xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGObjC.cpp (revision 5eb81a4b4028113e3c319f21a1db6b67613ec7ab)
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Analysis/ObjCARCUtil.h"
27 #include "llvm/BinaryFormat/MachO.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
34 static TryEmitResult
35 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
36 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
37                                    QualType ET,
38                                    RValue Result);
39 
40 /// Given the address of a variable of pointer type, find the correct
41 /// null to store into it.
42 static llvm::Constant *getNullForVariable(Address addr) {
43   llvm::Type *type = addr.getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
59 /// or [NSValue valueWithBytes:objCType:].
60 ///
61 llvm::Value *
62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
63   // Generate the correct selector for this literal's concrete type.
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   const Expr *SubExpr = E->getSubExpr();
67 
68   if (E->isExpressibleAsConstantInitializer()) {
69     ConstantEmitter ConstEmitter(CGM);
70     return ConstEmitter.tryEmitAbstract(E, E->getType());
71   }
72 
73   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
74   Selector Sel = BoxingMethod->getSelector();
75 
76   // Generate a reference to the class pointer, which will be the receiver.
77   // Assumes that the method was introduced in the class that should be
78   // messaged (avoids pulling it out of the result type).
79   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
80   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
81   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
82 
83   CallArgList Args;
84   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
85   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
86 
87   // ObjCBoxedExpr supports boxing of structs and unions
88   // via [NSValue valueWithBytes:objCType:]
89   const QualType ValueType(SubExpr->getType().getCanonicalType());
90   if (ValueType->isObjCBoxableRecordType()) {
91     // Emit CodeGen for first parameter
92     // and cast value to correct type
93     Address Temporary = CreateMemTemp(SubExpr->getType());
94     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
95     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
96     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
97 
98     // Create char array to store type encoding
99     std::string Str;
100     getContext().getObjCEncodingForType(ValueType, Str);
101     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
102 
103     // Cast type encoding to correct type
104     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
105     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
106     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
107 
108     Args.add(RValue::get(Cast), EncodingQT);
109   } else {
110     Args.add(EmitAnyExpr(SubExpr), ArgQT);
111   }
112 
113   RValue result = Runtime.GenerateMessageSend(
114       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
115       Args, ClassDecl, BoxingMethod);
116   return Builder.CreateBitCast(result.getScalarVal(),
117                                ConvertType(E->getType()));
118 }
119 
120 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
121                                     const ObjCMethodDecl *MethodWithObjects) {
122   ASTContext &Context = CGM.getContext();
123   const ObjCDictionaryLiteral *DLE = nullptr;
124   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
125   if (!ALE)
126     DLE = cast<ObjCDictionaryLiteral>(E);
127 
128   // Optimize empty collections by referencing constants, when available.
129   uint64_t NumElements =
130     ALE ? ALE->getNumElements() : DLE->getNumElements();
131   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
132     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
133     QualType IdTy(CGM.getContext().getObjCIdType());
134     llvm::Constant *Constant =
135         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
136     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
137     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
138     cast<llvm::LoadInst>(Ptr)->setMetadata(
139         CGM.getModule().getMDKindID("invariant.load"),
140         llvm::MDNode::get(getLLVMContext(), None));
141     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
142   }
143 
144   // Compute the type of the array we're initializing.
145   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
146                             NumElements);
147   QualType ElementType = Context.getObjCIdType().withConst();
148   QualType ElementArrayType
149     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
150                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
151 
152   // Allocate the temporary array(s).
153   Address Objects = CreateMemTemp(ElementArrayType, "objects");
154   Address Keys = Address::invalid();
155   if (DLE)
156     Keys = CreateMemTemp(ElementArrayType, "keys");
157 
158   // In ARC, we may need to do extra work to keep all the keys and
159   // values alive until after the call.
160   SmallVector<llvm::Value *, 16> NeededObjects;
161   bool TrackNeededObjects =
162     (getLangOpts().ObjCAutoRefCount &&
163     CGM.getCodeGenOpts().OptimizationLevel != 0);
164 
165   // Perform the actual initialialization of the array(s).
166   for (uint64_t i = 0; i < NumElements; i++) {
167     if (ALE) {
168       // Emit the element and store it to the appropriate array slot.
169       const Expr *Rhs = ALE->getElement(i);
170       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
171                                  ElementType, AlignmentSource::Decl);
172 
173       llvm::Value *value = EmitScalarExpr(Rhs);
174       EmitStoreThroughLValue(RValue::get(value), LV, true);
175       if (TrackNeededObjects) {
176         NeededObjects.push_back(value);
177       }
178     } else {
179       // Emit the key and store it to the appropriate array slot.
180       const Expr *Key = DLE->getKeyValueElement(i).Key;
181       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
182                                     ElementType, AlignmentSource::Decl);
183       llvm::Value *keyValue = EmitScalarExpr(Key);
184       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
185 
186       // Emit the value and store it to the appropriate array slot.
187       const Expr *Value = DLE->getKeyValueElement(i).Value;
188       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
189                                       ElementType, AlignmentSource::Decl);
190       llvm::Value *valueValue = EmitScalarExpr(Value);
191       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
192       if (TrackNeededObjects) {
193         NeededObjects.push_back(keyValue);
194         NeededObjects.push_back(valueValue);
195       }
196     }
197   }
198 
199   // Generate the argument list.
200   CallArgList Args;
201   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
202   const ParmVarDecl *argDecl = *PI++;
203   QualType ArgQT = argDecl->getType().getUnqualifiedType();
204   Args.add(RValue::get(Objects.getPointer()), ArgQT);
205   if (DLE) {
206     argDecl = *PI++;
207     ArgQT = argDecl->getType().getUnqualifiedType();
208     Args.add(RValue::get(Keys.getPointer()), ArgQT);
209   }
210   argDecl = *PI;
211   ArgQT = argDecl->getType().getUnqualifiedType();
212   llvm::Value *Count =
213     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
214   Args.add(RValue::get(Count), ArgQT);
215 
216   // Generate a reference to the class pointer, which will be the receiver.
217   Selector Sel = MethodWithObjects->getSelector();
218   QualType ResultType = E->getType();
219   const ObjCObjectPointerType *InterfacePointerType
220     = ResultType->getAsObjCInterfacePointerType();
221   ObjCInterfaceDecl *Class
222     = InterfacePointerType->getObjectType()->getInterface();
223   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
224   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
225 
226   // Generate the message send.
227   RValue result = Runtime.GenerateMessageSend(
228       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
229       Receiver, Args, Class, MethodWithObjects);
230 
231   // The above message send needs these objects, but in ARC they are
232   // passed in a buffer that is essentially __unsafe_unretained.
233   // Therefore we must prevent the optimizer from releasing them until
234   // after the call.
235   if (TrackNeededObjects) {
236     EmitARCIntrinsicUse(NeededObjects);
237   }
238 
239   return Builder.CreateBitCast(result.getScalarVal(),
240                                ConvertType(E->getType()));
241 }
242 
243 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
244   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
245 }
246 
247 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
248                                             const ObjCDictionaryLiteral *E) {
249   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
250 }
251 
252 /// Emit a selector.
253 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
254   // Untyped selector.
255   // Note that this implementation allows for non-constant strings to be passed
256   // as arguments to @selector().  Currently, the only thing preventing this
257   // behaviour is the type checking in the front end.
258   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
259 }
260 
261 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
262   // FIXME: This should pass the Decl not the name.
263   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
264 }
265 
266 /// Adjust the type of an Objective-C object that doesn't match up due
267 /// to type erasure at various points, e.g., related result types or the use
268 /// of parameterized classes.
269 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
270                                    RValue Result) {
271   if (!ExpT->isObjCRetainableType())
272     return Result;
273 
274   // If the converted types are the same, we're done.
275   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
276   if (ExpLLVMTy == Result.getScalarVal()->getType())
277     return Result;
278 
279   // We have applied a substitution. Cast the rvalue appropriately.
280   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
281                                                ExpLLVMTy));
282 }
283 
284 /// Decide whether to extend the lifetime of the receiver of a
285 /// returns-inner-pointer message.
286 static bool
287 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
288   switch (message->getReceiverKind()) {
289 
290   // For a normal instance message, we should extend unless the
291   // receiver is loaded from a variable with precise lifetime.
292   case ObjCMessageExpr::Instance: {
293     const Expr *receiver = message->getInstanceReceiver();
294 
295     // Look through OVEs.
296     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
297       if (opaque->getSourceExpr())
298         receiver = opaque->getSourceExpr()->IgnoreParens();
299     }
300 
301     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
302     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
303     receiver = ice->getSubExpr()->IgnoreParens();
304 
305     // Look through OVEs.
306     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
307       if (opaque->getSourceExpr())
308         receiver = opaque->getSourceExpr()->IgnoreParens();
309     }
310 
311     // Only __strong variables.
312     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
313       return true;
314 
315     // All ivars and fields have precise lifetime.
316     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
317       return false;
318 
319     // Otherwise, check for variables.
320     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
321     if (!declRef) return true;
322     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
323     if (!var) return true;
324 
325     // All variables have precise lifetime except local variables with
326     // automatic storage duration that aren't specially marked.
327     return (var->hasLocalStorage() &&
328             !var->hasAttr<ObjCPreciseLifetimeAttr>());
329   }
330 
331   case ObjCMessageExpr::Class:
332   case ObjCMessageExpr::SuperClass:
333     // It's never necessary for class objects.
334     return false;
335 
336   case ObjCMessageExpr::SuperInstance:
337     // We generally assume that 'self' lives throughout a method call.
338     return false;
339   }
340 
341   llvm_unreachable("invalid receiver kind");
342 }
343 
344 /// Given an expression of ObjC pointer type, check whether it was
345 /// immediately loaded from an ARC __weak l-value.
346 static const Expr *findWeakLValue(const Expr *E) {
347   assert(E->getType()->isObjCRetainableType());
348   E = E->IgnoreParens();
349   if (auto CE = dyn_cast<CastExpr>(E)) {
350     if (CE->getCastKind() == CK_LValueToRValue) {
351       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
352         return CE->getSubExpr();
353     }
354   }
355 
356   return nullptr;
357 }
358 
359 /// The ObjC runtime may provide entrypoints that are likely to be faster
360 /// than an ordinary message send of the appropriate selector.
361 ///
362 /// The entrypoints are guaranteed to be equivalent to just sending the
363 /// corresponding message.  If the entrypoint is implemented naively as just a
364 /// message send, using it is a trade-off: it sacrifices a few cycles of
365 /// overhead to save a small amount of code.  However, it's possible for
366 /// runtimes to detect and special-case classes that use "standard"
367 /// behavior; if that's dynamically a large proportion of all objects, using
368 /// the entrypoint will also be faster than using a message send.
369 ///
370 /// If the runtime does support a required entrypoint, then this method will
371 /// generate a call and return the resulting value.  Otherwise it will return
372 /// None and the caller can generate a msgSend instead.
373 static Optional<llvm::Value *>
374 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
375                                   llvm::Value *Receiver,
376                                   const CallArgList& Args, Selector Sel,
377                                   const ObjCMethodDecl *method,
378                                   bool isClassMessage) {
379   auto &CGM = CGF.CGM;
380   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
381     return None;
382 
383   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
384   switch (Sel.getMethodFamily()) {
385   case OMF_alloc:
386     if (isClassMessage &&
387         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
388         ResultType->isObjCObjectPointerType()) {
389         // [Foo alloc] -> objc_alloc(Foo) or
390         // [self alloc] -> objc_alloc(self)
391         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
392           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
393         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
394         // [self allocWithZone:nil] -> objc_allocWithZone(self)
395         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
396             Args.size() == 1 && Args.front().getType()->isPointerType() &&
397             Sel.getNameForSlot(0) == "allocWithZone") {
398           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
399           if (isa<llvm::ConstantPointerNull>(arg))
400             return CGF.EmitObjCAllocWithZone(Receiver,
401                                              CGF.ConvertType(ResultType));
402           return None;
403         }
404     }
405     break;
406 
407   case OMF_autorelease:
408     if (ResultType->isObjCObjectPointerType() &&
409         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
410         Runtime.shouldUseARCFunctionsForRetainRelease())
411       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
412     break;
413 
414   case OMF_retain:
415     if (ResultType->isObjCObjectPointerType() &&
416         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
417         Runtime.shouldUseARCFunctionsForRetainRelease())
418       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
419     break;
420 
421   case OMF_release:
422     if (ResultType->isVoidType() &&
423         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
424         Runtime.shouldUseARCFunctionsForRetainRelease()) {
425       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
426       return nullptr;
427     }
428     break;
429 
430   default:
431     break;
432   }
433   return None;
434 }
435 
436 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
437     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
438     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
439     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
440     bool isClassMessage) {
441   if (Optional<llvm::Value *> SpecializedResult =
442           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
443                                             Sel, Method, isClassMessage)) {
444     return RValue::get(SpecializedResult.getValue());
445   }
446   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
447                              Method);
448 }
449 
450 static void AppendFirstImpliedRuntimeProtocols(
451     const ObjCProtocolDecl *PD,
452     llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
453   if (!PD->isNonRuntimeProtocol()) {
454     const auto *Can = PD->getCanonicalDecl();
455     PDs.insert(Can);
456     return;
457   }
458 
459   for (const auto *ParentPD : PD->protocols())
460     AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
461 }
462 
463 std::vector<const ObjCProtocolDecl *>
464 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
465                                       ObjCProtocolDecl::protocol_iterator end) {
466   std::vector<const ObjCProtocolDecl *> RuntimePds;
467   llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
468 
469   for (; begin != end; ++begin) {
470     const auto *It = *begin;
471     const auto *Can = It->getCanonicalDecl();
472     if (Can->isNonRuntimeProtocol())
473       NonRuntimePDs.insert(Can);
474     else
475       RuntimePds.push_back(Can);
476   }
477 
478   // If there are no non-runtime protocols then we can just stop now.
479   if (NonRuntimePDs.empty())
480     return RuntimePds;
481 
482   // Else we have to search through the non-runtime protocol's inheritancy
483   // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
484   // a non-runtime protocol without any parents. These are the "first-implied"
485   // protocols from a non-runtime protocol.
486   llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
487   for (const auto *PD : NonRuntimePDs)
488     AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
489 
490   // Walk the Runtime list to get all protocols implied via the inclusion of
491   // this protocol, e.g. all protocols it inherits from including itself.
492   llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
493   for (const auto *PD : RuntimePds) {
494     const auto *Can = PD->getCanonicalDecl();
495     AllImpliedProtocols.insert(Can);
496     Can->getImpliedProtocols(AllImpliedProtocols);
497   }
498 
499   // Similar to above, walk the list of first-implied protocols to find the set
500   // all the protocols implied excluding the listed protocols themselves since
501   // they are not yet a part of the `RuntimePds` list.
502   for (const auto *PD : FirstImpliedProtos) {
503     PD->getImpliedProtocols(AllImpliedProtocols);
504   }
505 
506   // From the first-implied list we have to finish building the final protocol
507   // list. If a protocol in the first-implied list was already implied via some
508   // inheritance path through some other protocols then it would be redundant to
509   // add it here and so we skip over it.
510   for (const auto *PD : FirstImpliedProtos) {
511     if (!AllImpliedProtocols.contains(PD)) {
512       RuntimePds.push_back(PD);
513     }
514   }
515 
516   return RuntimePds;
517 }
518 
519 /// Instead of '[[MyClass alloc] init]', try to generate
520 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
521 /// caller side, as well as the optimized objc_alloc.
522 static Optional<llvm::Value *>
523 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
524   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
525   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
526     return None;
527 
528   // Match the exact pattern '[[MyClass alloc] init]'.
529   Selector Sel = OME->getSelector();
530   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
531       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
532       Sel.getNameForSlot(0) != "init")
533     return None;
534 
535   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
536   // with 'cls' a Class.
537   auto *SubOME =
538       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
539   if (!SubOME)
540     return None;
541   Selector SubSel = SubOME->getSelector();
542 
543   if (!SubOME->getType()->isObjCObjectPointerType() ||
544       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
545     return None;
546 
547   llvm::Value *Receiver = nullptr;
548   switch (SubOME->getReceiverKind()) {
549   case ObjCMessageExpr::Instance:
550     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
551       return None;
552     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
553     break;
554 
555   case ObjCMessageExpr::Class: {
556     QualType ReceiverType = SubOME->getClassReceiver();
557     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
558     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
559     assert(ID && "null interface should be impossible here");
560     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
561     break;
562   }
563   case ObjCMessageExpr::SuperInstance:
564   case ObjCMessageExpr::SuperClass:
565     return None;
566   }
567 
568   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
569 }
570 
571 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
572                                             ReturnValueSlot Return) {
573   // Only the lookup mechanism and first two arguments of the method
574   // implementation vary between runtimes.  We can get the receiver and
575   // arguments in generic code.
576 
577   bool isDelegateInit = E->isDelegateInitCall();
578 
579   const ObjCMethodDecl *method = E->getMethodDecl();
580 
581   // If the method is -retain, and the receiver's being loaded from
582   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
583   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
584       method->getMethodFamily() == OMF_retain) {
585     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
586       LValue lvalue = EmitLValue(lvalueExpr);
587       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
588       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
589     }
590   }
591 
592   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
593     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
594 
595   // We don't retain the receiver in delegate init calls, and this is
596   // safe because the receiver value is always loaded from 'self',
597   // which we zero out.  We don't want to Block_copy block receivers,
598   // though.
599   bool retainSelf =
600     (!isDelegateInit &&
601      CGM.getLangOpts().ObjCAutoRefCount &&
602      method &&
603      method->hasAttr<NSConsumesSelfAttr>());
604 
605   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
606   bool isSuperMessage = false;
607   bool isClassMessage = false;
608   ObjCInterfaceDecl *OID = nullptr;
609   // Find the receiver
610   QualType ReceiverType;
611   llvm::Value *Receiver = nullptr;
612   switch (E->getReceiverKind()) {
613   case ObjCMessageExpr::Instance:
614     ReceiverType = E->getInstanceReceiver()->getType();
615     isClassMessage = ReceiverType->isObjCClassType();
616     if (retainSelf) {
617       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
618                                                    E->getInstanceReceiver());
619       Receiver = ter.getPointer();
620       if (ter.getInt()) retainSelf = false;
621     } else
622       Receiver = EmitScalarExpr(E->getInstanceReceiver());
623     break;
624 
625   case ObjCMessageExpr::Class: {
626     ReceiverType = E->getClassReceiver();
627     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
628     assert(OID && "Invalid Objective-C class message send");
629     Receiver = Runtime.GetClass(*this, OID);
630     isClassMessage = true;
631     break;
632   }
633 
634   case ObjCMessageExpr::SuperInstance:
635     ReceiverType = E->getSuperType();
636     Receiver = LoadObjCSelf();
637     isSuperMessage = true;
638     break;
639 
640   case ObjCMessageExpr::SuperClass:
641     ReceiverType = E->getSuperType();
642     Receiver = LoadObjCSelf();
643     isSuperMessage = true;
644     isClassMessage = true;
645     break;
646   }
647 
648   if (retainSelf)
649     Receiver = EmitARCRetainNonBlock(Receiver);
650 
651   // In ARC, we sometimes want to "extend the lifetime"
652   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
653   // messages.
654   if (getLangOpts().ObjCAutoRefCount && method &&
655       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
656       shouldExtendReceiverForInnerPointerMessage(E))
657     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
658 
659   QualType ResultType = method ? method->getReturnType() : E->getType();
660 
661   CallArgList Args;
662   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
663 
664   // For delegate init calls in ARC, do an unsafe store of null into
665   // self.  This represents the call taking direct ownership of that
666   // value.  We have to do this after emitting the other call
667   // arguments because they might also reference self, but we don't
668   // have to worry about any of them modifying self because that would
669   // be an undefined read and write of an object in unordered
670   // expressions.
671   if (isDelegateInit) {
672     assert(getLangOpts().ObjCAutoRefCount &&
673            "delegate init calls should only be marked in ARC");
674 
675     // Do an unsafe store of null into self.
676     Address selfAddr =
677       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
678     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
679   }
680 
681   RValue result;
682   if (isSuperMessage) {
683     // super is only valid in an Objective-C method
684     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
685     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
686     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
687                                               E->getSelector(),
688                                               OMD->getClassInterface(),
689                                               isCategoryImpl,
690                                               Receiver,
691                                               isClassMessage,
692                                               Args,
693                                               method);
694   } else {
695     // Call runtime methods directly if we can.
696     result = Runtime.GeneratePossiblySpecializedMessageSend(
697         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
698         method, isClassMessage);
699   }
700 
701   // For delegate init calls in ARC, implicitly store the result of
702   // the call back into self.  This takes ownership of the value.
703   if (isDelegateInit) {
704     Address selfAddr =
705       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
706     llvm::Value *newSelf = result.getScalarVal();
707 
708     // The delegate return type isn't necessarily a matching type; in
709     // fact, it's quite likely to be 'id'.
710     llvm::Type *selfTy = selfAddr.getElementType();
711     newSelf = Builder.CreateBitCast(newSelf, selfTy);
712 
713     Builder.CreateStore(newSelf, selfAddr);
714   }
715 
716   return AdjustObjCObjectType(*this, E->getType(), result);
717 }
718 
719 namespace {
720 struct FinishARCDealloc final : EHScopeStack::Cleanup {
721   void Emit(CodeGenFunction &CGF, Flags flags) override {
722     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
723 
724     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
725     const ObjCInterfaceDecl *iface = impl->getClassInterface();
726     if (!iface->getSuperClass()) return;
727 
728     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
729 
730     // Call [super dealloc] if we have a superclass.
731     llvm::Value *self = CGF.LoadObjCSelf();
732 
733     CallArgList args;
734     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
735                                                       CGF.getContext().VoidTy,
736                                                       method->getSelector(),
737                                                       iface,
738                                                       isCategory,
739                                                       self,
740                                                       /*is class msg*/ false,
741                                                       args,
742                                                       method);
743   }
744 };
745 }
746 
747 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
748 /// the LLVM function and sets the other context used by
749 /// CodeGenFunction.
750 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
751                                       const ObjCContainerDecl *CD) {
752   SourceLocation StartLoc = OMD->getBeginLoc();
753   FunctionArgList args;
754   // Check if we should generate debug info for this method.
755   if (OMD->hasAttr<NoDebugAttr>())
756     DebugInfo = nullptr; // disable debug info indefinitely for this function
757 
758   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
759 
760   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
761   if (OMD->isDirectMethod()) {
762     Fn->setVisibility(llvm::Function::HiddenVisibility);
763     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
764     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
765   } else {
766     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
767   }
768 
769   args.push_back(OMD->getSelfDecl());
770   args.push_back(OMD->getCmdDecl());
771 
772   args.append(OMD->param_begin(), OMD->param_end());
773 
774   CurGD = OMD;
775   CurEHLocation = OMD->getEndLoc();
776 
777   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
778                 OMD->getLocation(), StartLoc);
779 
780   if (OMD->isDirectMethod()) {
781     // This function is a direct call, it has to implement a nil check
782     // on entry.
783     //
784     // TODO: possibly have several entry points to elide the check
785     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
786   }
787 
788   // In ARC, certain methods get an extra cleanup.
789   if (CGM.getLangOpts().ObjCAutoRefCount &&
790       OMD->isInstanceMethod() &&
791       OMD->getSelector().isUnarySelector()) {
792     const IdentifierInfo *ident =
793       OMD->getSelector().getIdentifierInfoForSlot(0);
794     if (ident->isStr("dealloc"))
795       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
796   }
797 }
798 
799 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
800                                               LValue lvalue, QualType type);
801 
802 /// Generate an Objective-C method.  An Objective-C method is a C function with
803 /// its pointer, name, and types registered in the class structure.
804 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
805   StartObjCMethod(OMD, OMD->getClassInterface());
806   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
807   assert(isa<CompoundStmt>(OMD->getBody()));
808   incrementProfileCounter(OMD->getBody());
809   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
810   FinishFunction(OMD->getBodyRBrace());
811 }
812 
813 /// emitStructGetterCall - Call the runtime function to load a property
814 /// into the return value slot.
815 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
816                                  bool isAtomic, bool hasStrong) {
817   ASTContext &Context = CGF.getContext();
818 
819   Address src =
820       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
821           .getAddress(CGF);
822 
823   // objc_copyStruct (ReturnValue, &structIvar,
824   //                  sizeof (Type of Ivar), isAtomic, false);
825   CallArgList args;
826 
827   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
828   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
829 
830   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
831   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
832 
833   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
834   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
835   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
836   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
837 
838   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
839   CGCallee callee = CGCallee::forDirect(fn);
840   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
841                callee, ReturnValueSlot(), args);
842 }
843 
844 /// Determine whether the given architecture supports unaligned atomic
845 /// accesses.  They don't have to be fast, just faster than a function
846 /// call and a mutex.
847 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
848   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
849   // currently supported by the backend.)
850   return 0;
851 }
852 
853 /// Return the maximum size that permits atomic accesses for the given
854 /// architecture.
855 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
856                                         llvm::Triple::ArchType arch) {
857   // ARM has 8-byte atomic accesses, but it's not clear whether we
858   // want to rely on them here.
859 
860   // In the default case, just assume that any size up to a pointer is
861   // fine given adequate alignment.
862   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
863 }
864 
865 namespace {
866   class PropertyImplStrategy {
867   public:
868     enum StrategyKind {
869       /// The 'native' strategy is to use the architecture's provided
870       /// reads and writes.
871       Native,
872 
873       /// Use objc_setProperty and objc_getProperty.
874       GetSetProperty,
875 
876       /// Use objc_setProperty for the setter, but use expression
877       /// evaluation for the getter.
878       SetPropertyAndExpressionGet,
879 
880       /// Use objc_copyStruct.
881       CopyStruct,
882 
883       /// The 'expression' strategy is to emit normal assignment or
884       /// lvalue-to-rvalue expressions.
885       Expression
886     };
887 
888     StrategyKind getKind() const { return StrategyKind(Kind); }
889 
890     bool hasStrongMember() const { return HasStrong; }
891     bool isAtomic() const { return IsAtomic; }
892     bool isCopy() const { return IsCopy; }
893 
894     CharUnits getIvarSize() const { return IvarSize; }
895     CharUnits getIvarAlignment() const { return IvarAlignment; }
896 
897     PropertyImplStrategy(CodeGenModule &CGM,
898                          const ObjCPropertyImplDecl *propImpl);
899 
900   private:
901     unsigned Kind : 8;
902     unsigned IsAtomic : 1;
903     unsigned IsCopy : 1;
904     unsigned HasStrong : 1;
905 
906     CharUnits IvarSize;
907     CharUnits IvarAlignment;
908   };
909 }
910 
911 /// Pick an implementation strategy for the given property synthesis.
912 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
913                                      const ObjCPropertyImplDecl *propImpl) {
914   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
915   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
916 
917   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
918   IsAtomic = prop->isAtomic();
919   HasStrong = false; // doesn't matter here.
920 
921   // Evaluate the ivar's size and alignment.
922   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
923   QualType ivarType = ivar->getType();
924   auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
925   IvarSize = TInfo.Width;
926   IvarAlignment = TInfo.Align;
927 
928   // If we have a copy property, we always have to use setProperty.
929   // If the property is atomic we need to use getProperty, but in
930   // the nonatomic case we can just use expression.
931   if (IsCopy) {
932     Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
933     return;
934   }
935 
936   // Handle retain.
937   if (setterKind == ObjCPropertyDecl::Retain) {
938     // In GC-only, there's nothing special that needs to be done.
939     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
940       // fallthrough
941 
942     // In ARC, if the property is non-atomic, use expression emission,
943     // which translates to objc_storeStrong.  This isn't required, but
944     // it's slightly nicer.
945     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
946       // Using standard expression emission for the setter is only
947       // acceptable if the ivar is __strong, which won't be true if
948       // the property is annotated with __attribute__((NSObject)).
949       // TODO: falling all the way back to objc_setProperty here is
950       // just laziness, though;  we could still use objc_storeStrong
951       // if we hacked it right.
952       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
953         Kind = Expression;
954       else
955         Kind = SetPropertyAndExpressionGet;
956       return;
957 
958     // Otherwise, we need to at least use setProperty.  However, if
959     // the property isn't atomic, we can use normal expression
960     // emission for the getter.
961     } else if (!IsAtomic) {
962       Kind = SetPropertyAndExpressionGet;
963       return;
964 
965     // Otherwise, we have to use both setProperty and getProperty.
966     } else {
967       Kind = GetSetProperty;
968       return;
969     }
970   }
971 
972   // If we're not atomic, just use expression accesses.
973   if (!IsAtomic) {
974     Kind = Expression;
975     return;
976   }
977 
978   // Properties on bitfield ivars need to be emitted using expression
979   // accesses even if they're nominally atomic.
980   if (ivar->isBitField()) {
981     Kind = Expression;
982     return;
983   }
984 
985   // GC-qualified or ARC-qualified ivars need to be emitted as
986   // expressions.  This actually works out to being atomic anyway,
987   // except for ARC __strong, but that should trigger the above code.
988   if (ivarType.hasNonTrivialObjCLifetime() ||
989       (CGM.getLangOpts().getGC() &&
990        CGM.getContext().getObjCGCAttrKind(ivarType))) {
991     Kind = Expression;
992     return;
993   }
994 
995   // Compute whether the ivar has strong members.
996   if (CGM.getLangOpts().getGC())
997     if (const RecordType *recordType = ivarType->getAs<RecordType>())
998       HasStrong = recordType->getDecl()->hasObjectMember();
999 
1000   // We can never access structs with object members with a native
1001   // access, because we need to use write barriers.  This is what
1002   // objc_copyStruct is for.
1003   if (HasStrong) {
1004     Kind = CopyStruct;
1005     return;
1006   }
1007 
1008   // Otherwise, this is target-dependent and based on the size and
1009   // alignment of the ivar.
1010 
1011   // If the size of the ivar is not a power of two, give up.  We don't
1012   // want to get into the business of doing compare-and-swaps.
1013   if (!IvarSize.isPowerOfTwo()) {
1014     Kind = CopyStruct;
1015     return;
1016   }
1017 
1018   llvm::Triple::ArchType arch =
1019     CGM.getTarget().getTriple().getArch();
1020 
1021   // Most architectures require memory to fit within a single cache
1022   // line, so the alignment has to be at least the size of the access.
1023   // Otherwise we have to grab a lock.
1024   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1025     Kind = CopyStruct;
1026     return;
1027   }
1028 
1029   // If the ivar's size exceeds the architecture's maximum atomic
1030   // access size, we have to use CopyStruct.
1031   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1032     Kind = CopyStruct;
1033     return;
1034   }
1035 
1036   // Otherwise, we can use native loads and stores.
1037   Kind = Native;
1038 }
1039 
1040 /// Generate an Objective-C property getter function.
1041 ///
1042 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1043 /// is illegal within a category.
1044 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1045                                          const ObjCPropertyImplDecl *PID) {
1046   llvm::Constant *AtomicHelperFn =
1047       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1048   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1049   assert(OMD && "Invalid call to generate getter (empty method)");
1050   StartObjCMethod(OMD, IMP->getClassInterface());
1051 
1052   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1053 
1054   FinishFunction(OMD->getEndLoc());
1055 }
1056 
1057 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1058   const Expr *getter = propImpl->getGetterCXXConstructor();
1059   if (!getter) return true;
1060 
1061   // Sema only makes only of these when the ivar has a C++ class type,
1062   // so the form is pretty constrained.
1063 
1064   // If the property has a reference type, we might just be binding a
1065   // reference, in which case the result will be a gl-value.  We should
1066   // treat this as a non-trivial operation.
1067   if (getter->isGLValue())
1068     return false;
1069 
1070   // If we selected a trivial copy-constructor, we're okay.
1071   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1072     return (construct->getConstructor()->isTrivial());
1073 
1074   // The constructor might require cleanups (in which case it's never
1075   // trivial).
1076   assert(isa<ExprWithCleanups>(getter));
1077   return false;
1078 }
1079 
1080 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1081 /// copy the ivar into the resturn slot.
1082 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1083                                           llvm::Value *returnAddr,
1084                                           ObjCIvarDecl *ivar,
1085                                           llvm::Constant *AtomicHelperFn) {
1086   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1087   //                           AtomicHelperFn);
1088   CallArgList args;
1089 
1090   // The 1st argument is the return Slot.
1091   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1092 
1093   // The 2nd argument is the address of the ivar.
1094   llvm::Value *ivarAddr =
1095       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1096           .getPointer(CGF);
1097   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1098   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1099 
1100   // Third argument is the helper function.
1101   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1102 
1103   llvm::FunctionCallee copyCppAtomicObjectFn =
1104       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1105   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1106   CGF.EmitCall(
1107       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1108                callee, ReturnValueSlot(), args);
1109 }
1110 
1111 void
1112 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1113                                         const ObjCPropertyImplDecl *propImpl,
1114                                         const ObjCMethodDecl *GetterMethodDecl,
1115                                         llvm::Constant *AtomicHelperFn) {
1116   // If there's a non-trivial 'get' expression, we just have to emit that.
1117   if (!hasTrivialGetExpr(propImpl)) {
1118     if (!AtomicHelperFn) {
1119       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1120                                      propImpl->getGetterCXXConstructor(),
1121                                      /* NRVOCandidate=*/nullptr);
1122       EmitReturnStmt(*ret);
1123     }
1124     else {
1125       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1126       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1127                                     ivar, AtomicHelperFn);
1128     }
1129     return;
1130   }
1131 
1132   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1133   QualType propType = prop->getType();
1134   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1135 
1136   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1137 
1138   // Pick an implementation strategy.
1139   PropertyImplStrategy strategy(CGM, propImpl);
1140   switch (strategy.getKind()) {
1141   case PropertyImplStrategy::Native: {
1142     // We don't need to do anything for a zero-size struct.
1143     if (strategy.getIvarSize().isZero())
1144       return;
1145 
1146     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1147 
1148     // Currently, all atomic accesses have to be through integer
1149     // types, so there's no point in trying to pick a prettier type.
1150     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1151     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1152     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1153 
1154     // Perform an atomic load.  This does not impose ordering constraints.
1155     Address ivarAddr = LV.getAddress(*this);
1156     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1157     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1158     load->setAtomic(llvm::AtomicOrdering::Unordered);
1159 
1160     // Store that value into the return address.  Doing this with a
1161     // bitcast is likely to produce some pretty ugly IR, but it's not
1162     // the *most* terrible thing in the world.
1163     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1164     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1165     llvm::Value *ivarVal = load;
1166     if (ivarSize > retTySize) {
1167       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1168       ivarVal = Builder.CreateTrunc(load, newTy);
1169       bitcastType = newTy->getPointerTo();
1170     }
1171     Builder.CreateStore(ivarVal,
1172                         Builder.CreateBitCast(ReturnValue, bitcastType));
1173 
1174     // Make sure we don't do an autorelease.
1175     AutoreleaseResult = false;
1176     return;
1177   }
1178 
1179   case PropertyImplStrategy::GetSetProperty: {
1180     llvm::FunctionCallee getPropertyFn =
1181         CGM.getObjCRuntime().GetPropertyGetFunction();
1182     if (!getPropertyFn) {
1183       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1184       return;
1185     }
1186     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1187 
1188     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1189     // FIXME: Can't this be simpler? This might even be worse than the
1190     // corresponding gcc code.
1191     llvm::Value *cmd =
1192       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1193     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1194     llvm::Value *ivarOffset =
1195       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1196 
1197     CallArgList args;
1198     args.add(RValue::get(self), getContext().getObjCIdType());
1199     args.add(RValue::get(cmd), getContext().getObjCSelType());
1200     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1201     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1202              getContext().BoolTy);
1203 
1204     // FIXME: We shouldn't need to get the function info here, the
1205     // runtime already should have computed it to build the function.
1206     llvm::CallBase *CallInstruction;
1207     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1208                              getContext().getObjCIdType(), args),
1209                          callee, ReturnValueSlot(), args, &CallInstruction);
1210     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1211       call->setTailCall();
1212 
1213     // We need to fix the type here. Ivars with copy & retain are
1214     // always objects so we don't need to worry about complex or
1215     // aggregates.
1216     RV = RValue::get(Builder.CreateBitCast(
1217         RV.getScalarVal(),
1218         getTypes().ConvertType(getterMethod->getReturnType())));
1219 
1220     EmitReturnOfRValue(RV, propType);
1221 
1222     // objc_getProperty does an autorelease, so we should suppress ours.
1223     AutoreleaseResult = false;
1224 
1225     return;
1226   }
1227 
1228   case PropertyImplStrategy::CopyStruct:
1229     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1230                          strategy.hasStrongMember());
1231     return;
1232 
1233   case PropertyImplStrategy::Expression:
1234   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1235     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1236 
1237     QualType ivarType = ivar->getType();
1238     switch (getEvaluationKind(ivarType)) {
1239     case TEK_Complex: {
1240       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1241       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1242                          /*init*/ true);
1243       return;
1244     }
1245     case TEK_Aggregate: {
1246       // The return value slot is guaranteed to not be aliased, but
1247       // that's not necessarily the same as "on the stack", so
1248       // we still potentially need objc_memmove_collectable.
1249       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1250                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1251       return;
1252     }
1253     case TEK_Scalar: {
1254       llvm::Value *value;
1255       if (propType->isReferenceType()) {
1256         value = LV.getAddress(*this).getPointer();
1257       } else {
1258         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1259         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1260           if (getLangOpts().ObjCAutoRefCount) {
1261             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1262           } else {
1263             value = EmitARCLoadWeak(LV.getAddress(*this));
1264           }
1265 
1266         // Otherwise we want to do a simple load, suppressing the
1267         // final autorelease.
1268         } else {
1269           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1270           AutoreleaseResult = false;
1271         }
1272 
1273         value = Builder.CreateBitCast(
1274             value, ConvertType(GetterMethodDecl->getReturnType()));
1275       }
1276 
1277       EmitReturnOfRValue(RValue::get(value), propType);
1278       return;
1279     }
1280     }
1281     llvm_unreachable("bad evaluation kind");
1282   }
1283 
1284   }
1285   llvm_unreachable("bad @property implementation strategy!");
1286 }
1287 
1288 /// emitStructSetterCall - Call the runtime function to store the value
1289 /// from the first formal parameter into the given ivar.
1290 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1291                                  ObjCIvarDecl *ivar) {
1292   // objc_copyStruct (&structIvar, &Arg,
1293   //                  sizeof (struct something), true, false);
1294   CallArgList args;
1295 
1296   // The first argument is the address of the ivar.
1297   llvm::Value *ivarAddr =
1298       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1299           .getPointer(CGF);
1300   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1301   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1302 
1303   // The second argument is the address of the parameter variable.
1304   ParmVarDecl *argVar = *OMD->param_begin();
1305   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1306                      argVar->getType().getNonReferenceType(), VK_LValue,
1307                      SourceLocation());
1308   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1309   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1310   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1311 
1312   // The third argument is the sizeof the type.
1313   llvm::Value *size =
1314     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1315   args.add(RValue::get(size), CGF.getContext().getSizeType());
1316 
1317   // The fourth argument is the 'isAtomic' flag.
1318   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1319 
1320   // The fifth argument is the 'hasStrong' flag.
1321   // FIXME: should this really always be false?
1322   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1323 
1324   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1325   CGCallee callee = CGCallee::forDirect(fn);
1326   CGF.EmitCall(
1327       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1328                callee, ReturnValueSlot(), args);
1329 }
1330 
1331 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1332 /// the value from the first formal parameter into the given ivar, using
1333 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1334 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1335                                           ObjCMethodDecl *OMD,
1336                                           ObjCIvarDecl *ivar,
1337                                           llvm::Constant *AtomicHelperFn) {
1338   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1339   //                           AtomicHelperFn);
1340   CallArgList args;
1341 
1342   // The first argument is the address of the ivar.
1343   llvm::Value *ivarAddr =
1344       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1345           .getPointer(CGF);
1346   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1347   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1348 
1349   // The second argument is the address of the parameter variable.
1350   ParmVarDecl *argVar = *OMD->param_begin();
1351   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1352                      argVar->getType().getNonReferenceType(), VK_LValue,
1353                      SourceLocation());
1354   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1355   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1356   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1357 
1358   // Third argument is the helper function.
1359   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1360 
1361   llvm::FunctionCallee fn =
1362       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1363   CGCallee callee = CGCallee::forDirect(fn);
1364   CGF.EmitCall(
1365       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1366                callee, ReturnValueSlot(), args);
1367 }
1368 
1369 
1370 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1371   Expr *setter = PID->getSetterCXXAssignment();
1372   if (!setter) return true;
1373 
1374   // Sema only makes only of these when the ivar has a C++ class type,
1375   // so the form is pretty constrained.
1376 
1377   // An operator call is trivial if the function it calls is trivial.
1378   // This also implies that there's nothing non-trivial going on with
1379   // the arguments, because operator= can only be trivial if it's a
1380   // synthesized assignment operator and therefore both parameters are
1381   // references.
1382   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1383     if (const FunctionDecl *callee
1384           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1385       if (callee->isTrivial())
1386         return true;
1387     return false;
1388   }
1389 
1390   assert(isa<ExprWithCleanups>(setter));
1391   return false;
1392 }
1393 
1394 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1395   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1396     return false;
1397   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1398 }
1399 
1400 void
1401 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1402                                         const ObjCPropertyImplDecl *propImpl,
1403                                         llvm::Constant *AtomicHelperFn) {
1404   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1405   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1406 
1407   // Just use the setter expression if Sema gave us one and it's
1408   // non-trivial.
1409   if (!hasTrivialSetExpr(propImpl)) {
1410     if (!AtomicHelperFn)
1411       // If non-atomic, assignment is called directly.
1412       EmitStmt(propImpl->getSetterCXXAssignment());
1413     else
1414       // If atomic, assignment is called via a locking api.
1415       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1416                                     AtomicHelperFn);
1417     return;
1418   }
1419 
1420   PropertyImplStrategy strategy(CGM, propImpl);
1421   switch (strategy.getKind()) {
1422   case PropertyImplStrategy::Native: {
1423     // We don't need to do anything for a zero-size struct.
1424     if (strategy.getIvarSize().isZero())
1425       return;
1426 
1427     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1428 
1429     LValue ivarLValue =
1430       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1431     Address ivarAddr = ivarLValue.getAddress(*this);
1432 
1433     // Currently, all atomic accesses have to be through integer
1434     // types, so there's no point in trying to pick a prettier type.
1435     llvm::Type *bitcastType =
1436       llvm::Type::getIntNTy(getLLVMContext(),
1437                             getContext().toBits(strategy.getIvarSize()));
1438 
1439     // Cast both arguments to the chosen operation type.
1440     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1441     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1442 
1443     // This bitcast load is likely to cause some nasty IR.
1444     llvm::Value *load = Builder.CreateLoad(argAddr);
1445 
1446     // Perform an atomic store.  There are no memory ordering requirements.
1447     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1448     store->setAtomic(llvm::AtomicOrdering::Unordered);
1449     return;
1450   }
1451 
1452   case PropertyImplStrategy::GetSetProperty:
1453   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1454 
1455     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1456     llvm::FunctionCallee setPropertyFn = nullptr;
1457     if (UseOptimizedSetter(CGM)) {
1458       // 10.8 and iOS 6.0 code and GC is off
1459       setOptimizedPropertyFn =
1460           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1461               strategy.isAtomic(), strategy.isCopy());
1462       if (!setOptimizedPropertyFn) {
1463         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1464         return;
1465       }
1466     }
1467     else {
1468       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1469       if (!setPropertyFn) {
1470         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1471         return;
1472       }
1473     }
1474 
1475     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1476     //                       <is-atomic>, <is-copy>).
1477     llvm::Value *cmd =
1478       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1479     llvm::Value *self =
1480       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1481     llvm::Value *ivarOffset =
1482       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1483     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1484     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1485     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1486 
1487     CallArgList args;
1488     args.add(RValue::get(self), getContext().getObjCIdType());
1489     args.add(RValue::get(cmd), getContext().getObjCSelType());
1490     if (setOptimizedPropertyFn) {
1491       args.add(RValue::get(arg), getContext().getObjCIdType());
1492       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1493       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1494       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1495                callee, ReturnValueSlot(), args);
1496     } else {
1497       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1498       args.add(RValue::get(arg), getContext().getObjCIdType());
1499       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1500                getContext().BoolTy);
1501       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1502                getContext().BoolTy);
1503       // FIXME: We shouldn't need to get the function info here, the runtime
1504       // already should have computed it to build the function.
1505       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1506       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1507                callee, ReturnValueSlot(), args);
1508     }
1509 
1510     return;
1511   }
1512 
1513   case PropertyImplStrategy::CopyStruct:
1514     emitStructSetterCall(*this, setterMethod, ivar);
1515     return;
1516 
1517   case PropertyImplStrategy::Expression:
1518     break;
1519   }
1520 
1521   // Otherwise, fake up some ASTs and emit a normal assignment.
1522   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1523   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1524                    VK_LValue, SourceLocation());
1525   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1526                             CK_LValueToRValue, &self, VK_PRValue,
1527                             FPOptionsOverride());
1528   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1529                           SourceLocation(), SourceLocation(),
1530                           &selfLoad, true, true);
1531 
1532   ParmVarDecl *argDecl = *setterMethod->param_begin();
1533   QualType argType = argDecl->getType().getNonReferenceType();
1534   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1535                   SourceLocation());
1536   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1537                            argType.getUnqualifiedType(), CK_LValueToRValue,
1538                            &arg, VK_PRValue, FPOptionsOverride());
1539 
1540   // The property type can differ from the ivar type in some situations with
1541   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1542   // The following absurdity is just to ensure well-formed IR.
1543   CastKind argCK = CK_NoOp;
1544   if (ivarRef.getType()->isObjCObjectPointerType()) {
1545     if (argLoad.getType()->isObjCObjectPointerType())
1546       argCK = CK_BitCast;
1547     else if (argLoad.getType()->isBlockPointerType())
1548       argCK = CK_BlockPointerToObjCPointerCast;
1549     else
1550       argCK = CK_CPointerToObjCPointerCast;
1551   } else if (ivarRef.getType()->isBlockPointerType()) {
1552      if (argLoad.getType()->isBlockPointerType())
1553       argCK = CK_BitCast;
1554     else
1555       argCK = CK_AnyPointerToBlockPointerCast;
1556   } else if (ivarRef.getType()->isPointerType()) {
1557     argCK = CK_BitCast;
1558   }
1559   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1560                            &argLoad, VK_PRValue, FPOptionsOverride());
1561   Expr *finalArg = &argLoad;
1562   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1563                                            argLoad.getType()))
1564     finalArg = &argCast;
1565 
1566   BinaryOperator *assign = BinaryOperator::Create(
1567       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1568       VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1569   EmitStmt(assign);
1570 }
1571 
1572 /// Generate an Objective-C property setter function.
1573 ///
1574 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1575 /// is illegal within a category.
1576 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1577                                          const ObjCPropertyImplDecl *PID) {
1578   llvm::Constant *AtomicHelperFn =
1579       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1580   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1581   assert(OMD && "Invalid call to generate setter (empty method)");
1582   StartObjCMethod(OMD, IMP->getClassInterface());
1583 
1584   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1585 
1586   FinishFunction(OMD->getEndLoc());
1587 }
1588 
1589 namespace {
1590   struct DestroyIvar final : EHScopeStack::Cleanup {
1591   private:
1592     llvm::Value *addr;
1593     const ObjCIvarDecl *ivar;
1594     CodeGenFunction::Destroyer *destroyer;
1595     bool useEHCleanupForArray;
1596   public:
1597     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1598                 CodeGenFunction::Destroyer *destroyer,
1599                 bool useEHCleanupForArray)
1600       : addr(addr), ivar(ivar), destroyer(destroyer),
1601         useEHCleanupForArray(useEHCleanupForArray) {}
1602 
1603     void Emit(CodeGenFunction &CGF, Flags flags) override {
1604       LValue lvalue
1605         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1606       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1607                       flags.isForNormalCleanup() && useEHCleanupForArray);
1608     }
1609   };
1610 }
1611 
1612 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1613 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1614                                       Address addr,
1615                                       QualType type) {
1616   llvm::Value *null = getNullForVariable(addr);
1617   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1618 }
1619 
1620 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1621                                   ObjCImplementationDecl *impl) {
1622   CodeGenFunction::RunCleanupsScope scope(CGF);
1623 
1624   llvm::Value *self = CGF.LoadObjCSelf();
1625 
1626   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1627   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1628        ivar; ivar = ivar->getNextIvar()) {
1629     QualType type = ivar->getType();
1630 
1631     // Check whether the ivar is a destructible type.
1632     QualType::DestructionKind dtorKind = type.isDestructedType();
1633     if (!dtorKind) continue;
1634 
1635     CodeGenFunction::Destroyer *destroyer = nullptr;
1636 
1637     // Use a call to objc_storeStrong to destroy strong ivars, for the
1638     // general benefit of the tools.
1639     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1640       destroyer = destroyARCStrongWithStore;
1641 
1642     // Otherwise use the default for the destruction kind.
1643     } else {
1644       destroyer = CGF.getDestroyer(dtorKind);
1645     }
1646 
1647     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1648 
1649     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1650                                          cleanupKind & EHCleanup);
1651   }
1652 
1653   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1654 }
1655 
1656 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1657                                                  ObjCMethodDecl *MD,
1658                                                  bool ctor) {
1659   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1660   StartObjCMethod(MD, IMP->getClassInterface());
1661 
1662   // Emit .cxx_construct.
1663   if (ctor) {
1664     // Suppress the final autorelease in ARC.
1665     AutoreleaseResult = false;
1666 
1667     for (const auto *IvarInit : IMP->inits()) {
1668       FieldDecl *Field = IvarInit->getAnyMember();
1669       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1670       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1671                                     LoadObjCSelf(), Ivar, 0);
1672       EmitAggExpr(IvarInit->getInit(),
1673                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1674                                           AggValueSlot::DoesNotNeedGCBarriers,
1675                                           AggValueSlot::IsNotAliased,
1676                                           AggValueSlot::DoesNotOverlap));
1677     }
1678     // constructor returns 'self'.
1679     CodeGenTypes &Types = CGM.getTypes();
1680     QualType IdTy(CGM.getContext().getObjCIdType());
1681     llvm::Value *SelfAsId =
1682       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1683     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1684 
1685   // Emit .cxx_destruct.
1686   } else {
1687     emitCXXDestructMethod(*this, IMP);
1688   }
1689   FinishFunction();
1690 }
1691 
1692 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1693   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1694   DeclRefExpr DRE(getContext(), Self,
1695                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1696                   Self->getType(), VK_LValue, SourceLocation());
1697   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1698 }
1699 
1700 QualType CodeGenFunction::TypeOfSelfObject() {
1701   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1702   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1703   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1704     getContext().getCanonicalType(selfDecl->getType()));
1705   return PTy->getPointeeType();
1706 }
1707 
1708 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1709   llvm::FunctionCallee EnumerationMutationFnPtr =
1710       CGM.getObjCRuntime().EnumerationMutationFunction();
1711   if (!EnumerationMutationFnPtr) {
1712     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1713     return;
1714   }
1715   CGCallee EnumerationMutationFn =
1716     CGCallee::forDirect(EnumerationMutationFnPtr);
1717 
1718   CGDebugInfo *DI = getDebugInfo();
1719   if (DI)
1720     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1721 
1722   RunCleanupsScope ForScope(*this);
1723 
1724   // The local variable comes into scope immediately.
1725   AutoVarEmission variable = AutoVarEmission::invalid();
1726   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1727     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1728 
1729   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1730 
1731   // Fast enumeration state.
1732   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1733   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1734   EmitNullInitialization(StatePtr, StateTy);
1735 
1736   // Number of elements in the items array.
1737   static const unsigned NumItems = 16;
1738 
1739   // Fetch the countByEnumeratingWithState:objects:count: selector.
1740   IdentifierInfo *II[] = {
1741     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1742     &CGM.getContext().Idents.get("objects"),
1743     &CGM.getContext().Idents.get("count")
1744   };
1745   Selector FastEnumSel =
1746     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1747 
1748   QualType ItemsTy =
1749     getContext().getConstantArrayType(getContext().getObjCIdType(),
1750                                       llvm::APInt(32, NumItems), nullptr,
1751                                       ArrayType::Normal, 0);
1752   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1753 
1754   // Emit the collection pointer.  In ARC, we do a retain.
1755   llvm::Value *Collection;
1756   if (getLangOpts().ObjCAutoRefCount) {
1757     Collection = EmitARCRetainScalarExpr(S.getCollection());
1758 
1759     // Enter a cleanup to do the release.
1760     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1761   } else {
1762     Collection = EmitScalarExpr(S.getCollection());
1763   }
1764 
1765   // The 'continue' label needs to appear within the cleanup for the
1766   // collection object.
1767   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1768 
1769   // Send it our message:
1770   CallArgList Args;
1771 
1772   // The first argument is a temporary of the enumeration-state type.
1773   Args.add(RValue::get(StatePtr.getPointer()),
1774            getContext().getPointerType(StateTy));
1775 
1776   // The second argument is a temporary array with space for NumItems
1777   // pointers.  We'll actually be loading elements from the array
1778   // pointer written into the control state; this buffer is so that
1779   // collections that *aren't* backed by arrays can still queue up
1780   // batches of elements.
1781   Args.add(RValue::get(ItemsPtr.getPointer()),
1782            getContext().getPointerType(ItemsTy));
1783 
1784   // The third argument is the capacity of that temporary array.
1785   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1786   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1787   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1788 
1789   // Start the enumeration.
1790   RValue CountRV =
1791       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1792                                                getContext().getNSUIntegerType(),
1793                                                FastEnumSel, Collection, Args);
1794 
1795   // The initial number of objects that were returned in the buffer.
1796   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1797 
1798   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1799   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1800 
1801   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1802 
1803   // If the limit pointer was zero to begin with, the collection is
1804   // empty; skip all this. Set the branch weight assuming this has the same
1805   // probability of exiting the loop as any other loop exit.
1806   uint64_t EntryCount = getCurrentProfileCount();
1807   Builder.CreateCondBr(
1808       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1809       LoopInitBB,
1810       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1811 
1812   // Otherwise, initialize the loop.
1813   EmitBlock(LoopInitBB);
1814 
1815   // Save the initial mutations value.  This is the value at an
1816   // address that was written into the state object by
1817   // countByEnumeratingWithState:objects:count:.
1818   Address StateMutationsPtrPtr =
1819       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1820   llvm::Value *StateMutationsPtr
1821     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1822 
1823   llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1824   llvm::Value *initialMutations =
1825     Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1826                               getPointerAlign(), "forcoll.initial-mutations");
1827 
1828   // Start looping.  This is the point we return to whenever we have a
1829   // fresh, non-empty batch of objects.
1830   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1831   EmitBlock(LoopBodyBB);
1832 
1833   // The current index into the buffer.
1834   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1835   index->addIncoming(zero, LoopInitBB);
1836 
1837   // The current buffer size.
1838   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1839   count->addIncoming(initialBufferLimit, LoopInitBB);
1840 
1841   incrementProfileCounter(&S);
1842 
1843   // Check whether the mutations value has changed from where it was
1844   // at start.  StateMutationsPtr should actually be invariant between
1845   // refreshes.
1846   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1847   llvm::Value *currentMutations
1848     = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1849                                 getPointerAlign(), "statemutations");
1850 
1851   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1852   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1853 
1854   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1855                        WasNotMutatedBB, WasMutatedBB);
1856 
1857   // If so, call the enumeration-mutation function.
1858   EmitBlock(WasMutatedBB);
1859   llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1860   llvm::Value *V =
1861     Builder.CreateBitCast(Collection, ObjCIdType);
1862   CallArgList Args2;
1863   Args2.add(RValue::get(V), getContext().getObjCIdType());
1864   // FIXME: We shouldn't need to get the function info here, the runtime already
1865   // should have computed it to build the function.
1866   EmitCall(
1867           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1868            EnumerationMutationFn, ReturnValueSlot(), Args2);
1869 
1870   // Otherwise, or if the mutation function returns, just continue.
1871   EmitBlock(WasNotMutatedBB);
1872 
1873   // Initialize the element variable.
1874   RunCleanupsScope elementVariableScope(*this);
1875   bool elementIsVariable;
1876   LValue elementLValue;
1877   QualType elementType;
1878   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1879     // Initialize the variable, in case it's a __block variable or something.
1880     EmitAutoVarInit(variable);
1881 
1882     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1883     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1884                         D->getType(), VK_LValue, SourceLocation());
1885     elementLValue = EmitLValue(&tempDRE);
1886     elementType = D->getType();
1887     elementIsVariable = true;
1888 
1889     if (D->isARCPseudoStrong())
1890       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1891   } else {
1892     elementLValue = LValue(); // suppress warning
1893     elementType = cast<Expr>(S.getElement())->getType();
1894     elementIsVariable = false;
1895   }
1896   llvm::Type *convertedElementType = ConvertType(elementType);
1897 
1898   // Fetch the buffer out of the enumeration state.
1899   // TODO: this pointer should actually be invariant between
1900   // refreshes, which would help us do certain loop optimizations.
1901   Address StateItemsPtr =
1902       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1903   llvm::Value *EnumStateItems =
1904     Builder.CreateLoad(StateItemsPtr, "stateitems");
1905 
1906   // Fetch the value at the current index from the buffer.
1907   llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1908       EnumStateItems->getType()->getPointerElementType(), EnumStateItems, index,
1909       "currentitem.ptr");
1910   llvm::Value *CurrentItem =
1911     Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1912 
1913   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1914     // Before using an item from the collection, check that the implicit cast
1915     // from id to the element type is valid. This is done with instrumentation
1916     // roughly corresponding to:
1917     //
1918     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1919     const ObjCObjectPointerType *ObjPtrTy =
1920         elementType->getAsObjCInterfacePointerType();
1921     const ObjCInterfaceType *InterfaceTy =
1922         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1923     if (InterfaceTy) {
1924       SanitizerScope SanScope(this);
1925       auto &C = CGM.getContext();
1926       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1927       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1928       CallArgList IsKindOfClassArgs;
1929       llvm::Value *Cls =
1930           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1931       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1932       llvm::Value *IsClass =
1933           CGM.getObjCRuntime()
1934               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1935                                    IsKindOfClassSel, CurrentItem,
1936                                    IsKindOfClassArgs)
1937               .getScalarVal();
1938       llvm::Constant *StaticData[] = {
1939           EmitCheckSourceLocation(S.getBeginLoc()),
1940           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1941       EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1942                 SanitizerHandler::InvalidObjCCast,
1943                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1944     }
1945   }
1946 
1947   // Cast that value to the right type.
1948   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1949                                       "currentitem");
1950 
1951   // Make sure we have an l-value.  Yes, this gets evaluated every
1952   // time through the loop.
1953   if (!elementIsVariable) {
1954     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1955     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1956   } else {
1957     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1958                            /*isInit*/ true);
1959   }
1960 
1961   // If we do have an element variable, this assignment is the end of
1962   // its initialization.
1963   if (elementIsVariable)
1964     EmitAutoVarCleanups(variable);
1965 
1966   // Perform the loop body, setting up break and continue labels.
1967   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1968   {
1969     RunCleanupsScope Scope(*this);
1970     EmitStmt(S.getBody());
1971   }
1972   BreakContinueStack.pop_back();
1973 
1974   // Destroy the element variable now.
1975   elementVariableScope.ForceCleanup();
1976 
1977   // Check whether there are more elements.
1978   EmitBlock(AfterBody.getBlock());
1979 
1980   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1981 
1982   // First we check in the local buffer.
1983   llvm::Value *indexPlusOne =
1984       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1985 
1986   // If we haven't overrun the buffer yet, we can continue.
1987   // Set the branch weights based on the simplifying assumption that this is
1988   // like a while-loop, i.e., ignoring that the false branch fetches more
1989   // elements and then returns to the loop.
1990   Builder.CreateCondBr(
1991       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1992       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1993 
1994   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1995   count->addIncoming(count, AfterBody.getBlock());
1996 
1997   // Otherwise, we have to fetch more elements.
1998   EmitBlock(FetchMoreBB);
1999 
2000   CountRV =
2001       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2002                                                getContext().getNSUIntegerType(),
2003                                                FastEnumSel, Collection, Args);
2004 
2005   // If we got a zero count, we're done.
2006   llvm::Value *refetchCount = CountRV.getScalarVal();
2007 
2008   // (note that the message send might split FetchMoreBB)
2009   index->addIncoming(zero, Builder.GetInsertBlock());
2010   count->addIncoming(refetchCount, Builder.GetInsertBlock());
2011 
2012   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2013                        EmptyBB, LoopBodyBB);
2014 
2015   // No more elements.
2016   EmitBlock(EmptyBB);
2017 
2018   if (!elementIsVariable) {
2019     // If the element was not a declaration, set it to be null.
2020 
2021     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2022     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2023     EmitStoreThroughLValue(RValue::get(null), elementLValue);
2024   }
2025 
2026   if (DI)
2027     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2028 
2029   ForScope.ForceCleanup();
2030   EmitBlock(LoopEnd.getBlock());
2031 }
2032 
2033 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2034   CGM.getObjCRuntime().EmitTryStmt(*this, S);
2035 }
2036 
2037 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2038   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2039 }
2040 
2041 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2042                                               const ObjCAtSynchronizedStmt &S) {
2043   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2044 }
2045 
2046 namespace {
2047   struct CallObjCRelease final : EHScopeStack::Cleanup {
2048     CallObjCRelease(llvm::Value *object) : object(object) {}
2049     llvm::Value *object;
2050 
2051     void Emit(CodeGenFunction &CGF, Flags flags) override {
2052       // Releases at the end of the full-expression are imprecise.
2053       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2054     }
2055   };
2056 }
2057 
2058 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2059 /// release at the end of the full-expression.
2060 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2061                                                     llvm::Value *object) {
2062   // If we're in a conditional branch, we need to make the cleanup
2063   // conditional.
2064   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2065   return object;
2066 }
2067 
2068 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2069                                                            llvm::Value *value) {
2070   return EmitARCRetainAutorelease(type, value);
2071 }
2072 
2073 /// Given a number of pointers, inform the optimizer that they're
2074 /// being intrinsically used up until this point in the program.
2075 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2076   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2077   if (!fn)
2078     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2079 
2080   // This isn't really a "runtime" function, but as an intrinsic it
2081   // doesn't really matter as long as we align things up.
2082   EmitNounwindRuntimeCall(fn, values);
2083 }
2084 
2085 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2086 /// that has operand bundle "clang.arc.attachedcall".
2087 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2088   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2089   if (!fn)
2090     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2091   EmitNounwindRuntimeCall(fn, values);
2092 }
2093 
2094 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2095   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2096     // If the target runtime doesn't naturally support ARC, emit weak
2097     // references to the runtime support library.  We don't really
2098     // permit this to fail, but we need a particular relocation style.
2099     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2100         !CGM.getTriple().isOSBinFormatCOFF()) {
2101       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2102     }
2103   }
2104 }
2105 
2106 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2107                                          llvm::FunctionCallee RTF) {
2108   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2109 }
2110 
2111 /// Perform an operation having the signature
2112 ///   i8* (i8*)
2113 /// where a null input causes a no-op and returns null.
2114 static llvm::Value *emitARCValueOperation(
2115     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2116     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2117     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2118   if (isa<llvm::ConstantPointerNull>(value))
2119     return value;
2120 
2121   if (!fn) {
2122     fn = CGF.CGM.getIntrinsic(IntID);
2123     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2124   }
2125 
2126   // Cast the argument to 'id'.
2127   llvm::Type *origType = returnType ? returnType : value->getType();
2128   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2129 
2130   // Call the function.
2131   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2132   call->setTailCallKind(tailKind);
2133 
2134   // Cast the result back to the original type.
2135   return CGF.Builder.CreateBitCast(call, origType);
2136 }
2137 
2138 /// Perform an operation having the following signature:
2139 ///   i8* (i8**)
2140 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2141                                          llvm::Function *&fn,
2142                                          llvm::Intrinsic::ID IntID) {
2143   if (!fn) {
2144     fn = CGF.CGM.getIntrinsic(IntID);
2145     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2146   }
2147 
2148   // Cast the argument to 'id*'.
2149   llvm::Type *origType = addr.getElementType();
2150   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2151 
2152   // Call the function.
2153   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2154 
2155   // Cast the result back to a dereference of the original type.
2156   if (origType != CGF.Int8PtrTy)
2157     result = CGF.Builder.CreateBitCast(result, origType);
2158 
2159   return result;
2160 }
2161 
2162 /// Perform an operation having the following signature:
2163 ///   i8* (i8**, i8*)
2164 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2165                                           llvm::Value *value,
2166                                           llvm::Function *&fn,
2167                                           llvm::Intrinsic::ID IntID,
2168                                           bool ignored) {
2169   assert(addr.getElementType() == value->getType());
2170 
2171   if (!fn) {
2172     fn = CGF.CGM.getIntrinsic(IntID);
2173     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2174   }
2175 
2176   llvm::Type *origType = value->getType();
2177 
2178   llvm::Value *args[] = {
2179     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2180     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2181   };
2182   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2183 
2184   if (ignored) return nullptr;
2185 
2186   return CGF.Builder.CreateBitCast(result, origType);
2187 }
2188 
2189 /// Perform an operation having the following signature:
2190 ///   void (i8**, i8**)
2191 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2192                                  llvm::Function *&fn,
2193                                  llvm::Intrinsic::ID IntID) {
2194   assert(dst.getType() == src.getType());
2195 
2196   if (!fn) {
2197     fn = CGF.CGM.getIntrinsic(IntID);
2198     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2199   }
2200 
2201   llvm::Value *args[] = {
2202     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2203     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2204   };
2205   CGF.EmitNounwindRuntimeCall(fn, args);
2206 }
2207 
2208 /// Perform an operation having the signature
2209 ///   i8* (i8*)
2210 /// where a null input causes a no-op and returns null.
2211 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2212                                            llvm::Value *value,
2213                                            llvm::Type *returnType,
2214                                            llvm::FunctionCallee &fn,
2215                                            StringRef fnName) {
2216   if (isa<llvm::ConstantPointerNull>(value))
2217     return value;
2218 
2219   if (!fn) {
2220     llvm::FunctionType *fnType =
2221       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2222     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2223 
2224     // We have Native ARC, so set nonlazybind attribute for performance
2225     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2226       if (fnName == "objc_retain")
2227         f->addFnAttr(llvm::Attribute::NonLazyBind);
2228   }
2229 
2230   // Cast the argument to 'id'.
2231   llvm::Type *origType = returnType ? returnType : value->getType();
2232   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2233 
2234   // Call the function.
2235   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2236 
2237   // Mark calls to objc_autorelease as tail on the assumption that methods
2238   // overriding autorelease do not touch anything on the stack.
2239   if (fnName == "objc_autorelease")
2240     if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2241       Call->setTailCall();
2242 
2243   // Cast the result back to the original type.
2244   return CGF.Builder.CreateBitCast(Inst, origType);
2245 }
2246 
2247 /// Produce the code to do a retain.  Based on the type, calls one of:
2248 ///   call i8* \@objc_retain(i8* %value)
2249 ///   call i8* \@objc_retainBlock(i8* %value)
2250 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2251   if (type->isBlockPointerType())
2252     return EmitARCRetainBlock(value, /*mandatory*/ false);
2253   else
2254     return EmitARCRetainNonBlock(value);
2255 }
2256 
2257 /// Retain the given object, with normal retain semantics.
2258 ///   call i8* \@objc_retain(i8* %value)
2259 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2260   return emitARCValueOperation(*this, value, nullptr,
2261                                CGM.getObjCEntrypoints().objc_retain,
2262                                llvm::Intrinsic::objc_retain);
2263 }
2264 
2265 /// Retain the given block, with _Block_copy semantics.
2266 ///   call i8* \@objc_retainBlock(i8* %value)
2267 ///
2268 /// \param mandatory - If false, emit the call with metadata
2269 /// indicating that it's okay for the optimizer to eliminate this call
2270 /// if it can prove that the block never escapes except down the stack.
2271 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2272                                                  bool mandatory) {
2273   llvm::Value *result
2274     = emitARCValueOperation(*this, value, nullptr,
2275                             CGM.getObjCEntrypoints().objc_retainBlock,
2276                             llvm::Intrinsic::objc_retainBlock);
2277 
2278   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2279   // tell the optimizer that it doesn't need to do this copy if the
2280   // block doesn't escape, where being passed as an argument doesn't
2281   // count as escaping.
2282   if (!mandatory && isa<llvm::Instruction>(result)) {
2283     llvm::CallInst *call
2284       = cast<llvm::CallInst>(result->stripPointerCasts());
2285     assert(call->getCalledOperand() ==
2286            CGM.getObjCEntrypoints().objc_retainBlock);
2287 
2288     call->setMetadata("clang.arc.copy_on_escape",
2289                       llvm::MDNode::get(Builder.getContext(), None));
2290   }
2291 
2292   return result;
2293 }
2294 
2295 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2296   // Fetch the void(void) inline asm which marks that we're going to
2297   // do something with the autoreleased return value.
2298   llvm::InlineAsm *&marker
2299     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2300   if (!marker) {
2301     StringRef assembly
2302       = CGF.CGM.getTargetCodeGenInfo()
2303            .getARCRetainAutoreleasedReturnValueMarker();
2304 
2305     // If we have an empty assembly string, there's nothing to do.
2306     if (assembly.empty()) {
2307 
2308     // Otherwise, at -O0, build an inline asm that we're going to call
2309     // in a moment.
2310     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2311       llvm::FunctionType *type =
2312         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2313 
2314       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2315 
2316     // If we're at -O1 and above, we don't want to litter the code
2317     // with this marker yet, so leave a breadcrumb for the ARC
2318     // optimizer to pick up.
2319     } else {
2320       const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2321       if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2322         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2323         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2324                                           retainRVMarkerKey, str);
2325       }
2326     }
2327   }
2328 
2329   // Call the marker asm if we made one, which we do only at -O0.
2330   if (marker)
2331     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2332 }
2333 
2334 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2335                                                bool IsRetainRV,
2336                                                CodeGenFunction &CGF) {
2337   emitAutoreleasedReturnValueMarker(CGF);
2338 
2339   // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2340   // retainRV or claimRV calls in the IR. We currently do this only when the
2341   // optimization level isn't -O0 since global-isel, which is currently run at
2342   // -O0, doesn't know about the operand bundle.
2343 
2344   // FIXME: Do this when the target isn't aarch64.
2345   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2346       CGF.CGM.getTarget().getTriple().isAArch64()) {
2347     llvm::Value *bundleArgs[] = {llvm::ConstantInt::get(
2348         CGF.Int64Ty,
2349         llvm::objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))};
2350     llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2351     auto *oldCall = cast<llvm::CallBase>(value);
2352     llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2353         oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2354     newCall->copyMetadata(*oldCall);
2355     oldCall->replaceAllUsesWith(newCall);
2356     oldCall->eraseFromParent();
2357     CGF.EmitARCNoopIntrinsicUse(newCall);
2358     return newCall;
2359   }
2360 
2361   bool isNoTail =
2362       CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2363   llvm::CallInst::TailCallKind tailKind =
2364       isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2365   ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2366   llvm::Function *&EP = IsRetainRV
2367                             ? EPs.objc_retainAutoreleasedReturnValue
2368                             : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2369   llvm::Intrinsic::ID IID =
2370       IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2371                  : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2372   return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2373 }
2374 
2375 /// Retain the given object which is the result of a function call.
2376 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2377 ///
2378 /// Yes, this function name is one character away from a different
2379 /// call with completely different semantics.
2380 llvm::Value *
2381 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2382   return emitOptimizedARCReturnCall(value, true, *this);
2383 }
2384 
2385 /// Claim a possibly-autoreleased return value at +0.  This is only
2386 /// valid to do in contexts which do not rely on the retain to keep
2387 /// the object valid for all of its uses; for example, when
2388 /// the value is ignored, or when it is being assigned to an
2389 /// __unsafe_unretained variable.
2390 ///
2391 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2392 llvm::Value *
2393 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2394   return emitOptimizedARCReturnCall(value, false, *this);
2395 }
2396 
2397 /// Release the given object.
2398 ///   call void \@objc_release(i8* %value)
2399 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2400                                      ARCPreciseLifetime_t precise) {
2401   if (isa<llvm::ConstantPointerNull>(value)) return;
2402 
2403   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2404   if (!fn) {
2405     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2406     setARCRuntimeFunctionLinkage(CGM, fn);
2407   }
2408 
2409   // Cast the argument to 'id'.
2410   value = Builder.CreateBitCast(value, Int8PtrTy);
2411 
2412   // Call objc_release.
2413   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2414 
2415   if (precise == ARCImpreciseLifetime) {
2416     call->setMetadata("clang.imprecise_release",
2417                       llvm::MDNode::get(Builder.getContext(), None));
2418   }
2419 }
2420 
2421 /// Destroy a __strong variable.
2422 ///
2423 /// At -O0, emit a call to store 'null' into the address;
2424 /// instrumenting tools prefer this because the address is exposed,
2425 /// but it's relatively cumbersome to optimize.
2426 ///
2427 /// At -O1 and above, just load and call objc_release.
2428 ///
2429 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2430 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2431                                            ARCPreciseLifetime_t precise) {
2432   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2433     llvm::Value *null = getNullForVariable(addr);
2434     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2435     return;
2436   }
2437 
2438   llvm::Value *value = Builder.CreateLoad(addr);
2439   EmitARCRelease(value, precise);
2440 }
2441 
2442 /// Store into a strong object.  Always calls this:
2443 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2444 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2445                                                      llvm::Value *value,
2446                                                      bool ignored) {
2447   assert(addr.getElementType() == value->getType());
2448 
2449   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2450   if (!fn) {
2451     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2452     setARCRuntimeFunctionLinkage(CGM, fn);
2453   }
2454 
2455   llvm::Value *args[] = {
2456     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2457     Builder.CreateBitCast(value, Int8PtrTy)
2458   };
2459   EmitNounwindRuntimeCall(fn, args);
2460 
2461   if (ignored) return nullptr;
2462   return value;
2463 }
2464 
2465 /// Store into a strong object.  Sometimes calls this:
2466 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2467 /// Other times, breaks it down into components.
2468 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2469                                                  llvm::Value *newValue,
2470                                                  bool ignored) {
2471   QualType type = dst.getType();
2472   bool isBlock = type->isBlockPointerType();
2473 
2474   // Use a store barrier at -O0 unless this is a block type or the
2475   // lvalue is inadequately aligned.
2476   if (shouldUseFusedARCCalls() &&
2477       !isBlock &&
2478       (dst.getAlignment().isZero() ||
2479        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2480     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2481   }
2482 
2483   // Otherwise, split it out.
2484 
2485   // Retain the new value.
2486   newValue = EmitARCRetain(type, newValue);
2487 
2488   // Read the old value.
2489   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2490 
2491   // Store.  We do this before the release so that any deallocs won't
2492   // see the old value.
2493   EmitStoreOfScalar(newValue, dst);
2494 
2495   // Finally, release the old value.
2496   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2497 
2498   return newValue;
2499 }
2500 
2501 /// Autorelease the given object.
2502 ///   call i8* \@objc_autorelease(i8* %value)
2503 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2504   return emitARCValueOperation(*this, value, nullptr,
2505                                CGM.getObjCEntrypoints().objc_autorelease,
2506                                llvm::Intrinsic::objc_autorelease);
2507 }
2508 
2509 /// Autorelease the given object.
2510 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2511 llvm::Value *
2512 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2513   return emitARCValueOperation(*this, value, nullptr,
2514                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2515                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2516                                llvm::CallInst::TCK_Tail);
2517 }
2518 
2519 /// Do a fused retain/autorelease of the given object.
2520 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2521 llvm::Value *
2522 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2523   return emitARCValueOperation(*this, value, nullptr,
2524                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2525                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2526                                llvm::CallInst::TCK_Tail);
2527 }
2528 
2529 /// Do a fused retain/autorelease of the given object.
2530 ///   call i8* \@objc_retainAutorelease(i8* %value)
2531 /// or
2532 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2533 ///   call i8* \@objc_autorelease(i8* %retain)
2534 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2535                                                        llvm::Value *value) {
2536   if (!type->isBlockPointerType())
2537     return EmitARCRetainAutoreleaseNonBlock(value);
2538 
2539   if (isa<llvm::ConstantPointerNull>(value)) return value;
2540 
2541   llvm::Type *origType = value->getType();
2542   value = Builder.CreateBitCast(value, Int8PtrTy);
2543   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2544   value = EmitARCAutorelease(value);
2545   return Builder.CreateBitCast(value, origType);
2546 }
2547 
2548 /// Do a fused retain/autorelease of the given object.
2549 ///   call i8* \@objc_retainAutorelease(i8* %value)
2550 llvm::Value *
2551 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2552   return emitARCValueOperation(*this, value, nullptr,
2553                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2554                                llvm::Intrinsic::objc_retainAutorelease);
2555 }
2556 
2557 /// i8* \@objc_loadWeak(i8** %addr)
2558 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2559 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2560   return emitARCLoadOperation(*this, addr,
2561                               CGM.getObjCEntrypoints().objc_loadWeak,
2562                               llvm::Intrinsic::objc_loadWeak);
2563 }
2564 
2565 /// i8* \@objc_loadWeakRetained(i8** %addr)
2566 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2567   return emitARCLoadOperation(*this, addr,
2568                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2569                               llvm::Intrinsic::objc_loadWeakRetained);
2570 }
2571 
2572 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2573 /// Returns %value.
2574 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2575                                                llvm::Value *value,
2576                                                bool ignored) {
2577   return emitARCStoreOperation(*this, addr, value,
2578                                CGM.getObjCEntrypoints().objc_storeWeak,
2579                                llvm::Intrinsic::objc_storeWeak, ignored);
2580 }
2581 
2582 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2583 /// Returns %value.  %addr is known to not have a current weak entry.
2584 /// Essentially equivalent to:
2585 ///   *addr = nil; objc_storeWeak(addr, value);
2586 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2587   // If we're initializing to null, just write null to memory; no need
2588   // to get the runtime involved.  But don't do this if optimization
2589   // is enabled, because accounting for this would make the optimizer
2590   // much more complicated.
2591   if (isa<llvm::ConstantPointerNull>(value) &&
2592       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2593     Builder.CreateStore(value, addr);
2594     return;
2595   }
2596 
2597   emitARCStoreOperation(*this, addr, value,
2598                         CGM.getObjCEntrypoints().objc_initWeak,
2599                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2600 }
2601 
2602 /// void \@objc_destroyWeak(i8** %addr)
2603 /// Essentially objc_storeWeak(addr, nil).
2604 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2605   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2606   if (!fn) {
2607     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2608     setARCRuntimeFunctionLinkage(CGM, fn);
2609   }
2610 
2611   // Cast the argument to 'id*'.
2612   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2613 
2614   EmitNounwindRuntimeCall(fn, addr.getPointer());
2615 }
2616 
2617 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2618 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2619 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2620 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2621   emitARCCopyOperation(*this, dst, src,
2622                        CGM.getObjCEntrypoints().objc_moveWeak,
2623                        llvm::Intrinsic::objc_moveWeak);
2624 }
2625 
2626 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2627 /// Disregards the current value in %dest.  Essentially
2628 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2629 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2630   emitARCCopyOperation(*this, dst, src,
2631                        CGM.getObjCEntrypoints().objc_copyWeak,
2632                        llvm::Intrinsic::objc_copyWeak);
2633 }
2634 
2635 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2636                                             Address SrcAddr) {
2637   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2638   Object = EmitObjCConsumeObject(Ty, Object);
2639   EmitARCStoreWeak(DstAddr, Object, false);
2640 }
2641 
2642 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2643                                             Address SrcAddr) {
2644   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2645   Object = EmitObjCConsumeObject(Ty, Object);
2646   EmitARCStoreWeak(DstAddr, Object, false);
2647   EmitARCDestroyWeak(SrcAddr);
2648 }
2649 
2650 /// Produce the code to do a objc_autoreleasepool_push.
2651 ///   call i8* \@objc_autoreleasePoolPush(void)
2652 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2653   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2654   if (!fn) {
2655     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2656     setARCRuntimeFunctionLinkage(CGM, fn);
2657   }
2658 
2659   return EmitNounwindRuntimeCall(fn);
2660 }
2661 
2662 /// Produce the code to do a primitive release.
2663 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2664 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2665   assert(value->getType() == Int8PtrTy);
2666 
2667   if (getInvokeDest()) {
2668     // Call the runtime method not the intrinsic if we are handling exceptions
2669     llvm::FunctionCallee &fn =
2670         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2671     if (!fn) {
2672       llvm::FunctionType *fnType =
2673         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2674       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2675       setARCRuntimeFunctionLinkage(CGM, fn);
2676     }
2677 
2678     // objc_autoreleasePoolPop can throw.
2679     EmitRuntimeCallOrInvoke(fn, value);
2680   } else {
2681     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2682     if (!fn) {
2683       fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2684       setARCRuntimeFunctionLinkage(CGM, fn);
2685     }
2686 
2687     EmitRuntimeCall(fn, value);
2688   }
2689 }
2690 
2691 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2692 /// Which is: [[NSAutoreleasePool alloc] init];
2693 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2694 /// init is declared as: - (id) init; in its NSObject super class.
2695 ///
2696 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2697   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2698   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2699   // [NSAutoreleasePool alloc]
2700   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2701   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2702   CallArgList Args;
2703   RValue AllocRV =
2704     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2705                                 getContext().getObjCIdType(),
2706                                 AllocSel, Receiver, Args);
2707 
2708   // [Receiver init]
2709   Receiver = AllocRV.getScalarVal();
2710   II = &CGM.getContext().Idents.get("init");
2711   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2712   RValue InitRV =
2713     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2714                                 getContext().getObjCIdType(),
2715                                 InitSel, Receiver, Args);
2716   return InitRV.getScalarVal();
2717 }
2718 
2719 /// Allocate the given objc object.
2720 ///   call i8* \@objc_alloc(i8* %value)
2721 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2722                                             llvm::Type *resultType) {
2723   return emitObjCValueOperation(*this, value, resultType,
2724                                 CGM.getObjCEntrypoints().objc_alloc,
2725                                 "objc_alloc");
2726 }
2727 
2728 /// Allocate the given objc object.
2729 ///   call i8* \@objc_allocWithZone(i8* %value)
2730 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2731                                                     llvm::Type *resultType) {
2732   return emitObjCValueOperation(*this, value, resultType,
2733                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2734                                 "objc_allocWithZone");
2735 }
2736 
2737 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2738                                                 llvm::Type *resultType) {
2739   return emitObjCValueOperation(*this, value, resultType,
2740                                 CGM.getObjCEntrypoints().objc_alloc_init,
2741                                 "objc_alloc_init");
2742 }
2743 
2744 /// Produce the code to do a primitive release.
2745 /// [tmp drain];
2746 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2747   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2748   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2749   CallArgList Args;
2750   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2751                               getContext().VoidTy, DrainSel, Arg, Args);
2752 }
2753 
2754 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2755                                               Address addr,
2756                                               QualType type) {
2757   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2758 }
2759 
2760 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2761                                                 Address addr,
2762                                                 QualType type) {
2763   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2764 }
2765 
2766 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2767                                      Address addr,
2768                                      QualType type) {
2769   CGF.EmitARCDestroyWeak(addr);
2770 }
2771 
2772 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2773                                           QualType type) {
2774   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2775   CGF.EmitARCIntrinsicUse(value);
2776 }
2777 
2778 /// Autorelease the given object.
2779 ///   call i8* \@objc_autorelease(i8* %value)
2780 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2781                                                   llvm::Type *returnType) {
2782   return emitObjCValueOperation(
2783       *this, value, returnType,
2784       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2785       "objc_autorelease");
2786 }
2787 
2788 /// Retain the given object, with normal retain semantics.
2789 ///   call i8* \@objc_retain(i8* %value)
2790 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2791                                                      llvm::Type *returnType) {
2792   return emitObjCValueOperation(
2793       *this, value, returnType,
2794       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2795 }
2796 
2797 /// Release the given object.
2798 ///   call void \@objc_release(i8* %value)
2799 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2800                                       ARCPreciseLifetime_t precise) {
2801   if (isa<llvm::ConstantPointerNull>(value)) return;
2802 
2803   llvm::FunctionCallee &fn =
2804       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2805   if (!fn) {
2806     llvm::FunctionType *fnType =
2807         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2808     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2809     setARCRuntimeFunctionLinkage(CGM, fn);
2810     // We have Native ARC, so set nonlazybind attribute for performance
2811     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2812       f->addFnAttr(llvm::Attribute::NonLazyBind);
2813   }
2814 
2815   // Cast the argument to 'id'.
2816   value = Builder.CreateBitCast(value, Int8PtrTy);
2817 
2818   // Call objc_release.
2819   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2820 
2821   if (precise == ARCImpreciseLifetime) {
2822     call->setMetadata("clang.imprecise_release",
2823                       llvm::MDNode::get(Builder.getContext(), None));
2824   }
2825 }
2826 
2827 namespace {
2828   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2829     llvm::Value *Token;
2830 
2831     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2832 
2833     void Emit(CodeGenFunction &CGF, Flags flags) override {
2834       CGF.EmitObjCAutoreleasePoolPop(Token);
2835     }
2836   };
2837   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2838     llvm::Value *Token;
2839 
2840     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2841 
2842     void Emit(CodeGenFunction &CGF, Flags flags) override {
2843       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2844     }
2845   };
2846 }
2847 
2848 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2849   if (CGM.getLangOpts().ObjCAutoRefCount)
2850     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2851   else
2852     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2853 }
2854 
2855 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2856   switch (lifetime) {
2857   case Qualifiers::OCL_None:
2858   case Qualifiers::OCL_ExplicitNone:
2859   case Qualifiers::OCL_Strong:
2860   case Qualifiers::OCL_Autoreleasing:
2861     return true;
2862 
2863   case Qualifiers::OCL_Weak:
2864     return false;
2865   }
2866 
2867   llvm_unreachable("impossible lifetime!");
2868 }
2869 
2870 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2871                                                   LValue lvalue,
2872                                                   QualType type) {
2873   llvm::Value *result;
2874   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2875   if (shouldRetain) {
2876     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2877   } else {
2878     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2879     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2880   }
2881   return TryEmitResult(result, !shouldRetain);
2882 }
2883 
2884 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2885                                                   const Expr *e) {
2886   e = e->IgnoreParens();
2887   QualType type = e->getType();
2888 
2889   // If we're loading retained from a __strong xvalue, we can avoid
2890   // an extra retain/release pair by zeroing out the source of this
2891   // "move" operation.
2892   if (e->isXValue() &&
2893       !type.isConstQualified() &&
2894       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2895     // Emit the lvalue.
2896     LValue lv = CGF.EmitLValue(e);
2897 
2898     // Load the object pointer.
2899     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2900                                                SourceLocation()).getScalarVal();
2901 
2902     // Set the source pointer to NULL.
2903     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2904 
2905     return TryEmitResult(result, true);
2906   }
2907 
2908   // As a very special optimization, in ARC++, if the l-value is the
2909   // result of a non-volatile assignment, do a simple retain of the
2910   // result of the call to objc_storeWeak instead of reloading.
2911   if (CGF.getLangOpts().CPlusPlus &&
2912       !type.isVolatileQualified() &&
2913       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2914       isa<BinaryOperator>(e) &&
2915       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2916     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2917 
2918   // Try to emit code for scalar constant instead of emitting LValue and
2919   // loading it because we are not guaranteed to have an l-value. One of such
2920   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2921   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2922     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2923     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2924       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2925                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2926   }
2927 
2928   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2929 }
2930 
2931 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2932                                          llvm::Value *value)>
2933   ValueTransform;
2934 
2935 /// Insert code immediately after a call.
2936 
2937 // FIXME: We should find a way to emit the runtime call immediately
2938 // after the call is emitted to eliminate the need for this function.
2939 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2940                                               llvm::Value *value,
2941                                               ValueTransform doAfterCall,
2942                                               ValueTransform doFallback) {
2943   CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2944   auto *callBase = dyn_cast<llvm::CallBase>(value);
2945 
2946   if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2947     // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2948     value = doFallback(CGF, value);
2949   } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2950     // Place the retain immediately following the call.
2951     CGF.Builder.SetInsertPoint(call->getParent(),
2952                                ++llvm::BasicBlock::iterator(call));
2953     value = doAfterCall(CGF, value);
2954   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2955     // Place the retain at the beginning of the normal destination block.
2956     llvm::BasicBlock *BB = invoke->getNormalDest();
2957     CGF.Builder.SetInsertPoint(BB, BB->begin());
2958     value = doAfterCall(CGF, value);
2959 
2960   // Bitcasts can arise because of related-result returns.  Rewrite
2961   // the operand.
2962   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2963     // Change the insert point to avoid emitting the fall-back call after the
2964     // bitcast.
2965     CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2966     llvm::Value *operand = bitcast->getOperand(0);
2967     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2968     bitcast->setOperand(0, operand);
2969     value = bitcast;
2970   } else {
2971     auto *phi = dyn_cast<llvm::PHINode>(value);
2972     if (phi && phi->getNumIncomingValues() == 2 &&
2973         isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2974         isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2975       // Handle phi instructions that are generated when it's necessary to check
2976       // whether the receiver of a message is null.
2977       llvm::Value *inVal = phi->getIncomingValue(0);
2978       inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
2979       phi->setIncomingValue(0, inVal);
2980       value = phi;
2981     } else {
2982       // Generic fall-back case.
2983       // Retain using the non-block variant: we never need to do a copy
2984       // of a block that's been returned to us.
2985       value = doFallback(CGF, value);
2986     }
2987   }
2988 
2989   CGF.Builder.restoreIP(ip);
2990   return value;
2991 }
2992 
2993 /// Given that the given expression is some sort of call (which does
2994 /// not return retained), emit a retain following it.
2995 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2996                                             const Expr *e) {
2997   llvm::Value *value = CGF.EmitScalarExpr(e);
2998   return emitARCOperationAfterCall(CGF, value,
2999            [](CodeGenFunction &CGF, llvm::Value *value) {
3000              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3001            },
3002            [](CodeGenFunction &CGF, llvm::Value *value) {
3003              return CGF.EmitARCRetainNonBlock(value);
3004            });
3005 }
3006 
3007 /// Given that the given expression is some sort of call (which does
3008 /// not return retained), perform an unsafeClaim following it.
3009 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3010                                                  const Expr *e) {
3011   llvm::Value *value = CGF.EmitScalarExpr(e);
3012   return emitARCOperationAfterCall(CGF, value,
3013            [](CodeGenFunction &CGF, llvm::Value *value) {
3014              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3015            },
3016            [](CodeGenFunction &CGF, llvm::Value *value) {
3017              return value;
3018            });
3019 }
3020 
3021 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3022                                                       bool allowUnsafeClaim) {
3023   if (allowUnsafeClaim &&
3024       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3025     return emitARCUnsafeClaimCallResult(*this, E);
3026   } else {
3027     llvm::Value *value = emitARCRetainCallResult(*this, E);
3028     return EmitObjCConsumeObject(E->getType(), value);
3029   }
3030 }
3031 
3032 /// Determine whether it might be important to emit a separate
3033 /// objc_retain_block on the result of the given expression, or
3034 /// whether it's okay to just emit it in a +1 context.
3035 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3036   assert(e->getType()->isBlockPointerType());
3037   e = e->IgnoreParens();
3038 
3039   // For future goodness, emit block expressions directly in +1
3040   // contexts if we can.
3041   if (isa<BlockExpr>(e))
3042     return false;
3043 
3044   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3045     switch (cast->getCastKind()) {
3046     // Emitting these operations in +1 contexts is goodness.
3047     case CK_LValueToRValue:
3048     case CK_ARCReclaimReturnedObject:
3049     case CK_ARCConsumeObject:
3050     case CK_ARCProduceObject:
3051       return false;
3052 
3053     // These operations preserve a block type.
3054     case CK_NoOp:
3055     case CK_BitCast:
3056       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3057 
3058     // These operations are known to be bad (or haven't been considered).
3059     case CK_AnyPointerToBlockPointerCast:
3060     default:
3061       return true;
3062     }
3063   }
3064 
3065   return true;
3066 }
3067 
3068 namespace {
3069 /// A CRTP base class for emitting expressions of retainable object
3070 /// pointer type in ARC.
3071 template <typename Impl, typename Result> class ARCExprEmitter {
3072 protected:
3073   CodeGenFunction &CGF;
3074   Impl &asImpl() { return *static_cast<Impl*>(this); }
3075 
3076   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3077 
3078 public:
3079   Result visit(const Expr *e);
3080   Result visitCastExpr(const CastExpr *e);
3081   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3082   Result visitBlockExpr(const BlockExpr *e);
3083   Result visitBinaryOperator(const BinaryOperator *e);
3084   Result visitBinAssign(const BinaryOperator *e);
3085   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3086   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3087   Result visitBinAssignWeak(const BinaryOperator *e);
3088   Result visitBinAssignStrong(const BinaryOperator *e);
3089 
3090   // Minimal implementation:
3091   //   Result visitLValueToRValue(const Expr *e)
3092   //   Result visitConsumeObject(const Expr *e)
3093   //   Result visitExtendBlockObject(const Expr *e)
3094   //   Result visitReclaimReturnedObject(const Expr *e)
3095   //   Result visitCall(const Expr *e)
3096   //   Result visitExpr(const Expr *e)
3097   //
3098   //   Result emitBitCast(Result result, llvm::Type *resultType)
3099   //   llvm::Value *getValueOfResult(Result result)
3100 };
3101 }
3102 
3103 /// Try to emit a PseudoObjectExpr under special ARC rules.
3104 ///
3105 /// This massively duplicates emitPseudoObjectRValue.
3106 template <typename Impl, typename Result>
3107 Result
3108 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3109   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3110 
3111   // Find the result expression.
3112   const Expr *resultExpr = E->getResultExpr();
3113   assert(resultExpr);
3114   Result result;
3115 
3116   for (PseudoObjectExpr::const_semantics_iterator
3117          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3118     const Expr *semantic = *i;
3119 
3120     // If this semantic expression is an opaque value, bind it
3121     // to the result of its source expression.
3122     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3123       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3124       OVMA opaqueData;
3125 
3126       // If this semantic is the result of the pseudo-object
3127       // expression, try to evaluate the source as +1.
3128       if (ov == resultExpr) {
3129         assert(!OVMA::shouldBindAsLValue(ov));
3130         result = asImpl().visit(ov->getSourceExpr());
3131         opaqueData = OVMA::bind(CGF, ov,
3132                             RValue::get(asImpl().getValueOfResult(result)));
3133 
3134       // Otherwise, just bind it.
3135       } else {
3136         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3137       }
3138       opaques.push_back(opaqueData);
3139 
3140     // Otherwise, if the expression is the result, evaluate it
3141     // and remember the result.
3142     } else if (semantic == resultExpr) {
3143       result = asImpl().visit(semantic);
3144 
3145     // Otherwise, evaluate the expression in an ignored context.
3146     } else {
3147       CGF.EmitIgnoredExpr(semantic);
3148     }
3149   }
3150 
3151   // Unbind all the opaques now.
3152   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3153     opaques[i].unbind(CGF);
3154 
3155   return result;
3156 }
3157 
3158 template <typename Impl, typename Result>
3159 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3160   // The default implementation just forwards the expression to visitExpr.
3161   return asImpl().visitExpr(e);
3162 }
3163 
3164 template <typename Impl, typename Result>
3165 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3166   switch (e->getCastKind()) {
3167 
3168   // No-op casts don't change the type, so we just ignore them.
3169   case CK_NoOp:
3170     return asImpl().visit(e->getSubExpr());
3171 
3172   // These casts can change the type.
3173   case CK_CPointerToObjCPointerCast:
3174   case CK_BlockPointerToObjCPointerCast:
3175   case CK_AnyPointerToBlockPointerCast:
3176   case CK_BitCast: {
3177     llvm::Type *resultType = CGF.ConvertType(e->getType());
3178     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3179     Result result = asImpl().visit(e->getSubExpr());
3180     return asImpl().emitBitCast(result, resultType);
3181   }
3182 
3183   // Handle some casts specially.
3184   case CK_LValueToRValue:
3185     return asImpl().visitLValueToRValue(e->getSubExpr());
3186   case CK_ARCConsumeObject:
3187     return asImpl().visitConsumeObject(e->getSubExpr());
3188   case CK_ARCExtendBlockObject:
3189     return asImpl().visitExtendBlockObject(e->getSubExpr());
3190   case CK_ARCReclaimReturnedObject:
3191     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3192 
3193   // Otherwise, use the default logic.
3194   default:
3195     return asImpl().visitExpr(e);
3196   }
3197 }
3198 
3199 template <typename Impl, typename Result>
3200 Result
3201 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3202   switch (e->getOpcode()) {
3203   case BO_Comma:
3204     CGF.EmitIgnoredExpr(e->getLHS());
3205     CGF.EnsureInsertPoint();
3206     return asImpl().visit(e->getRHS());
3207 
3208   case BO_Assign:
3209     return asImpl().visitBinAssign(e);
3210 
3211   default:
3212     return asImpl().visitExpr(e);
3213   }
3214 }
3215 
3216 template <typename Impl, typename Result>
3217 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3218   switch (e->getLHS()->getType().getObjCLifetime()) {
3219   case Qualifiers::OCL_ExplicitNone:
3220     return asImpl().visitBinAssignUnsafeUnretained(e);
3221 
3222   case Qualifiers::OCL_Weak:
3223     return asImpl().visitBinAssignWeak(e);
3224 
3225   case Qualifiers::OCL_Autoreleasing:
3226     return asImpl().visitBinAssignAutoreleasing(e);
3227 
3228   case Qualifiers::OCL_Strong:
3229     return asImpl().visitBinAssignStrong(e);
3230 
3231   case Qualifiers::OCL_None:
3232     return asImpl().visitExpr(e);
3233   }
3234   llvm_unreachable("bad ObjC ownership qualifier");
3235 }
3236 
3237 /// The default rule for __unsafe_unretained emits the RHS recursively,
3238 /// stores into the unsafe variable, and propagates the result outward.
3239 template <typename Impl, typename Result>
3240 Result ARCExprEmitter<Impl,Result>::
3241                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3242   // Recursively emit the RHS.
3243   // For __block safety, do this before emitting the LHS.
3244   Result result = asImpl().visit(e->getRHS());
3245 
3246   // Perform the store.
3247   LValue lvalue =
3248     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3249   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3250                              lvalue);
3251 
3252   return result;
3253 }
3254 
3255 template <typename Impl, typename Result>
3256 Result
3257 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3258   return asImpl().visitExpr(e);
3259 }
3260 
3261 template <typename Impl, typename Result>
3262 Result
3263 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3264   return asImpl().visitExpr(e);
3265 }
3266 
3267 template <typename Impl, typename Result>
3268 Result
3269 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3270   return asImpl().visitExpr(e);
3271 }
3272 
3273 /// The general expression-emission logic.
3274 template <typename Impl, typename Result>
3275 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3276   // We should *never* see a nested full-expression here, because if
3277   // we fail to emit at +1, our caller must not retain after we close
3278   // out the full-expression.  This isn't as important in the unsafe
3279   // emitter.
3280   assert(!isa<ExprWithCleanups>(e));
3281 
3282   // Look through parens, __extension__, generic selection, etc.
3283   e = e->IgnoreParens();
3284 
3285   // Handle certain kinds of casts.
3286   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3287     return asImpl().visitCastExpr(ce);
3288 
3289   // Handle the comma operator.
3290   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3291     return asImpl().visitBinaryOperator(op);
3292 
3293   // TODO: handle conditional operators here
3294 
3295   // For calls and message sends, use the retained-call logic.
3296   // Delegate inits are a special case in that they're the only
3297   // returns-retained expression that *isn't* surrounded by
3298   // a consume.
3299   } else if (isa<CallExpr>(e) ||
3300              (isa<ObjCMessageExpr>(e) &&
3301               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3302     return asImpl().visitCall(e);
3303 
3304   // Look through pseudo-object expressions.
3305   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3306     return asImpl().visitPseudoObjectExpr(pseudo);
3307   } else if (auto *be = dyn_cast<BlockExpr>(e))
3308     return asImpl().visitBlockExpr(be);
3309 
3310   return asImpl().visitExpr(e);
3311 }
3312 
3313 namespace {
3314 
3315 /// An emitter for +1 results.
3316 struct ARCRetainExprEmitter :
3317   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3318 
3319   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3320 
3321   llvm::Value *getValueOfResult(TryEmitResult result) {
3322     return result.getPointer();
3323   }
3324 
3325   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3326     llvm::Value *value = result.getPointer();
3327     value = CGF.Builder.CreateBitCast(value, resultType);
3328     result.setPointer(value);
3329     return result;
3330   }
3331 
3332   TryEmitResult visitLValueToRValue(const Expr *e) {
3333     return tryEmitARCRetainLoadOfScalar(CGF, e);
3334   }
3335 
3336   /// For consumptions, just emit the subexpression and thus elide
3337   /// the retain/release pair.
3338   TryEmitResult visitConsumeObject(const Expr *e) {
3339     llvm::Value *result = CGF.EmitScalarExpr(e);
3340     return TryEmitResult(result, true);
3341   }
3342 
3343   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3344     TryEmitResult result = visitExpr(e);
3345     // Avoid the block-retain if this is a block literal that doesn't need to be
3346     // copied to the heap.
3347     if (e->getBlockDecl()->canAvoidCopyToHeap())
3348       result.setInt(true);
3349     return result;
3350   }
3351 
3352   /// Block extends are net +0.  Naively, we could just recurse on
3353   /// the subexpression, but actually we need to ensure that the
3354   /// value is copied as a block, so there's a little filter here.
3355   TryEmitResult visitExtendBlockObject(const Expr *e) {
3356     llvm::Value *result; // will be a +0 value
3357 
3358     // If we can't safely assume the sub-expression will produce a
3359     // block-copied value, emit the sub-expression at +0.
3360     if (shouldEmitSeparateBlockRetain(e)) {
3361       result = CGF.EmitScalarExpr(e);
3362 
3363     // Otherwise, try to emit the sub-expression at +1 recursively.
3364     } else {
3365       TryEmitResult subresult = asImpl().visit(e);
3366 
3367       // If that produced a retained value, just use that.
3368       if (subresult.getInt()) {
3369         return subresult;
3370       }
3371 
3372       // Otherwise it's +0.
3373       result = subresult.getPointer();
3374     }
3375 
3376     // Retain the object as a block.
3377     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3378     return TryEmitResult(result, true);
3379   }
3380 
3381   /// For reclaims, emit the subexpression as a retained call and
3382   /// skip the consumption.
3383   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3384     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3385     return TryEmitResult(result, true);
3386   }
3387 
3388   /// When we have an undecorated call, retroactively do a claim.
3389   TryEmitResult visitCall(const Expr *e) {
3390     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3391     return TryEmitResult(result, true);
3392   }
3393 
3394   // TODO: maybe special-case visitBinAssignWeak?
3395 
3396   TryEmitResult visitExpr(const Expr *e) {
3397     // We didn't find an obvious production, so emit what we've got and
3398     // tell the caller that we didn't manage to retain.
3399     llvm::Value *result = CGF.EmitScalarExpr(e);
3400     return TryEmitResult(result, false);
3401   }
3402 };
3403 }
3404 
3405 static TryEmitResult
3406 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3407   return ARCRetainExprEmitter(CGF).visit(e);
3408 }
3409 
3410 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3411                                                 LValue lvalue,
3412                                                 QualType type) {
3413   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3414   llvm::Value *value = result.getPointer();
3415   if (!result.getInt())
3416     value = CGF.EmitARCRetain(type, value);
3417   return value;
3418 }
3419 
3420 /// EmitARCRetainScalarExpr - Semantically equivalent to
3421 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3422 /// best-effort attempt to peephole expressions that naturally produce
3423 /// retained objects.
3424 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3425   // The retain needs to happen within the full-expression.
3426   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3427     RunCleanupsScope scope(*this);
3428     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3429   }
3430 
3431   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3432   llvm::Value *value = result.getPointer();
3433   if (!result.getInt())
3434     value = EmitARCRetain(e->getType(), value);
3435   return value;
3436 }
3437 
3438 llvm::Value *
3439 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3440   // The retain needs to happen within the full-expression.
3441   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3442     RunCleanupsScope scope(*this);
3443     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3444   }
3445 
3446   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3447   llvm::Value *value = result.getPointer();
3448   if (result.getInt())
3449     value = EmitARCAutorelease(value);
3450   else
3451     value = EmitARCRetainAutorelease(e->getType(), value);
3452   return value;
3453 }
3454 
3455 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3456   llvm::Value *result;
3457   bool doRetain;
3458 
3459   if (shouldEmitSeparateBlockRetain(e)) {
3460     result = EmitScalarExpr(e);
3461     doRetain = true;
3462   } else {
3463     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3464     result = subresult.getPointer();
3465     doRetain = !subresult.getInt();
3466   }
3467 
3468   if (doRetain)
3469     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3470   return EmitObjCConsumeObject(e->getType(), result);
3471 }
3472 
3473 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3474   // In ARC, retain and autorelease the expression.
3475   if (getLangOpts().ObjCAutoRefCount) {
3476     // Do so before running any cleanups for the full-expression.
3477     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3478     return EmitARCRetainAutoreleaseScalarExpr(expr);
3479   }
3480 
3481   // Otherwise, use the normal scalar-expression emission.  The
3482   // exception machinery doesn't do anything special with the
3483   // exception like retaining it, so there's no safety associated with
3484   // only running cleanups after the throw has started, and when it
3485   // matters it tends to be substantially inferior code.
3486   return EmitScalarExpr(expr);
3487 }
3488 
3489 namespace {
3490 
3491 /// An emitter for assigning into an __unsafe_unretained context.
3492 struct ARCUnsafeUnretainedExprEmitter :
3493   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3494 
3495   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3496 
3497   llvm::Value *getValueOfResult(llvm::Value *value) {
3498     return value;
3499   }
3500 
3501   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3502     return CGF.Builder.CreateBitCast(value, resultType);
3503   }
3504 
3505   llvm::Value *visitLValueToRValue(const Expr *e) {
3506     return CGF.EmitScalarExpr(e);
3507   }
3508 
3509   /// For consumptions, just emit the subexpression and perform the
3510   /// consumption like normal.
3511   llvm::Value *visitConsumeObject(const Expr *e) {
3512     llvm::Value *value = CGF.EmitScalarExpr(e);
3513     return CGF.EmitObjCConsumeObject(e->getType(), value);
3514   }
3515 
3516   /// No special logic for block extensions.  (This probably can't
3517   /// actually happen in this emitter, though.)
3518   llvm::Value *visitExtendBlockObject(const Expr *e) {
3519     return CGF.EmitARCExtendBlockObject(e);
3520   }
3521 
3522   /// For reclaims, perform an unsafeClaim if that's enabled.
3523   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3524     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3525   }
3526 
3527   /// When we have an undecorated call, just emit it without adding
3528   /// the unsafeClaim.
3529   llvm::Value *visitCall(const Expr *e) {
3530     return CGF.EmitScalarExpr(e);
3531   }
3532 
3533   /// Just do normal scalar emission in the default case.
3534   llvm::Value *visitExpr(const Expr *e) {
3535     return CGF.EmitScalarExpr(e);
3536   }
3537 };
3538 }
3539 
3540 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3541                                                       const Expr *e) {
3542   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3543 }
3544 
3545 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3546 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3547 /// avoiding any spurious retains, including by performing reclaims
3548 /// with objc_unsafeClaimAutoreleasedReturnValue.
3549 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3550   // Look through full-expressions.
3551   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3552     RunCleanupsScope scope(*this);
3553     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3554   }
3555 
3556   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3557 }
3558 
3559 std::pair<LValue,llvm::Value*>
3560 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3561                                               bool ignored) {
3562   // Evaluate the RHS first.  If we're ignoring the result, assume
3563   // that we can emit at an unsafe +0.
3564   llvm::Value *value;
3565   if (ignored) {
3566     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3567   } else {
3568     value = EmitScalarExpr(e->getRHS());
3569   }
3570 
3571   // Emit the LHS and perform the store.
3572   LValue lvalue = EmitLValue(e->getLHS());
3573   EmitStoreOfScalar(value, lvalue);
3574 
3575   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3576 }
3577 
3578 std::pair<LValue,llvm::Value*>
3579 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3580                                     bool ignored) {
3581   // Evaluate the RHS first.
3582   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3583   llvm::Value *value = result.getPointer();
3584 
3585   bool hasImmediateRetain = result.getInt();
3586 
3587   // If we didn't emit a retained object, and the l-value is of block
3588   // type, then we need to emit the block-retain immediately in case
3589   // it invalidates the l-value.
3590   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3591     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3592     hasImmediateRetain = true;
3593   }
3594 
3595   LValue lvalue = EmitLValue(e->getLHS());
3596 
3597   // If the RHS was emitted retained, expand this.
3598   if (hasImmediateRetain) {
3599     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3600     EmitStoreOfScalar(value, lvalue);
3601     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3602   } else {
3603     value = EmitARCStoreStrong(lvalue, value, ignored);
3604   }
3605 
3606   return std::pair<LValue,llvm::Value*>(lvalue, value);
3607 }
3608 
3609 std::pair<LValue,llvm::Value*>
3610 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3611   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3612   LValue lvalue = EmitLValue(e->getLHS());
3613 
3614   EmitStoreOfScalar(value, lvalue);
3615 
3616   return std::pair<LValue,llvm::Value*>(lvalue, value);
3617 }
3618 
3619 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3620                                           const ObjCAutoreleasePoolStmt &ARPS) {
3621   const Stmt *subStmt = ARPS.getSubStmt();
3622   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3623 
3624   CGDebugInfo *DI = getDebugInfo();
3625   if (DI)
3626     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3627 
3628   // Keep track of the current cleanup stack depth.
3629   RunCleanupsScope Scope(*this);
3630   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3631     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3632     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3633   } else {
3634     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3635     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3636   }
3637 
3638   for (const auto *I : S.body())
3639     EmitStmt(I);
3640 
3641   if (DI)
3642     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3643 }
3644 
3645 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3646 /// make sure it survives garbage collection until this point.
3647 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3648   // We just use an inline assembly.
3649   llvm::FunctionType *extenderType
3650     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3651   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3652                                                    /* assembly */ "",
3653                                                    /* constraints */ "r",
3654                                                    /* side effects */ true);
3655 
3656   object = Builder.CreateBitCast(object, VoidPtrTy);
3657   EmitNounwindRuntimeCall(extender, object);
3658 }
3659 
3660 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3661 /// non-trivial copy assignment function, produce following helper function.
3662 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3663 ///
3664 llvm::Constant *
3665 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3666                                         const ObjCPropertyImplDecl *PID) {
3667   if (!getLangOpts().CPlusPlus ||
3668       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3669     return nullptr;
3670   QualType Ty = PID->getPropertyIvarDecl()->getType();
3671   if (!Ty->isRecordType())
3672     return nullptr;
3673   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3674   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3675     return nullptr;
3676   llvm::Constant *HelperFn = nullptr;
3677   if (hasTrivialSetExpr(PID))
3678     return nullptr;
3679   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3680   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3681     return HelperFn;
3682 
3683   ASTContext &C = getContext();
3684   IdentifierInfo *II
3685     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3686 
3687   QualType ReturnTy = C.VoidTy;
3688   QualType DestTy = C.getPointerType(Ty);
3689   QualType SrcTy = Ty;
3690   SrcTy.addConst();
3691   SrcTy = C.getPointerType(SrcTy);
3692 
3693   SmallVector<QualType, 2> ArgTys;
3694   ArgTys.push_back(DestTy);
3695   ArgTys.push_back(SrcTy);
3696   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3697 
3698   FunctionDecl *FD = FunctionDecl::Create(
3699       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3700       FunctionTy, nullptr, SC_Static, false, false);
3701 
3702   FunctionArgList args;
3703   ParmVarDecl *Params[2];
3704   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3705       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3706       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3707       /*DefArg=*/nullptr);
3708   args.push_back(Params[0] = DstDecl);
3709   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3710       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3711       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3712       /*DefArg=*/nullptr);
3713   args.push_back(Params[1] = SrcDecl);
3714   FD->setParams(Params);
3715 
3716   const CGFunctionInfo &FI =
3717       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3718 
3719   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3720 
3721   llvm::Function *Fn =
3722     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3723                            "__assign_helper_atomic_property_",
3724                            &CGM.getModule());
3725 
3726   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3727 
3728   StartFunction(FD, ReturnTy, Fn, FI, args);
3729 
3730   DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3731   UnaryOperator *DST = UnaryOperator::Create(
3732       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3733       SourceLocation(), false, FPOptionsOverride());
3734 
3735   DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3736   UnaryOperator *SRC = UnaryOperator::Create(
3737       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3738       SourceLocation(), false, FPOptionsOverride());
3739 
3740   Expr *Args[2] = {DST, SRC};
3741   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3742   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3743       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3744       VK_LValue, SourceLocation(), FPOptionsOverride());
3745 
3746   EmitStmt(TheCall);
3747 
3748   FinishFunction();
3749   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3750   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3751   return HelperFn;
3752 }
3753 
3754 llvm::Constant *
3755 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3756                                             const ObjCPropertyImplDecl *PID) {
3757   if (!getLangOpts().CPlusPlus ||
3758       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3759     return nullptr;
3760   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3761   QualType Ty = PD->getType();
3762   if (!Ty->isRecordType())
3763     return nullptr;
3764   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3765     return nullptr;
3766   llvm::Constant *HelperFn = nullptr;
3767   if (hasTrivialGetExpr(PID))
3768     return nullptr;
3769   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3770   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3771     return HelperFn;
3772 
3773   ASTContext &C = getContext();
3774   IdentifierInfo *II =
3775       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3776 
3777   QualType ReturnTy = C.VoidTy;
3778   QualType DestTy = C.getPointerType(Ty);
3779   QualType SrcTy = Ty;
3780   SrcTy.addConst();
3781   SrcTy = C.getPointerType(SrcTy);
3782 
3783   SmallVector<QualType, 2> ArgTys;
3784   ArgTys.push_back(DestTy);
3785   ArgTys.push_back(SrcTy);
3786   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3787 
3788   FunctionDecl *FD = FunctionDecl::Create(
3789       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3790       FunctionTy, nullptr, SC_Static, false, false);
3791 
3792   FunctionArgList args;
3793   ParmVarDecl *Params[2];
3794   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3795       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3796       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3797       /*DefArg=*/nullptr);
3798   args.push_back(Params[0] = DstDecl);
3799   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3800       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3801       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3802       /*DefArg=*/nullptr);
3803   args.push_back(Params[1] = SrcDecl);
3804   FD->setParams(Params);
3805 
3806   const CGFunctionInfo &FI =
3807       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3808 
3809   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3810 
3811   llvm::Function *Fn = llvm::Function::Create(
3812       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3813       &CGM.getModule());
3814 
3815   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3816 
3817   StartFunction(FD, ReturnTy, Fn, FI, args);
3818 
3819   DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3820                       SourceLocation());
3821 
3822   UnaryOperator *SRC = UnaryOperator::Create(
3823       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3824       SourceLocation(), false, FPOptionsOverride());
3825 
3826   CXXConstructExpr *CXXConstExpr =
3827     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3828 
3829   SmallVector<Expr*, 4> ConstructorArgs;
3830   ConstructorArgs.push_back(SRC);
3831   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3832                          CXXConstExpr->arg_end());
3833 
3834   CXXConstructExpr *TheCXXConstructExpr =
3835     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3836                              CXXConstExpr->getConstructor(),
3837                              CXXConstExpr->isElidable(),
3838                              ConstructorArgs,
3839                              CXXConstExpr->hadMultipleCandidates(),
3840                              CXXConstExpr->isListInitialization(),
3841                              CXXConstExpr->isStdInitListInitialization(),
3842                              CXXConstExpr->requiresZeroInitialization(),
3843                              CXXConstExpr->getConstructionKind(),
3844                              SourceRange());
3845 
3846   DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3847                       SourceLocation());
3848 
3849   RValue DV = EmitAnyExpr(&DstExpr);
3850   CharUnits Alignment
3851     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3852   EmitAggExpr(TheCXXConstructExpr,
3853               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3854                                     Qualifiers(),
3855                                     AggValueSlot::IsDestructed,
3856                                     AggValueSlot::DoesNotNeedGCBarriers,
3857                                     AggValueSlot::IsNotAliased,
3858                                     AggValueSlot::DoesNotOverlap));
3859 
3860   FinishFunction();
3861   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3862   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3863   return HelperFn;
3864 }
3865 
3866 llvm::Value *
3867 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3868   // Get selectors for retain/autorelease.
3869   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3870   Selector CopySelector =
3871       getContext().Selectors.getNullarySelector(CopyID);
3872   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3873   Selector AutoreleaseSelector =
3874       getContext().Selectors.getNullarySelector(AutoreleaseID);
3875 
3876   // Emit calls to retain/autorelease.
3877   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3878   llvm::Value *Val = Block;
3879   RValue Result;
3880   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3881                                        Ty, CopySelector,
3882                                        Val, CallArgList(), nullptr, nullptr);
3883   Val = Result.getScalarVal();
3884   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3885                                        Ty, AutoreleaseSelector,
3886                                        Val, CallArgList(), nullptr, nullptr);
3887   Val = Result.getScalarVal();
3888   return Val;
3889 }
3890 
3891 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3892   switch (TT.getOS()) {
3893   case llvm::Triple::Darwin:
3894   case llvm::Triple::MacOSX:
3895     return llvm::MachO::PLATFORM_MACOS;
3896   case llvm::Triple::IOS:
3897     return llvm::MachO::PLATFORM_IOS;
3898   case llvm::Triple::TvOS:
3899     return llvm::MachO::PLATFORM_TVOS;
3900   case llvm::Triple::WatchOS:
3901     return llvm::MachO::PLATFORM_WATCHOS;
3902   default:
3903     return /*Unknown platform*/ 0;
3904   }
3905 }
3906 
3907 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3908                                                  const VersionTuple &Version) {
3909   CodeGenModule &CGM = CGF.CGM;
3910   // Note: we intend to support multi-platform version checks, so reserve
3911   // the room for a dual platform checking invocation that will be
3912   // implemented in the future.
3913   llvm::SmallVector<llvm::Value *, 8> Args;
3914 
3915   auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3916     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3917     Args.push_back(
3918         llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3919     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3920     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0));
3921     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0));
3922   };
3923 
3924   assert(!Version.empty() && "unexpected empty version");
3925   EmitArgs(Version, CGM.getTarget().getTriple());
3926 
3927   if (!CGM.IsPlatformVersionAtLeastFn) {
3928     llvm::FunctionType *FTy = llvm::FunctionType::get(
3929         CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3930         false);
3931     CGM.IsPlatformVersionAtLeastFn =
3932         CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3933   }
3934 
3935   llvm::Value *Check =
3936       CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3937   return CGF.Builder.CreateICmpNE(Check,
3938                                   llvm::Constant::getNullValue(CGM.Int32Ty));
3939 }
3940 
3941 llvm::Value *
3942 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3943   // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3944   if (CGM.getTarget().getTriple().isOSDarwin())
3945     return emitIsPlatformVersionAtLeast(*this, Version);
3946 
3947   if (!CGM.IsOSVersionAtLeastFn) {
3948     llvm::FunctionType *FTy =
3949         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3950     CGM.IsOSVersionAtLeastFn =
3951         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3952   }
3953 
3954   Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3955   llvm::Value *Args[] = {
3956       llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
3957       llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0),
3958       llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0),
3959   };
3960 
3961   llvm::Value *CallRes =
3962       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3963 
3964   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3965 }
3966 
3967 static bool isFoundationNeededForDarwinAvailabilityCheck(
3968     const llvm::Triple &TT, const VersionTuple &TargetVersion) {
3969   VersionTuple FoundationDroppedInVersion;
3970   switch (TT.getOS()) {
3971   case llvm::Triple::IOS:
3972   case llvm::Triple::TvOS:
3973     FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
3974     break;
3975   case llvm::Triple::WatchOS:
3976     FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
3977     break;
3978   case llvm::Triple::Darwin:
3979   case llvm::Triple::MacOSX:
3980     FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
3981     break;
3982   default:
3983     llvm_unreachable("Unexpected OS");
3984   }
3985   return TargetVersion < FoundationDroppedInVersion;
3986 }
3987 
3988 void CodeGenModule::emitAtAvailableLinkGuard() {
3989   if (!IsPlatformVersionAtLeastFn)
3990     return;
3991   // @available requires CoreFoundation only on Darwin.
3992   if (!Target.getTriple().isOSDarwin())
3993     return;
3994   // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
3995   // watchOS 6+.
3996   if (!isFoundationNeededForDarwinAvailabilityCheck(
3997           Target.getTriple(), Target.getPlatformMinVersion()))
3998     return;
3999   // Add -framework CoreFoundation to the linker commands. We still want to
4000   // emit the core foundation reference down below because otherwise if
4001   // CoreFoundation is not used in the code, the linker won't link the
4002   // framework.
4003   auto &Context = getLLVMContext();
4004   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4005                              llvm::MDString::get(Context, "CoreFoundation")};
4006   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4007   // Emit a reference to a symbol from CoreFoundation to ensure that
4008   // CoreFoundation is linked into the final binary.
4009   llvm::FunctionType *FTy =
4010       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4011   llvm::FunctionCallee CFFunc =
4012       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4013 
4014   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4015   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4016       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4017       llvm::AttributeList(), /*Local=*/true);
4018   llvm::Function *CFLinkCheckFunc =
4019       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4020   if (CFLinkCheckFunc->empty()) {
4021     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4022     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4023     CodeGenFunction CGF(*this);
4024     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4025     CGF.EmitNounwindRuntimeCall(CFFunc,
4026                                 llvm::Constant::getNullValue(VoidPtrTy));
4027     CGF.Builder.CreateUnreachable();
4028     addCompilerUsedGlobal(CFLinkCheckFunc);
4029   }
4030 }
4031 
4032 CGObjCRuntime::~CGObjCRuntime() {}
4033