xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGGPUBuiltin.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Generates code for built-in GPU calls which are not runtime-specific.
10 // (Runtime-specific codegen lives in programming model specific files.)
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "clang/Basic/Builtins.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/Instruction.h"
18 #include "llvm/Support/MathExtras.h"
19 #include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h"
20 
21 using namespace clang;
22 using namespace CodeGen;
23 
24 namespace {
25 llvm::Function *GetVprintfDeclaration(llvm::Module &M) {
26   llvm::Type *ArgTypes[] = {llvm::PointerType::getUnqual(M.getContext()),
27                             llvm::PointerType::getUnqual(M.getContext())};
28   llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get(
29       llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false);
30 
31   if (auto *F = M.getFunction("vprintf")) {
32     // Our CUDA system header declares vprintf with the right signature, so
33     // nobody else should have been able to declare vprintf with a bogus
34     // signature.
35     assert(F->getFunctionType() == VprintfFuncType);
36     return F;
37   }
38 
39   // vprintf doesn't already exist; create a declaration and insert it into the
40   // module.
41   return llvm::Function::Create(
42       VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M);
43 }
44 
45 llvm::Function *GetOpenMPVprintfDeclaration(CodeGenModule &CGM) {
46   const char *Name = "__llvm_omp_vprintf";
47   llvm::Module &M = CGM.getModule();
48   llvm::Type *ArgTypes[] = {llvm::PointerType::getUnqual(M.getContext()),
49                             llvm::PointerType::getUnqual(M.getContext()),
50                             llvm::Type::getInt32Ty(M.getContext())};
51   llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get(
52       llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false);
53 
54   if (auto *F = M.getFunction(Name)) {
55     if (F->getFunctionType() != VprintfFuncType) {
56       CGM.Error(SourceLocation(),
57                 "Invalid type declaration for __llvm_omp_vprintf");
58       return nullptr;
59     }
60     return F;
61   }
62 
63   return llvm::Function::Create(
64       VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, Name, &M);
65 }
66 
67 // Transforms a call to printf into a call to the NVPTX vprintf syscall (which
68 // isn't particularly special; it's invoked just like a regular function).
69 // vprintf takes two args: A format string, and a pointer to a buffer containing
70 // the varargs.
71 //
72 // For example, the call
73 //
74 //   printf("format string", arg1, arg2, arg3);
75 //
76 // is converted into something resembling
77 //
78 //   struct Tmp {
79 //     Arg1 a1;
80 //     Arg2 a2;
81 //     Arg3 a3;
82 //   };
83 //   char* buf = alloca(sizeof(Tmp));
84 //   *(Tmp*)buf = {a1, a2, a3};
85 //   vprintf("format string", buf);
86 //
87 // buf is aligned to the max of {alignof(Arg1), ...}.  Furthermore, each of the
88 // args is itself aligned to its preferred alignment.
89 //
90 // Note that by the time this function runs, E's args have already undergone the
91 // standard C vararg promotion (short -> int, float -> double, etc.).
92 
93 std::pair<llvm::Value *, llvm::TypeSize>
94 packArgsIntoNVPTXFormatBuffer(CodeGenFunction *CGF, const CallArgList &Args) {
95   const llvm::DataLayout &DL = CGF->CGM.getDataLayout();
96   llvm::LLVMContext &Ctx = CGF->CGM.getLLVMContext();
97   CGBuilderTy &Builder = CGF->Builder;
98 
99   // Construct and fill the args buffer that we'll pass to vprintf.
100   if (Args.size() <= 1) {
101     // If there are no args, pass a null pointer and size 0
102     llvm::Value *BufferPtr =
103         llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Ctx));
104     return {BufferPtr, llvm::TypeSize::getFixed(0)};
105   } else {
106     llvm::SmallVector<llvm::Type *, 8> ArgTypes;
107     for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I)
108       ArgTypes.push_back(Args[I].getRValue(*CGF).getScalarVal()->getType());
109 
110     // Using llvm::StructType is correct only because printf doesn't accept
111     // aggregates.  If we had to handle aggregates here, we'd have to manually
112     // compute the offsets within the alloca -- we wouldn't be able to assume
113     // that the alignment of the llvm type was the same as the alignment of the
114     // clang type.
115     llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args");
116     llvm::Value *Alloca = CGF->CreateTempAlloca(AllocaTy);
117 
118     for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) {
119       llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1);
120       llvm::Value *Arg = Args[I].getRValue(*CGF).getScalarVal();
121       Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlign(Arg->getType()));
122     }
123     llvm::Value *BufferPtr =
124         Builder.CreatePointerCast(Alloca, llvm::PointerType::getUnqual(Ctx));
125     return {BufferPtr, DL.getTypeAllocSize(AllocaTy)};
126   }
127 }
128 
129 bool containsNonScalarVarargs(CodeGenFunction *CGF, const CallArgList &Args) {
130   return llvm::any_of(llvm::drop_begin(Args), [&](const CallArg &A) {
131     return !A.getRValue(*CGF).isScalar();
132   });
133 }
134 
135 RValue EmitDevicePrintfCallExpr(const CallExpr *E, CodeGenFunction *CGF,
136                                 llvm::Function *Decl, bool WithSizeArg) {
137   CodeGenModule &CGM = CGF->CGM;
138   CGBuilderTy &Builder = CGF->Builder;
139   assert(E->getBuiltinCallee() == Builtin::BIprintf ||
140          E->getBuiltinCallee() == Builtin::BI__builtin_printf);
141   assert(E->getNumArgs() >= 1); // printf always has at least one arg.
142 
143   // Uses the same format as nvptx for the argument packing, but also passes
144   // an i32 for the total size of the passed pointer
145   CallArgList Args;
146   CGF->EmitCallArgs(Args,
147                     E->getDirectCallee()->getType()->getAs<FunctionProtoType>(),
148                     E->arguments(), E->getDirectCallee(),
149                     /* ParamsToSkip = */ 0);
150 
151   // We don't know how to emit non-scalar varargs.
152   if (containsNonScalarVarargs(CGF, Args)) {
153     CGM.ErrorUnsupported(E, "non-scalar arg to printf");
154     return RValue::get(llvm::ConstantInt::get(CGF->IntTy, 0));
155   }
156 
157   auto r = packArgsIntoNVPTXFormatBuffer(CGF, Args);
158   llvm::Value *BufferPtr = r.first;
159 
160   llvm::SmallVector<llvm::Value *, 3> Vec = {
161       Args[0].getRValue(*CGF).getScalarVal(), BufferPtr};
162   if (WithSizeArg) {
163     // Passing > 32bit of data as a local alloca doesn't work for nvptx or
164     // amdgpu
165     llvm::Constant *Size =
166         llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGM.getLLVMContext()),
167                                static_cast<uint32_t>(r.second.getFixedValue()));
168 
169     Vec.push_back(Size);
170   }
171   return RValue::get(Builder.CreateCall(Decl, Vec));
172 }
173 } // namespace
174 
175 RValue CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E) {
176   assert(getTarget().getTriple().isNVPTX());
177   return EmitDevicePrintfCallExpr(
178       E, this, GetVprintfDeclaration(CGM.getModule()), false);
179 }
180 
181 RValue CodeGenFunction::EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E) {
182   assert(getTarget().getTriple().isAMDGCN() ||
183          (getTarget().getTriple().isSPIRV() &&
184           getTarget().getTriple().getVendor() == llvm::Triple::AMD));
185   assert(E->getBuiltinCallee() == Builtin::BIprintf ||
186          E->getBuiltinCallee() == Builtin::BI__builtin_printf);
187   assert(E->getNumArgs() >= 1); // printf always has at least one arg.
188 
189   CallArgList CallArgs;
190   EmitCallArgs(CallArgs,
191                E->getDirectCallee()->getType()->getAs<FunctionProtoType>(),
192                E->arguments(), E->getDirectCallee(),
193                /* ParamsToSkip = */ 0);
194 
195   SmallVector<llvm::Value *, 8> Args;
196   for (const auto &A : CallArgs) {
197     // We don't know how to emit non-scalar varargs.
198     if (!A.getRValue(*this).isScalar()) {
199       CGM.ErrorUnsupported(E, "non-scalar arg to printf");
200       return RValue::get(llvm::ConstantInt::get(IntTy, -1));
201     }
202 
203     llvm::Value *Arg = A.getRValue(*this).getScalarVal();
204     Args.push_back(Arg);
205   }
206 
207   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
208   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
209 
210   bool isBuffered = (CGM.getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
211                      clang::TargetOptions::AMDGPUPrintfKind::Buffered);
212   auto Printf = llvm::emitAMDGPUPrintfCall(IRB, Args, isBuffered);
213   Builder.SetInsertPoint(IRB.GetInsertBlock(), IRB.GetInsertPoint());
214   return RValue::get(Printf);
215 }
216 
217 RValue CodeGenFunction::EmitOpenMPDevicePrintfCallExpr(const CallExpr *E) {
218   assert(getTarget().getTriple().isNVPTX() ||
219          getTarget().getTriple().isAMDGCN());
220   return EmitDevicePrintfCallExpr(E, this, GetOpenMPVprintfDeclaration(CGM),
221                                   true);
222 }
223