xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352                         llvm::Type *SrcTy, llvm::Type *DstTy,
353                         ScalarConversionOpts Opts);
354   Value *
355   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                        SourceLocation Loc,
357                        ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359   /// Convert between either a fixed point and other fixed point or fixed point
360   /// and an integer.
361   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362                                   SourceLocation Loc);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     // A constant expression of type 'void' generates no code and produces no
423     // value.
424     if (E->getType()->isVoidType())
425       return nullptr;
426 
427     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
428       if (E->isGLValue())
429         return CGF.Builder.CreateLoad(Address(
430             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
431       return Result;
432     }
433     return Visit(E->getSubExpr());
434   }
435   Value *VisitParenExpr(ParenExpr *PE) {
436     return Visit(PE->getSubExpr());
437   }
438   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
439     return Visit(E->getReplacement());
440   }
441   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
442     return Visit(GE->getResultExpr());
443   }
444   Value *VisitCoawaitExpr(CoawaitExpr *S) {
445     return CGF.EmitCoawaitExpr(*S).getScalarVal();
446   }
447   Value *VisitCoyieldExpr(CoyieldExpr *S) {
448     return CGF.EmitCoyieldExpr(*S).getScalarVal();
449   }
450   Value *VisitUnaryCoawait(const UnaryOperator *E) {
451     return Visit(E->getSubExpr());
452   }
453 
454   // Leaves.
455   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
456     return Builder.getInt(E->getValue());
457   }
458   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
459     return Builder.getInt(E->getValue());
460   }
461   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
462     return llvm::ConstantFP::get(VMContext, E->getValue());
463   }
464   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
465     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466   }
467   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
468     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469   }
470   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
471     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472   }
473   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
474     return EmitNullValue(E->getType());
475   }
476   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
477     return EmitNullValue(E->getType());
478   }
479   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
480   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
481   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
482     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
483     return Builder.CreateBitCast(V, ConvertType(E->getType()));
484   }
485 
486   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
487     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
488   }
489 
490   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
491     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
492   }
493 
494   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
495 
496   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
497     if (E->isGLValue())
498       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
499                               E->getExprLoc());
500 
501     // Otherwise, assume the mapping is the scalar directly.
502     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
503   }
504 
505   // l-values.
506   Value *VisitDeclRefExpr(DeclRefExpr *E) {
507     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
508       return CGF.emitScalarConstant(Constant, E);
509     return EmitLoadOfLValue(E);
510   }
511 
512   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
513     return CGF.EmitObjCSelectorExpr(E);
514   }
515   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
516     return CGF.EmitObjCProtocolExpr(E);
517   }
518   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
519     return EmitLoadOfLValue(E);
520   }
521   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
522     if (E->getMethodDecl() &&
523         E->getMethodDecl()->getReturnType()->isReferenceType())
524       return EmitLoadOfLValue(E);
525     return CGF.EmitObjCMessageExpr(E).getScalarVal();
526   }
527 
528   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
529     LValue LV = CGF.EmitObjCIsaExpr(E);
530     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
531     return V;
532   }
533 
534   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
535     VersionTuple Version = E->getVersion();
536 
537     // If we're checking for a platform older than our minimum deployment
538     // target, we can fold the check away.
539     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
540       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
541 
542     return CGF.EmitBuiltinAvailable(Version);
543   }
544 
545   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
546   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
547   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
548   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
549   Value *VisitMemberExpr(MemberExpr *E);
550   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
551   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
552     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
553     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
554     // literals aren't l-values in C++. We do so simply because that's the
555     // cleanest way to handle compound literals in C++.
556     // See the discussion here: https://reviews.llvm.org/D64464
557     return EmitLoadOfLValue(E);
558   }
559 
560   Value *VisitInitListExpr(InitListExpr *E);
561 
562   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
563     assert(CGF.getArrayInitIndex() &&
564            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
565     return CGF.getArrayInitIndex();
566   }
567 
568   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
569     return EmitNullValue(E->getType());
570   }
571   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
572     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
573     return VisitCastExpr(E);
574   }
575   Value *VisitCastExpr(CastExpr *E);
576 
577   Value *VisitCallExpr(const CallExpr *E) {
578     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
579       return EmitLoadOfLValue(E);
580 
581     Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 
583     EmitLValueAlignmentAssumption(E, V);
584     return V;
585   }
586 
587   Value *VisitStmtExpr(const StmtExpr *E);
588 
589   // Unary Operators.
590   Value *VisitUnaryPostDec(const UnaryOperator *E) {
591     LValue LV = EmitLValue(E->getSubExpr());
592     return EmitScalarPrePostIncDec(E, LV, false, false);
593   }
594   Value *VisitUnaryPostInc(const UnaryOperator *E) {
595     LValue LV = EmitLValue(E->getSubExpr());
596     return EmitScalarPrePostIncDec(E, LV, true, false);
597   }
598   Value *VisitUnaryPreDec(const UnaryOperator *E) {
599     LValue LV = EmitLValue(E->getSubExpr());
600     return EmitScalarPrePostIncDec(E, LV, false, true);
601   }
602   Value *VisitUnaryPreInc(const UnaryOperator *E) {
603     LValue LV = EmitLValue(E->getSubExpr());
604     return EmitScalarPrePostIncDec(E, LV, true, true);
605   }
606 
607   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
608                                                   llvm::Value *InVal,
609                                                   bool IsInc);
610 
611   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
612                                        bool isInc, bool isPre);
613 
614 
615   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
616     if (isa<MemberPointerType>(E->getType())) // never sugared
617       return CGF.CGM.getMemberPointerConstant(E);
618 
619     return EmitLValue(E->getSubExpr()).getPointer(CGF);
620   }
621   Value *VisitUnaryDeref(const UnaryOperator *E) {
622     if (E->getType()->isVoidType())
623       return Visit(E->getSubExpr()); // the actual value should be unused
624     return EmitLoadOfLValue(E);
625   }
626   Value *VisitUnaryPlus(const UnaryOperator *E) {
627     // This differs from gcc, though, most likely due to a bug in gcc.
628     TestAndClearIgnoreResultAssign();
629     return Visit(E->getSubExpr());
630   }
631   Value *VisitUnaryMinus    (const UnaryOperator *E);
632   Value *VisitUnaryNot      (const UnaryOperator *E);
633   Value *VisitUnaryLNot     (const UnaryOperator *E);
634   Value *VisitUnaryReal     (const UnaryOperator *E);
635   Value *VisitUnaryImag     (const UnaryOperator *E);
636   Value *VisitUnaryExtension(const UnaryOperator *E) {
637     return Visit(E->getSubExpr());
638   }
639 
640   // C++
641   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
642     return EmitLoadOfLValue(E);
643   }
644   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
645     auto &Ctx = CGF.getContext();
646     APValue Evaluated =
647         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
648     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
649                                              SLE->getType());
650   }
651 
652   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
653     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
654     return Visit(DAE->getExpr());
655   }
656   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
657     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
658     return Visit(DIE->getExpr());
659   }
660   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
661     return CGF.LoadCXXThis();
662   }
663 
664   Value *VisitExprWithCleanups(ExprWithCleanups *E);
665   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
666     return CGF.EmitCXXNewExpr(E);
667   }
668   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
669     CGF.EmitCXXDeleteExpr(E);
670     return nullptr;
671   }
672 
673   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
674     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
675   }
676 
677   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
678     return Builder.getInt1(E->isSatisfied());
679   }
680 
681   Value *VisitRequiresExpr(const RequiresExpr *E) {
682     return Builder.getInt1(E->isSatisfied());
683   }
684 
685   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
686     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
687   }
688 
689   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
690     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
691   }
692 
693   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
694     // C++ [expr.pseudo]p1:
695     //   The result shall only be used as the operand for the function call
696     //   operator (), and the result of such a call has type void. The only
697     //   effect is the evaluation of the postfix-expression before the dot or
698     //   arrow.
699     CGF.EmitScalarExpr(E->getBase());
700     return nullptr;
701   }
702 
703   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
704     return EmitNullValue(E->getType());
705   }
706 
707   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
708     CGF.EmitCXXThrowExpr(E);
709     return nullptr;
710   }
711 
712   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
713     return Builder.getInt1(E->getValue());
714   }
715 
716   // Binary Operators.
717   Value *EmitMul(const BinOpInfo &Ops) {
718     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
719       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
720       case LangOptions::SOB_Defined:
721         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
722       case LangOptions::SOB_Undefined:
723         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
724           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
725         LLVM_FALLTHROUGH;
726       case LangOptions::SOB_Trapping:
727         if (CanElideOverflowCheck(CGF.getContext(), Ops))
728           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
729         return EmitOverflowCheckedBinOp(Ops);
730       }
731     }
732 
733     if (Ops.Ty->isConstantMatrixType()) {
734       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
735       // We need to check the types of the operands of the operator to get the
736       // correct matrix dimensions.
737       auto *BO = cast<BinaryOperator>(Ops.E);
738       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
739           BO->getLHS()->getType().getCanonicalType());
740       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
741           BO->getRHS()->getType().getCanonicalType());
742       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
743       if (LHSMatTy && RHSMatTy)
744         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
745                                        LHSMatTy->getNumColumns(),
746                                        RHSMatTy->getNumColumns());
747       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
748     }
749 
750     if (Ops.Ty->isUnsignedIntegerType() &&
751         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
752         !CanElideOverflowCheck(CGF.getContext(), Ops))
753       return EmitOverflowCheckedBinOp(Ops);
754 
755     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
756       //  Preserve the old values
757       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
758       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
759     }
760     if (Ops.isFixedPointOp())
761       return EmitFixedPointBinOp(Ops);
762     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
763   }
764   /// Create a binary op that checks for overflow.
765   /// Currently only supports +, - and *.
766   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
767 
768   // Check for undefined division and modulus behaviors.
769   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
770                                                   llvm::Value *Zero,bool isDiv);
771   // Common helper for getting how wide LHS of shift is.
772   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
773 
774   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
775   // non powers of two.
776   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
777 
778   Value *EmitDiv(const BinOpInfo &Ops);
779   Value *EmitRem(const BinOpInfo &Ops);
780   Value *EmitAdd(const BinOpInfo &Ops);
781   Value *EmitSub(const BinOpInfo &Ops);
782   Value *EmitShl(const BinOpInfo &Ops);
783   Value *EmitShr(const BinOpInfo &Ops);
784   Value *EmitAnd(const BinOpInfo &Ops) {
785     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
786   }
787   Value *EmitXor(const BinOpInfo &Ops) {
788     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
789   }
790   Value *EmitOr (const BinOpInfo &Ops) {
791     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
792   }
793 
794   // Helper functions for fixed point binary operations.
795   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
796 
797   BinOpInfo EmitBinOps(const BinaryOperator *E);
798   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
799                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
800                                   Value *&Result);
801 
802   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
803                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
804 
805   // Binary operators and binary compound assignment operators.
806 #define HANDLEBINOP(OP) \
807   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
808     return Emit ## OP(EmitBinOps(E));                                      \
809   }                                                                        \
810   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
811     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
812   }
813   HANDLEBINOP(Mul)
814   HANDLEBINOP(Div)
815   HANDLEBINOP(Rem)
816   HANDLEBINOP(Add)
817   HANDLEBINOP(Sub)
818   HANDLEBINOP(Shl)
819   HANDLEBINOP(Shr)
820   HANDLEBINOP(And)
821   HANDLEBINOP(Xor)
822   HANDLEBINOP(Or)
823 #undef HANDLEBINOP
824 
825   // Comparisons.
826   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
827                      llvm::CmpInst::Predicate SICmpOpc,
828                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
829 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
830     Value *VisitBin##CODE(const BinaryOperator *E) { \
831       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
832                          llvm::FCmpInst::FP, SIG); }
833   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
834   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
835   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
836   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
837   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
838   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
839 #undef VISITCOMP
840 
841   Value *VisitBinAssign     (const BinaryOperator *E);
842 
843   Value *VisitBinLAnd       (const BinaryOperator *E);
844   Value *VisitBinLOr        (const BinaryOperator *E);
845   Value *VisitBinComma      (const BinaryOperator *E);
846 
847   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
848   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
849 
850   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
851     return Visit(E->getSemanticForm());
852   }
853 
854   // Other Operators.
855   Value *VisitBlockExpr(const BlockExpr *BE);
856   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
857   Value *VisitChooseExpr(ChooseExpr *CE);
858   Value *VisitVAArgExpr(VAArgExpr *VE);
859   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
860     return CGF.EmitObjCStringLiteral(E);
861   }
862   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
863     return CGF.EmitObjCBoxedExpr(E);
864   }
865   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
866     return CGF.EmitObjCArrayLiteral(E);
867   }
868   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
869     return CGF.EmitObjCDictionaryLiteral(E);
870   }
871   Value *VisitAsTypeExpr(AsTypeExpr *CE);
872   Value *VisitAtomicExpr(AtomicExpr *AE);
873 };
874 }  // end anonymous namespace.
875 
876 //===----------------------------------------------------------------------===//
877 //                                Utilities
878 //===----------------------------------------------------------------------===//
879 
880 /// EmitConversionToBool - Convert the specified expression value to a
881 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
882 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
883   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
884 
885   if (SrcType->isRealFloatingType())
886     return EmitFloatToBoolConversion(Src);
887 
888   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
889     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
890 
891   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
892          "Unknown scalar type to convert");
893 
894   if (isa<llvm::IntegerType>(Src->getType()))
895     return EmitIntToBoolConversion(Src);
896 
897   assert(isa<llvm::PointerType>(Src->getType()));
898   return EmitPointerToBoolConversion(Src, SrcType);
899 }
900 
901 void ScalarExprEmitter::EmitFloatConversionCheck(
902     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
903     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
904   assert(SrcType->isFloatingType() && "not a conversion from floating point");
905   if (!isa<llvm::IntegerType>(DstTy))
906     return;
907 
908   CodeGenFunction::SanitizerScope SanScope(&CGF);
909   using llvm::APFloat;
910   using llvm::APSInt;
911 
912   llvm::Value *Check = nullptr;
913   const llvm::fltSemantics &SrcSema =
914     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
915 
916   // Floating-point to integer. This has undefined behavior if the source is
917   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
918   // to an integer).
919   unsigned Width = CGF.getContext().getIntWidth(DstType);
920   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
921 
922   APSInt Min = APSInt::getMinValue(Width, Unsigned);
923   APFloat MinSrc(SrcSema, APFloat::uninitialized);
924   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
925       APFloat::opOverflow)
926     // Don't need an overflow check for lower bound. Just check for
927     // -Inf/NaN.
928     MinSrc = APFloat::getInf(SrcSema, true);
929   else
930     // Find the largest value which is too small to represent (before
931     // truncation toward zero).
932     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
933 
934   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
935   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
936   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
937       APFloat::opOverflow)
938     // Don't need an overflow check for upper bound. Just check for
939     // +Inf/NaN.
940     MaxSrc = APFloat::getInf(SrcSema, false);
941   else
942     // Find the smallest value which is too large to represent (before
943     // truncation toward zero).
944     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
945 
946   // If we're converting from __half, convert the range to float to match
947   // the type of src.
948   if (OrigSrcType->isHalfType()) {
949     const llvm::fltSemantics &Sema =
950       CGF.getContext().getFloatTypeSemantics(SrcType);
951     bool IsInexact;
952     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
953     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
954   }
955 
956   llvm::Value *GE =
957     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
958   llvm::Value *LE =
959     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
960   Check = Builder.CreateAnd(GE, LE);
961 
962   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
963                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
964                                   CGF.EmitCheckTypeDescriptor(DstType)};
965   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
966                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
967 }
968 
969 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
970 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
971 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
972                  std::pair<llvm::Value *, SanitizerMask>>
973 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
974                                  QualType DstType, CGBuilderTy &Builder) {
975   llvm::Type *SrcTy = Src->getType();
976   llvm::Type *DstTy = Dst->getType();
977   (void)DstTy; // Only used in assert()
978 
979   // This should be truncation of integral types.
980   assert(Src != Dst);
981   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
982   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
983          "non-integer llvm type");
984 
985   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
986   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
987 
988   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
989   // Else, it is a signed truncation.
990   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
991   SanitizerMask Mask;
992   if (!SrcSigned && !DstSigned) {
993     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
994     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
995   } else {
996     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
997     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
998   }
999 
1000   llvm::Value *Check = nullptr;
1001   // 1. Extend the truncated value back to the same width as the Src.
1002   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1003   // 2. Equality-compare with the original source value
1004   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1005   // If the comparison result is 'i1 false', then the truncation was lossy.
1006   return std::make_pair(Kind, std::make_pair(Check, Mask));
1007 }
1008 
1009 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1010     QualType SrcType, QualType DstType) {
1011   return SrcType->isIntegerType() && DstType->isIntegerType();
1012 }
1013 
1014 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1015                                                    Value *Dst, QualType DstType,
1016                                                    SourceLocation Loc) {
1017   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1018     return;
1019 
1020   // We only care about int->int conversions here.
1021   // We ignore conversions to/from pointer and/or bool.
1022   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1023                                                                        DstType))
1024     return;
1025 
1026   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1027   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1028   // This must be truncation. Else we do not care.
1029   if (SrcBits <= DstBits)
1030     return;
1031 
1032   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1033 
1034   // If the integer sign change sanitizer is enabled,
1035   // and we are truncating from larger unsigned type to smaller signed type,
1036   // let that next sanitizer deal with it.
1037   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1038   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1039   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1040       (!SrcSigned && DstSigned))
1041     return;
1042 
1043   CodeGenFunction::SanitizerScope SanScope(&CGF);
1044 
1045   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1046             std::pair<llvm::Value *, SanitizerMask>>
1047       Check =
1048           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1049   // If the comparison result is 'i1 false', then the truncation was lossy.
1050 
1051   // Do we care about this type of truncation?
1052   if (!CGF.SanOpts.has(Check.second.second))
1053     return;
1054 
1055   llvm::Constant *StaticArgs[] = {
1056       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1057       CGF.EmitCheckTypeDescriptor(DstType),
1058       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1059   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1060                 {Src, Dst});
1061 }
1062 
1063 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1064 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1065 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1066                  std::pair<llvm::Value *, SanitizerMask>>
1067 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1068                                  QualType DstType, CGBuilderTy &Builder) {
1069   llvm::Type *SrcTy = Src->getType();
1070   llvm::Type *DstTy = Dst->getType();
1071 
1072   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1073          "non-integer llvm type");
1074 
1075   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1076   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1077   (void)SrcSigned; // Only used in assert()
1078   (void)DstSigned; // Only used in assert()
1079   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1080   unsigned DstBits = DstTy->getScalarSizeInBits();
1081   (void)SrcBits; // Only used in assert()
1082   (void)DstBits; // Only used in assert()
1083 
1084   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1085          "either the widths should be different, or the signednesses.");
1086 
1087   // NOTE: zero value is considered to be non-negative.
1088   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1089                                        const char *Name) -> Value * {
1090     // Is this value a signed type?
1091     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1092     llvm::Type *VTy = V->getType();
1093     if (!VSigned) {
1094       // If the value is unsigned, then it is never negative.
1095       // FIXME: can we encounter non-scalar VTy here?
1096       return llvm::ConstantInt::getFalse(VTy->getContext());
1097     }
1098     // Get the zero of the same type with which we will be comparing.
1099     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1100     // %V.isnegative = icmp slt %V, 0
1101     // I.e is %V *strictly* less than zero, does it have negative value?
1102     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1103                               llvm::Twine(Name) + "." + V->getName() +
1104                                   ".negativitycheck");
1105   };
1106 
1107   // 1. Was the old Value negative?
1108   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1109   // 2. Is the new Value negative?
1110   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1111   // 3. Now, was the 'negativity status' preserved during the conversion?
1112   //    NOTE: conversion from negative to zero is considered to change the sign.
1113   //    (We want to get 'false' when the conversion changed the sign)
1114   //    So we should just equality-compare the negativity statuses.
1115   llvm::Value *Check = nullptr;
1116   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1117   // If the comparison result is 'false', then the conversion changed the sign.
1118   return std::make_pair(
1119       ScalarExprEmitter::ICCK_IntegerSignChange,
1120       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1121 }
1122 
1123 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1124                                                    Value *Dst, QualType DstType,
1125                                                    SourceLocation Loc) {
1126   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1127     return;
1128 
1129   llvm::Type *SrcTy = Src->getType();
1130   llvm::Type *DstTy = Dst->getType();
1131 
1132   // We only care about int->int conversions here.
1133   // We ignore conversions to/from pointer and/or bool.
1134   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1135                                                                        DstType))
1136     return;
1137 
1138   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1139   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1140   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1141   unsigned DstBits = DstTy->getScalarSizeInBits();
1142 
1143   // Now, we do not need to emit the check in *all* of the cases.
1144   // We can avoid emitting it in some obvious cases where it would have been
1145   // dropped by the opt passes (instcombine) always anyways.
1146   // If it's a cast between effectively the same type, no check.
1147   // NOTE: this is *not* equivalent to checking the canonical types.
1148   if (SrcSigned == DstSigned && SrcBits == DstBits)
1149     return;
1150   // At least one of the values needs to have signed type.
1151   // If both are unsigned, then obviously, neither of them can be negative.
1152   if (!SrcSigned && !DstSigned)
1153     return;
1154   // If the conversion is to *larger* *signed* type, then no check is needed.
1155   // Because either sign-extension happens (so the sign will remain),
1156   // or zero-extension will happen (the sign bit will be zero.)
1157   if ((DstBits > SrcBits) && DstSigned)
1158     return;
1159   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1160       (SrcBits > DstBits) && SrcSigned) {
1161     // If the signed integer truncation sanitizer is enabled,
1162     // and this is a truncation from signed type, then no check is needed.
1163     // Because here sign change check is interchangeable with truncation check.
1164     return;
1165   }
1166   // That's it. We can't rule out any more cases with the data we have.
1167 
1168   CodeGenFunction::SanitizerScope SanScope(&CGF);
1169 
1170   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1171             std::pair<llvm::Value *, SanitizerMask>>
1172       Check;
1173 
1174   // Each of these checks needs to return 'false' when an issue was detected.
1175   ImplicitConversionCheckKind CheckKind;
1176   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1177   // So we can 'and' all the checks together, and still get 'false',
1178   // if at least one of the checks detected an issue.
1179 
1180   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1181   CheckKind = Check.first;
1182   Checks.emplace_back(Check.second);
1183 
1184   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1185       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1186     // If the signed integer truncation sanitizer was enabled,
1187     // and we are truncating from larger unsigned type to smaller signed type,
1188     // let's handle the case we skipped in that check.
1189     Check =
1190         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1191     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1192     Checks.emplace_back(Check.second);
1193     // If the comparison result is 'i1 false', then the truncation was lossy.
1194   }
1195 
1196   llvm::Constant *StaticArgs[] = {
1197       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1198       CGF.EmitCheckTypeDescriptor(DstType),
1199       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1200   // EmitCheck() will 'and' all the checks together.
1201   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1202                 {Src, Dst});
1203 }
1204 
1205 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1206                                          QualType DstType, llvm::Type *SrcTy,
1207                                          llvm::Type *DstTy,
1208                                          ScalarConversionOpts Opts) {
1209   // The Element types determine the type of cast to perform.
1210   llvm::Type *SrcElementTy;
1211   llvm::Type *DstElementTy;
1212   QualType SrcElementType;
1213   QualType DstElementType;
1214   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1215     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1216     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1217     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1218     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1219   } else {
1220     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1221            "cannot cast between matrix and non-matrix types");
1222     SrcElementTy = SrcTy;
1223     DstElementTy = DstTy;
1224     SrcElementType = SrcType;
1225     DstElementType = DstType;
1226   }
1227 
1228   if (isa<llvm::IntegerType>(SrcElementTy)) {
1229     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1230     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1231       InputSigned = true;
1232     }
1233 
1234     if (isa<llvm::IntegerType>(DstElementTy))
1235       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1236     if (InputSigned)
1237       return Builder.CreateSIToFP(Src, DstTy, "conv");
1238     return Builder.CreateUIToFP(Src, DstTy, "conv");
1239   }
1240 
1241   if (isa<llvm::IntegerType>(DstElementTy)) {
1242     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1243     bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1244 
1245     // If we can't recognize overflow as undefined behavior, assume that
1246     // overflow saturates. This protects against normal optimizations if we are
1247     // compiling with non-standard FP semantics.
1248     if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1249       llvm::Intrinsic::ID IID =
1250           IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1251       return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1252     }
1253 
1254     if (IsSigned)
1255       return Builder.CreateFPToSI(Src, DstTy, "conv");
1256     return Builder.CreateFPToUI(Src, DstTy, "conv");
1257   }
1258 
1259   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1260     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1261   return Builder.CreateFPExt(Src, DstTy, "conv");
1262 }
1263 
1264 /// Emit a conversion from the specified type to the specified destination type,
1265 /// both of which are LLVM scalar types.
1266 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1267                                                QualType DstType,
1268                                                SourceLocation Loc,
1269                                                ScalarConversionOpts Opts) {
1270   // All conversions involving fixed point types should be handled by the
1271   // EmitFixedPoint family functions. This is done to prevent bloating up this
1272   // function more, and although fixed point numbers are represented by
1273   // integers, we do not want to follow any logic that assumes they should be
1274   // treated as integers.
1275   // TODO(leonardchan): When necessary, add another if statement checking for
1276   // conversions to fixed point types from other types.
1277   if (SrcType->isFixedPointType()) {
1278     if (DstType->isBooleanType())
1279       // It is important that we check this before checking if the dest type is
1280       // an integer because booleans are technically integer types.
1281       // We do not need to check the padding bit on unsigned types if unsigned
1282       // padding is enabled because overflow into this bit is undefined
1283       // behavior.
1284       return Builder.CreateIsNotNull(Src, "tobool");
1285     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1286         DstType->isRealFloatingType())
1287       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1288 
1289     llvm_unreachable(
1290         "Unhandled scalar conversion from a fixed point type to another type.");
1291   } else if (DstType->isFixedPointType()) {
1292     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1293       // This also includes converting booleans and enums to fixed point types.
1294       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1295 
1296     llvm_unreachable(
1297         "Unhandled scalar conversion to a fixed point type from another type.");
1298   }
1299 
1300   QualType NoncanonicalSrcType = SrcType;
1301   QualType NoncanonicalDstType = DstType;
1302 
1303   SrcType = CGF.getContext().getCanonicalType(SrcType);
1304   DstType = CGF.getContext().getCanonicalType(DstType);
1305   if (SrcType == DstType) return Src;
1306 
1307   if (DstType->isVoidType()) return nullptr;
1308 
1309   llvm::Value *OrigSrc = Src;
1310   QualType OrigSrcType = SrcType;
1311   llvm::Type *SrcTy = Src->getType();
1312 
1313   // Handle conversions to bool first, they are special: comparisons against 0.
1314   if (DstType->isBooleanType())
1315     return EmitConversionToBool(Src, SrcType);
1316 
1317   llvm::Type *DstTy = ConvertType(DstType);
1318 
1319   // Cast from half through float if half isn't a native type.
1320   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1321     // Cast to FP using the intrinsic if the half type itself isn't supported.
1322     if (DstTy->isFloatingPointTy()) {
1323       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1324         return Builder.CreateCall(
1325             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1326             Src);
1327     } else {
1328       // Cast to other types through float, using either the intrinsic or FPExt,
1329       // depending on whether the half type itself is supported
1330       // (as opposed to operations on half, available with NativeHalfType).
1331       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1332         Src = Builder.CreateCall(
1333             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1334                                  CGF.CGM.FloatTy),
1335             Src);
1336       } else {
1337         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1338       }
1339       SrcType = CGF.getContext().FloatTy;
1340       SrcTy = CGF.FloatTy;
1341     }
1342   }
1343 
1344   // Ignore conversions like int -> uint.
1345   if (SrcTy == DstTy) {
1346     if (Opts.EmitImplicitIntegerSignChangeChecks)
1347       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1348                                  NoncanonicalDstType, Loc);
1349 
1350     return Src;
1351   }
1352 
1353   // Handle pointer conversions next: pointers can only be converted to/from
1354   // other pointers and integers. Check for pointer types in terms of LLVM, as
1355   // some native types (like Obj-C id) may map to a pointer type.
1356   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1357     // The source value may be an integer, or a pointer.
1358     if (isa<llvm::PointerType>(SrcTy))
1359       return Builder.CreateBitCast(Src, DstTy, "conv");
1360 
1361     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1362     // First, convert to the correct width so that we control the kind of
1363     // extension.
1364     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1365     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1366     llvm::Value* IntResult =
1367         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1368     // Then, cast to pointer.
1369     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1370   }
1371 
1372   if (isa<llvm::PointerType>(SrcTy)) {
1373     // Must be an ptr to int cast.
1374     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1375     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1376   }
1377 
1378   // A scalar can be splatted to an extended vector of the same element type
1379   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1380     // Sema should add casts to make sure that the source expression's type is
1381     // the same as the vector's element type (sans qualifiers)
1382     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1383                SrcType.getTypePtr() &&
1384            "Splatted expr doesn't match with vector element type?");
1385 
1386     // Splat the element across to all elements
1387     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1388     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1389   }
1390 
1391   if (SrcType->isMatrixType() && DstType->isMatrixType())
1392     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1393 
1394   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1395     // Allow bitcast from vector to integer/fp of the same size.
1396     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1397     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1398     if (SrcSize == DstSize)
1399       return Builder.CreateBitCast(Src, DstTy, "conv");
1400 
1401     // Conversions between vectors of different sizes are not allowed except
1402     // when vectors of half are involved. Operations on storage-only half
1403     // vectors require promoting half vector operands to float vectors and
1404     // truncating the result, which is either an int or float vector, to a
1405     // short or half vector.
1406 
1407     // Source and destination are both expected to be vectors.
1408     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1409     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1410     (void)DstElementTy;
1411 
1412     assert(((SrcElementTy->isIntegerTy() &&
1413              DstElementTy->isIntegerTy()) ||
1414             (SrcElementTy->isFloatingPointTy() &&
1415              DstElementTy->isFloatingPointTy())) &&
1416            "unexpected conversion between a floating-point vector and an "
1417            "integer vector");
1418 
1419     // Truncate an i32 vector to an i16 vector.
1420     if (SrcElementTy->isIntegerTy())
1421       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1422 
1423     // Truncate a float vector to a half vector.
1424     if (SrcSize > DstSize)
1425       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1426 
1427     // Promote a half vector to a float vector.
1428     return Builder.CreateFPExt(Src, DstTy, "conv");
1429   }
1430 
1431   // Finally, we have the arithmetic types: real int/float.
1432   Value *Res = nullptr;
1433   llvm::Type *ResTy = DstTy;
1434 
1435   // An overflowing conversion has undefined behavior if either the source type
1436   // or the destination type is a floating-point type. However, we consider the
1437   // range of representable values for all floating-point types to be
1438   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1439   // floating-point type.
1440   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1441       OrigSrcType->isFloatingType())
1442     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1443                              Loc);
1444 
1445   // Cast to half through float if half isn't a native type.
1446   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1447     // Make sure we cast in a single step if from another FP type.
1448     if (SrcTy->isFloatingPointTy()) {
1449       // Use the intrinsic if the half type itself isn't supported
1450       // (as opposed to operations on half, available with NativeHalfType).
1451       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1452         return Builder.CreateCall(
1453             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1454       // If the half type is supported, just use an fptrunc.
1455       return Builder.CreateFPTrunc(Src, DstTy);
1456     }
1457     DstTy = CGF.FloatTy;
1458   }
1459 
1460   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1461 
1462   if (DstTy != ResTy) {
1463     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1464       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1465       Res = Builder.CreateCall(
1466         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1467         Res);
1468     } else {
1469       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1470     }
1471   }
1472 
1473   if (Opts.EmitImplicitIntegerTruncationChecks)
1474     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1475                                NoncanonicalDstType, Loc);
1476 
1477   if (Opts.EmitImplicitIntegerSignChangeChecks)
1478     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1479                                NoncanonicalDstType, Loc);
1480 
1481   return Res;
1482 }
1483 
1484 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1485                                                    QualType DstTy,
1486                                                    SourceLocation Loc) {
1487   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1488   llvm::Value *Result;
1489   if (SrcTy->isRealFloatingType())
1490     Result = FPBuilder.CreateFloatingToFixed(Src,
1491         CGF.getContext().getFixedPointSemantics(DstTy));
1492   else if (DstTy->isRealFloatingType())
1493     Result = FPBuilder.CreateFixedToFloating(Src,
1494         CGF.getContext().getFixedPointSemantics(SrcTy),
1495         ConvertType(DstTy));
1496   else {
1497     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1498     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1499 
1500     if (DstTy->isIntegerType())
1501       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1502                                               DstFPSema.getWidth(),
1503                                               DstFPSema.isSigned());
1504     else if (SrcTy->isIntegerType())
1505       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1506                                                DstFPSema);
1507     else
1508       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1509   }
1510   return Result;
1511 }
1512 
1513 /// Emit a conversion from the specified complex type to the specified
1514 /// destination type, where the destination type is an LLVM scalar type.
1515 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1516     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1517     SourceLocation Loc) {
1518   // Get the source element type.
1519   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1520 
1521   // Handle conversions to bool first, they are special: comparisons against 0.
1522   if (DstTy->isBooleanType()) {
1523     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1524     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1525     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1526     return Builder.CreateOr(Src.first, Src.second, "tobool");
1527   }
1528 
1529   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1530   // the imaginary part of the complex value is discarded and the value of the
1531   // real part is converted according to the conversion rules for the
1532   // corresponding real type.
1533   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1534 }
1535 
1536 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1537   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1538 }
1539 
1540 /// Emit a sanitization check for the given "binary" operation (which
1541 /// might actually be a unary increment which has been lowered to a binary
1542 /// operation). The check passes if all values in \p Checks (which are \c i1),
1543 /// are \c true.
1544 void ScalarExprEmitter::EmitBinOpCheck(
1545     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1546   assert(CGF.IsSanitizerScope);
1547   SanitizerHandler Check;
1548   SmallVector<llvm::Constant *, 4> StaticData;
1549   SmallVector<llvm::Value *, 2> DynamicData;
1550 
1551   BinaryOperatorKind Opcode = Info.Opcode;
1552   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1553     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1554 
1555   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1556   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1557   if (UO && UO->getOpcode() == UO_Minus) {
1558     Check = SanitizerHandler::NegateOverflow;
1559     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1560     DynamicData.push_back(Info.RHS);
1561   } else {
1562     if (BinaryOperator::isShiftOp(Opcode)) {
1563       // Shift LHS negative or too large, or RHS out of bounds.
1564       Check = SanitizerHandler::ShiftOutOfBounds;
1565       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1566       StaticData.push_back(
1567         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1568       StaticData.push_back(
1569         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1570     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1571       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1572       Check = SanitizerHandler::DivremOverflow;
1573       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1574     } else {
1575       // Arithmetic overflow (+, -, *).
1576       switch (Opcode) {
1577       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1578       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1579       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1580       default: llvm_unreachable("unexpected opcode for bin op check");
1581       }
1582       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1583     }
1584     DynamicData.push_back(Info.LHS);
1585     DynamicData.push_back(Info.RHS);
1586   }
1587 
1588   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1589 }
1590 
1591 //===----------------------------------------------------------------------===//
1592 //                            Visitor Methods
1593 //===----------------------------------------------------------------------===//
1594 
1595 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1596   CGF.ErrorUnsupported(E, "scalar expression");
1597   if (E->getType()->isVoidType())
1598     return nullptr;
1599   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1600 }
1601 
1602 Value *
1603 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1604   ASTContext &Context = CGF.getContext();
1605   llvm::Optional<LangAS> GlobalAS =
1606       Context.getTargetInfo().getConstantAddressSpace();
1607   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1608       E->ComputeName(Context), "__usn_str",
1609       static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default)));
1610 
1611   unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1612 
1613   if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1614     return GlobalConstStr;
1615 
1616   llvm::PointerType *PtrTy = cast<llvm::PointerType>(GlobalConstStr->getType());
1617   llvm::PointerType *NewPtrTy =
1618       llvm::PointerType::getWithSamePointeeType(PtrTy, ExprAS);
1619   return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1620 }
1621 
1622 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1623   // Vector Mask Case
1624   if (E->getNumSubExprs() == 2) {
1625     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1626     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1627     Value *Mask;
1628 
1629     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1630     unsigned LHSElts = LTy->getNumElements();
1631 
1632     Mask = RHS;
1633 
1634     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1635 
1636     // Mask off the high bits of each shuffle index.
1637     Value *MaskBits =
1638         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1639     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1640 
1641     // newv = undef
1642     // mask = mask & maskbits
1643     // for each elt
1644     //   n = extract mask i
1645     //   x = extract val n
1646     //   newv = insert newv, x, i
1647     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1648                                            MTy->getNumElements());
1649     Value* NewV = llvm::UndefValue::get(RTy);
1650     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1651       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1652       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1653 
1654       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1655       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1656     }
1657     return NewV;
1658   }
1659 
1660   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1661   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1662 
1663   SmallVector<int, 32> Indices;
1664   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1665     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1666     // Check for -1 and output it as undef in the IR.
1667     if (Idx.isSigned() && Idx.isAllOnes())
1668       Indices.push_back(-1);
1669     else
1670       Indices.push_back(Idx.getZExtValue());
1671   }
1672 
1673   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1674 }
1675 
1676 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1677   QualType SrcType = E->getSrcExpr()->getType(),
1678            DstType = E->getType();
1679 
1680   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1681 
1682   SrcType = CGF.getContext().getCanonicalType(SrcType);
1683   DstType = CGF.getContext().getCanonicalType(DstType);
1684   if (SrcType == DstType) return Src;
1685 
1686   assert(SrcType->isVectorType() &&
1687          "ConvertVector source type must be a vector");
1688   assert(DstType->isVectorType() &&
1689          "ConvertVector destination type must be a vector");
1690 
1691   llvm::Type *SrcTy = Src->getType();
1692   llvm::Type *DstTy = ConvertType(DstType);
1693 
1694   // Ignore conversions like int -> uint.
1695   if (SrcTy == DstTy)
1696     return Src;
1697 
1698   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1699            DstEltType = DstType->castAs<VectorType>()->getElementType();
1700 
1701   assert(SrcTy->isVectorTy() &&
1702          "ConvertVector source IR type must be a vector");
1703   assert(DstTy->isVectorTy() &&
1704          "ConvertVector destination IR type must be a vector");
1705 
1706   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1707              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1708 
1709   if (DstEltType->isBooleanType()) {
1710     assert((SrcEltTy->isFloatingPointTy() ||
1711             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1712 
1713     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1714     if (SrcEltTy->isFloatingPointTy()) {
1715       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1716     } else {
1717       return Builder.CreateICmpNE(Src, Zero, "tobool");
1718     }
1719   }
1720 
1721   // We have the arithmetic types: real int/float.
1722   Value *Res = nullptr;
1723 
1724   if (isa<llvm::IntegerType>(SrcEltTy)) {
1725     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1726     if (isa<llvm::IntegerType>(DstEltTy))
1727       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1728     else if (InputSigned)
1729       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1730     else
1731       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1732   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1733     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1734     if (DstEltType->isSignedIntegerOrEnumerationType())
1735       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1736     else
1737       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1738   } else {
1739     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1740            "Unknown real conversion");
1741     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1742       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1743     else
1744       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1745   }
1746 
1747   return Res;
1748 }
1749 
1750 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1751   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1752     CGF.EmitIgnoredExpr(E->getBase());
1753     return CGF.emitScalarConstant(Constant, E);
1754   } else {
1755     Expr::EvalResult Result;
1756     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1757       llvm::APSInt Value = Result.Val.getInt();
1758       CGF.EmitIgnoredExpr(E->getBase());
1759       return Builder.getInt(Value);
1760     }
1761   }
1762 
1763   return EmitLoadOfLValue(E);
1764 }
1765 
1766 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1767   TestAndClearIgnoreResultAssign();
1768 
1769   // Emit subscript expressions in rvalue context's.  For most cases, this just
1770   // loads the lvalue formed by the subscript expr.  However, we have to be
1771   // careful, because the base of a vector subscript is occasionally an rvalue,
1772   // so we can't get it as an lvalue.
1773   if (!E->getBase()->getType()->isVectorType())
1774     return EmitLoadOfLValue(E);
1775 
1776   // Handle the vector case.  The base must be a vector, the index must be an
1777   // integer value.
1778   Value *Base = Visit(E->getBase());
1779   Value *Idx  = Visit(E->getIdx());
1780   QualType IdxTy = E->getIdx()->getType();
1781 
1782   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1783     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1784 
1785   return Builder.CreateExtractElement(Base, Idx, "vecext");
1786 }
1787 
1788 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1789   TestAndClearIgnoreResultAssign();
1790 
1791   // Handle the vector case.  The base must be a vector, the index must be an
1792   // integer value.
1793   Value *RowIdx = Visit(E->getRowIdx());
1794   Value *ColumnIdx = Visit(E->getColumnIdx());
1795 
1796   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1797   unsigned NumRows = MatrixTy->getNumRows();
1798   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1799   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1800   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1801     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1802 
1803   Value *Matrix = Visit(E->getBase());
1804 
1805   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1806   return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1807 }
1808 
1809 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1810                       unsigned Off) {
1811   int MV = SVI->getMaskValue(Idx);
1812   if (MV == -1)
1813     return -1;
1814   return Off + MV;
1815 }
1816 
1817 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1818   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1819          "Index operand too large for shufflevector mask!");
1820   return C->getZExtValue();
1821 }
1822 
1823 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1824   bool Ignore = TestAndClearIgnoreResultAssign();
1825   (void)Ignore;
1826   assert (Ignore == false && "init list ignored");
1827   unsigned NumInitElements = E->getNumInits();
1828 
1829   if (E->hadArrayRangeDesignator())
1830     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1831 
1832   llvm::VectorType *VType =
1833     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1834 
1835   if (!VType) {
1836     if (NumInitElements == 0) {
1837       // C++11 value-initialization for the scalar.
1838       return EmitNullValue(E->getType());
1839     }
1840     // We have a scalar in braces. Just use the first element.
1841     return Visit(E->getInit(0));
1842   }
1843 
1844   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1845 
1846   // Loop over initializers collecting the Value for each, and remembering
1847   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1848   // us to fold the shuffle for the swizzle into the shuffle for the vector
1849   // initializer, since LLVM optimizers generally do not want to touch
1850   // shuffles.
1851   unsigned CurIdx = 0;
1852   bool VIsUndefShuffle = false;
1853   llvm::Value *V = llvm::UndefValue::get(VType);
1854   for (unsigned i = 0; i != NumInitElements; ++i) {
1855     Expr *IE = E->getInit(i);
1856     Value *Init = Visit(IE);
1857     SmallVector<int, 16> Args;
1858 
1859     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1860 
1861     // Handle scalar elements.  If the scalar initializer is actually one
1862     // element of a different vector of the same width, use shuffle instead of
1863     // extract+insert.
1864     if (!VVT) {
1865       if (isa<ExtVectorElementExpr>(IE)) {
1866         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1867 
1868         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1869                 ->getNumElements() == ResElts) {
1870           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1871           Value *LHS = nullptr, *RHS = nullptr;
1872           if (CurIdx == 0) {
1873             // insert into undef -> shuffle (src, undef)
1874             // shufflemask must use an i32
1875             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1876             Args.resize(ResElts, -1);
1877 
1878             LHS = EI->getVectorOperand();
1879             RHS = V;
1880             VIsUndefShuffle = true;
1881           } else if (VIsUndefShuffle) {
1882             // insert into undefshuffle && size match -> shuffle (v, src)
1883             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1884             for (unsigned j = 0; j != CurIdx; ++j)
1885               Args.push_back(getMaskElt(SVV, j, 0));
1886             Args.push_back(ResElts + C->getZExtValue());
1887             Args.resize(ResElts, -1);
1888 
1889             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1890             RHS = EI->getVectorOperand();
1891             VIsUndefShuffle = false;
1892           }
1893           if (!Args.empty()) {
1894             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1895             ++CurIdx;
1896             continue;
1897           }
1898         }
1899       }
1900       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1901                                       "vecinit");
1902       VIsUndefShuffle = false;
1903       ++CurIdx;
1904       continue;
1905     }
1906 
1907     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1908 
1909     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1910     // input is the same width as the vector being constructed, generate an
1911     // optimized shuffle of the swizzle input into the result.
1912     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1913     if (isa<ExtVectorElementExpr>(IE)) {
1914       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1915       Value *SVOp = SVI->getOperand(0);
1916       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1917 
1918       if (OpTy->getNumElements() == ResElts) {
1919         for (unsigned j = 0; j != CurIdx; ++j) {
1920           // If the current vector initializer is a shuffle with undef, merge
1921           // this shuffle directly into it.
1922           if (VIsUndefShuffle) {
1923             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1924           } else {
1925             Args.push_back(j);
1926           }
1927         }
1928         for (unsigned j = 0, je = InitElts; j != je; ++j)
1929           Args.push_back(getMaskElt(SVI, j, Offset));
1930         Args.resize(ResElts, -1);
1931 
1932         if (VIsUndefShuffle)
1933           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1934 
1935         Init = SVOp;
1936       }
1937     }
1938 
1939     // Extend init to result vector length, and then shuffle its contribution
1940     // to the vector initializer into V.
1941     if (Args.empty()) {
1942       for (unsigned j = 0; j != InitElts; ++j)
1943         Args.push_back(j);
1944       Args.resize(ResElts, -1);
1945       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1946 
1947       Args.clear();
1948       for (unsigned j = 0; j != CurIdx; ++j)
1949         Args.push_back(j);
1950       for (unsigned j = 0; j != InitElts; ++j)
1951         Args.push_back(j + Offset);
1952       Args.resize(ResElts, -1);
1953     }
1954 
1955     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1956     // merging subsequent shuffles into this one.
1957     if (CurIdx == 0)
1958       std::swap(V, Init);
1959     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1960     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1961     CurIdx += InitElts;
1962   }
1963 
1964   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1965   // Emit remaining default initializers.
1966   llvm::Type *EltTy = VType->getElementType();
1967 
1968   // Emit remaining default initializers
1969   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1970     Value *Idx = Builder.getInt32(CurIdx);
1971     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1972     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1973   }
1974   return V;
1975 }
1976 
1977 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1978   const Expr *E = CE->getSubExpr();
1979 
1980   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1981     return false;
1982 
1983   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1984     // We always assume that 'this' is never null.
1985     return false;
1986   }
1987 
1988   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1989     // And that glvalue casts are never null.
1990     if (ICE->isGLValue())
1991       return false;
1992   }
1993 
1994   return true;
1995 }
1996 
1997 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1998 // have to handle a more broad range of conversions than explicit casts, as they
1999 // handle things like function to ptr-to-function decay etc.
2000 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2001   Expr *E = CE->getSubExpr();
2002   QualType DestTy = CE->getType();
2003   CastKind Kind = CE->getCastKind();
2004 
2005   // These cases are generally not written to ignore the result of
2006   // evaluating their sub-expressions, so we clear this now.
2007   bool Ignored = TestAndClearIgnoreResultAssign();
2008 
2009   // Since almost all cast kinds apply to scalars, this switch doesn't have
2010   // a default case, so the compiler will warn on a missing case.  The cases
2011   // are in the same order as in the CastKind enum.
2012   switch (Kind) {
2013   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2014   case CK_BuiltinFnToFnPtr:
2015     llvm_unreachable("builtin functions are handled elsewhere");
2016 
2017   case CK_LValueBitCast:
2018   case CK_ObjCObjectLValueCast: {
2019     Address Addr = EmitLValue(E).getAddress(CGF);
2020     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2021     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2022     return EmitLoadOfLValue(LV, CE->getExprLoc());
2023   }
2024 
2025   case CK_LValueToRValueBitCast: {
2026     LValue SourceLVal = CGF.EmitLValue(E);
2027     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2028                                                 CGF.ConvertTypeForMem(DestTy));
2029     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2030     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2031     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2032   }
2033 
2034   case CK_CPointerToObjCPointerCast:
2035   case CK_BlockPointerToObjCPointerCast:
2036   case CK_AnyPointerToBlockPointerCast:
2037   case CK_BitCast: {
2038     Value *Src = Visit(const_cast<Expr*>(E));
2039     llvm::Type *SrcTy = Src->getType();
2040     llvm::Type *DstTy = ConvertType(DestTy);
2041     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2042         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2043       llvm_unreachable("wrong cast for pointers in different address spaces"
2044                        "(must be an address space cast)!");
2045     }
2046 
2047     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2048       if (auto PT = DestTy->getAs<PointerType>())
2049         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2050                                       /*MayBeNull=*/true,
2051                                       CodeGenFunction::CFITCK_UnrelatedCast,
2052                                       CE->getBeginLoc());
2053     }
2054 
2055     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2056       const QualType SrcType = E->getType();
2057 
2058       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2059         // Casting to pointer that could carry dynamic information (provided by
2060         // invariant.group) requires launder.
2061         Src = Builder.CreateLaunderInvariantGroup(Src);
2062       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2063         // Casting to pointer that does not carry dynamic information (provided
2064         // by invariant.group) requires stripping it.  Note that we don't do it
2065         // if the source could not be dynamic type and destination could be
2066         // dynamic because dynamic information is already laundered.  It is
2067         // because launder(strip(src)) == launder(src), so there is no need to
2068         // add extra strip before launder.
2069         Src = Builder.CreateStripInvariantGroup(Src);
2070       }
2071     }
2072 
2073     // Update heapallocsite metadata when there is an explicit pointer cast.
2074     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2075       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2076         QualType PointeeType = DestTy->getPointeeType();
2077         if (!PointeeType.isNull())
2078           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2079                                                        CE->getExprLoc());
2080       }
2081     }
2082 
2083     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2084     // same element type, use the llvm.experimental.vector.insert intrinsic to
2085     // perform the bitcast.
2086     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2087       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2088         // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2089         // vector, use a vector insert and bitcast the result.
2090         bool NeedsBitCast = false;
2091         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2092         llvm::Type *OrigType = DstTy;
2093         if (ScalableDst == PredType &&
2094             FixedSrc->getElementType() == Builder.getInt8Ty()) {
2095           DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2096           ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy);
2097           NeedsBitCast = true;
2098         }
2099         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2100           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2101           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2102           llvm::Value *Result = Builder.CreateInsertVector(
2103               DstTy, UndefVec, Src, Zero, "castScalableSve");
2104           if (NeedsBitCast)
2105             Result = Builder.CreateBitCast(Result, OrigType);
2106           return Result;
2107         }
2108       }
2109     }
2110 
2111     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2112     // same element type, use the llvm.experimental.vector.extract intrinsic to
2113     // perform the bitcast.
2114     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2115       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2116         // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2117         // vector, bitcast the source and use a vector extract.
2118         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2119         if (ScalableSrc == PredType &&
2120             FixedDst->getElementType() == Builder.getInt8Ty()) {
2121           SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2122           ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy);
2123           Src = Builder.CreateBitCast(Src, SrcTy);
2124         }
2125         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2126           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2127           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2128         }
2129       }
2130     }
2131 
2132     // Perform VLAT <-> VLST bitcast through memory.
2133     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2134     //       require the element types of the vectors to be the same, we
2135     //       need to keep this around for bitcasts between VLAT <-> VLST where
2136     //       the element types of the vectors are not the same, until we figure
2137     //       out a better way of doing these casts.
2138     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2139          isa<llvm::ScalableVectorType>(DstTy)) ||
2140         (isa<llvm::ScalableVectorType>(SrcTy) &&
2141          isa<llvm::FixedVectorType>(DstTy))) {
2142       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2143       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2144       CGF.EmitStoreOfScalar(Src, LV);
2145       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2146                                           "castFixedSve");
2147       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2148       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2149       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2150     }
2151 
2152     return Builder.CreateBitCast(Src, DstTy);
2153   }
2154   case CK_AddressSpaceConversion: {
2155     Expr::EvalResult Result;
2156     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2157         Result.Val.isNullPointer()) {
2158       // If E has side effect, it is emitted even if its final result is a
2159       // null pointer. In that case, a DCE pass should be able to
2160       // eliminate the useless instructions emitted during translating E.
2161       if (Result.HasSideEffects)
2162         Visit(E);
2163       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2164           ConvertType(DestTy)), DestTy);
2165     }
2166     // Since target may map different address spaces in AST to the same address
2167     // space, an address space conversion may end up as a bitcast.
2168     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2169         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2170         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2171   }
2172   case CK_AtomicToNonAtomic:
2173   case CK_NonAtomicToAtomic:
2174   case CK_UserDefinedConversion:
2175     return Visit(const_cast<Expr*>(E));
2176 
2177   case CK_NoOp: {
2178     llvm::Value *V = Visit(const_cast<Expr *>(E));
2179     if (V) {
2180       // CK_NoOp can model a pointer qualification conversion, which can remove
2181       // an array bound and change the IR type.
2182       // FIXME: Once pointee types are removed from IR, remove this.
2183       llvm::Type *T = ConvertType(DestTy);
2184       if (T != V->getType())
2185         V = Builder.CreateBitCast(V, T);
2186     }
2187     return V;
2188   }
2189 
2190   case CK_BaseToDerived: {
2191     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2192     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2193 
2194     Address Base = CGF.EmitPointerWithAlignment(E);
2195     Address Derived =
2196       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2197                                    CE->path_begin(), CE->path_end(),
2198                                    CGF.ShouldNullCheckClassCastValue(CE));
2199 
2200     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2201     // performed and the object is not of the derived type.
2202     if (CGF.sanitizePerformTypeCheck())
2203       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2204                         Derived.getPointer(), DestTy->getPointeeType());
2205 
2206     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2207       CGF.EmitVTablePtrCheckForCast(
2208           DestTy->getPointeeType(), Derived.getPointer(),
2209           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2210           CE->getBeginLoc());
2211 
2212     return Derived.getPointer();
2213   }
2214   case CK_UncheckedDerivedToBase:
2215   case CK_DerivedToBase: {
2216     // The EmitPointerWithAlignment path does this fine; just discard
2217     // the alignment.
2218     return CGF.EmitPointerWithAlignment(CE).getPointer();
2219   }
2220 
2221   case CK_Dynamic: {
2222     Address V = CGF.EmitPointerWithAlignment(E);
2223     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2224     return CGF.EmitDynamicCast(V, DCE);
2225   }
2226 
2227   case CK_ArrayToPointerDecay:
2228     return CGF.EmitArrayToPointerDecay(E).getPointer();
2229   case CK_FunctionToPointerDecay:
2230     return EmitLValue(E).getPointer(CGF);
2231 
2232   case CK_NullToPointer:
2233     if (MustVisitNullValue(E))
2234       CGF.EmitIgnoredExpr(E);
2235 
2236     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2237                               DestTy);
2238 
2239   case CK_NullToMemberPointer: {
2240     if (MustVisitNullValue(E))
2241       CGF.EmitIgnoredExpr(E);
2242 
2243     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2244     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2245   }
2246 
2247   case CK_ReinterpretMemberPointer:
2248   case CK_BaseToDerivedMemberPointer:
2249   case CK_DerivedToBaseMemberPointer: {
2250     Value *Src = Visit(E);
2251 
2252     // Note that the AST doesn't distinguish between checked and
2253     // unchecked member pointer conversions, so we always have to
2254     // implement checked conversions here.  This is inefficient when
2255     // actual control flow may be required in order to perform the
2256     // check, which it is for data member pointers (but not member
2257     // function pointers on Itanium and ARM).
2258     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2259   }
2260 
2261   case CK_ARCProduceObject:
2262     return CGF.EmitARCRetainScalarExpr(E);
2263   case CK_ARCConsumeObject:
2264     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2265   case CK_ARCReclaimReturnedObject:
2266     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2267   case CK_ARCExtendBlockObject:
2268     return CGF.EmitARCExtendBlockObject(E);
2269 
2270   case CK_CopyAndAutoreleaseBlockObject:
2271     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2272 
2273   case CK_FloatingRealToComplex:
2274   case CK_FloatingComplexCast:
2275   case CK_IntegralRealToComplex:
2276   case CK_IntegralComplexCast:
2277   case CK_IntegralComplexToFloatingComplex:
2278   case CK_FloatingComplexToIntegralComplex:
2279   case CK_ConstructorConversion:
2280   case CK_ToUnion:
2281     llvm_unreachable("scalar cast to non-scalar value");
2282 
2283   case CK_LValueToRValue:
2284     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2285     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2286     return Visit(const_cast<Expr*>(E));
2287 
2288   case CK_IntegralToPointer: {
2289     Value *Src = Visit(const_cast<Expr*>(E));
2290 
2291     // First, convert to the correct width so that we control the kind of
2292     // extension.
2293     auto DestLLVMTy = ConvertType(DestTy);
2294     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2295     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2296     llvm::Value* IntResult =
2297       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2298 
2299     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2300 
2301     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2302       // Going from integer to pointer that could be dynamic requires reloading
2303       // dynamic information from invariant.group.
2304       if (DestTy.mayBeDynamicClass())
2305         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2306     }
2307     return IntToPtr;
2308   }
2309   case CK_PointerToIntegral: {
2310     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2311     auto *PtrExpr = Visit(E);
2312 
2313     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2314       const QualType SrcType = E->getType();
2315 
2316       // Casting to integer requires stripping dynamic information as it does
2317       // not carries it.
2318       if (SrcType.mayBeDynamicClass())
2319         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2320     }
2321 
2322     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2323   }
2324   case CK_ToVoid: {
2325     CGF.EmitIgnoredExpr(E);
2326     return nullptr;
2327   }
2328   case CK_MatrixCast: {
2329     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2330                                 CE->getExprLoc());
2331   }
2332   case CK_VectorSplat: {
2333     llvm::Type *DstTy = ConvertType(DestTy);
2334     Value *Elt = Visit(const_cast<Expr*>(E));
2335     // Splat the element across to all elements
2336     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2337     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2338   }
2339 
2340   case CK_FixedPointCast:
2341     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2342                                 CE->getExprLoc());
2343 
2344   case CK_FixedPointToBoolean:
2345     assert(E->getType()->isFixedPointType() &&
2346            "Expected src type to be fixed point type");
2347     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2348     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2349                                 CE->getExprLoc());
2350 
2351   case CK_FixedPointToIntegral:
2352     assert(E->getType()->isFixedPointType() &&
2353            "Expected src type to be fixed point type");
2354     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2355     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2356                                 CE->getExprLoc());
2357 
2358   case CK_IntegralToFixedPoint:
2359     assert(E->getType()->isIntegerType() &&
2360            "Expected src type to be an integer");
2361     assert(DestTy->isFixedPointType() &&
2362            "Expected dest type to be fixed point type");
2363     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2364                                 CE->getExprLoc());
2365 
2366   case CK_IntegralCast: {
2367     ScalarConversionOpts Opts;
2368     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2369       if (!ICE->isPartOfExplicitCast())
2370         Opts = ScalarConversionOpts(CGF.SanOpts);
2371     }
2372     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2373                                 CE->getExprLoc(), Opts);
2374   }
2375   case CK_IntegralToFloating:
2376   case CK_FloatingToIntegral:
2377   case CK_FloatingCast:
2378   case CK_FixedPointToFloating:
2379   case CK_FloatingToFixedPoint: {
2380     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2381     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2382                                 CE->getExprLoc());
2383   }
2384   case CK_BooleanToSignedIntegral: {
2385     ScalarConversionOpts Opts;
2386     Opts.TreatBooleanAsSigned = true;
2387     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2388                                 CE->getExprLoc(), Opts);
2389   }
2390   case CK_IntegralToBoolean:
2391     return EmitIntToBoolConversion(Visit(E));
2392   case CK_PointerToBoolean:
2393     return EmitPointerToBoolConversion(Visit(E), E->getType());
2394   case CK_FloatingToBoolean: {
2395     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2396     return EmitFloatToBoolConversion(Visit(E));
2397   }
2398   case CK_MemberPointerToBoolean: {
2399     llvm::Value *MemPtr = Visit(E);
2400     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2401     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2402   }
2403 
2404   case CK_FloatingComplexToReal:
2405   case CK_IntegralComplexToReal:
2406     return CGF.EmitComplexExpr(E, false, true).first;
2407 
2408   case CK_FloatingComplexToBoolean:
2409   case CK_IntegralComplexToBoolean: {
2410     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2411 
2412     // TODO: kill this function off, inline appropriate case here
2413     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2414                                          CE->getExprLoc());
2415   }
2416 
2417   case CK_ZeroToOCLOpaqueType: {
2418     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2419             DestTy->isOCLIntelSubgroupAVCType()) &&
2420            "CK_ZeroToOCLEvent cast on non-event type");
2421     return llvm::Constant::getNullValue(ConvertType(DestTy));
2422   }
2423 
2424   case CK_IntToOCLSampler:
2425     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2426 
2427   } // end of switch
2428 
2429   llvm_unreachable("unknown scalar cast");
2430 }
2431 
2432 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2433   CodeGenFunction::StmtExprEvaluation eval(CGF);
2434   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2435                                            !E->getType()->isVoidType());
2436   if (!RetAlloca.isValid())
2437     return nullptr;
2438   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2439                               E->getExprLoc());
2440 }
2441 
2442 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2443   CodeGenFunction::RunCleanupsScope Scope(CGF);
2444   Value *V = Visit(E->getSubExpr());
2445   // Defend against dominance problems caused by jumps out of expression
2446   // evaluation through the shared cleanup block.
2447   Scope.ForceCleanup({&V});
2448   return V;
2449 }
2450 
2451 //===----------------------------------------------------------------------===//
2452 //                             Unary Operators
2453 //===----------------------------------------------------------------------===//
2454 
2455 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2456                                            llvm::Value *InVal, bool IsInc,
2457                                            FPOptions FPFeatures) {
2458   BinOpInfo BinOp;
2459   BinOp.LHS = InVal;
2460   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2461   BinOp.Ty = E->getType();
2462   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2463   BinOp.FPFeatures = FPFeatures;
2464   BinOp.E = E;
2465   return BinOp;
2466 }
2467 
2468 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2469     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2470   llvm::Value *Amount =
2471       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2472   StringRef Name = IsInc ? "inc" : "dec";
2473   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2474   case LangOptions::SOB_Defined:
2475     return Builder.CreateAdd(InVal, Amount, Name);
2476   case LangOptions::SOB_Undefined:
2477     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2478       return Builder.CreateNSWAdd(InVal, Amount, Name);
2479     LLVM_FALLTHROUGH;
2480   case LangOptions::SOB_Trapping:
2481     if (!E->canOverflow())
2482       return Builder.CreateNSWAdd(InVal, Amount, Name);
2483     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2484         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2485   }
2486   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2487 }
2488 
2489 namespace {
2490 /// Handles check and update for lastprivate conditional variables.
2491 class OMPLastprivateConditionalUpdateRAII {
2492 private:
2493   CodeGenFunction &CGF;
2494   const UnaryOperator *E;
2495 
2496 public:
2497   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2498                                       const UnaryOperator *E)
2499       : CGF(CGF), E(E) {}
2500   ~OMPLastprivateConditionalUpdateRAII() {
2501     if (CGF.getLangOpts().OpenMP)
2502       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2503           CGF, E->getSubExpr());
2504   }
2505 };
2506 } // namespace
2507 
2508 llvm::Value *
2509 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2510                                            bool isInc, bool isPre) {
2511   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2512   QualType type = E->getSubExpr()->getType();
2513   llvm::PHINode *atomicPHI = nullptr;
2514   llvm::Value *value;
2515   llvm::Value *input;
2516 
2517   int amount = (isInc ? 1 : -1);
2518   bool isSubtraction = !isInc;
2519 
2520   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2521     type = atomicTy->getValueType();
2522     if (isInc && type->isBooleanType()) {
2523       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2524       if (isPre) {
2525         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2526             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2527         return Builder.getTrue();
2528       }
2529       // For atomic bool increment, we just store true and return it for
2530       // preincrement, do an atomic swap with true for postincrement
2531       return Builder.CreateAtomicRMW(
2532           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2533           llvm::AtomicOrdering::SequentiallyConsistent);
2534     }
2535     // Special case for atomic increment / decrement on integers, emit
2536     // atomicrmw instructions.  We skip this if we want to be doing overflow
2537     // checking, and fall into the slow path with the atomic cmpxchg loop.
2538     if (!type->isBooleanType() && type->isIntegerType() &&
2539         !(type->isUnsignedIntegerType() &&
2540           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2541         CGF.getLangOpts().getSignedOverflowBehavior() !=
2542             LangOptions::SOB_Trapping) {
2543       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2544         llvm::AtomicRMWInst::Sub;
2545       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2546         llvm::Instruction::Sub;
2547       llvm::Value *amt = CGF.EmitToMemory(
2548           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2549       llvm::Value *old =
2550           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2551                                   llvm::AtomicOrdering::SequentiallyConsistent);
2552       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2553     }
2554     value = EmitLoadOfLValue(LV, E->getExprLoc());
2555     input = value;
2556     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2557     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2558     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2559     value = CGF.EmitToMemory(value, type);
2560     Builder.CreateBr(opBB);
2561     Builder.SetInsertPoint(opBB);
2562     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2563     atomicPHI->addIncoming(value, startBB);
2564     value = atomicPHI;
2565   } else {
2566     value = EmitLoadOfLValue(LV, E->getExprLoc());
2567     input = value;
2568   }
2569 
2570   // Special case of integer increment that we have to check first: bool++.
2571   // Due to promotion rules, we get:
2572   //   bool++ -> bool = bool + 1
2573   //          -> bool = (int)bool + 1
2574   //          -> bool = ((int)bool + 1 != 0)
2575   // An interesting aspect of this is that increment is always true.
2576   // Decrement does not have this property.
2577   if (isInc && type->isBooleanType()) {
2578     value = Builder.getTrue();
2579 
2580   // Most common case by far: integer increment.
2581   } else if (type->isIntegerType()) {
2582     QualType promotedType;
2583     bool canPerformLossyDemotionCheck = false;
2584     if (type->isPromotableIntegerType()) {
2585       promotedType = CGF.getContext().getPromotedIntegerType(type);
2586       assert(promotedType != type && "Shouldn't promote to the same type.");
2587       canPerformLossyDemotionCheck = true;
2588       canPerformLossyDemotionCheck &=
2589           CGF.getContext().getCanonicalType(type) !=
2590           CGF.getContext().getCanonicalType(promotedType);
2591       canPerformLossyDemotionCheck &=
2592           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2593               type, promotedType);
2594       assert((!canPerformLossyDemotionCheck ||
2595               type->isSignedIntegerOrEnumerationType() ||
2596               promotedType->isSignedIntegerOrEnumerationType() ||
2597               ConvertType(type)->getScalarSizeInBits() ==
2598                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2599              "The following check expects that if we do promotion to different "
2600              "underlying canonical type, at least one of the types (either "
2601              "base or promoted) will be signed, or the bitwidths will match.");
2602     }
2603     if (CGF.SanOpts.hasOneOf(
2604             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2605         canPerformLossyDemotionCheck) {
2606       // While `x += 1` (for `x` with width less than int) is modeled as
2607       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2608       // ease; inc/dec with width less than int can't overflow because of
2609       // promotion rules, so we omit promotion+demotion, which means that we can
2610       // not catch lossy "demotion". Because we still want to catch these cases
2611       // when the sanitizer is enabled, we perform the promotion, then perform
2612       // the increment/decrement in the wider type, and finally
2613       // perform the demotion. This will catch lossy demotions.
2614 
2615       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2616       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2617       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2618       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2619       // emitted.
2620       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2621                                    ScalarConversionOpts(CGF.SanOpts));
2622 
2623       // Note that signed integer inc/dec with width less than int can't
2624       // overflow because of promotion rules; we're just eliding a few steps
2625       // here.
2626     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2627       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2628     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2629                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2630       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2631           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2632     } else {
2633       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2634       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2635     }
2636 
2637   // Next most common: pointer increment.
2638   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2639     QualType type = ptr->getPointeeType();
2640 
2641     // VLA types don't have constant size.
2642     if (const VariableArrayType *vla
2643           = CGF.getContext().getAsVariableArrayType(type)) {
2644       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2645       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2646       llvm::Type *elemTy = value->getType()->getPointerElementType();
2647       if (CGF.getLangOpts().isSignedOverflowDefined())
2648         value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2649       else
2650         value = CGF.EmitCheckedInBoundsGEP(
2651             elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2652             E->getExprLoc(), "vla.inc");
2653 
2654     // Arithmetic on function pointers (!) is just +-1.
2655     } else if (type->isFunctionType()) {
2656       llvm::Value *amt = Builder.getInt32(amount);
2657 
2658       value = CGF.EmitCastToVoidPtr(value);
2659       if (CGF.getLangOpts().isSignedOverflowDefined())
2660         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2661       else
2662         value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2663                                            /*SignedIndices=*/false,
2664                                            isSubtraction, E->getExprLoc(),
2665                                            "incdec.funcptr");
2666       value = Builder.CreateBitCast(value, input->getType());
2667 
2668     // For everything else, we can just do a simple increment.
2669     } else {
2670       llvm::Value *amt = Builder.getInt32(amount);
2671       llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2672       if (CGF.getLangOpts().isSignedOverflowDefined())
2673         value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2674       else
2675         value = CGF.EmitCheckedInBoundsGEP(
2676             elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2677             E->getExprLoc(), "incdec.ptr");
2678     }
2679 
2680   // Vector increment/decrement.
2681   } else if (type->isVectorType()) {
2682     if (type->hasIntegerRepresentation()) {
2683       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2684 
2685       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2686     } else {
2687       value = Builder.CreateFAdd(
2688                   value,
2689                   llvm::ConstantFP::get(value->getType(), amount),
2690                   isInc ? "inc" : "dec");
2691     }
2692 
2693   // Floating point.
2694   } else if (type->isRealFloatingType()) {
2695     // Add the inc/dec to the real part.
2696     llvm::Value *amt;
2697     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2698 
2699     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2700       // Another special case: half FP increment should be done via float
2701       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2702         value = Builder.CreateCall(
2703             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2704                                  CGF.CGM.FloatTy),
2705             input, "incdec.conv");
2706       } else {
2707         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2708       }
2709     }
2710 
2711     if (value->getType()->isFloatTy())
2712       amt = llvm::ConstantFP::get(VMContext,
2713                                   llvm::APFloat(static_cast<float>(amount)));
2714     else if (value->getType()->isDoubleTy())
2715       amt = llvm::ConstantFP::get(VMContext,
2716                                   llvm::APFloat(static_cast<double>(amount)));
2717     else {
2718       // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2719       // from float.
2720       llvm::APFloat F(static_cast<float>(amount));
2721       bool ignored;
2722       const llvm::fltSemantics *FS;
2723       // Don't use getFloatTypeSemantics because Half isn't
2724       // necessarily represented using the "half" LLVM type.
2725       if (value->getType()->isFP128Ty())
2726         FS = &CGF.getTarget().getFloat128Format();
2727       else if (value->getType()->isHalfTy())
2728         FS = &CGF.getTarget().getHalfFormat();
2729       else if (value->getType()->isPPC_FP128Ty())
2730         FS = &CGF.getTarget().getIbm128Format();
2731       else
2732         FS = &CGF.getTarget().getLongDoubleFormat();
2733       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2734       amt = llvm::ConstantFP::get(VMContext, F);
2735     }
2736     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2737 
2738     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2739       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2740         value = Builder.CreateCall(
2741             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2742                                  CGF.CGM.FloatTy),
2743             value, "incdec.conv");
2744       } else {
2745         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2746       }
2747     }
2748 
2749   // Fixed-point types.
2750   } else if (type->isFixedPointType()) {
2751     // Fixed-point types are tricky. In some cases, it isn't possible to
2752     // represent a 1 or a -1 in the type at all. Piggyback off of
2753     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2754     BinOpInfo Info;
2755     Info.E = E;
2756     Info.Ty = E->getType();
2757     Info.Opcode = isInc ? BO_Add : BO_Sub;
2758     Info.LHS = value;
2759     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2760     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2761     // since -1 is guaranteed to be representable.
2762     if (type->isSignedFixedPointType()) {
2763       Info.Opcode = isInc ? BO_Sub : BO_Add;
2764       Info.RHS = Builder.CreateNeg(Info.RHS);
2765     }
2766     // Now, convert from our invented integer literal to the type of the unary
2767     // op. This will upscale and saturate if necessary. This value can become
2768     // undef in some cases.
2769     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2770     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2771     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2772     value = EmitFixedPointBinOp(Info);
2773 
2774   // Objective-C pointer types.
2775   } else {
2776     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2777     value = CGF.EmitCastToVoidPtr(value);
2778 
2779     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2780     if (!isInc) size = -size;
2781     llvm::Value *sizeValue =
2782       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2783 
2784     if (CGF.getLangOpts().isSignedOverflowDefined())
2785       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2786     else
2787       value = CGF.EmitCheckedInBoundsGEP(
2788           CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2789           E->getExprLoc(), "incdec.objptr");
2790     value = Builder.CreateBitCast(value, input->getType());
2791   }
2792 
2793   if (atomicPHI) {
2794     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2795     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2796     auto Pair = CGF.EmitAtomicCompareExchange(
2797         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2798     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2799     llvm::Value *success = Pair.second;
2800     atomicPHI->addIncoming(old, curBlock);
2801     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2802     Builder.SetInsertPoint(contBB);
2803     return isPre ? value : input;
2804   }
2805 
2806   // Store the updated result through the lvalue.
2807   if (LV.isBitField())
2808     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2809   else
2810     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2811 
2812   // If this is a postinc, return the value read from memory, otherwise use the
2813   // updated value.
2814   return isPre ? value : input;
2815 }
2816 
2817 
2818 
2819 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2820   TestAndClearIgnoreResultAssign();
2821   Value *Op = Visit(E->getSubExpr());
2822 
2823   // Generate a unary FNeg for FP ops.
2824   if (Op->getType()->isFPOrFPVectorTy())
2825     return Builder.CreateFNeg(Op, "fneg");
2826 
2827   // Emit unary minus with EmitSub so we handle overflow cases etc.
2828   BinOpInfo BinOp;
2829   BinOp.RHS = Op;
2830   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2831   BinOp.Ty = E->getType();
2832   BinOp.Opcode = BO_Sub;
2833   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2834   BinOp.E = E;
2835   return EmitSub(BinOp);
2836 }
2837 
2838 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2839   TestAndClearIgnoreResultAssign();
2840   Value *Op = Visit(E->getSubExpr());
2841   return Builder.CreateNot(Op, "neg");
2842 }
2843 
2844 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2845   // Perform vector logical not on comparison with zero vector.
2846   if (E->getType()->isVectorType() &&
2847       E->getType()->castAs<VectorType>()->getVectorKind() ==
2848           VectorType::GenericVector) {
2849     Value *Oper = Visit(E->getSubExpr());
2850     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2851     Value *Result;
2852     if (Oper->getType()->isFPOrFPVectorTy()) {
2853       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2854           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2855       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2856     } else
2857       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2858     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2859   }
2860 
2861   // Compare operand to zero.
2862   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2863 
2864   // Invert value.
2865   // TODO: Could dynamically modify easy computations here.  For example, if
2866   // the operand is an icmp ne, turn into icmp eq.
2867   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2868 
2869   // ZExt result to the expr type.
2870   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2871 }
2872 
2873 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2874   // Try folding the offsetof to a constant.
2875   Expr::EvalResult EVResult;
2876   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2877     llvm::APSInt Value = EVResult.Val.getInt();
2878     return Builder.getInt(Value);
2879   }
2880 
2881   // Loop over the components of the offsetof to compute the value.
2882   unsigned n = E->getNumComponents();
2883   llvm::Type* ResultType = ConvertType(E->getType());
2884   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2885   QualType CurrentType = E->getTypeSourceInfo()->getType();
2886   for (unsigned i = 0; i != n; ++i) {
2887     OffsetOfNode ON = E->getComponent(i);
2888     llvm::Value *Offset = nullptr;
2889     switch (ON.getKind()) {
2890     case OffsetOfNode::Array: {
2891       // Compute the index
2892       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2893       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2894       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2895       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2896 
2897       // Save the element type
2898       CurrentType =
2899           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2900 
2901       // Compute the element size
2902       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2903           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2904 
2905       // Multiply out to compute the result
2906       Offset = Builder.CreateMul(Idx, ElemSize);
2907       break;
2908     }
2909 
2910     case OffsetOfNode::Field: {
2911       FieldDecl *MemberDecl = ON.getField();
2912       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2913       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2914 
2915       // Compute the index of the field in its parent.
2916       unsigned i = 0;
2917       // FIXME: It would be nice if we didn't have to loop here!
2918       for (RecordDecl::field_iterator Field = RD->field_begin(),
2919                                       FieldEnd = RD->field_end();
2920            Field != FieldEnd; ++Field, ++i) {
2921         if (*Field == MemberDecl)
2922           break;
2923       }
2924       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2925 
2926       // Compute the offset to the field
2927       int64_t OffsetInt = RL.getFieldOffset(i) /
2928                           CGF.getContext().getCharWidth();
2929       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2930 
2931       // Save the element type.
2932       CurrentType = MemberDecl->getType();
2933       break;
2934     }
2935 
2936     case OffsetOfNode::Identifier:
2937       llvm_unreachable("dependent __builtin_offsetof");
2938 
2939     case OffsetOfNode::Base: {
2940       if (ON.getBase()->isVirtual()) {
2941         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2942         continue;
2943       }
2944 
2945       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2946       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2947 
2948       // Save the element type.
2949       CurrentType = ON.getBase()->getType();
2950 
2951       // Compute the offset to the base.
2952       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2953       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2954       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2955       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2956       break;
2957     }
2958     }
2959     Result = Builder.CreateAdd(Result, Offset);
2960   }
2961   return Result;
2962 }
2963 
2964 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2965 /// argument of the sizeof expression as an integer.
2966 Value *
2967 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2968                               const UnaryExprOrTypeTraitExpr *E) {
2969   QualType TypeToSize = E->getTypeOfArgument();
2970   if (E->getKind() == UETT_SizeOf) {
2971     if (const VariableArrayType *VAT =
2972           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2973       if (E->isArgumentType()) {
2974         // sizeof(type) - make sure to emit the VLA size.
2975         CGF.EmitVariablyModifiedType(TypeToSize);
2976       } else {
2977         // C99 6.5.3.4p2: If the argument is an expression of type
2978         // VLA, it is evaluated.
2979         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2980       }
2981 
2982       auto VlaSize = CGF.getVLASize(VAT);
2983       llvm::Value *size = VlaSize.NumElts;
2984 
2985       // Scale the number of non-VLA elements by the non-VLA element size.
2986       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2987       if (!eltSize.isOne())
2988         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2989 
2990       return size;
2991     }
2992   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2993     auto Alignment =
2994         CGF.getContext()
2995             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2996                 E->getTypeOfArgument()->getPointeeType()))
2997             .getQuantity();
2998     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2999   }
3000 
3001   // If this isn't sizeof(vla), the result must be constant; use the constant
3002   // folding logic so we don't have to duplicate it here.
3003   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3004 }
3005 
3006 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
3007   Expr *Op = E->getSubExpr();
3008   if (Op->getType()->isAnyComplexType()) {
3009     // If it's an l-value, load through the appropriate subobject l-value.
3010     // Note that we have to ask E because Op might be an l-value that
3011     // this won't work for, e.g. an Obj-C property.
3012     if (E->isGLValue())
3013       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3014                                   E->getExprLoc()).getScalarVal();
3015 
3016     // Otherwise, calculate and project.
3017     return CGF.EmitComplexExpr(Op, false, true).first;
3018   }
3019 
3020   return Visit(Op);
3021 }
3022 
3023 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
3024   Expr *Op = E->getSubExpr();
3025   if (Op->getType()->isAnyComplexType()) {
3026     // If it's an l-value, load through the appropriate subobject l-value.
3027     // Note that we have to ask E because Op might be an l-value that
3028     // this won't work for, e.g. an Obj-C property.
3029     if (Op->isGLValue())
3030       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3031                                   E->getExprLoc()).getScalarVal();
3032 
3033     // Otherwise, calculate and project.
3034     return CGF.EmitComplexExpr(Op, true, false).second;
3035   }
3036 
3037   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3038   // effects are evaluated, but not the actual value.
3039   if (Op->isGLValue())
3040     CGF.EmitLValue(Op);
3041   else
3042     CGF.EmitScalarExpr(Op, true);
3043   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3044 }
3045 
3046 //===----------------------------------------------------------------------===//
3047 //                           Binary Operators
3048 //===----------------------------------------------------------------------===//
3049 
3050 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
3051   TestAndClearIgnoreResultAssign();
3052   BinOpInfo Result;
3053   Result.LHS = Visit(E->getLHS());
3054   Result.RHS = Visit(E->getRHS());
3055   Result.Ty  = E->getType();
3056   Result.Opcode = E->getOpcode();
3057   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3058   Result.E = E;
3059   return Result;
3060 }
3061 
3062 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3063                                               const CompoundAssignOperator *E,
3064                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3065                                                    Value *&Result) {
3066   QualType LHSTy = E->getLHS()->getType();
3067   BinOpInfo OpInfo;
3068 
3069   if (E->getComputationResultType()->isAnyComplexType())
3070     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3071 
3072   // Emit the RHS first.  __block variables need to have the rhs evaluated
3073   // first, plus this should improve codegen a little.
3074   OpInfo.RHS = Visit(E->getRHS());
3075   OpInfo.Ty = E->getComputationResultType();
3076   OpInfo.Opcode = E->getOpcode();
3077   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3078   OpInfo.E = E;
3079   // Load/convert the LHS.
3080   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3081 
3082   llvm::PHINode *atomicPHI = nullptr;
3083   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3084     QualType type = atomicTy->getValueType();
3085     if (!type->isBooleanType() && type->isIntegerType() &&
3086         !(type->isUnsignedIntegerType() &&
3087           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3088         CGF.getLangOpts().getSignedOverflowBehavior() !=
3089             LangOptions::SOB_Trapping) {
3090       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3091       llvm::Instruction::BinaryOps Op;
3092       switch (OpInfo.Opcode) {
3093         // We don't have atomicrmw operands for *, %, /, <<, >>
3094         case BO_MulAssign: case BO_DivAssign:
3095         case BO_RemAssign:
3096         case BO_ShlAssign:
3097         case BO_ShrAssign:
3098           break;
3099         case BO_AddAssign:
3100           AtomicOp = llvm::AtomicRMWInst::Add;
3101           Op = llvm::Instruction::Add;
3102           break;
3103         case BO_SubAssign:
3104           AtomicOp = llvm::AtomicRMWInst::Sub;
3105           Op = llvm::Instruction::Sub;
3106           break;
3107         case BO_AndAssign:
3108           AtomicOp = llvm::AtomicRMWInst::And;
3109           Op = llvm::Instruction::And;
3110           break;
3111         case BO_XorAssign:
3112           AtomicOp = llvm::AtomicRMWInst::Xor;
3113           Op = llvm::Instruction::Xor;
3114           break;
3115         case BO_OrAssign:
3116           AtomicOp = llvm::AtomicRMWInst::Or;
3117           Op = llvm::Instruction::Or;
3118           break;
3119         default:
3120           llvm_unreachable("Invalid compound assignment type");
3121       }
3122       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3123         llvm::Value *Amt = CGF.EmitToMemory(
3124             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3125                                  E->getExprLoc()),
3126             LHSTy);
3127         Value *OldVal = Builder.CreateAtomicRMW(
3128             AtomicOp, LHSLV.getPointer(CGF), Amt,
3129             llvm::AtomicOrdering::SequentiallyConsistent);
3130 
3131         // Since operation is atomic, the result type is guaranteed to be the
3132         // same as the input in LLVM terms.
3133         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3134         return LHSLV;
3135       }
3136     }
3137     // FIXME: For floating point types, we should be saving and restoring the
3138     // floating point environment in the loop.
3139     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3140     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3141     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3142     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3143     Builder.CreateBr(opBB);
3144     Builder.SetInsertPoint(opBB);
3145     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3146     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3147     OpInfo.LHS = atomicPHI;
3148   }
3149   else
3150     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3151 
3152   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3153   SourceLocation Loc = E->getExprLoc();
3154   OpInfo.LHS =
3155       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3156 
3157   // Expand the binary operator.
3158   Result = (this->*Func)(OpInfo);
3159 
3160   // Convert the result back to the LHS type,
3161   // potentially with Implicit Conversion sanitizer check.
3162   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3163                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3164 
3165   if (atomicPHI) {
3166     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3167     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3168     auto Pair = CGF.EmitAtomicCompareExchange(
3169         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3170     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3171     llvm::Value *success = Pair.second;
3172     atomicPHI->addIncoming(old, curBlock);
3173     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3174     Builder.SetInsertPoint(contBB);
3175     return LHSLV;
3176   }
3177 
3178   // Store the result value into the LHS lvalue. Bit-fields are handled
3179   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3180   // 'An assignment expression has the value of the left operand after the
3181   // assignment...'.
3182   if (LHSLV.isBitField())
3183     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3184   else
3185     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3186 
3187   if (CGF.getLangOpts().OpenMP)
3188     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3189                                                                   E->getLHS());
3190   return LHSLV;
3191 }
3192 
3193 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3194                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3195   bool Ignore = TestAndClearIgnoreResultAssign();
3196   Value *RHS = nullptr;
3197   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3198 
3199   // If the result is clearly ignored, return now.
3200   if (Ignore)
3201     return nullptr;
3202 
3203   // The result of an assignment in C is the assigned r-value.
3204   if (!CGF.getLangOpts().CPlusPlus)
3205     return RHS;
3206 
3207   // If the lvalue is non-volatile, return the computed value of the assignment.
3208   if (!LHS.isVolatileQualified())
3209     return RHS;
3210 
3211   // Otherwise, reload the value.
3212   return EmitLoadOfLValue(LHS, E->getExprLoc());
3213 }
3214 
3215 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3216     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3217   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3218 
3219   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3220     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3221                                     SanitizerKind::IntegerDivideByZero));
3222   }
3223 
3224   const auto *BO = cast<BinaryOperator>(Ops.E);
3225   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3226       Ops.Ty->hasSignedIntegerRepresentation() &&
3227       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3228       Ops.mayHaveIntegerOverflow()) {
3229     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3230 
3231     llvm::Value *IntMin =
3232       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3233     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3234 
3235     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3236     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3237     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3238     Checks.push_back(
3239         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3240   }
3241 
3242   if (Checks.size() > 0)
3243     EmitBinOpCheck(Checks, Ops);
3244 }
3245 
3246 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3247   {
3248     CodeGenFunction::SanitizerScope SanScope(&CGF);
3249     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3250          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3251         Ops.Ty->isIntegerType() &&
3252         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3253       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3254       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3255     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3256                Ops.Ty->isRealFloatingType() &&
3257                Ops.mayHaveFloatDivisionByZero()) {
3258       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3259       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3260       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3261                      Ops);
3262     }
3263   }
3264 
3265   if (Ops.Ty->isConstantMatrixType()) {
3266     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3267     // We need to check the types of the operands of the operator to get the
3268     // correct matrix dimensions.
3269     auto *BO = cast<BinaryOperator>(Ops.E);
3270     (void)BO;
3271     assert(
3272         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3273         "first operand must be a matrix");
3274     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3275            "second operand must be an arithmetic type");
3276     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3277     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3278                               Ops.Ty->hasUnsignedIntegerRepresentation());
3279   }
3280 
3281   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3282     llvm::Value *Val;
3283     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3284     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3285     if ((CGF.getLangOpts().OpenCL &&
3286          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3287         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3288          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3289       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3290       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3291       // build option allows an application to specify that single precision
3292       // floating-point divide (x/y and 1/x) and sqrt used in the program
3293       // source are correctly rounded.
3294       llvm::Type *ValTy = Val->getType();
3295       if (ValTy->isFloatTy() ||
3296           (isa<llvm::VectorType>(ValTy) &&
3297            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3298         CGF.SetFPAccuracy(Val, 2.5);
3299     }
3300     return Val;
3301   }
3302   else if (Ops.isFixedPointOp())
3303     return EmitFixedPointBinOp(Ops);
3304   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3305     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3306   else
3307     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3308 }
3309 
3310 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3311   // Rem in C can't be a floating point type: C99 6.5.5p2.
3312   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3313        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3314       Ops.Ty->isIntegerType() &&
3315       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3316     CodeGenFunction::SanitizerScope SanScope(&CGF);
3317     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3318     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3319   }
3320 
3321   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3322     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3323   else
3324     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3325 }
3326 
3327 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3328   unsigned IID;
3329   unsigned OpID = 0;
3330   SanitizerHandler OverflowKind;
3331 
3332   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3333   switch (Ops.Opcode) {
3334   case BO_Add:
3335   case BO_AddAssign:
3336     OpID = 1;
3337     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3338                      llvm::Intrinsic::uadd_with_overflow;
3339     OverflowKind = SanitizerHandler::AddOverflow;
3340     break;
3341   case BO_Sub:
3342   case BO_SubAssign:
3343     OpID = 2;
3344     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3345                      llvm::Intrinsic::usub_with_overflow;
3346     OverflowKind = SanitizerHandler::SubOverflow;
3347     break;
3348   case BO_Mul:
3349   case BO_MulAssign:
3350     OpID = 3;
3351     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3352                      llvm::Intrinsic::umul_with_overflow;
3353     OverflowKind = SanitizerHandler::MulOverflow;
3354     break;
3355   default:
3356     llvm_unreachable("Unsupported operation for overflow detection");
3357   }
3358   OpID <<= 1;
3359   if (isSigned)
3360     OpID |= 1;
3361 
3362   CodeGenFunction::SanitizerScope SanScope(&CGF);
3363   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3364 
3365   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3366 
3367   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3368   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3369   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3370 
3371   // Handle overflow with llvm.trap if no custom handler has been specified.
3372   const std::string *handlerName =
3373     &CGF.getLangOpts().OverflowHandler;
3374   if (handlerName->empty()) {
3375     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3376     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3377     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3378       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3379       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3380                               : SanitizerKind::UnsignedIntegerOverflow;
3381       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3382     } else
3383       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3384     return result;
3385   }
3386 
3387   // Branch in case of overflow.
3388   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3389   llvm::BasicBlock *continueBB =
3390       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3391   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3392 
3393   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3394 
3395   // If an overflow handler is set, then we want to call it and then use its
3396   // result, if it returns.
3397   Builder.SetInsertPoint(overflowBB);
3398 
3399   // Get the overflow handler.
3400   llvm::Type *Int8Ty = CGF.Int8Ty;
3401   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3402   llvm::FunctionType *handlerTy =
3403       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3404   llvm::FunctionCallee handler =
3405       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3406 
3407   // Sign extend the args to 64-bit, so that we can use the same handler for
3408   // all types of overflow.
3409   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3410   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3411 
3412   // Call the handler with the two arguments, the operation, and the size of
3413   // the result.
3414   llvm::Value *handlerArgs[] = {
3415     lhs,
3416     rhs,
3417     Builder.getInt8(OpID),
3418     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3419   };
3420   llvm::Value *handlerResult =
3421     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3422 
3423   // Truncate the result back to the desired size.
3424   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3425   Builder.CreateBr(continueBB);
3426 
3427   Builder.SetInsertPoint(continueBB);
3428   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3429   phi->addIncoming(result, initialBB);
3430   phi->addIncoming(handlerResult, overflowBB);
3431 
3432   return phi;
3433 }
3434 
3435 /// Emit pointer + index arithmetic.
3436 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3437                                     const BinOpInfo &op,
3438                                     bool isSubtraction) {
3439   // Must have binary (not unary) expr here.  Unary pointer
3440   // increment/decrement doesn't use this path.
3441   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3442 
3443   Value *pointer = op.LHS;
3444   Expr *pointerOperand = expr->getLHS();
3445   Value *index = op.RHS;
3446   Expr *indexOperand = expr->getRHS();
3447 
3448   // In a subtraction, the LHS is always the pointer.
3449   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3450     std::swap(pointer, index);
3451     std::swap(pointerOperand, indexOperand);
3452   }
3453 
3454   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3455 
3456   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3457   auto &DL = CGF.CGM.getDataLayout();
3458   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3459 
3460   // Some versions of glibc and gcc use idioms (particularly in their malloc
3461   // routines) that add a pointer-sized integer (known to be a pointer value)
3462   // to a null pointer in order to cast the value back to an integer or as
3463   // part of a pointer alignment algorithm.  This is undefined behavior, but
3464   // we'd like to be able to compile programs that use it.
3465   //
3466   // Normally, we'd generate a GEP with a null-pointer base here in response
3467   // to that code, but it's also UB to dereference a pointer created that
3468   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3469   // generate a direct cast of the integer value to a pointer.
3470   //
3471   // The idiom (p = nullptr + N) is not met if any of the following are true:
3472   //
3473   //   The operation is subtraction.
3474   //   The index is not pointer-sized.
3475   //   The pointer type is not byte-sized.
3476   //
3477   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3478                                                        op.Opcode,
3479                                                        expr->getLHS(),
3480                                                        expr->getRHS()))
3481     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3482 
3483   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3484     // Zero-extend or sign-extend the pointer value according to
3485     // whether the index is signed or not.
3486     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3487                                       "idx.ext");
3488   }
3489 
3490   // If this is subtraction, negate the index.
3491   if (isSubtraction)
3492     index = CGF.Builder.CreateNeg(index, "idx.neg");
3493 
3494   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3495     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3496                         /*Accessed*/ false);
3497 
3498   const PointerType *pointerType
3499     = pointerOperand->getType()->getAs<PointerType>();
3500   if (!pointerType) {
3501     QualType objectType = pointerOperand->getType()
3502                                         ->castAs<ObjCObjectPointerType>()
3503                                         ->getPointeeType();
3504     llvm::Value *objectSize
3505       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3506 
3507     index = CGF.Builder.CreateMul(index, objectSize);
3508 
3509     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3510     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3511     return CGF.Builder.CreateBitCast(result, pointer->getType());
3512   }
3513 
3514   QualType elementType = pointerType->getPointeeType();
3515   if (const VariableArrayType *vla
3516         = CGF.getContext().getAsVariableArrayType(elementType)) {
3517     // The element count here is the total number of non-VLA elements.
3518     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3519 
3520     // Effectively, the multiply by the VLA size is part of the GEP.
3521     // GEP indexes are signed, and scaling an index isn't permitted to
3522     // signed-overflow, so we use the same semantics for our explicit
3523     // multiply.  We suppress this if overflow is not undefined behavior.
3524     llvm::Type *elemTy = pointer->getType()->getPointerElementType();
3525     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3526       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3527       pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3528     } else {
3529       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3530       pointer = CGF.EmitCheckedInBoundsGEP(
3531           elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3532           "add.ptr");
3533     }
3534     return pointer;
3535   }
3536 
3537   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3538   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3539   // future proof.
3540   if (elementType->isVoidType() || elementType->isFunctionType()) {
3541     Value *result = CGF.EmitCastToVoidPtr(pointer);
3542     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3543     return CGF.Builder.CreateBitCast(result, pointer->getType());
3544   }
3545 
3546   llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
3547   if (CGF.getLangOpts().isSignedOverflowDefined())
3548     return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3549 
3550   return CGF.EmitCheckedInBoundsGEP(
3551       elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3552       "add.ptr");
3553 }
3554 
3555 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3556 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3557 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3558 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3559 // efficient operations.
3560 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3561                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3562                            bool negMul, bool negAdd) {
3563   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3564 
3565   Value *MulOp0 = MulOp->getOperand(0);
3566   Value *MulOp1 = MulOp->getOperand(1);
3567   if (negMul)
3568     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3569   if (negAdd)
3570     Addend = Builder.CreateFNeg(Addend, "neg");
3571 
3572   Value *FMulAdd = nullptr;
3573   if (Builder.getIsFPConstrained()) {
3574     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3575            "Only constrained operation should be created when Builder is in FP "
3576            "constrained mode");
3577     FMulAdd = Builder.CreateConstrainedFPCall(
3578         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3579                              Addend->getType()),
3580         {MulOp0, MulOp1, Addend});
3581   } else {
3582     FMulAdd = Builder.CreateCall(
3583         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3584         {MulOp0, MulOp1, Addend});
3585   }
3586   MulOp->eraseFromParent();
3587 
3588   return FMulAdd;
3589 }
3590 
3591 // Check whether it would be legal to emit an fmuladd intrinsic call to
3592 // represent op and if so, build the fmuladd.
3593 //
3594 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3595 // Does NOT check the type of the operation - it's assumed that this function
3596 // will be called from contexts where it's known that the type is contractable.
3597 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3598                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3599                          bool isSub=false) {
3600 
3601   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3602           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3603          "Only fadd/fsub can be the root of an fmuladd.");
3604 
3605   // Check whether this op is marked as fusable.
3606   if (!op.FPFeatures.allowFPContractWithinStatement())
3607     return nullptr;
3608 
3609   // We have a potentially fusable op. Look for a mul on one of the operands.
3610   // Also, make sure that the mul result isn't used directly. In that case,
3611   // there's no point creating a muladd operation.
3612   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3613     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3614         LHSBinOp->use_empty())
3615       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3616   }
3617   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3618     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3619         RHSBinOp->use_empty())
3620       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3621   }
3622 
3623   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3624     if (LHSBinOp->getIntrinsicID() ==
3625             llvm::Intrinsic::experimental_constrained_fmul &&
3626         LHSBinOp->use_empty())
3627       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3628   }
3629   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3630     if (RHSBinOp->getIntrinsicID() ==
3631             llvm::Intrinsic::experimental_constrained_fmul &&
3632         RHSBinOp->use_empty())
3633       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3634   }
3635 
3636   return nullptr;
3637 }
3638 
3639 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3640   if (op.LHS->getType()->isPointerTy() ||
3641       op.RHS->getType()->isPointerTy())
3642     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3643 
3644   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3645     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3646     case LangOptions::SOB_Defined:
3647       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3648     case LangOptions::SOB_Undefined:
3649       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3650         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3651       LLVM_FALLTHROUGH;
3652     case LangOptions::SOB_Trapping:
3653       if (CanElideOverflowCheck(CGF.getContext(), op))
3654         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3655       return EmitOverflowCheckedBinOp(op);
3656     }
3657   }
3658 
3659   if (op.Ty->isConstantMatrixType()) {
3660     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3661     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3662     return MB.CreateAdd(op.LHS, op.RHS);
3663   }
3664 
3665   if (op.Ty->isUnsignedIntegerType() &&
3666       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3667       !CanElideOverflowCheck(CGF.getContext(), op))
3668     return EmitOverflowCheckedBinOp(op);
3669 
3670   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3671     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3672     // Try to form an fmuladd.
3673     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3674       return FMulAdd;
3675 
3676     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3677   }
3678 
3679   if (op.isFixedPointOp())
3680     return EmitFixedPointBinOp(op);
3681 
3682   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3683 }
3684 
3685 /// The resulting value must be calculated with exact precision, so the operands
3686 /// may not be the same type.
3687 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3688   using llvm::APSInt;
3689   using llvm::ConstantInt;
3690 
3691   // This is either a binary operation where at least one of the operands is
3692   // a fixed-point type, or a unary operation where the operand is a fixed-point
3693   // type. The result type of a binary operation is determined by
3694   // Sema::handleFixedPointConversions().
3695   QualType ResultTy = op.Ty;
3696   QualType LHSTy, RHSTy;
3697   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3698     RHSTy = BinOp->getRHS()->getType();
3699     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3700       // For compound assignment, the effective type of the LHS at this point
3701       // is the computation LHS type, not the actual LHS type, and the final
3702       // result type is not the type of the expression but rather the
3703       // computation result type.
3704       LHSTy = CAO->getComputationLHSType();
3705       ResultTy = CAO->getComputationResultType();
3706     } else
3707       LHSTy = BinOp->getLHS()->getType();
3708   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3709     LHSTy = UnOp->getSubExpr()->getType();
3710     RHSTy = UnOp->getSubExpr()->getType();
3711   }
3712   ASTContext &Ctx = CGF.getContext();
3713   Value *LHS = op.LHS;
3714   Value *RHS = op.RHS;
3715 
3716   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3717   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3718   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3719   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3720 
3721   // Perform the actual operation.
3722   Value *Result;
3723   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3724   switch (op.Opcode) {
3725   case BO_AddAssign:
3726   case BO_Add:
3727     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3728     break;
3729   case BO_SubAssign:
3730   case BO_Sub:
3731     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3732     break;
3733   case BO_MulAssign:
3734   case BO_Mul:
3735     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3736     break;
3737   case BO_DivAssign:
3738   case BO_Div:
3739     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3740     break;
3741   case BO_ShlAssign:
3742   case BO_Shl:
3743     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3744     break;
3745   case BO_ShrAssign:
3746   case BO_Shr:
3747     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3748     break;
3749   case BO_LT:
3750     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3751   case BO_GT:
3752     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3753   case BO_LE:
3754     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3755   case BO_GE:
3756     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3757   case BO_EQ:
3758     // For equality operations, we assume any padding bits on unsigned types are
3759     // zero'd out. They could be overwritten through non-saturating operations
3760     // that cause overflow, but this leads to undefined behavior.
3761     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3762   case BO_NE:
3763     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3764   case BO_Cmp:
3765   case BO_LAnd:
3766   case BO_LOr:
3767     llvm_unreachable("Found unimplemented fixed point binary operation");
3768   case BO_PtrMemD:
3769   case BO_PtrMemI:
3770   case BO_Rem:
3771   case BO_Xor:
3772   case BO_And:
3773   case BO_Or:
3774   case BO_Assign:
3775   case BO_RemAssign:
3776   case BO_AndAssign:
3777   case BO_XorAssign:
3778   case BO_OrAssign:
3779   case BO_Comma:
3780     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3781   }
3782 
3783   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3784                  BinaryOperator::isShiftAssignOp(op.Opcode);
3785   // Convert to the result type.
3786   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3787                                                       : CommonFixedSema,
3788                                       ResultFixedSema);
3789 }
3790 
3791 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3792   // The LHS is always a pointer if either side is.
3793   if (!op.LHS->getType()->isPointerTy()) {
3794     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3795       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3796       case LangOptions::SOB_Defined:
3797         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3798       case LangOptions::SOB_Undefined:
3799         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3800           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3801         LLVM_FALLTHROUGH;
3802       case LangOptions::SOB_Trapping:
3803         if (CanElideOverflowCheck(CGF.getContext(), op))
3804           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3805         return EmitOverflowCheckedBinOp(op);
3806       }
3807     }
3808 
3809     if (op.Ty->isConstantMatrixType()) {
3810       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3811       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3812       return MB.CreateSub(op.LHS, op.RHS);
3813     }
3814 
3815     if (op.Ty->isUnsignedIntegerType() &&
3816         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3817         !CanElideOverflowCheck(CGF.getContext(), op))
3818       return EmitOverflowCheckedBinOp(op);
3819 
3820     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3821       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3822       // Try to form an fmuladd.
3823       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3824         return FMulAdd;
3825       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3826     }
3827 
3828     if (op.isFixedPointOp())
3829       return EmitFixedPointBinOp(op);
3830 
3831     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3832   }
3833 
3834   // If the RHS is not a pointer, then we have normal pointer
3835   // arithmetic.
3836   if (!op.RHS->getType()->isPointerTy())
3837     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3838 
3839   // Otherwise, this is a pointer subtraction.
3840 
3841   // Do the raw subtraction part.
3842   llvm::Value *LHS
3843     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3844   llvm::Value *RHS
3845     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3846   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3847 
3848   // Okay, figure out the element size.
3849   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3850   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3851 
3852   llvm::Value *divisor = nullptr;
3853 
3854   // For a variable-length array, this is going to be non-constant.
3855   if (const VariableArrayType *vla
3856         = CGF.getContext().getAsVariableArrayType(elementType)) {
3857     auto VlaSize = CGF.getVLASize(vla);
3858     elementType = VlaSize.Type;
3859     divisor = VlaSize.NumElts;
3860 
3861     // Scale the number of non-VLA elements by the non-VLA element size.
3862     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3863     if (!eltSize.isOne())
3864       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3865 
3866   // For everything elese, we can just compute it, safe in the
3867   // assumption that Sema won't let anything through that we can't
3868   // safely compute the size of.
3869   } else {
3870     CharUnits elementSize;
3871     // Handle GCC extension for pointer arithmetic on void* and
3872     // function pointer types.
3873     if (elementType->isVoidType() || elementType->isFunctionType())
3874       elementSize = CharUnits::One();
3875     else
3876       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3877 
3878     // Don't even emit the divide for element size of 1.
3879     if (elementSize.isOne())
3880       return diffInChars;
3881 
3882     divisor = CGF.CGM.getSize(elementSize);
3883   }
3884 
3885   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3886   // pointer difference in C is only defined in the case where both operands
3887   // are pointing to elements of an array.
3888   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3889 }
3890 
3891 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3892   llvm::IntegerType *Ty;
3893   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3894     Ty = cast<llvm::IntegerType>(VT->getElementType());
3895   else
3896     Ty = cast<llvm::IntegerType>(LHS->getType());
3897   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3898 }
3899 
3900 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3901                                               const Twine &Name) {
3902   llvm::IntegerType *Ty;
3903   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3904     Ty = cast<llvm::IntegerType>(VT->getElementType());
3905   else
3906     Ty = cast<llvm::IntegerType>(LHS->getType());
3907 
3908   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3909         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3910 
3911   return Builder.CreateURem(
3912       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3913 }
3914 
3915 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3916   // TODO: This misses out on the sanitizer check below.
3917   if (Ops.isFixedPointOp())
3918     return EmitFixedPointBinOp(Ops);
3919 
3920   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3921   // RHS to the same size as the LHS.
3922   Value *RHS = Ops.RHS;
3923   if (Ops.LHS->getType() != RHS->getType())
3924     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3925 
3926   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3927                             Ops.Ty->hasSignedIntegerRepresentation() &&
3928                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3929                             !CGF.getLangOpts().CPlusPlus20;
3930   bool SanitizeUnsignedBase =
3931       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3932       Ops.Ty->hasUnsignedIntegerRepresentation();
3933   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3934   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3935   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3936   if (CGF.getLangOpts().OpenCL)
3937     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3938   else if ((SanitizeBase || SanitizeExponent) &&
3939            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3940     CodeGenFunction::SanitizerScope SanScope(&CGF);
3941     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3942     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3943     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3944 
3945     if (SanitizeExponent) {
3946       Checks.push_back(
3947           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3948     }
3949 
3950     if (SanitizeBase) {
3951       // Check whether we are shifting any non-zero bits off the top of the
3952       // integer. We only emit this check if exponent is valid - otherwise
3953       // instructions below will have undefined behavior themselves.
3954       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3955       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3956       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3957       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3958       llvm::Value *PromotedWidthMinusOne =
3959           (RHS == Ops.RHS) ? WidthMinusOne
3960                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3961       CGF.EmitBlock(CheckShiftBase);
3962       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3963           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3964                                      /*NUW*/ true, /*NSW*/ true),
3965           "shl.check");
3966       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3967         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3968         // Under C++11's rules, shifting a 1 bit into the sign bit is
3969         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3970         // define signed left shifts, so we use the C99 and C++11 rules there).
3971         // Unsigned shifts can always shift into the top bit.
3972         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3973         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3974       }
3975       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3976       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3977       CGF.EmitBlock(Cont);
3978       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3979       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3980       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3981       Checks.push_back(std::make_pair(
3982           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3983                                         : SanitizerKind::UnsignedShiftBase));
3984     }
3985 
3986     assert(!Checks.empty());
3987     EmitBinOpCheck(Checks, Ops);
3988   }
3989 
3990   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3991 }
3992 
3993 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3994   // TODO: This misses out on the sanitizer check below.
3995   if (Ops.isFixedPointOp())
3996     return EmitFixedPointBinOp(Ops);
3997 
3998   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3999   // RHS to the same size as the LHS.
4000   Value *RHS = Ops.RHS;
4001   if (Ops.LHS->getType() != RHS->getType())
4002     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4003 
4004   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4005   if (CGF.getLangOpts().OpenCL)
4006     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4007   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4008            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4009     CodeGenFunction::SanitizerScope SanScope(&CGF);
4010     llvm::Value *Valid =
4011         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4012     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4013   }
4014 
4015   if (Ops.Ty->hasUnsignedIntegerRepresentation())
4016     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4017   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4018 }
4019 
4020 enum IntrinsicType { VCMPEQ, VCMPGT };
4021 // return corresponding comparison intrinsic for given vector type
4022 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4023                                         BuiltinType::Kind ElemKind) {
4024   switch (ElemKind) {
4025   default: llvm_unreachable("unexpected element type");
4026   case BuiltinType::Char_U:
4027   case BuiltinType::UChar:
4028     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4029                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4030   case BuiltinType::Char_S:
4031   case BuiltinType::SChar:
4032     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4033                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4034   case BuiltinType::UShort:
4035     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4036                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4037   case BuiltinType::Short:
4038     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4039                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4040   case BuiltinType::UInt:
4041     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4042                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4043   case BuiltinType::Int:
4044     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4045                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4046   case BuiltinType::ULong:
4047   case BuiltinType::ULongLong:
4048     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4049                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4050   case BuiltinType::Long:
4051   case BuiltinType::LongLong:
4052     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4053                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4054   case BuiltinType::Float:
4055     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4056                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4057   case BuiltinType::Double:
4058     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4059                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4060   case BuiltinType::UInt128:
4061     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4062                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4063   case BuiltinType::Int128:
4064     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4065                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4066   }
4067 }
4068 
4069 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4070                                       llvm::CmpInst::Predicate UICmpOpc,
4071                                       llvm::CmpInst::Predicate SICmpOpc,
4072                                       llvm::CmpInst::Predicate FCmpOpc,
4073                                       bool IsSignaling) {
4074   TestAndClearIgnoreResultAssign();
4075   Value *Result;
4076   QualType LHSTy = E->getLHS()->getType();
4077   QualType RHSTy = E->getRHS()->getType();
4078   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4079     assert(E->getOpcode() == BO_EQ ||
4080            E->getOpcode() == BO_NE);
4081     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4082     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4083     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4084                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4085   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4086     BinOpInfo BOInfo = EmitBinOps(E);
4087     Value *LHS = BOInfo.LHS;
4088     Value *RHS = BOInfo.RHS;
4089 
4090     // If AltiVec, the comparison results in a numeric type, so we use
4091     // intrinsics comparing vectors and giving 0 or 1 as a result
4092     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4093       // constants for mapping CR6 register bits to predicate result
4094       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4095 
4096       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4097 
4098       // in several cases vector arguments order will be reversed
4099       Value *FirstVecArg = LHS,
4100             *SecondVecArg = RHS;
4101 
4102       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4103       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4104 
4105       switch(E->getOpcode()) {
4106       default: llvm_unreachable("is not a comparison operation");
4107       case BO_EQ:
4108         CR6 = CR6_LT;
4109         ID = GetIntrinsic(VCMPEQ, ElementKind);
4110         break;
4111       case BO_NE:
4112         CR6 = CR6_EQ;
4113         ID = GetIntrinsic(VCMPEQ, ElementKind);
4114         break;
4115       case BO_LT:
4116         CR6 = CR6_LT;
4117         ID = GetIntrinsic(VCMPGT, ElementKind);
4118         std::swap(FirstVecArg, SecondVecArg);
4119         break;
4120       case BO_GT:
4121         CR6 = CR6_LT;
4122         ID = GetIntrinsic(VCMPGT, ElementKind);
4123         break;
4124       case BO_LE:
4125         if (ElementKind == BuiltinType::Float) {
4126           CR6 = CR6_LT;
4127           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4128           std::swap(FirstVecArg, SecondVecArg);
4129         }
4130         else {
4131           CR6 = CR6_EQ;
4132           ID = GetIntrinsic(VCMPGT, ElementKind);
4133         }
4134         break;
4135       case BO_GE:
4136         if (ElementKind == BuiltinType::Float) {
4137           CR6 = CR6_LT;
4138           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4139         }
4140         else {
4141           CR6 = CR6_EQ;
4142           ID = GetIntrinsic(VCMPGT, ElementKind);
4143           std::swap(FirstVecArg, SecondVecArg);
4144         }
4145         break;
4146       }
4147 
4148       Value *CR6Param = Builder.getInt32(CR6);
4149       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4150       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4151 
4152       // The result type of intrinsic may not be same as E->getType().
4153       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4154       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4155       // do nothing, if ResultTy is not i1 at the same time, it will cause
4156       // crash later.
4157       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4158       if (ResultTy->getBitWidth() > 1 &&
4159           E->getType() == CGF.getContext().BoolTy)
4160         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4161       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4162                                   E->getExprLoc());
4163     }
4164 
4165     if (BOInfo.isFixedPointOp()) {
4166       Result = EmitFixedPointBinOp(BOInfo);
4167     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4168       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4169       if (!IsSignaling)
4170         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4171       else
4172         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4173     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4174       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4175     } else {
4176       // Unsigned integers and pointers.
4177 
4178       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4179           !isa<llvm::ConstantPointerNull>(LHS) &&
4180           !isa<llvm::ConstantPointerNull>(RHS)) {
4181 
4182         // Dynamic information is required to be stripped for comparisons,
4183         // because it could leak the dynamic information.  Based on comparisons
4184         // of pointers to dynamic objects, the optimizer can replace one pointer
4185         // with another, which might be incorrect in presence of invariant
4186         // groups. Comparison with null is safe because null does not carry any
4187         // dynamic information.
4188         if (LHSTy.mayBeDynamicClass())
4189           LHS = Builder.CreateStripInvariantGroup(LHS);
4190         if (RHSTy.mayBeDynamicClass())
4191           RHS = Builder.CreateStripInvariantGroup(RHS);
4192       }
4193 
4194       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4195     }
4196 
4197     // If this is a vector comparison, sign extend the result to the appropriate
4198     // vector integer type and return it (don't convert to bool).
4199     if (LHSTy->isVectorType())
4200       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4201 
4202   } else {
4203     // Complex Comparison: can only be an equality comparison.
4204     CodeGenFunction::ComplexPairTy LHS, RHS;
4205     QualType CETy;
4206     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4207       LHS = CGF.EmitComplexExpr(E->getLHS());
4208       CETy = CTy->getElementType();
4209     } else {
4210       LHS.first = Visit(E->getLHS());
4211       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4212       CETy = LHSTy;
4213     }
4214     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4215       RHS = CGF.EmitComplexExpr(E->getRHS());
4216       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4217                                                      CTy->getElementType()) &&
4218              "The element types must always match.");
4219       (void)CTy;
4220     } else {
4221       RHS.first = Visit(E->getRHS());
4222       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4223       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4224              "The element types must always match.");
4225     }
4226 
4227     Value *ResultR, *ResultI;
4228     if (CETy->isRealFloatingType()) {
4229       // As complex comparisons can only be equality comparisons, they
4230       // are never signaling comparisons.
4231       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4232       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4233     } else {
4234       // Complex comparisons can only be equality comparisons.  As such, signed
4235       // and unsigned opcodes are the same.
4236       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4237       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4238     }
4239 
4240     if (E->getOpcode() == BO_EQ) {
4241       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4242     } else {
4243       assert(E->getOpcode() == BO_NE &&
4244              "Complex comparison other than == or != ?");
4245       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4246     }
4247   }
4248 
4249   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4250                               E->getExprLoc());
4251 }
4252 
4253 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4254   bool Ignore = TestAndClearIgnoreResultAssign();
4255 
4256   Value *RHS;
4257   LValue LHS;
4258 
4259   switch (E->getLHS()->getType().getObjCLifetime()) {
4260   case Qualifiers::OCL_Strong:
4261     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4262     break;
4263 
4264   case Qualifiers::OCL_Autoreleasing:
4265     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4266     break;
4267 
4268   case Qualifiers::OCL_ExplicitNone:
4269     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4270     break;
4271 
4272   case Qualifiers::OCL_Weak:
4273     RHS = Visit(E->getRHS());
4274     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4275     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4276     break;
4277 
4278   case Qualifiers::OCL_None:
4279     // __block variables need to have the rhs evaluated first, plus
4280     // this should improve codegen just a little.
4281     RHS = Visit(E->getRHS());
4282     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4283 
4284     // Store the value into the LHS.  Bit-fields are handled specially
4285     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4286     // 'An assignment expression has the value of the left operand after
4287     // the assignment...'.
4288     if (LHS.isBitField()) {
4289       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4290     } else {
4291       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4292       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4293     }
4294   }
4295 
4296   // If the result is clearly ignored, return now.
4297   if (Ignore)
4298     return nullptr;
4299 
4300   // The result of an assignment in C is the assigned r-value.
4301   if (!CGF.getLangOpts().CPlusPlus)
4302     return RHS;
4303 
4304   // If the lvalue is non-volatile, return the computed value of the assignment.
4305   if (!LHS.isVolatileQualified())
4306     return RHS;
4307 
4308   // Otherwise, reload the value.
4309   return EmitLoadOfLValue(LHS, E->getExprLoc());
4310 }
4311 
4312 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4313   // Perform vector logical and on comparisons with zero vectors.
4314   if (E->getType()->isVectorType()) {
4315     CGF.incrementProfileCounter(E);
4316 
4317     Value *LHS = Visit(E->getLHS());
4318     Value *RHS = Visit(E->getRHS());
4319     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4320     if (LHS->getType()->isFPOrFPVectorTy()) {
4321       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4322           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4323       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4324       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4325     } else {
4326       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4327       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4328     }
4329     Value *And = Builder.CreateAnd(LHS, RHS);
4330     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4331   }
4332 
4333   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4334   llvm::Type *ResTy = ConvertType(E->getType());
4335 
4336   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4337   // If we have 1 && X, just emit X without inserting the control flow.
4338   bool LHSCondVal;
4339   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4340     if (LHSCondVal) { // If we have 1 && X, just emit X.
4341       CGF.incrementProfileCounter(E);
4342 
4343       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4344 
4345       // If we're generating for profiling or coverage, generate a branch to a
4346       // block that increments the RHS counter needed to track branch condition
4347       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4348       // "FalseBlock" after the increment is done.
4349       if (InstrumentRegions &&
4350           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4351         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4352         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4353         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4354         CGF.EmitBlock(RHSBlockCnt);
4355         CGF.incrementProfileCounter(E->getRHS());
4356         CGF.EmitBranch(FBlock);
4357         CGF.EmitBlock(FBlock);
4358       }
4359 
4360       // ZExt result to int or bool.
4361       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4362     }
4363 
4364     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4365     if (!CGF.ContainsLabel(E->getRHS()))
4366       return llvm::Constant::getNullValue(ResTy);
4367   }
4368 
4369   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4370   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4371 
4372   CodeGenFunction::ConditionalEvaluation eval(CGF);
4373 
4374   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4375   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4376                            CGF.getProfileCount(E->getRHS()));
4377 
4378   // Any edges into the ContBlock are now from an (indeterminate number of)
4379   // edges from this first condition.  All of these values will be false.  Start
4380   // setting up the PHI node in the Cont Block for this.
4381   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4382                                             "", ContBlock);
4383   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4384        PI != PE; ++PI)
4385     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4386 
4387   eval.begin(CGF);
4388   CGF.EmitBlock(RHSBlock);
4389   CGF.incrementProfileCounter(E);
4390   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4391   eval.end(CGF);
4392 
4393   // Reaquire the RHS block, as there may be subblocks inserted.
4394   RHSBlock = Builder.GetInsertBlock();
4395 
4396   // If we're generating for profiling or coverage, generate a branch on the
4397   // RHS to a block that increments the RHS true counter needed to track branch
4398   // condition coverage.
4399   if (InstrumentRegions &&
4400       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4401     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4402     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4403     CGF.EmitBlock(RHSBlockCnt);
4404     CGF.incrementProfileCounter(E->getRHS());
4405     CGF.EmitBranch(ContBlock);
4406     PN->addIncoming(RHSCond, RHSBlockCnt);
4407   }
4408 
4409   // Emit an unconditional branch from this block to ContBlock.
4410   {
4411     // There is no need to emit line number for unconditional branch.
4412     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4413     CGF.EmitBlock(ContBlock);
4414   }
4415   // Insert an entry into the phi node for the edge with the value of RHSCond.
4416   PN->addIncoming(RHSCond, RHSBlock);
4417 
4418   // Artificial location to preserve the scope information
4419   {
4420     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4421     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4422   }
4423 
4424   // ZExt result to int.
4425   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4426 }
4427 
4428 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4429   // Perform vector logical or on comparisons with zero vectors.
4430   if (E->getType()->isVectorType()) {
4431     CGF.incrementProfileCounter(E);
4432 
4433     Value *LHS = Visit(E->getLHS());
4434     Value *RHS = Visit(E->getRHS());
4435     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4436     if (LHS->getType()->isFPOrFPVectorTy()) {
4437       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4438           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4439       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4440       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4441     } else {
4442       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4443       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4444     }
4445     Value *Or = Builder.CreateOr(LHS, RHS);
4446     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4447   }
4448 
4449   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4450   llvm::Type *ResTy = ConvertType(E->getType());
4451 
4452   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4453   // If we have 0 || X, just emit X without inserting the control flow.
4454   bool LHSCondVal;
4455   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4456     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4457       CGF.incrementProfileCounter(E);
4458 
4459       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4460 
4461       // If we're generating for profiling or coverage, generate a branch to a
4462       // block that increments the RHS counter need to track branch condition
4463       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4464       // "FalseBlock" after the increment is done.
4465       if (InstrumentRegions &&
4466           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4467         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4468         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4469         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4470         CGF.EmitBlock(RHSBlockCnt);
4471         CGF.incrementProfileCounter(E->getRHS());
4472         CGF.EmitBranch(FBlock);
4473         CGF.EmitBlock(FBlock);
4474       }
4475 
4476       // ZExt result to int or bool.
4477       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4478     }
4479 
4480     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4481     if (!CGF.ContainsLabel(E->getRHS()))
4482       return llvm::ConstantInt::get(ResTy, 1);
4483   }
4484 
4485   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4486   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4487 
4488   CodeGenFunction::ConditionalEvaluation eval(CGF);
4489 
4490   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4491   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4492                            CGF.getCurrentProfileCount() -
4493                                CGF.getProfileCount(E->getRHS()));
4494 
4495   // Any edges into the ContBlock are now from an (indeterminate number of)
4496   // edges from this first condition.  All of these values will be true.  Start
4497   // setting up the PHI node in the Cont Block for this.
4498   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4499                                             "", ContBlock);
4500   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4501        PI != PE; ++PI)
4502     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4503 
4504   eval.begin(CGF);
4505 
4506   // Emit the RHS condition as a bool value.
4507   CGF.EmitBlock(RHSBlock);
4508   CGF.incrementProfileCounter(E);
4509   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4510 
4511   eval.end(CGF);
4512 
4513   // Reaquire the RHS block, as there may be subblocks inserted.
4514   RHSBlock = Builder.GetInsertBlock();
4515 
4516   // If we're generating for profiling or coverage, generate a branch on the
4517   // RHS to a block that increments the RHS true counter needed to track branch
4518   // condition coverage.
4519   if (InstrumentRegions &&
4520       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4521     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4522     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4523     CGF.EmitBlock(RHSBlockCnt);
4524     CGF.incrementProfileCounter(E->getRHS());
4525     CGF.EmitBranch(ContBlock);
4526     PN->addIncoming(RHSCond, RHSBlockCnt);
4527   }
4528 
4529   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4530   // into the phi node for the edge with the value of RHSCond.
4531   CGF.EmitBlock(ContBlock);
4532   PN->addIncoming(RHSCond, RHSBlock);
4533 
4534   // ZExt result to int.
4535   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4536 }
4537 
4538 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4539   CGF.EmitIgnoredExpr(E->getLHS());
4540   CGF.EnsureInsertPoint();
4541   return Visit(E->getRHS());
4542 }
4543 
4544 //===----------------------------------------------------------------------===//
4545 //                             Other Operators
4546 //===----------------------------------------------------------------------===//
4547 
4548 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4549 /// expression is cheap enough and side-effect-free enough to evaluate
4550 /// unconditionally instead of conditionally.  This is used to convert control
4551 /// flow into selects in some cases.
4552 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4553                                                    CodeGenFunction &CGF) {
4554   // Anything that is an integer or floating point constant is fine.
4555   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4556 
4557   // Even non-volatile automatic variables can't be evaluated unconditionally.
4558   // Referencing a thread_local may cause non-trivial initialization work to
4559   // occur. If we're inside a lambda and one of the variables is from the scope
4560   // outside the lambda, that function may have returned already. Reading its
4561   // locals is a bad idea. Also, these reads may introduce races there didn't
4562   // exist in the source-level program.
4563 }
4564 
4565 
4566 Value *ScalarExprEmitter::
4567 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4568   TestAndClearIgnoreResultAssign();
4569 
4570   // Bind the common expression if necessary.
4571   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4572 
4573   Expr *condExpr = E->getCond();
4574   Expr *lhsExpr = E->getTrueExpr();
4575   Expr *rhsExpr = E->getFalseExpr();
4576 
4577   // If the condition constant folds and can be elided, try to avoid emitting
4578   // the condition and the dead arm.
4579   bool CondExprBool;
4580   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4581     Expr *live = lhsExpr, *dead = rhsExpr;
4582     if (!CondExprBool) std::swap(live, dead);
4583 
4584     // If the dead side doesn't have labels we need, just emit the Live part.
4585     if (!CGF.ContainsLabel(dead)) {
4586       if (CondExprBool)
4587         CGF.incrementProfileCounter(E);
4588       Value *Result = Visit(live);
4589 
4590       // If the live part is a throw expression, it acts like it has a void
4591       // type, so evaluating it returns a null Value*.  However, a conditional
4592       // with non-void type must return a non-null Value*.
4593       if (!Result && !E->getType()->isVoidType())
4594         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4595 
4596       return Result;
4597     }
4598   }
4599 
4600   // OpenCL: If the condition is a vector, we can treat this condition like
4601   // the select function.
4602   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4603       condExpr->getType()->isExtVectorType()) {
4604     CGF.incrementProfileCounter(E);
4605 
4606     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4607     llvm::Value *LHS = Visit(lhsExpr);
4608     llvm::Value *RHS = Visit(rhsExpr);
4609 
4610     llvm::Type *condType = ConvertType(condExpr->getType());
4611     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4612 
4613     unsigned numElem = vecTy->getNumElements();
4614     llvm::Type *elemType = vecTy->getElementType();
4615 
4616     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4617     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4618     llvm::Value *tmp = Builder.CreateSExt(
4619         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4620     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4621 
4622     // Cast float to int to perform ANDs if necessary.
4623     llvm::Value *RHSTmp = RHS;
4624     llvm::Value *LHSTmp = LHS;
4625     bool wasCast = false;
4626     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4627     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4628       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4629       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4630       wasCast = true;
4631     }
4632 
4633     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4634     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4635     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4636     if (wasCast)
4637       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4638 
4639     return tmp5;
4640   }
4641 
4642   if (condExpr->getType()->isVectorType()) {
4643     CGF.incrementProfileCounter(E);
4644 
4645     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4646     llvm::Value *LHS = Visit(lhsExpr);
4647     llvm::Value *RHS = Visit(rhsExpr);
4648 
4649     llvm::Type *CondType = ConvertType(condExpr->getType());
4650     auto *VecTy = cast<llvm::VectorType>(CondType);
4651     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4652 
4653     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4654     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4655   }
4656 
4657   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4658   // select instead of as control flow.  We can only do this if it is cheap and
4659   // safe to evaluate the LHS and RHS unconditionally.
4660   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4661       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4662     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4663     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4664 
4665     CGF.incrementProfileCounter(E, StepV);
4666 
4667     llvm::Value *LHS = Visit(lhsExpr);
4668     llvm::Value *RHS = Visit(rhsExpr);
4669     if (!LHS) {
4670       // If the conditional has void type, make sure we return a null Value*.
4671       assert(!RHS && "LHS and RHS types must match");
4672       return nullptr;
4673     }
4674     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4675   }
4676 
4677   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4678   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4679   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4680 
4681   CodeGenFunction::ConditionalEvaluation eval(CGF);
4682   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4683                            CGF.getProfileCount(lhsExpr));
4684 
4685   CGF.EmitBlock(LHSBlock);
4686   CGF.incrementProfileCounter(E);
4687   eval.begin(CGF);
4688   Value *LHS = Visit(lhsExpr);
4689   eval.end(CGF);
4690 
4691   LHSBlock = Builder.GetInsertBlock();
4692   Builder.CreateBr(ContBlock);
4693 
4694   CGF.EmitBlock(RHSBlock);
4695   eval.begin(CGF);
4696   Value *RHS = Visit(rhsExpr);
4697   eval.end(CGF);
4698 
4699   RHSBlock = Builder.GetInsertBlock();
4700   CGF.EmitBlock(ContBlock);
4701 
4702   // If the LHS or RHS is a throw expression, it will be legitimately null.
4703   if (!LHS)
4704     return RHS;
4705   if (!RHS)
4706     return LHS;
4707 
4708   // Create a PHI node for the real part.
4709   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4710   PN->addIncoming(LHS, LHSBlock);
4711   PN->addIncoming(RHS, RHSBlock);
4712   return PN;
4713 }
4714 
4715 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4716   return Visit(E->getChosenSubExpr());
4717 }
4718 
4719 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4720   QualType Ty = VE->getType();
4721 
4722   if (Ty->isVariablyModifiedType())
4723     CGF.EmitVariablyModifiedType(Ty);
4724 
4725   Address ArgValue = Address::invalid();
4726   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4727 
4728   llvm::Type *ArgTy = ConvertType(VE->getType());
4729 
4730   // If EmitVAArg fails, emit an error.
4731   if (!ArgPtr.isValid()) {
4732     CGF.ErrorUnsupported(VE, "va_arg expression");
4733     return llvm::UndefValue::get(ArgTy);
4734   }
4735 
4736   // FIXME Volatility.
4737   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4738 
4739   // If EmitVAArg promoted the type, we must truncate it.
4740   if (ArgTy != Val->getType()) {
4741     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4742       Val = Builder.CreateIntToPtr(Val, ArgTy);
4743     else
4744       Val = Builder.CreateTrunc(Val, ArgTy);
4745   }
4746 
4747   return Val;
4748 }
4749 
4750 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4751   return CGF.EmitBlockLiteral(block);
4752 }
4753 
4754 // Convert a vec3 to vec4, or vice versa.
4755 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4756                                  Value *Src, unsigned NumElementsDst) {
4757   static constexpr int Mask[] = {0, 1, 2, -1};
4758   return Builder.CreateShuffleVector(Src,
4759                                      llvm::makeArrayRef(Mask, NumElementsDst));
4760 }
4761 
4762 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4763 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4764 // but could be scalar or vectors of different lengths, and either can be
4765 // pointer.
4766 // There are 4 cases:
4767 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4768 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4769 // 3. pointer -> non-pointer
4770 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4771 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4772 // 4. non-pointer -> pointer
4773 //   a) intptr_t -> pointer       : needs 1 inttoptr
4774 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4775 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4776 // allow casting directly between pointer types and non-integer non-pointer
4777 // types.
4778 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4779                                            const llvm::DataLayout &DL,
4780                                            Value *Src, llvm::Type *DstTy,
4781                                            StringRef Name = "") {
4782   auto SrcTy = Src->getType();
4783 
4784   // Case 1.
4785   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4786     return Builder.CreateBitCast(Src, DstTy, Name);
4787 
4788   // Case 2.
4789   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4790     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4791 
4792   // Case 3.
4793   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4794     // Case 3b.
4795     if (!DstTy->isIntegerTy())
4796       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4797     // Cases 3a and 3b.
4798     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4799   }
4800 
4801   // Case 4b.
4802   if (!SrcTy->isIntegerTy())
4803     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4804   // Cases 4a and 4b.
4805   return Builder.CreateIntToPtr(Src, DstTy, Name);
4806 }
4807 
4808 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4809   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4810   llvm::Type *DstTy = ConvertType(E->getType());
4811 
4812   llvm::Type *SrcTy = Src->getType();
4813   unsigned NumElementsSrc =
4814       isa<llvm::VectorType>(SrcTy)
4815           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4816           : 0;
4817   unsigned NumElementsDst =
4818       isa<llvm::VectorType>(DstTy)
4819           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4820           : 0;
4821 
4822   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4823   // vector to get a vec4, then a bitcast if the target type is different.
4824   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4825     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4826     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4827                                        DstTy);
4828 
4829     Src->setName("astype");
4830     return Src;
4831   }
4832 
4833   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4834   // to vec4 if the original type is not vec4, then a shuffle vector to
4835   // get a vec3.
4836   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4837     auto *Vec4Ty = llvm::FixedVectorType::get(
4838         cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4839     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4840                                        Vec4Ty);
4841 
4842     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4843     Src->setName("astype");
4844     return Src;
4845   }
4846 
4847   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4848                                       Src, DstTy, "astype");
4849 }
4850 
4851 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4852   return CGF.EmitAtomicExpr(E).getScalarVal();
4853 }
4854 
4855 //===----------------------------------------------------------------------===//
4856 //                         Entry Point into this File
4857 //===----------------------------------------------------------------------===//
4858 
4859 /// Emit the computation of the specified expression of scalar type, ignoring
4860 /// the result.
4861 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4862   assert(E && hasScalarEvaluationKind(E->getType()) &&
4863          "Invalid scalar expression to emit");
4864 
4865   return ScalarExprEmitter(*this, IgnoreResultAssign)
4866       .Visit(const_cast<Expr *>(E));
4867 }
4868 
4869 /// Emit a conversion from the specified type to the specified destination type,
4870 /// both of which are LLVM scalar types.
4871 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4872                                              QualType DstTy,
4873                                              SourceLocation Loc) {
4874   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4875          "Invalid scalar expression to emit");
4876   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4877 }
4878 
4879 /// Emit a conversion from the specified complex type to the specified
4880 /// destination type, where the destination type is an LLVM scalar type.
4881 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4882                                                       QualType SrcTy,
4883                                                       QualType DstTy,
4884                                                       SourceLocation Loc) {
4885   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4886          "Invalid complex -> scalar conversion");
4887   return ScalarExprEmitter(*this)
4888       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4889 }
4890 
4891 
4892 llvm::Value *CodeGenFunction::
4893 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4894                         bool isInc, bool isPre) {
4895   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4896 }
4897 
4898 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4899   // object->isa or (*object).isa
4900   // Generate code as for: *(Class*)object
4901 
4902   Expr *BaseExpr = E->getBase();
4903   Address Addr = Address::invalid();
4904   if (BaseExpr->isPRValue()) {
4905     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4906   } else {
4907     Addr = EmitLValue(BaseExpr).getAddress(*this);
4908   }
4909 
4910   // Cast the address to Class*.
4911   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4912   return MakeAddrLValue(Addr, E->getType());
4913 }
4914 
4915 
4916 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4917                                             const CompoundAssignOperator *E) {
4918   ScalarExprEmitter Scalar(*this);
4919   Value *Result = nullptr;
4920   switch (E->getOpcode()) {
4921 #define COMPOUND_OP(Op)                                                       \
4922     case BO_##Op##Assign:                                                     \
4923       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4924                                              Result)
4925   COMPOUND_OP(Mul);
4926   COMPOUND_OP(Div);
4927   COMPOUND_OP(Rem);
4928   COMPOUND_OP(Add);
4929   COMPOUND_OP(Sub);
4930   COMPOUND_OP(Shl);
4931   COMPOUND_OP(Shr);
4932   COMPOUND_OP(And);
4933   COMPOUND_OP(Xor);
4934   COMPOUND_OP(Or);
4935 #undef COMPOUND_OP
4936 
4937   case BO_PtrMemD:
4938   case BO_PtrMemI:
4939   case BO_Mul:
4940   case BO_Div:
4941   case BO_Rem:
4942   case BO_Add:
4943   case BO_Sub:
4944   case BO_Shl:
4945   case BO_Shr:
4946   case BO_LT:
4947   case BO_GT:
4948   case BO_LE:
4949   case BO_GE:
4950   case BO_EQ:
4951   case BO_NE:
4952   case BO_Cmp:
4953   case BO_And:
4954   case BO_Xor:
4955   case BO_Or:
4956   case BO_LAnd:
4957   case BO_LOr:
4958   case BO_Assign:
4959   case BO_Comma:
4960     llvm_unreachable("Not valid compound assignment operators");
4961   }
4962 
4963   llvm_unreachable("Unhandled compound assignment operator");
4964 }
4965 
4966 struct GEPOffsetAndOverflow {
4967   // The total (signed) byte offset for the GEP.
4968   llvm::Value *TotalOffset;
4969   // The offset overflow flag - true if the total offset overflows.
4970   llvm::Value *OffsetOverflows;
4971 };
4972 
4973 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4974 /// and compute the total offset it applies from it's base pointer BasePtr.
4975 /// Returns offset in bytes and a boolean flag whether an overflow happened
4976 /// during evaluation.
4977 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4978                                                  llvm::LLVMContext &VMContext,
4979                                                  CodeGenModule &CGM,
4980                                                  CGBuilderTy &Builder) {
4981   const auto &DL = CGM.getDataLayout();
4982 
4983   // The total (signed) byte offset for the GEP.
4984   llvm::Value *TotalOffset = nullptr;
4985 
4986   // Was the GEP already reduced to a constant?
4987   if (isa<llvm::Constant>(GEPVal)) {
4988     // Compute the offset by casting both pointers to integers and subtracting:
4989     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4990     Value *BasePtr_int =
4991         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4992     Value *GEPVal_int =
4993         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4994     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4995     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4996   }
4997 
4998   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4999   assert(GEP->getPointerOperand() == BasePtr &&
5000          "BasePtr must be the base of the GEP.");
5001   assert(GEP->isInBounds() && "Expected inbounds GEP");
5002 
5003   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5004 
5005   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5006   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5007   auto *SAddIntrinsic =
5008       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5009   auto *SMulIntrinsic =
5010       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5011 
5012   // The offset overflow flag - true if the total offset overflows.
5013   llvm::Value *OffsetOverflows = Builder.getFalse();
5014 
5015   /// Return the result of the given binary operation.
5016   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5017                   llvm::Value *RHS) -> llvm::Value * {
5018     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5019 
5020     // If the operands are constants, return a constant result.
5021     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5022       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5023         llvm::APInt N;
5024         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5025                                                   /*Signed=*/true, N);
5026         if (HasOverflow)
5027           OffsetOverflows = Builder.getTrue();
5028         return llvm::ConstantInt::get(VMContext, N);
5029       }
5030     }
5031 
5032     // Otherwise, compute the result with checked arithmetic.
5033     auto *ResultAndOverflow = Builder.CreateCall(
5034         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5035     OffsetOverflows = Builder.CreateOr(
5036         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5037     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5038   };
5039 
5040   // Determine the total byte offset by looking at each GEP operand.
5041   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5042        GTI != GTE; ++GTI) {
5043     llvm::Value *LocalOffset;
5044     auto *Index = GTI.getOperand();
5045     // Compute the local offset contributed by this indexing step:
5046     if (auto *STy = GTI.getStructTypeOrNull()) {
5047       // For struct indexing, the local offset is the byte position of the
5048       // specified field.
5049       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5050       LocalOffset = llvm::ConstantInt::get(
5051           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5052     } else {
5053       // Otherwise this is array-like indexing. The local offset is the index
5054       // multiplied by the element size.
5055       auto *ElementSize = llvm::ConstantInt::get(
5056           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5057       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5058       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5059     }
5060 
5061     // If this is the first offset, set it as the total offset. Otherwise, add
5062     // the local offset into the running total.
5063     if (!TotalOffset || TotalOffset == Zero)
5064       TotalOffset = LocalOffset;
5065     else
5066       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5067   }
5068 
5069   return {TotalOffset, OffsetOverflows};
5070 }
5071 
5072 Value *
5073 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5074                                         ArrayRef<Value *> IdxList,
5075                                         bool SignedIndices, bool IsSubtraction,
5076                                         SourceLocation Loc, const Twine &Name) {
5077   llvm::Type *PtrTy = Ptr->getType();
5078   Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5079 
5080   // If the pointer overflow sanitizer isn't enabled, do nothing.
5081   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5082     return GEPVal;
5083 
5084   // Perform nullptr-and-offset check unless the nullptr is defined.
5085   bool PerformNullCheck = !NullPointerIsDefined(
5086       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5087   // Check for overflows unless the GEP got constant-folded,
5088   // and only in the default address space
5089   bool PerformOverflowCheck =
5090       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5091 
5092   if (!(PerformNullCheck || PerformOverflowCheck))
5093     return GEPVal;
5094 
5095   const auto &DL = CGM.getDataLayout();
5096 
5097   SanitizerScope SanScope(this);
5098   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5099 
5100   GEPOffsetAndOverflow EvaluatedGEP =
5101       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5102 
5103   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5104           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5105          "If the offset got constant-folded, we don't expect that there was an "
5106          "overflow.");
5107 
5108   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5109 
5110   // Common case: if the total offset is zero, and we are using C++ semantics,
5111   // where nullptr+0 is defined, don't emit a check.
5112   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5113     return GEPVal;
5114 
5115   // Now that we've computed the total offset, add it to the base pointer (with
5116   // wrapping semantics).
5117   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5118   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5119 
5120   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5121 
5122   if (PerformNullCheck) {
5123     // In C++, if the base pointer evaluates to a null pointer value,
5124     // the only valid  pointer this inbounds GEP can produce is also
5125     // a null pointer, so the offset must also evaluate to zero.
5126     // Likewise, if we have non-zero base pointer, we can not get null pointer
5127     // as a result, so the offset can not be -intptr_t(BasePtr).
5128     // In other words, both pointers are either null, or both are non-null,
5129     // or the behaviour is undefined.
5130     //
5131     // C, however, is more strict in this regard, and gives more
5132     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5133     // So both the input to the 'gep inbounds' AND the output must not be null.
5134     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5135     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5136     auto *Valid =
5137         CGM.getLangOpts().CPlusPlus
5138             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5139             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5140     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5141   }
5142 
5143   if (PerformOverflowCheck) {
5144     // The GEP is valid if:
5145     // 1) The total offset doesn't overflow, and
5146     // 2) The sign of the difference between the computed address and the base
5147     // pointer matches the sign of the total offset.
5148     llvm::Value *ValidGEP;
5149     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5150     if (SignedIndices) {
5151       // GEP is computed as `unsigned base + signed offset`, therefore:
5152       // * If offset was positive, then the computed pointer can not be
5153       //   [unsigned] less than the base pointer, unless it overflowed.
5154       // * If offset was negative, then the computed pointer can not be
5155       //   [unsigned] greater than the bas pointere, unless it overflowed.
5156       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5157       auto *PosOrZeroOffset =
5158           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5159       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5160       ValidGEP =
5161           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5162     } else if (!IsSubtraction) {
5163       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5164       // computed pointer can not be [unsigned] less than base pointer,
5165       // unless there was an overflow.
5166       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5167       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5168     } else {
5169       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5170       // computed pointer can not be [unsigned] greater than base pointer,
5171       // unless there was an overflow.
5172       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5173       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5174     }
5175     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5176     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5177   }
5178 
5179   assert(!Checks.empty() && "Should have produced some checks.");
5180 
5181   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5182   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5183   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5184   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5185 
5186   return GEPVal;
5187 }
5188