1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 66 if (E->isExpressibleAsConstantInitializer()) { 67 ConstantEmitter ConstEmitter(CGM); 68 return ConstEmitter.tryEmitAbstract(E, E->getType()); 69 } 70 71 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 72 Selector Sel = BoxingMethod->getSelector(); 73 74 // Generate a reference to the class pointer, which will be the receiver. 75 // Assumes that the method was introduced in the class that should be 76 // messaged (avoids pulling it out of the result type). 77 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 78 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 79 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 80 81 CallArgList Args; 82 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 83 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 84 85 // ObjCBoxedExpr supports boxing of structs and unions 86 // via [NSValue valueWithBytes:objCType:] 87 const QualType ValueType(SubExpr->getType().getCanonicalType()); 88 if (ValueType->isObjCBoxableRecordType()) { 89 // Emit CodeGen for first parameter 90 // and cast value to correct type 91 Address Temporary = CreateMemTemp(SubExpr->getType()); 92 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 93 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 94 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 95 96 // Create char array to store type encoding 97 std::string Str; 98 getContext().getObjCEncodingForType(ValueType, Str); 99 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 100 101 // Cast type encoding to correct type 102 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 103 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 104 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 105 106 Args.add(RValue::get(Cast), EncodingQT); 107 } else { 108 Args.add(EmitAnyExpr(SubExpr), ArgQT); 109 } 110 111 RValue result = Runtime.GenerateMessageSend( 112 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 113 Args, ClassDecl, BoxingMethod); 114 return Builder.CreateBitCast(result.getScalarVal(), 115 ConvertType(E->getType())); 116 } 117 118 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 119 const ObjCMethodDecl *MethodWithObjects) { 120 ASTContext &Context = CGM.getContext(); 121 const ObjCDictionaryLiteral *DLE = nullptr; 122 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 123 if (!ALE) 124 DLE = cast<ObjCDictionaryLiteral>(E); 125 126 // Optimize empty collections by referencing constants, when available. 127 uint64_t NumElements = 128 ALE ? ALE->getNumElements() : DLE->getNumElements(); 129 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 130 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 131 QualType IdTy(CGM.getContext().getObjCIdType()); 132 llvm::Constant *Constant = 133 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 134 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 135 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 136 cast<llvm::LoadInst>(Ptr)->setMetadata( 137 CGM.getModule().getMDKindID("invariant.load"), 138 llvm::MDNode::get(getLLVMContext(), None)); 139 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 140 } 141 142 // Compute the type of the array we're initializing. 143 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 144 NumElements); 145 QualType ElementType = Context.getObjCIdType().withConst(); 146 QualType ElementArrayType 147 = Context.getConstantArrayType(ElementType, APNumElements, nullptr, 148 ArrayType::Normal, /*IndexTypeQuals=*/0); 149 150 // Allocate the temporary array(s). 151 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 152 Address Keys = Address::invalid(); 153 if (DLE) 154 Keys = CreateMemTemp(ElementArrayType, "keys"); 155 156 // In ARC, we may need to do extra work to keep all the keys and 157 // values alive until after the call. 158 SmallVector<llvm::Value *, 16> NeededObjects; 159 bool TrackNeededObjects = 160 (getLangOpts().ObjCAutoRefCount && 161 CGM.getCodeGenOpts().OptimizationLevel != 0); 162 163 // Perform the actual initialialization of the array(s). 164 for (uint64_t i = 0; i < NumElements; i++) { 165 if (ALE) { 166 // Emit the element and store it to the appropriate array slot. 167 const Expr *Rhs = ALE->getElement(i); 168 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 169 ElementType, AlignmentSource::Decl); 170 171 llvm::Value *value = EmitScalarExpr(Rhs); 172 EmitStoreThroughLValue(RValue::get(value), LV, true); 173 if (TrackNeededObjects) { 174 NeededObjects.push_back(value); 175 } 176 } else { 177 // Emit the key and store it to the appropriate array slot. 178 const Expr *Key = DLE->getKeyValueElement(i).Key; 179 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 180 ElementType, AlignmentSource::Decl); 181 llvm::Value *keyValue = EmitScalarExpr(Key); 182 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 183 184 // Emit the value and store it to the appropriate array slot. 185 const Expr *Value = DLE->getKeyValueElement(i).Value; 186 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 187 ElementType, AlignmentSource::Decl); 188 llvm::Value *valueValue = EmitScalarExpr(Value); 189 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 190 if (TrackNeededObjects) { 191 NeededObjects.push_back(keyValue); 192 NeededObjects.push_back(valueValue); 193 } 194 } 195 } 196 197 // Generate the argument list. 198 CallArgList Args; 199 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 200 const ParmVarDecl *argDecl = *PI++; 201 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 202 Args.add(RValue::get(Objects.getPointer()), ArgQT); 203 if (DLE) { 204 argDecl = *PI++; 205 ArgQT = argDecl->getType().getUnqualifiedType(); 206 Args.add(RValue::get(Keys.getPointer()), ArgQT); 207 } 208 argDecl = *PI; 209 ArgQT = argDecl->getType().getUnqualifiedType(); 210 llvm::Value *Count = 211 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 212 Args.add(RValue::get(Count), ArgQT); 213 214 // Generate a reference to the class pointer, which will be the receiver. 215 Selector Sel = MethodWithObjects->getSelector(); 216 QualType ResultType = E->getType(); 217 const ObjCObjectPointerType *InterfacePointerType 218 = ResultType->getAsObjCInterfacePointerType(); 219 ObjCInterfaceDecl *Class 220 = InterfacePointerType->getObjectType()->getInterface(); 221 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 222 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 223 224 // Generate the message send. 225 RValue result = Runtime.GenerateMessageSend( 226 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 227 Receiver, Args, Class, MethodWithObjects); 228 229 // The above message send needs these objects, but in ARC they are 230 // passed in a buffer that is essentially __unsafe_unretained. 231 // Therefore we must prevent the optimizer from releasing them until 232 // after the call. 233 if (TrackNeededObjects) { 234 EmitARCIntrinsicUse(NeededObjects); 235 } 236 237 return Builder.CreateBitCast(result.getScalarVal(), 238 ConvertType(E->getType())); 239 } 240 241 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 242 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 243 } 244 245 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 246 const ObjCDictionaryLiteral *E) { 247 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 248 } 249 250 /// Emit a selector. 251 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 252 // Untyped selector. 253 // Note that this implementation allows for non-constant strings to be passed 254 // as arguments to @selector(). Currently, the only thing preventing this 255 // behaviour is the type checking in the front end. 256 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 257 } 258 259 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 260 // FIXME: This should pass the Decl not the name. 261 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 262 } 263 264 /// Adjust the type of an Objective-C object that doesn't match up due 265 /// to type erasure at various points, e.g., related result types or the use 266 /// of parameterized classes. 267 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 268 RValue Result) { 269 if (!ExpT->isObjCRetainableType()) 270 return Result; 271 272 // If the converted types are the same, we're done. 273 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 274 if (ExpLLVMTy == Result.getScalarVal()->getType()) 275 return Result; 276 277 // We have applied a substitution. Cast the rvalue appropriately. 278 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 279 ExpLLVMTy)); 280 } 281 282 /// Decide whether to extend the lifetime of the receiver of a 283 /// returns-inner-pointer message. 284 static bool 285 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 286 switch (message->getReceiverKind()) { 287 288 // For a normal instance message, we should extend unless the 289 // receiver is loaded from a variable with precise lifetime. 290 case ObjCMessageExpr::Instance: { 291 const Expr *receiver = message->getInstanceReceiver(); 292 293 // Look through OVEs. 294 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 295 if (opaque->getSourceExpr()) 296 receiver = opaque->getSourceExpr()->IgnoreParens(); 297 } 298 299 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 300 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 301 receiver = ice->getSubExpr()->IgnoreParens(); 302 303 // Look through OVEs. 304 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 305 if (opaque->getSourceExpr()) 306 receiver = opaque->getSourceExpr()->IgnoreParens(); 307 } 308 309 // Only __strong variables. 310 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 311 return true; 312 313 // All ivars and fields have precise lifetime. 314 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 315 return false; 316 317 // Otherwise, check for variables. 318 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 319 if (!declRef) return true; 320 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 321 if (!var) return true; 322 323 // All variables have precise lifetime except local variables with 324 // automatic storage duration that aren't specially marked. 325 return (var->hasLocalStorage() && 326 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 327 } 328 329 case ObjCMessageExpr::Class: 330 case ObjCMessageExpr::SuperClass: 331 // It's never necessary for class objects. 332 return false; 333 334 case ObjCMessageExpr::SuperInstance: 335 // We generally assume that 'self' lives throughout a method call. 336 return false; 337 } 338 339 llvm_unreachable("invalid receiver kind"); 340 } 341 342 /// Given an expression of ObjC pointer type, check whether it was 343 /// immediately loaded from an ARC __weak l-value. 344 static const Expr *findWeakLValue(const Expr *E) { 345 assert(E->getType()->isObjCRetainableType()); 346 E = E->IgnoreParens(); 347 if (auto CE = dyn_cast<CastExpr>(E)) { 348 if (CE->getCastKind() == CK_LValueToRValue) { 349 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 350 return CE->getSubExpr(); 351 } 352 } 353 354 return nullptr; 355 } 356 357 /// The ObjC runtime may provide entrypoints that are likely to be faster 358 /// than an ordinary message send of the appropriate selector. 359 /// 360 /// The entrypoints are guaranteed to be equivalent to just sending the 361 /// corresponding message. If the entrypoint is implemented naively as just a 362 /// message send, using it is a trade-off: it sacrifices a few cycles of 363 /// overhead to save a small amount of code. However, it's possible for 364 /// runtimes to detect and special-case classes that use "standard" 365 /// behavior; if that's dynamically a large proportion of all objects, using 366 /// the entrypoint will also be faster than using a message send. 367 /// 368 /// If the runtime does support a required entrypoint, then this method will 369 /// generate a call and return the resulting value. Otherwise it will return 370 /// None and the caller can generate a msgSend instead. 371 static Optional<llvm::Value *> 372 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 373 llvm::Value *Receiver, 374 const CallArgList& Args, Selector Sel, 375 const ObjCMethodDecl *method, 376 bool isClassMessage) { 377 auto &CGM = CGF.CGM; 378 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 379 return None; 380 381 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 382 switch (Sel.getMethodFamily()) { 383 case OMF_alloc: 384 if (isClassMessage && 385 Runtime.shouldUseRuntimeFunctionsForAlloc() && 386 ResultType->isObjCObjectPointerType()) { 387 // [Foo alloc] -> objc_alloc(Foo) or 388 // [self alloc] -> objc_alloc(self) 389 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 390 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 391 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 392 // [self allocWithZone:nil] -> objc_allocWithZone(self) 393 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 394 Args.size() == 1 && Args.front().getType()->isPointerType() && 395 Sel.getNameForSlot(0) == "allocWithZone") { 396 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 397 if (isa<llvm::ConstantPointerNull>(arg)) 398 return CGF.EmitObjCAllocWithZone(Receiver, 399 CGF.ConvertType(ResultType)); 400 return None; 401 } 402 } 403 break; 404 405 case OMF_autorelease: 406 if (ResultType->isObjCObjectPointerType() && 407 CGM.getLangOpts().getGC() == LangOptions::NonGC && 408 Runtime.shouldUseARCFunctionsForRetainRelease()) 409 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 410 break; 411 412 case OMF_retain: 413 if (ResultType->isObjCObjectPointerType() && 414 CGM.getLangOpts().getGC() == LangOptions::NonGC && 415 Runtime.shouldUseARCFunctionsForRetainRelease()) 416 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 417 break; 418 419 case OMF_release: 420 if (ResultType->isVoidType() && 421 CGM.getLangOpts().getGC() == LangOptions::NonGC && 422 Runtime.shouldUseARCFunctionsForRetainRelease()) { 423 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 424 return nullptr; 425 } 426 break; 427 428 default: 429 break; 430 } 431 return None; 432 } 433 434 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 435 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 436 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 437 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 438 bool isClassMessage) { 439 if (Optional<llvm::Value *> SpecializedResult = 440 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 441 Sel, Method, isClassMessage)) { 442 return RValue::get(SpecializedResult.getValue()); 443 } 444 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 445 Method); 446 } 447 448 /// Instead of '[[MyClass alloc] init]', try to generate 449 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 450 /// caller side, as well as the optimized objc_alloc. 451 static Optional<llvm::Value *> 452 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 453 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 454 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 455 return None; 456 457 // Match the exact pattern '[[MyClass alloc] init]'. 458 Selector Sel = OME->getSelector(); 459 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 460 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 461 Sel.getNameForSlot(0) != "init") 462 return None; 463 464 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 465 // with 'cls' a Class. 466 auto *SubOME = 467 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 468 if (!SubOME) 469 return None; 470 Selector SubSel = SubOME->getSelector(); 471 472 if (!SubOME->getType()->isObjCObjectPointerType() || 473 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 474 return None; 475 476 llvm::Value *Receiver = nullptr; 477 switch (SubOME->getReceiverKind()) { 478 case ObjCMessageExpr::Instance: 479 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 480 return None; 481 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 482 break; 483 484 case ObjCMessageExpr::Class: { 485 QualType ReceiverType = SubOME->getClassReceiver(); 486 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 487 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 488 assert(ID && "null interface should be impossible here"); 489 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 490 break; 491 } 492 case ObjCMessageExpr::SuperInstance: 493 case ObjCMessageExpr::SuperClass: 494 return None; 495 } 496 497 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 498 } 499 500 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 501 ReturnValueSlot Return) { 502 // Only the lookup mechanism and first two arguments of the method 503 // implementation vary between runtimes. We can get the receiver and 504 // arguments in generic code. 505 506 bool isDelegateInit = E->isDelegateInitCall(); 507 508 const ObjCMethodDecl *method = E->getMethodDecl(); 509 510 // If the method is -retain, and the receiver's being loaded from 511 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 512 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 513 method->getMethodFamily() == OMF_retain) { 514 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 515 LValue lvalue = EmitLValue(lvalueExpr); 516 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 517 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 518 } 519 } 520 521 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 522 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 523 524 // We don't retain the receiver in delegate init calls, and this is 525 // safe because the receiver value is always loaded from 'self', 526 // which we zero out. We don't want to Block_copy block receivers, 527 // though. 528 bool retainSelf = 529 (!isDelegateInit && 530 CGM.getLangOpts().ObjCAutoRefCount && 531 method && 532 method->hasAttr<NSConsumesSelfAttr>()); 533 534 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 535 bool isSuperMessage = false; 536 bool isClassMessage = false; 537 ObjCInterfaceDecl *OID = nullptr; 538 // Find the receiver 539 QualType ReceiverType; 540 llvm::Value *Receiver = nullptr; 541 switch (E->getReceiverKind()) { 542 case ObjCMessageExpr::Instance: 543 ReceiverType = E->getInstanceReceiver()->getType(); 544 isClassMessage = ReceiverType->isObjCClassType(); 545 if (retainSelf) { 546 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 547 E->getInstanceReceiver()); 548 Receiver = ter.getPointer(); 549 if (ter.getInt()) retainSelf = false; 550 } else 551 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 552 break; 553 554 case ObjCMessageExpr::Class: { 555 ReceiverType = E->getClassReceiver(); 556 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 557 assert(OID && "Invalid Objective-C class message send"); 558 Receiver = Runtime.GetClass(*this, OID); 559 isClassMessage = true; 560 break; 561 } 562 563 case ObjCMessageExpr::SuperInstance: 564 ReceiverType = E->getSuperType(); 565 Receiver = LoadObjCSelf(); 566 isSuperMessage = true; 567 break; 568 569 case ObjCMessageExpr::SuperClass: 570 ReceiverType = E->getSuperType(); 571 Receiver = LoadObjCSelf(); 572 isSuperMessage = true; 573 isClassMessage = true; 574 break; 575 } 576 577 if (retainSelf) 578 Receiver = EmitARCRetainNonBlock(Receiver); 579 580 // In ARC, we sometimes want to "extend the lifetime" 581 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 582 // messages. 583 if (getLangOpts().ObjCAutoRefCount && method && 584 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 585 shouldExtendReceiverForInnerPointerMessage(E)) 586 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 587 588 QualType ResultType = method ? method->getReturnType() : E->getType(); 589 590 CallArgList Args; 591 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 592 593 // For delegate init calls in ARC, do an unsafe store of null into 594 // self. This represents the call taking direct ownership of that 595 // value. We have to do this after emitting the other call 596 // arguments because they might also reference self, but we don't 597 // have to worry about any of them modifying self because that would 598 // be an undefined read and write of an object in unordered 599 // expressions. 600 if (isDelegateInit) { 601 assert(getLangOpts().ObjCAutoRefCount && 602 "delegate init calls should only be marked in ARC"); 603 604 // Do an unsafe store of null into self. 605 Address selfAddr = 606 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 607 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 608 } 609 610 RValue result; 611 if (isSuperMessage) { 612 // super is only valid in an Objective-C method 613 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 614 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 615 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 616 E->getSelector(), 617 OMD->getClassInterface(), 618 isCategoryImpl, 619 Receiver, 620 isClassMessage, 621 Args, 622 method); 623 } else { 624 // Call runtime methods directly if we can. 625 result = Runtime.GeneratePossiblySpecializedMessageSend( 626 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 627 method, isClassMessage); 628 } 629 630 // For delegate init calls in ARC, implicitly store the result of 631 // the call back into self. This takes ownership of the value. 632 if (isDelegateInit) { 633 Address selfAddr = 634 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 635 llvm::Value *newSelf = result.getScalarVal(); 636 637 // The delegate return type isn't necessarily a matching type; in 638 // fact, it's quite likely to be 'id'. 639 llvm::Type *selfTy = selfAddr.getElementType(); 640 newSelf = Builder.CreateBitCast(newSelf, selfTy); 641 642 Builder.CreateStore(newSelf, selfAddr); 643 } 644 645 return AdjustObjCObjectType(*this, E->getType(), result); 646 } 647 648 namespace { 649 struct FinishARCDealloc final : EHScopeStack::Cleanup { 650 void Emit(CodeGenFunction &CGF, Flags flags) override { 651 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 652 653 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 654 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 655 if (!iface->getSuperClass()) return; 656 657 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 658 659 // Call [super dealloc] if we have a superclass. 660 llvm::Value *self = CGF.LoadObjCSelf(); 661 662 CallArgList args; 663 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 664 CGF.getContext().VoidTy, 665 method->getSelector(), 666 iface, 667 isCategory, 668 self, 669 /*is class msg*/ false, 670 args, 671 method); 672 } 673 }; 674 } 675 676 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 677 /// the LLVM function and sets the other context used by 678 /// CodeGenFunction. 679 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 680 const ObjCContainerDecl *CD) { 681 SourceLocation StartLoc = OMD->getBeginLoc(); 682 FunctionArgList args; 683 // Check if we should generate debug info for this method. 684 if (OMD->hasAttr<NoDebugAttr>()) 685 DebugInfo = nullptr; // disable debug info indefinitely for this function 686 687 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 688 689 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 690 if (OMD->isDirectMethod()) { 691 Fn->setVisibility(llvm::Function::HiddenVisibility); 692 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn); 693 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 694 } else { 695 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 696 } 697 698 args.push_back(OMD->getSelfDecl()); 699 args.push_back(OMD->getCmdDecl()); 700 701 args.append(OMD->param_begin(), OMD->param_end()); 702 703 CurGD = OMD; 704 CurEHLocation = OMD->getEndLoc(); 705 706 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 707 OMD->getLocation(), StartLoc); 708 709 if (OMD->isDirectMethod()) { 710 // This function is a direct call, it has to implement a nil check 711 // on entry. 712 // 713 // TODO: possibly have several entry points to elide the check 714 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 715 } 716 717 // In ARC, certain methods get an extra cleanup. 718 if (CGM.getLangOpts().ObjCAutoRefCount && 719 OMD->isInstanceMethod() && 720 OMD->getSelector().isUnarySelector()) { 721 const IdentifierInfo *ident = 722 OMD->getSelector().getIdentifierInfoForSlot(0); 723 if (ident->isStr("dealloc")) 724 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 725 } 726 } 727 728 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 729 LValue lvalue, QualType type); 730 731 /// Generate an Objective-C method. An Objective-C method is a C function with 732 /// its pointer, name, and types registered in the class structure. 733 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 734 StartObjCMethod(OMD, OMD->getClassInterface()); 735 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 736 assert(isa<CompoundStmt>(OMD->getBody())); 737 incrementProfileCounter(OMD->getBody()); 738 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 739 FinishFunction(OMD->getBodyRBrace()); 740 } 741 742 /// emitStructGetterCall - Call the runtime function to load a property 743 /// into the return value slot. 744 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 745 bool isAtomic, bool hasStrong) { 746 ASTContext &Context = CGF.getContext(); 747 748 Address src = 749 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 750 .getAddress(CGF); 751 752 // objc_copyStruct (ReturnValue, &structIvar, 753 // sizeof (Type of Ivar), isAtomic, false); 754 CallArgList args; 755 756 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 757 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 758 759 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 760 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 761 762 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 763 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 764 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 765 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 766 767 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 768 CGCallee callee = CGCallee::forDirect(fn); 769 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 770 callee, ReturnValueSlot(), args); 771 } 772 773 /// Determine whether the given architecture supports unaligned atomic 774 /// accesses. They don't have to be fast, just faster than a function 775 /// call and a mutex. 776 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 777 // FIXME: Allow unaligned atomic load/store on x86. (It is not 778 // currently supported by the backend.) 779 return 0; 780 } 781 782 /// Return the maximum size that permits atomic accesses for the given 783 /// architecture. 784 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 785 llvm::Triple::ArchType arch) { 786 // ARM has 8-byte atomic accesses, but it's not clear whether we 787 // want to rely on them here. 788 789 // In the default case, just assume that any size up to a pointer is 790 // fine given adequate alignment. 791 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 792 } 793 794 namespace { 795 class PropertyImplStrategy { 796 public: 797 enum StrategyKind { 798 /// The 'native' strategy is to use the architecture's provided 799 /// reads and writes. 800 Native, 801 802 /// Use objc_setProperty and objc_getProperty. 803 GetSetProperty, 804 805 /// Use objc_setProperty for the setter, but use expression 806 /// evaluation for the getter. 807 SetPropertyAndExpressionGet, 808 809 /// Use objc_copyStruct. 810 CopyStruct, 811 812 /// The 'expression' strategy is to emit normal assignment or 813 /// lvalue-to-rvalue expressions. 814 Expression 815 }; 816 817 StrategyKind getKind() const { return StrategyKind(Kind); } 818 819 bool hasStrongMember() const { return HasStrong; } 820 bool isAtomic() const { return IsAtomic; } 821 bool isCopy() const { return IsCopy; } 822 823 CharUnits getIvarSize() const { return IvarSize; } 824 CharUnits getIvarAlignment() const { return IvarAlignment; } 825 826 PropertyImplStrategy(CodeGenModule &CGM, 827 const ObjCPropertyImplDecl *propImpl); 828 829 private: 830 unsigned Kind : 8; 831 unsigned IsAtomic : 1; 832 unsigned IsCopy : 1; 833 unsigned HasStrong : 1; 834 835 CharUnits IvarSize; 836 CharUnits IvarAlignment; 837 }; 838 } 839 840 /// Pick an implementation strategy for the given property synthesis. 841 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 842 const ObjCPropertyImplDecl *propImpl) { 843 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 844 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 845 846 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 847 IsAtomic = prop->isAtomic(); 848 HasStrong = false; // doesn't matter here. 849 850 // Evaluate the ivar's size and alignment. 851 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 852 QualType ivarType = ivar->getType(); 853 std::tie(IvarSize, IvarAlignment) = 854 CGM.getContext().getTypeInfoInChars(ivarType); 855 856 // If we have a copy property, we always have to use getProperty/setProperty. 857 // TODO: we could actually use setProperty and an expression for non-atomics. 858 if (IsCopy) { 859 Kind = GetSetProperty; 860 return; 861 } 862 863 // Handle retain. 864 if (setterKind == ObjCPropertyDecl::Retain) { 865 // In GC-only, there's nothing special that needs to be done. 866 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 867 // fallthrough 868 869 // In ARC, if the property is non-atomic, use expression emission, 870 // which translates to objc_storeStrong. This isn't required, but 871 // it's slightly nicer. 872 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 873 // Using standard expression emission for the setter is only 874 // acceptable if the ivar is __strong, which won't be true if 875 // the property is annotated with __attribute__((NSObject)). 876 // TODO: falling all the way back to objc_setProperty here is 877 // just laziness, though; we could still use objc_storeStrong 878 // if we hacked it right. 879 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 880 Kind = Expression; 881 else 882 Kind = SetPropertyAndExpressionGet; 883 return; 884 885 // Otherwise, we need to at least use setProperty. However, if 886 // the property isn't atomic, we can use normal expression 887 // emission for the getter. 888 } else if (!IsAtomic) { 889 Kind = SetPropertyAndExpressionGet; 890 return; 891 892 // Otherwise, we have to use both setProperty and getProperty. 893 } else { 894 Kind = GetSetProperty; 895 return; 896 } 897 } 898 899 // If we're not atomic, just use expression accesses. 900 if (!IsAtomic) { 901 Kind = Expression; 902 return; 903 } 904 905 // Properties on bitfield ivars need to be emitted using expression 906 // accesses even if they're nominally atomic. 907 if (ivar->isBitField()) { 908 Kind = Expression; 909 return; 910 } 911 912 // GC-qualified or ARC-qualified ivars need to be emitted as 913 // expressions. This actually works out to being atomic anyway, 914 // except for ARC __strong, but that should trigger the above code. 915 if (ivarType.hasNonTrivialObjCLifetime() || 916 (CGM.getLangOpts().getGC() && 917 CGM.getContext().getObjCGCAttrKind(ivarType))) { 918 Kind = Expression; 919 return; 920 } 921 922 // Compute whether the ivar has strong members. 923 if (CGM.getLangOpts().getGC()) 924 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 925 HasStrong = recordType->getDecl()->hasObjectMember(); 926 927 // We can never access structs with object members with a native 928 // access, because we need to use write barriers. This is what 929 // objc_copyStruct is for. 930 if (HasStrong) { 931 Kind = CopyStruct; 932 return; 933 } 934 935 // Otherwise, this is target-dependent and based on the size and 936 // alignment of the ivar. 937 938 // If the size of the ivar is not a power of two, give up. We don't 939 // want to get into the business of doing compare-and-swaps. 940 if (!IvarSize.isPowerOfTwo()) { 941 Kind = CopyStruct; 942 return; 943 } 944 945 llvm::Triple::ArchType arch = 946 CGM.getTarget().getTriple().getArch(); 947 948 // Most architectures require memory to fit within a single cache 949 // line, so the alignment has to be at least the size of the access. 950 // Otherwise we have to grab a lock. 951 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 952 Kind = CopyStruct; 953 return; 954 } 955 956 // If the ivar's size exceeds the architecture's maximum atomic 957 // access size, we have to use CopyStruct. 958 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 959 Kind = CopyStruct; 960 return; 961 } 962 963 // Otherwise, we can use native loads and stores. 964 Kind = Native; 965 } 966 967 /// Generate an Objective-C property getter function. 968 /// 969 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 970 /// is illegal within a category. 971 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 972 const ObjCPropertyImplDecl *PID) { 973 llvm::Constant *AtomicHelperFn = 974 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 975 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 976 assert(OMD && "Invalid call to generate getter (empty method)"); 977 StartObjCMethod(OMD, IMP->getClassInterface()); 978 979 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 980 981 FinishFunction(OMD->getEndLoc()); 982 } 983 984 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 985 const Expr *getter = propImpl->getGetterCXXConstructor(); 986 if (!getter) return true; 987 988 // Sema only makes only of these when the ivar has a C++ class type, 989 // so the form is pretty constrained. 990 991 // If the property has a reference type, we might just be binding a 992 // reference, in which case the result will be a gl-value. We should 993 // treat this as a non-trivial operation. 994 if (getter->isGLValue()) 995 return false; 996 997 // If we selected a trivial copy-constructor, we're okay. 998 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 999 return (construct->getConstructor()->isTrivial()); 1000 1001 // The constructor might require cleanups (in which case it's never 1002 // trivial). 1003 assert(isa<ExprWithCleanups>(getter)); 1004 return false; 1005 } 1006 1007 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1008 /// copy the ivar into the resturn slot. 1009 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1010 llvm::Value *returnAddr, 1011 ObjCIvarDecl *ivar, 1012 llvm::Constant *AtomicHelperFn) { 1013 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1014 // AtomicHelperFn); 1015 CallArgList args; 1016 1017 // The 1st argument is the return Slot. 1018 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1019 1020 // The 2nd argument is the address of the ivar. 1021 llvm::Value *ivarAddr = 1022 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1023 .getPointer(CGF); 1024 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1025 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1026 1027 // Third argument is the helper function. 1028 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1029 1030 llvm::FunctionCallee copyCppAtomicObjectFn = 1031 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1032 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1033 CGF.EmitCall( 1034 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1035 callee, ReturnValueSlot(), args); 1036 } 1037 1038 void 1039 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1040 const ObjCPropertyImplDecl *propImpl, 1041 const ObjCMethodDecl *GetterMethodDecl, 1042 llvm::Constant *AtomicHelperFn) { 1043 // If there's a non-trivial 'get' expression, we just have to emit that. 1044 if (!hasTrivialGetExpr(propImpl)) { 1045 if (!AtomicHelperFn) { 1046 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1047 propImpl->getGetterCXXConstructor(), 1048 /* NRVOCandidate=*/nullptr); 1049 EmitReturnStmt(*ret); 1050 } 1051 else { 1052 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1053 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1054 ivar, AtomicHelperFn); 1055 } 1056 return; 1057 } 1058 1059 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1060 QualType propType = prop->getType(); 1061 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1062 1063 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1064 1065 // Pick an implementation strategy. 1066 PropertyImplStrategy strategy(CGM, propImpl); 1067 switch (strategy.getKind()) { 1068 case PropertyImplStrategy::Native: { 1069 // We don't need to do anything for a zero-size struct. 1070 if (strategy.getIvarSize().isZero()) 1071 return; 1072 1073 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1074 1075 // Currently, all atomic accesses have to be through integer 1076 // types, so there's no point in trying to pick a prettier type. 1077 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1078 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1079 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1080 1081 // Perform an atomic load. This does not impose ordering constraints. 1082 Address ivarAddr = LV.getAddress(*this); 1083 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1084 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1085 load->setAtomic(llvm::AtomicOrdering::Unordered); 1086 1087 // Store that value into the return address. Doing this with a 1088 // bitcast is likely to produce some pretty ugly IR, but it's not 1089 // the *most* terrible thing in the world. 1090 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1091 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1092 llvm::Value *ivarVal = load; 1093 if (ivarSize > retTySize) { 1094 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1095 ivarVal = Builder.CreateTrunc(load, newTy); 1096 bitcastType = newTy->getPointerTo(); 1097 } 1098 Builder.CreateStore(ivarVal, 1099 Builder.CreateBitCast(ReturnValue, bitcastType)); 1100 1101 // Make sure we don't do an autorelease. 1102 AutoreleaseResult = false; 1103 return; 1104 } 1105 1106 case PropertyImplStrategy::GetSetProperty: { 1107 llvm::FunctionCallee getPropertyFn = 1108 CGM.getObjCRuntime().GetPropertyGetFunction(); 1109 if (!getPropertyFn) { 1110 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1111 return; 1112 } 1113 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1114 1115 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1116 // FIXME: Can't this be simpler? This might even be worse than the 1117 // corresponding gcc code. 1118 llvm::Value *cmd = 1119 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1120 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1121 llvm::Value *ivarOffset = 1122 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1123 1124 CallArgList args; 1125 args.add(RValue::get(self), getContext().getObjCIdType()); 1126 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1127 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1128 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1129 getContext().BoolTy); 1130 1131 // FIXME: We shouldn't need to get the function info here, the 1132 // runtime already should have computed it to build the function. 1133 llvm::CallBase *CallInstruction; 1134 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1135 getContext().getObjCIdType(), args), 1136 callee, ReturnValueSlot(), args, &CallInstruction); 1137 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1138 call->setTailCall(); 1139 1140 // We need to fix the type here. Ivars with copy & retain are 1141 // always objects so we don't need to worry about complex or 1142 // aggregates. 1143 RV = RValue::get(Builder.CreateBitCast( 1144 RV.getScalarVal(), 1145 getTypes().ConvertType(getterMethod->getReturnType()))); 1146 1147 EmitReturnOfRValue(RV, propType); 1148 1149 // objc_getProperty does an autorelease, so we should suppress ours. 1150 AutoreleaseResult = false; 1151 1152 return; 1153 } 1154 1155 case PropertyImplStrategy::CopyStruct: 1156 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1157 strategy.hasStrongMember()); 1158 return; 1159 1160 case PropertyImplStrategy::Expression: 1161 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1162 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1163 1164 QualType ivarType = ivar->getType(); 1165 switch (getEvaluationKind(ivarType)) { 1166 case TEK_Complex: { 1167 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1168 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1169 /*init*/ true); 1170 return; 1171 } 1172 case TEK_Aggregate: { 1173 // The return value slot is guaranteed to not be aliased, but 1174 // that's not necessarily the same as "on the stack", so 1175 // we still potentially need objc_memmove_collectable. 1176 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1177 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1178 return; 1179 } 1180 case TEK_Scalar: { 1181 llvm::Value *value; 1182 if (propType->isReferenceType()) { 1183 value = LV.getAddress(*this).getPointer(); 1184 } else { 1185 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1186 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1187 if (getLangOpts().ObjCAutoRefCount) { 1188 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1189 } else { 1190 value = EmitARCLoadWeak(LV.getAddress(*this)); 1191 } 1192 1193 // Otherwise we want to do a simple load, suppressing the 1194 // final autorelease. 1195 } else { 1196 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1197 AutoreleaseResult = false; 1198 } 1199 1200 value = Builder.CreateBitCast( 1201 value, ConvertType(GetterMethodDecl->getReturnType())); 1202 } 1203 1204 EmitReturnOfRValue(RValue::get(value), propType); 1205 return; 1206 } 1207 } 1208 llvm_unreachable("bad evaluation kind"); 1209 } 1210 1211 } 1212 llvm_unreachable("bad @property implementation strategy!"); 1213 } 1214 1215 /// emitStructSetterCall - Call the runtime function to store the value 1216 /// from the first formal parameter into the given ivar. 1217 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1218 ObjCIvarDecl *ivar) { 1219 // objc_copyStruct (&structIvar, &Arg, 1220 // sizeof (struct something), true, false); 1221 CallArgList args; 1222 1223 // The first argument is the address of the ivar. 1224 llvm::Value *ivarAddr = 1225 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1226 .getPointer(CGF); 1227 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1228 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1229 1230 // The second argument is the address of the parameter variable. 1231 ParmVarDecl *argVar = *OMD->param_begin(); 1232 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1233 argVar->getType().getNonReferenceType(), VK_LValue, 1234 SourceLocation()); 1235 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1236 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1237 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1238 1239 // The third argument is the sizeof the type. 1240 llvm::Value *size = 1241 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1242 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1243 1244 // The fourth argument is the 'isAtomic' flag. 1245 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1246 1247 // The fifth argument is the 'hasStrong' flag. 1248 // FIXME: should this really always be false? 1249 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1250 1251 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1252 CGCallee callee = CGCallee::forDirect(fn); 1253 CGF.EmitCall( 1254 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1255 callee, ReturnValueSlot(), args); 1256 } 1257 1258 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1259 /// the value from the first formal parameter into the given ivar, using 1260 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1261 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1262 ObjCMethodDecl *OMD, 1263 ObjCIvarDecl *ivar, 1264 llvm::Constant *AtomicHelperFn) { 1265 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1266 // AtomicHelperFn); 1267 CallArgList args; 1268 1269 // The first argument is the address of the ivar. 1270 llvm::Value *ivarAddr = 1271 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1272 .getPointer(CGF); 1273 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1274 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1275 1276 // The second argument is the address of the parameter variable. 1277 ParmVarDecl *argVar = *OMD->param_begin(); 1278 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1279 argVar->getType().getNonReferenceType(), VK_LValue, 1280 SourceLocation()); 1281 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1282 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1283 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1284 1285 // Third argument is the helper function. 1286 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1287 1288 llvm::FunctionCallee fn = 1289 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1290 CGCallee callee = CGCallee::forDirect(fn); 1291 CGF.EmitCall( 1292 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1293 callee, ReturnValueSlot(), args); 1294 } 1295 1296 1297 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1298 Expr *setter = PID->getSetterCXXAssignment(); 1299 if (!setter) return true; 1300 1301 // Sema only makes only of these when the ivar has a C++ class type, 1302 // so the form is pretty constrained. 1303 1304 // An operator call is trivial if the function it calls is trivial. 1305 // This also implies that there's nothing non-trivial going on with 1306 // the arguments, because operator= can only be trivial if it's a 1307 // synthesized assignment operator and therefore both parameters are 1308 // references. 1309 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1310 if (const FunctionDecl *callee 1311 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1312 if (callee->isTrivial()) 1313 return true; 1314 return false; 1315 } 1316 1317 assert(isa<ExprWithCleanups>(setter)); 1318 return false; 1319 } 1320 1321 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1322 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1323 return false; 1324 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1325 } 1326 1327 void 1328 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1329 const ObjCPropertyImplDecl *propImpl, 1330 llvm::Constant *AtomicHelperFn) { 1331 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1332 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1333 1334 // Just use the setter expression if Sema gave us one and it's 1335 // non-trivial. 1336 if (!hasTrivialSetExpr(propImpl)) { 1337 if (!AtomicHelperFn) 1338 // If non-atomic, assignment is called directly. 1339 EmitStmt(propImpl->getSetterCXXAssignment()); 1340 else 1341 // If atomic, assignment is called via a locking api. 1342 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1343 AtomicHelperFn); 1344 return; 1345 } 1346 1347 PropertyImplStrategy strategy(CGM, propImpl); 1348 switch (strategy.getKind()) { 1349 case PropertyImplStrategy::Native: { 1350 // We don't need to do anything for a zero-size struct. 1351 if (strategy.getIvarSize().isZero()) 1352 return; 1353 1354 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1355 1356 LValue ivarLValue = 1357 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1358 Address ivarAddr = ivarLValue.getAddress(*this); 1359 1360 // Currently, all atomic accesses have to be through integer 1361 // types, so there's no point in trying to pick a prettier type. 1362 llvm::Type *bitcastType = 1363 llvm::Type::getIntNTy(getLLVMContext(), 1364 getContext().toBits(strategy.getIvarSize())); 1365 1366 // Cast both arguments to the chosen operation type. 1367 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1368 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1369 1370 // This bitcast load is likely to cause some nasty IR. 1371 llvm::Value *load = Builder.CreateLoad(argAddr); 1372 1373 // Perform an atomic store. There are no memory ordering requirements. 1374 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1375 store->setAtomic(llvm::AtomicOrdering::Unordered); 1376 return; 1377 } 1378 1379 case PropertyImplStrategy::GetSetProperty: 1380 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1381 1382 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1383 llvm::FunctionCallee setPropertyFn = nullptr; 1384 if (UseOptimizedSetter(CGM)) { 1385 // 10.8 and iOS 6.0 code and GC is off 1386 setOptimizedPropertyFn = 1387 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1388 strategy.isAtomic(), strategy.isCopy()); 1389 if (!setOptimizedPropertyFn) { 1390 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1391 return; 1392 } 1393 } 1394 else { 1395 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1396 if (!setPropertyFn) { 1397 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1398 return; 1399 } 1400 } 1401 1402 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1403 // <is-atomic>, <is-copy>). 1404 llvm::Value *cmd = 1405 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1406 llvm::Value *self = 1407 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1408 llvm::Value *ivarOffset = 1409 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1410 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1411 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1412 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1413 1414 CallArgList args; 1415 args.add(RValue::get(self), getContext().getObjCIdType()); 1416 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1417 if (setOptimizedPropertyFn) { 1418 args.add(RValue::get(arg), getContext().getObjCIdType()); 1419 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1420 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1421 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1422 callee, ReturnValueSlot(), args); 1423 } else { 1424 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1425 args.add(RValue::get(arg), getContext().getObjCIdType()); 1426 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1427 getContext().BoolTy); 1428 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1429 getContext().BoolTy); 1430 // FIXME: We shouldn't need to get the function info here, the runtime 1431 // already should have computed it to build the function. 1432 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1433 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1434 callee, ReturnValueSlot(), args); 1435 } 1436 1437 return; 1438 } 1439 1440 case PropertyImplStrategy::CopyStruct: 1441 emitStructSetterCall(*this, setterMethod, ivar); 1442 return; 1443 1444 case PropertyImplStrategy::Expression: 1445 break; 1446 } 1447 1448 // Otherwise, fake up some ASTs and emit a normal assignment. 1449 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1450 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1451 VK_LValue, SourceLocation()); 1452 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1453 selfDecl->getType(), CK_LValueToRValue, &self, 1454 VK_RValue); 1455 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1456 SourceLocation(), SourceLocation(), 1457 &selfLoad, true, true); 1458 1459 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1460 QualType argType = argDecl->getType().getNonReferenceType(); 1461 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1462 SourceLocation()); 1463 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1464 argType.getUnqualifiedType(), CK_LValueToRValue, 1465 &arg, VK_RValue); 1466 1467 // The property type can differ from the ivar type in some situations with 1468 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1469 // The following absurdity is just to ensure well-formed IR. 1470 CastKind argCK = CK_NoOp; 1471 if (ivarRef.getType()->isObjCObjectPointerType()) { 1472 if (argLoad.getType()->isObjCObjectPointerType()) 1473 argCK = CK_BitCast; 1474 else if (argLoad.getType()->isBlockPointerType()) 1475 argCK = CK_BlockPointerToObjCPointerCast; 1476 else 1477 argCK = CK_CPointerToObjCPointerCast; 1478 } else if (ivarRef.getType()->isBlockPointerType()) { 1479 if (argLoad.getType()->isBlockPointerType()) 1480 argCK = CK_BitCast; 1481 else 1482 argCK = CK_AnyPointerToBlockPointerCast; 1483 } else if (ivarRef.getType()->isPointerType()) { 1484 argCK = CK_BitCast; 1485 } 1486 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1487 ivarRef.getType(), argCK, &argLoad, 1488 VK_RValue); 1489 Expr *finalArg = &argLoad; 1490 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1491 argLoad.getType())) 1492 finalArg = &argCast; 1493 1494 BinaryOperator *assign = BinaryOperator::Create( 1495 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue, 1496 OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1497 EmitStmt(assign); 1498 } 1499 1500 /// Generate an Objective-C property setter function. 1501 /// 1502 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1503 /// is illegal within a category. 1504 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1505 const ObjCPropertyImplDecl *PID) { 1506 llvm::Constant *AtomicHelperFn = 1507 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1508 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1509 assert(OMD && "Invalid call to generate setter (empty method)"); 1510 StartObjCMethod(OMD, IMP->getClassInterface()); 1511 1512 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1513 1514 FinishFunction(OMD->getEndLoc()); 1515 } 1516 1517 namespace { 1518 struct DestroyIvar final : EHScopeStack::Cleanup { 1519 private: 1520 llvm::Value *addr; 1521 const ObjCIvarDecl *ivar; 1522 CodeGenFunction::Destroyer *destroyer; 1523 bool useEHCleanupForArray; 1524 public: 1525 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1526 CodeGenFunction::Destroyer *destroyer, 1527 bool useEHCleanupForArray) 1528 : addr(addr), ivar(ivar), destroyer(destroyer), 1529 useEHCleanupForArray(useEHCleanupForArray) {} 1530 1531 void Emit(CodeGenFunction &CGF, Flags flags) override { 1532 LValue lvalue 1533 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1534 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1535 flags.isForNormalCleanup() && useEHCleanupForArray); 1536 } 1537 }; 1538 } 1539 1540 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1541 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1542 Address addr, 1543 QualType type) { 1544 llvm::Value *null = getNullForVariable(addr); 1545 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1546 } 1547 1548 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1549 ObjCImplementationDecl *impl) { 1550 CodeGenFunction::RunCleanupsScope scope(CGF); 1551 1552 llvm::Value *self = CGF.LoadObjCSelf(); 1553 1554 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1555 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1556 ivar; ivar = ivar->getNextIvar()) { 1557 QualType type = ivar->getType(); 1558 1559 // Check whether the ivar is a destructible type. 1560 QualType::DestructionKind dtorKind = type.isDestructedType(); 1561 if (!dtorKind) continue; 1562 1563 CodeGenFunction::Destroyer *destroyer = nullptr; 1564 1565 // Use a call to objc_storeStrong to destroy strong ivars, for the 1566 // general benefit of the tools. 1567 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1568 destroyer = destroyARCStrongWithStore; 1569 1570 // Otherwise use the default for the destruction kind. 1571 } else { 1572 destroyer = CGF.getDestroyer(dtorKind); 1573 } 1574 1575 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1576 1577 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1578 cleanupKind & EHCleanup); 1579 } 1580 1581 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1582 } 1583 1584 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1585 ObjCMethodDecl *MD, 1586 bool ctor) { 1587 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1588 StartObjCMethod(MD, IMP->getClassInterface()); 1589 1590 // Emit .cxx_construct. 1591 if (ctor) { 1592 // Suppress the final autorelease in ARC. 1593 AutoreleaseResult = false; 1594 1595 for (const auto *IvarInit : IMP->inits()) { 1596 FieldDecl *Field = IvarInit->getAnyMember(); 1597 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1598 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1599 LoadObjCSelf(), Ivar, 0); 1600 EmitAggExpr(IvarInit->getInit(), 1601 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1602 AggValueSlot::DoesNotNeedGCBarriers, 1603 AggValueSlot::IsNotAliased, 1604 AggValueSlot::DoesNotOverlap)); 1605 } 1606 // constructor returns 'self'. 1607 CodeGenTypes &Types = CGM.getTypes(); 1608 QualType IdTy(CGM.getContext().getObjCIdType()); 1609 llvm::Value *SelfAsId = 1610 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1611 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1612 1613 // Emit .cxx_destruct. 1614 } else { 1615 emitCXXDestructMethod(*this, IMP); 1616 } 1617 FinishFunction(); 1618 } 1619 1620 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1621 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1622 DeclRefExpr DRE(getContext(), Self, 1623 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1624 Self->getType(), VK_LValue, SourceLocation()); 1625 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1626 } 1627 1628 QualType CodeGenFunction::TypeOfSelfObject() { 1629 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1630 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1631 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1632 getContext().getCanonicalType(selfDecl->getType())); 1633 return PTy->getPointeeType(); 1634 } 1635 1636 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1637 llvm::FunctionCallee EnumerationMutationFnPtr = 1638 CGM.getObjCRuntime().EnumerationMutationFunction(); 1639 if (!EnumerationMutationFnPtr) { 1640 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1641 return; 1642 } 1643 CGCallee EnumerationMutationFn = 1644 CGCallee::forDirect(EnumerationMutationFnPtr); 1645 1646 CGDebugInfo *DI = getDebugInfo(); 1647 if (DI) 1648 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1649 1650 RunCleanupsScope ForScope(*this); 1651 1652 // The local variable comes into scope immediately. 1653 AutoVarEmission variable = AutoVarEmission::invalid(); 1654 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1655 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1656 1657 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1658 1659 // Fast enumeration state. 1660 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1661 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1662 EmitNullInitialization(StatePtr, StateTy); 1663 1664 // Number of elements in the items array. 1665 static const unsigned NumItems = 16; 1666 1667 // Fetch the countByEnumeratingWithState:objects:count: selector. 1668 IdentifierInfo *II[] = { 1669 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1670 &CGM.getContext().Idents.get("objects"), 1671 &CGM.getContext().Idents.get("count") 1672 }; 1673 Selector FastEnumSel = 1674 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1675 1676 QualType ItemsTy = 1677 getContext().getConstantArrayType(getContext().getObjCIdType(), 1678 llvm::APInt(32, NumItems), nullptr, 1679 ArrayType::Normal, 0); 1680 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1681 1682 // Emit the collection pointer. In ARC, we do a retain. 1683 llvm::Value *Collection; 1684 if (getLangOpts().ObjCAutoRefCount) { 1685 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1686 1687 // Enter a cleanup to do the release. 1688 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1689 } else { 1690 Collection = EmitScalarExpr(S.getCollection()); 1691 } 1692 1693 // The 'continue' label needs to appear within the cleanup for the 1694 // collection object. 1695 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1696 1697 // Send it our message: 1698 CallArgList Args; 1699 1700 // The first argument is a temporary of the enumeration-state type. 1701 Args.add(RValue::get(StatePtr.getPointer()), 1702 getContext().getPointerType(StateTy)); 1703 1704 // The second argument is a temporary array with space for NumItems 1705 // pointers. We'll actually be loading elements from the array 1706 // pointer written into the control state; this buffer is so that 1707 // collections that *aren't* backed by arrays can still queue up 1708 // batches of elements. 1709 Args.add(RValue::get(ItemsPtr.getPointer()), 1710 getContext().getPointerType(ItemsTy)); 1711 1712 // The third argument is the capacity of that temporary array. 1713 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1714 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1715 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1716 1717 // Start the enumeration. 1718 RValue CountRV = 1719 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1720 getContext().getNSUIntegerType(), 1721 FastEnumSel, Collection, Args); 1722 1723 // The initial number of objects that were returned in the buffer. 1724 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1725 1726 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1727 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1728 1729 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1730 1731 // If the limit pointer was zero to begin with, the collection is 1732 // empty; skip all this. Set the branch weight assuming this has the same 1733 // probability of exiting the loop as any other loop exit. 1734 uint64_t EntryCount = getCurrentProfileCount(); 1735 Builder.CreateCondBr( 1736 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1737 LoopInitBB, 1738 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1739 1740 // Otherwise, initialize the loop. 1741 EmitBlock(LoopInitBB); 1742 1743 // Save the initial mutations value. This is the value at an 1744 // address that was written into the state object by 1745 // countByEnumeratingWithState:objects:count:. 1746 Address StateMutationsPtrPtr = 1747 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1748 llvm::Value *StateMutationsPtr 1749 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1750 1751 llvm::Value *initialMutations = 1752 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1753 "forcoll.initial-mutations"); 1754 1755 // Start looping. This is the point we return to whenever we have a 1756 // fresh, non-empty batch of objects. 1757 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1758 EmitBlock(LoopBodyBB); 1759 1760 // The current index into the buffer. 1761 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1762 index->addIncoming(zero, LoopInitBB); 1763 1764 // The current buffer size. 1765 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1766 count->addIncoming(initialBufferLimit, LoopInitBB); 1767 1768 incrementProfileCounter(&S); 1769 1770 // Check whether the mutations value has changed from where it was 1771 // at start. StateMutationsPtr should actually be invariant between 1772 // refreshes. 1773 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1774 llvm::Value *currentMutations 1775 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1776 "statemutations"); 1777 1778 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1779 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1780 1781 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1782 WasNotMutatedBB, WasMutatedBB); 1783 1784 // If so, call the enumeration-mutation function. 1785 EmitBlock(WasMutatedBB); 1786 llvm::Value *V = 1787 Builder.CreateBitCast(Collection, 1788 ConvertType(getContext().getObjCIdType())); 1789 CallArgList Args2; 1790 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1791 // FIXME: We shouldn't need to get the function info here, the runtime already 1792 // should have computed it to build the function. 1793 EmitCall( 1794 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1795 EnumerationMutationFn, ReturnValueSlot(), Args2); 1796 1797 // Otherwise, or if the mutation function returns, just continue. 1798 EmitBlock(WasNotMutatedBB); 1799 1800 // Initialize the element variable. 1801 RunCleanupsScope elementVariableScope(*this); 1802 bool elementIsVariable; 1803 LValue elementLValue; 1804 QualType elementType; 1805 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1806 // Initialize the variable, in case it's a __block variable or something. 1807 EmitAutoVarInit(variable); 1808 1809 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1810 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1811 D->getType(), VK_LValue, SourceLocation()); 1812 elementLValue = EmitLValue(&tempDRE); 1813 elementType = D->getType(); 1814 elementIsVariable = true; 1815 1816 if (D->isARCPseudoStrong()) 1817 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1818 } else { 1819 elementLValue = LValue(); // suppress warning 1820 elementType = cast<Expr>(S.getElement())->getType(); 1821 elementIsVariable = false; 1822 } 1823 llvm::Type *convertedElementType = ConvertType(elementType); 1824 1825 // Fetch the buffer out of the enumeration state. 1826 // TODO: this pointer should actually be invariant between 1827 // refreshes, which would help us do certain loop optimizations. 1828 Address StateItemsPtr = 1829 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1830 llvm::Value *EnumStateItems = 1831 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1832 1833 // Fetch the value at the current index from the buffer. 1834 llvm::Value *CurrentItemPtr = 1835 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1836 llvm::Value *CurrentItem = 1837 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1838 1839 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1840 // Before using an item from the collection, check that the implicit cast 1841 // from id to the element type is valid. This is done with instrumentation 1842 // roughly corresponding to: 1843 // 1844 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1845 const ObjCObjectPointerType *ObjPtrTy = 1846 elementType->getAsObjCInterfacePointerType(); 1847 const ObjCInterfaceType *InterfaceTy = 1848 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1849 if (InterfaceTy) { 1850 SanitizerScope SanScope(this); 1851 auto &C = CGM.getContext(); 1852 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1853 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1854 CallArgList IsKindOfClassArgs; 1855 llvm::Value *Cls = 1856 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1857 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1858 llvm::Value *IsClass = 1859 CGM.getObjCRuntime() 1860 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1861 IsKindOfClassSel, CurrentItem, 1862 IsKindOfClassArgs) 1863 .getScalarVal(); 1864 llvm::Constant *StaticData[] = { 1865 EmitCheckSourceLocation(S.getBeginLoc()), 1866 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1867 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1868 SanitizerHandler::InvalidObjCCast, 1869 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 1870 } 1871 } 1872 1873 // Cast that value to the right type. 1874 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1875 "currentitem"); 1876 1877 // Make sure we have an l-value. Yes, this gets evaluated every 1878 // time through the loop. 1879 if (!elementIsVariable) { 1880 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1881 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1882 } else { 1883 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1884 /*isInit*/ true); 1885 } 1886 1887 // If we do have an element variable, this assignment is the end of 1888 // its initialization. 1889 if (elementIsVariable) 1890 EmitAutoVarCleanups(variable); 1891 1892 // Perform the loop body, setting up break and continue labels. 1893 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1894 { 1895 RunCleanupsScope Scope(*this); 1896 EmitStmt(S.getBody()); 1897 } 1898 BreakContinueStack.pop_back(); 1899 1900 // Destroy the element variable now. 1901 elementVariableScope.ForceCleanup(); 1902 1903 // Check whether there are more elements. 1904 EmitBlock(AfterBody.getBlock()); 1905 1906 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1907 1908 // First we check in the local buffer. 1909 llvm::Value *indexPlusOne = 1910 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1911 1912 // If we haven't overrun the buffer yet, we can continue. 1913 // Set the branch weights based on the simplifying assumption that this is 1914 // like a while-loop, i.e., ignoring that the false branch fetches more 1915 // elements and then returns to the loop. 1916 Builder.CreateCondBr( 1917 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1918 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1919 1920 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1921 count->addIncoming(count, AfterBody.getBlock()); 1922 1923 // Otherwise, we have to fetch more elements. 1924 EmitBlock(FetchMoreBB); 1925 1926 CountRV = 1927 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1928 getContext().getNSUIntegerType(), 1929 FastEnumSel, Collection, Args); 1930 1931 // If we got a zero count, we're done. 1932 llvm::Value *refetchCount = CountRV.getScalarVal(); 1933 1934 // (note that the message send might split FetchMoreBB) 1935 index->addIncoming(zero, Builder.GetInsertBlock()); 1936 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1937 1938 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1939 EmptyBB, LoopBodyBB); 1940 1941 // No more elements. 1942 EmitBlock(EmptyBB); 1943 1944 if (!elementIsVariable) { 1945 // If the element was not a declaration, set it to be null. 1946 1947 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1948 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1949 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1950 } 1951 1952 if (DI) 1953 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1954 1955 ForScope.ForceCleanup(); 1956 EmitBlock(LoopEnd.getBlock()); 1957 } 1958 1959 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1960 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1961 } 1962 1963 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1964 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1965 } 1966 1967 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1968 const ObjCAtSynchronizedStmt &S) { 1969 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1970 } 1971 1972 namespace { 1973 struct CallObjCRelease final : EHScopeStack::Cleanup { 1974 CallObjCRelease(llvm::Value *object) : object(object) {} 1975 llvm::Value *object; 1976 1977 void Emit(CodeGenFunction &CGF, Flags flags) override { 1978 // Releases at the end of the full-expression are imprecise. 1979 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1980 } 1981 }; 1982 } 1983 1984 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1985 /// release at the end of the full-expression. 1986 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1987 llvm::Value *object) { 1988 // If we're in a conditional branch, we need to make the cleanup 1989 // conditional. 1990 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1991 return object; 1992 } 1993 1994 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1995 llvm::Value *value) { 1996 return EmitARCRetainAutorelease(type, value); 1997 } 1998 1999 /// Given a number of pointers, inform the optimizer that they're 2000 /// being intrinsically used up until this point in the program. 2001 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2002 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2003 if (!fn) 2004 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2005 2006 // This isn't really a "runtime" function, but as an intrinsic it 2007 // doesn't really matter as long as we align things up. 2008 EmitNounwindRuntimeCall(fn, values); 2009 } 2010 2011 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2012 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2013 // If the target runtime doesn't naturally support ARC, emit weak 2014 // references to the runtime support library. We don't really 2015 // permit this to fail, but we need a particular relocation style. 2016 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2017 !CGM.getTriple().isOSBinFormatCOFF()) { 2018 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2019 } 2020 } 2021 } 2022 2023 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2024 llvm::FunctionCallee RTF) { 2025 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2026 } 2027 2028 /// Perform an operation having the signature 2029 /// i8* (i8*) 2030 /// where a null input causes a no-op and returns null. 2031 static llvm::Value *emitARCValueOperation( 2032 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2033 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2034 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2035 if (isa<llvm::ConstantPointerNull>(value)) 2036 return value; 2037 2038 if (!fn) { 2039 fn = CGF.CGM.getIntrinsic(IntID); 2040 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2041 } 2042 2043 // Cast the argument to 'id'. 2044 llvm::Type *origType = returnType ? returnType : value->getType(); 2045 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2046 2047 // Call the function. 2048 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2049 call->setTailCallKind(tailKind); 2050 2051 // Cast the result back to the original type. 2052 return CGF.Builder.CreateBitCast(call, origType); 2053 } 2054 2055 /// Perform an operation having the following signature: 2056 /// i8* (i8**) 2057 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2058 llvm::Function *&fn, 2059 llvm::Intrinsic::ID IntID) { 2060 if (!fn) { 2061 fn = CGF.CGM.getIntrinsic(IntID); 2062 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2063 } 2064 2065 // Cast the argument to 'id*'. 2066 llvm::Type *origType = addr.getElementType(); 2067 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 2068 2069 // Call the function. 2070 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2071 2072 // Cast the result back to a dereference of the original type. 2073 if (origType != CGF.Int8PtrTy) 2074 result = CGF.Builder.CreateBitCast(result, origType); 2075 2076 return result; 2077 } 2078 2079 /// Perform an operation having the following signature: 2080 /// i8* (i8**, i8*) 2081 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2082 llvm::Value *value, 2083 llvm::Function *&fn, 2084 llvm::Intrinsic::ID IntID, 2085 bool ignored) { 2086 assert(addr.getElementType() == value->getType()); 2087 2088 if (!fn) { 2089 fn = CGF.CGM.getIntrinsic(IntID); 2090 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2091 } 2092 2093 llvm::Type *origType = value->getType(); 2094 2095 llvm::Value *args[] = { 2096 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2097 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2098 }; 2099 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2100 2101 if (ignored) return nullptr; 2102 2103 return CGF.Builder.CreateBitCast(result, origType); 2104 } 2105 2106 /// Perform an operation having the following signature: 2107 /// void (i8**, i8**) 2108 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2109 llvm::Function *&fn, 2110 llvm::Intrinsic::ID IntID) { 2111 assert(dst.getType() == src.getType()); 2112 2113 if (!fn) { 2114 fn = CGF.CGM.getIntrinsic(IntID); 2115 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2116 } 2117 2118 llvm::Value *args[] = { 2119 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2120 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2121 }; 2122 CGF.EmitNounwindRuntimeCall(fn, args); 2123 } 2124 2125 /// Perform an operation having the signature 2126 /// i8* (i8*) 2127 /// where a null input causes a no-op and returns null. 2128 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2129 llvm::Value *value, 2130 llvm::Type *returnType, 2131 llvm::FunctionCallee &fn, 2132 StringRef fnName) { 2133 if (isa<llvm::ConstantPointerNull>(value)) 2134 return value; 2135 2136 if (!fn) { 2137 llvm::FunctionType *fnType = 2138 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2139 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2140 2141 // We have Native ARC, so set nonlazybind attribute for performance 2142 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2143 if (fnName == "objc_retain") 2144 f->addFnAttr(llvm::Attribute::NonLazyBind); 2145 } 2146 2147 // Cast the argument to 'id'. 2148 llvm::Type *origType = returnType ? returnType : value->getType(); 2149 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2150 2151 // Call the function. 2152 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2153 2154 // Cast the result back to the original type. 2155 return CGF.Builder.CreateBitCast(Inst, origType); 2156 } 2157 2158 /// Produce the code to do a retain. Based on the type, calls one of: 2159 /// call i8* \@objc_retain(i8* %value) 2160 /// call i8* \@objc_retainBlock(i8* %value) 2161 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2162 if (type->isBlockPointerType()) 2163 return EmitARCRetainBlock(value, /*mandatory*/ false); 2164 else 2165 return EmitARCRetainNonBlock(value); 2166 } 2167 2168 /// Retain the given object, with normal retain semantics. 2169 /// call i8* \@objc_retain(i8* %value) 2170 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2171 return emitARCValueOperation(*this, value, nullptr, 2172 CGM.getObjCEntrypoints().objc_retain, 2173 llvm::Intrinsic::objc_retain); 2174 } 2175 2176 /// Retain the given block, with _Block_copy semantics. 2177 /// call i8* \@objc_retainBlock(i8* %value) 2178 /// 2179 /// \param mandatory - If false, emit the call with metadata 2180 /// indicating that it's okay for the optimizer to eliminate this call 2181 /// if it can prove that the block never escapes except down the stack. 2182 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2183 bool mandatory) { 2184 llvm::Value *result 2185 = emitARCValueOperation(*this, value, nullptr, 2186 CGM.getObjCEntrypoints().objc_retainBlock, 2187 llvm::Intrinsic::objc_retainBlock); 2188 2189 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2190 // tell the optimizer that it doesn't need to do this copy if the 2191 // block doesn't escape, where being passed as an argument doesn't 2192 // count as escaping. 2193 if (!mandatory && isa<llvm::Instruction>(result)) { 2194 llvm::CallInst *call 2195 = cast<llvm::CallInst>(result->stripPointerCasts()); 2196 assert(call->getCalledOperand() == 2197 CGM.getObjCEntrypoints().objc_retainBlock); 2198 2199 call->setMetadata("clang.arc.copy_on_escape", 2200 llvm::MDNode::get(Builder.getContext(), None)); 2201 } 2202 2203 return result; 2204 } 2205 2206 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2207 // Fetch the void(void) inline asm which marks that we're going to 2208 // do something with the autoreleased return value. 2209 llvm::InlineAsm *&marker 2210 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2211 if (!marker) { 2212 StringRef assembly 2213 = CGF.CGM.getTargetCodeGenInfo() 2214 .getARCRetainAutoreleasedReturnValueMarker(); 2215 2216 // If we have an empty assembly string, there's nothing to do. 2217 if (assembly.empty()) { 2218 2219 // Otherwise, at -O0, build an inline asm that we're going to call 2220 // in a moment. 2221 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2222 llvm::FunctionType *type = 2223 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2224 2225 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2226 2227 // If we're at -O1 and above, we don't want to litter the code 2228 // with this marker yet, so leave a breadcrumb for the ARC 2229 // optimizer to pick up. 2230 } else { 2231 const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker"; 2232 if (!CGF.CGM.getModule().getModuleFlag(markerKey)) { 2233 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2234 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str); 2235 } 2236 } 2237 } 2238 2239 // Call the marker asm if we made one, which we do only at -O0. 2240 if (marker) 2241 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2242 } 2243 2244 /// Retain the given object which is the result of a function call. 2245 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2246 /// 2247 /// Yes, this function name is one character away from a different 2248 /// call with completely different semantics. 2249 llvm::Value * 2250 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2251 emitAutoreleasedReturnValueMarker(*this); 2252 llvm::CallInst::TailCallKind tailKind = 2253 CGM.getTargetCodeGenInfo() 2254 .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() 2255 ? llvm::CallInst::TCK_NoTail 2256 : llvm::CallInst::TCK_None; 2257 return emitARCValueOperation( 2258 *this, value, nullptr, 2259 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2260 llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind); 2261 } 2262 2263 /// Claim a possibly-autoreleased return value at +0. This is only 2264 /// valid to do in contexts which do not rely on the retain to keep 2265 /// the object valid for all of its uses; for example, when 2266 /// the value is ignored, or when it is being assigned to an 2267 /// __unsafe_unretained variable. 2268 /// 2269 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2270 llvm::Value * 2271 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2272 emitAutoreleasedReturnValueMarker(*this); 2273 return emitARCValueOperation(*this, value, nullptr, 2274 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2275 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue); 2276 } 2277 2278 /// Release the given object. 2279 /// call void \@objc_release(i8* %value) 2280 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2281 ARCPreciseLifetime_t precise) { 2282 if (isa<llvm::ConstantPointerNull>(value)) return; 2283 2284 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2285 if (!fn) { 2286 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2287 setARCRuntimeFunctionLinkage(CGM, fn); 2288 } 2289 2290 // Cast the argument to 'id'. 2291 value = Builder.CreateBitCast(value, Int8PtrTy); 2292 2293 // Call objc_release. 2294 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2295 2296 if (precise == ARCImpreciseLifetime) { 2297 call->setMetadata("clang.imprecise_release", 2298 llvm::MDNode::get(Builder.getContext(), None)); 2299 } 2300 } 2301 2302 /// Destroy a __strong variable. 2303 /// 2304 /// At -O0, emit a call to store 'null' into the address; 2305 /// instrumenting tools prefer this because the address is exposed, 2306 /// but it's relatively cumbersome to optimize. 2307 /// 2308 /// At -O1 and above, just load and call objc_release. 2309 /// 2310 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2311 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2312 ARCPreciseLifetime_t precise) { 2313 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2314 llvm::Value *null = getNullForVariable(addr); 2315 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2316 return; 2317 } 2318 2319 llvm::Value *value = Builder.CreateLoad(addr); 2320 EmitARCRelease(value, precise); 2321 } 2322 2323 /// Store into a strong object. Always calls this: 2324 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2325 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2326 llvm::Value *value, 2327 bool ignored) { 2328 assert(addr.getElementType() == value->getType()); 2329 2330 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2331 if (!fn) { 2332 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2333 setARCRuntimeFunctionLinkage(CGM, fn); 2334 } 2335 2336 llvm::Value *args[] = { 2337 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2338 Builder.CreateBitCast(value, Int8PtrTy) 2339 }; 2340 EmitNounwindRuntimeCall(fn, args); 2341 2342 if (ignored) return nullptr; 2343 return value; 2344 } 2345 2346 /// Store into a strong object. Sometimes calls this: 2347 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2348 /// Other times, breaks it down into components. 2349 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2350 llvm::Value *newValue, 2351 bool ignored) { 2352 QualType type = dst.getType(); 2353 bool isBlock = type->isBlockPointerType(); 2354 2355 // Use a store barrier at -O0 unless this is a block type or the 2356 // lvalue is inadequately aligned. 2357 if (shouldUseFusedARCCalls() && 2358 !isBlock && 2359 (dst.getAlignment().isZero() || 2360 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2361 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2362 } 2363 2364 // Otherwise, split it out. 2365 2366 // Retain the new value. 2367 newValue = EmitARCRetain(type, newValue); 2368 2369 // Read the old value. 2370 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2371 2372 // Store. We do this before the release so that any deallocs won't 2373 // see the old value. 2374 EmitStoreOfScalar(newValue, dst); 2375 2376 // Finally, release the old value. 2377 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2378 2379 return newValue; 2380 } 2381 2382 /// Autorelease the given object. 2383 /// call i8* \@objc_autorelease(i8* %value) 2384 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2385 return emitARCValueOperation(*this, value, nullptr, 2386 CGM.getObjCEntrypoints().objc_autorelease, 2387 llvm::Intrinsic::objc_autorelease); 2388 } 2389 2390 /// Autorelease the given object. 2391 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2392 llvm::Value * 2393 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2394 return emitARCValueOperation(*this, value, nullptr, 2395 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2396 llvm::Intrinsic::objc_autoreleaseReturnValue, 2397 llvm::CallInst::TCK_Tail); 2398 } 2399 2400 /// Do a fused retain/autorelease of the given object. 2401 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2402 llvm::Value * 2403 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2404 return emitARCValueOperation(*this, value, nullptr, 2405 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2406 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2407 llvm::CallInst::TCK_Tail); 2408 } 2409 2410 /// Do a fused retain/autorelease of the given object. 2411 /// call i8* \@objc_retainAutorelease(i8* %value) 2412 /// or 2413 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2414 /// call i8* \@objc_autorelease(i8* %retain) 2415 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2416 llvm::Value *value) { 2417 if (!type->isBlockPointerType()) 2418 return EmitARCRetainAutoreleaseNonBlock(value); 2419 2420 if (isa<llvm::ConstantPointerNull>(value)) return value; 2421 2422 llvm::Type *origType = value->getType(); 2423 value = Builder.CreateBitCast(value, Int8PtrTy); 2424 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2425 value = EmitARCAutorelease(value); 2426 return Builder.CreateBitCast(value, origType); 2427 } 2428 2429 /// Do a fused retain/autorelease of the given object. 2430 /// call i8* \@objc_retainAutorelease(i8* %value) 2431 llvm::Value * 2432 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2433 return emitARCValueOperation(*this, value, nullptr, 2434 CGM.getObjCEntrypoints().objc_retainAutorelease, 2435 llvm::Intrinsic::objc_retainAutorelease); 2436 } 2437 2438 /// i8* \@objc_loadWeak(i8** %addr) 2439 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2440 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2441 return emitARCLoadOperation(*this, addr, 2442 CGM.getObjCEntrypoints().objc_loadWeak, 2443 llvm::Intrinsic::objc_loadWeak); 2444 } 2445 2446 /// i8* \@objc_loadWeakRetained(i8** %addr) 2447 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2448 return emitARCLoadOperation(*this, addr, 2449 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2450 llvm::Intrinsic::objc_loadWeakRetained); 2451 } 2452 2453 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2454 /// Returns %value. 2455 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2456 llvm::Value *value, 2457 bool ignored) { 2458 return emitARCStoreOperation(*this, addr, value, 2459 CGM.getObjCEntrypoints().objc_storeWeak, 2460 llvm::Intrinsic::objc_storeWeak, ignored); 2461 } 2462 2463 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2464 /// Returns %value. %addr is known to not have a current weak entry. 2465 /// Essentially equivalent to: 2466 /// *addr = nil; objc_storeWeak(addr, value); 2467 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2468 // If we're initializing to null, just write null to memory; no need 2469 // to get the runtime involved. But don't do this if optimization 2470 // is enabled, because accounting for this would make the optimizer 2471 // much more complicated. 2472 if (isa<llvm::ConstantPointerNull>(value) && 2473 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2474 Builder.CreateStore(value, addr); 2475 return; 2476 } 2477 2478 emitARCStoreOperation(*this, addr, value, 2479 CGM.getObjCEntrypoints().objc_initWeak, 2480 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2481 } 2482 2483 /// void \@objc_destroyWeak(i8** %addr) 2484 /// Essentially objc_storeWeak(addr, nil). 2485 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2486 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2487 if (!fn) { 2488 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2489 setARCRuntimeFunctionLinkage(CGM, fn); 2490 } 2491 2492 // Cast the argument to 'id*'. 2493 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2494 2495 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2496 } 2497 2498 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2499 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2500 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2501 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2502 emitARCCopyOperation(*this, dst, src, 2503 CGM.getObjCEntrypoints().objc_moveWeak, 2504 llvm::Intrinsic::objc_moveWeak); 2505 } 2506 2507 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2508 /// Disregards the current value in %dest. Essentially 2509 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2510 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2511 emitARCCopyOperation(*this, dst, src, 2512 CGM.getObjCEntrypoints().objc_copyWeak, 2513 llvm::Intrinsic::objc_copyWeak); 2514 } 2515 2516 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2517 Address SrcAddr) { 2518 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2519 Object = EmitObjCConsumeObject(Ty, Object); 2520 EmitARCStoreWeak(DstAddr, Object, false); 2521 } 2522 2523 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2524 Address SrcAddr) { 2525 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2526 Object = EmitObjCConsumeObject(Ty, Object); 2527 EmitARCStoreWeak(DstAddr, Object, false); 2528 EmitARCDestroyWeak(SrcAddr); 2529 } 2530 2531 /// Produce the code to do a objc_autoreleasepool_push. 2532 /// call i8* \@objc_autoreleasePoolPush(void) 2533 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2534 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2535 if (!fn) { 2536 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2537 setARCRuntimeFunctionLinkage(CGM, fn); 2538 } 2539 2540 return EmitNounwindRuntimeCall(fn); 2541 } 2542 2543 /// Produce the code to do a primitive release. 2544 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2545 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2546 assert(value->getType() == Int8PtrTy); 2547 2548 if (getInvokeDest()) { 2549 // Call the runtime method not the intrinsic if we are handling exceptions 2550 llvm::FunctionCallee &fn = 2551 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2552 if (!fn) { 2553 llvm::FunctionType *fnType = 2554 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2555 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2556 setARCRuntimeFunctionLinkage(CGM, fn); 2557 } 2558 2559 // objc_autoreleasePoolPop can throw. 2560 EmitRuntimeCallOrInvoke(fn, value); 2561 } else { 2562 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2563 if (!fn) { 2564 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2565 setARCRuntimeFunctionLinkage(CGM, fn); 2566 } 2567 2568 EmitRuntimeCall(fn, value); 2569 } 2570 } 2571 2572 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2573 /// Which is: [[NSAutoreleasePool alloc] init]; 2574 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2575 /// init is declared as: - (id) init; in its NSObject super class. 2576 /// 2577 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2578 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2579 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2580 // [NSAutoreleasePool alloc] 2581 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2582 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2583 CallArgList Args; 2584 RValue AllocRV = 2585 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2586 getContext().getObjCIdType(), 2587 AllocSel, Receiver, Args); 2588 2589 // [Receiver init] 2590 Receiver = AllocRV.getScalarVal(); 2591 II = &CGM.getContext().Idents.get("init"); 2592 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2593 RValue InitRV = 2594 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2595 getContext().getObjCIdType(), 2596 InitSel, Receiver, Args); 2597 return InitRV.getScalarVal(); 2598 } 2599 2600 /// Allocate the given objc object. 2601 /// call i8* \@objc_alloc(i8* %value) 2602 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2603 llvm::Type *resultType) { 2604 return emitObjCValueOperation(*this, value, resultType, 2605 CGM.getObjCEntrypoints().objc_alloc, 2606 "objc_alloc"); 2607 } 2608 2609 /// Allocate the given objc object. 2610 /// call i8* \@objc_allocWithZone(i8* %value) 2611 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2612 llvm::Type *resultType) { 2613 return emitObjCValueOperation(*this, value, resultType, 2614 CGM.getObjCEntrypoints().objc_allocWithZone, 2615 "objc_allocWithZone"); 2616 } 2617 2618 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2619 llvm::Type *resultType) { 2620 return emitObjCValueOperation(*this, value, resultType, 2621 CGM.getObjCEntrypoints().objc_alloc_init, 2622 "objc_alloc_init"); 2623 } 2624 2625 /// Produce the code to do a primitive release. 2626 /// [tmp drain]; 2627 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2628 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2629 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2630 CallArgList Args; 2631 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2632 getContext().VoidTy, DrainSel, Arg, Args); 2633 } 2634 2635 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2636 Address addr, 2637 QualType type) { 2638 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2639 } 2640 2641 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2642 Address addr, 2643 QualType type) { 2644 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2645 } 2646 2647 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2648 Address addr, 2649 QualType type) { 2650 CGF.EmitARCDestroyWeak(addr); 2651 } 2652 2653 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2654 QualType type) { 2655 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2656 CGF.EmitARCIntrinsicUse(value); 2657 } 2658 2659 /// Autorelease the given object. 2660 /// call i8* \@objc_autorelease(i8* %value) 2661 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2662 llvm::Type *returnType) { 2663 return emitObjCValueOperation( 2664 *this, value, returnType, 2665 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2666 "objc_autorelease"); 2667 } 2668 2669 /// Retain the given object, with normal retain semantics. 2670 /// call i8* \@objc_retain(i8* %value) 2671 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2672 llvm::Type *returnType) { 2673 return emitObjCValueOperation( 2674 *this, value, returnType, 2675 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2676 } 2677 2678 /// Release the given object. 2679 /// call void \@objc_release(i8* %value) 2680 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2681 ARCPreciseLifetime_t precise) { 2682 if (isa<llvm::ConstantPointerNull>(value)) return; 2683 2684 llvm::FunctionCallee &fn = 2685 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2686 if (!fn) { 2687 llvm::FunctionType *fnType = 2688 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2689 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2690 setARCRuntimeFunctionLinkage(CGM, fn); 2691 // We have Native ARC, so set nonlazybind attribute for performance 2692 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2693 f->addFnAttr(llvm::Attribute::NonLazyBind); 2694 } 2695 2696 // Cast the argument to 'id'. 2697 value = Builder.CreateBitCast(value, Int8PtrTy); 2698 2699 // Call objc_release. 2700 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2701 2702 if (precise == ARCImpreciseLifetime) { 2703 call->setMetadata("clang.imprecise_release", 2704 llvm::MDNode::get(Builder.getContext(), None)); 2705 } 2706 } 2707 2708 namespace { 2709 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2710 llvm::Value *Token; 2711 2712 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2713 2714 void Emit(CodeGenFunction &CGF, Flags flags) override { 2715 CGF.EmitObjCAutoreleasePoolPop(Token); 2716 } 2717 }; 2718 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2719 llvm::Value *Token; 2720 2721 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2722 2723 void Emit(CodeGenFunction &CGF, Flags flags) override { 2724 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2725 } 2726 }; 2727 } 2728 2729 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2730 if (CGM.getLangOpts().ObjCAutoRefCount) 2731 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2732 else 2733 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2734 } 2735 2736 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2737 switch (lifetime) { 2738 case Qualifiers::OCL_None: 2739 case Qualifiers::OCL_ExplicitNone: 2740 case Qualifiers::OCL_Strong: 2741 case Qualifiers::OCL_Autoreleasing: 2742 return true; 2743 2744 case Qualifiers::OCL_Weak: 2745 return false; 2746 } 2747 2748 llvm_unreachable("impossible lifetime!"); 2749 } 2750 2751 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2752 LValue lvalue, 2753 QualType type) { 2754 llvm::Value *result; 2755 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2756 if (shouldRetain) { 2757 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2758 } else { 2759 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2760 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2761 } 2762 return TryEmitResult(result, !shouldRetain); 2763 } 2764 2765 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2766 const Expr *e) { 2767 e = e->IgnoreParens(); 2768 QualType type = e->getType(); 2769 2770 // If we're loading retained from a __strong xvalue, we can avoid 2771 // an extra retain/release pair by zeroing out the source of this 2772 // "move" operation. 2773 if (e->isXValue() && 2774 !type.isConstQualified() && 2775 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2776 // Emit the lvalue. 2777 LValue lv = CGF.EmitLValue(e); 2778 2779 // Load the object pointer. 2780 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2781 SourceLocation()).getScalarVal(); 2782 2783 // Set the source pointer to NULL. 2784 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2785 2786 return TryEmitResult(result, true); 2787 } 2788 2789 // As a very special optimization, in ARC++, if the l-value is the 2790 // result of a non-volatile assignment, do a simple retain of the 2791 // result of the call to objc_storeWeak instead of reloading. 2792 if (CGF.getLangOpts().CPlusPlus && 2793 !type.isVolatileQualified() && 2794 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2795 isa<BinaryOperator>(e) && 2796 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2797 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2798 2799 // Try to emit code for scalar constant instead of emitting LValue and 2800 // loading it because we are not guaranteed to have an l-value. One of such 2801 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2802 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2803 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2804 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2805 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2806 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2807 } 2808 2809 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2810 } 2811 2812 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2813 llvm::Value *value)> 2814 ValueTransform; 2815 2816 /// Insert code immediately after a call. 2817 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2818 llvm::Value *value, 2819 ValueTransform doAfterCall, 2820 ValueTransform doFallback) { 2821 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2822 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2823 2824 // Place the retain immediately following the call. 2825 CGF.Builder.SetInsertPoint(call->getParent(), 2826 ++llvm::BasicBlock::iterator(call)); 2827 value = doAfterCall(CGF, value); 2828 2829 CGF.Builder.restoreIP(ip); 2830 return value; 2831 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2832 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2833 2834 // Place the retain at the beginning of the normal destination block. 2835 llvm::BasicBlock *BB = invoke->getNormalDest(); 2836 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2837 value = doAfterCall(CGF, value); 2838 2839 CGF.Builder.restoreIP(ip); 2840 return value; 2841 2842 // Bitcasts can arise because of related-result returns. Rewrite 2843 // the operand. 2844 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2845 llvm::Value *operand = bitcast->getOperand(0); 2846 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2847 bitcast->setOperand(0, operand); 2848 return bitcast; 2849 2850 // Generic fall-back case. 2851 } else { 2852 // Retain using the non-block variant: we never need to do a copy 2853 // of a block that's been returned to us. 2854 return doFallback(CGF, value); 2855 } 2856 } 2857 2858 /// Given that the given expression is some sort of call (which does 2859 /// not return retained), emit a retain following it. 2860 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2861 const Expr *e) { 2862 llvm::Value *value = CGF.EmitScalarExpr(e); 2863 return emitARCOperationAfterCall(CGF, value, 2864 [](CodeGenFunction &CGF, llvm::Value *value) { 2865 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2866 }, 2867 [](CodeGenFunction &CGF, llvm::Value *value) { 2868 return CGF.EmitARCRetainNonBlock(value); 2869 }); 2870 } 2871 2872 /// Given that the given expression is some sort of call (which does 2873 /// not return retained), perform an unsafeClaim following it. 2874 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2875 const Expr *e) { 2876 llvm::Value *value = CGF.EmitScalarExpr(e); 2877 return emitARCOperationAfterCall(CGF, value, 2878 [](CodeGenFunction &CGF, llvm::Value *value) { 2879 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2880 }, 2881 [](CodeGenFunction &CGF, llvm::Value *value) { 2882 return value; 2883 }); 2884 } 2885 2886 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2887 bool allowUnsafeClaim) { 2888 if (allowUnsafeClaim && 2889 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2890 return emitARCUnsafeClaimCallResult(*this, E); 2891 } else { 2892 llvm::Value *value = emitARCRetainCallResult(*this, E); 2893 return EmitObjCConsumeObject(E->getType(), value); 2894 } 2895 } 2896 2897 /// Determine whether it might be important to emit a separate 2898 /// objc_retain_block on the result of the given expression, or 2899 /// whether it's okay to just emit it in a +1 context. 2900 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2901 assert(e->getType()->isBlockPointerType()); 2902 e = e->IgnoreParens(); 2903 2904 // For future goodness, emit block expressions directly in +1 2905 // contexts if we can. 2906 if (isa<BlockExpr>(e)) 2907 return false; 2908 2909 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2910 switch (cast->getCastKind()) { 2911 // Emitting these operations in +1 contexts is goodness. 2912 case CK_LValueToRValue: 2913 case CK_ARCReclaimReturnedObject: 2914 case CK_ARCConsumeObject: 2915 case CK_ARCProduceObject: 2916 return false; 2917 2918 // These operations preserve a block type. 2919 case CK_NoOp: 2920 case CK_BitCast: 2921 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2922 2923 // These operations are known to be bad (or haven't been considered). 2924 case CK_AnyPointerToBlockPointerCast: 2925 default: 2926 return true; 2927 } 2928 } 2929 2930 return true; 2931 } 2932 2933 namespace { 2934 /// A CRTP base class for emitting expressions of retainable object 2935 /// pointer type in ARC. 2936 template <typename Impl, typename Result> class ARCExprEmitter { 2937 protected: 2938 CodeGenFunction &CGF; 2939 Impl &asImpl() { return *static_cast<Impl*>(this); } 2940 2941 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2942 2943 public: 2944 Result visit(const Expr *e); 2945 Result visitCastExpr(const CastExpr *e); 2946 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2947 Result visitBlockExpr(const BlockExpr *e); 2948 Result visitBinaryOperator(const BinaryOperator *e); 2949 Result visitBinAssign(const BinaryOperator *e); 2950 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2951 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2952 Result visitBinAssignWeak(const BinaryOperator *e); 2953 Result visitBinAssignStrong(const BinaryOperator *e); 2954 2955 // Minimal implementation: 2956 // Result visitLValueToRValue(const Expr *e) 2957 // Result visitConsumeObject(const Expr *e) 2958 // Result visitExtendBlockObject(const Expr *e) 2959 // Result visitReclaimReturnedObject(const Expr *e) 2960 // Result visitCall(const Expr *e) 2961 // Result visitExpr(const Expr *e) 2962 // 2963 // Result emitBitCast(Result result, llvm::Type *resultType) 2964 // llvm::Value *getValueOfResult(Result result) 2965 }; 2966 } 2967 2968 /// Try to emit a PseudoObjectExpr under special ARC rules. 2969 /// 2970 /// This massively duplicates emitPseudoObjectRValue. 2971 template <typename Impl, typename Result> 2972 Result 2973 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2974 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2975 2976 // Find the result expression. 2977 const Expr *resultExpr = E->getResultExpr(); 2978 assert(resultExpr); 2979 Result result; 2980 2981 for (PseudoObjectExpr::const_semantics_iterator 2982 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2983 const Expr *semantic = *i; 2984 2985 // If this semantic expression is an opaque value, bind it 2986 // to the result of its source expression. 2987 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2988 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2989 OVMA opaqueData; 2990 2991 // If this semantic is the result of the pseudo-object 2992 // expression, try to evaluate the source as +1. 2993 if (ov == resultExpr) { 2994 assert(!OVMA::shouldBindAsLValue(ov)); 2995 result = asImpl().visit(ov->getSourceExpr()); 2996 opaqueData = OVMA::bind(CGF, ov, 2997 RValue::get(asImpl().getValueOfResult(result))); 2998 2999 // Otherwise, just bind it. 3000 } else { 3001 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3002 } 3003 opaques.push_back(opaqueData); 3004 3005 // Otherwise, if the expression is the result, evaluate it 3006 // and remember the result. 3007 } else if (semantic == resultExpr) { 3008 result = asImpl().visit(semantic); 3009 3010 // Otherwise, evaluate the expression in an ignored context. 3011 } else { 3012 CGF.EmitIgnoredExpr(semantic); 3013 } 3014 } 3015 3016 // Unbind all the opaques now. 3017 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3018 opaques[i].unbind(CGF); 3019 3020 return result; 3021 } 3022 3023 template <typename Impl, typename Result> 3024 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3025 // The default implementation just forwards the expression to visitExpr. 3026 return asImpl().visitExpr(e); 3027 } 3028 3029 template <typename Impl, typename Result> 3030 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3031 switch (e->getCastKind()) { 3032 3033 // No-op casts don't change the type, so we just ignore them. 3034 case CK_NoOp: 3035 return asImpl().visit(e->getSubExpr()); 3036 3037 // These casts can change the type. 3038 case CK_CPointerToObjCPointerCast: 3039 case CK_BlockPointerToObjCPointerCast: 3040 case CK_AnyPointerToBlockPointerCast: 3041 case CK_BitCast: { 3042 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3043 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3044 Result result = asImpl().visit(e->getSubExpr()); 3045 return asImpl().emitBitCast(result, resultType); 3046 } 3047 3048 // Handle some casts specially. 3049 case CK_LValueToRValue: 3050 return asImpl().visitLValueToRValue(e->getSubExpr()); 3051 case CK_ARCConsumeObject: 3052 return asImpl().visitConsumeObject(e->getSubExpr()); 3053 case CK_ARCExtendBlockObject: 3054 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3055 case CK_ARCReclaimReturnedObject: 3056 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3057 3058 // Otherwise, use the default logic. 3059 default: 3060 return asImpl().visitExpr(e); 3061 } 3062 } 3063 3064 template <typename Impl, typename Result> 3065 Result 3066 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3067 switch (e->getOpcode()) { 3068 case BO_Comma: 3069 CGF.EmitIgnoredExpr(e->getLHS()); 3070 CGF.EnsureInsertPoint(); 3071 return asImpl().visit(e->getRHS()); 3072 3073 case BO_Assign: 3074 return asImpl().visitBinAssign(e); 3075 3076 default: 3077 return asImpl().visitExpr(e); 3078 } 3079 } 3080 3081 template <typename Impl, typename Result> 3082 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3083 switch (e->getLHS()->getType().getObjCLifetime()) { 3084 case Qualifiers::OCL_ExplicitNone: 3085 return asImpl().visitBinAssignUnsafeUnretained(e); 3086 3087 case Qualifiers::OCL_Weak: 3088 return asImpl().visitBinAssignWeak(e); 3089 3090 case Qualifiers::OCL_Autoreleasing: 3091 return asImpl().visitBinAssignAutoreleasing(e); 3092 3093 case Qualifiers::OCL_Strong: 3094 return asImpl().visitBinAssignStrong(e); 3095 3096 case Qualifiers::OCL_None: 3097 return asImpl().visitExpr(e); 3098 } 3099 llvm_unreachable("bad ObjC ownership qualifier"); 3100 } 3101 3102 /// The default rule for __unsafe_unretained emits the RHS recursively, 3103 /// stores into the unsafe variable, and propagates the result outward. 3104 template <typename Impl, typename Result> 3105 Result ARCExprEmitter<Impl,Result>:: 3106 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3107 // Recursively emit the RHS. 3108 // For __block safety, do this before emitting the LHS. 3109 Result result = asImpl().visit(e->getRHS()); 3110 3111 // Perform the store. 3112 LValue lvalue = 3113 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3114 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3115 lvalue); 3116 3117 return result; 3118 } 3119 3120 template <typename Impl, typename Result> 3121 Result 3122 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3123 return asImpl().visitExpr(e); 3124 } 3125 3126 template <typename Impl, typename Result> 3127 Result 3128 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3129 return asImpl().visitExpr(e); 3130 } 3131 3132 template <typename Impl, typename Result> 3133 Result 3134 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3135 return asImpl().visitExpr(e); 3136 } 3137 3138 /// The general expression-emission logic. 3139 template <typename Impl, typename Result> 3140 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3141 // We should *never* see a nested full-expression here, because if 3142 // we fail to emit at +1, our caller must not retain after we close 3143 // out the full-expression. This isn't as important in the unsafe 3144 // emitter. 3145 assert(!isa<ExprWithCleanups>(e)); 3146 3147 // Look through parens, __extension__, generic selection, etc. 3148 e = e->IgnoreParens(); 3149 3150 // Handle certain kinds of casts. 3151 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3152 return asImpl().visitCastExpr(ce); 3153 3154 // Handle the comma operator. 3155 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3156 return asImpl().visitBinaryOperator(op); 3157 3158 // TODO: handle conditional operators here 3159 3160 // For calls and message sends, use the retained-call logic. 3161 // Delegate inits are a special case in that they're the only 3162 // returns-retained expression that *isn't* surrounded by 3163 // a consume. 3164 } else if (isa<CallExpr>(e) || 3165 (isa<ObjCMessageExpr>(e) && 3166 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3167 return asImpl().visitCall(e); 3168 3169 // Look through pseudo-object expressions. 3170 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3171 return asImpl().visitPseudoObjectExpr(pseudo); 3172 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3173 return asImpl().visitBlockExpr(be); 3174 3175 return asImpl().visitExpr(e); 3176 } 3177 3178 namespace { 3179 3180 /// An emitter for +1 results. 3181 struct ARCRetainExprEmitter : 3182 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3183 3184 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3185 3186 llvm::Value *getValueOfResult(TryEmitResult result) { 3187 return result.getPointer(); 3188 } 3189 3190 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3191 llvm::Value *value = result.getPointer(); 3192 value = CGF.Builder.CreateBitCast(value, resultType); 3193 result.setPointer(value); 3194 return result; 3195 } 3196 3197 TryEmitResult visitLValueToRValue(const Expr *e) { 3198 return tryEmitARCRetainLoadOfScalar(CGF, e); 3199 } 3200 3201 /// For consumptions, just emit the subexpression and thus elide 3202 /// the retain/release pair. 3203 TryEmitResult visitConsumeObject(const Expr *e) { 3204 llvm::Value *result = CGF.EmitScalarExpr(e); 3205 return TryEmitResult(result, true); 3206 } 3207 3208 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3209 TryEmitResult result = visitExpr(e); 3210 // Avoid the block-retain if this is a block literal that doesn't need to be 3211 // copied to the heap. 3212 if (e->getBlockDecl()->canAvoidCopyToHeap()) 3213 result.setInt(true); 3214 return result; 3215 } 3216 3217 /// Block extends are net +0. Naively, we could just recurse on 3218 /// the subexpression, but actually we need to ensure that the 3219 /// value is copied as a block, so there's a little filter here. 3220 TryEmitResult visitExtendBlockObject(const Expr *e) { 3221 llvm::Value *result; // will be a +0 value 3222 3223 // If we can't safely assume the sub-expression will produce a 3224 // block-copied value, emit the sub-expression at +0. 3225 if (shouldEmitSeparateBlockRetain(e)) { 3226 result = CGF.EmitScalarExpr(e); 3227 3228 // Otherwise, try to emit the sub-expression at +1 recursively. 3229 } else { 3230 TryEmitResult subresult = asImpl().visit(e); 3231 3232 // If that produced a retained value, just use that. 3233 if (subresult.getInt()) { 3234 return subresult; 3235 } 3236 3237 // Otherwise it's +0. 3238 result = subresult.getPointer(); 3239 } 3240 3241 // Retain the object as a block. 3242 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3243 return TryEmitResult(result, true); 3244 } 3245 3246 /// For reclaims, emit the subexpression as a retained call and 3247 /// skip the consumption. 3248 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3249 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3250 return TryEmitResult(result, true); 3251 } 3252 3253 /// When we have an undecorated call, retroactively do a claim. 3254 TryEmitResult visitCall(const Expr *e) { 3255 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3256 return TryEmitResult(result, true); 3257 } 3258 3259 // TODO: maybe special-case visitBinAssignWeak? 3260 3261 TryEmitResult visitExpr(const Expr *e) { 3262 // We didn't find an obvious production, so emit what we've got and 3263 // tell the caller that we didn't manage to retain. 3264 llvm::Value *result = CGF.EmitScalarExpr(e); 3265 return TryEmitResult(result, false); 3266 } 3267 }; 3268 } 3269 3270 static TryEmitResult 3271 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3272 return ARCRetainExprEmitter(CGF).visit(e); 3273 } 3274 3275 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3276 LValue lvalue, 3277 QualType type) { 3278 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3279 llvm::Value *value = result.getPointer(); 3280 if (!result.getInt()) 3281 value = CGF.EmitARCRetain(type, value); 3282 return value; 3283 } 3284 3285 /// EmitARCRetainScalarExpr - Semantically equivalent to 3286 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3287 /// best-effort attempt to peephole expressions that naturally produce 3288 /// retained objects. 3289 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3290 // The retain needs to happen within the full-expression. 3291 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3292 RunCleanupsScope scope(*this); 3293 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3294 } 3295 3296 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3297 llvm::Value *value = result.getPointer(); 3298 if (!result.getInt()) 3299 value = EmitARCRetain(e->getType(), value); 3300 return value; 3301 } 3302 3303 llvm::Value * 3304 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3305 // The retain needs to happen within the full-expression. 3306 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3307 RunCleanupsScope scope(*this); 3308 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3309 } 3310 3311 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3312 llvm::Value *value = result.getPointer(); 3313 if (result.getInt()) 3314 value = EmitARCAutorelease(value); 3315 else 3316 value = EmitARCRetainAutorelease(e->getType(), value); 3317 return value; 3318 } 3319 3320 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3321 llvm::Value *result; 3322 bool doRetain; 3323 3324 if (shouldEmitSeparateBlockRetain(e)) { 3325 result = EmitScalarExpr(e); 3326 doRetain = true; 3327 } else { 3328 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3329 result = subresult.getPointer(); 3330 doRetain = !subresult.getInt(); 3331 } 3332 3333 if (doRetain) 3334 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3335 return EmitObjCConsumeObject(e->getType(), result); 3336 } 3337 3338 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3339 // In ARC, retain and autorelease the expression. 3340 if (getLangOpts().ObjCAutoRefCount) { 3341 // Do so before running any cleanups for the full-expression. 3342 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3343 return EmitARCRetainAutoreleaseScalarExpr(expr); 3344 } 3345 3346 // Otherwise, use the normal scalar-expression emission. The 3347 // exception machinery doesn't do anything special with the 3348 // exception like retaining it, so there's no safety associated with 3349 // only running cleanups after the throw has started, and when it 3350 // matters it tends to be substantially inferior code. 3351 return EmitScalarExpr(expr); 3352 } 3353 3354 namespace { 3355 3356 /// An emitter for assigning into an __unsafe_unretained context. 3357 struct ARCUnsafeUnretainedExprEmitter : 3358 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3359 3360 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3361 3362 llvm::Value *getValueOfResult(llvm::Value *value) { 3363 return value; 3364 } 3365 3366 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3367 return CGF.Builder.CreateBitCast(value, resultType); 3368 } 3369 3370 llvm::Value *visitLValueToRValue(const Expr *e) { 3371 return CGF.EmitScalarExpr(e); 3372 } 3373 3374 /// For consumptions, just emit the subexpression and perform the 3375 /// consumption like normal. 3376 llvm::Value *visitConsumeObject(const Expr *e) { 3377 llvm::Value *value = CGF.EmitScalarExpr(e); 3378 return CGF.EmitObjCConsumeObject(e->getType(), value); 3379 } 3380 3381 /// No special logic for block extensions. (This probably can't 3382 /// actually happen in this emitter, though.) 3383 llvm::Value *visitExtendBlockObject(const Expr *e) { 3384 return CGF.EmitARCExtendBlockObject(e); 3385 } 3386 3387 /// For reclaims, perform an unsafeClaim if that's enabled. 3388 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3389 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3390 } 3391 3392 /// When we have an undecorated call, just emit it without adding 3393 /// the unsafeClaim. 3394 llvm::Value *visitCall(const Expr *e) { 3395 return CGF.EmitScalarExpr(e); 3396 } 3397 3398 /// Just do normal scalar emission in the default case. 3399 llvm::Value *visitExpr(const Expr *e) { 3400 return CGF.EmitScalarExpr(e); 3401 } 3402 }; 3403 } 3404 3405 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3406 const Expr *e) { 3407 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3408 } 3409 3410 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3411 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3412 /// avoiding any spurious retains, including by performing reclaims 3413 /// with objc_unsafeClaimAutoreleasedReturnValue. 3414 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3415 // Look through full-expressions. 3416 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3417 RunCleanupsScope scope(*this); 3418 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3419 } 3420 3421 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3422 } 3423 3424 std::pair<LValue,llvm::Value*> 3425 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3426 bool ignored) { 3427 // Evaluate the RHS first. If we're ignoring the result, assume 3428 // that we can emit at an unsafe +0. 3429 llvm::Value *value; 3430 if (ignored) { 3431 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3432 } else { 3433 value = EmitScalarExpr(e->getRHS()); 3434 } 3435 3436 // Emit the LHS and perform the store. 3437 LValue lvalue = EmitLValue(e->getLHS()); 3438 EmitStoreOfScalar(value, lvalue); 3439 3440 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3441 } 3442 3443 std::pair<LValue,llvm::Value*> 3444 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3445 bool ignored) { 3446 // Evaluate the RHS first. 3447 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3448 llvm::Value *value = result.getPointer(); 3449 3450 bool hasImmediateRetain = result.getInt(); 3451 3452 // If we didn't emit a retained object, and the l-value is of block 3453 // type, then we need to emit the block-retain immediately in case 3454 // it invalidates the l-value. 3455 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3456 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3457 hasImmediateRetain = true; 3458 } 3459 3460 LValue lvalue = EmitLValue(e->getLHS()); 3461 3462 // If the RHS was emitted retained, expand this. 3463 if (hasImmediateRetain) { 3464 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3465 EmitStoreOfScalar(value, lvalue); 3466 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3467 } else { 3468 value = EmitARCStoreStrong(lvalue, value, ignored); 3469 } 3470 3471 return std::pair<LValue,llvm::Value*>(lvalue, value); 3472 } 3473 3474 std::pair<LValue,llvm::Value*> 3475 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3476 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3477 LValue lvalue = EmitLValue(e->getLHS()); 3478 3479 EmitStoreOfScalar(value, lvalue); 3480 3481 return std::pair<LValue,llvm::Value*>(lvalue, value); 3482 } 3483 3484 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3485 const ObjCAutoreleasePoolStmt &ARPS) { 3486 const Stmt *subStmt = ARPS.getSubStmt(); 3487 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3488 3489 CGDebugInfo *DI = getDebugInfo(); 3490 if (DI) 3491 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3492 3493 // Keep track of the current cleanup stack depth. 3494 RunCleanupsScope Scope(*this); 3495 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3496 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3497 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3498 } else { 3499 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3500 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3501 } 3502 3503 for (const auto *I : S.body()) 3504 EmitStmt(I); 3505 3506 if (DI) 3507 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3508 } 3509 3510 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3511 /// make sure it survives garbage collection until this point. 3512 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3513 // We just use an inline assembly. 3514 llvm::FunctionType *extenderType 3515 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3516 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3517 /* assembly */ "", 3518 /* constraints */ "r", 3519 /* side effects */ true); 3520 3521 object = Builder.CreateBitCast(object, VoidPtrTy); 3522 EmitNounwindRuntimeCall(extender, object); 3523 } 3524 3525 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3526 /// non-trivial copy assignment function, produce following helper function. 3527 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3528 /// 3529 llvm::Constant * 3530 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3531 const ObjCPropertyImplDecl *PID) { 3532 if (!getLangOpts().CPlusPlus || 3533 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3534 return nullptr; 3535 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3536 if (!Ty->isRecordType()) 3537 return nullptr; 3538 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3539 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3540 return nullptr; 3541 llvm::Constant *HelperFn = nullptr; 3542 if (hasTrivialSetExpr(PID)) 3543 return nullptr; 3544 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3545 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3546 return HelperFn; 3547 3548 ASTContext &C = getContext(); 3549 IdentifierInfo *II 3550 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3551 3552 QualType ReturnTy = C.VoidTy; 3553 QualType DestTy = C.getPointerType(Ty); 3554 QualType SrcTy = Ty; 3555 SrcTy.addConst(); 3556 SrcTy = C.getPointerType(SrcTy); 3557 3558 SmallVector<QualType, 2> ArgTys; 3559 ArgTys.push_back(DestTy); 3560 ArgTys.push_back(SrcTy); 3561 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3562 3563 FunctionDecl *FD = FunctionDecl::Create( 3564 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3565 FunctionTy, nullptr, SC_Static, false, false); 3566 3567 FunctionArgList args; 3568 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3569 ImplicitParamDecl::Other); 3570 args.push_back(&DstDecl); 3571 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3572 ImplicitParamDecl::Other); 3573 args.push_back(&SrcDecl); 3574 3575 const CGFunctionInfo &FI = 3576 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3577 3578 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3579 3580 llvm::Function *Fn = 3581 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3582 "__assign_helper_atomic_property_", 3583 &CGM.getModule()); 3584 3585 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3586 3587 StartFunction(FD, ReturnTy, Fn, FI, args); 3588 3589 DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation()); 3590 UnaryOperator *DST = UnaryOperator::Create( 3591 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3592 SourceLocation(), false, FPOptionsOverride()); 3593 3594 DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation()); 3595 UnaryOperator *SRC = UnaryOperator::Create( 3596 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3597 SourceLocation(), false, FPOptionsOverride()); 3598 3599 Expr *Args[2] = {DST, SRC}; 3600 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3601 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3602 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3603 VK_LValue, SourceLocation(), FPOptionsOverride()); 3604 3605 EmitStmt(TheCall); 3606 3607 FinishFunction(); 3608 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3609 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3610 return HelperFn; 3611 } 3612 3613 llvm::Constant * 3614 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3615 const ObjCPropertyImplDecl *PID) { 3616 if (!getLangOpts().CPlusPlus || 3617 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3618 return nullptr; 3619 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3620 QualType Ty = PD->getType(); 3621 if (!Ty->isRecordType()) 3622 return nullptr; 3623 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3624 return nullptr; 3625 llvm::Constant *HelperFn = nullptr; 3626 if (hasTrivialGetExpr(PID)) 3627 return nullptr; 3628 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3629 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3630 return HelperFn; 3631 3632 ASTContext &C = getContext(); 3633 IdentifierInfo *II = 3634 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3635 3636 QualType ReturnTy = C.VoidTy; 3637 QualType DestTy = C.getPointerType(Ty); 3638 QualType SrcTy = Ty; 3639 SrcTy.addConst(); 3640 SrcTy = C.getPointerType(SrcTy); 3641 3642 SmallVector<QualType, 2> ArgTys; 3643 ArgTys.push_back(DestTy); 3644 ArgTys.push_back(SrcTy); 3645 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3646 3647 FunctionDecl *FD = FunctionDecl::Create( 3648 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3649 FunctionTy, nullptr, SC_Static, false, false); 3650 3651 FunctionArgList args; 3652 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3653 ImplicitParamDecl::Other); 3654 args.push_back(&DstDecl); 3655 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3656 ImplicitParamDecl::Other); 3657 args.push_back(&SrcDecl); 3658 3659 const CGFunctionInfo &FI = 3660 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3661 3662 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3663 3664 llvm::Function *Fn = llvm::Function::Create( 3665 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3666 &CGM.getModule()); 3667 3668 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3669 3670 StartFunction(FD, ReturnTy, Fn, FI, args); 3671 3672 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3673 SourceLocation()); 3674 3675 UnaryOperator *SRC = UnaryOperator::Create( 3676 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3677 SourceLocation(), false, FPOptionsOverride()); 3678 3679 CXXConstructExpr *CXXConstExpr = 3680 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3681 3682 SmallVector<Expr*, 4> ConstructorArgs; 3683 ConstructorArgs.push_back(SRC); 3684 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3685 CXXConstExpr->arg_end()); 3686 3687 CXXConstructExpr *TheCXXConstructExpr = 3688 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3689 CXXConstExpr->getConstructor(), 3690 CXXConstExpr->isElidable(), 3691 ConstructorArgs, 3692 CXXConstExpr->hadMultipleCandidates(), 3693 CXXConstExpr->isListInitialization(), 3694 CXXConstExpr->isStdInitListInitialization(), 3695 CXXConstExpr->requiresZeroInitialization(), 3696 CXXConstExpr->getConstructionKind(), 3697 SourceRange()); 3698 3699 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3700 SourceLocation()); 3701 3702 RValue DV = EmitAnyExpr(&DstExpr); 3703 CharUnits Alignment 3704 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3705 EmitAggExpr(TheCXXConstructExpr, 3706 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3707 Qualifiers(), 3708 AggValueSlot::IsDestructed, 3709 AggValueSlot::DoesNotNeedGCBarriers, 3710 AggValueSlot::IsNotAliased, 3711 AggValueSlot::DoesNotOverlap)); 3712 3713 FinishFunction(); 3714 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3715 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3716 return HelperFn; 3717 } 3718 3719 llvm::Value * 3720 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3721 // Get selectors for retain/autorelease. 3722 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3723 Selector CopySelector = 3724 getContext().Selectors.getNullarySelector(CopyID); 3725 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3726 Selector AutoreleaseSelector = 3727 getContext().Selectors.getNullarySelector(AutoreleaseID); 3728 3729 // Emit calls to retain/autorelease. 3730 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3731 llvm::Value *Val = Block; 3732 RValue Result; 3733 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3734 Ty, CopySelector, 3735 Val, CallArgList(), nullptr, nullptr); 3736 Val = Result.getScalarVal(); 3737 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3738 Ty, AutoreleaseSelector, 3739 Val, CallArgList(), nullptr, nullptr); 3740 Val = Result.getScalarVal(); 3741 return Val; 3742 } 3743 3744 llvm::Value * 3745 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3746 assert(Args.size() == 3 && "Expected 3 argument here!"); 3747 3748 if (!CGM.IsOSVersionAtLeastFn) { 3749 llvm::FunctionType *FTy = 3750 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3751 CGM.IsOSVersionAtLeastFn = 3752 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3753 } 3754 3755 llvm::Value *CallRes = 3756 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3757 3758 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3759 } 3760 3761 void CodeGenModule::emitAtAvailableLinkGuard() { 3762 if (!IsOSVersionAtLeastFn) 3763 return; 3764 // @available requires CoreFoundation only on Darwin. 3765 if (!Target.getTriple().isOSDarwin()) 3766 return; 3767 // Add -framework CoreFoundation to the linker commands. We still want to 3768 // emit the core foundation reference down below because otherwise if 3769 // CoreFoundation is not used in the code, the linker won't link the 3770 // framework. 3771 auto &Context = getLLVMContext(); 3772 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3773 llvm::MDString::get(Context, "CoreFoundation")}; 3774 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3775 // Emit a reference to a symbol from CoreFoundation to ensure that 3776 // CoreFoundation is linked into the final binary. 3777 llvm::FunctionType *FTy = 3778 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3779 llvm::FunctionCallee CFFunc = 3780 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3781 3782 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3783 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 3784 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 3785 llvm::AttributeList(), /*Local=*/true); 3786 llvm::Function *CFLinkCheckFunc = 3787 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 3788 if (CFLinkCheckFunc->empty()) { 3789 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3790 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3791 CodeGenFunction CGF(*this); 3792 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3793 CGF.EmitNounwindRuntimeCall(CFFunc, 3794 llvm::Constant::getNullValue(VoidPtrTy)); 3795 CGF.Builder.CreateUnreachable(); 3796 addCompilerUsedGlobal(CFLinkCheckFunc); 3797 } 3798 } 3799 3800 CGObjCRuntime::~CGObjCRuntime() {} 3801