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1400                callee, ReturnValueSlot(), args);
1401 }
1402 
1403 
1404 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1405   Expr *setter = PID->getSetterCXXAssignment();
1406   if (!setter) return true;
1407 
1408   // Sema only makes only of these when the ivar has a C++ class type,
1409   // so the form is pretty constrained.
1410 
1411   // An operator call is trivial if the function it calls is trivial.
1412   // This also implies that there's nothing non-trivial going on with
1413   // the arguments, because operator= can only be trivial if it's a
1414   // synthesized assignment operator and therefore both parameters are
1415   // references.
1416   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1417     if (const FunctionDecl *callee
1418           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1419       if (callee->isTrivial())
1420         return true;
1421     return false;
1422   }
1423 
1424   assert(isa<ExprWithCleanups>(setter));
1425   return false;
1426 }
1427 
1428 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1429   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1430     return false;
1431   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1432 }
1433 
1434 void
1435 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1436                                         const ObjCPropertyImplDecl *propImpl,
1437                                         llvm::Constant *AtomicHelperFn) {
1438   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1439   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1440 
1441   if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1442     ParmVarDecl *PVD = *setterMethod->param_begin();
1443     if (!AtomicHelperFn) {
1444       // Call the move assignment operator instead of calling the copy
1445       // assignment operator and destructor.
1446       LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar,
1447                                      /*quals*/ 0);
1448       LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1449       callCStructMoveAssignmentOperator(Dst, Src);
1450     } else {
1451       // If atomic, assignment is called via a locking api.
1452       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1453     }
1454     // Decativate the destructor for the setter parameter.
1455     DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1456     return;
1457   }
1458 
1459   // Just use the setter expression if Sema gave us one and it's
1460   // non-trivial.
1461   if (!hasTrivialSetExpr(propImpl)) {
1462     if (!AtomicHelperFn)
1463       // If non-atomic, assignment is called directly.
1464       EmitStmt(propImpl->getSetterCXXAssignment());
1465     else
1466       // If atomic, assignment is called via a locking api.
1467       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1468                                     AtomicHelperFn);
1469     return;
1470   }
1471 
1472   PropertyImplStrategy strategy(CGM, propImpl);
1473   switch (strategy.getKind()) {
1474   case PropertyImplStrategy::Native: {
1475     // We don't need to do anything for a zero-size struct.
1476     if (strategy.getIvarSize().isZero())
1477       return;
1478 
1479     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1480 
1481     LValue ivarLValue =
1482       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1483     Address ivarAddr = ivarLValue.getAddress(*this);
1484 
1485     // Currently, all atomic accesses have to be through integer
1486     // types, so there's no point in trying to pick a prettier type.
1487     llvm::Type *castType = llvm::Type::getIntNTy(
1488         getLLVMContext(), getContext().toBits(strategy.getIvarSize()));
1489 
1490     // Cast both arguments to the chosen operation type.
1491     argAddr = argAddr.withElementType(castType);
1492     ivarAddr = ivarAddr.withElementType(castType);
1493 
1494     llvm::Value *load = Builder.CreateLoad(argAddr);
1495 
1496     // Perform an atomic store.  There are no memory ordering requirements.
1497     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1498     store->setAtomic(llvm::AtomicOrdering::Unordered);
1499     return;
1500   }
1501 
1502   case PropertyImplStrategy::GetSetProperty:
1503   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1504 
1505     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1506     llvm::FunctionCallee setPropertyFn = nullptr;
1507     if (UseOptimizedSetter(CGM)) {
1508       // 10.8 and iOS 6.0 code and GC is off
1509       setOptimizedPropertyFn =
1510           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1511               strategy.isAtomic(), strategy.isCopy());
1512       if (!setOptimizedPropertyFn) {
1513         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1514         return;
1515       }
1516     }
1517     else {
1518       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1519       if (!setPropertyFn) {
1520         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1521         return;
1522       }
1523     }
1524 
1525     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1526     //                       <is-atomic>, <is-copy>).
1527     llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1528     llvm::Value *self =
1529       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1530     llvm::Value *ivarOffset =
1531         EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1532     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1533     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1534     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1535 
1536     CallArgList args;
1537     args.add(RValue::get(self), getContext().getObjCIdType());
1538     args.add(RValue::get(cmd), getContext().getObjCSelType());
1539     if (setOptimizedPropertyFn) {
1540       args.add(RValue::get(arg), getContext().getObjCIdType());
1541       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1542       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1543       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1544                callee, ReturnValueSlot(), args);
1545     } else {
1546       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1547       args.add(RValue::get(arg), getContext().getObjCIdType());
1548       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1549                getContext().BoolTy);
1550       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1551                getContext().BoolTy);
1552       // FIXME: We shouldn't need to get the function info here, the runtime
1553       // already should have computed it to build the function.
1554       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1555       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1556                callee, ReturnValueSlot(), args);
1557     }
1558 
1559     return;
1560   }
1561 
1562   case PropertyImplStrategy::CopyStruct:
1563     emitStructSetterCall(*this, setterMethod, ivar);
1564     return;
1565 
1566   case PropertyImplStrategy::Expression:
1567     break;
1568   }
1569 
1570   // Otherwise, fake up some ASTs and emit a normal assignment.
1571   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1572   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1573                    VK_LValue, SourceLocation());
1574   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1575                             CK_LValueToRValue, &self, VK_PRValue,
1576                             FPOptionsOverride());
1577   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1578                           SourceLocation(), SourceLocation(),
1579                           &selfLoad, true, true);
1580 
1581   ParmVarDecl *argDecl = *setterMethod->param_begin();
1582   QualType argType = argDecl->getType().getNonReferenceType();
1583   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1584                   SourceLocation());
1585   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1586                            argType.getUnqualifiedType(), CK_LValueToRValue,
1587                            &arg, VK_PRValue, FPOptionsOverride());
1588 
1589   // The property type can differ from the ivar type in some situations with
1590   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1591   // The following absurdity is just to ensure well-formed IR.
1592   CastKind argCK = CK_NoOp;
1593   if (ivarRef.getType()->isObjCObjectPointerType()) {
1594     if (argLoad.getType()->isObjCObjectPointerType())
1595       argCK = CK_BitCast;
1596     else if (argLoad.getType()->isBlockPointerType())
1597       argCK = CK_BlockPointerToObjCPointerCast;
1598     else
1599       argCK = CK_CPointerToObjCPointerCast;
1600   } else if (ivarRef.getType()->isBlockPointerType()) {
1601      if (argLoad.getType()->isBlockPointerType())
1602       argCK = CK_BitCast;
1603     else
1604       argCK = CK_AnyPointerToBlockPointerCast;
1605   } else if (ivarRef.getType()->isPointerType()) {
1606     argCK = CK_BitCast;
1607   } else if (argLoad.getType()->isAtomicType() &&
1608              !ivarRef.getType()->isAtomicType()) {
1609     argCK = CK_AtomicToNonAtomic;
1610   } else if (!argLoad.getType()->isAtomicType() &&
1611              ivarRef.getType()->isAtomicType()) {
1612     argCK = CK_NonAtomicToAtomic;
1613   }
1614   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1615                            &argLoad, VK_PRValue, FPOptionsOverride());
1616   Expr *finalArg = &argLoad;
1617   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1618                                            argLoad.getType()))
1619     finalArg = &argCast;
1620 
1621   BinaryOperator *assign = BinaryOperator::Create(
1622       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1623       VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1624   EmitStmt(assign);
1625 }
1626 
1627 /// Generate an Objective-C property setter function.
1628 ///
1629 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1630 /// is illegal within a category.
1631 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1632                                          const ObjCPropertyImplDecl *PID) {
1633   llvm::Constant *AtomicHelperFn =
1634       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1635   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1636   assert(OMD && "Invalid call to generate setter (empty method)");
1637   StartObjCMethod(OMD, IMP->getClassInterface());
1638 
1639   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1640 
1641   FinishFunction(OMD->getEndLoc());
1642 }
1643 
1644 namespace {
1645   struct DestroyIvar final : EHScopeStack::Cleanup {
1646   private:
1647     llvm::Value *addr;
1648     const ObjCIvarDecl *ivar;
1649     CodeGenFunction::Destroyer *destroyer;
1650     bool useEHCleanupForArray;
1651   public:
1652     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1653                 CodeGenFunction::Destroyer *destroyer,
1654                 bool useEHCleanupForArray)
1655       : addr(addr), ivar(ivar), destroyer(destroyer),
1656         useEHCleanupForArray(useEHCleanupForArray) {}
1657 
1658     void Emit(CodeGenFunction &CGF, Flags flags) override {
1659       LValue lvalue
1660         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1661       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1662                       flags.isForNormalCleanup() && useEHCleanupForArray);
1663     }
1664   };
1665 }
1666 
1667 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1668 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1669                                       Address addr,
1670                                       QualType type) {
1671   llvm::Value *null = getNullForVariable(addr);
1672   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1673 }
1674 
1675 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1676                                   ObjCImplementationDecl *impl) {
1677   CodeGenFunction::RunCleanupsScope scope(CGF);
1678 
1679   llvm::Value *self = CGF.LoadObjCSelf();
1680 
1681   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1682   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1683        ivar; ivar = ivar->getNextIvar()) {
1684     QualType type = ivar->getType();
1685 
1686     // Check whether the ivar is a destructible type.
1687     QualType::DestructionKind dtorKind = type.isDestructedType();
1688     if (!dtorKind) continue;
1689 
1690     CodeGenFunction::Destroyer *destroyer = nullptr;
1691 
1692     // Use a call to objc_storeStrong to destroy strong ivars, for the
1693     // general benefit of the tools.
1694     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1695       destroyer = destroyARCStrongWithStore;
1696 
1697     // Otherwise use the default for the destruction kind.
1698     } else {
1699       destroyer = CGF.getDestroyer(dtorKind);
1700     }
1701 
1702     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1703 
1704     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1705                                          cleanupKind & EHCleanup);
1706   }
1707 
1708   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1709 }
1710 
1711 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1712                                                  ObjCMethodDecl *MD,
1713                                                  bool ctor) {
1714   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1715   StartObjCMethod(MD, IMP->getClassInterface());
1716 
1717   // Emit .cxx_construct.
1718   if (ctor) {
1719     // Suppress the final autorelease in ARC.
1720     AutoreleaseResult = false;
1721 
1722     for (const auto *IvarInit : IMP->inits()) {
1723       FieldDecl *Field = IvarInit->getAnyMember();
1724       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1725       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1726                                     LoadObjCSelf(), Ivar, 0);
1727       EmitAggExpr(IvarInit->getInit(),
1728                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1729                                           AggValueSlot::DoesNotNeedGCBarriers,
1730                                           AggValueSlot::IsNotAliased,
1731                                           AggValueSlot::DoesNotOverlap));
1732     }
1733     // constructor returns 'self'.
1734     CodeGenTypes &Types = CGM.getTypes();
1735     QualType IdTy(CGM.getContext().getObjCIdType());
1736     llvm::Value *SelfAsId =
1737       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1738     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1739 
1740   // Emit .cxx_destruct.
1741   } else {
1742     emitCXXDestructMethod(*this, IMP);
1743   }
1744   FinishFunction();
1745 }
1746 
1747 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1748   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1749   DeclRefExpr DRE(getContext(), Self,
1750                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1751                   Self->getType(), VK_LValue, SourceLocation());
1752   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1753 }
1754 
1755 QualType CodeGenFunction::TypeOfSelfObject() {
1756   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1757   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1758   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1759     getContext().getCanonicalType(selfDecl->getType()));
1760   return PTy->getPointeeType();
1761 }
1762 
1763 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1764   llvm::FunctionCallee EnumerationMutationFnPtr =
1765       CGM.getObjCRuntime().EnumerationMutationFunction();
1766   if (!EnumerationMutationFnPtr) {
1767     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1768     return;
1769   }
1770   CGCallee EnumerationMutationFn =
1771     CGCallee::forDirect(EnumerationMutationFnPtr);
1772 
1773   CGDebugInfo *DI = getDebugInfo();
1774   if (DI)
1775     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1776 
1777   RunCleanupsScope ForScope(*this);
1778 
1779   // The local variable comes into scope immediately.
1780   AutoVarEmission variable = AutoVarEmission::invalid();
1781   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1782     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1783 
1784   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1785 
1786   // Fast enumeration state.
1787   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1788   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1789   EmitNullInitialization(StatePtr, StateTy);
1790 
1791   // Number of elements in the items array.
1792   static const unsigned NumItems = 16;
1793 
1794   // Fetch the countByEnumeratingWithState:objects:count: selector.
1795   IdentifierInfo *II[] = {
1796     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1797     &CGM.getContext().Idents.get("objects"),
1798     &CGM.getContext().Idents.get("count")
1799   };
1800   Selector FastEnumSel =
1801       CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1802 
1803   QualType ItemsTy =
1804     getContext().getConstantArrayType(getContext().getObjCIdType(),
1805                                       llvm::APInt(32, NumItems), nullptr,
1806                                       ArrayType::Normal, 0);
1807   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1808 
1809   // Emit the collection pointer.  In ARC, we do a retain.
1810   llvm::Value *Collection;
1811   if (getLangOpts().ObjCAutoRefCount) {
1812     Collection = EmitARCRetainScalarExpr(S.getCollection());
1813 
1814     // Enter a cleanup to do the release.
1815     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1816   } else {
1817     Collection = EmitScalarExpr(S.getCollection());
1818   }
1819 
1820   // The 'continue' label needs to appear within the cleanup for the
1821   // collection object.
1822   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1823 
1824   // Send it our message:
1825   CallArgList Args;
1826 
1827   // The first argument is a temporary of the enumeration-state type.
1828   Args.add(RValue::get(StatePtr.getPointer()),
1829            getContext().getPointerType(StateTy));
1830 
1831   // The second argument is a temporary array with space for NumItems
1832   // pointers.  We'll actually be loading elements from the array
1833   // pointer written into the control state; this buffer is so that
1834   // collections that *aren't* backed by arrays can still queue up
1835   // batches of elements.
1836   Args.add(RValue::get(ItemsPtr.getPointer()),
1837            getContext().getPointerType(ItemsTy));
1838 
1839   // The third argument is the capacity of that temporary array.
1840   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1841   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1842   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1843 
1844   // Start the enumeration.
1845   RValue CountRV =
1846       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1847                                                getContext().getNSUIntegerType(),
1848                                                FastEnumSel, Collection, Args);
1849 
1850   // The initial number of objects that were returned in the buffer.
1851   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1852 
1853   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1854   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1855 
1856   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1857 
1858   // If the limit pointer was zero to begin with, the collection is
1859   // empty; skip all this. Set the branch weight assuming this has the same
1860   // probability of exiting the loop as any other loop exit.
1861   uint64_t EntryCount = getCurrentProfileCount();
1862   Builder.CreateCondBr(
1863       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1864       LoopInitBB,
1865       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1866 
1867   // Otherwise, initialize the loop.
1868   EmitBlock(LoopInitBB);
1869 
1870   // Save the initial mutations value.  This is the value at an
1871   // address that was written into the state object by
1872   // countByEnumeratingWithState:objects:count:.
1873   Address StateMutationsPtrPtr =
1874       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1875   llvm::Value *StateMutationsPtr
1876     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1877 
1878   llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1879   llvm::Value *initialMutations =
1880     Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1881                               getPointerAlign(), "forcoll.initial-mutations");
1882 
1883   // Start looping.  This is the point we return to whenever we have a
1884   // fresh, non-empty batch of objects.
1885   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1886   EmitBlock(LoopBodyBB);
1887 
1888   // The current index into the buffer.
1889   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1890   index->addIncoming(zero, LoopInitBB);
1891 
1892   // The current buffer size.
1893   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1894   count->addIncoming(initialBufferLimit, LoopInitBB);
1895 
1896   incrementProfileCounter(&S);
1897 
1898   // Check whether the mutations value has changed from where it was
1899   // at start.  StateMutationsPtr should actually be invariant between
1900   // refreshes.
1901   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1902   llvm::Value *currentMutations
1903     = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1904                                 getPointerAlign(), "statemutations");
1905 
1906   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1907   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1908 
1909   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1910                        WasNotMutatedBB, WasMutatedBB);
1911 
1912   // If so, call the enumeration-mutation function.
1913   EmitBlock(WasMutatedBB);
1914   llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1915   llvm::Value *V =
1916     Builder.CreateBitCast(Collection, ObjCIdType);
1917   CallArgList Args2;
1918   Args2.add(RValue::get(V), getContext().getObjCIdType());
1919   // FIXME: We shouldn't need to get the function info here, the runtime already
1920   // should have computed it to build the function.
1921   EmitCall(
1922           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1923            EnumerationMutationFn, ReturnValueSlot(), Args2);
1924 
1925   // Otherwise, or if the mutation function returns, just continue.
1926   EmitBlock(WasNotMutatedBB);
1927 
1928   // Initialize the element variable.
1929   RunCleanupsScope elementVariableScope(*this);
1930   bool elementIsVariable;
1931   LValue elementLValue;
1932   QualType elementType;
1933   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1934     // Initialize the variable, in case it's a __block variable or something.
1935     EmitAutoVarInit(variable);
1936 
1937     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1938     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1939                         D->getType(), VK_LValue, SourceLocation());
1940     elementLValue = EmitLValue(&tempDRE);
1941     elementType = D->getType();
1942     elementIsVariable = true;
1943 
1944     if (D->isARCPseudoStrong())
1945       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1946   } else {
1947     elementLValue = LValue(); // suppress warning
1948     elementType = cast<Expr>(S.getElement())->getType();
1949     elementIsVariable = false;
1950   }
1951   llvm::Type *convertedElementType = ConvertType(elementType);
1952 
1953   // Fetch the buffer out of the enumeration state.
1954   // TODO: this pointer should actually be invariant between
1955   // refreshes, which would help us do certain loop optimizations.
1956   Address StateItemsPtr =
1957       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1958   llvm::Value *EnumStateItems =
1959     Builder.CreateLoad(StateItemsPtr, "stateitems");
1960 
1961   // Fetch the value at the current index from the buffer.
1962   llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1963       ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1964   llvm::Value *CurrentItem =
1965     Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1966 
1967   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1968     // Before using an item from the collection, check that the implicit cast
1969     // from id to the element type is valid. This is done with instrumentation
1970     // roughly corresponding to:
1971     //
1972     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1973     const ObjCObjectPointerType *ObjPtrTy =
1974         elementType->getAsObjCInterfacePointerType();
1975     const ObjCInterfaceType *InterfaceTy =
1976         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1977     if (InterfaceTy) {
1978       SanitizerScope SanScope(this);
1979       auto &C = CGM.getContext();
1980       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1981       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1982       CallArgList IsKindOfClassArgs;
1983       llvm::Value *Cls =
1984           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1985       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1986       llvm::Value *IsClass =
1987           CGM.getObjCRuntime()
1988               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1989                                    IsKindOfClassSel, CurrentItem,
1990                                    IsKindOfClassArgs)
1991               .getScalarVal();
1992       llvm::Constant *StaticData[] = {
1993           EmitCheckSourceLocation(S.getBeginLoc()),
1994           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1995       EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1996                 SanitizerHandler::InvalidObjCCast,
1997                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1998     }
1999   }
2000 
2001   // Cast that value to the right type.
2002   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
2003                                       "currentitem");
2004 
2005   // Make sure we have an l-value.  Yes, this gets evaluated every
2006   // time through the loop.
2007   if (!elementIsVariable) {
2008     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2009     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2010   } else {
2011     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2012                            /*isInit*/ true);
2013   }
2014 
2015   // If we do have an element variable, this assignment is the end of
2016   // its initialization.
2017   if (elementIsVariable)
2018     EmitAutoVarCleanups(variable);
2019 
2020   // Perform the loop body, setting up break and continue labels.
2021   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2022   {
2023     RunCleanupsScope Scope(*this);
2024     EmitStmt(S.getBody());
2025   }
2026   BreakContinueStack.pop_back();
2027 
2028   // Destroy the element variable now.
2029   elementVariableScope.ForceCleanup();
2030 
2031   // Check whether there are more elements.
2032   EmitBlock(AfterBody.getBlock());
2033 
2034   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2035 
2036   // First we check in the local buffer.
2037   llvm::Value *indexPlusOne =
2038       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2039 
2040   // If we haven't overrun the buffer yet, we can continue.
2041   // Set the branch weights based on the simplifying assumption that this is
2042   // like a while-loop, i.e., ignoring that the false branch fetches more
2043   // elements and then returns to the loop.
2044   Builder.CreateCondBr(
2045       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2046       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2047 
2048   index->addIncoming(indexPlusOne, AfterBody.getBlock());
2049   count->addIncoming(count, AfterBody.getBlock());
2050 
2051   // Otherwise, we have to fetch more elements.
2052   EmitBlock(FetchMoreBB);
2053 
2054   CountRV =
2055       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2056                                                getContext().getNSUIntegerType(),
2057                                                FastEnumSel, Collection, Args);
2058 
2059   // If we got a zero count, we're done.
2060   llvm::Value *refetchCount = CountRV.getScalarVal();
2061 
2062   // (note that the message send might split FetchMoreBB)
2063   index->addIncoming(zero, Builder.GetInsertBlock());
2064   count->addIncoming(refetchCount, Builder.GetInsertBlock());
2065 
2066   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2067                        EmptyBB, LoopBodyBB);
2068 
2069   // No more elements.
2070   EmitBlock(EmptyBB);
2071 
2072   if (!elementIsVariable) {
2073     // If the element was not a declaration, set it to be null.
2074 
2075     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2076     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2077     EmitStoreThroughLValue(RValue::get(null), elementLValue);
2078   }
2079 
2080   if (DI)
2081     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2082 
2083   ForScope.ForceCleanup();
2084   EmitBlock(LoopEnd.getBlock());
2085 }
2086 
2087 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2088   CGM.getObjCRuntime().EmitTryStmt(*this, S);
2089 }
2090 
2091 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2092   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2093 }
2094 
2095 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2096                                               const ObjCAtSynchronizedStmt &S) {
2097   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2098 }
2099 
2100 namespace {
2101   struct CallObjCRelease final : EHScopeStack::Cleanup {
2102     CallObjCRelease(llvm::Value *object) : object(object) {}
2103     llvm::Value *object;
2104 
2105     void Emit(CodeGenFunction &CGF, Flags flags) override {
2106       // Releases at the end of the full-expression are imprecise.
2107       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2108     }
2109   };
2110 }
2111 
2112 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2113 /// release at the end of the full-expression.
2114 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2115                                                     llvm::Value *object) {
2116   // If we're in a conditional branch, we need to make the cleanup
2117   // conditional.
2118   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2119   return object;
2120 }
2121 
2122 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2123                                                            llvm::Value *value) {
2124   return EmitARCRetainAutorelease(type, value);
2125 }
2126 
2127 /// Given a number of pointers, inform the optimizer that they're
2128 /// being intrinsically used up until this point in the program.
2129 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2130   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2131   if (!fn)
2132     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2133 
2134   // This isn't really a "runtime" function, but as an intrinsic it
2135   // doesn't really matter as long as we align things up.
2136   EmitNounwindRuntimeCall(fn, values);
2137 }
2138 
2139 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2140 /// that has operand bundle "clang.arc.attachedcall".
2141 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2142   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2143   if (!fn)
2144     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2145   EmitNounwindRuntimeCall(fn, values);
2146 }
2147 
2148 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2149   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2150     // If the target runtime doesn't naturally support ARC, emit weak
2151     // references to the runtime support library.  We don't really
2152     // permit this to fail, but we need a particular relocation style.
2153     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2154         !CGM.getTriple().isOSBinFormatCOFF()) {
2155       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2156     }
2157   }
2158 }
2159 
2160 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2161                                          llvm::FunctionCallee RTF) {
2162   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2163 }
2164 
2165 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2166                                        CodeGenModule &CGM) {
2167   llvm::Function *fn = CGM.getIntrinsic(IntID);
2168   setARCRuntimeFunctionLinkage(CGM, fn);
2169   return fn;
2170 }
2171 
2172 /// Perform an operation having the signature
2173 ///   i8* (i8*)
2174 /// where a null input causes a no-op and returns null.
2175 static llvm::Value *emitARCValueOperation(
2176     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2177     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2178     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2179   if (isa<llvm::ConstantPointerNull>(value))
2180     return value;
2181 
2182   if (!fn)
2183     fn = getARCIntrinsic(IntID, CGF.CGM);
2184 
2185   // Cast the argument to 'id'.
2186   llvm::Type *origType = returnType ? returnType : value->getType();
2187   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2188 
2189   // Call the function.
2190   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2191   call->setTailCallKind(tailKind);
2192 
2193   // Cast the result back to the original type.
2194   return CGF.Builder.CreateBitCast(call, origType);
2195 }
2196 
2197 /// Perform an operation having the following signature:
2198 ///   i8* (i8**)
2199 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2200                                          llvm::Function *&fn,
2201                                          llvm::Intrinsic::ID IntID) {
2202   if (!fn)
2203     fn = getARCIntrinsic(IntID, CGF.CGM);
2204 
2205   return CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2206 }
2207 
2208 /// Perform an operation having the following signature:
2209 ///   i8* (i8**, i8*)
2210 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2211                                           llvm::Value *value,
2212                                           llvm::Function *&fn,
2213                                           llvm::Intrinsic::ID IntID,
2214                                           bool ignored) {
2215   assert(addr.getElementType() == value->getType());
2216 
2217   if (!fn)
2218     fn = getARCIntrinsic(IntID, CGF.CGM);
2219 
2220   llvm::Type *origType = value->getType();
2221 
2222   llvm::Value *args[] = {
2223     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2224     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2225   };
2226   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2227 
2228   if (ignored) return nullptr;
2229 
2230   return CGF.Builder.CreateBitCast(result, origType);
2231 }
2232 
2233 /// Perform an operation having the following signature:
2234 ///   void (i8**, i8**)
2235 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2236                                  llvm::Function *&fn,
2237                                  llvm::Intrinsic::ID IntID) {
2238   assert(dst.getType() == src.getType());
2239 
2240   if (!fn)
2241     fn = getARCIntrinsic(IntID, CGF.CGM);
2242 
2243   llvm::Value *args[] = {
2244     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2245     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2246   };
2247   CGF.EmitNounwindRuntimeCall(fn, args);
2248 }
2249 
2250 /// Perform an operation having the signature
2251 ///   i8* (i8*)
2252 /// where a null input causes a no-op and returns null.
2253 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2254                                            llvm::Value *value,
2255                                            llvm::Type *returnType,
2256                                            llvm::FunctionCallee &fn,
2257                                            StringRef fnName) {
2258   if (isa<llvm::ConstantPointerNull>(value))
2259     return value;
2260 
2261   if (!fn) {
2262     llvm::FunctionType *fnType =
2263       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2264     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2265 
2266     // We have Native ARC, so set nonlazybind attribute for performance
2267     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2268       if (fnName == "objc_retain")
2269         f->addFnAttr(llvm::Attribute::NonLazyBind);
2270   }
2271 
2272   // Cast the argument to 'id'.
2273   llvm::Type *origType = returnType ? returnType : value->getType();
2274   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2275 
2276   // Call the function.
2277   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2278 
2279   // Mark calls to objc_autorelease as tail on the assumption that methods
2280   // overriding autorelease do not touch anything on the stack.
2281   if (fnName == "objc_autorelease")
2282     if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2283       Call->setTailCall();
2284 
2285   // Cast the result back to the original type.
2286   return CGF.Builder.CreateBitCast(Inst, origType);
2287 }
2288 
2289 /// Produce the code to do a retain.  Based on the type, calls one of:
2290 ///   call i8* \@objc_retain(i8* %value)
2291 ///   call i8* \@objc_retainBlock(i8* %value)
2292 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2293   if (type->isBlockPointerType())
2294     return EmitARCRetainBlock(value, /*mandatory*/ false);
2295   else
2296     return EmitARCRetainNonBlock(value);
2297 }
2298 
2299 /// Retain the given object, with normal retain semantics.
2300 ///   call i8* \@objc_retain(i8* %value)
2301 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2302   return emitARCValueOperation(*this, value, nullptr,
2303                                CGM.getObjCEntrypoints().objc_retain,
2304                                llvm::Intrinsic::objc_retain);
2305 }
2306 
2307 /// Retain the given block, with _Block_copy semantics.
2308 ///   call i8* \@objc_retainBlock(i8* %value)
2309 ///
2310 /// \param mandatory - If false, emit the call with metadata
2311 /// indicating that it's okay for the optimizer to eliminate this call
2312 /// if it can prove that the block never escapes except down the stack.
2313 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2314                                                  bool mandatory) {
2315   llvm::Value *result
2316     = emitARCValueOperation(*this, value, nullptr,
2317                             CGM.getObjCEntrypoints().objc_retainBlock,
2318                             llvm::Intrinsic::objc_retainBlock);
2319 
2320   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2321   // tell the optimizer that it doesn't need to do this copy if the
2322   // block doesn't escape, where being passed as an argument doesn't
2323   // count as escaping.
2324   if (!mandatory && isa<llvm::Instruction>(result)) {
2325     llvm::CallInst *call
2326       = cast<llvm::CallInst>(result->stripPointerCasts());
2327     assert(call->getCalledOperand() ==
2328            CGM.getObjCEntrypoints().objc_retainBlock);
2329 
2330     call->setMetadata("clang.arc.copy_on_escape",
2331                       llvm::MDNode::get(Builder.getContext(), std::nullopt));
2332   }
2333 
2334   return result;
2335 }
2336 
2337 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2338   // Fetch the void(void) inline asm which marks that we're going to
2339   // do something with the autoreleased return value.
2340   llvm::InlineAsm *&marker
2341     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2342   if (!marker) {
2343     StringRef assembly
2344       = CGF.CGM.getTargetCodeGenInfo()
2345            .getARCRetainAutoreleasedReturnValueMarker();
2346 
2347     // If we have an empty assembly string, there's nothing to do.
2348     if (assembly.empty()) {
2349 
2350     // Otherwise, at -O0, build an inline asm that we're going to call
2351     // in a moment.
2352     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2353       llvm::FunctionType *type =
2354         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2355 
2356       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2357 
2358     // If we're at -O1 and above, we don't want to litter the code
2359     // with this marker yet, so leave a breadcrumb for the ARC
2360     // optimizer to pick up.
2361     } else {
2362       const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2363       if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2364         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2365         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2366                                           retainRVMarkerKey, str);
2367       }
2368     }
2369   }
2370 
2371   // Call the marker asm if we made one, which we do only at -O0.
2372   if (marker)
2373     CGF.Builder.CreateCall(marker, std::nullopt,
2374                            CGF.getBundlesForFunclet(marker));
2375 }
2376 
2377 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2378                                                bool IsRetainRV,
2379                                                CodeGenFunction &CGF) {
2380   emitAutoreleasedReturnValueMarker(CGF);
2381 
2382   // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2383   // retainRV or claimRV calls in the IR. We currently do this only when the
2384   // optimization level isn't -O0 since global-isel, which is currently run at
2385   // -O0, doesn't know about the operand bundle.
2386   ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2387   llvm::Function *&EP = IsRetainRV
2388                             ? EPs.objc_retainAutoreleasedReturnValue
2389                             : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2390   llvm::Intrinsic::ID IID =
2391       IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2392                  : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2393   EP = getARCIntrinsic(IID, CGF.CGM);
2394 
2395   llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2396 
2397   // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2398   // the target backend knows how to handle the operand bundle.
2399   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2400       (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2401     llvm::Value *bundleArgs[] = {EP};
2402     llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2403     auto *oldCall = cast<llvm::CallBase>(value);
2404     llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2405         oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2406     newCall->copyMetadata(*oldCall);
2407     oldCall->replaceAllUsesWith(newCall);
2408     oldCall->eraseFromParent();
2409     CGF.EmitARCNoopIntrinsicUse(newCall);
2410     return newCall;
2411   }
2412 
2413   bool isNoTail =
2414       CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2415   llvm::CallInst::TailCallKind tailKind =
2416       isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2417   return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2418 }
2419 
2420 /// Retain the given object which is the result of a function call.
2421 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2422 ///
2423 /// Yes, this function name is one character away from a different
2424 /// call with completely different semantics.
2425 llvm::Value *
2426 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2427   return emitOptimizedARCReturnCall(value, true, *this);
2428 }
2429 
2430 /// Claim a possibly-autoreleased return value at +0.  This is only
2431 /// valid to do in contexts which do not rely on the retain to keep
2432 /// the object valid for all of its uses; for example, when
2433 /// the value is ignored, or when it is being assigned to an
2434 /// __unsafe_unretained variable.
2435 ///
2436 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2437 llvm::Value *
2438 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2439   return emitOptimizedARCReturnCall(value, false, *this);
2440 }
2441 
2442 /// Release the given object.
2443 ///   call void \@objc_release(i8* %value)
2444 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2445                                      ARCPreciseLifetime_t precise) {
2446   if (isa<llvm::ConstantPointerNull>(value)) return;
2447 
2448   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2449   if (!fn)
2450     fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2451 
2452   // Cast the argument to 'id'.
2453   value = Builder.CreateBitCast(value, Int8PtrTy);
2454 
2455   // Call objc_release.
2456   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2457 
2458   if (precise == ARCImpreciseLifetime) {
2459     call->setMetadata("clang.imprecise_release",
2460                       llvm::MDNode::get(Builder.getContext(), std::nullopt));
2461   }
2462 }
2463 
2464 /// Destroy a __strong variable.
2465 ///
2466 /// At -O0, emit a call to store 'null' into the address;
2467 /// instrumenting tools prefer this because the address is exposed,
2468 /// but it's relatively cumbersome to optimize.
2469 ///
2470 /// At -O1 and above, just load and call objc_release.
2471 ///
2472 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2473 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2474                                            ARCPreciseLifetime_t precise) {
2475   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2476     llvm::Value *null = getNullForVariable(addr);
2477     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2478     return;
2479   }
2480 
2481   llvm::Value *value = Builder.CreateLoad(addr);
2482   EmitARCRelease(value, precise);
2483 }
2484 
2485 /// Store into a strong object.  Always calls this:
2486 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2487 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2488                                                      llvm::Value *value,
2489                                                      bool ignored) {
2490   assert(addr.getElementType() == value->getType());
2491 
2492   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2493   if (!fn)
2494     fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2495 
2496   llvm::Value *args[] = {
2497     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2498     Builder.CreateBitCast(value, Int8PtrTy)
2499   };
2500   EmitNounwindRuntimeCall(fn, args);
2501 
2502   if (ignored) return nullptr;
2503   return value;
2504 }
2505 
2506 /// Store into a strong object.  Sometimes calls this:
2507 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2508 /// Other times, breaks it down into components.
2509 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2510                                                  llvm::Value *newValue,
2511                                                  bool ignored) {
2512   QualType type = dst.getType();
2513   bool isBlock = type->isBlockPointerType();
2514 
2515   // Use a store barrier at -O0 unless this is a block type or the
2516   // lvalue is inadequately aligned.
2517   if (shouldUseFusedARCCalls() &&
2518       !isBlock &&
2519       (dst.getAlignment().isZero() ||
2520        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2521     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2522   }
2523 
2524   // Otherwise, split it out.
2525 
2526   // Retain the new value.
2527   newValue = EmitARCRetain(type, newValue);
2528 
2529   // Read the old value.
2530   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2531 
2532   // Store.  We do this before the release so that any deallocs won't
2533   // see the old value.
2534   EmitStoreOfScalar(newValue, dst);
2535 
2536   // Finally, release the old value.
2537   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2538 
2539   return newValue;
2540 }
2541 
2542 /// Autorelease the given object.
2543 ///   call i8* \@objc_autorelease(i8* %value)
2544 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2545   return emitARCValueOperation(*this, value, nullptr,
2546                                CGM.getObjCEntrypoints().objc_autorelease,
2547                                llvm::Intrinsic::objc_autorelease);
2548 }
2549 
2550 /// Autorelease the given object.
2551 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2552 llvm::Value *
2553 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2554   return emitARCValueOperation(*this, value, nullptr,
2555                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2556                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2557                                llvm::CallInst::TCK_Tail);
2558 }
2559 
2560 /// Do a fused retain/autorelease of the given object.
2561 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2562 llvm::Value *
2563 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2564   return emitARCValueOperation(*this, value, nullptr,
2565                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2566                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2567                                llvm::CallInst::TCK_Tail);
2568 }
2569 
2570 /// Do a fused retain/autorelease of the given object.
2571 ///   call i8* \@objc_retainAutorelease(i8* %value)
2572 /// or
2573 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2574 ///   call i8* \@objc_autorelease(i8* %retain)
2575 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2576                                                        llvm::Value *value) {
2577   if (!type->isBlockPointerType())
2578     return EmitARCRetainAutoreleaseNonBlock(value);
2579 
2580   if (isa<llvm::ConstantPointerNull>(value)) return value;
2581 
2582   llvm::Type *origType = value->getType();
2583   value = Builder.CreateBitCast(value, Int8PtrTy);
2584   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2585   value = EmitARCAutorelease(value);
2586   return Builder.CreateBitCast(value, origType);
2587 }
2588 
2589 /// Do a fused retain/autorelease of the given object.
2590 ///   call i8* \@objc_retainAutorelease(i8* %value)
2591 llvm::Value *
2592 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2593   return emitARCValueOperation(*this, value, nullptr,
2594                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2595                                llvm::Intrinsic::objc_retainAutorelease);
2596 }
2597 
2598 /// i8* \@objc_loadWeak(i8** %addr)
2599 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2600 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2601   return emitARCLoadOperation(*this, addr,
2602                               CGM.getObjCEntrypoints().objc_loadWeak,
2603                               llvm::Intrinsic::objc_loadWeak);
2604 }
2605 
2606 /// i8* \@objc_loadWeakRetained(i8** %addr)
2607 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2608   return emitARCLoadOperation(*this, addr,
2609                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2610                               llvm::Intrinsic::objc_loadWeakRetained);
2611 }
2612 
2613 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2614 /// Returns %value.
2615 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2616                                                llvm::Value *value,
2617                                                bool ignored) {
2618   return emitARCStoreOperation(*this, addr, value,
2619                                CGM.getObjCEntrypoints().objc_storeWeak,
2620                                llvm::Intrinsic::objc_storeWeak, ignored);
2621 }
2622 
2623 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2624 /// Returns %value.  %addr is known to not have a current weak entry.
2625 /// Essentially equivalent to:
2626 ///   *addr = nil; objc_storeWeak(addr, value);
2627 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2628   // If we're initializing to null, just write null to memory; no need
2629   // to get the runtime involved.  But don't do this if optimization
2630   // is enabled, because accounting for this would make the optimizer
2631   // much more complicated.
2632   if (isa<llvm::ConstantPointerNull>(value) &&
2633       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2634     Builder.CreateStore(value, addr);
2635     return;
2636   }
2637 
2638   emitARCStoreOperation(*this, addr, value,
2639                         CGM.getObjCEntrypoints().objc_initWeak,
2640                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2641 }
2642 
2643 /// void \@objc_destroyWeak(i8** %addr)
2644 /// Essentially objc_storeWeak(addr, nil).
2645 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2646   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2647   if (!fn)
2648     fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2649 
2650   EmitNounwindRuntimeCall(fn, addr.getPointer());
2651 }
2652 
2653 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2654 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2655 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2656 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2657   emitARCCopyOperation(*this, dst, src,
2658                        CGM.getObjCEntrypoints().objc_moveWeak,
2659                        llvm::Intrinsic::objc_moveWeak);
2660 }
2661 
2662 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2663 /// Disregards the current value in %dest.  Essentially
2664 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2665 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2666   emitARCCopyOperation(*this, dst, src,
2667                        CGM.getObjCEntrypoints().objc_copyWeak,
2668                        llvm::Intrinsic::objc_copyWeak);
2669 }
2670 
2671 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2672                                             Address SrcAddr) {
2673   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2674   Object = EmitObjCConsumeObject(Ty, Object);
2675   EmitARCStoreWeak(DstAddr, Object, false);
2676 }
2677 
2678 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2679                                             Address SrcAddr) {
2680   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2681   Object = EmitObjCConsumeObject(Ty, Object);
2682   EmitARCStoreWeak(DstAddr, Object, false);
2683   EmitARCDestroyWeak(SrcAddr);
2684 }
2685 
2686 /// Produce the code to do a objc_autoreleasepool_push.
2687 ///   call i8* \@objc_autoreleasePoolPush(void)
2688 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2689   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2690   if (!fn)
2691     fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2692 
2693   return EmitNounwindRuntimeCall(fn);
2694 }
2695 
2696 /// Produce the code to do a primitive release.
2697 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2698 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2699   assert(value->getType() == Int8PtrTy);
2700 
2701   if (getInvokeDest()) {
2702     // Call the runtime method not the intrinsic if we are handling exceptions
2703     llvm::FunctionCallee &fn =
2704         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2705     if (!fn) {
2706       llvm::FunctionType *fnType =
2707         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2708       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2709       setARCRuntimeFunctionLinkage(CGM, fn);
2710     }
2711 
2712     // objc_autoreleasePoolPop can throw.
2713     EmitRuntimeCallOrInvoke(fn, value);
2714   } else {
2715     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2716     if (!fn)
2717       fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2718 
2719     EmitRuntimeCall(fn, value);
2720   }
2721 }
2722 
2723 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2724 /// Which is: [[NSAutoreleasePool alloc] init];
2725 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2726 /// init is declared as: - (id) init; in its NSObject super class.
2727 ///
2728 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2729   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2730   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2731   // [NSAutoreleasePool alloc]
2732   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2733   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2734   CallArgList Args;
2735   RValue AllocRV =
2736     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2737                                 getContext().getObjCIdType(),
2738                                 AllocSel, Receiver, Args);
2739 
2740   // [Receiver init]
2741   Receiver = AllocRV.getScalarVal();
2742   II = &CGM.getContext().Idents.get("init");
2743   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2744   RValue InitRV =
2745     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2746                                 getContext().getObjCIdType(),
2747                                 InitSel, Receiver, Args);
2748   return InitRV.getScalarVal();
2749 }
2750 
2751 /// Allocate the given objc object.
2752 ///   call i8* \@objc_alloc(i8* %value)
2753 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2754                                             llvm::Type *resultType) {
2755   return emitObjCValueOperation(*this, value, resultType,
2756                                 CGM.getObjCEntrypoints().objc_alloc,
2757                                 "objc_alloc");
2758 }
2759 
2760 /// Allocate the given objc object.
2761 ///   call i8* \@objc_allocWithZone(i8* %value)
2762 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2763                                                     llvm::Type *resultType) {
2764   return emitObjCValueOperation(*this, value, resultType,
2765                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2766                                 "objc_allocWithZone");
2767 }
2768 
2769 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2770                                                 llvm::Type *resultType) {
2771   return emitObjCValueOperation(*this, value, resultType,
2772                                 CGM.getObjCEntrypoints().objc_alloc_init,
2773                                 "objc_alloc_init");
2774 }
2775 
2776 /// Produce the code to do a primitive release.
2777 /// [tmp drain];
2778 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2779   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2780   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2781   CallArgList Args;
2782   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2783                               getContext().VoidTy, DrainSel, Arg, Args);
2784 }
2785 
2786 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2787                                               Address addr,
2788                                               QualType type) {
2789   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2790 }
2791 
2792 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2793                                                 Address addr,
2794                                                 QualType type) {
2795   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2796 }
2797 
2798 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2799                                      Address addr,
2800                                      QualType type) {
2801   CGF.EmitARCDestroyWeak(addr);
2802 }
2803 
2804 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2805                                           QualType type) {
2806   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2807   CGF.EmitARCIntrinsicUse(value);
2808 }
2809 
2810 /// Autorelease the given object.
2811 ///   call i8* \@objc_autorelease(i8* %value)
2812 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2813                                                   llvm::Type *returnType) {
2814   return emitObjCValueOperation(
2815       *this, value, returnType,
2816       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2817       "objc_autorelease");
2818 }
2819 
2820 /// Retain the given object, with normal retain semantics.
2821 ///   call i8* \@objc_retain(i8* %value)
2822 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2823                                                      llvm::Type *returnType) {
2824   return emitObjCValueOperation(
2825       *this, value, returnType,
2826       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2827 }
2828 
2829 /// Release the given object.
2830 ///   call void \@objc_release(i8* %value)
2831 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2832                                       ARCPreciseLifetime_t precise) {
2833   if (isa<llvm::ConstantPointerNull>(value)) return;
2834 
2835   llvm::FunctionCallee &fn =
2836       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2837   if (!fn) {
2838     llvm::FunctionType *fnType =
2839         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2840     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2841     setARCRuntimeFunctionLinkage(CGM, fn);
2842     // We have Native ARC, so set nonlazybind attribute for performance
2843     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2844       f->addFnAttr(llvm::Attribute::NonLazyBind);
2845   }
2846 
2847   // Cast the argument to 'id'.
2848   value = Builder.CreateBitCast(value, Int8PtrTy);
2849 
2850   // Call objc_release.
2851   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2852 
2853   if (precise == ARCImpreciseLifetime) {
2854     call->setMetadata("clang.imprecise_release",
2855                       llvm::MDNode::get(Builder.getContext(), std::nullopt));
2856   }
2857 }
2858 
2859 namespace {
2860   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2861     llvm::Value *Token;
2862 
2863     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2864 
2865     void Emit(CodeGenFunction &CGF, Flags flags) override {
2866       CGF.EmitObjCAutoreleasePoolPop(Token);
2867     }
2868   };
2869   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2870     llvm::Value *Token;
2871 
2872     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2873 
2874     void Emit(CodeGenFunction &CGF, Flags flags) override {
2875       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2876     }
2877   };
2878 }
2879 
2880 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2881   if (CGM.getLangOpts().ObjCAutoRefCount)
2882     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2883   else
2884     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2885 }
2886 
2887 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2888   switch (lifetime) {
2889   case Qualifiers::OCL_None:
2890   case Qualifiers::OCL_ExplicitNone:
2891   case Qualifiers::OCL_Strong:
2892   case Qualifiers::OCL_Autoreleasing:
2893     return true;
2894 
2895   case Qualifiers::OCL_Weak:
2896     return false;
2897   }
2898 
2899   llvm_unreachable("impossible lifetime!");
2900 }
2901 
2902 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2903                                                   LValue lvalue,
2904                                                   QualType type) {
2905   llvm::Value *result;
2906   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2907   if (shouldRetain) {
2908     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2909   } else {
2910     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2911     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2912   }
2913   return TryEmitResult(result, !shouldRetain);
2914 }
2915 
2916 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2917                                                   const Expr *e) {
2918   e = e->IgnoreParens();
2919   QualType type = e->getType();
2920 
2921   // If we're loading retained from a __strong xvalue, we can avoid
2922   // an extra retain/release pair by zeroing out the source of this
2923   // "move" operation.
2924   if (e->isXValue() &&
2925       !type.isConstQualified() &&
2926       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2927     // Emit the lvalue.
2928     LValue lv = CGF.EmitLValue(e);
2929 
2930     // Load the object pointer.
2931     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2932                                                SourceLocation()).getScalarVal();
2933 
2934     // Set the source pointer to NULL.
2935     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2936 
2937     return TryEmitResult(result, true);
2938   }
2939 
2940   // As a very special optimization, in ARC++, if the l-value is the
2941   // result of a non-volatile assignment, do a simple retain of the
2942   // result of the call to objc_storeWeak instead of reloading.
2943   if (CGF.getLangOpts().CPlusPlus &&
2944       !type.isVolatileQualified() &&
2945       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2946       isa<BinaryOperator>(e) &&
2947       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2948     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2949 
2950   // Try to emit code for scalar constant instead of emitting LValue and
2951   // loading it because we are not guaranteed to have an l-value. One of such
2952   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2953   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2954     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2955     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2956       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2957                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2958   }
2959 
2960   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2961 }
2962 
2963 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2964                                          llvm::Value *value)>
2965   ValueTransform;
2966 
2967 /// Insert code immediately after a call.
2968 
2969 // FIXME: We should find a way to emit the runtime call immediately
2970 // after the call is emitted to eliminate the need for this function.
2971 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2972                                               llvm::Value *value,
2973                                               ValueTransform doAfterCall,
2974                                               ValueTransform doFallback) {
2975   CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2976   auto *callBase = dyn_cast<llvm::CallBase>(value);
2977 
2978   if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2979     // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2980     value = doFallback(CGF, value);
2981   } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2982     // Place the retain immediately following the call.
2983     CGF.Builder.SetInsertPoint(call->getParent(),
2984                                ++llvm::BasicBlock::iterator(call));
2985     value = doAfterCall(CGF, value);
2986   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2987     // Place the retain at the beginning of the normal destination block.
2988     llvm::BasicBlock *BB = invoke->getNormalDest();
2989     CGF.Builder.SetInsertPoint(BB, BB->begin());
2990     value = doAfterCall(CGF, value);
2991 
2992   // Bitcasts can arise because of related-result returns.  Rewrite
2993   // the operand.
2994   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2995     // Change the insert point to avoid emitting the fall-back call after the
2996     // bitcast.
2997     CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2998     llvm::Value *operand = bitcast->getOperand(0);
2999     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
3000     bitcast->setOperand(0, operand);
3001     value = bitcast;
3002   } else {
3003     auto *phi = dyn_cast<llvm::PHINode>(value);
3004     if (phi && phi->getNumIncomingValues() == 2 &&
3005         isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
3006         isa<llvm::CallBase>(phi->getIncomingValue(0))) {
3007       // Handle phi instructions that are generated when it's necessary to check
3008       // whether the receiver of a message is null.
3009       llvm::Value *inVal = phi->getIncomingValue(0);
3010       inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3011       phi->setIncomingValue(0, inVal);
3012       value = phi;
3013     } else {
3014       // Generic fall-back case.
3015       // Retain using the non-block variant: we never need to do a copy
3016       // of a block that's been returned to us.
3017       value = doFallback(CGF, value);
3018     }
3019   }
3020 
3021   CGF.Builder.restoreIP(ip);
3022   return value;
3023 }
3024 
3025 /// Given that the given expression is some sort of call (which does
3026 /// not return retained), emit a retain following it.
3027 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3028                                             const Expr *e) {
3029   llvm::Value *value = CGF.EmitScalarExpr(e);
3030   return emitARCOperationAfterCall(CGF, value,
3031            [](CodeGenFunction &CGF, llvm::Value *value) {
3032              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3033            },
3034            [](CodeGenFunction &CGF, llvm::Value *value) {
3035              return CGF.EmitARCRetainNonBlock(value);
3036            });
3037 }
3038 
3039 /// Given that the given expression is some sort of call (which does
3040 /// not return retained), perform an unsafeClaim following it.
3041 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3042                                                  const Expr *e) {
3043   llvm::Value *value = CGF.EmitScalarExpr(e);
3044   return emitARCOperationAfterCall(CGF, value,
3045            [](CodeGenFunction &CGF, llvm::Value *value) {
3046              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3047            },
3048            [](CodeGenFunction &CGF, llvm::Value *value) {
3049              return value;
3050            });
3051 }
3052 
3053 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3054                                                       bool allowUnsafeClaim) {
3055   if (allowUnsafeClaim &&
3056       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3057     return emitARCUnsafeClaimCallResult(*this, E);
3058   } else {
3059     llvm::Value *value = emitARCRetainCallResult(*this, E);
3060     return EmitObjCConsumeObject(E->getType(), value);
3061   }
3062 }
3063 
3064 /// Determine whether it might be important to emit a separate
3065 /// objc_retain_block on the result of the given expression, or
3066 /// whether it's okay to just emit it in a +1 context.
3067 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3068   assert(e->getType()->isBlockPointerType());
3069   e = e->IgnoreParens();
3070 
3071   // For future goodness, emit block expressions directly in +1
3072   // contexts if we can.
3073   if (isa<BlockExpr>(e))
3074     return false;
3075 
3076   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3077     switch (cast->getCastKind()) {
3078     // Emitting these operations in +1 contexts is goodness.
3079     case CK_LValueToRValue:
3080     case CK_ARCReclaimReturnedObject:
3081     case CK_ARCConsumeObject:
3082     case CK_ARCProduceObject:
3083       return false;
3084 
3085     // These operations preserve a block type.
3086     case CK_NoOp:
3087     case CK_BitCast:
3088       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3089 
3090     // These operations are known to be bad (or haven't been considered).
3091     case CK_AnyPointerToBlockPointerCast:
3092     default:
3093       return true;
3094     }
3095   }
3096 
3097   return true;
3098 }
3099 
3100 namespace {
3101 /// A CRTP base class for emitting expressions of retainable object
3102 /// pointer type in ARC.
3103 template <typename Impl, typename Result> class ARCExprEmitter {
3104 protected:
3105   CodeGenFunction &CGF;
3106   Impl &asImpl() { return *static_cast<Impl*>(this); }
3107 
3108   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3109 
3110 public:
3111   Result visit(const Expr *e);
3112   Result visitCastExpr(const CastExpr *e);
3113   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3114   Result visitBlockExpr(const BlockExpr *e);
3115   Result visitBinaryOperator(const BinaryOperator *e);
3116   Result visitBinAssign(const BinaryOperator *e);
3117   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3118   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3119   Result visitBinAssignWeak(const BinaryOperator *e);
3120   Result visitBinAssignStrong(const BinaryOperator *e);
3121 
3122   // Minimal implementation:
3123   //   Result visitLValueToRValue(const Expr *e)
3124   //   Result visitConsumeObject(const Expr *e)
3125   //   Result visitExtendBlockObject(const Expr *e)
3126   //   Result visitReclaimReturnedObject(const Expr *e)
3127   //   Result visitCall(const Expr *e)
3128   //   Result visitExpr(const Expr *e)
3129   //
3130   //   Result emitBitCast(Result result, llvm::Type *resultType)
3131   //   llvm::Value *getValueOfResult(Result result)
3132 };
3133 }
3134 
3135 /// Try to emit a PseudoObjectExpr under special ARC rules.
3136 ///
3137 /// This massively duplicates emitPseudoObjectRValue.
3138 template <typename Impl, typename Result>
3139 Result
3140 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3141   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3142 
3143   // Find the result expression.
3144   const Expr *resultExpr = E->getResultExpr();
3145   assert(resultExpr);
3146   Result result;
3147 
3148   for (PseudoObjectExpr::const_semantics_iterator
3149          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3150     const Expr *semantic = *i;
3151 
3152     // If this semantic expression is an opaque value, bind it
3153     // to the result of its source expression.
3154     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3155       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3156       OVMA opaqueData;
3157 
3158       // If this semantic is the result of the pseudo-object
3159       // expression, try to evaluate the source as +1.
3160       if (ov == resultExpr) {
3161         assert(!OVMA::shouldBindAsLValue(ov));
3162         result = asImpl().visit(ov->getSourceExpr());
3163         opaqueData = OVMA::bind(CGF, ov,
3164                             RValue::get(asImpl().getValueOfResult(result)));
3165 
3166       // Otherwise, just bind it.
3167       } else {
3168         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3169       }
3170       opaques.push_back(opaqueData);
3171 
3172     // Otherwise, if the expression is the result, evaluate it
3173     // and remember the result.
3174     } else if (semantic == resultExpr) {
3175       result = asImpl().visit(semantic);
3176 
3177     // Otherwise, evaluate the expression in an ignored context.
3178     } else {
3179       CGF.EmitIgnoredExpr(semantic);
3180     }
3181   }
3182 
3183   // Unbind all the opaques now.
3184   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3185     opaques[i].unbind(CGF);
3186 
3187   return result;
3188 }
3189 
3190 template <typename Impl, typename Result>
3191 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3192   // The default implementation just forwards the expression to visitExpr.
3193   return asImpl().visitExpr(e);
3194 }
3195 
3196 template <typename Impl, typename Result>
3197 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3198   switch (e->getCastKind()) {
3199 
3200   // No-op casts don't change the type, so we just ignore them.
3201   case CK_NoOp:
3202     return asImpl().visit(e->getSubExpr());
3203 
3204   // These casts can change the type.
3205   case CK_CPointerToObjCPointerCast:
3206   case CK_BlockPointerToObjCPointerCast:
3207   case CK_AnyPointerToBlockPointerCast:
3208   case CK_BitCast: {
3209     llvm::Type *resultType = CGF.ConvertType(e->getType());
3210     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3211     Result result = asImpl().visit(e->getSubExpr());
3212     return asImpl().emitBitCast(result, resultType);
3213   }
3214 
3215   // Handle some casts specially.
3216   case CK_LValueToRValue:
3217     return asImpl().visitLValueToRValue(e->getSubExpr());
3218   case CK_ARCConsumeObject:
3219     return asImpl().visitConsumeObject(e->getSubExpr());
3220   case CK_ARCExtendBlockObject:
3221     return asImpl().visitExtendBlockObject(e->getSubExpr());
3222   case CK_ARCReclaimReturnedObject:
3223     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3224 
3225   // Otherwise, use the default logic.
3226   default:
3227     return asImpl().visitExpr(e);
3228   }
3229 }
3230 
3231 template <typename Impl, typename Result>
3232 Result
3233 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3234   switch (e->getOpcode()) {
3235   case BO_Comma:
3236     CGF.EmitIgnoredExpr(e->getLHS());
3237     CGF.EnsureInsertPoint();
3238     return asImpl().visit(e->getRHS());
3239 
3240   case BO_Assign:
3241     return asImpl().visitBinAssign(e);
3242 
3243   default:
3244     return asImpl().visitExpr(e);
3245   }
3246 }
3247 
3248 template <typename Impl, typename Result>
3249 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3250   switch (e->getLHS()->getType().getObjCLifetime()) {
3251   case Qualifiers::OCL_ExplicitNone:
3252     return asImpl().visitBinAssignUnsafeUnretained(e);
3253 
3254   case Qualifiers::OCL_Weak:
3255     return asImpl().visitBinAssignWeak(e);
3256 
3257   case Qualifiers::OCL_Autoreleasing:
3258     return asImpl().visitBinAssignAutoreleasing(e);
3259 
3260   case Qualifiers::OCL_Strong:
3261     return asImpl().visitBinAssignStrong(e);
3262 
3263   case Qualifiers::OCL_None:
3264     return asImpl().visitExpr(e);
3265   }
3266   llvm_unreachable("bad ObjC ownership qualifier");
3267 }
3268 
3269 /// The default rule for __unsafe_unretained emits the RHS recursively,
3270 /// stores into the unsafe variable, and propagates the result outward.
3271 template <typename Impl, typename Result>
3272 Result ARCExprEmitter<Impl,Result>::
3273                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3274   // Recursively emit the RHS.
3275   // For __block safety, do this before emitting the LHS.
3276   Result result = asImpl().visit(e->getRHS());
3277 
3278   // Perform the store.
3279   LValue lvalue =
3280     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3281   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3282                              lvalue);
3283 
3284   return result;
3285 }
3286 
3287 template <typename Impl, typename Result>
3288 Result
3289 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3290   return asImpl().visitExpr(e);
3291 }
3292 
3293 template <typename Impl, typename Result>
3294 Result
3295 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3296   return asImpl().visitExpr(e);
3297 }
3298 
3299 template <typename Impl, typename Result>
3300 Result
3301 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3302   return asImpl().visitExpr(e);
3303 }
3304 
3305 /// The general expression-emission logic.
3306 template <typename Impl, typename Result>
3307 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3308   // We should *never* see a nested full-expression here, because if
3309   // we fail to emit at +1, our caller must not retain after we close
3310   // out the full-expression.  This isn't as important in the unsafe
3311   // emitter.
3312   assert(!isa<ExprWithCleanups>(e));
3313 
3314   // Look through parens, __extension__, generic selection, etc.
3315   e = e->IgnoreParens();
3316 
3317   // Handle certain kinds of casts.
3318   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3319     return asImpl().visitCastExpr(ce);
3320 
3321   // Handle the comma operator.
3322   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3323     return asImpl().visitBinaryOperator(op);
3324 
3325   // TODO: handle conditional operators here
3326 
3327   // For calls and message sends, use the retained-call logic.
3328   // Delegate inits are a special case in that they're the only
3329   // returns-retained expression that *isn't* surrounded by
3330   // a consume.
3331   } else if (isa<CallExpr>(e) ||
3332              (isa<ObjCMessageExpr>(e) &&
3333               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3334     return asImpl().visitCall(e);
3335 
3336   // Look through pseudo-object expressions.
3337   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3338     return asImpl().visitPseudoObjectExpr(pseudo);
3339   } else if (auto *be = dyn_cast<BlockExpr>(e))
3340     return asImpl().visitBlockExpr(be);
3341 
3342   return asImpl().visitExpr(e);
3343 }
3344 
3345 namespace {
3346 
3347 /// An emitter for +1 results.
3348 struct ARCRetainExprEmitter :
3349   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3350 
3351   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3352 
3353   llvm::Value *getValueOfResult(TryEmitResult result) {
3354     return result.getPointer();
3355   }
3356 
3357   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3358     llvm::Value *value = result.getPointer();
3359     value = CGF.Builder.CreateBitCast(value, resultType);
3360     result.setPointer(value);
3361     return result;
3362   }
3363 
3364   TryEmitResult visitLValueToRValue(const Expr *e) {
3365     return tryEmitARCRetainLoadOfScalar(CGF, e);
3366   }
3367 
3368   /// For consumptions, just emit the subexpression and thus elide
3369   /// the retain/release pair.
3370   TryEmitResult visitConsumeObject(const Expr *e) {
3371     llvm::Value *result = CGF.EmitScalarExpr(e);
3372     return TryEmitResult(result, true);
3373   }
3374 
3375   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3376     TryEmitResult result = visitExpr(e);
3377     // Avoid the block-retain if this is a block literal that doesn't need to be
3378     // copied to the heap.
3379     if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3380         e->getBlockDecl()->canAvoidCopyToHeap())
3381       result.setInt(true);
3382     return result;
3383   }
3384 
3385   /// Block extends are net +0.  Naively, we could just recurse on
3386   /// the subexpression, but actually we need to ensure that the
3387   /// value is copied as a block, so there's a little filter here.
3388   TryEmitResult visitExtendBlockObject(const Expr *e) {
3389     llvm::Value *result; // will be a +0 value
3390 
3391     // If we can't safely assume the sub-expression will produce a
3392     // block-copied value, emit the sub-expression at +0.
3393     if (shouldEmitSeparateBlockRetain(e)) {
3394       result = CGF.EmitScalarExpr(e);
3395 
3396     // Otherwise, try to emit the sub-expression at +1 recursively.
3397     } else {
3398       TryEmitResult subresult = asImpl().visit(e);
3399 
3400       // If that produced a retained value, just use that.
3401       if (subresult.getInt()) {
3402         return subresult;
3403       }
3404 
3405       // Otherwise it's +0.
3406       result = subresult.getPointer();
3407     }
3408 
3409     // Retain the object as a block.
3410     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3411     return TryEmitResult(result, true);
3412   }
3413 
3414   /// For reclaims, emit the subexpression as a retained call and
3415   /// skip the consumption.
3416   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3417     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3418     return TryEmitResult(result, true);
3419   }
3420 
3421   /// When we have an undecorated call, retroactively do a claim.
3422   TryEmitResult visitCall(const Expr *e) {
3423     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3424     return TryEmitResult(result, true);
3425   }
3426 
3427   // TODO: maybe special-case visitBinAssignWeak?
3428 
3429   TryEmitResult visitExpr(const Expr *e) {
3430     // We didn't find an obvious production, so emit what we've got and
3431     // tell the caller that we didn't manage to retain.
3432     llvm::Value *result = CGF.EmitScalarExpr(e);
3433     return TryEmitResult(result, false);
3434   }
3435 };
3436 }
3437 
3438 static TryEmitResult
3439 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3440   return ARCRetainExprEmitter(CGF).visit(e);
3441 }
3442 
3443 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3444                                                 LValue lvalue,
3445                                                 QualType type) {
3446   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3447   llvm::Value *value = result.getPointer();
3448   if (!result.getInt())
3449     value = CGF.EmitARCRetain(type, value);
3450   return value;
3451 }
3452 
3453 /// EmitARCRetainScalarExpr - Semantically equivalent to
3454 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3455 /// best-effort attempt to peephole expressions that naturally produce
3456 /// retained objects.
3457 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3458   // The retain needs to happen within the full-expression.
3459   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3460     RunCleanupsScope scope(*this);
3461     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3462   }
3463 
3464   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3465   llvm::Value *value = result.getPointer();
3466   if (!result.getInt())
3467     value = EmitARCRetain(e->getType(), value);
3468   return value;
3469 }
3470 
3471 llvm::Value *
3472 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3473   // The retain needs to happen within the full-expression.
3474   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3475     RunCleanupsScope scope(*this);
3476     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3477   }
3478 
3479   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3480   llvm::Value *value = result.getPointer();
3481   if (result.getInt())
3482     value = EmitARCAutorelease(value);
3483   else
3484     value = EmitARCRetainAutorelease(e->getType(), value);
3485   return value;
3486 }
3487 
3488 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3489   llvm::Value *result;
3490   bool doRetain;
3491 
3492   if (shouldEmitSeparateBlockRetain(e)) {
3493     result = EmitScalarExpr(e);
3494     doRetain = true;
3495   } else {
3496     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3497     result = subresult.getPointer();
3498     doRetain = !subresult.getInt();
3499   }
3500 
3501   if (doRetain)
3502     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3503   return EmitObjCConsumeObject(e->getType(), result);
3504 }
3505 
3506 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3507   // In ARC, retain and autorelease the expression.
3508   if (getLangOpts().ObjCAutoRefCount) {
3509     // Do so before running any cleanups for the full-expression.
3510     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3511     return EmitARCRetainAutoreleaseScalarExpr(expr);
3512   }
3513 
3514   // Otherwise, use the normal scalar-expression emission.  The
3515   // exception machinery doesn't do anything special with the
3516   // exception like retaining it, so there's no safety associated with
3517   // only running cleanups after the throw has started, and when it
3518   // matters it tends to be substantially inferior code.
3519   return EmitScalarExpr(expr);
3520 }
3521 
3522 namespace {
3523 
3524 /// An emitter for assigning into an __unsafe_unretained context.
3525 struct ARCUnsafeUnretainedExprEmitter :
3526   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3527 
3528   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3529 
3530   llvm::Value *getValueOfResult(llvm::Value *value) {
3531     return value;
3532   }
3533 
3534   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3535     return CGF.Builder.CreateBitCast(value, resultType);
3536   }
3537 
3538   llvm::Value *visitLValueToRValue(const Expr *e) {
3539     return CGF.EmitScalarExpr(e);
3540   }
3541 
3542   /// For consumptions, just emit the subexpression and perform the
3543   /// consumption like normal.
3544   llvm::Value *visitConsumeObject(const Expr *e) {
3545     llvm::Value *value = CGF.EmitScalarExpr(e);
3546     return CGF.EmitObjCConsumeObject(e->getType(), value);
3547   }
3548 
3549   /// No special logic for block extensions.  (This probably can't
3550   /// actually happen in this emitter, though.)
3551   llvm::Value *visitExtendBlockObject(const Expr *e) {
3552     return CGF.EmitARCExtendBlockObject(e);
3553   }
3554 
3555   /// For reclaims, perform an unsafeClaim if that's enabled.
3556   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3557     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3558   }
3559 
3560   /// When we have an undecorated call, just emit it without adding
3561   /// the unsafeClaim.
3562   llvm::Value *visitCall(const Expr *e) {
3563     return CGF.EmitScalarExpr(e);
3564   }
3565 
3566   /// Just do normal scalar emission in the default case.
3567   llvm::Value *visitExpr(const Expr *e) {
3568     return CGF.EmitScalarExpr(e);
3569   }
3570 };
3571 }
3572 
3573 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3574                                                       const Expr *e) {
3575   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3576 }
3577 
3578 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3579 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3580 /// avoiding any spurious retains, including by performing reclaims
3581 /// with objc_unsafeClaimAutoreleasedReturnValue.
3582 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3583   // Look through full-expressions.
3584   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3585     RunCleanupsScope scope(*this);
3586     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3587   }
3588 
3589   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3590 }
3591 
3592 std::pair<LValue,llvm::Value*>
3593 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3594                                               bool ignored) {
3595   // Evaluate the RHS first.  If we're ignoring the result, assume
3596   // that we can emit at an unsafe +0.
3597   llvm::Value *value;
3598   if (ignored) {
3599     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3600   } else {
3601     value = EmitScalarExpr(e->getRHS());
3602   }
3603 
3604   // Emit the LHS and perform the store.
3605   LValue lvalue = EmitLValue(e->getLHS());
3606   EmitStoreOfScalar(value, lvalue);
3607 
3608   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3609 }
3610 
3611 std::pair<LValue,llvm::Value*>
3612 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3613                                     bool ignored) {
3614   // Evaluate the RHS first.
3615   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3616   llvm::Value *value = result.getPointer();
3617 
3618   bool hasImmediateRetain = result.getInt();
3619 
3620   // If we didn't emit a retained object, and the l-value is of block
3621   // type, then we need to emit the block-retain immediately in case
3622   // it invalidates the l-value.
3623   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3624     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3625     hasImmediateRetain = true;
3626   }
3627 
3628   LValue lvalue = EmitLValue(e->getLHS());
3629 
3630   // If the RHS was emitted retained, expand this.
3631   if (hasImmediateRetain) {
3632     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3633     EmitStoreOfScalar(value, lvalue);
3634     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3635   } else {
3636     value = EmitARCStoreStrong(lvalue, value, ignored);
3637   }
3638 
3639   return std::pair<LValue,llvm::Value*>(lvalue, value);
3640 }
3641 
3642 std::pair<LValue,llvm::Value*>
3643 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3644   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3645   LValue lvalue = EmitLValue(e->getLHS());
3646 
3647   EmitStoreOfScalar(value, lvalue);
3648 
3649   return std::pair<LValue,llvm::Value*>(lvalue, value);
3650 }
3651 
3652 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3653                                           const ObjCAutoreleasePoolStmt &ARPS) {
3654   const Stmt *subStmt = ARPS.getSubStmt();
3655   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3656 
3657   CGDebugInfo *DI = getDebugInfo();
3658   if (DI)
3659     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3660 
3661   // Keep track of the current cleanup stack depth.
3662   RunCleanupsScope Scope(*this);
3663   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3664     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3665     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3666   } else {
3667     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3668     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3669   }
3670 
3671   for (const auto *I : S.body())
3672     EmitStmt(I);
3673 
3674   if (DI)
3675     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3676 }
3677 
3678 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3679 /// make sure it survives garbage collection until this point.
3680 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3681   // We just use an inline assembly.
3682   llvm::FunctionType *extenderType
3683     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3684   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3685                                                    /* assembly */ "",
3686                                                    /* constraints */ "r",
3687                                                    /* side effects */ true);
3688 
3689   object = Builder.CreateBitCast(object, VoidPtrTy);
3690   EmitNounwindRuntimeCall(extender, object);
3691 }
3692 
3693 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3694 /// non-trivial copy assignment function, produce following helper function.
3695 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3696 ///
3697 llvm::Constant *
3698 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3699                                         const ObjCPropertyImplDecl *PID) {
3700   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3701   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3702     return nullptr;
3703 
3704   QualType Ty = PID->getPropertyIvarDecl()->getType();
3705   ASTContext &C = getContext();
3706 
3707   if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3708     // Call the move assignment operator instead of calling the copy assignment
3709     // operator and destructor.
3710     CharUnits Alignment = C.getTypeAlignInChars(Ty);
3711     llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3712         CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3713     return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3714   }
3715 
3716   if (!getLangOpts().CPlusPlus ||
3717       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3718     return nullptr;
3719   if (!Ty->isRecordType())
3720     return nullptr;
3721   llvm::Constant *HelperFn = nullptr;
3722   if (hasTrivialSetExpr(PID))
3723     return nullptr;
3724   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3725   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3726     return HelperFn;
3727 
3728   IdentifierInfo *II
3729     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3730 
3731   QualType ReturnTy = C.VoidTy;
3732   QualType DestTy = C.getPointerType(Ty);
3733   QualType SrcTy = Ty;
3734   SrcTy.addConst();
3735   SrcTy = C.getPointerType(SrcTy);
3736 
3737   SmallVector<QualType, 2> ArgTys;
3738   ArgTys.push_back(DestTy);
3739   ArgTys.push_back(SrcTy);
3740   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3741 
3742   FunctionDecl *FD = FunctionDecl::Create(
3743       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3744       FunctionTy, nullptr, SC_Static, false, false, false);
3745 
3746   FunctionArgList args;
3747   ParmVarDecl *Params[2];
3748   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3749       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3750       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3751       /*DefArg=*/nullptr);
3752   args.push_back(Params[0] = DstDecl);
3753   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3754       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3755       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3756       /*DefArg=*/nullptr);
3757   args.push_back(Params[1] = SrcDecl);
3758   FD->setParams(Params);
3759 
3760   const CGFunctionInfo &FI =
3761       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3762 
3763   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3764 
3765   llvm::Function *Fn =
3766     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3767                            "__assign_helper_atomic_property_",
3768                            &CGM.getModule());
3769 
3770   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3771 
3772   StartFunction(FD, ReturnTy, Fn, FI, args);
3773 
3774   DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3775   UnaryOperator *DST = UnaryOperator::Create(
3776       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3777       SourceLocation(), false, FPOptionsOverride());
3778 
3779   DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3780   UnaryOperator *SRC = UnaryOperator::Create(
3781       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3782       SourceLocation(), false, FPOptionsOverride());
3783 
3784   Expr *Args[2] = {DST, SRC};
3785   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3786   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3787       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3788       VK_LValue, SourceLocation(), FPOptionsOverride());
3789 
3790   EmitStmt(TheCall);
3791 
3792   FinishFunction();
3793   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3794   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3795   return HelperFn;
3796 }
3797 
3798 llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3799     const ObjCPropertyImplDecl *PID) {
3800   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3801   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3802     return nullptr;
3803 
3804   QualType Ty = PD->getType();
3805   ASTContext &C = getContext();
3806 
3807   if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3808     CharUnits Alignment = C.getTypeAlignInChars(Ty);
3809     llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3810         CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3811     return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3812   }
3813 
3814   if (!getLangOpts().CPlusPlus ||
3815       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3816     return nullptr;
3817   if (!Ty->isRecordType())
3818     return nullptr;
3819   llvm::Constant *HelperFn = nullptr;
3820   if (hasTrivialGetExpr(PID))
3821     return nullptr;
3822   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3823   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3824     return HelperFn;
3825 
3826   IdentifierInfo *II =
3827       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3828 
3829   QualType ReturnTy = C.VoidTy;
3830   QualType DestTy = C.getPointerType(Ty);
3831   QualType SrcTy = Ty;
3832   SrcTy.addConst();
3833   SrcTy = C.getPointerType(SrcTy);
3834 
3835   SmallVector<QualType, 2> ArgTys;
3836   ArgTys.push_back(DestTy);
3837   ArgTys.push_back(SrcTy);
3838   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3839 
3840   FunctionDecl *FD = FunctionDecl::Create(
3841       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3842       FunctionTy, nullptr, SC_Static, false, false, false);
3843 
3844   FunctionArgList args;
3845   ParmVarDecl *Params[2];
3846   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3847       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3848       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3849       /*DefArg=*/nullptr);
3850   args.push_back(Params[0] = DstDecl);
3851   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3852       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3853       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3854       /*DefArg=*/nullptr);
3855   args.push_back(Params[1] = SrcDecl);
3856   FD->setParams(Params);
3857 
3858   const CGFunctionInfo &FI =
3859       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3860 
3861   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3862 
3863   llvm::Function *Fn = llvm::Function::Create(
3864       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3865       &CGM.getModule());
3866 
3867   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3868 
3869   StartFunction(FD, ReturnTy, Fn, FI, args);
3870 
3871   DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3872                       SourceLocation());
3873 
3874   UnaryOperator *SRC = UnaryOperator::Create(
3875       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3876       SourceLocation(), false, FPOptionsOverride());
3877 
3878   CXXConstructExpr *CXXConstExpr =
3879     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3880 
3881   SmallVector<Expr*, 4> ConstructorArgs;
3882   ConstructorArgs.push_back(SRC);
3883   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3884                          CXXConstExpr->arg_end());
3885 
3886   CXXConstructExpr *TheCXXConstructExpr =
3887     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3888                              CXXConstExpr->getConstructor(),
3889                              CXXConstExpr->isElidable(),
3890                              ConstructorArgs,
3891                              CXXConstExpr->hadMultipleCandidates(),
3892                              CXXConstExpr->isListInitialization(),
3893                              CXXConstExpr->isStdInitListInitialization(),
3894                              CXXConstExpr->requiresZeroInitialization(),
3895                              CXXConstExpr->getConstructionKind(),
3896                              SourceRange());
3897 
3898   DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3899                       SourceLocation());
3900 
3901   RValue DV = EmitAnyExpr(&DstExpr);
3902   CharUnits Alignment =
3903       getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3904   EmitAggExpr(TheCXXConstructExpr,
3905               AggValueSlot::forAddr(
3906                   Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3907                   Qualifiers(), AggValueSlot::IsDestructed,
3908                   AggValueSlot::DoesNotNeedGCBarriers,
3909                   AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3910 
3911   FinishFunction();
3912   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3913   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3914   return HelperFn;
3915 }
3916 
3917 llvm::Value *
3918 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3919   // Get selectors for retain/autorelease.
3920   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3921   Selector CopySelector =
3922       getContext().Selectors.getNullarySelector(CopyID);
3923   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3924   Selector AutoreleaseSelector =
3925       getContext().Selectors.getNullarySelector(AutoreleaseID);
3926 
3927   // Emit calls to retain/autorelease.
3928   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3929   llvm::Value *Val = Block;
3930   RValue Result;
3931   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3932                                        Ty, CopySelector,
3933                                        Val, CallArgList(), nullptr, nullptr);
3934   Val = Result.getScalarVal();
3935   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3936                                        Ty, AutoreleaseSelector,
3937                                        Val, CallArgList(), nullptr, nullptr);
3938   Val = Result.getScalarVal();
3939   return Val;
3940 }
3941 
3942 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3943   switch (TT.getOS()) {
3944   case llvm::Triple::Darwin:
3945   case llvm::Triple::MacOSX:
3946     return llvm::MachO::PLATFORM_MACOS;
3947   case llvm::Triple::IOS:
3948     return llvm::MachO::PLATFORM_IOS;
3949   case llvm::Triple::TvOS:
3950     return llvm::MachO::PLATFORM_TVOS;
3951   case llvm::Triple::WatchOS:
3952     return llvm::MachO::PLATFORM_WATCHOS;
3953   case llvm::Triple::DriverKit:
3954     return llvm::MachO::PLATFORM_DRIVERKIT;
3955   default:
3956     return /*Unknown platform*/ 0;
3957   }
3958 }
3959 
3960 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3961                                                  const VersionTuple &Version) {
3962   CodeGenModule &CGM = CGF.CGM;
3963   // Note: we intend to support multi-platform version checks, so reserve
3964   // the room for a dual platform checking invocation that will be
3965   // implemented in the future.
3966   llvm::SmallVector<llvm::Value *, 8> Args;
3967 
3968   auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3969     std::optional<unsigned> Min = Version.getMinor(),
3970                             SMin = Version.getSubminor();
3971     Args.push_back(
3972         llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3973     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3974     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3975     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3976   };
3977 
3978   assert(!Version.empty() && "unexpected empty version");
3979   EmitArgs(Version, CGM.getTarget().getTriple());
3980 
3981   if (!CGM.IsPlatformVersionAtLeastFn) {
3982     llvm::FunctionType *FTy = llvm::FunctionType::get(
3983         CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3984         false);
3985     CGM.IsPlatformVersionAtLeastFn =
3986         CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3987   }
3988 
3989   llvm::Value *Check =
3990       CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3991   return CGF.Builder.CreateICmpNE(Check,
3992                                   llvm::Constant::getNullValue(CGM.Int32Ty));
3993 }
3994 
3995 llvm::Value *
3996 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3997   // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3998   if (CGM.getTarget().getTriple().isOSDarwin())
3999     return emitIsPlatformVersionAtLeast(*this, Version);
4000 
4001   if (!CGM.IsOSVersionAtLeastFn) {
4002     llvm::FunctionType *FTy =
4003         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
4004     CGM.IsOSVersionAtLeastFn =
4005         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
4006   }
4007 
4008   std::optional<unsigned> Min = Version.getMinor(),
4009                           SMin = Version.getSubminor();
4010   llvm::Value *Args[] = {
4011       llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4012       llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4013       llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4014 
4015   llvm::Value *CallRes =
4016       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
4017 
4018   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4019 }
4020 
4021 static bool isFoundationNeededForDarwinAvailabilityCheck(
4022     const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4023   VersionTuple FoundationDroppedInVersion;
4024   switch (TT.getOS()) {
4025   case llvm::Triple::IOS:
4026   case llvm::Triple::TvOS:
4027     FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4028     break;
4029   case llvm::Triple::WatchOS:
4030     FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4031     break;
4032   case llvm::Triple::Darwin:
4033   case llvm::Triple::MacOSX:
4034     FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4035     break;
4036   case llvm::Triple::DriverKit:
4037     // DriverKit doesn't need Foundation.
4038     return false;
4039   default:
4040     llvm_unreachable("Unexpected OS");
4041   }
4042   return TargetVersion < FoundationDroppedInVersion;
4043 }
4044 
4045 void CodeGenModule::emitAtAvailableLinkGuard() {
4046   if (!IsPlatformVersionAtLeastFn)
4047     return;
4048   // @available requires CoreFoundation only on Darwin.
4049   if (!Target.getTriple().isOSDarwin())
4050     return;
4051   // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4052   // watchOS 6+.
4053   if (!isFoundationNeededForDarwinAvailabilityCheck(
4054           Target.getTriple(), Target.getPlatformMinVersion()))
4055     return;
4056   // Add -framework CoreFoundation to the linker commands. We still want to
4057   // emit the core foundation reference down below because otherwise if
4058   // CoreFoundation is not used in the code, the linker won't link the
4059   // framework.
4060   auto &Context = getLLVMContext();
4061   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4062                              llvm::MDString::get(Context, "CoreFoundation")};
4063   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4064   // Emit a reference to a symbol from CoreFoundation to ensure that
4065   // CoreFoundation is linked into the final binary.
4066   llvm::FunctionType *FTy =
4067       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4068   llvm::FunctionCallee CFFunc =
4069       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4070 
4071   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4072   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4073       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4074       llvm::AttributeList(), /*Local=*/true);
4075   llvm::Function *CFLinkCheckFunc =
4076       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4077   if (CFLinkCheckFunc->empty()) {
4078     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4079     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4080     CodeGenFunction CGF(*this);
4081     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4082     CGF.EmitNounwindRuntimeCall(CFFunc,
4083                                 llvm::Constant::getNullValue(VoidPtrTy));
4084     CGF.Builder.CreateUnreachable();
4085     addCompilerUsedGlobal(CFLinkCheckFunc);
4086   }
4087 }
4088 
4089 CGObjCRuntime::~CGObjCRuntime() {}
4090