xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGObjC.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Analysis/ObjCARCUtil.h"
27 #include "llvm/BinaryFormat/MachO.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
34 static TryEmitResult
35 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
36 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
37                                    QualType ET,
38                                    RValue Result);
39 
40 /// Given the address of a variable of pointer type, find the correct
41 /// null to store into it.
42 static llvm::Constant *getNullForVariable(Address addr) {
43   llvm::Type *type = addr.getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
59 /// or [NSValue valueWithBytes:objCType:].
60 ///
61 llvm::Value *
62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
63   // Generate the correct selector for this literal's concrete type.
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   const Expr *SubExpr = E->getSubExpr();
67 
68   if (E->isExpressibleAsConstantInitializer()) {
69     ConstantEmitter ConstEmitter(CGM);
70     return ConstEmitter.tryEmitAbstract(E, E->getType());
71   }
72 
73   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
74   Selector Sel = BoxingMethod->getSelector();
75 
76   // Generate a reference to the class pointer, which will be the receiver.
77   // Assumes that the method was introduced in the class that should be
78   // messaged (avoids pulling it out of the result type).
79   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
80   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
81   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
82 
83   CallArgList Args;
84   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
85   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
86 
87   // ObjCBoxedExpr supports boxing of structs and unions
88   // via [NSValue valueWithBytes:objCType:]
89   const QualType ValueType(SubExpr->getType().getCanonicalType());
90   if (ValueType->isObjCBoxableRecordType()) {
91     // Emit CodeGen for first parameter
92     // and cast value to correct type
93     Address Temporary = CreateMemTemp(SubExpr->getType());
94     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
95     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
96     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
97 
98     // Create char array to store type encoding
99     std::string Str;
100     getContext().getObjCEncodingForType(ValueType, Str);
101     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
102 
103     // Cast type encoding to correct type
104     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
105     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
106     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
107 
108     Args.add(RValue::get(Cast), EncodingQT);
109   } else {
110     Args.add(EmitAnyExpr(SubExpr), ArgQT);
111   }
112 
113   RValue result = Runtime.GenerateMessageSend(
114       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
115       Args, ClassDecl, BoxingMethod);
116   return Builder.CreateBitCast(result.getScalarVal(),
117                                ConvertType(E->getType()));
118 }
119 
120 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
121                                     const ObjCMethodDecl *MethodWithObjects) {
122   ASTContext &Context = CGM.getContext();
123   const ObjCDictionaryLiteral *DLE = nullptr;
124   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
125   if (!ALE)
126     DLE = cast<ObjCDictionaryLiteral>(E);
127 
128   // Optimize empty collections by referencing constants, when available.
129   uint64_t NumElements =
130     ALE ? ALE->getNumElements() : DLE->getNumElements();
131   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
132     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
133     QualType IdTy(CGM.getContext().getObjCIdType());
134     llvm::Constant *Constant =
135         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
136     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
137     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
138     cast<llvm::LoadInst>(Ptr)->setMetadata(
139         CGM.getModule().getMDKindID("invariant.load"),
140         llvm::MDNode::get(getLLVMContext(), None));
141     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
142   }
143 
144   // Compute the type of the array we're initializing.
145   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
146                             NumElements);
147   QualType ElementType = Context.getObjCIdType().withConst();
148   QualType ElementArrayType
149     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
150                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
151 
152   // Allocate the temporary array(s).
153   Address Objects = CreateMemTemp(ElementArrayType, "objects");
154   Address Keys = Address::invalid();
155   if (DLE)
156     Keys = CreateMemTemp(ElementArrayType, "keys");
157 
158   // In ARC, we may need to do extra work to keep all the keys and
159   // values alive until after the call.
160   SmallVector<llvm::Value *, 16> NeededObjects;
161   bool TrackNeededObjects =
162     (getLangOpts().ObjCAutoRefCount &&
163     CGM.getCodeGenOpts().OptimizationLevel != 0);
164 
165   // Perform the actual initialialization of the array(s).
166   for (uint64_t i = 0; i < NumElements; i++) {
167     if (ALE) {
168       // Emit the element and store it to the appropriate array slot.
169       const Expr *Rhs = ALE->getElement(i);
170       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
171                                  ElementType, AlignmentSource::Decl);
172 
173       llvm::Value *value = EmitScalarExpr(Rhs);
174       EmitStoreThroughLValue(RValue::get(value), LV, true);
175       if (TrackNeededObjects) {
176         NeededObjects.push_back(value);
177       }
178     } else {
179       // Emit the key and store it to the appropriate array slot.
180       const Expr *Key = DLE->getKeyValueElement(i).Key;
181       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
182                                     ElementType, AlignmentSource::Decl);
183       llvm::Value *keyValue = EmitScalarExpr(Key);
184       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
185 
186       // Emit the value and store it to the appropriate array slot.
187       const Expr *Value = DLE->getKeyValueElement(i).Value;
188       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
189                                       ElementType, AlignmentSource::Decl);
190       llvm::Value *valueValue = EmitScalarExpr(Value);
191       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
192       if (TrackNeededObjects) {
193         NeededObjects.push_back(keyValue);
194         NeededObjects.push_back(valueValue);
195       }
196     }
197   }
198 
199   // Generate the argument list.
200   CallArgList Args;
201   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
202   const ParmVarDecl *argDecl = *PI++;
203   QualType ArgQT = argDecl->getType().getUnqualifiedType();
204   Args.add(RValue::get(Objects.getPointer()), ArgQT);
205   if (DLE) {
206     argDecl = *PI++;
207     ArgQT = argDecl->getType().getUnqualifiedType();
208     Args.add(RValue::get(Keys.getPointer()), ArgQT);
209   }
210   argDecl = *PI;
211   ArgQT = argDecl->getType().getUnqualifiedType();
212   llvm::Value *Count =
213     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
214   Args.add(RValue::get(Count), ArgQT);
215 
216   // Generate a reference to the class pointer, which will be the receiver.
217   Selector Sel = MethodWithObjects->getSelector();
218   QualType ResultType = E->getType();
219   const ObjCObjectPointerType *InterfacePointerType
220     = ResultType->getAsObjCInterfacePointerType();
221   ObjCInterfaceDecl *Class
222     = InterfacePointerType->getObjectType()->getInterface();
223   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
224   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
225 
226   // Generate the message send.
227   RValue result = Runtime.GenerateMessageSend(
228       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
229       Receiver, Args, Class, MethodWithObjects);
230 
231   // The above message send needs these objects, but in ARC they are
232   // passed in a buffer that is essentially __unsafe_unretained.
233   // Therefore we must prevent the optimizer from releasing them until
234   // after the call.
235   if (TrackNeededObjects) {
236     EmitARCIntrinsicUse(NeededObjects);
237   }
238 
239   return Builder.CreateBitCast(result.getScalarVal(),
240                                ConvertType(E->getType()));
241 }
242 
243 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
244   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
245 }
246 
247 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
248                                             const ObjCDictionaryLiteral *E) {
249   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
250 }
251 
252 /// Emit a selector.
253 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
254   // Untyped selector.
255   // Note that this implementation allows for non-constant strings to be passed
256   // as arguments to @selector().  Currently, the only thing preventing this
257   // behaviour is the type checking in the front end.
258   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
259 }
260 
261 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
262   // FIXME: This should pass the Decl not the name.
263   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
264 }
265 
266 /// Adjust the type of an Objective-C object that doesn't match up due
267 /// to type erasure at various points, e.g., related result types or the use
268 /// of parameterized classes.
269 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
270                                    RValue Result) {
271   if (!ExpT->isObjCRetainableType())
272     return Result;
273 
274   // If the converted types are the same, we're done.
275   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
276   if (ExpLLVMTy == Result.getScalarVal()->getType())
277     return Result;
278 
279   // We have applied a substitution. Cast the rvalue appropriately.
280   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
281                                                ExpLLVMTy));
282 }
283 
284 /// Decide whether to extend the lifetime of the receiver of a
285 /// returns-inner-pointer message.
286 static bool
287 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
288   switch (message->getReceiverKind()) {
289 
290   // For a normal instance message, we should extend unless the
291   // receiver is loaded from a variable with precise lifetime.
292   case ObjCMessageExpr::Instance: {
293     const Expr *receiver = message->getInstanceReceiver();
294 
295     // Look through OVEs.
296     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
297       if (opaque->getSourceExpr())
298         receiver = opaque->getSourceExpr()->IgnoreParens();
299     }
300 
301     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
302     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
303     receiver = ice->getSubExpr()->IgnoreParens();
304 
305     // Look through OVEs.
306     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
307       if (opaque->getSourceExpr())
308         receiver = opaque->getSourceExpr()->IgnoreParens();
309     }
310 
311     // Only __strong variables.
312     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
313       return true;
314 
315     // All ivars and fields have precise lifetime.
316     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
317       return false;
318 
319     // Otherwise, check for variables.
320     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
321     if (!declRef) return true;
322     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
323     if (!var) return true;
324 
325     // All variables have precise lifetime except local variables with
326     // automatic storage duration that aren't specially marked.
327     return (var->hasLocalStorage() &&
328             !var->hasAttr<ObjCPreciseLifetimeAttr>());
329   }
330 
331   case ObjCMessageExpr::Class:
332   case ObjCMessageExpr::SuperClass:
333     // It's never necessary for class objects.
334     return false;
335 
336   case ObjCMessageExpr::SuperInstance:
337     // We generally assume that 'self' lives throughout a method call.
338     return false;
339   }
340 
341   llvm_unreachable("invalid receiver kind");
342 }
343 
344 /// Given an expression of ObjC pointer type, check whether it was
345 /// immediately loaded from an ARC __weak l-value.
346 static const Expr *findWeakLValue(const Expr *E) {
347   assert(E->getType()->isObjCRetainableType());
348   E = E->IgnoreParens();
349   if (auto CE = dyn_cast<CastExpr>(E)) {
350     if (CE->getCastKind() == CK_LValueToRValue) {
351       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
352         return CE->getSubExpr();
353     }
354   }
355 
356   return nullptr;
357 }
358 
359 /// The ObjC runtime may provide entrypoints that are likely to be faster
360 /// than an ordinary message send of the appropriate selector.
361 ///
362 /// The entrypoints are guaranteed to be equivalent to just sending the
363 /// corresponding message.  If the entrypoint is implemented naively as just a
364 /// message send, using it is a trade-off: it sacrifices a few cycles of
365 /// overhead to save a small amount of code.  However, it's possible for
366 /// runtimes to detect and special-case classes that use "standard"
367 /// behavior; if that's dynamically a large proportion of all objects, using
368 /// the entrypoint will also be faster than using a message send.
369 ///
370 /// If the runtime does support a required entrypoint, then this method will
371 /// generate a call and return the resulting value.  Otherwise it will return
372 /// None and the caller can generate a msgSend instead.
373 static Optional<llvm::Value *>
374 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
375                                   llvm::Value *Receiver,
376                                   const CallArgList& Args, Selector Sel,
377                                   const ObjCMethodDecl *method,
378                                   bool isClassMessage) {
379   auto &CGM = CGF.CGM;
380   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
381     return None;
382 
383   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
384   switch (Sel.getMethodFamily()) {
385   case OMF_alloc:
386     if (isClassMessage &&
387         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
388         ResultType->isObjCObjectPointerType()) {
389         // [Foo alloc] -> objc_alloc(Foo) or
390         // [self alloc] -> objc_alloc(self)
391         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
392           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
393         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
394         // [self allocWithZone:nil] -> objc_allocWithZone(self)
395         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
396             Args.size() == 1 && Args.front().getType()->isPointerType() &&
397             Sel.getNameForSlot(0) == "allocWithZone") {
398           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
399           if (isa<llvm::ConstantPointerNull>(arg))
400             return CGF.EmitObjCAllocWithZone(Receiver,
401                                              CGF.ConvertType(ResultType));
402           return None;
403         }
404     }
405     break;
406 
407   case OMF_autorelease:
408     if (ResultType->isObjCObjectPointerType() &&
409         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
410         Runtime.shouldUseARCFunctionsForRetainRelease())
411       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
412     break;
413 
414   case OMF_retain:
415     if (ResultType->isObjCObjectPointerType() &&
416         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
417         Runtime.shouldUseARCFunctionsForRetainRelease())
418       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
419     break;
420 
421   case OMF_release:
422     if (ResultType->isVoidType() &&
423         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
424         Runtime.shouldUseARCFunctionsForRetainRelease()) {
425       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
426       return nullptr;
427     }
428     break;
429 
430   default:
431     break;
432   }
433   return None;
434 }
435 
436 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
437     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
438     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
439     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
440     bool isClassMessage) {
441   if (Optional<llvm::Value *> SpecializedResult =
442           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
443                                             Sel, Method, isClassMessage)) {
444     return RValue::get(SpecializedResult.getValue());
445   }
446   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
447                              Method);
448 }
449 
450 static void AppendFirstImpliedRuntimeProtocols(
451     const ObjCProtocolDecl *PD,
452     llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
453   if (!PD->isNonRuntimeProtocol()) {
454     const auto *Can = PD->getCanonicalDecl();
455     PDs.insert(Can);
456     return;
457   }
458 
459   for (const auto *ParentPD : PD->protocols())
460     AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
461 }
462 
463 std::vector<const ObjCProtocolDecl *>
464 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
465                                       ObjCProtocolDecl::protocol_iterator end) {
466   std::vector<const ObjCProtocolDecl *> RuntimePds;
467   llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
468 
469   for (; begin != end; ++begin) {
470     const auto *It = *begin;
471     const auto *Can = It->getCanonicalDecl();
472     if (Can->isNonRuntimeProtocol())
473       NonRuntimePDs.insert(Can);
474     else
475       RuntimePds.push_back(Can);
476   }
477 
478   // If there are no non-runtime protocols then we can just stop now.
479   if (NonRuntimePDs.empty())
480     return RuntimePds;
481 
482   // Else we have to search through the non-runtime protocol's inheritancy
483   // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
484   // a non-runtime protocol without any parents. These are the "first-implied"
485   // protocols from a non-runtime protocol.
486   llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
487   for (const auto *PD : NonRuntimePDs)
488     AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
489 
490   // Walk the Runtime list to get all protocols implied via the inclusion of
491   // this protocol, e.g. all protocols it inherits from including itself.
492   llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
493   for (const auto *PD : RuntimePds) {
494     const auto *Can = PD->getCanonicalDecl();
495     AllImpliedProtocols.insert(Can);
496     Can->getImpliedProtocols(AllImpliedProtocols);
497   }
498 
499   // Similar to above, walk the list of first-implied protocols to find the set
500   // all the protocols implied excluding the listed protocols themselves since
501   // they are not yet a part of the `RuntimePds` list.
502   for (const auto *PD : FirstImpliedProtos) {
503     PD->getImpliedProtocols(AllImpliedProtocols);
504   }
505 
506   // From the first-implied list we have to finish building the final protocol
507   // list. If a protocol in the first-implied list was already implied via some
508   // inheritance path through some other protocols then it would be redundant to
509   // add it here and so we skip over it.
510   for (const auto *PD : FirstImpliedProtos) {
511     if (!AllImpliedProtocols.contains(PD)) {
512       RuntimePds.push_back(PD);
513     }
514   }
515 
516   return RuntimePds;
517 }
518 
519 /// Instead of '[[MyClass alloc] init]', try to generate
520 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
521 /// caller side, as well as the optimized objc_alloc.
522 static Optional<llvm::Value *>
523 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
524   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
525   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
526     return None;
527 
528   // Match the exact pattern '[[MyClass alloc] init]'.
529   Selector Sel = OME->getSelector();
530   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
531       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
532       Sel.getNameForSlot(0) != "init")
533     return None;
534 
535   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
536   // with 'cls' a Class.
537   auto *SubOME =
538       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
539   if (!SubOME)
540     return None;
541   Selector SubSel = SubOME->getSelector();
542 
543   if (!SubOME->getType()->isObjCObjectPointerType() ||
544       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
545     return None;
546 
547   llvm::Value *Receiver = nullptr;
548   switch (SubOME->getReceiverKind()) {
549   case ObjCMessageExpr::Instance:
550     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
551       return None;
552     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
553     break;
554 
555   case ObjCMessageExpr::Class: {
556     QualType ReceiverType = SubOME->getClassReceiver();
557     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
558     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
559     assert(ID && "null interface should be impossible here");
560     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
561     break;
562   }
563   case ObjCMessageExpr::SuperInstance:
564   case ObjCMessageExpr::SuperClass:
565     return None;
566   }
567 
568   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
569 }
570 
571 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
572                                             ReturnValueSlot Return) {
573   // Only the lookup mechanism and first two arguments of the method
574   // implementation vary between runtimes.  We can get the receiver and
575   // arguments in generic code.
576 
577   bool isDelegateInit = E->isDelegateInitCall();
578 
579   const ObjCMethodDecl *method = E->getMethodDecl();
580 
581   // If the method is -retain, and the receiver's being loaded from
582   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
583   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
584       method->getMethodFamily() == OMF_retain) {
585     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
586       LValue lvalue = EmitLValue(lvalueExpr);
587       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
588       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
589     }
590   }
591 
592   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
593     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
594 
595   // We don't retain the receiver in delegate init calls, and this is
596   // safe because the receiver value is always loaded from 'self',
597   // which we zero out.  We don't want to Block_copy block receivers,
598   // though.
599   bool retainSelf =
600     (!isDelegateInit &&
601      CGM.getLangOpts().ObjCAutoRefCount &&
602      method &&
603      method->hasAttr<NSConsumesSelfAttr>());
604 
605   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
606   bool isSuperMessage = false;
607   bool isClassMessage = false;
608   ObjCInterfaceDecl *OID = nullptr;
609   // Find the receiver
610   QualType ReceiverType;
611   llvm::Value *Receiver = nullptr;
612   switch (E->getReceiverKind()) {
613   case ObjCMessageExpr::Instance:
614     ReceiverType = E->getInstanceReceiver()->getType();
615     isClassMessage = ReceiverType->isObjCClassType();
616     if (retainSelf) {
617       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
618                                                    E->getInstanceReceiver());
619       Receiver = ter.getPointer();
620       if (ter.getInt()) retainSelf = false;
621     } else
622       Receiver = EmitScalarExpr(E->getInstanceReceiver());
623     break;
624 
625   case ObjCMessageExpr::Class: {
626     ReceiverType = E->getClassReceiver();
627     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
628     assert(OID && "Invalid Objective-C class message send");
629     Receiver = Runtime.GetClass(*this, OID);
630     isClassMessage = true;
631     break;
632   }
633 
634   case ObjCMessageExpr::SuperInstance:
635     ReceiverType = E->getSuperType();
636     Receiver = LoadObjCSelf();
637     isSuperMessage = true;
638     break;
639 
640   case ObjCMessageExpr::SuperClass:
641     ReceiverType = E->getSuperType();
642     Receiver = LoadObjCSelf();
643     isSuperMessage = true;
644     isClassMessage = true;
645     break;
646   }
647 
648   if (retainSelf)
649     Receiver = EmitARCRetainNonBlock(Receiver);
650 
651   // In ARC, we sometimes want to "extend the lifetime"
652   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
653   // messages.
654   if (getLangOpts().ObjCAutoRefCount && method &&
655       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
656       shouldExtendReceiverForInnerPointerMessage(E))
657     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
658 
659   QualType ResultType = method ? method->getReturnType() : E->getType();
660 
661   CallArgList Args;
662   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
663 
664   // For delegate init calls in ARC, do an unsafe store of null into
665   // self.  This represents the call taking direct ownership of that
666   // value.  We have to do this after emitting the other call
667   // arguments because they might also reference self, but we don't
668   // have to worry about any of them modifying self because that would
669   // be an undefined read and write of an object in unordered
670   // expressions.
671   if (isDelegateInit) {
672     assert(getLangOpts().ObjCAutoRefCount &&
673            "delegate init calls should only be marked in ARC");
674 
675     // Do an unsafe store of null into self.
676     Address selfAddr =
677       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
678     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
679   }
680 
681   RValue result;
682   if (isSuperMessage) {
683     // super is only valid in an Objective-C method
684     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
685     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
686     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
687                                               E->getSelector(),
688                                               OMD->getClassInterface(),
689                                               isCategoryImpl,
690                                               Receiver,
691                                               isClassMessage,
692                                               Args,
693                                               method);
694   } else {
695     // Call runtime methods directly if we can.
696     result = Runtime.GeneratePossiblySpecializedMessageSend(
697         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
698         method, isClassMessage);
699   }
700 
701   // For delegate init calls in ARC, implicitly store the result of
702   // the call back into self.  This takes ownership of the value.
703   if (isDelegateInit) {
704     Address selfAddr =
705       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
706     llvm::Value *newSelf = result.getScalarVal();
707 
708     // The delegate return type isn't necessarily a matching type; in
709     // fact, it's quite likely to be 'id'.
710     llvm::Type *selfTy = selfAddr.getElementType();
711     newSelf = Builder.CreateBitCast(newSelf, selfTy);
712 
713     Builder.CreateStore(newSelf, selfAddr);
714   }
715 
716   return AdjustObjCObjectType(*this, E->getType(), result);
717 }
718 
719 namespace {
720 struct FinishARCDealloc final : EHScopeStack::Cleanup {
721   void Emit(CodeGenFunction &CGF, Flags flags) override {
722     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
723 
724     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
725     const ObjCInterfaceDecl *iface = impl->getClassInterface();
726     if (!iface->getSuperClass()) return;
727 
728     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
729 
730     // Call [super dealloc] if we have a superclass.
731     llvm::Value *self = CGF.LoadObjCSelf();
732 
733     CallArgList args;
734     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
735                                                       CGF.getContext().VoidTy,
736                                                       method->getSelector(),
737                                                       iface,
738                                                       isCategory,
739                                                       self,
740                                                       /*is class msg*/ false,
741                                                       args,
742                                                       method);
743   }
744 };
745 }
746 
747 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
748 /// the LLVM function and sets the other context used by
749 /// CodeGenFunction.
750 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
751                                       const ObjCContainerDecl *CD) {
752   SourceLocation StartLoc = OMD->getBeginLoc();
753   FunctionArgList args;
754   // Check if we should generate debug info for this method.
755   if (OMD->hasAttr<NoDebugAttr>())
756     DebugInfo = nullptr; // disable debug info indefinitely for this function
757 
758   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
759 
760   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
761   if (OMD->isDirectMethod()) {
762     Fn->setVisibility(llvm::Function::HiddenVisibility);
763     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
764     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
765   } else {
766     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
767   }
768 
769   args.push_back(OMD->getSelfDecl());
770   args.push_back(OMD->getCmdDecl());
771 
772   args.append(OMD->param_begin(), OMD->param_end());
773 
774   CurGD = OMD;
775   CurEHLocation = OMD->getEndLoc();
776 
777   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
778                 OMD->getLocation(), StartLoc);
779 
780   if (OMD->isDirectMethod()) {
781     // This function is a direct call, it has to implement a nil check
782     // on entry.
783     //
784     // TODO: possibly have several entry points to elide the check
785     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
786   }
787 
788   // In ARC, certain methods get an extra cleanup.
789   if (CGM.getLangOpts().ObjCAutoRefCount &&
790       OMD->isInstanceMethod() &&
791       OMD->getSelector().isUnarySelector()) {
792     const IdentifierInfo *ident =
793       OMD->getSelector().getIdentifierInfoForSlot(0);
794     if (ident->isStr("dealloc"))
795       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
796   }
797 }
798 
799 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
800                                               LValue lvalue, QualType type);
801 
802 /// Generate an Objective-C method.  An Objective-C method is a C function with
803 /// its pointer, name, and types registered in the class structure.
804 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
805   StartObjCMethod(OMD, OMD->getClassInterface());
806   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
807   assert(isa<CompoundStmt>(OMD->getBody()));
808   incrementProfileCounter(OMD->getBody());
809   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
810   FinishFunction(OMD->getBodyRBrace());
811 }
812 
813 /// emitStructGetterCall - Call the runtime function to load a property
814 /// into the return value slot.
815 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
816                                  bool isAtomic, bool hasStrong) {
817   ASTContext &Context = CGF.getContext();
818 
819   Address src =
820       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
821           .getAddress(CGF);
822 
823   // objc_copyStruct (ReturnValue, &structIvar,
824   //                  sizeof (Type of Ivar), isAtomic, false);
825   CallArgList args;
826 
827   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
828   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
829 
830   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
831   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
832 
833   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
834   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
835   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
836   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
837 
838   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
839   CGCallee callee = CGCallee::forDirect(fn);
840   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
841                callee, ReturnValueSlot(), args);
842 }
843 
844 /// Determine whether the given architecture supports unaligned atomic
845 /// accesses.  They don't have to be fast, just faster than a function
846 /// call and a mutex.
847 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
848   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
849   // currently supported by the backend.)
850   return false;
851 }
852 
853 /// Return the maximum size that permits atomic accesses for the given
854 /// architecture.
855 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
856                                         llvm::Triple::ArchType arch) {
857   // ARM has 8-byte atomic accesses, but it's not clear whether we
858   // want to rely on them here.
859 
860   // In the default case, just assume that any size up to a pointer is
861   // fine given adequate alignment.
862   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
863 }
864 
865 namespace {
866   class PropertyImplStrategy {
867   public:
868     enum StrategyKind {
869       /// The 'native' strategy is to use the architecture's provided
870       /// reads and writes.
871       Native,
872 
873       /// Use objc_setProperty and objc_getProperty.
874       GetSetProperty,
875 
876       /// Use objc_setProperty for the setter, but use expression
877       /// evaluation for the getter.
878       SetPropertyAndExpressionGet,
879 
880       /// Use objc_copyStruct.
881       CopyStruct,
882 
883       /// The 'expression' strategy is to emit normal assignment or
884       /// lvalue-to-rvalue expressions.
885       Expression
886     };
887 
888     StrategyKind getKind() const { return StrategyKind(Kind); }
889 
890     bool hasStrongMember() const { return HasStrong; }
891     bool isAtomic() const { return IsAtomic; }
892     bool isCopy() const { return IsCopy; }
893 
894     CharUnits getIvarSize() const { return IvarSize; }
895     CharUnits getIvarAlignment() const { return IvarAlignment; }
896 
897     PropertyImplStrategy(CodeGenModule &CGM,
898                          const ObjCPropertyImplDecl *propImpl);
899 
900   private:
901     unsigned Kind : 8;
902     unsigned IsAtomic : 1;
903     unsigned IsCopy : 1;
904     unsigned HasStrong : 1;
905 
906     CharUnits IvarSize;
907     CharUnits IvarAlignment;
908   };
909 }
910 
911 /// Pick an implementation strategy for the given property synthesis.
912 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
913                                      const ObjCPropertyImplDecl *propImpl) {
914   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
915   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
916 
917   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
918   IsAtomic = prop->isAtomic();
919   HasStrong = false; // doesn't matter here.
920 
921   // Evaluate the ivar's size and alignment.
922   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
923   QualType ivarType = ivar->getType();
924   auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
925   IvarSize = TInfo.Width;
926   IvarAlignment = TInfo.Align;
927 
928   // If we have a copy property, we always have to use setProperty.
929   // If the property is atomic we need to use getProperty, but in
930   // the nonatomic case we can just use expression.
931   if (IsCopy) {
932     Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
933     return;
934   }
935 
936   // Handle retain.
937   if (setterKind == ObjCPropertyDecl::Retain) {
938     // In GC-only, there's nothing special that needs to be done.
939     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
940       // fallthrough
941 
942     // In ARC, if the property is non-atomic, use expression emission,
943     // which translates to objc_storeStrong.  This isn't required, but
944     // it's slightly nicer.
945     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
946       // Using standard expression emission for the setter is only
947       // acceptable if the ivar is __strong, which won't be true if
948       // the property is annotated with __attribute__((NSObject)).
949       // TODO: falling all the way back to objc_setProperty here is
950       // just laziness, though;  we could still use objc_storeStrong
951       // if we hacked it right.
952       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
953         Kind = Expression;
954       else
955         Kind = SetPropertyAndExpressionGet;
956       return;
957 
958     // Otherwise, we need to at least use setProperty.  However, if
959     // the property isn't atomic, we can use normal expression
960     // emission for the getter.
961     } else if (!IsAtomic) {
962       Kind = SetPropertyAndExpressionGet;
963       return;
964 
965     // Otherwise, we have to use both setProperty and getProperty.
966     } else {
967       Kind = GetSetProperty;
968       return;
969     }
970   }
971 
972   // If we're not atomic, just use expression accesses.
973   if (!IsAtomic) {
974     Kind = Expression;
975     return;
976   }
977 
978   // Properties on bitfield ivars need to be emitted using expression
979   // accesses even if they're nominally atomic.
980   if (ivar->isBitField()) {
981     Kind = Expression;
982     return;
983   }
984 
985   // GC-qualified or ARC-qualified ivars need to be emitted as
986   // expressions.  This actually works out to being atomic anyway,
987   // except for ARC __strong, but that should trigger the above code.
988   if (ivarType.hasNonTrivialObjCLifetime() ||
989       (CGM.getLangOpts().getGC() &&
990        CGM.getContext().getObjCGCAttrKind(ivarType))) {
991     Kind = Expression;
992     return;
993   }
994 
995   // Compute whether the ivar has strong members.
996   if (CGM.getLangOpts().getGC())
997     if (const RecordType *recordType = ivarType->getAs<RecordType>())
998       HasStrong = recordType->getDecl()->hasObjectMember();
999 
1000   // We can never access structs with object members with a native
1001   // access, because we need to use write barriers.  This is what
1002   // objc_copyStruct is for.
1003   if (HasStrong) {
1004     Kind = CopyStruct;
1005     return;
1006   }
1007 
1008   // Otherwise, this is target-dependent and based on the size and
1009   // alignment of the ivar.
1010 
1011   // If the size of the ivar is not a power of two, give up.  We don't
1012   // want to get into the business of doing compare-and-swaps.
1013   if (!IvarSize.isPowerOfTwo()) {
1014     Kind = CopyStruct;
1015     return;
1016   }
1017 
1018   llvm::Triple::ArchType arch =
1019     CGM.getTarget().getTriple().getArch();
1020 
1021   // Most architectures require memory to fit within a single cache
1022   // line, so the alignment has to be at least the size of the access.
1023   // Otherwise we have to grab a lock.
1024   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1025     Kind = CopyStruct;
1026     return;
1027   }
1028 
1029   // If the ivar's size exceeds the architecture's maximum atomic
1030   // access size, we have to use CopyStruct.
1031   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1032     Kind = CopyStruct;
1033     return;
1034   }
1035 
1036   // Otherwise, we can use native loads and stores.
1037   Kind = Native;
1038 }
1039 
1040 /// Generate an Objective-C property getter function.
1041 ///
1042 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1043 /// is illegal within a category.
1044 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1045                                          const ObjCPropertyImplDecl *PID) {
1046   llvm::Constant *AtomicHelperFn =
1047       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1048   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1049   assert(OMD && "Invalid call to generate getter (empty method)");
1050   StartObjCMethod(OMD, IMP->getClassInterface());
1051 
1052   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1053 
1054   FinishFunction(OMD->getEndLoc());
1055 }
1056 
1057 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1058   const Expr *getter = propImpl->getGetterCXXConstructor();
1059   if (!getter) return true;
1060 
1061   // Sema only makes only of these when the ivar has a C++ class type,
1062   // so the form is pretty constrained.
1063 
1064   // If the property has a reference type, we might just be binding a
1065   // reference, in which case the result will be a gl-value.  We should
1066   // treat this as a non-trivial operation.
1067   if (getter->isGLValue())
1068     return false;
1069 
1070   // If we selected a trivial copy-constructor, we're okay.
1071   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1072     return (construct->getConstructor()->isTrivial());
1073 
1074   // The constructor might require cleanups (in which case it's never
1075   // trivial).
1076   assert(isa<ExprWithCleanups>(getter));
1077   return false;
1078 }
1079 
1080 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1081 /// copy the ivar into the resturn slot.
1082 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1083                                           llvm::Value *returnAddr,
1084                                           ObjCIvarDecl *ivar,
1085                                           llvm::Constant *AtomicHelperFn) {
1086   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1087   //                           AtomicHelperFn);
1088   CallArgList args;
1089 
1090   // The 1st argument is the return Slot.
1091   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1092 
1093   // The 2nd argument is the address of the ivar.
1094   llvm::Value *ivarAddr =
1095       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1096           .getPointer(CGF);
1097   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1098   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1099 
1100   // Third argument is the helper function.
1101   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1102 
1103   llvm::FunctionCallee copyCppAtomicObjectFn =
1104       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1105   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1106   CGF.EmitCall(
1107       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1108                callee, ReturnValueSlot(), args);
1109 }
1110 
1111 void
1112 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1113                                         const ObjCPropertyImplDecl *propImpl,
1114                                         const ObjCMethodDecl *GetterMethodDecl,
1115                                         llvm::Constant *AtomicHelperFn) {
1116   // If there's a non-trivial 'get' expression, we just have to emit that.
1117   if (!hasTrivialGetExpr(propImpl)) {
1118     if (!AtomicHelperFn) {
1119       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1120                                      propImpl->getGetterCXXConstructor(),
1121                                      /* NRVOCandidate=*/nullptr);
1122       EmitReturnStmt(*ret);
1123     }
1124     else {
1125       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1126       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1127                                     ivar, AtomicHelperFn);
1128     }
1129     return;
1130   }
1131 
1132   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1133   QualType propType = prop->getType();
1134   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1135 
1136   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1137 
1138   // Pick an implementation strategy.
1139   PropertyImplStrategy strategy(CGM, propImpl);
1140   switch (strategy.getKind()) {
1141   case PropertyImplStrategy::Native: {
1142     // We don't need to do anything for a zero-size struct.
1143     if (strategy.getIvarSize().isZero())
1144       return;
1145 
1146     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1147 
1148     // Currently, all atomic accesses have to be through integer
1149     // types, so there's no point in trying to pick a prettier type.
1150     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1151     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1152     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1153 
1154     // Perform an atomic load.  This does not impose ordering constraints.
1155     Address ivarAddr = LV.getAddress(*this);
1156     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1157     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1158     load->setAtomic(llvm::AtomicOrdering::Unordered);
1159 
1160     // Store that value into the return address.  Doing this with a
1161     // bitcast is likely to produce some pretty ugly IR, but it's not
1162     // the *most* terrible thing in the world.
1163     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1164     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1165     llvm::Value *ivarVal = load;
1166     if (ivarSize > retTySize) {
1167       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1168       ivarVal = Builder.CreateTrunc(load, newTy);
1169       bitcastType = newTy->getPointerTo();
1170     }
1171     Builder.CreateStore(ivarVal,
1172                         Builder.CreateBitCast(ReturnValue, bitcastType));
1173 
1174     // Make sure we don't do an autorelease.
1175     AutoreleaseResult = false;
1176     return;
1177   }
1178 
1179   case PropertyImplStrategy::GetSetProperty: {
1180     llvm::FunctionCallee getPropertyFn =
1181         CGM.getObjCRuntime().GetPropertyGetFunction();
1182     if (!getPropertyFn) {
1183       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1184       return;
1185     }
1186     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1187 
1188     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1189     // FIXME: Can't this be simpler? This might even be worse than the
1190     // corresponding gcc code.
1191     llvm::Value *cmd =
1192       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1193     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1194     llvm::Value *ivarOffset =
1195       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1196 
1197     CallArgList args;
1198     args.add(RValue::get(self), getContext().getObjCIdType());
1199     args.add(RValue::get(cmd), getContext().getObjCSelType());
1200     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1201     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1202              getContext().BoolTy);
1203 
1204     // FIXME: We shouldn't need to get the function info here, the
1205     // runtime already should have computed it to build the function.
1206     llvm::CallBase *CallInstruction;
1207     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1208                              getContext().getObjCIdType(), args),
1209                          callee, ReturnValueSlot(), args, &CallInstruction);
1210     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1211       call->setTailCall();
1212 
1213     // We need to fix the type here. Ivars with copy & retain are
1214     // always objects so we don't need to worry about complex or
1215     // aggregates.
1216     RV = RValue::get(Builder.CreateBitCast(
1217         RV.getScalarVal(),
1218         getTypes().ConvertType(getterMethod->getReturnType())));
1219 
1220     EmitReturnOfRValue(RV, propType);
1221 
1222     // objc_getProperty does an autorelease, so we should suppress ours.
1223     AutoreleaseResult = false;
1224 
1225     return;
1226   }
1227 
1228   case PropertyImplStrategy::CopyStruct:
1229     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1230                          strategy.hasStrongMember());
1231     return;
1232 
1233   case PropertyImplStrategy::Expression:
1234   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1235     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1236 
1237     QualType ivarType = ivar->getType();
1238     switch (getEvaluationKind(ivarType)) {
1239     case TEK_Complex: {
1240       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1241       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1242                          /*init*/ true);
1243       return;
1244     }
1245     case TEK_Aggregate: {
1246       // The return value slot is guaranteed to not be aliased, but
1247       // that's not necessarily the same as "on the stack", so
1248       // we still potentially need objc_memmove_collectable.
1249       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1250                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1251       return;
1252     }
1253     case TEK_Scalar: {
1254       llvm::Value *value;
1255       if (propType->isReferenceType()) {
1256         value = LV.getAddress(*this).getPointer();
1257       } else {
1258         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1259         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1260           if (getLangOpts().ObjCAutoRefCount) {
1261             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1262           } else {
1263             value = EmitARCLoadWeak(LV.getAddress(*this));
1264           }
1265 
1266         // Otherwise we want to do a simple load, suppressing the
1267         // final autorelease.
1268         } else {
1269           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1270           AutoreleaseResult = false;
1271         }
1272 
1273         value = Builder.CreateBitCast(
1274             value, ConvertType(GetterMethodDecl->getReturnType()));
1275       }
1276 
1277       EmitReturnOfRValue(RValue::get(value), propType);
1278       return;
1279     }
1280     }
1281     llvm_unreachable("bad evaluation kind");
1282   }
1283 
1284   }
1285   llvm_unreachable("bad @property implementation strategy!");
1286 }
1287 
1288 /// emitStructSetterCall - Call the runtime function to store the value
1289 /// from the first formal parameter into the given ivar.
1290 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1291                                  ObjCIvarDecl *ivar) {
1292   // objc_copyStruct (&structIvar, &Arg,
1293   //                  sizeof (struct something), true, false);
1294   CallArgList args;
1295 
1296   // The first argument is the address of the ivar.
1297   llvm::Value *ivarAddr =
1298       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1299           .getPointer(CGF);
1300   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1301   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1302 
1303   // The second argument is the address of the parameter variable.
1304   ParmVarDecl *argVar = *OMD->param_begin();
1305   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1306                      argVar->getType().getNonReferenceType(), VK_LValue,
1307                      SourceLocation());
1308   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1309   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1310   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1311 
1312   // The third argument is the sizeof the type.
1313   llvm::Value *size =
1314     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1315   args.add(RValue::get(size), CGF.getContext().getSizeType());
1316 
1317   // The fourth argument is the 'isAtomic' flag.
1318   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1319 
1320   // The fifth argument is the 'hasStrong' flag.
1321   // FIXME: should this really always be false?
1322   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1323 
1324   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1325   CGCallee callee = CGCallee::forDirect(fn);
1326   CGF.EmitCall(
1327       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1328                callee, ReturnValueSlot(), args);
1329 }
1330 
1331 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1332 /// the value from the first formal parameter into the given ivar, using
1333 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1334 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1335                                           ObjCMethodDecl *OMD,
1336                                           ObjCIvarDecl *ivar,
1337                                           llvm::Constant *AtomicHelperFn) {
1338   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1339   //                           AtomicHelperFn);
1340   CallArgList args;
1341 
1342   // The first argument is the address of the ivar.
1343   llvm::Value *ivarAddr =
1344       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1345           .getPointer(CGF);
1346   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1347   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1348 
1349   // The second argument is the address of the parameter variable.
1350   ParmVarDecl *argVar = *OMD->param_begin();
1351   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1352                      argVar->getType().getNonReferenceType(), VK_LValue,
1353                      SourceLocation());
1354   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1355   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1356   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1357 
1358   // Third argument is the helper function.
1359   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1360 
1361   llvm::FunctionCallee fn =
1362       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1363   CGCallee callee = CGCallee::forDirect(fn);
1364   CGF.EmitCall(
1365       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1366                callee, ReturnValueSlot(), args);
1367 }
1368 
1369 
1370 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1371   Expr *setter = PID->getSetterCXXAssignment();
1372   if (!setter) return true;
1373 
1374   // Sema only makes only of these when the ivar has a C++ class type,
1375   // so the form is pretty constrained.
1376 
1377   // An operator call is trivial if the function it calls is trivial.
1378   // This also implies that there's nothing non-trivial going on with
1379   // the arguments, because operator= can only be trivial if it's a
1380   // synthesized assignment operator and therefore both parameters are
1381   // references.
1382   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1383     if (const FunctionDecl *callee
1384           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1385       if (callee->isTrivial())
1386         return true;
1387     return false;
1388   }
1389 
1390   assert(isa<ExprWithCleanups>(setter));
1391   return false;
1392 }
1393 
1394 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1395   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1396     return false;
1397   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1398 }
1399 
1400 void
1401 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1402                                         const ObjCPropertyImplDecl *propImpl,
1403                                         llvm::Constant *AtomicHelperFn) {
1404   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1405   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1406 
1407   // Just use the setter expression if Sema gave us one and it's
1408   // non-trivial.
1409   if (!hasTrivialSetExpr(propImpl)) {
1410     if (!AtomicHelperFn)
1411       // If non-atomic, assignment is called directly.
1412       EmitStmt(propImpl->getSetterCXXAssignment());
1413     else
1414       // If atomic, assignment is called via a locking api.
1415       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1416                                     AtomicHelperFn);
1417     return;
1418   }
1419 
1420   PropertyImplStrategy strategy(CGM, propImpl);
1421   switch (strategy.getKind()) {
1422   case PropertyImplStrategy::Native: {
1423     // We don't need to do anything for a zero-size struct.
1424     if (strategy.getIvarSize().isZero())
1425       return;
1426 
1427     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1428 
1429     LValue ivarLValue =
1430       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1431     Address ivarAddr = ivarLValue.getAddress(*this);
1432 
1433     // Currently, all atomic accesses have to be through integer
1434     // types, so there's no point in trying to pick a prettier type.
1435     llvm::Type *bitcastType =
1436       llvm::Type::getIntNTy(getLLVMContext(),
1437                             getContext().toBits(strategy.getIvarSize()));
1438 
1439     // Cast both arguments to the chosen operation type.
1440     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1441     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1442 
1443     // This bitcast load is likely to cause some nasty IR.
1444     llvm::Value *load = Builder.CreateLoad(argAddr);
1445 
1446     // Perform an atomic store.  There are no memory ordering requirements.
1447     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1448     store->setAtomic(llvm::AtomicOrdering::Unordered);
1449     return;
1450   }
1451 
1452   case PropertyImplStrategy::GetSetProperty:
1453   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1454 
1455     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1456     llvm::FunctionCallee setPropertyFn = nullptr;
1457     if (UseOptimizedSetter(CGM)) {
1458       // 10.8 and iOS 6.0 code and GC is off
1459       setOptimizedPropertyFn =
1460           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1461               strategy.isAtomic(), strategy.isCopy());
1462       if (!setOptimizedPropertyFn) {
1463         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1464         return;
1465       }
1466     }
1467     else {
1468       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1469       if (!setPropertyFn) {
1470         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1471         return;
1472       }
1473     }
1474 
1475     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1476     //                       <is-atomic>, <is-copy>).
1477     llvm::Value *cmd =
1478       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1479     llvm::Value *self =
1480       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1481     llvm::Value *ivarOffset =
1482       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1483     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1484     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1485     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1486 
1487     CallArgList args;
1488     args.add(RValue::get(self), getContext().getObjCIdType());
1489     args.add(RValue::get(cmd), getContext().getObjCSelType());
1490     if (setOptimizedPropertyFn) {
1491       args.add(RValue::get(arg), getContext().getObjCIdType());
1492       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1493       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1494       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1495                callee, ReturnValueSlot(), args);
1496     } else {
1497       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1498       args.add(RValue::get(arg), getContext().getObjCIdType());
1499       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1500                getContext().BoolTy);
1501       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1502                getContext().BoolTy);
1503       // FIXME: We shouldn't need to get the function info here, the runtime
1504       // already should have computed it to build the function.
1505       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1506       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1507                callee, ReturnValueSlot(), args);
1508     }
1509 
1510     return;
1511   }
1512 
1513   case PropertyImplStrategy::CopyStruct:
1514     emitStructSetterCall(*this, setterMethod, ivar);
1515     return;
1516 
1517   case PropertyImplStrategy::Expression:
1518     break;
1519   }
1520 
1521   // Otherwise, fake up some ASTs and emit a normal assignment.
1522   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1523   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1524                    VK_LValue, SourceLocation());
1525   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1526                             CK_LValueToRValue, &self, VK_PRValue,
1527                             FPOptionsOverride());
1528   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1529                           SourceLocation(), SourceLocation(),
1530                           &selfLoad, true, true);
1531 
1532   ParmVarDecl *argDecl = *setterMethod->param_begin();
1533   QualType argType = argDecl->getType().getNonReferenceType();
1534   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1535                   SourceLocation());
1536   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1537                            argType.getUnqualifiedType(), CK_LValueToRValue,
1538                            &arg, VK_PRValue, FPOptionsOverride());
1539 
1540   // The property type can differ from the ivar type in some situations with
1541   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1542   // The following absurdity is just to ensure well-formed IR.
1543   CastKind argCK = CK_NoOp;
1544   if (ivarRef.getType()->isObjCObjectPointerType()) {
1545     if (argLoad.getType()->isObjCObjectPointerType())
1546       argCK = CK_BitCast;
1547     else if (argLoad.getType()->isBlockPointerType())
1548       argCK = CK_BlockPointerToObjCPointerCast;
1549     else
1550       argCK = CK_CPointerToObjCPointerCast;
1551   } else if (ivarRef.getType()->isBlockPointerType()) {
1552      if (argLoad.getType()->isBlockPointerType())
1553       argCK = CK_BitCast;
1554     else
1555       argCK = CK_AnyPointerToBlockPointerCast;
1556   } else if (ivarRef.getType()->isPointerType()) {
1557     argCK = CK_BitCast;
1558   } else if (argLoad.getType()->isAtomicType() &&
1559              !ivarRef.getType()->isAtomicType()) {
1560     argCK = CK_AtomicToNonAtomic;
1561   } else if (!argLoad.getType()->isAtomicType() &&
1562              ivarRef.getType()->isAtomicType()) {
1563     argCK = CK_NonAtomicToAtomic;
1564   }
1565   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1566                            &argLoad, VK_PRValue, FPOptionsOverride());
1567   Expr *finalArg = &argLoad;
1568   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1569                                            argLoad.getType()))
1570     finalArg = &argCast;
1571 
1572   BinaryOperator *assign = BinaryOperator::Create(
1573       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1574       VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1575   EmitStmt(assign);
1576 }
1577 
1578 /// Generate an Objective-C property setter function.
1579 ///
1580 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1581 /// is illegal within a category.
1582 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1583                                          const ObjCPropertyImplDecl *PID) {
1584   llvm::Constant *AtomicHelperFn =
1585       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1586   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1587   assert(OMD && "Invalid call to generate setter (empty method)");
1588   StartObjCMethod(OMD, IMP->getClassInterface());
1589 
1590   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1591 
1592   FinishFunction(OMD->getEndLoc());
1593 }
1594 
1595 namespace {
1596   struct DestroyIvar final : EHScopeStack::Cleanup {
1597   private:
1598     llvm::Value *addr;
1599     const ObjCIvarDecl *ivar;
1600     CodeGenFunction::Destroyer *destroyer;
1601     bool useEHCleanupForArray;
1602   public:
1603     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1604                 CodeGenFunction::Destroyer *destroyer,
1605                 bool useEHCleanupForArray)
1606       : addr(addr), ivar(ivar), destroyer(destroyer),
1607         useEHCleanupForArray(useEHCleanupForArray) {}
1608 
1609     void Emit(CodeGenFunction &CGF, Flags flags) override {
1610       LValue lvalue
1611         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1612       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1613                       flags.isForNormalCleanup() && useEHCleanupForArray);
1614     }
1615   };
1616 }
1617 
1618 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1619 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1620                                       Address addr,
1621                                       QualType type) {
1622   llvm::Value *null = getNullForVariable(addr);
1623   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1624 }
1625 
1626 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1627                                   ObjCImplementationDecl *impl) {
1628   CodeGenFunction::RunCleanupsScope scope(CGF);
1629 
1630   llvm::Value *self = CGF.LoadObjCSelf();
1631 
1632   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1633   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1634        ivar; ivar = ivar->getNextIvar()) {
1635     QualType type = ivar->getType();
1636 
1637     // Check whether the ivar is a destructible type.
1638     QualType::DestructionKind dtorKind = type.isDestructedType();
1639     if (!dtorKind) continue;
1640 
1641     CodeGenFunction::Destroyer *destroyer = nullptr;
1642 
1643     // Use a call to objc_storeStrong to destroy strong ivars, for the
1644     // general benefit of the tools.
1645     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1646       destroyer = destroyARCStrongWithStore;
1647 
1648     // Otherwise use the default for the destruction kind.
1649     } else {
1650       destroyer = CGF.getDestroyer(dtorKind);
1651     }
1652 
1653     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1654 
1655     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1656                                          cleanupKind & EHCleanup);
1657   }
1658 
1659   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1660 }
1661 
1662 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1663                                                  ObjCMethodDecl *MD,
1664                                                  bool ctor) {
1665   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1666   StartObjCMethod(MD, IMP->getClassInterface());
1667 
1668   // Emit .cxx_construct.
1669   if (ctor) {
1670     // Suppress the final autorelease in ARC.
1671     AutoreleaseResult = false;
1672 
1673     for (const auto *IvarInit : IMP->inits()) {
1674       FieldDecl *Field = IvarInit->getAnyMember();
1675       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1676       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1677                                     LoadObjCSelf(), Ivar, 0);
1678       EmitAggExpr(IvarInit->getInit(),
1679                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1680                                           AggValueSlot::DoesNotNeedGCBarriers,
1681                                           AggValueSlot::IsNotAliased,
1682                                           AggValueSlot::DoesNotOverlap));
1683     }
1684     // constructor returns 'self'.
1685     CodeGenTypes &Types = CGM.getTypes();
1686     QualType IdTy(CGM.getContext().getObjCIdType());
1687     llvm::Value *SelfAsId =
1688       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1689     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1690 
1691   // Emit .cxx_destruct.
1692   } else {
1693     emitCXXDestructMethod(*this, IMP);
1694   }
1695   FinishFunction();
1696 }
1697 
1698 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1699   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1700   DeclRefExpr DRE(getContext(), Self,
1701                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1702                   Self->getType(), VK_LValue, SourceLocation());
1703   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1704 }
1705 
1706 QualType CodeGenFunction::TypeOfSelfObject() {
1707   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1708   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1709   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1710     getContext().getCanonicalType(selfDecl->getType()));
1711   return PTy->getPointeeType();
1712 }
1713 
1714 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1715   llvm::FunctionCallee EnumerationMutationFnPtr =
1716       CGM.getObjCRuntime().EnumerationMutationFunction();
1717   if (!EnumerationMutationFnPtr) {
1718     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1719     return;
1720   }
1721   CGCallee EnumerationMutationFn =
1722     CGCallee::forDirect(EnumerationMutationFnPtr);
1723 
1724   CGDebugInfo *DI = getDebugInfo();
1725   if (DI)
1726     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1727 
1728   RunCleanupsScope ForScope(*this);
1729 
1730   // The local variable comes into scope immediately.
1731   AutoVarEmission variable = AutoVarEmission::invalid();
1732   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1733     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1734 
1735   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1736 
1737   // Fast enumeration state.
1738   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1739   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1740   EmitNullInitialization(StatePtr, StateTy);
1741 
1742   // Number of elements in the items array.
1743   static const unsigned NumItems = 16;
1744 
1745   // Fetch the countByEnumeratingWithState:objects:count: selector.
1746   IdentifierInfo *II[] = {
1747     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1748     &CGM.getContext().Idents.get("objects"),
1749     &CGM.getContext().Idents.get("count")
1750   };
1751   Selector FastEnumSel =
1752     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1753 
1754   QualType ItemsTy =
1755     getContext().getConstantArrayType(getContext().getObjCIdType(),
1756                                       llvm::APInt(32, NumItems), nullptr,
1757                                       ArrayType::Normal, 0);
1758   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1759 
1760   // Emit the collection pointer.  In ARC, we do a retain.
1761   llvm::Value *Collection;
1762   if (getLangOpts().ObjCAutoRefCount) {
1763     Collection = EmitARCRetainScalarExpr(S.getCollection());
1764 
1765     // Enter a cleanup to do the release.
1766     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1767   } else {
1768     Collection = EmitScalarExpr(S.getCollection());
1769   }
1770 
1771   // The 'continue' label needs to appear within the cleanup for the
1772   // collection object.
1773   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1774 
1775   // Send it our message:
1776   CallArgList Args;
1777 
1778   // The first argument is a temporary of the enumeration-state type.
1779   Args.add(RValue::get(StatePtr.getPointer()),
1780            getContext().getPointerType(StateTy));
1781 
1782   // The second argument is a temporary array with space for NumItems
1783   // pointers.  We'll actually be loading elements from the array
1784   // pointer written into the control state; this buffer is so that
1785   // collections that *aren't* backed by arrays can still queue up
1786   // batches of elements.
1787   Args.add(RValue::get(ItemsPtr.getPointer()),
1788            getContext().getPointerType(ItemsTy));
1789 
1790   // The third argument is the capacity of that temporary array.
1791   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1792   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1793   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1794 
1795   // Start the enumeration.
1796   RValue CountRV =
1797       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1798                                                getContext().getNSUIntegerType(),
1799                                                FastEnumSel, Collection, Args);
1800 
1801   // The initial number of objects that were returned in the buffer.
1802   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1803 
1804   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1805   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1806 
1807   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1808 
1809   // If the limit pointer was zero to begin with, the collection is
1810   // empty; skip all this. Set the branch weight assuming this has the same
1811   // probability of exiting the loop as any other loop exit.
1812   uint64_t EntryCount = getCurrentProfileCount();
1813   Builder.CreateCondBr(
1814       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1815       LoopInitBB,
1816       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1817 
1818   // Otherwise, initialize the loop.
1819   EmitBlock(LoopInitBB);
1820 
1821   // Save the initial mutations value.  This is the value at an
1822   // address that was written into the state object by
1823   // countByEnumeratingWithState:objects:count:.
1824   Address StateMutationsPtrPtr =
1825       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1826   llvm::Value *StateMutationsPtr
1827     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1828 
1829   llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1830   llvm::Value *initialMutations =
1831     Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1832                               getPointerAlign(), "forcoll.initial-mutations");
1833 
1834   // Start looping.  This is the point we return to whenever we have a
1835   // fresh, non-empty batch of objects.
1836   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1837   EmitBlock(LoopBodyBB);
1838 
1839   // The current index into the buffer.
1840   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1841   index->addIncoming(zero, LoopInitBB);
1842 
1843   // The current buffer size.
1844   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1845   count->addIncoming(initialBufferLimit, LoopInitBB);
1846 
1847   incrementProfileCounter(&S);
1848 
1849   // Check whether the mutations value has changed from where it was
1850   // at start.  StateMutationsPtr should actually be invariant between
1851   // refreshes.
1852   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1853   llvm::Value *currentMutations
1854     = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1855                                 getPointerAlign(), "statemutations");
1856 
1857   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1858   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1859 
1860   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1861                        WasNotMutatedBB, WasMutatedBB);
1862 
1863   // If so, call the enumeration-mutation function.
1864   EmitBlock(WasMutatedBB);
1865   llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1866   llvm::Value *V =
1867     Builder.CreateBitCast(Collection, ObjCIdType);
1868   CallArgList Args2;
1869   Args2.add(RValue::get(V), getContext().getObjCIdType());
1870   // FIXME: We shouldn't need to get the function info here, the runtime already
1871   // should have computed it to build the function.
1872   EmitCall(
1873           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1874            EnumerationMutationFn, ReturnValueSlot(), Args2);
1875 
1876   // Otherwise, or if the mutation function returns, just continue.
1877   EmitBlock(WasNotMutatedBB);
1878 
1879   // Initialize the element variable.
1880   RunCleanupsScope elementVariableScope(*this);
1881   bool elementIsVariable;
1882   LValue elementLValue;
1883   QualType elementType;
1884   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1885     // Initialize the variable, in case it's a __block variable or something.
1886     EmitAutoVarInit(variable);
1887 
1888     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1889     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1890                         D->getType(), VK_LValue, SourceLocation());
1891     elementLValue = EmitLValue(&tempDRE);
1892     elementType = D->getType();
1893     elementIsVariable = true;
1894 
1895     if (D->isARCPseudoStrong())
1896       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1897   } else {
1898     elementLValue = LValue(); // suppress warning
1899     elementType = cast<Expr>(S.getElement())->getType();
1900     elementIsVariable = false;
1901   }
1902   llvm::Type *convertedElementType = ConvertType(elementType);
1903 
1904   // Fetch the buffer out of the enumeration state.
1905   // TODO: this pointer should actually be invariant between
1906   // refreshes, which would help us do certain loop optimizations.
1907   Address StateItemsPtr =
1908       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1909   llvm::Value *EnumStateItems =
1910     Builder.CreateLoad(StateItemsPtr, "stateitems");
1911 
1912   // Fetch the value at the current index from the buffer.
1913   llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1914       EnumStateItems->getType()->getPointerElementType(), EnumStateItems, index,
1915       "currentitem.ptr");
1916   llvm::Value *CurrentItem =
1917     Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1918 
1919   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1920     // Before using an item from the collection, check that the implicit cast
1921     // from id to the element type is valid. This is done with instrumentation
1922     // roughly corresponding to:
1923     //
1924     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1925     const ObjCObjectPointerType *ObjPtrTy =
1926         elementType->getAsObjCInterfacePointerType();
1927     const ObjCInterfaceType *InterfaceTy =
1928         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1929     if (InterfaceTy) {
1930       SanitizerScope SanScope(this);
1931       auto &C = CGM.getContext();
1932       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1933       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1934       CallArgList IsKindOfClassArgs;
1935       llvm::Value *Cls =
1936           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1937       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1938       llvm::Value *IsClass =
1939           CGM.getObjCRuntime()
1940               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1941                                    IsKindOfClassSel, CurrentItem,
1942                                    IsKindOfClassArgs)
1943               .getScalarVal();
1944       llvm::Constant *StaticData[] = {
1945           EmitCheckSourceLocation(S.getBeginLoc()),
1946           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1947       EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1948                 SanitizerHandler::InvalidObjCCast,
1949                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1950     }
1951   }
1952 
1953   // Cast that value to the right type.
1954   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1955                                       "currentitem");
1956 
1957   // Make sure we have an l-value.  Yes, this gets evaluated every
1958   // time through the loop.
1959   if (!elementIsVariable) {
1960     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1961     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1962   } else {
1963     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1964                            /*isInit*/ true);
1965   }
1966 
1967   // If we do have an element variable, this assignment is the end of
1968   // its initialization.
1969   if (elementIsVariable)
1970     EmitAutoVarCleanups(variable);
1971 
1972   // Perform the loop body, setting up break and continue labels.
1973   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1974   {
1975     RunCleanupsScope Scope(*this);
1976     EmitStmt(S.getBody());
1977   }
1978   BreakContinueStack.pop_back();
1979 
1980   // Destroy the element variable now.
1981   elementVariableScope.ForceCleanup();
1982 
1983   // Check whether there are more elements.
1984   EmitBlock(AfterBody.getBlock());
1985 
1986   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1987 
1988   // First we check in the local buffer.
1989   llvm::Value *indexPlusOne =
1990       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1991 
1992   // If we haven't overrun the buffer yet, we can continue.
1993   // Set the branch weights based on the simplifying assumption that this is
1994   // like a while-loop, i.e., ignoring that the false branch fetches more
1995   // elements and then returns to the loop.
1996   Builder.CreateCondBr(
1997       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1998       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1999 
2000   index->addIncoming(indexPlusOne, AfterBody.getBlock());
2001   count->addIncoming(count, AfterBody.getBlock());
2002 
2003   // Otherwise, we have to fetch more elements.
2004   EmitBlock(FetchMoreBB);
2005 
2006   CountRV =
2007       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2008                                                getContext().getNSUIntegerType(),
2009                                                FastEnumSel, Collection, Args);
2010 
2011   // If we got a zero count, we're done.
2012   llvm::Value *refetchCount = CountRV.getScalarVal();
2013 
2014   // (note that the message send might split FetchMoreBB)
2015   index->addIncoming(zero, Builder.GetInsertBlock());
2016   count->addIncoming(refetchCount, Builder.GetInsertBlock());
2017 
2018   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2019                        EmptyBB, LoopBodyBB);
2020 
2021   // No more elements.
2022   EmitBlock(EmptyBB);
2023 
2024   if (!elementIsVariable) {
2025     // If the element was not a declaration, set it to be null.
2026 
2027     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2028     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2029     EmitStoreThroughLValue(RValue::get(null), elementLValue);
2030   }
2031 
2032   if (DI)
2033     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2034 
2035   ForScope.ForceCleanup();
2036   EmitBlock(LoopEnd.getBlock());
2037 }
2038 
2039 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2040   CGM.getObjCRuntime().EmitTryStmt(*this, S);
2041 }
2042 
2043 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2044   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2045 }
2046 
2047 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2048                                               const ObjCAtSynchronizedStmt &S) {
2049   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2050 }
2051 
2052 namespace {
2053   struct CallObjCRelease final : EHScopeStack::Cleanup {
2054     CallObjCRelease(llvm::Value *object) : object(object) {}
2055     llvm::Value *object;
2056 
2057     void Emit(CodeGenFunction &CGF, Flags flags) override {
2058       // Releases at the end of the full-expression are imprecise.
2059       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2060     }
2061   };
2062 }
2063 
2064 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2065 /// release at the end of the full-expression.
2066 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2067                                                     llvm::Value *object) {
2068   // If we're in a conditional branch, we need to make the cleanup
2069   // conditional.
2070   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2071   return object;
2072 }
2073 
2074 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2075                                                            llvm::Value *value) {
2076   return EmitARCRetainAutorelease(type, value);
2077 }
2078 
2079 /// Given a number of pointers, inform the optimizer that they're
2080 /// being intrinsically used up until this point in the program.
2081 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2082   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2083   if (!fn)
2084     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2085 
2086   // This isn't really a "runtime" function, but as an intrinsic it
2087   // doesn't really matter as long as we align things up.
2088   EmitNounwindRuntimeCall(fn, values);
2089 }
2090 
2091 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2092 /// that has operand bundle "clang.arc.attachedcall".
2093 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2094   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2095   if (!fn)
2096     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2097   EmitNounwindRuntimeCall(fn, values);
2098 }
2099 
2100 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2101   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2102     // If the target runtime doesn't naturally support ARC, emit weak
2103     // references to the runtime support library.  We don't really
2104     // permit this to fail, but we need a particular relocation style.
2105     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2106         !CGM.getTriple().isOSBinFormatCOFF()) {
2107       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2108     }
2109   }
2110 }
2111 
2112 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2113                                          llvm::FunctionCallee RTF) {
2114   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2115 }
2116 
2117 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2118                                        CodeGenModule &CGM) {
2119   llvm::Function *fn = CGM.getIntrinsic(IntID);
2120   setARCRuntimeFunctionLinkage(CGM, fn);
2121   return fn;
2122 }
2123 
2124 /// Perform an operation having the signature
2125 ///   i8* (i8*)
2126 /// where a null input causes a no-op and returns null.
2127 static llvm::Value *emitARCValueOperation(
2128     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2129     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2130     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2131   if (isa<llvm::ConstantPointerNull>(value))
2132     return value;
2133 
2134   if (!fn)
2135     fn = getARCIntrinsic(IntID, CGF.CGM);
2136 
2137   // Cast the argument to 'id'.
2138   llvm::Type *origType = returnType ? returnType : value->getType();
2139   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2140 
2141   // Call the function.
2142   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2143   call->setTailCallKind(tailKind);
2144 
2145   // Cast the result back to the original type.
2146   return CGF.Builder.CreateBitCast(call, origType);
2147 }
2148 
2149 /// Perform an operation having the following signature:
2150 ///   i8* (i8**)
2151 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2152                                          llvm::Function *&fn,
2153                                          llvm::Intrinsic::ID IntID) {
2154   if (!fn)
2155     fn = getARCIntrinsic(IntID, CGF.CGM);
2156 
2157   // Cast the argument to 'id*'.
2158   llvm::Type *origType = addr.getElementType();
2159   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2160 
2161   // Call the function.
2162   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2163 
2164   // Cast the result back to a dereference of the original type.
2165   if (origType != CGF.Int8PtrTy)
2166     result = CGF.Builder.CreateBitCast(result, origType);
2167 
2168   return result;
2169 }
2170 
2171 /// Perform an operation having the following signature:
2172 ///   i8* (i8**, i8*)
2173 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2174                                           llvm::Value *value,
2175                                           llvm::Function *&fn,
2176                                           llvm::Intrinsic::ID IntID,
2177                                           bool ignored) {
2178   assert(addr.getElementType() == value->getType());
2179 
2180   if (!fn)
2181     fn = getARCIntrinsic(IntID, CGF.CGM);
2182 
2183   llvm::Type *origType = value->getType();
2184 
2185   llvm::Value *args[] = {
2186     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2187     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2188   };
2189   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2190 
2191   if (ignored) return nullptr;
2192 
2193   return CGF.Builder.CreateBitCast(result, origType);
2194 }
2195 
2196 /// Perform an operation having the following signature:
2197 ///   void (i8**, i8**)
2198 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2199                                  llvm::Function *&fn,
2200                                  llvm::Intrinsic::ID IntID) {
2201   assert(dst.getType() == src.getType());
2202 
2203   if (!fn)
2204     fn = getARCIntrinsic(IntID, CGF.CGM);
2205 
2206   llvm::Value *args[] = {
2207     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2208     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2209   };
2210   CGF.EmitNounwindRuntimeCall(fn, args);
2211 }
2212 
2213 /// Perform an operation having the signature
2214 ///   i8* (i8*)
2215 /// where a null input causes a no-op and returns null.
2216 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2217                                            llvm::Value *value,
2218                                            llvm::Type *returnType,
2219                                            llvm::FunctionCallee &fn,
2220                                            StringRef fnName) {
2221   if (isa<llvm::ConstantPointerNull>(value))
2222     return value;
2223 
2224   if (!fn) {
2225     llvm::FunctionType *fnType =
2226       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2227     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2228 
2229     // We have Native ARC, so set nonlazybind attribute for performance
2230     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2231       if (fnName == "objc_retain")
2232         f->addFnAttr(llvm::Attribute::NonLazyBind);
2233   }
2234 
2235   // Cast the argument to 'id'.
2236   llvm::Type *origType = returnType ? returnType : value->getType();
2237   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2238 
2239   // Call the function.
2240   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2241 
2242   // Mark calls to objc_autorelease as tail on the assumption that methods
2243   // overriding autorelease do not touch anything on the stack.
2244   if (fnName == "objc_autorelease")
2245     if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2246       Call->setTailCall();
2247 
2248   // Cast the result back to the original type.
2249   return CGF.Builder.CreateBitCast(Inst, origType);
2250 }
2251 
2252 /// Produce the code to do a retain.  Based on the type, calls one of:
2253 ///   call i8* \@objc_retain(i8* %value)
2254 ///   call i8* \@objc_retainBlock(i8* %value)
2255 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2256   if (type->isBlockPointerType())
2257     return EmitARCRetainBlock(value, /*mandatory*/ false);
2258   else
2259     return EmitARCRetainNonBlock(value);
2260 }
2261 
2262 /// Retain the given object, with normal retain semantics.
2263 ///   call i8* \@objc_retain(i8* %value)
2264 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2265   return emitARCValueOperation(*this, value, nullptr,
2266                                CGM.getObjCEntrypoints().objc_retain,
2267                                llvm::Intrinsic::objc_retain);
2268 }
2269 
2270 /// Retain the given block, with _Block_copy semantics.
2271 ///   call i8* \@objc_retainBlock(i8* %value)
2272 ///
2273 /// \param mandatory - If false, emit the call with metadata
2274 /// indicating that it's okay for the optimizer to eliminate this call
2275 /// if it can prove that the block never escapes except down the stack.
2276 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2277                                                  bool mandatory) {
2278   llvm::Value *result
2279     = emitARCValueOperation(*this, value, nullptr,
2280                             CGM.getObjCEntrypoints().objc_retainBlock,
2281                             llvm::Intrinsic::objc_retainBlock);
2282 
2283   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2284   // tell the optimizer that it doesn't need to do this copy if the
2285   // block doesn't escape, where being passed as an argument doesn't
2286   // count as escaping.
2287   if (!mandatory && isa<llvm::Instruction>(result)) {
2288     llvm::CallInst *call
2289       = cast<llvm::CallInst>(result->stripPointerCasts());
2290     assert(call->getCalledOperand() ==
2291            CGM.getObjCEntrypoints().objc_retainBlock);
2292 
2293     call->setMetadata("clang.arc.copy_on_escape",
2294                       llvm::MDNode::get(Builder.getContext(), None));
2295   }
2296 
2297   return result;
2298 }
2299 
2300 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2301   // Fetch the void(void) inline asm which marks that we're going to
2302   // do something with the autoreleased return value.
2303   llvm::InlineAsm *&marker
2304     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2305   if (!marker) {
2306     StringRef assembly
2307       = CGF.CGM.getTargetCodeGenInfo()
2308            .getARCRetainAutoreleasedReturnValueMarker();
2309 
2310     // If we have an empty assembly string, there's nothing to do.
2311     if (assembly.empty()) {
2312 
2313     // Otherwise, at -O0, build an inline asm that we're going to call
2314     // in a moment.
2315     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2316       llvm::FunctionType *type =
2317         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2318 
2319       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2320 
2321     // If we're at -O1 and above, we don't want to litter the code
2322     // with this marker yet, so leave a breadcrumb for the ARC
2323     // optimizer to pick up.
2324     } else {
2325       const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2326       if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2327         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2328         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2329                                           retainRVMarkerKey, str);
2330       }
2331     }
2332   }
2333 
2334   // Call the marker asm if we made one, which we do only at -O0.
2335   if (marker)
2336     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2337 }
2338 
2339 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2340                                                bool IsRetainRV,
2341                                                CodeGenFunction &CGF) {
2342   emitAutoreleasedReturnValueMarker(CGF);
2343 
2344   // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2345   // retainRV or claimRV calls in the IR. We currently do this only when the
2346   // optimization level isn't -O0 since global-isel, which is currently run at
2347   // -O0, doesn't know about the operand bundle.
2348   ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2349   llvm::Function *&EP = IsRetainRV
2350                             ? EPs.objc_retainAutoreleasedReturnValue
2351                             : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2352   llvm::Intrinsic::ID IID =
2353       IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2354                  : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2355   EP = getARCIntrinsic(IID, CGF.CGM);
2356 
2357   llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2358 
2359   // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2360   // the target backend knows how to handle the operand bundle.
2361   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2362       (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2363     llvm::Value *bundleArgs[] = {EP};
2364     llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2365     auto *oldCall = cast<llvm::CallBase>(value);
2366     llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2367         oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2368     newCall->copyMetadata(*oldCall);
2369     oldCall->replaceAllUsesWith(newCall);
2370     oldCall->eraseFromParent();
2371     CGF.EmitARCNoopIntrinsicUse(newCall);
2372     return newCall;
2373   }
2374 
2375   bool isNoTail =
2376       CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2377   llvm::CallInst::TailCallKind tailKind =
2378       isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2379   return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2380 }
2381 
2382 /// Retain the given object which is the result of a function call.
2383 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2384 ///
2385 /// Yes, this function name is one character away from a different
2386 /// call with completely different semantics.
2387 llvm::Value *
2388 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2389   return emitOptimizedARCReturnCall(value, true, *this);
2390 }
2391 
2392 /// Claim a possibly-autoreleased return value at +0.  This is only
2393 /// valid to do in contexts which do not rely on the retain to keep
2394 /// the object valid for all of its uses; for example, when
2395 /// the value is ignored, or when it is being assigned to an
2396 /// __unsafe_unretained variable.
2397 ///
2398 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2399 llvm::Value *
2400 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2401   return emitOptimizedARCReturnCall(value, false, *this);
2402 }
2403 
2404 /// Release the given object.
2405 ///   call void \@objc_release(i8* %value)
2406 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2407                                      ARCPreciseLifetime_t precise) {
2408   if (isa<llvm::ConstantPointerNull>(value)) return;
2409 
2410   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2411   if (!fn)
2412     fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2413 
2414   // Cast the argument to 'id'.
2415   value = Builder.CreateBitCast(value, Int8PtrTy);
2416 
2417   // Call objc_release.
2418   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2419 
2420   if (precise == ARCImpreciseLifetime) {
2421     call->setMetadata("clang.imprecise_release",
2422                       llvm::MDNode::get(Builder.getContext(), None));
2423   }
2424 }
2425 
2426 /// Destroy a __strong variable.
2427 ///
2428 /// At -O0, emit a call to store 'null' into the address;
2429 /// instrumenting tools prefer this because the address is exposed,
2430 /// but it's relatively cumbersome to optimize.
2431 ///
2432 /// At -O1 and above, just load and call objc_release.
2433 ///
2434 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2435 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2436                                            ARCPreciseLifetime_t precise) {
2437   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2438     llvm::Value *null = getNullForVariable(addr);
2439     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2440     return;
2441   }
2442 
2443   llvm::Value *value = Builder.CreateLoad(addr);
2444   EmitARCRelease(value, precise);
2445 }
2446 
2447 /// Store into a strong object.  Always calls this:
2448 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2449 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2450                                                      llvm::Value *value,
2451                                                      bool ignored) {
2452   assert(addr.getElementType() == value->getType());
2453 
2454   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2455   if (!fn)
2456     fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2457 
2458   llvm::Value *args[] = {
2459     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2460     Builder.CreateBitCast(value, Int8PtrTy)
2461   };
2462   EmitNounwindRuntimeCall(fn, args);
2463 
2464   if (ignored) return nullptr;
2465   return value;
2466 }
2467 
2468 /// Store into a strong object.  Sometimes calls this:
2469 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2470 /// Other times, breaks it down into components.
2471 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2472                                                  llvm::Value *newValue,
2473                                                  bool ignored) {
2474   QualType type = dst.getType();
2475   bool isBlock = type->isBlockPointerType();
2476 
2477   // Use a store barrier at -O0 unless this is a block type or the
2478   // lvalue is inadequately aligned.
2479   if (shouldUseFusedARCCalls() &&
2480       !isBlock &&
2481       (dst.getAlignment().isZero() ||
2482        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2483     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2484   }
2485 
2486   // Otherwise, split it out.
2487 
2488   // Retain the new value.
2489   newValue = EmitARCRetain(type, newValue);
2490 
2491   // Read the old value.
2492   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2493 
2494   // Store.  We do this before the release so that any deallocs won't
2495   // see the old value.
2496   EmitStoreOfScalar(newValue, dst);
2497 
2498   // Finally, release the old value.
2499   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2500 
2501   return newValue;
2502 }
2503 
2504 /// Autorelease the given object.
2505 ///   call i8* \@objc_autorelease(i8* %value)
2506 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2507   return emitARCValueOperation(*this, value, nullptr,
2508                                CGM.getObjCEntrypoints().objc_autorelease,
2509                                llvm::Intrinsic::objc_autorelease);
2510 }
2511 
2512 /// Autorelease the given object.
2513 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2514 llvm::Value *
2515 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2516   return emitARCValueOperation(*this, value, nullptr,
2517                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2518                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2519                                llvm::CallInst::TCK_Tail);
2520 }
2521 
2522 /// Do a fused retain/autorelease of the given object.
2523 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2524 llvm::Value *
2525 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2526   return emitARCValueOperation(*this, value, nullptr,
2527                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2528                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2529                                llvm::CallInst::TCK_Tail);
2530 }
2531 
2532 /// Do a fused retain/autorelease of the given object.
2533 ///   call i8* \@objc_retainAutorelease(i8* %value)
2534 /// or
2535 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2536 ///   call i8* \@objc_autorelease(i8* %retain)
2537 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2538                                                        llvm::Value *value) {
2539   if (!type->isBlockPointerType())
2540     return EmitARCRetainAutoreleaseNonBlock(value);
2541 
2542   if (isa<llvm::ConstantPointerNull>(value)) return value;
2543 
2544   llvm::Type *origType = value->getType();
2545   value = Builder.CreateBitCast(value, Int8PtrTy);
2546   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2547   value = EmitARCAutorelease(value);
2548   return Builder.CreateBitCast(value, origType);
2549 }
2550 
2551 /// Do a fused retain/autorelease of the given object.
2552 ///   call i8* \@objc_retainAutorelease(i8* %value)
2553 llvm::Value *
2554 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2555   return emitARCValueOperation(*this, value, nullptr,
2556                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2557                                llvm::Intrinsic::objc_retainAutorelease);
2558 }
2559 
2560 /// i8* \@objc_loadWeak(i8** %addr)
2561 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2562 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2563   return emitARCLoadOperation(*this, addr,
2564                               CGM.getObjCEntrypoints().objc_loadWeak,
2565                               llvm::Intrinsic::objc_loadWeak);
2566 }
2567 
2568 /// i8* \@objc_loadWeakRetained(i8** %addr)
2569 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2570   return emitARCLoadOperation(*this, addr,
2571                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2572                               llvm::Intrinsic::objc_loadWeakRetained);
2573 }
2574 
2575 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2576 /// Returns %value.
2577 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2578                                                llvm::Value *value,
2579                                                bool ignored) {
2580   return emitARCStoreOperation(*this, addr, value,
2581                                CGM.getObjCEntrypoints().objc_storeWeak,
2582                                llvm::Intrinsic::objc_storeWeak, ignored);
2583 }
2584 
2585 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2586 /// Returns %value.  %addr is known to not have a current weak entry.
2587 /// Essentially equivalent to:
2588 ///   *addr = nil; objc_storeWeak(addr, value);
2589 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2590   // If we're initializing to null, just write null to memory; no need
2591   // to get the runtime involved.  But don't do this if optimization
2592   // is enabled, because accounting for this would make the optimizer
2593   // much more complicated.
2594   if (isa<llvm::ConstantPointerNull>(value) &&
2595       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2596     Builder.CreateStore(value, addr);
2597     return;
2598   }
2599 
2600   emitARCStoreOperation(*this, addr, value,
2601                         CGM.getObjCEntrypoints().objc_initWeak,
2602                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2603 }
2604 
2605 /// void \@objc_destroyWeak(i8** %addr)
2606 /// Essentially objc_storeWeak(addr, nil).
2607 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2608   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2609   if (!fn)
2610     fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2611 
2612   // Cast the argument to 'id*'.
2613   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2614 
2615   EmitNounwindRuntimeCall(fn, addr.getPointer());
2616 }
2617 
2618 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2619 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2620 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2621 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2622   emitARCCopyOperation(*this, dst, src,
2623                        CGM.getObjCEntrypoints().objc_moveWeak,
2624                        llvm::Intrinsic::objc_moveWeak);
2625 }
2626 
2627 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2628 /// Disregards the current value in %dest.  Essentially
2629 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2630 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2631   emitARCCopyOperation(*this, dst, src,
2632                        CGM.getObjCEntrypoints().objc_copyWeak,
2633                        llvm::Intrinsic::objc_copyWeak);
2634 }
2635 
2636 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2637                                             Address SrcAddr) {
2638   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2639   Object = EmitObjCConsumeObject(Ty, Object);
2640   EmitARCStoreWeak(DstAddr, Object, false);
2641 }
2642 
2643 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2644                                             Address SrcAddr) {
2645   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2646   Object = EmitObjCConsumeObject(Ty, Object);
2647   EmitARCStoreWeak(DstAddr, Object, false);
2648   EmitARCDestroyWeak(SrcAddr);
2649 }
2650 
2651 /// Produce the code to do a objc_autoreleasepool_push.
2652 ///   call i8* \@objc_autoreleasePoolPush(void)
2653 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2654   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2655   if (!fn)
2656     fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2657 
2658   return EmitNounwindRuntimeCall(fn);
2659 }
2660 
2661 /// Produce the code to do a primitive release.
2662 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2663 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2664   assert(value->getType() == Int8PtrTy);
2665 
2666   if (getInvokeDest()) {
2667     // Call the runtime method not the intrinsic if we are handling exceptions
2668     llvm::FunctionCallee &fn =
2669         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2670     if (!fn) {
2671       llvm::FunctionType *fnType =
2672         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2673       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2674       setARCRuntimeFunctionLinkage(CGM, fn);
2675     }
2676 
2677     // objc_autoreleasePoolPop can throw.
2678     EmitRuntimeCallOrInvoke(fn, value);
2679   } else {
2680     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2681     if (!fn)
2682       fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2683 
2684     EmitRuntimeCall(fn, value);
2685   }
2686 }
2687 
2688 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2689 /// Which is: [[NSAutoreleasePool alloc] init];
2690 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2691 /// init is declared as: - (id) init; in its NSObject super class.
2692 ///
2693 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2694   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2695   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2696   // [NSAutoreleasePool alloc]
2697   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2698   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2699   CallArgList Args;
2700   RValue AllocRV =
2701     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2702                                 getContext().getObjCIdType(),
2703                                 AllocSel, Receiver, Args);
2704 
2705   // [Receiver init]
2706   Receiver = AllocRV.getScalarVal();
2707   II = &CGM.getContext().Idents.get("init");
2708   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2709   RValue InitRV =
2710     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2711                                 getContext().getObjCIdType(),
2712                                 InitSel, Receiver, Args);
2713   return InitRV.getScalarVal();
2714 }
2715 
2716 /// Allocate the given objc object.
2717 ///   call i8* \@objc_alloc(i8* %value)
2718 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2719                                             llvm::Type *resultType) {
2720   return emitObjCValueOperation(*this, value, resultType,
2721                                 CGM.getObjCEntrypoints().objc_alloc,
2722                                 "objc_alloc");
2723 }
2724 
2725 /// Allocate the given objc object.
2726 ///   call i8* \@objc_allocWithZone(i8* %value)
2727 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2728                                                     llvm::Type *resultType) {
2729   return emitObjCValueOperation(*this, value, resultType,
2730                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2731                                 "objc_allocWithZone");
2732 }
2733 
2734 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2735                                                 llvm::Type *resultType) {
2736   return emitObjCValueOperation(*this, value, resultType,
2737                                 CGM.getObjCEntrypoints().objc_alloc_init,
2738                                 "objc_alloc_init");
2739 }
2740 
2741 /// Produce the code to do a primitive release.
2742 /// [tmp drain];
2743 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2744   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2745   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2746   CallArgList Args;
2747   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2748                               getContext().VoidTy, DrainSel, Arg, Args);
2749 }
2750 
2751 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2752                                               Address addr,
2753                                               QualType type) {
2754   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2755 }
2756 
2757 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2758                                                 Address addr,
2759                                                 QualType type) {
2760   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2761 }
2762 
2763 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2764                                      Address addr,
2765                                      QualType type) {
2766   CGF.EmitARCDestroyWeak(addr);
2767 }
2768 
2769 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2770                                           QualType type) {
2771   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2772   CGF.EmitARCIntrinsicUse(value);
2773 }
2774 
2775 /// Autorelease the given object.
2776 ///   call i8* \@objc_autorelease(i8* %value)
2777 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2778                                                   llvm::Type *returnType) {
2779   return emitObjCValueOperation(
2780       *this, value, returnType,
2781       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2782       "objc_autorelease");
2783 }
2784 
2785 /// Retain the given object, with normal retain semantics.
2786 ///   call i8* \@objc_retain(i8* %value)
2787 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2788                                                      llvm::Type *returnType) {
2789   return emitObjCValueOperation(
2790       *this, value, returnType,
2791       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2792 }
2793 
2794 /// Release the given object.
2795 ///   call void \@objc_release(i8* %value)
2796 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2797                                       ARCPreciseLifetime_t precise) {
2798   if (isa<llvm::ConstantPointerNull>(value)) return;
2799 
2800   llvm::FunctionCallee &fn =
2801       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2802   if (!fn) {
2803     llvm::FunctionType *fnType =
2804         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2805     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2806     setARCRuntimeFunctionLinkage(CGM, fn);
2807     // We have Native ARC, so set nonlazybind attribute for performance
2808     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2809       f->addFnAttr(llvm::Attribute::NonLazyBind);
2810   }
2811 
2812   // Cast the argument to 'id'.
2813   value = Builder.CreateBitCast(value, Int8PtrTy);
2814 
2815   // Call objc_release.
2816   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2817 
2818   if (precise == ARCImpreciseLifetime) {
2819     call->setMetadata("clang.imprecise_release",
2820                       llvm::MDNode::get(Builder.getContext(), None));
2821   }
2822 }
2823 
2824 namespace {
2825   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2826     llvm::Value *Token;
2827 
2828     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2829 
2830     void Emit(CodeGenFunction &CGF, Flags flags) override {
2831       CGF.EmitObjCAutoreleasePoolPop(Token);
2832     }
2833   };
2834   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2835     llvm::Value *Token;
2836 
2837     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2838 
2839     void Emit(CodeGenFunction &CGF, Flags flags) override {
2840       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2841     }
2842   };
2843 }
2844 
2845 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2846   if (CGM.getLangOpts().ObjCAutoRefCount)
2847     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2848   else
2849     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2850 }
2851 
2852 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2853   switch (lifetime) {
2854   case Qualifiers::OCL_None:
2855   case Qualifiers::OCL_ExplicitNone:
2856   case Qualifiers::OCL_Strong:
2857   case Qualifiers::OCL_Autoreleasing:
2858     return true;
2859 
2860   case Qualifiers::OCL_Weak:
2861     return false;
2862   }
2863 
2864   llvm_unreachable("impossible lifetime!");
2865 }
2866 
2867 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2868                                                   LValue lvalue,
2869                                                   QualType type) {
2870   llvm::Value *result;
2871   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2872   if (shouldRetain) {
2873     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2874   } else {
2875     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2876     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2877   }
2878   return TryEmitResult(result, !shouldRetain);
2879 }
2880 
2881 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2882                                                   const Expr *e) {
2883   e = e->IgnoreParens();
2884   QualType type = e->getType();
2885 
2886   // If we're loading retained from a __strong xvalue, we can avoid
2887   // an extra retain/release pair by zeroing out the source of this
2888   // "move" operation.
2889   if (e->isXValue() &&
2890       !type.isConstQualified() &&
2891       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2892     // Emit the lvalue.
2893     LValue lv = CGF.EmitLValue(e);
2894 
2895     // Load the object pointer.
2896     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2897                                                SourceLocation()).getScalarVal();
2898 
2899     // Set the source pointer to NULL.
2900     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2901 
2902     return TryEmitResult(result, true);
2903   }
2904 
2905   // As a very special optimization, in ARC++, if the l-value is the
2906   // result of a non-volatile assignment, do a simple retain of the
2907   // result of the call to objc_storeWeak instead of reloading.
2908   if (CGF.getLangOpts().CPlusPlus &&
2909       !type.isVolatileQualified() &&
2910       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2911       isa<BinaryOperator>(e) &&
2912       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2913     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2914 
2915   // Try to emit code for scalar constant instead of emitting LValue and
2916   // loading it because we are not guaranteed to have an l-value. One of such
2917   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2918   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2919     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2920     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2921       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2922                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2923   }
2924 
2925   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2926 }
2927 
2928 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2929                                          llvm::Value *value)>
2930   ValueTransform;
2931 
2932 /// Insert code immediately after a call.
2933 
2934 // FIXME: We should find a way to emit the runtime call immediately
2935 // after the call is emitted to eliminate the need for this function.
2936 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2937                                               llvm::Value *value,
2938                                               ValueTransform doAfterCall,
2939                                               ValueTransform doFallback) {
2940   CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2941   auto *callBase = dyn_cast<llvm::CallBase>(value);
2942 
2943   if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2944     // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2945     value = doFallback(CGF, value);
2946   } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2947     // Place the retain immediately following the call.
2948     CGF.Builder.SetInsertPoint(call->getParent(),
2949                                ++llvm::BasicBlock::iterator(call));
2950     value = doAfterCall(CGF, value);
2951   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2952     // Place the retain at the beginning of the normal destination block.
2953     llvm::BasicBlock *BB = invoke->getNormalDest();
2954     CGF.Builder.SetInsertPoint(BB, BB->begin());
2955     value = doAfterCall(CGF, value);
2956 
2957   // Bitcasts can arise because of related-result returns.  Rewrite
2958   // the operand.
2959   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2960     // Change the insert point to avoid emitting the fall-back call after the
2961     // bitcast.
2962     CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2963     llvm::Value *operand = bitcast->getOperand(0);
2964     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2965     bitcast->setOperand(0, operand);
2966     value = bitcast;
2967   } else {
2968     auto *phi = dyn_cast<llvm::PHINode>(value);
2969     if (phi && phi->getNumIncomingValues() == 2 &&
2970         isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2971         isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2972       // Handle phi instructions that are generated when it's necessary to check
2973       // whether the receiver of a message is null.
2974       llvm::Value *inVal = phi->getIncomingValue(0);
2975       inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
2976       phi->setIncomingValue(0, inVal);
2977       value = phi;
2978     } else {
2979       // Generic fall-back case.
2980       // Retain using the non-block variant: we never need to do a copy
2981       // of a block that's been returned to us.
2982       value = doFallback(CGF, value);
2983     }
2984   }
2985 
2986   CGF.Builder.restoreIP(ip);
2987   return value;
2988 }
2989 
2990 /// Given that the given expression is some sort of call (which does
2991 /// not return retained), emit a retain following it.
2992 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2993                                             const Expr *e) {
2994   llvm::Value *value = CGF.EmitScalarExpr(e);
2995   return emitARCOperationAfterCall(CGF, value,
2996            [](CodeGenFunction &CGF, llvm::Value *value) {
2997              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2998            },
2999            [](CodeGenFunction &CGF, llvm::Value *value) {
3000              return CGF.EmitARCRetainNonBlock(value);
3001            });
3002 }
3003 
3004 /// Given that the given expression is some sort of call (which does
3005 /// not return retained), perform an unsafeClaim following it.
3006 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3007                                                  const Expr *e) {
3008   llvm::Value *value = CGF.EmitScalarExpr(e);
3009   return emitARCOperationAfterCall(CGF, value,
3010            [](CodeGenFunction &CGF, llvm::Value *value) {
3011              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3012            },
3013            [](CodeGenFunction &CGF, llvm::Value *value) {
3014              return value;
3015            });
3016 }
3017 
3018 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3019                                                       bool allowUnsafeClaim) {
3020   if (allowUnsafeClaim &&
3021       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3022     return emitARCUnsafeClaimCallResult(*this, E);
3023   } else {
3024     llvm::Value *value = emitARCRetainCallResult(*this, E);
3025     return EmitObjCConsumeObject(E->getType(), value);
3026   }
3027 }
3028 
3029 /// Determine whether it might be important to emit a separate
3030 /// objc_retain_block on the result of the given expression, or
3031 /// whether it's okay to just emit it in a +1 context.
3032 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3033   assert(e->getType()->isBlockPointerType());
3034   e = e->IgnoreParens();
3035 
3036   // For future goodness, emit block expressions directly in +1
3037   // contexts if we can.
3038   if (isa<BlockExpr>(e))
3039     return false;
3040 
3041   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3042     switch (cast->getCastKind()) {
3043     // Emitting these operations in +1 contexts is goodness.
3044     case CK_LValueToRValue:
3045     case CK_ARCReclaimReturnedObject:
3046     case CK_ARCConsumeObject:
3047     case CK_ARCProduceObject:
3048       return false;
3049 
3050     // These operations preserve a block type.
3051     case CK_NoOp:
3052     case CK_BitCast:
3053       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3054 
3055     // These operations are known to be bad (or haven't been considered).
3056     case CK_AnyPointerToBlockPointerCast:
3057     default:
3058       return true;
3059     }
3060   }
3061 
3062   return true;
3063 }
3064 
3065 namespace {
3066 /// A CRTP base class for emitting expressions of retainable object
3067 /// pointer type in ARC.
3068 template <typename Impl, typename Result> class ARCExprEmitter {
3069 protected:
3070   CodeGenFunction &CGF;
3071   Impl &asImpl() { return *static_cast<Impl*>(this); }
3072 
3073   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3074 
3075 public:
3076   Result visit(const Expr *e);
3077   Result visitCastExpr(const CastExpr *e);
3078   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3079   Result visitBlockExpr(const BlockExpr *e);
3080   Result visitBinaryOperator(const BinaryOperator *e);
3081   Result visitBinAssign(const BinaryOperator *e);
3082   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3083   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3084   Result visitBinAssignWeak(const BinaryOperator *e);
3085   Result visitBinAssignStrong(const BinaryOperator *e);
3086 
3087   // Minimal implementation:
3088   //   Result visitLValueToRValue(const Expr *e)
3089   //   Result visitConsumeObject(const Expr *e)
3090   //   Result visitExtendBlockObject(const Expr *e)
3091   //   Result visitReclaimReturnedObject(const Expr *e)
3092   //   Result visitCall(const Expr *e)
3093   //   Result visitExpr(const Expr *e)
3094   //
3095   //   Result emitBitCast(Result result, llvm::Type *resultType)
3096   //   llvm::Value *getValueOfResult(Result result)
3097 };
3098 }
3099 
3100 /// Try to emit a PseudoObjectExpr under special ARC rules.
3101 ///
3102 /// This massively duplicates emitPseudoObjectRValue.
3103 template <typename Impl, typename Result>
3104 Result
3105 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3106   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3107 
3108   // Find the result expression.
3109   const Expr *resultExpr = E->getResultExpr();
3110   assert(resultExpr);
3111   Result result;
3112 
3113   for (PseudoObjectExpr::const_semantics_iterator
3114          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3115     const Expr *semantic = *i;
3116 
3117     // If this semantic expression is an opaque value, bind it
3118     // to the result of its source expression.
3119     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3120       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3121       OVMA opaqueData;
3122 
3123       // If this semantic is the result of the pseudo-object
3124       // expression, try to evaluate the source as +1.
3125       if (ov == resultExpr) {
3126         assert(!OVMA::shouldBindAsLValue(ov));
3127         result = asImpl().visit(ov->getSourceExpr());
3128         opaqueData = OVMA::bind(CGF, ov,
3129                             RValue::get(asImpl().getValueOfResult(result)));
3130 
3131       // Otherwise, just bind it.
3132       } else {
3133         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3134       }
3135       opaques.push_back(opaqueData);
3136 
3137     // Otherwise, if the expression is the result, evaluate it
3138     // and remember the result.
3139     } else if (semantic == resultExpr) {
3140       result = asImpl().visit(semantic);
3141 
3142     // Otherwise, evaluate the expression in an ignored context.
3143     } else {
3144       CGF.EmitIgnoredExpr(semantic);
3145     }
3146   }
3147 
3148   // Unbind all the opaques now.
3149   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3150     opaques[i].unbind(CGF);
3151 
3152   return result;
3153 }
3154 
3155 template <typename Impl, typename Result>
3156 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3157   // The default implementation just forwards the expression to visitExpr.
3158   return asImpl().visitExpr(e);
3159 }
3160 
3161 template <typename Impl, typename Result>
3162 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3163   switch (e->getCastKind()) {
3164 
3165   // No-op casts don't change the type, so we just ignore them.
3166   case CK_NoOp:
3167     return asImpl().visit(e->getSubExpr());
3168 
3169   // These casts can change the type.
3170   case CK_CPointerToObjCPointerCast:
3171   case CK_BlockPointerToObjCPointerCast:
3172   case CK_AnyPointerToBlockPointerCast:
3173   case CK_BitCast: {
3174     llvm::Type *resultType = CGF.ConvertType(e->getType());
3175     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3176     Result result = asImpl().visit(e->getSubExpr());
3177     return asImpl().emitBitCast(result, resultType);
3178   }
3179 
3180   // Handle some casts specially.
3181   case CK_LValueToRValue:
3182     return asImpl().visitLValueToRValue(e->getSubExpr());
3183   case CK_ARCConsumeObject:
3184     return asImpl().visitConsumeObject(e->getSubExpr());
3185   case CK_ARCExtendBlockObject:
3186     return asImpl().visitExtendBlockObject(e->getSubExpr());
3187   case CK_ARCReclaimReturnedObject:
3188     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3189 
3190   // Otherwise, use the default logic.
3191   default:
3192     return asImpl().visitExpr(e);
3193   }
3194 }
3195 
3196 template <typename Impl, typename Result>
3197 Result
3198 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3199   switch (e->getOpcode()) {
3200   case BO_Comma:
3201     CGF.EmitIgnoredExpr(e->getLHS());
3202     CGF.EnsureInsertPoint();
3203     return asImpl().visit(e->getRHS());
3204 
3205   case BO_Assign:
3206     return asImpl().visitBinAssign(e);
3207 
3208   default:
3209     return asImpl().visitExpr(e);
3210   }
3211 }
3212 
3213 template <typename Impl, typename Result>
3214 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3215   switch (e->getLHS()->getType().getObjCLifetime()) {
3216   case Qualifiers::OCL_ExplicitNone:
3217     return asImpl().visitBinAssignUnsafeUnretained(e);
3218 
3219   case Qualifiers::OCL_Weak:
3220     return asImpl().visitBinAssignWeak(e);
3221 
3222   case Qualifiers::OCL_Autoreleasing:
3223     return asImpl().visitBinAssignAutoreleasing(e);
3224 
3225   case Qualifiers::OCL_Strong:
3226     return asImpl().visitBinAssignStrong(e);
3227 
3228   case Qualifiers::OCL_None:
3229     return asImpl().visitExpr(e);
3230   }
3231   llvm_unreachable("bad ObjC ownership qualifier");
3232 }
3233 
3234 /// The default rule for __unsafe_unretained emits the RHS recursively,
3235 /// stores into the unsafe variable, and propagates the result outward.
3236 template <typename Impl, typename Result>
3237 Result ARCExprEmitter<Impl,Result>::
3238                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3239   // Recursively emit the RHS.
3240   // For __block safety, do this before emitting the LHS.
3241   Result result = asImpl().visit(e->getRHS());
3242 
3243   // Perform the store.
3244   LValue lvalue =
3245     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3246   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3247                              lvalue);
3248 
3249   return result;
3250 }
3251 
3252 template <typename Impl, typename Result>
3253 Result
3254 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3255   return asImpl().visitExpr(e);
3256 }
3257 
3258 template <typename Impl, typename Result>
3259 Result
3260 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3261   return asImpl().visitExpr(e);
3262 }
3263 
3264 template <typename Impl, typename Result>
3265 Result
3266 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3267   return asImpl().visitExpr(e);
3268 }
3269 
3270 /// The general expression-emission logic.
3271 template <typename Impl, typename Result>
3272 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3273   // We should *never* see a nested full-expression here, because if
3274   // we fail to emit at +1, our caller must not retain after we close
3275   // out the full-expression.  This isn't as important in the unsafe
3276   // emitter.
3277   assert(!isa<ExprWithCleanups>(e));
3278 
3279   // Look through parens, __extension__, generic selection, etc.
3280   e = e->IgnoreParens();
3281 
3282   // Handle certain kinds of casts.
3283   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3284     return asImpl().visitCastExpr(ce);
3285 
3286   // Handle the comma operator.
3287   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3288     return asImpl().visitBinaryOperator(op);
3289 
3290   // TODO: handle conditional operators here
3291 
3292   // For calls and message sends, use the retained-call logic.
3293   // Delegate inits are a special case in that they're the only
3294   // returns-retained expression that *isn't* surrounded by
3295   // a consume.
3296   } else if (isa<CallExpr>(e) ||
3297              (isa<ObjCMessageExpr>(e) &&
3298               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3299     return asImpl().visitCall(e);
3300 
3301   // Look through pseudo-object expressions.
3302   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3303     return asImpl().visitPseudoObjectExpr(pseudo);
3304   } else if (auto *be = dyn_cast<BlockExpr>(e))
3305     return asImpl().visitBlockExpr(be);
3306 
3307   return asImpl().visitExpr(e);
3308 }
3309 
3310 namespace {
3311 
3312 /// An emitter for +1 results.
3313 struct ARCRetainExprEmitter :
3314   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3315 
3316   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3317 
3318   llvm::Value *getValueOfResult(TryEmitResult result) {
3319     return result.getPointer();
3320   }
3321 
3322   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3323     llvm::Value *value = result.getPointer();
3324     value = CGF.Builder.CreateBitCast(value, resultType);
3325     result.setPointer(value);
3326     return result;
3327   }
3328 
3329   TryEmitResult visitLValueToRValue(const Expr *e) {
3330     return tryEmitARCRetainLoadOfScalar(CGF, e);
3331   }
3332 
3333   /// For consumptions, just emit the subexpression and thus elide
3334   /// the retain/release pair.
3335   TryEmitResult visitConsumeObject(const Expr *e) {
3336     llvm::Value *result = CGF.EmitScalarExpr(e);
3337     return TryEmitResult(result, true);
3338   }
3339 
3340   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3341     TryEmitResult result = visitExpr(e);
3342     // Avoid the block-retain if this is a block literal that doesn't need to be
3343     // copied to the heap.
3344     if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3345         e->getBlockDecl()->canAvoidCopyToHeap())
3346       result.setInt(true);
3347     return result;
3348   }
3349 
3350   /// Block extends are net +0.  Naively, we could just recurse on
3351   /// the subexpression, but actually we need to ensure that the
3352   /// value is copied as a block, so there's a little filter here.
3353   TryEmitResult visitExtendBlockObject(const Expr *e) {
3354     llvm::Value *result; // will be a +0 value
3355 
3356     // If we can't safely assume the sub-expression will produce a
3357     // block-copied value, emit the sub-expression at +0.
3358     if (shouldEmitSeparateBlockRetain(e)) {
3359       result = CGF.EmitScalarExpr(e);
3360 
3361     // Otherwise, try to emit the sub-expression at +1 recursively.
3362     } else {
3363       TryEmitResult subresult = asImpl().visit(e);
3364 
3365       // If that produced a retained value, just use that.
3366       if (subresult.getInt()) {
3367         return subresult;
3368       }
3369 
3370       // Otherwise it's +0.
3371       result = subresult.getPointer();
3372     }
3373 
3374     // Retain the object as a block.
3375     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3376     return TryEmitResult(result, true);
3377   }
3378 
3379   /// For reclaims, emit the subexpression as a retained call and
3380   /// skip the consumption.
3381   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3382     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3383     return TryEmitResult(result, true);
3384   }
3385 
3386   /// When we have an undecorated call, retroactively do a claim.
3387   TryEmitResult visitCall(const Expr *e) {
3388     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3389     return TryEmitResult(result, true);
3390   }
3391 
3392   // TODO: maybe special-case visitBinAssignWeak?
3393 
3394   TryEmitResult visitExpr(const Expr *e) {
3395     // We didn't find an obvious production, so emit what we've got and
3396     // tell the caller that we didn't manage to retain.
3397     llvm::Value *result = CGF.EmitScalarExpr(e);
3398     return TryEmitResult(result, false);
3399   }
3400 };
3401 }
3402 
3403 static TryEmitResult
3404 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3405   return ARCRetainExprEmitter(CGF).visit(e);
3406 }
3407 
3408 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3409                                                 LValue lvalue,
3410                                                 QualType type) {
3411   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3412   llvm::Value *value = result.getPointer();
3413   if (!result.getInt())
3414     value = CGF.EmitARCRetain(type, value);
3415   return value;
3416 }
3417 
3418 /// EmitARCRetainScalarExpr - Semantically equivalent to
3419 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3420 /// best-effort attempt to peephole expressions that naturally produce
3421 /// retained objects.
3422 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3423   // The retain needs to happen within the full-expression.
3424   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3425     RunCleanupsScope scope(*this);
3426     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3427   }
3428 
3429   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3430   llvm::Value *value = result.getPointer();
3431   if (!result.getInt())
3432     value = EmitARCRetain(e->getType(), value);
3433   return value;
3434 }
3435 
3436 llvm::Value *
3437 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3438   // The retain needs to happen within the full-expression.
3439   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3440     RunCleanupsScope scope(*this);
3441     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3442   }
3443 
3444   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3445   llvm::Value *value = result.getPointer();
3446   if (result.getInt())
3447     value = EmitARCAutorelease(value);
3448   else
3449     value = EmitARCRetainAutorelease(e->getType(), value);
3450   return value;
3451 }
3452 
3453 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3454   llvm::Value *result;
3455   bool doRetain;
3456 
3457   if (shouldEmitSeparateBlockRetain(e)) {
3458     result = EmitScalarExpr(e);
3459     doRetain = true;
3460   } else {
3461     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3462     result = subresult.getPointer();
3463     doRetain = !subresult.getInt();
3464   }
3465 
3466   if (doRetain)
3467     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3468   return EmitObjCConsumeObject(e->getType(), result);
3469 }
3470 
3471 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3472   // In ARC, retain and autorelease the expression.
3473   if (getLangOpts().ObjCAutoRefCount) {
3474     // Do so before running any cleanups for the full-expression.
3475     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3476     return EmitARCRetainAutoreleaseScalarExpr(expr);
3477   }
3478 
3479   // Otherwise, use the normal scalar-expression emission.  The
3480   // exception machinery doesn't do anything special with the
3481   // exception like retaining it, so there's no safety associated with
3482   // only running cleanups after the throw has started, and when it
3483   // matters it tends to be substantially inferior code.
3484   return EmitScalarExpr(expr);
3485 }
3486 
3487 namespace {
3488 
3489 /// An emitter for assigning into an __unsafe_unretained context.
3490 struct ARCUnsafeUnretainedExprEmitter :
3491   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3492 
3493   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3494 
3495   llvm::Value *getValueOfResult(llvm::Value *value) {
3496     return value;
3497   }
3498 
3499   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3500     return CGF.Builder.CreateBitCast(value, resultType);
3501   }
3502 
3503   llvm::Value *visitLValueToRValue(const Expr *e) {
3504     return CGF.EmitScalarExpr(e);
3505   }
3506 
3507   /// For consumptions, just emit the subexpression and perform the
3508   /// consumption like normal.
3509   llvm::Value *visitConsumeObject(const Expr *e) {
3510     llvm::Value *value = CGF.EmitScalarExpr(e);
3511     return CGF.EmitObjCConsumeObject(e->getType(), value);
3512   }
3513 
3514   /// No special logic for block extensions.  (This probably can't
3515   /// actually happen in this emitter, though.)
3516   llvm::Value *visitExtendBlockObject(const Expr *e) {
3517     return CGF.EmitARCExtendBlockObject(e);
3518   }
3519 
3520   /// For reclaims, perform an unsafeClaim if that's enabled.
3521   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3522     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3523   }
3524 
3525   /// When we have an undecorated call, just emit it without adding
3526   /// the unsafeClaim.
3527   llvm::Value *visitCall(const Expr *e) {
3528     return CGF.EmitScalarExpr(e);
3529   }
3530 
3531   /// Just do normal scalar emission in the default case.
3532   llvm::Value *visitExpr(const Expr *e) {
3533     return CGF.EmitScalarExpr(e);
3534   }
3535 };
3536 }
3537 
3538 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3539                                                       const Expr *e) {
3540   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3541 }
3542 
3543 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3544 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3545 /// avoiding any spurious retains, including by performing reclaims
3546 /// with objc_unsafeClaimAutoreleasedReturnValue.
3547 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3548   // Look through full-expressions.
3549   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3550     RunCleanupsScope scope(*this);
3551     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3552   }
3553 
3554   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3555 }
3556 
3557 std::pair<LValue,llvm::Value*>
3558 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3559                                               bool ignored) {
3560   // Evaluate the RHS first.  If we're ignoring the result, assume
3561   // that we can emit at an unsafe +0.
3562   llvm::Value *value;
3563   if (ignored) {
3564     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3565   } else {
3566     value = EmitScalarExpr(e->getRHS());
3567   }
3568 
3569   // Emit the LHS and perform the store.
3570   LValue lvalue = EmitLValue(e->getLHS());
3571   EmitStoreOfScalar(value, lvalue);
3572 
3573   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3574 }
3575 
3576 std::pair<LValue,llvm::Value*>
3577 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3578                                     bool ignored) {
3579   // Evaluate the RHS first.
3580   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3581   llvm::Value *value = result.getPointer();
3582 
3583   bool hasImmediateRetain = result.getInt();
3584 
3585   // If we didn't emit a retained object, and the l-value is of block
3586   // type, then we need to emit the block-retain immediately in case
3587   // it invalidates the l-value.
3588   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3589     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3590     hasImmediateRetain = true;
3591   }
3592 
3593   LValue lvalue = EmitLValue(e->getLHS());
3594 
3595   // If the RHS was emitted retained, expand this.
3596   if (hasImmediateRetain) {
3597     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3598     EmitStoreOfScalar(value, lvalue);
3599     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3600   } else {
3601     value = EmitARCStoreStrong(lvalue, value, ignored);
3602   }
3603 
3604   return std::pair<LValue,llvm::Value*>(lvalue, value);
3605 }
3606 
3607 std::pair<LValue,llvm::Value*>
3608 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3609   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3610   LValue lvalue = EmitLValue(e->getLHS());
3611 
3612   EmitStoreOfScalar(value, lvalue);
3613 
3614   return std::pair<LValue,llvm::Value*>(lvalue, value);
3615 }
3616 
3617 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3618                                           const ObjCAutoreleasePoolStmt &ARPS) {
3619   const Stmt *subStmt = ARPS.getSubStmt();
3620   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3621 
3622   CGDebugInfo *DI = getDebugInfo();
3623   if (DI)
3624     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3625 
3626   // Keep track of the current cleanup stack depth.
3627   RunCleanupsScope Scope(*this);
3628   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3629     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3630     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3631   } else {
3632     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3633     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3634   }
3635 
3636   for (const auto *I : S.body())
3637     EmitStmt(I);
3638 
3639   if (DI)
3640     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3641 }
3642 
3643 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3644 /// make sure it survives garbage collection until this point.
3645 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3646   // We just use an inline assembly.
3647   llvm::FunctionType *extenderType
3648     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3649   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3650                                                    /* assembly */ "",
3651                                                    /* constraints */ "r",
3652                                                    /* side effects */ true);
3653 
3654   object = Builder.CreateBitCast(object, VoidPtrTy);
3655   EmitNounwindRuntimeCall(extender, object);
3656 }
3657 
3658 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3659 /// non-trivial copy assignment function, produce following helper function.
3660 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3661 ///
3662 llvm::Constant *
3663 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3664                                         const ObjCPropertyImplDecl *PID) {
3665   if (!getLangOpts().CPlusPlus ||
3666       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3667     return nullptr;
3668   QualType Ty = PID->getPropertyIvarDecl()->getType();
3669   if (!Ty->isRecordType())
3670     return nullptr;
3671   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3672   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3673     return nullptr;
3674   llvm::Constant *HelperFn = nullptr;
3675   if (hasTrivialSetExpr(PID))
3676     return nullptr;
3677   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3678   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3679     return HelperFn;
3680 
3681   ASTContext &C = getContext();
3682   IdentifierInfo *II
3683     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3684 
3685   QualType ReturnTy = C.VoidTy;
3686   QualType DestTy = C.getPointerType(Ty);
3687   QualType SrcTy = Ty;
3688   SrcTy.addConst();
3689   SrcTy = C.getPointerType(SrcTy);
3690 
3691   SmallVector<QualType, 2> ArgTys;
3692   ArgTys.push_back(DestTy);
3693   ArgTys.push_back(SrcTy);
3694   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3695 
3696   FunctionDecl *FD = FunctionDecl::Create(
3697       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3698       FunctionTy, nullptr, SC_Static, false, false, false);
3699 
3700   FunctionArgList args;
3701   ParmVarDecl *Params[2];
3702   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3703       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3704       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3705       /*DefArg=*/nullptr);
3706   args.push_back(Params[0] = DstDecl);
3707   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3708       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3709       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3710       /*DefArg=*/nullptr);
3711   args.push_back(Params[1] = SrcDecl);
3712   FD->setParams(Params);
3713 
3714   const CGFunctionInfo &FI =
3715       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3716 
3717   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3718 
3719   llvm::Function *Fn =
3720     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3721                            "__assign_helper_atomic_property_",
3722                            &CGM.getModule());
3723 
3724   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3725 
3726   StartFunction(FD, ReturnTy, Fn, FI, args);
3727 
3728   DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3729   UnaryOperator *DST = UnaryOperator::Create(
3730       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3731       SourceLocation(), false, FPOptionsOverride());
3732 
3733   DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3734   UnaryOperator *SRC = UnaryOperator::Create(
3735       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3736       SourceLocation(), false, FPOptionsOverride());
3737 
3738   Expr *Args[2] = {DST, SRC};
3739   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3740   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3741       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3742       VK_LValue, SourceLocation(), FPOptionsOverride());
3743 
3744   EmitStmt(TheCall);
3745 
3746   FinishFunction();
3747   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3748   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3749   return HelperFn;
3750 }
3751 
3752 llvm::Constant *
3753 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3754                                             const ObjCPropertyImplDecl *PID) {
3755   if (!getLangOpts().CPlusPlus ||
3756       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3757     return nullptr;
3758   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3759   QualType Ty = PD->getType();
3760   if (!Ty->isRecordType())
3761     return nullptr;
3762   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3763     return nullptr;
3764   llvm::Constant *HelperFn = nullptr;
3765   if (hasTrivialGetExpr(PID))
3766     return nullptr;
3767   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3768   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3769     return HelperFn;
3770 
3771   ASTContext &C = getContext();
3772   IdentifierInfo *II =
3773       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3774 
3775   QualType ReturnTy = C.VoidTy;
3776   QualType DestTy = C.getPointerType(Ty);
3777   QualType SrcTy = Ty;
3778   SrcTy.addConst();
3779   SrcTy = C.getPointerType(SrcTy);
3780 
3781   SmallVector<QualType, 2> ArgTys;
3782   ArgTys.push_back(DestTy);
3783   ArgTys.push_back(SrcTy);
3784   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3785 
3786   FunctionDecl *FD = FunctionDecl::Create(
3787       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3788       FunctionTy, nullptr, SC_Static, false, false, false);
3789 
3790   FunctionArgList args;
3791   ParmVarDecl *Params[2];
3792   ParmVarDecl *DstDecl = ParmVarDecl::Create(
3793       C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3794       C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3795       /*DefArg=*/nullptr);
3796   args.push_back(Params[0] = DstDecl);
3797   ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3798       C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3799       C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3800       /*DefArg=*/nullptr);
3801   args.push_back(Params[1] = SrcDecl);
3802   FD->setParams(Params);
3803 
3804   const CGFunctionInfo &FI =
3805       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3806 
3807   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3808 
3809   llvm::Function *Fn = llvm::Function::Create(
3810       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3811       &CGM.getModule());
3812 
3813   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3814 
3815   StartFunction(FD, ReturnTy, Fn, FI, args);
3816 
3817   DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3818                       SourceLocation());
3819 
3820   UnaryOperator *SRC = UnaryOperator::Create(
3821       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3822       SourceLocation(), false, FPOptionsOverride());
3823 
3824   CXXConstructExpr *CXXConstExpr =
3825     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3826 
3827   SmallVector<Expr*, 4> ConstructorArgs;
3828   ConstructorArgs.push_back(SRC);
3829   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3830                          CXXConstExpr->arg_end());
3831 
3832   CXXConstructExpr *TheCXXConstructExpr =
3833     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3834                              CXXConstExpr->getConstructor(),
3835                              CXXConstExpr->isElidable(),
3836                              ConstructorArgs,
3837                              CXXConstExpr->hadMultipleCandidates(),
3838                              CXXConstExpr->isListInitialization(),
3839                              CXXConstExpr->isStdInitListInitialization(),
3840                              CXXConstExpr->requiresZeroInitialization(),
3841                              CXXConstExpr->getConstructionKind(),
3842                              SourceRange());
3843 
3844   DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3845                       SourceLocation());
3846 
3847   RValue DV = EmitAnyExpr(&DstExpr);
3848   CharUnits Alignment
3849     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3850   EmitAggExpr(TheCXXConstructExpr,
3851               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3852                                     Qualifiers(),
3853                                     AggValueSlot::IsDestructed,
3854                                     AggValueSlot::DoesNotNeedGCBarriers,
3855                                     AggValueSlot::IsNotAliased,
3856                                     AggValueSlot::DoesNotOverlap));
3857 
3858   FinishFunction();
3859   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3860   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3861   return HelperFn;
3862 }
3863 
3864 llvm::Value *
3865 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3866   // Get selectors for retain/autorelease.
3867   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3868   Selector CopySelector =
3869       getContext().Selectors.getNullarySelector(CopyID);
3870   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3871   Selector AutoreleaseSelector =
3872       getContext().Selectors.getNullarySelector(AutoreleaseID);
3873 
3874   // Emit calls to retain/autorelease.
3875   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3876   llvm::Value *Val = Block;
3877   RValue Result;
3878   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3879                                        Ty, CopySelector,
3880                                        Val, CallArgList(), nullptr, nullptr);
3881   Val = Result.getScalarVal();
3882   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3883                                        Ty, AutoreleaseSelector,
3884                                        Val, CallArgList(), nullptr, nullptr);
3885   Val = Result.getScalarVal();
3886   return Val;
3887 }
3888 
3889 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3890   switch (TT.getOS()) {
3891   case llvm::Triple::Darwin:
3892   case llvm::Triple::MacOSX:
3893     return llvm::MachO::PLATFORM_MACOS;
3894   case llvm::Triple::IOS:
3895     return llvm::MachO::PLATFORM_IOS;
3896   case llvm::Triple::TvOS:
3897     return llvm::MachO::PLATFORM_TVOS;
3898   case llvm::Triple::WatchOS:
3899     return llvm::MachO::PLATFORM_WATCHOS;
3900   default:
3901     return /*Unknown platform*/ 0;
3902   }
3903 }
3904 
3905 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3906                                                  const VersionTuple &Version) {
3907   CodeGenModule &CGM = CGF.CGM;
3908   // Note: we intend to support multi-platform version checks, so reserve
3909   // the room for a dual platform checking invocation that will be
3910   // implemented in the future.
3911   llvm::SmallVector<llvm::Value *, 8> Args;
3912 
3913   auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3914     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3915     Args.push_back(
3916         llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3917     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3918     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.getValueOr(0)));
3919     Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.getValueOr(0)));
3920   };
3921 
3922   assert(!Version.empty() && "unexpected empty version");
3923   EmitArgs(Version, CGM.getTarget().getTriple());
3924 
3925   if (!CGM.IsPlatformVersionAtLeastFn) {
3926     llvm::FunctionType *FTy = llvm::FunctionType::get(
3927         CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3928         false);
3929     CGM.IsPlatformVersionAtLeastFn =
3930         CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3931   }
3932 
3933   llvm::Value *Check =
3934       CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3935   return CGF.Builder.CreateICmpNE(Check,
3936                                   llvm::Constant::getNullValue(CGM.Int32Ty));
3937 }
3938 
3939 llvm::Value *
3940 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3941   // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3942   if (CGM.getTarget().getTriple().isOSDarwin())
3943     return emitIsPlatformVersionAtLeast(*this, Version);
3944 
3945   if (!CGM.IsOSVersionAtLeastFn) {
3946     llvm::FunctionType *FTy =
3947         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3948     CGM.IsOSVersionAtLeastFn =
3949         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3950   }
3951 
3952   Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3953   llvm::Value *Args[] = {
3954       llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
3955       llvm::ConstantInt::get(CGM.Int32Ty, Min.getValueOr(0)),
3956       llvm::ConstantInt::get(CGM.Int32Ty, SMin.getValueOr(0))
3957   };
3958 
3959   llvm::Value *CallRes =
3960       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3961 
3962   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3963 }
3964 
3965 static bool isFoundationNeededForDarwinAvailabilityCheck(
3966     const llvm::Triple &TT, const VersionTuple &TargetVersion) {
3967   VersionTuple FoundationDroppedInVersion;
3968   switch (TT.getOS()) {
3969   case llvm::Triple::IOS:
3970   case llvm::Triple::TvOS:
3971     FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
3972     break;
3973   case llvm::Triple::WatchOS:
3974     FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
3975     break;
3976   case llvm::Triple::Darwin:
3977   case llvm::Triple::MacOSX:
3978     FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
3979     break;
3980   default:
3981     llvm_unreachable("Unexpected OS");
3982   }
3983   return TargetVersion < FoundationDroppedInVersion;
3984 }
3985 
3986 void CodeGenModule::emitAtAvailableLinkGuard() {
3987   if (!IsPlatformVersionAtLeastFn)
3988     return;
3989   // @available requires CoreFoundation only on Darwin.
3990   if (!Target.getTriple().isOSDarwin())
3991     return;
3992   // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
3993   // watchOS 6+.
3994   if (!isFoundationNeededForDarwinAvailabilityCheck(
3995           Target.getTriple(), Target.getPlatformMinVersion()))
3996     return;
3997   // Add -framework CoreFoundation to the linker commands. We still want to
3998   // emit the core foundation reference down below because otherwise if
3999   // CoreFoundation is not used in the code, the linker won't link the
4000   // framework.
4001   auto &Context = getLLVMContext();
4002   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4003                              llvm::MDString::get(Context, "CoreFoundation")};
4004   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4005   // Emit a reference to a symbol from CoreFoundation to ensure that
4006   // CoreFoundation is linked into the final binary.
4007   llvm::FunctionType *FTy =
4008       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4009   llvm::FunctionCallee CFFunc =
4010       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4011 
4012   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4013   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4014       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4015       llvm::AttributeList(), /*Local=*/true);
4016   llvm::Function *CFLinkCheckFunc =
4017       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4018   if (CFLinkCheckFunc->empty()) {
4019     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4020     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4021     CodeGenFunction CGF(*this);
4022     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4023     CGF.EmitNounwindRuntimeCall(CFFunc,
4024                                 llvm::Constant::getNullValue(VoidPtrTy));
4025     CGF.Builder.CreateUnreachable();
4026     addCompilerUsedGlobal(CFLinkCheckFunc);
4027   }
4028 }
4029 
4030 CGObjCRuntime::~CGObjCRuntime() {}
4031