xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/FixedPointBuilder.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/IntrinsicsPowerPC.h"
42 #include "llvm/IR/MatrixBuilder.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/Support/TypeSize.h"
45 #include <cstdarg>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 using llvm::Value;
50 
51 //===----------------------------------------------------------------------===//
52 //                         Scalar Expression Emitter
53 //===----------------------------------------------------------------------===//
54 
55 namespace {
56 
57 /// Determine whether the given binary operation may overflow.
58 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
59 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
60 /// the returned overflow check is precise. The returned value is 'true' for
61 /// all other opcodes, to be conservative.
62 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
63                              BinaryOperator::Opcode Opcode, bool Signed,
64                              llvm::APInt &Result) {
65   // Assume overflow is possible, unless we can prove otherwise.
66   bool Overflow = true;
67   const auto &LHSAP = LHS->getValue();
68   const auto &RHSAP = RHS->getValue();
69   if (Opcode == BO_Add) {
70     Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
71                     : LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
74                     : LHSAP.usub_ov(RHSAP, Overflow);
75   } else if (Opcode == BO_Mul) {
76     Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
77                     : LHSAP.umul_ov(RHSAP, Overflow);
78   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
79     if (Signed && !RHS->isZero())
80       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
81     else
82       return false;
83   }
84   return Overflow;
85 }
86 
87 struct BinOpInfo {
88   Value *LHS;
89   Value *RHS;
90   QualType Ty;  // Computation Type.
91   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
92   FPOptions FPFeatures;
93   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
94 
95   /// Check if the binop can result in integer overflow.
96   bool mayHaveIntegerOverflow() const {
97     // Without constant input, we can't rule out overflow.
98     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
99     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
100     if (!LHSCI || !RHSCI)
101       return true;
102 
103     llvm::APInt Result;
104     return ::mayHaveIntegerOverflow(
105         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
106   }
107 
108   /// Check if the binop computes a division or a remainder.
109   bool isDivremOp() const {
110     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
111            Opcode == BO_RemAssign;
112   }
113 
114   /// Check if the binop can result in an integer division by zero.
115   bool mayHaveIntegerDivisionByZero() const {
116     if (isDivremOp())
117       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
118         return CI->isZero();
119     return true;
120   }
121 
122   /// Check if the binop can result in a float division by zero.
123   bool mayHaveFloatDivisionByZero() const {
124     if (isDivremOp())
125       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
126         return CFP->isZero();
127     return true;
128   }
129 
130   /// Check if at least one operand is a fixed point type. In such cases, this
131   /// operation did not follow usual arithmetic conversion and both operands
132   /// might not be of the same type.
133   bool isFixedPointOp() const {
134     // We cannot simply check the result type since comparison operations return
135     // an int.
136     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137       QualType LHSType = BinOp->getLHS()->getType();
138       QualType RHSType = BinOp->getRHS()->getType();
139       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140     }
141     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
142       return UnOp->getSubExpr()->getType()->isFixedPointType();
143     return false;
144   }
145 };
146 
147 static bool MustVisitNullValue(const Expr *E) {
148   // If a null pointer expression's type is the C++0x nullptr_t, then
149   // it's not necessarily a simple constant and it must be evaluated
150   // for its potential side effects.
151   return E->getType()->isNullPtrType();
152 }
153 
154 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
155 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
156                                                         const Expr *E) {
157   const Expr *Base = E->IgnoreImpCasts();
158   if (E == Base)
159     return llvm::None;
160 
161   QualType BaseTy = Base->getType();
162   if (!BaseTy->isPromotableIntegerType() ||
163       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
164     return llvm::None;
165 
166   return BaseTy;
167 }
168 
169 /// Check if \p E is a widened promoted integer.
170 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
171   return getUnwidenedIntegerType(Ctx, E).has_value();
172 }
173 
174 /// Check if we can skip the overflow check for \p Op.
175 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
176   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
177          "Expected a unary or binary operator");
178 
179   // If the binop has constant inputs and we can prove there is no overflow,
180   // we can elide the overflow check.
181   if (!Op.mayHaveIntegerOverflow())
182     return true;
183 
184   // If a unary op has a widened operand, the op cannot overflow.
185   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
186     return !UO->canOverflow();
187 
188   // We usually don't need overflow checks for binops with widened operands.
189   // Multiplication with promoted unsigned operands is a special case.
190   const auto *BO = cast<BinaryOperator>(Op.E);
191   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
192   if (!OptionalLHSTy)
193     return false;
194 
195   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
196   if (!OptionalRHSTy)
197     return false;
198 
199   QualType LHSTy = *OptionalLHSTy;
200   QualType RHSTy = *OptionalRHSTy;
201 
202   // This is the simple case: binops without unsigned multiplication, and with
203   // widened operands. No overflow check is needed here.
204   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
205       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
206     return true;
207 
208   // For unsigned multiplication the overflow check can be elided if either one
209   // of the unpromoted types are less than half the size of the promoted type.
210   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
211   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
212          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
213 }
214 
215 class ScalarExprEmitter
216   : public StmtVisitor<ScalarExprEmitter, Value*> {
217   CodeGenFunction &CGF;
218   CGBuilderTy &Builder;
219   bool IgnoreResultAssign;
220   llvm::LLVMContext &VMContext;
221 public:
222 
223   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
224     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
225       VMContext(cgf.getLLVMContext()) {
226   }
227 
228   //===--------------------------------------------------------------------===//
229   //                               Utilities
230   //===--------------------------------------------------------------------===//
231 
232   bool TestAndClearIgnoreResultAssign() {
233     bool I = IgnoreResultAssign;
234     IgnoreResultAssign = false;
235     return I;
236   }
237 
238   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
239   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
240   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
241     return CGF.EmitCheckedLValue(E, TCK);
242   }
243 
244   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
245                       const BinOpInfo &Info);
246 
247   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
248     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
249   }
250 
251   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
252     const AlignValueAttr *AVAttr = nullptr;
253     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
254       const ValueDecl *VD = DRE->getDecl();
255 
256       if (VD->getType()->isReferenceType()) {
257         if (const auto *TTy =
258             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
259           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
260       } else {
261         // Assumptions for function parameters are emitted at the start of the
262         // function, so there is no need to repeat that here,
263         // unless the alignment-assumption sanitizer is enabled,
264         // then we prefer the assumption over alignment attribute
265         // on IR function param.
266         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
267           return;
268 
269         AVAttr = VD->getAttr<AlignValueAttr>();
270       }
271     }
272 
273     if (!AVAttr)
274       if (const auto *TTy =
275           dyn_cast<TypedefType>(E->getType()))
276         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
277 
278     if (!AVAttr)
279       return;
280 
281     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
282     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
283     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
284   }
285 
286   /// EmitLoadOfLValue - Given an expression with complex type that represents a
287   /// value l-value, this method emits the address of the l-value, then loads
288   /// and returns the result.
289   Value *EmitLoadOfLValue(const Expr *E) {
290     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
291                                 E->getExprLoc());
292 
293     EmitLValueAlignmentAssumption(E, V);
294     return V;
295   }
296 
297   /// EmitConversionToBool - Convert the specified expression value to a
298   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
299   Value *EmitConversionToBool(Value *Src, QualType DstTy);
300 
301   /// Emit a check that a conversion from a floating-point type does not
302   /// overflow.
303   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
304                                 Value *Src, QualType SrcType, QualType DstType,
305                                 llvm::Type *DstTy, SourceLocation Loc);
306 
307   /// Known implicit conversion check kinds.
308   /// Keep in sync with the enum of the same name in ubsan_handlers.h
309   enum ImplicitConversionCheckKind : unsigned char {
310     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
311     ICCK_UnsignedIntegerTruncation = 1,
312     ICCK_SignedIntegerTruncation = 2,
313     ICCK_IntegerSignChange = 3,
314     ICCK_SignedIntegerTruncationOrSignChange = 4,
315   };
316 
317   /// Emit a check that an [implicit] truncation of an integer  does not
318   /// discard any bits. It is not UB, so we use the value after truncation.
319   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
320                                   QualType DstType, SourceLocation Loc);
321 
322   /// Emit a check that an [implicit] conversion of an integer does not change
323   /// the sign of the value. It is not UB, so we use the value after conversion.
324   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
325   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
326                                   QualType DstType, SourceLocation Loc);
327 
328   /// Emit a conversion from the specified type to the specified destination
329   /// type, both of which are LLVM scalar types.
330   struct ScalarConversionOpts {
331     bool TreatBooleanAsSigned;
332     bool EmitImplicitIntegerTruncationChecks;
333     bool EmitImplicitIntegerSignChangeChecks;
334 
335     ScalarConversionOpts()
336         : TreatBooleanAsSigned(false),
337           EmitImplicitIntegerTruncationChecks(false),
338           EmitImplicitIntegerSignChangeChecks(false) {}
339 
340     ScalarConversionOpts(clang::SanitizerSet SanOpts)
341         : TreatBooleanAsSigned(false),
342           EmitImplicitIntegerTruncationChecks(
343               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
344           EmitImplicitIntegerSignChangeChecks(
345               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
346   };
347   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
348                         llvm::Type *SrcTy, llvm::Type *DstTy,
349                         ScalarConversionOpts Opts);
350   Value *
351   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
352                        SourceLocation Loc,
353                        ScalarConversionOpts Opts = ScalarConversionOpts());
354 
355   /// Convert between either a fixed point and other fixed point or fixed point
356   /// and an integer.
357   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
358                                   SourceLocation Loc);
359 
360   /// Emit a conversion from the specified complex type to the specified
361   /// destination type, where the destination type is an LLVM scalar type.
362   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
363                                        QualType SrcTy, QualType DstTy,
364                                        SourceLocation Loc);
365 
366   /// EmitNullValue - Emit a value that corresponds to null for the given type.
367   Value *EmitNullValue(QualType Ty);
368 
369   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
370   Value *EmitFloatToBoolConversion(Value *V) {
371     // Compare against 0.0 for fp scalars.
372     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
373     return Builder.CreateFCmpUNE(V, Zero, "tobool");
374   }
375 
376   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
377   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
378     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
379 
380     return Builder.CreateICmpNE(V, Zero, "tobool");
381   }
382 
383   Value *EmitIntToBoolConversion(Value *V) {
384     // Because of the type rules of C, we often end up computing a
385     // logical value, then zero extending it to int, then wanting it
386     // as a logical value again.  Optimize this common case.
387     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
388       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
389         Value *Result = ZI->getOperand(0);
390         // If there aren't any more uses, zap the instruction to save space.
391         // Note that there can be more uses, for example if this
392         // is the result of an assignment.
393         if (ZI->use_empty())
394           ZI->eraseFromParent();
395         return Result;
396       }
397     }
398 
399     return Builder.CreateIsNotNull(V, "tobool");
400   }
401 
402   //===--------------------------------------------------------------------===//
403   //                            Visitor Methods
404   //===--------------------------------------------------------------------===//
405 
406   Value *Visit(Expr *E) {
407     ApplyDebugLocation DL(CGF, E);
408     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
409   }
410 
411   Value *VisitStmt(Stmt *S) {
412     S->dump(llvm::errs(), CGF.getContext());
413     llvm_unreachable("Stmt can't have complex result type!");
414   }
415   Value *VisitExpr(Expr *S);
416 
417   Value *VisitConstantExpr(ConstantExpr *E) {
418     // A constant expression of type 'void' generates no code and produces no
419     // value.
420     if (E->getType()->isVoidType())
421       return nullptr;
422 
423     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
424       if (E->isGLValue())
425         return CGF.Builder.CreateLoad(Address(
426             Result, CGF.ConvertTypeForMem(E->getType()),
427             CGF.getContext().getTypeAlignInChars(E->getType())));
428       return Result;
429     }
430     return Visit(E->getSubExpr());
431   }
432   Value *VisitParenExpr(ParenExpr *PE) {
433     return Visit(PE->getSubExpr());
434   }
435   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
436     return Visit(E->getReplacement());
437   }
438   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
439     return Visit(GE->getResultExpr());
440   }
441   Value *VisitCoawaitExpr(CoawaitExpr *S) {
442     return CGF.EmitCoawaitExpr(*S).getScalarVal();
443   }
444   Value *VisitCoyieldExpr(CoyieldExpr *S) {
445     return CGF.EmitCoyieldExpr(*S).getScalarVal();
446   }
447   Value *VisitUnaryCoawait(const UnaryOperator *E) {
448     return Visit(E->getSubExpr());
449   }
450 
451   // Leaves.
452   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
453     return Builder.getInt(E->getValue());
454   }
455   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
456     return Builder.getInt(E->getValue());
457   }
458   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
459     return llvm::ConstantFP::get(VMContext, E->getValue());
460   }
461   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
462     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
463   }
464   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
465     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466   }
467   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
468     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469   }
470   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
471     return EmitNullValue(E->getType());
472   }
473   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
474     return EmitNullValue(E->getType());
475   }
476   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
477   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
478   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
479     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
480     return Builder.CreateBitCast(V, ConvertType(E->getType()));
481   }
482 
483   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
484     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
485   }
486 
487   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
488     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
489   }
490 
491   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
492 
493   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
494     if (E->isGLValue())
495       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
496                               E->getExprLoc());
497 
498     // Otherwise, assume the mapping is the scalar directly.
499     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
500   }
501 
502   // l-values.
503   Value *VisitDeclRefExpr(DeclRefExpr *E) {
504     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
505       return CGF.emitScalarConstant(Constant, E);
506     return EmitLoadOfLValue(E);
507   }
508 
509   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
510     return CGF.EmitObjCSelectorExpr(E);
511   }
512   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
513     return CGF.EmitObjCProtocolExpr(E);
514   }
515   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
516     return EmitLoadOfLValue(E);
517   }
518   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
519     if (E->getMethodDecl() &&
520         E->getMethodDecl()->getReturnType()->isReferenceType())
521       return EmitLoadOfLValue(E);
522     return CGF.EmitObjCMessageExpr(E).getScalarVal();
523   }
524 
525   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
526     LValue LV = CGF.EmitObjCIsaExpr(E);
527     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
528     return V;
529   }
530 
531   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
532     VersionTuple Version = E->getVersion();
533 
534     // If we're checking for a platform older than our minimum deployment
535     // target, we can fold the check away.
536     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
537       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
538 
539     return CGF.EmitBuiltinAvailable(Version);
540   }
541 
542   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
543   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
544   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
545   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
546   Value *VisitMemberExpr(MemberExpr *E);
547   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
548   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
549     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
550     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
551     // literals aren't l-values in C++. We do so simply because that's the
552     // cleanest way to handle compound literals in C++.
553     // See the discussion here: https://reviews.llvm.org/D64464
554     return EmitLoadOfLValue(E);
555   }
556 
557   Value *VisitInitListExpr(InitListExpr *E);
558 
559   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
560     assert(CGF.getArrayInitIndex() &&
561            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
562     return CGF.getArrayInitIndex();
563   }
564 
565   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
566     return EmitNullValue(E->getType());
567   }
568   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
569     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
570     return VisitCastExpr(E);
571   }
572   Value *VisitCastExpr(CastExpr *E);
573 
574   Value *VisitCallExpr(const CallExpr *E) {
575     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
576       return EmitLoadOfLValue(E);
577 
578     Value *V = CGF.EmitCallExpr(E).getScalarVal();
579 
580     EmitLValueAlignmentAssumption(E, V);
581     return V;
582   }
583 
584   Value *VisitStmtExpr(const StmtExpr *E);
585 
586   // Unary Operators.
587   Value *VisitUnaryPostDec(const UnaryOperator *E) {
588     LValue LV = EmitLValue(E->getSubExpr());
589     return EmitScalarPrePostIncDec(E, LV, false, false);
590   }
591   Value *VisitUnaryPostInc(const UnaryOperator *E) {
592     LValue LV = EmitLValue(E->getSubExpr());
593     return EmitScalarPrePostIncDec(E, LV, true, false);
594   }
595   Value *VisitUnaryPreDec(const UnaryOperator *E) {
596     LValue LV = EmitLValue(E->getSubExpr());
597     return EmitScalarPrePostIncDec(E, LV, false, true);
598   }
599   Value *VisitUnaryPreInc(const UnaryOperator *E) {
600     LValue LV = EmitLValue(E->getSubExpr());
601     return EmitScalarPrePostIncDec(E, LV, true, true);
602   }
603 
604   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
605                                                   llvm::Value *InVal,
606                                                   bool IsInc);
607 
608   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
609                                        bool isInc, bool isPre);
610 
611 
612   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
613     if (isa<MemberPointerType>(E->getType())) // never sugared
614       return CGF.CGM.getMemberPointerConstant(E);
615 
616     return EmitLValue(E->getSubExpr()).getPointer(CGF);
617   }
618   Value *VisitUnaryDeref(const UnaryOperator *E) {
619     if (E->getType()->isVoidType())
620       return Visit(E->getSubExpr()); // the actual value should be unused
621     return EmitLoadOfLValue(E);
622   }
623   Value *VisitUnaryPlus(const UnaryOperator *E) {
624     // This differs from gcc, though, most likely due to a bug in gcc.
625     TestAndClearIgnoreResultAssign();
626     return Visit(E->getSubExpr());
627   }
628   Value *VisitUnaryMinus    (const UnaryOperator *E);
629   Value *VisitUnaryNot      (const UnaryOperator *E);
630   Value *VisitUnaryLNot     (const UnaryOperator *E);
631   Value *VisitUnaryReal     (const UnaryOperator *E);
632   Value *VisitUnaryImag     (const UnaryOperator *E);
633   Value *VisitUnaryExtension(const UnaryOperator *E) {
634     return Visit(E->getSubExpr());
635   }
636 
637   // C++
638   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
639     return EmitLoadOfLValue(E);
640   }
641   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
642     auto &Ctx = CGF.getContext();
643     APValue Evaluated =
644         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
645     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
646                                              SLE->getType());
647   }
648 
649   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
650     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
651     return Visit(DAE->getExpr());
652   }
653   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
654     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
655     return Visit(DIE->getExpr());
656   }
657   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
658     return CGF.LoadCXXThis();
659   }
660 
661   Value *VisitExprWithCleanups(ExprWithCleanups *E);
662   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
663     return CGF.EmitCXXNewExpr(E);
664   }
665   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
666     CGF.EmitCXXDeleteExpr(E);
667     return nullptr;
668   }
669 
670   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
671     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
672   }
673 
674   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
675     return Builder.getInt1(E->isSatisfied());
676   }
677 
678   Value *VisitRequiresExpr(const RequiresExpr *E) {
679     return Builder.getInt1(E->isSatisfied());
680   }
681 
682   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
683     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
684   }
685 
686   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
687     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
688   }
689 
690   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
691     // C++ [expr.pseudo]p1:
692     //   The result shall only be used as the operand for the function call
693     //   operator (), and the result of such a call has type void. The only
694     //   effect is the evaluation of the postfix-expression before the dot or
695     //   arrow.
696     CGF.EmitScalarExpr(E->getBase());
697     return nullptr;
698   }
699 
700   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
701     return EmitNullValue(E->getType());
702   }
703 
704   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
705     CGF.EmitCXXThrowExpr(E);
706     return nullptr;
707   }
708 
709   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
710     return Builder.getInt1(E->getValue());
711   }
712 
713   // Binary Operators.
714   Value *EmitMul(const BinOpInfo &Ops) {
715     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
716       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
717       case LangOptions::SOB_Defined:
718         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
719       case LangOptions::SOB_Undefined:
720         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
721           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
722         LLVM_FALLTHROUGH;
723       case LangOptions::SOB_Trapping:
724         if (CanElideOverflowCheck(CGF.getContext(), Ops))
725           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
726         return EmitOverflowCheckedBinOp(Ops);
727       }
728     }
729 
730     if (Ops.Ty->isConstantMatrixType()) {
731       llvm::MatrixBuilder MB(Builder);
732       // We need to check the types of the operands of the operator to get the
733       // correct matrix dimensions.
734       auto *BO = cast<BinaryOperator>(Ops.E);
735       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
736           BO->getLHS()->getType().getCanonicalType());
737       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
738           BO->getRHS()->getType().getCanonicalType());
739       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
740       if (LHSMatTy && RHSMatTy)
741         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
742                                        LHSMatTy->getNumColumns(),
743                                        RHSMatTy->getNumColumns());
744       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
745     }
746 
747     if (Ops.Ty->isUnsignedIntegerType() &&
748         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
749         !CanElideOverflowCheck(CGF.getContext(), Ops))
750       return EmitOverflowCheckedBinOp(Ops);
751 
752     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
753       //  Preserve the old values
754       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
755       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
756     }
757     if (Ops.isFixedPointOp())
758       return EmitFixedPointBinOp(Ops);
759     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
760   }
761   /// Create a binary op that checks for overflow.
762   /// Currently only supports +, - and *.
763   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
764 
765   // Check for undefined division and modulus behaviors.
766   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
767                                                   llvm::Value *Zero,bool isDiv);
768   // Common helper for getting how wide LHS of shift is.
769   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
770 
771   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
772   // non powers of two.
773   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
774 
775   Value *EmitDiv(const BinOpInfo &Ops);
776   Value *EmitRem(const BinOpInfo &Ops);
777   Value *EmitAdd(const BinOpInfo &Ops);
778   Value *EmitSub(const BinOpInfo &Ops);
779   Value *EmitShl(const BinOpInfo &Ops);
780   Value *EmitShr(const BinOpInfo &Ops);
781   Value *EmitAnd(const BinOpInfo &Ops) {
782     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
783   }
784   Value *EmitXor(const BinOpInfo &Ops) {
785     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
786   }
787   Value *EmitOr (const BinOpInfo &Ops) {
788     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
789   }
790 
791   // Helper functions for fixed point binary operations.
792   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
793 
794   BinOpInfo EmitBinOps(const BinaryOperator *E);
795   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
796                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
797                                   Value *&Result);
798 
799   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
800                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
801 
802   // Binary operators and binary compound assignment operators.
803 #define HANDLEBINOP(OP) \
804   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
805     return Emit ## OP(EmitBinOps(E));                                      \
806   }                                                                        \
807   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
808     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
809   }
810   HANDLEBINOP(Mul)
811   HANDLEBINOP(Div)
812   HANDLEBINOP(Rem)
813   HANDLEBINOP(Add)
814   HANDLEBINOP(Sub)
815   HANDLEBINOP(Shl)
816   HANDLEBINOP(Shr)
817   HANDLEBINOP(And)
818   HANDLEBINOP(Xor)
819   HANDLEBINOP(Or)
820 #undef HANDLEBINOP
821 
822   // Comparisons.
823   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
824                      llvm::CmpInst::Predicate SICmpOpc,
825                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
826 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
827     Value *VisitBin##CODE(const BinaryOperator *E) { \
828       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
829                          llvm::FCmpInst::FP, SIG); }
830   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
831   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
832   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
833   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
834   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
835   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
836 #undef VISITCOMP
837 
838   Value *VisitBinAssign     (const BinaryOperator *E);
839 
840   Value *VisitBinLAnd       (const BinaryOperator *E);
841   Value *VisitBinLOr        (const BinaryOperator *E);
842   Value *VisitBinComma      (const BinaryOperator *E);
843 
844   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
845   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
846 
847   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
848     return Visit(E->getSemanticForm());
849   }
850 
851   // Other Operators.
852   Value *VisitBlockExpr(const BlockExpr *BE);
853   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
854   Value *VisitChooseExpr(ChooseExpr *CE);
855   Value *VisitVAArgExpr(VAArgExpr *VE);
856   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
857     return CGF.EmitObjCStringLiteral(E);
858   }
859   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
860     return CGF.EmitObjCBoxedExpr(E);
861   }
862   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
863     return CGF.EmitObjCArrayLiteral(E);
864   }
865   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
866     return CGF.EmitObjCDictionaryLiteral(E);
867   }
868   Value *VisitAsTypeExpr(AsTypeExpr *CE);
869   Value *VisitAtomicExpr(AtomicExpr *AE);
870 };
871 }  // end anonymous namespace.
872 
873 //===----------------------------------------------------------------------===//
874 //                                Utilities
875 //===----------------------------------------------------------------------===//
876 
877 /// EmitConversionToBool - Convert the specified expression value to a
878 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
879 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
880   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
881 
882   if (SrcType->isRealFloatingType())
883     return EmitFloatToBoolConversion(Src);
884 
885   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
886     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
887 
888   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
889          "Unknown scalar type to convert");
890 
891   if (isa<llvm::IntegerType>(Src->getType()))
892     return EmitIntToBoolConversion(Src);
893 
894   assert(isa<llvm::PointerType>(Src->getType()));
895   return EmitPointerToBoolConversion(Src, SrcType);
896 }
897 
898 void ScalarExprEmitter::EmitFloatConversionCheck(
899     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
900     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
901   assert(SrcType->isFloatingType() && "not a conversion from floating point");
902   if (!isa<llvm::IntegerType>(DstTy))
903     return;
904 
905   CodeGenFunction::SanitizerScope SanScope(&CGF);
906   using llvm::APFloat;
907   using llvm::APSInt;
908 
909   llvm::Value *Check = nullptr;
910   const llvm::fltSemantics &SrcSema =
911     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
912 
913   // Floating-point to integer. This has undefined behavior if the source is
914   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
915   // to an integer).
916   unsigned Width = CGF.getContext().getIntWidth(DstType);
917   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
918 
919   APSInt Min = APSInt::getMinValue(Width, Unsigned);
920   APFloat MinSrc(SrcSema, APFloat::uninitialized);
921   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
922       APFloat::opOverflow)
923     // Don't need an overflow check for lower bound. Just check for
924     // -Inf/NaN.
925     MinSrc = APFloat::getInf(SrcSema, true);
926   else
927     // Find the largest value which is too small to represent (before
928     // truncation toward zero).
929     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
930 
931   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
932   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
933   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
934       APFloat::opOverflow)
935     // Don't need an overflow check for upper bound. Just check for
936     // +Inf/NaN.
937     MaxSrc = APFloat::getInf(SrcSema, false);
938   else
939     // Find the smallest value which is too large to represent (before
940     // truncation toward zero).
941     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
942 
943   // If we're converting from __half, convert the range to float to match
944   // the type of src.
945   if (OrigSrcType->isHalfType()) {
946     const llvm::fltSemantics &Sema =
947       CGF.getContext().getFloatTypeSemantics(SrcType);
948     bool IsInexact;
949     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
950     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
951   }
952 
953   llvm::Value *GE =
954     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
955   llvm::Value *LE =
956     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
957   Check = Builder.CreateAnd(GE, LE);
958 
959   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
960                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
961                                   CGF.EmitCheckTypeDescriptor(DstType)};
962   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
963                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
964 }
965 
966 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
967 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
968 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
969                  std::pair<llvm::Value *, SanitizerMask>>
970 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
971                                  QualType DstType, CGBuilderTy &Builder) {
972   llvm::Type *SrcTy = Src->getType();
973   llvm::Type *DstTy = Dst->getType();
974   (void)DstTy; // Only used in assert()
975 
976   // This should be truncation of integral types.
977   assert(Src != Dst);
978   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
979   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
980          "non-integer llvm type");
981 
982   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
983   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
984 
985   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
986   // Else, it is a signed truncation.
987   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
988   SanitizerMask Mask;
989   if (!SrcSigned && !DstSigned) {
990     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
991     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
992   } else {
993     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
994     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
995   }
996 
997   llvm::Value *Check = nullptr;
998   // 1. Extend the truncated value back to the same width as the Src.
999   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1000   // 2. Equality-compare with the original source value
1001   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1002   // If the comparison result is 'i1 false', then the truncation was lossy.
1003   return std::make_pair(Kind, std::make_pair(Check, Mask));
1004 }
1005 
1006 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1007     QualType SrcType, QualType DstType) {
1008   return SrcType->isIntegerType() && DstType->isIntegerType();
1009 }
1010 
1011 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1012                                                    Value *Dst, QualType DstType,
1013                                                    SourceLocation Loc) {
1014   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1015     return;
1016 
1017   // We only care about int->int conversions here.
1018   // We ignore conversions to/from pointer and/or bool.
1019   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1020                                                                        DstType))
1021     return;
1022 
1023   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1024   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1025   // This must be truncation. Else we do not care.
1026   if (SrcBits <= DstBits)
1027     return;
1028 
1029   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1030 
1031   // If the integer sign change sanitizer is enabled,
1032   // and we are truncating from larger unsigned type to smaller signed type,
1033   // let that next sanitizer deal with it.
1034   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1035   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1036   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1037       (!SrcSigned && DstSigned))
1038     return;
1039 
1040   CodeGenFunction::SanitizerScope SanScope(&CGF);
1041 
1042   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1043             std::pair<llvm::Value *, SanitizerMask>>
1044       Check =
1045           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1046   // If the comparison result is 'i1 false', then the truncation was lossy.
1047 
1048   // Do we care about this type of truncation?
1049   if (!CGF.SanOpts.has(Check.second.second))
1050     return;
1051 
1052   llvm::Constant *StaticArgs[] = {
1053       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1054       CGF.EmitCheckTypeDescriptor(DstType),
1055       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1056   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1057                 {Src, Dst});
1058 }
1059 
1060 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1061 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1062 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1063                  std::pair<llvm::Value *, SanitizerMask>>
1064 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1065                                  QualType DstType, CGBuilderTy &Builder) {
1066   llvm::Type *SrcTy = Src->getType();
1067   llvm::Type *DstTy = Dst->getType();
1068 
1069   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1070          "non-integer llvm type");
1071 
1072   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1073   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1074   (void)SrcSigned; // Only used in assert()
1075   (void)DstSigned; // Only used in assert()
1076   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1077   unsigned DstBits = DstTy->getScalarSizeInBits();
1078   (void)SrcBits; // Only used in assert()
1079   (void)DstBits; // Only used in assert()
1080 
1081   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1082          "either the widths should be different, or the signednesses.");
1083 
1084   // NOTE: zero value is considered to be non-negative.
1085   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1086                                        const char *Name) -> Value * {
1087     // Is this value a signed type?
1088     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1089     llvm::Type *VTy = V->getType();
1090     if (!VSigned) {
1091       // If the value is unsigned, then it is never negative.
1092       // FIXME: can we encounter non-scalar VTy here?
1093       return llvm::ConstantInt::getFalse(VTy->getContext());
1094     }
1095     // Get the zero of the same type with which we will be comparing.
1096     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1097     // %V.isnegative = icmp slt %V, 0
1098     // I.e is %V *strictly* less than zero, does it have negative value?
1099     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1100                               llvm::Twine(Name) + "." + V->getName() +
1101                                   ".negativitycheck");
1102   };
1103 
1104   // 1. Was the old Value negative?
1105   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1106   // 2. Is the new Value negative?
1107   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1108   // 3. Now, was the 'negativity status' preserved during the conversion?
1109   //    NOTE: conversion from negative to zero is considered to change the sign.
1110   //    (We want to get 'false' when the conversion changed the sign)
1111   //    So we should just equality-compare the negativity statuses.
1112   llvm::Value *Check = nullptr;
1113   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1114   // If the comparison result is 'false', then the conversion changed the sign.
1115   return std::make_pair(
1116       ScalarExprEmitter::ICCK_IntegerSignChange,
1117       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1118 }
1119 
1120 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1121                                                    Value *Dst, QualType DstType,
1122                                                    SourceLocation Loc) {
1123   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1124     return;
1125 
1126   llvm::Type *SrcTy = Src->getType();
1127   llvm::Type *DstTy = Dst->getType();
1128 
1129   // We only care about int->int conversions here.
1130   // We ignore conversions to/from pointer and/or bool.
1131   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1132                                                                        DstType))
1133     return;
1134 
1135   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1136   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1137   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1138   unsigned DstBits = DstTy->getScalarSizeInBits();
1139 
1140   // Now, we do not need to emit the check in *all* of the cases.
1141   // We can avoid emitting it in some obvious cases where it would have been
1142   // dropped by the opt passes (instcombine) always anyways.
1143   // If it's a cast between effectively the same type, no check.
1144   // NOTE: this is *not* equivalent to checking the canonical types.
1145   if (SrcSigned == DstSigned && SrcBits == DstBits)
1146     return;
1147   // At least one of the values needs to have signed type.
1148   // If both are unsigned, then obviously, neither of them can be negative.
1149   if (!SrcSigned && !DstSigned)
1150     return;
1151   // If the conversion is to *larger* *signed* type, then no check is needed.
1152   // Because either sign-extension happens (so the sign will remain),
1153   // or zero-extension will happen (the sign bit will be zero.)
1154   if ((DstBits > SrcBits) && DstSigned)
1155     return;
1156   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1157       (SrcBits > DstBits) && SrcSigned) {
1158     // If the signed integer truncation sanitizer is enabled,
1159     // and this is a truncation from signed type, then no check is needed.
1160     // Because here sign change check is interchangeable with truncation check.
1161     return;
1162   }
1163   // That's it. We can't rule out any more cases with the data we have.
1164 
1165   CodeGenFunction::SanitizerScope SanScope(&CGF);
1166 
1167   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1168             std::pair<llvm::Value *, SanitizerMask>>
1169       Check;
1170 
1171   // Each of these checks needs to return 'false' when an issue was detected.
1172   ImplicitConversionCheckKind CheckKind;
1173   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1174   // So we can 'and' all the checks together, and still get 'false',
1175   // if at least one of the checks detected an issue.
1176 
1177   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1178   CheckKind = Check.first;
1179   Checks.emplace_back(Check.second);
1180 
1181   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1182       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1183     // If the signed integer truncation sanitizer was enabled,
1184     // and we are truncating from larger unsigned type to smaller signed type,
1185     // let's handle the case we skipped in that check.
1186     Check =
1187         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1188     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1189     Checks.emplace_back(Check.second);
1190     // If the comparison result is 'i1 false', then the truncation was lossy.
1191   }
1192 
1193   llvm::Constant *StaticArgs[] = {
1194       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1195       CGF.EmitCheckTypeDescriptor(DstType),
1196       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1197   // EmitCheck() will 'and' all the checks together.
1198   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1199                 {Src, Dst});
1200 }
1201 
1202 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1203                                          QualType DstType, llvm::Type *SrcTy,
1204                                          llvm::Type *DstTy,
1205                                          ScalarConversionOpts Opts) {
1206   // The Element types determine the type of cast to perform.
1207   llvm::Type *SrcElementTy;
1208   llvm::Type *DstElementTy;
1209   QualType SrcElementType;
1210   QualType DstElementType;
1211   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1212     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1213     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1214     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1215     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1216   } else {
1217     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1218            "cannot cast between matrix and non-matrix types");
1219     SrcElementTy = SrcTy;
1220     DstElementTy = DstTy;
1221     SrcElementType = SrcType;
1222     DstElementType = DstType;
1223   }
1224 
1225   if (isa<llvm::IntegerType>(SrcElementTy)) {
1226     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1227     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1228       InputSigned = true;
1229     }
1230 
1231     if (isa<llvm::IntegerType>(DstElementTy))
1232       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1233     if (InputSigned)
1234       return Builder.CreateSIToFP(Src, DstTy, "conv");
1235     return Builder.CreateUIToFP(Src, DstTy, "conv");
1236   }
1237 
1238   if (isa<llvm::IntegerType>(DstElementTy)) {
1239     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1240     bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1241 
1242     // If we can't recognize overflow as undefined behavior, assume that
1243     // overflow saturates. This protects against normal optimizations if we are
1244     // compiling with non-standard FP semantics.
1245     if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1246       llvm::Intrinsic::ID IID =
1247           IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1248       return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1249     }
1250 
1251     if (IsSigned)
1252       return Builder.CreateFPToSI(Src, DstTy, "conv");
1253     return Builder.CreateFPToUI(Src, DstTy, "conv");
1254   }
1255 
1256   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1257     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1258   return Builder.CreateFPExt(Src, DstTy, "conv");
1259 }
1260 
1261 /// Emit a conversion from the specified type to the specified destination type,
1262 /// both of which are LLVM scalar types.
1263 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1264                                                QualType DstType,
1265                                                SourceLocation Loc,
1266                                                ScalarConversionOpts Opts) {
1267   // All conversions involving fixed point types should be handled by the
1268   // EmitFixedPoint family functions. This is done to prevent bloating up this
1269   // function more, and although fixed point numbers are represented by
1270   // integers, we do not want to follow any logic that assumes they should be
1271   // treated as integers.
1272   // TODO(leonardchan): When necessary, add another if statement checking for
1273   // conversions to fixed point types from other types.
1274   if (SrcType->isFixedPointType()) {
1275     if (DstType->isBooleanType())
1276       // It is important that we check this before checking if the dest type is
1277       // an integer because booleans are technically integer types.
1278       // We do not need to check the padding bit on unsigned types if unsigned
1279       // padding is enabled because overflow into this bit is undefined
1280       // behavior.
1281       return Builder.CreateIsNotNull(Src, "tobool");
1282     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1283         DstType->isRealFloatingType())
1284       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1285 
1286     llvm_unreachable(
1287         "Unhandled scalar conversion from a fixed point type to another type.");
1288   } else if (DstType->isFixedPointType()) {
1289     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1290       // This also includes converting booleans and enums to fixed point types.
1291       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1292 
1293     llvm_unreachable(
1294         "Unhandled scalar conversion to a fixed point type from another type.");
1295   }
1296 
1297   QualType NoncanonicalSrcType = SrcType;
1298   QualType NoncanonicalDstType = DstType;
1299 
1300   SrcType = CGF.getContext().getCanonicalType(SrcType);
1301   DstType = CGF.getContext().getCanonicalType(DstType);
1302   if (SrcType == DstType) return Src;
1303 
1304   if (DstType->isVoidType()) return nullptr;
1305 
1306   llvm::Value *OrigSrc = Src;
1307   QualType OrigSrcType = SrcType;
1308   llvm::Type *SrcTy = Src->getType();
1309 
1310   // Handle conversions to bool first, they are special: comparisons against 0.
1311   if (DstType->isBooleanType())
1312     return EmitConversionToBool(Src, SrcType);
1313 
1314   llvm::Type *DstTy = ConvertType(DstType);
1315 
1316   // Cast from half through float if half isn't a native type.
1317   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1318     // Cast to FP using the intrinsic if the half type itself isn't supported.
1319     if (DstTy->isFloatingPointTy()) {
1320       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1321         return Builder.CreateCall(
1322             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1323             Src);
1324     } else {
1325       // Cast to other types through float, using either the intrinsic or FPExt,
1326       // depending on whether the half type itself is supported
1327       // (as opposed to operations on half, available with NativeHalfType).
1328       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1329         Src = Builder.CreateCall(
1330             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1331                                  CGF.CGM.FloatTy),
1332             Src);
1333       } else {
1334         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1335       }
1336       SrcType = CGF.getContext().FloatTy;
1337       SrcTy = CGF.FloatTy;
1338     }
1339   }
1340 
1341   // Ignore conversions like int -> uint.
1342   if (SrcTy == DstTy) {
1343     if (Opts.EmitImplicitIntegerSignChangeChecks)
1344       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1345                                  NoncanonicalDstType, Loc);
1346 
1347     return Src;
1348   }
1349 
1350   // Handle pointer conversions next: pointers can only be converted to/from
1351   // other pointers and integers. Check for pointer types in terms of LLVM, as
1352   // some native types (like Obj-C id) may map to a pointer type.
1353   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1354     // The source value may be an integer, or a pointer.
1355     if (isa<llvm::PointerType>(SrcTy))
1356       return Builder.CreateBitCast(Src, DstTy, "conv");
1357 
1358     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1359     // First, convert to the correct width so that we control the kind of
1360     // extension.
1361     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1362     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1363     llvm::Value* IntResult =
1364         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1365     // Then, cast to pointer.
1366     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1367   }
1368 
1369   if (isa<llvm::PointerType>(SrcTy)) {
1370     // Must be an ptr to int cast.
1371     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1372     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1373   }
1374 
1375   // A scalar can be splatted to an extended vector of the same element type
1376   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1377     // Sema should add casts to make sure that the source expression's type is
1378     // the same as the vector's element type (sans qualifiers)
1379     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1380                SrcType.getTypePtr() &&
1381            "Splatted expr doesn't match with vector element type?");
1382 
1383     // Splat the element across to all elements
1384     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1385     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1386   }
1387 
1388   if (SrcType->isMatrixType() && DstType->isMatrixType())
1389     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1390 
1391   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1392     // Allow bitcast from vector to integer/fp of the same size.
1393     llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1394     llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1395     if (SrcSize == DstSize)
1396       return Builder.CreateBitCast(Src, DstTy, "conv");
1397 
1398     // Conversions between vectors of different sizes are not allowed except
1399     // when vectors of half are involved. Operations on storage-only half
1400     // vectors require promoting half vector operands to float vectors and
1401     // truncating the result, which is either an int or float vector, to a
1402     // short or half vector.
1403 
1404     // Source and destination are both expected to be vectors.
1405     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1406     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1407     (void)DstElementTy;
1408 
1409     assert(((SrcElementTy->isIntegerTy() &&
1410              DstElementTy->isIntegerTy()) ||
1411             (SrcElementTy->isFloatingPointTy() &&
1412              DstElementTy->isFloatingPointTy())) &&
1413            "unexpected conversion between a floating-point vector and an "
1414            "integer vector");
1415 
1416     // Truncate an i32 vector to an i16 vector.
1417     if (SrcElementTy->isIntegerTy())
1418       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1419 
1420     // Truncate a float vector to a half vector.
1421     if (SrcSize > DstSize)
1422       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1423 
1424     // Promote a half vector to a float vector.
1425     return Builder.CreateFPExt(Src, DstTy, "conv");
1426   }
1427 
1428   // Finally, we have the arithmetic types: real int/float.
1429   Value *Res = nullptr;
1430   llvm::Type *ResTy = DstTy;
1431 
1432   // An overflowing conversion has undefined behavior if either the source type
1433   // or the destination type is a floating-point type. However, we consider the
1434   // range of representable values for all floating-point types to be
1435   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1436   // floating-point type.
1437   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1438       OrigSrcType->isFloatingType())
1439     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1440                              Loc);
1441 
1442   // Cast to half through float if half isn't a native type.
1443   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1444     // Make sure we cast in a single step if from another FP type.
1445     if (SrcTy->isFloatingPointTy()) {
1446       // Use the intrinsic if the half type itself isn't supported
1447       // (as opposed to operations on half, available with NativeHalfType).
1448       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1449         return Builder.CreateCall(
1450             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1451       // If the half type is supported, just use an fptrunc.
1452       return Builder.CreateFPTrunc(Src, DstTy);
1453     }
1454     DstTy = CGF.FloatTy;
1455   }
1456 
1457   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1458 
1459   if (DstTy != ResTy) {
1460     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1461       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1462       Res = Builder.CreateCall(
1463         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1464         Res);
1465     } else {
1466       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1467     }
1468   }
1469 
1470   if (Opts.EmitImplicitIntegerTruncationChecks)
1471     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1472                                NoncanonicalDstType, Loc);
1473 
1474   if (Opts.EmitImplicitIntegerSignChangeChecks)
1475     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1476                                NoncanonicalDstType, Loc);
1477 
1478   return Res;
1479 }
1480 
1481 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1482                                                    QualType DstTy,
1483                                                    SourceLocation Loc) {
1484   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1485   llvm::Value *Result;
1486   if (SrcTy->isRealFloatingType())
1487     Result = FPBuilder.CreateFloatingToFixed(Src,
1488         CGF.getContext().getFixedPointSemantics(DstTy));
1489   else if (DstTy->isRealFloatingType())
1490     Result = FPBuilder.CreateFixedToFloating(Src,
1491         CGF.getContext().getFixedPointSemantics(SrcTy),
1492         ConvertType(DstTy));
1493   else {
1494     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1495     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1496 
1497     if (DstTy->isIntegerType())
1498       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1499                                               DstFPSema.getWidth(),
1500                                               DstFPSema.isSigned());
1501     else if (SrcTy->isIntegerType())
1502       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1503                                                DstFPSema);
1504     else
1505       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1506   }
1507   return Result;
1508 }
1509 
1510 /// Emit a conversion from the specified complex type to the specified
1511 /// destination type, where the destination type is an LLVM scalar type.
1512 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1513     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1514     SourceLocation Loc) {
1515   // Get the source element type.
1516   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1517 
1518   // Handle conversions to bool first, they are special: comparisons against 0.
1519   if (DstTy->isBooleanType()) {
1520     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1521     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1522     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1523     return Builder.CreateOr(Src.first, Src.second, "tobool");
1524   }
1525 
1526   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1527   // the imaginary part of the complex value is discarded and the value of the
1528   // real part is converted according to the conversion rules for the
1529   // corresponding real type.
1530   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1531 }
1532 
1533 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1534   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1535 }
1536 
1537 /// Emit a sanitization check for the given "binary" operation (which
1538 /// might actually be a unary increment which has been lowered to a binary
1539 /// operation). The check passes if all values in \p Checks (which are \c i1),
1540 /// are \c true.
1541 void ScalarExprEmitter::EmitBinOpCheck(
1542     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1543   assert(CGF.IsSanitizerScope);
1544   SanitizerHandler Check;
1545   SmallVector<llvm::Constant *, 4> StaticData;
1546   SmallVector<llvm::Value *, 2> DynamicData;
1547 
1548   BinaryOperatorKind Opcode = Info.Opcode;
1549   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1550     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1551 
1552   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1553   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1554   if (UO && UO->getOpcode() == UO_Minus) {
1555     Check = SanitizerHandler::NegateOverflow;
1556     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1557     DynamicData.push_back(Info.RHS);
1558   } else {
1559     if (BinaryOperator::isShiftOp(Opcode)) {
1560       // Shift LHS negative or too large, or RHS out of bounds.
1561       Check = SanitizerHandler::ShiftOutOfBounds;
1562       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1563       StaticData.push_back(
1564         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1565       StaticData.push_back(
1566         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1567     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1568       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1569       Check = SanitizerHandler::DivremOverflow;
1570       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1571     } else {
1572       // Arithmetic overflow (+, -, *).
1573       switch (Opcode) {
1574       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1575       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1576       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1577       default: llvm_unreachable("unexpected opcode for bin op check");
1578       }
1579       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1580     }
1581     DynamicData.push_back(Info.LHS);
1582     DynamicData.push_back(Info.RHS);
1583   }
1584 
1585   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1586 }
1587 
1588 //===----------------------------------------------------------------------===//
1589 //                            Visitor Methods
1590 //===----------------------------------------------------------------------===//
1591 
1592 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1593   CGF.ErrorUnsupported(E, "scalar expression");
1594   if (E->getType()->isVoidType())
1595     return nullptr;
1596   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1597 }
1598 
1599 Value *
1600 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1601   ASTContext &Context = CGF.getContext();
1602   llvm::Optional<LangAS> GlobalAS =
1603       Context.getTargetInfo().getConstantAddressSpace();
1604   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1605       E->ComputeName(Context), "__usn_str",
1606       static_cast<unsigned>(GlobalAS.value_or(LangAS::Default)));
1607 
1608   unsigned ExprAS = Context.getTargetAddressSpace(E->getType());
1609 
1610   if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS)
1611     return GlobalConstStr;
1612 
1613   llvm::PointerType *PtrTy = cast<llvm::PointerType>(GlobalConstStr->getType());
1614   llvm::PointerType *NewPtrTy =
1615       llvm::PointerType::getWithSamePointeeType(PtrTy, ExprAS);
1616   return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast");
1617 }
1618 
1619 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1620   // Vector Mask Case
1621   if (E->getNumSubExprs() == 2) {
1622     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1623     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1624     Value *Mask;
1625 
1626     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1627     unsigned LHSElts = LTy->getNumElements();
1628 
1629     Mask = RHS;
1630 
1631     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1632 
1633     // Mask off the high bits of each shuffle index.
1634     Value *MaskBits =
1635         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1636     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1637 
1638     // newv = undef
1639     // mask = mask & maskbits
1640     // for each elt
1641     //   n = extract mask i
1642     //   x = extract val n
1643     //   newv = insert newv, x, i
1644     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1645                                            MTy->getNumElements());
1646     Value* NewV = llvm::UndefValue::get(RTy);
1647     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1648       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1649       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1650 
1651       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1652       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1653     }
1654     return NewV;
1655   }
1656 
1657   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1658   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1659 
1660   SmallVector<int, 32> Indices;
1661   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1662     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1663     // Check for -1 and output it as undef in the IR.
1664     if (Idx.isSigned() && Idx.isAllOnes())
1665       Indices.push_back(-1);
1666     else
1667       Indices.push_back(Idx.getZExtValue());
1668   }
1669 
1670   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1671 }
1672 
1673 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1674   QualType SrcType = E->getSrcExpr()->getType(),
1675            DstType = E->getType();
1676 
1677   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1678 
1679   SrcType = CGF.getContext().getCanonicalType(SrcType);
1680   DstType = CGF.getContext().getCanonicalType(DstType);
1681   if (SrcType == DstType) return Src;
1682 
1683   assert(SrcType->isVectorType() &&
1684          "ConvertVector source type must be a vector");
1685   assert(DstType->isVectorType() &&
1686          "ConvertVector destination type must be a vector");
1687 
1688   llvm::Type *SrcTy = Src->getType();
1689   llvm::Type *DstTy = ConvertType(DstType);
1690 
1691   // Ignore conversions like int -> uint.
1692   if (SrcTy == DstTy)
1693     return Src;
1694 
1695   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1696            DstEltType = DstType->castAs<VectorType>()->getElementType();
1697 
1698   assert(SrcTy->isVectorTy() &&
1699          "ConvertVector source IR type must be a vector");
1700   assert(DstTy->isVectorTy() &&
1701          "ConvertVector destination IR type must be a vector");
1702 
1703   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1704              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1705 
1706   if (DstEltType->isBooleanType()) {
1707     assert((SrcEltTy->isFloatingPointTy() ||
1708             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1709 
1710     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1711     if (SrcEltTy->isFloatingPointTy()) {
1712       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1713     } else {
1714       return Builder.CreateICmpNE(Src, Zero, "tobool");
1715     }
1716   }
1717 
1718   // We have the arithmetic types: real int/float.
1719   Value *Res = nullptr;
1720 
1721   if (isa<llvm::IntegerType>(SrcEltTy)) {
1722     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1723     if (isa<llvm::IntegerType>(DstEltTy))
1724       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1725     else if (InputSigned)
1726       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1727     else
1728       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1729   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1730     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1731     if (DstEltType->isSignedIntegerOrEnumerationType())
1732       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1733     else
1734       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1735   } else {
1736     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1737            "Unknown real conversion");
1738     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1739       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1740     else
1741       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1742   }
1743 
1744   return Res;
1745 }
1746 
1747 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1748   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1749     CGF.EmitIgnoredExpr(E->getBase());
1750     return CGF.emitScalarConstant(Constant, E);
1751   } else {
1752     Expr::EvalResult Result;
1753     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1754       llvm::APSInt Value = Result.Val.getInt();
1755       CGF.EmitIgnoredExpr(E->getBase());
1756       return Builder.getInt(Value);
1757     }
1758   }
1759 
1760   return EmitLoadOfLValue(E);
1761 }
1762 
1763 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1764   TestAndClearIgnoreResultAssign();
1765 
1766   // Emit subscript expressions in rvalue context's.  For most cases, this just
1767   // loads the lvalue formed by the subscript expr.  However, we have to be
1768   // careful, because the base of a vector subscript is occasionally an rvalue,
1769   // so we can't get it as an lvalue.
1770   if (!E->getBase()->getType()->isVectorType() &&
1771       !E->getBase()->getType()->isVLSTBuiltinType())
1772     return EmitLoadOfLValue(E);
1773 
1774   // Handle the vector case.  The base must be a vector, the index must be an
1775   // integer value.
1776   Value *Base = Visit(E->getBase());
1777   Value *Idx  = Visit(E->getIdx());
1778   QualType IdxTy = E->getIdx()->getType();
1779 
1780   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1781     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1782 
1783   return Builder.CreateExtractElement(Base, Idx, "vecext");
1784 }
1785 
1786 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1787   TestAndClearIgnoreResultAssign();
1788 
1789   // Handle the vector case.  The base must be a vector, the index must be an
1790   // integer value.
1791   Value *RowIdx = Visit(E->getRowIdx());
1792   Value *ColumnIdx = Visit(E->getColumnIdx());
1793 
1794   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1795   unsigned NumRows = MatrixTy->getNumRows();
1796   llvm::MatrixBuilder MB(Builder);
1797   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1798   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1799     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1800 
1801   Value *Matrix = Visit(E->getBase());
1802 
1803   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1804   return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1805 }
1806 
1807 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1808                       unsigned Off) {
1809   int MV = SVI->getMaskValue(Idx);
1810   if (MV == -1)
1811     return -1;
1812   return Off + MV;
1813 }
1814 
1815 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1816   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1817          "Index operand too large for shufflevector mask!");
1818   return C->getZExtValue();
1819 }
1820 
1821 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1822   bool Ignore = TestAndClearIgnoreResultAssign();
1823   (void)Ignore;
1824   assert (Ignore == false && "init list ignored");
1825   unsigned NumInitElements = E->getNumInits();
1826 
1827   if (E->hadArrayRangeDesignator())
1828     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1829 
1830   llvm::VectorType *VType =
1831     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1832 
1833   if (!VType) {
1834     if (NumInitElements == 0) {
1835       // C++11 value-initialization for the scalar.
1836       return EmitNullValue(E->getType());
1837     }
1838     // We have a scalar in braces. Just use the first element.
1839     return Visit(E->getInit(0));
1840   }
1841 
1842   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1843 
1844   // Loop over initializers collecting the Value for each, and remembering
1845   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1846   // us to fold the shuffle for the swizzle into the shuffle for the vector
1847   // initializer, since LLVM optimizers generally do not want to touch
1848   // shuffles.
1849   unsigned CurIdx = 0;
1850   bool VIsUndefShuffle = false;
1851   llvm::Value *V = llvm::UndefValue::get(VType);
1852   for (unsigned i = 0; i != NumInitElements; ++i) {
1853     Expr *IE = E->getInit(i);
1854     Value *Init = Visit(IE);
1855     SmallVector<int, 16> Args;
1856 
1857     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1858 
1859     // Handle scalar elements.  If the scalar initializer is actually one
1860     // element of a different vector of the same width, use shuffle instead of
1861     // extract+insert.
1862     if (!VVT) {
1863       if (isa<ExtVectorElementExpr>(IE)) {
1864         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1865 
1866         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1867                 ->getNumElements() == ResElts) {
1868           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1869           Value *LHS = nullptr, *RHS = nullptr;
1870           if (CurIdx == 0) {
1871             // insert into undef -> shuffle (src, undef)
1872             // shufflemask must use an i32
1873             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1874             Args.resize(ResElts, -1);
1875 
1876             LHS = EI->getVectorOperand();
1877             RHS = V;
1878             VIsUndefShuffle = true;
1879           } else if (VIsUndefShuffle) {
1880             // insert into undefshuffle && size match -> shuffle (v, src)
1881             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1882             for (unsigned j = 0; j != CurIdx; ++j)
1883               Args.push_back(getMaskElt(SVV, j, 0));
1884             Args.push_back(ResElts + C->getZExtValue());
1885             Args.resize(ResElts, -1);
1886 
1887             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1888             RHS = EI->getVectorOperand();
1889             VIsUndefShuffle = false;
1890           }
1891           if (!Args.empty()) {
1892             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1893             ++CurIdx;
1894             continue;
1895           }
1896         }
1897       }
1898       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1899                                       "vecinit");
1900       VIsUndefShuffle = false;
1901       ++CurIdx;
1902       continue;
1903     }
1904 
1905     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1906 
1907     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1908     // input is the same width as the vector being constructed, generate an
1909     // optimized shuffle of the swizzle input into the result.
1910     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1911     if (isa<ExtVectorElementExpr>(IE)) {
1912       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1913       Value *SVOp = SVI->getOperand(0);
1914       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1915 
1916       if (OpTy->getNumElements() == ResElts) {
1917         for (unsigned j = 0; j != CurIdx; ++j) {
1918           // If the current vector initializer is a shuffle with undef, merge
1919           // this shuffle directly into it.
1920           if (VIsUndefShuffle) {
1921             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1922           } else {
1923             Args.push_back(j);
1924           }
1925         }
1926         for (unsigned j = 0, je = InitElts; j != je; ++j)
1927           Args.push_back(getMaskElt(SVI, j, Offset));
1928         Args.resize(ResElts, -1);
1929 
1930         if (VIsUndefShuffle)
1931           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1932 
1933         Init = SVOp;
1934       }
1935     }
1936 
1937     // Extend init to result vector length, and then shuffle its contribution
1938     // to the vector initializer into V.
1939     if (Args.empty()) {
1940       for (unsigned j = 0; j != InitElts; ++j)
1941         Args.push_back(j);
1942       Args.resize(ResElts, -1);
1943       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1944 
1945       Args.clear();
1946       for (unsigned j = 0; j != CurIdx; ++j)
1947         Args.push_back(j);
1948       for (unsigned j = 0; j != InitElts; ++j)
1949         Args.push_back(j + Offset);
1950       Args.resize(ResElts, -1);
1951     }
1952 
1953     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1954     // merging subsequent shuffles into this one.
1955     if (CurIdx == 0)
1956       std::swap(V, Init);
1957     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1958     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1959     CurIdx += InitElts;
1960   }
1961 
1962   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1963   // Emit remaining default initializers.
1964   llvm::Type *EltTy = VType->getElementType();
1965 
1966   // Emit remaining default initializers
1967   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1968     Value *Idx = Builder.getInt32(CurIdx);
1969     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1970     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1971   }
1972   return V;
1973 }
1974 
1975 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1976   const Expr *E = CE->getSubExpr();
1977 
1978   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1979     return false;
1980 
1981   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1982     // We always assume that 'this' is never null.
1983     return false;
1984   }
1985 
1986   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1987     // And that glvalue casts are never null.
1988     if (ICE->isGLValue())
1989       return false;
1990   }
1991 
1992   return true;
1993 }
1994 
1995 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1996 // have to handle a more broad range of conversions than explicit casts, as they
1997 // handle things like function to ptr-to-function decay etc.
1998 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1999   Expr *E = CE->getSubExpr();
2000   QualType DestTy = CE->getType();
2001   CastKind Kind = CE->getCastKind();
2002 
2003   // These cases are generally not written to ignore the result of
2004   // evaluating their sub-expressions, so we clear this now.
2005   bool Ignored = TestAndClearIgnoreResultAssign();
2006 
2007   // Since almost all cast kinds apply to scalars, this switch doesn't have
2008   // a default case, so the compiler will warn on a missing case.  The cases
2009   // are in the same order as in the CastKind enum.
2010   switch (Kind) {
2011   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2012   case CK_BuiltinFnToFnPtr:
2013     llvm_unreachable("builtin functions are handled elsewhere");
2014 
2015   case CK_LValueBitCast:
2016   case CK_ObjCObjectLValueCast: {
2017     Address Addr = EmitLValue(E).getAddress(CGF);
2018     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2019     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2020     return EmitLoadOfLValue(LV, CE->getExprLoc());
2021   }
2022 
2023   case CK_LValueToRValueBitCast: {
2024     LValue SourceLVal = CGF.EmitLValue(E);
2025     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2026                                                 CGF.ConvertTypeForMem(DestTy));
2027     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2028     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2029     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2030   }
2031 
2032   case CK_CPointerToObjCPointerCast:
2033   case CK_BlockPointerToObjCPointerCast:
2034   case CK_AnyPointerToBlockPointerCast:
2035   case CK_BitCast: {
2036     Value *Src = Visit(const_cast<Expr*>(E));
2037     llvm::Type *SrcTy = Src->getType();
2038     llvm::Type *DstTy = ConvertType(DestTy);
2039     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2040         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2041       llvm_unreachable("wrong cast for pointers in different address spaces"
2042                        "(must be an address space cast)!");
2043     }
2044 
2045     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2046       if (auto *PT = DestTy->getAs<PointerType>()) {
2047         CGF.EmitVTablePtrCheckForCast(
2048             PT->getPointeeType(),
2049             Address(Src,
2050                     CGF.ConvertTypeForMem(
2051                         E->getType()->castAs<PointerType>()->getPointeeType()),
2052                     CGF.getPointerAlign()),
2053             /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2054             CE->getBeginLoc());
2055       }
2056     }
2057 
2058     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2059       const QualType SrcType = E->getType();
2060 
2061       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2062         // Casting to pointer that could carry dynamic information (provided by
2063         // invariant.group) requires launder.
2064         Src = Builder.CreateLaunderInvariantGroup(Src);
2065       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2066         // Casting to pointer that does not carry dynamic information (provided
2067         // by invariant.group) requires stripping it.  Note that we don't do it
2068         // if the source could not be dynamic type and destination could be
2069         // dynamic because dynamic information is already laundered.  It is
2070         // because launder(strip(src)) == launder(src), so there is no need to
2071         // add extra strip before launder.
2072         Src = Builder.CreateStripInvariantGroup(Src);
2073       }
2074     }
2075 
2076     // Update heapallocsite metadata when there is an explicit pointer cast.
2077     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2078       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2079         QualType PointeeType = DestTy->getPointeeType();
2080         if (!PointeeType.isNull())
2081           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2082                                                        CE->getExprLoc());
2083       }
2084     }
2085 
2086     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2087     // same element type, use the llvm.vector.insert intrinsic to perform the
2088     // bitcast.
2089     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2090       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2091         // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2092         // vector, use a vector insert and bitcast the result.
2093         bool NeedsBitCast = false;
2094         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2095         llvm::Type *OrigType = DstTy;
2096         if (ScalableDst == PredType &&
2097             FixedSrc->getElementType() == Builder.getInt8Ty()) {
2098           DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2099           ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
2100           NeedsBitCast = true;
2101         }
2102         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2103           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2104           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2105           llvm::Value *Result = Builder.CreateInsertVector(
2106               DstTy, UndefVec, Src, Zero, "castScalableSve");
2107           if (NeedsBitCast)
2108             Result = Builder.CreateBitCast(Result, OrigType);
2109           return Result;
2110         }
2111       }
2112     }
2113 
2114     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2115     // same element type, use the llvm.vector.extract intrinsic to perform the
2116     // bitcast.
2117     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2118       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2119         // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2120         // vector, bitcast the source and use a vector extract.
2121         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2122         if (ScalableSrc == PredType &&
2123             FixedDst->getElementType() == Builder.getInt8Ty()) {
2124           SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2125           ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
2126           Src = Builder.CreateBitCast(Src, SrcTy);
2127         }
2128         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2129           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2130           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2131         }
2132       }
2133     }
2134 
2135     // Perform VLAT <-> VLST bitcast through memory.
2136     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2137     //       require the element types of the vectors to be the same, we
2138     //       need to keep this around for bitcasts between VLAT <-> VLST where
2139     //       the element types of the vectors are not the same, until we figure
2140     //       out a better way of doing these casts.
2141     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2142          isa<llvm::ScalableVectorType>(DstTy)) ||
2143         (isa<llvm::ScalableVectorType>(SrcTy) &&
2144          isa<llvm::FixedVectorType>(DstTy))) {
2145       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2146       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2147       CGF.EmitStoreOfScalar(Src, LV);
2148       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2149                                           "castFixedSve");
2150       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2151       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2152       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2153     }
2154     return Builder.CreateBitCast(Src, DstTy);
2155   }
2156   case CK_AddressSpaceConversion: {
2157     Expr::EvalResult Result;
2158     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2159         Result.Val.isNullPointer()) {
2160       // If E has side effect, it is emitted even if its final result is a
2161       // null pointer. In that case, a DCE pass should be able to
2162       // eliminate the useless instructions emitted during translating E.
2163       if (Result.HasSideEffects)
2164         Visit(E);
2165       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2166           ConvertType(DestTy)), DestTy);
2167     }
2168     // Since target may map different address spaces in AST to the same address
2169     // space, an address space conversion may end up as a bitcast.
2170     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2171         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2172         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2173   }
2174   case CK_AtomicToNonAtomic:
2175   case CK_NonAtomicToAtomic:
2176   case CK_UserDefinedConversion:
2177     return Visit(const_cast<Expr*>(E));
2178 
2179   case CK_NoOp: {
2180     llvm::Value *V = Visit(const_cast<Expr *>(E));
2181     if (V) {
2182       // CK_NoOp can model a pointer qualification conversion, which can remove
2183       // an array bound and change the IR type.
2184       // FIXME: Once pointee types are removed from IR, remove this.
2185       llvm::Type *T = ConvertType(DestTy);
2186       if (T != V->getType())
2187         V = Builder.CreateBitCast(V, T);
2188     }
2189     return V;
2190   }
2191 
2192   case CK_BaseToDerived: {
2193     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2194     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2195 
2196     Address Base = CGF.EmitPointerWithAlignment(E);
2197     Address Derived =
2198       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2199                                    CE->path_begin(), CE->path_end(),
2200                                    CGF.ShouldNullCheckClassCastValue(CE));
2201 
2202     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2203     // performed and the object is not of the derived type.
2204     if (CGF.sanitizePerformTypeCheck())
2205       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2206                         Derived.getPointer(), DestTy->getPointeeType());
2207 
2208     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2209       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2210                                     /*MayBeNull=*/true,
2211                                     CodeGenFunction::CFITCK_DerivedCast,
2212                                     CE->getBeginLoc());
2213 
2214     return Derived.getPointer();
2215   }
2216   case CK_UncheckedDerivedToBase:
2217   case CK_DerivedToBase: {
2218     // The EmitPointerWithAlignment path does this fine; just discard
2219     // the alignment.
2220     return CGF.EmitPointerWithAlignment(CE).getPointer();
2221   }
2222 
2223   case CK_Dynamic: {
2224     Address V = CGF.EmitPointerWithAlignment(E);
2225     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2226     return CGF.EmitDynamicCast(V, DCE);
2227   }
2228 
2229   case CK_ArrayToPointerDecay:
2230     return CGF.EmitArrayToPointerDecay(E).getPointer();
2231   case CK_FunctionToPointerDecay:
2232     return EmitLValue(E).getPointer(CGF);
2233 
2234   case CK_NullToPointer:
2235     if (MustVisitNullValue(E))
2236       CGF.EmitIgnoredExpr(E);
2237 
2238     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2239                               DestTy);
2240 
2241   case CK_NullToMemberPointer: {
2242     if (MustVisitNullValue(E))
2243       CGF.EmitIgnoredExpr(E);
2244 
2245     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2246     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2247   }
2248 
2249   case CK_ReinterpretMemberPointer:
2250   case CK_BaseToDerivedMemberPointer:
2251   case CK_DerivedToBaseMemberPointer: {
2252     Value *Src = Visit(E);
2253 
2254     // Note that the AST doesn't distinguish between checked and
2255     // unchecked member pointer conversions, so we always have to
2256     // implement checked conversions here.  This is inefficient when
2257     // actual control flow may be required in order to perform the
2258     // check, which it is for data member pointers (but not member
2259     // function pointers on Itanium and ARM).
2260     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2261   }
2262 
2263   case CK_ARCProduceObject:
2264     return CGF.EmitARCRetainScalarExpr(E);
2265   case CK_ARCConsumeObject:
2266     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2267   case CK_ARCReclaimReturnedObject:
2268     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2269   case CK_ARCExtendBlockObject:
2270     return CGF.EmitARCExtendBlockObject(E);
2271 
2272   case CK_CopyAndAutoreleaseBlockObject:
2273     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2274 
2275   case CK_FloatingRealToComplex:
2276   case CK_FloatingComplexCast:
2277   case CK_IntegralRealToComplex:
2278   case CK_IntegralComplexCast:
2279   case CK_IntegralComplexToFloatingComplex:
2280   case CK_FloatingComplexToIntegralComplex:
2281   case CK_ConstructorConversion:
2282   case CK_ToUnion:
2283     llvm_unreachable("scalar cast to non-scalar value");
2284 
2285   case CK_LValueToRValue:
2286     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2287     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2288     return Visit(const_cast<Expr*>(E));
2289 
2290   case CK_IntegralToPointer: {
2291     Value *Src = Visit(const_cast<Expr*>(E));
2292 
2293     // First, convert to the correct width so that we control the kind of
2294     // extension.
2295     auto DestLLVMTy = ConvertType(DestTy);
2296     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2297     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2298     llvm::Value* IntResult =
2299       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2300 
2301     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2302 
2303     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2304       // Going from integer to pointer that could be dynamic requires reloading
2305       // dynamic information from invariant.group.
2306       if (DestTy.mayBeDynamicClass())
2307         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2308     }
2309     return IntToPtr;
2310   }
2311   case CK_PointerToIntegral: {
2312     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2313     auto *PtrExpr = Visit(E);
2314 
2315     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2316       const QualType SrcType = E->getType();
2317 
2318       // Casting to integer requires stripping dynamic information as it does
2319       // not carries it.
2320       if (SrcType.mayBeDynamicClass())
2321         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2322     }
2323 
2324     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2325   }
2326   case CK_ToVoid: {
2327     CGF.EmitIgnoredExpr(E);
2328     return nullptr;
2329   }
2330   case CK_MatrixCast: {
2331     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2332                                 CE->getExprLoc());
2333   }
2334   case CK_VectorSplat: {
2335     llvm::Type *DstTy = ConvertType(DestTy);
2336     Value *Elt = Visit(const_cast<Expr *>(E));
2337     // Splat the element across to all elements
2338     llvm::ElementCount NumElements =
2339         cast<llvm::VectorType>(DstTy)->getElementCount();
2340     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2341   }
2342 
2343   case CK_FixedPointCast:
2344     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2345                                 CE->getExprLoc());
2346 
2347   case CK_FixedPointToBoolean:
2348     assert(E->getType()->isFixedPointType() &&
2349            "Expected src type to be fixed point type");
2350     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2351     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2352                                 CE->getExprLoc());
2353 
2354   case CK_FixedPointToIntegral:
2355     assert(E->getType()->isFixedPointType() &&
2356            "Expected src type to be fixed point type");
2357     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2358     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2359                                 CE->getExprLoc());
2360 
2361   case CK_IntegralToFixedPoint:
2362     assert(E->getType()->isIntegerType() &&
2363            "Expected src type to be an integer");
2364     assert(DestTy->isFixedPointType() &&
2365            "Expected dest type to be fixed point type");
2366     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2367                                 CE->getExprLoc());
2368 
2369   case CK_IntegralCast: {
2370     ScalarConversionOpts Opts;
2371     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2372       if (!ICE->isPartOfExplicitCast())
2373         Opts = ScalarConversionOpts(CGF.SanOpts);
2374     }
2375     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2376                                 CE->getExprLoc(), Opts);
2377   }
2378   case CK_IntegralToFloating:
2379   case CK_FloatingToIntegral:
2380   case CK_FloatingCast:
2381   case CK_FixedPointToFloating:
2382   case CK_FloatingToFixedPoint: {
2383     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2384     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2385                                 CE->getExprLoc());
2386   }
2387   case CK_BooleanToSignedIntegral: {
2388     ScalarConversionOpts Opts;
2389     Opts.TreatBooleanAsSigned = true;
2390     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2391                                 CE->getExprLoc(), Opts);
2392   }
2393   case CK_IntegralToBoolean:
2394     return EmitIntToBoolConversion(Visit(E));
2395   case CK_PointerToBoolean:
2396     return EmitPointerToBoolConversion(Visit(E), E->getType());
2397   case CK_FloatingToBoolean: {
2398     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2399     return EmitFloatToBoolConversion(Visit(E));
2400   }
2401   case CK_MemberPointerToBoolean: {
2402     llvm::Value *MemPtr = Visit(E);
2403     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2404     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2405   }
2406 
2407   case CK_FloatingComplexToReal:
2408   case CK_IntegralComplexToReal:
2409     return CGF.EmitComplexExpr(E, false, true).first;
2410 
2411   case CK_FloatingComplexToBoolean:
2412   case CK_IntegralComplexToBoolean: {
2413     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2414 
2415     // TODO: kill this function off, inline appropriate case here
2416     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2417                                          CE->getExprLoc());
2418   }
2419 
2420   case CK_ZeroToOCLOpaqueType: {
2421     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2422             DestTy->isOCLIntelSubgroupAVCType()) &&
2423            "CK_ZeroToOCLEvent cast on non-event type");
2424     return llvm::Constant::getNullValue(ConvertType(DestTy));
2425   }
2426 
2427   case CK_IntToOCLSampler:
2428     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2429 
2430   } // end of switch
2431 
2432   llvm_unreachable("unknown scalar cast");
2433 }
2434 
2435 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2436   CodeGenFunction::StmtExprEvaluation eval(CGF);
2437   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2438                                            !E->getType()->isVoidType());
2439   if (!RetAlloca.isValid())
2440     return nullptr;
2441   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2442                               E->getExprLoc());
2443 }
2444 
2445 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2446   CodeGenFunction::RunCleanupsScope Scope(CGF);
2447   Value *V = Visit(E->getSubExpr());
2448   // Defend against dominance problems caused by jumps out of expression
2449   // evaluation through the shared cleanup block.
2450   Scope.ForceCleanup({&V});
2451   return V;
2452 }
2453 
2454 //===----------------------------------------------------------------------===//
2455 //                             Unary Operators
2456 //===----------------------------------------------------------------------===//
2457 
2458 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2459                                            llvm::Value *InVal, bool IsInc,
2460                                            FPOptions FPFeatures) {
2461   BinOpInfo BinOp;
2462   BinOp.LHS = InVal;
2463   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2464   BinOp.Ty = E->getType();
2465   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2466   BinOp.FPFeatures = FPFeatures;
2467   BinOp.E = E;
2468   return BinOp;
2469 }
2470 
2471 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2472     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2473   llvm::Value *Amount =
2474       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2475   StringRef Name = IsInc ? "inc" : "dec";
2476   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2477   case LangOptions::SOB_Defined:
2478     return Builder.CreateAdd(InVal, Amount, Name);
2479   case LangOptions::SOB_Undefined:
2480     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2481       return Builder.CreateNSWAdd(InVal, Amount, Name);
2482     LLVM_FALLTHROUGH;
2483   case LangOptions::SOB_Trapping:
2484     if (!E->canOverflow())
2485       return Builder.CreateNSWAdd(InVal, Amount, Name);
2486     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2487         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2488   }
2489   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2490 }
2491 
2492 namespace {
2493 /// Handles check and update for lastprivate conditional variables.
2494 class OMPLastprivateConditionalUpdateRAII {
2495 private:
2496   CodeGenFunction &CGF;
2497   const UnaryOperator *E;
2498 
2499 public:
2500   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2501                                       const UnaryOperator *E)
2502       : CGF(CGF), E(E) {}
2503   ~OMPLastprivateConditionalUpdateRAII() {
2504     if (CGF.getLangOpts().OpenMP)
2505       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2506           CGF, E->getSubExpr());
2507   }
2508 };
2509 } // namespace
2510 
2511 llvm::Value *
2512 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2513                                            bool isInc, bool isPre) {
2514   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2515   QualType type = E->getSubExpr()->getType();
2516   llvm::PHINode *atomicPHI = nullptr;
2517   llvm::Value *value;
2518   llvm::Value *input;
2519 
2520   int amount = (isInc ? 1 : -1);
2521   bool isSubtraction = !isInc;
2522 
2523   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2524     type = atomicTy->getValueType();
2525     if (isInc && type->isBooleanType()) {
2526       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2527       if (isPre) {
2528         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2529             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2530         return Builder.getTrue();
2531       }
2532       // For atomic bool increment, we just store true and return it for
2533       // preincrement, do an atomic swap with true for postincrement
2534       return Builder.CreateAtomicRMW(
2535           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2536           llvm::AtomicOrdering::SequentiallyConsistent);
2537     }
2538     // Special case for atomic increment / decrement on integers, emit
2539     // atomicrmw instructions.  We skip this if we want to be doing overflow
2540     // checking, and fall into the slow path with the atomic cmpxchg loop.
2541     if (!type->isBooleanType() && type->isIntegerType() &&
2542         !(type->isUnsignedIntegerType() &&
2543           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2544         CGF.getLangOpts().getSignedOverflowBehavior() !=
2545             LangOptions::SOB_Trapping) {
2546       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2547         llvm::AtomicRMWInst::Sub;
2548       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2549         llvm::Instruction::Sub;
2550       llvm::Value *amt = CGF.EmitToMemory(
2551           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2552       llvm::Value *old =
2553           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2554                                   llvm::AtomicOrdering::SequentiallyConsistent);
2555       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2556     }
2557     value = EmitLoadOfLValue(LV, E->getExprLoc());
2558     input = value;
2559     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2560     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2561     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2562     value = CGF.EmitToMemory(value, type);
2563     Builder.CreateBr(opBB);
2564     Builder.SetInsertPoint(opBB);
2565     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2566     atomicPHI->addIncoming(value, startBB);
2567     value = atomicPHI;
2568   } else {
2569     value = EmitLoadOfLValue(LV, E->getExprLoc());
2570     input = value;
2571   }
2572 
2573   // Special case of integer increment that we have to check first: bool++.
2574   // Due to promotion rules, we get:
2575   //   bool++ -> bool = bool + 1
2576   //          -> bool = (int)bool + 1
2577   //          -> bool = ((int)bool + 1 != 0)
2578   // An interesting aspect of this is that increment is always true.
2579   // Decrement does not have this property.
2580   if (isInc && type->isBooleanType()) {
2581     value = Builder.getTrue();
2582 
2583   // Most common case by far: integer increment.
2584   } else if (type->isIntegerType()) {
2585     QualType promotedType;
2586     bool canPerformLossyDemotionCheck = false;
2587     if (type->isPromotableIntegerType()) {
2588       promotedType = CGF.getContext().getPromotedIntegerType(type);
2589       assert(promotedType != type && "Shouldn't promote to the same type.");
2590       canPerformLossyDemotionCheck = true;
2591       canPerformLossyDemotionCheck &=
2592           CGF.getContext().getCanonicalType(type) !=
2593           CGF.getContext().getCanonicalType(promotedType);
2594       canPerformLossyDemotionCheck &=
2595           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2596               type, promotedType);
2597       assert((!canPerformLossyDemotionCheck ||
2598               type->isSignedIntegerOrEnumerationType() ||
2599               promotedType->isSignedIntegerOrEnumerationType() ||
2600               ConvertType(type)->getScalarSizeInBits() ==
2601                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2602              "The following check expects that if we do promotion to different "
2603              "underlying canonical type, at least one of the types (either "
2604              "base or promoted) will be signed, or the bitwidths will match.");
2605     }
2606     if (CGF.SanOpts.hasOneOf(
2607             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2608         canPerformLossyDemotionCheck) {
2609       // While `x += 1` (for `x` with width less than int) is modeled as
2610       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2611       // ease; inc/dec with width less than int can't overflow because of
2612       // promotion rules, so we omit promotion+demotion, which means that we can
2613       // not catch lossy "demotion". Because we still want to catch these cases
2614       // when the sanitizer is enabled, we perform the promotion, then perform
2615       // the increment/decrement in the wider type, and finally
2616       // perform the demotion. This will catch lossy demotions.
2617 
2618       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2619       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2620       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2621       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2622       // emitted.
2623       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2624                                    ScalarConversionOpts(CGF.SanOpts));
2625 
2626       // Note that signed integer inc/dec with width less than int can't
2627       // overflow because of promotion rules; we're just eliding a few steps
2628       // here.
2629     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2630       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2631     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2632                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2633       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2634           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2635     } else {
2636       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2637       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2638     }
2639 
2640   // Next most common: pointer increment.
2641   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2642     QualType type = ptr->getPointeeType();
2643 
2644     // VLA types don't have constant size.
2645     if (const VariableArrayType *vla
2646           = CGF.getContext().getAsVariableArrayType(type)) {
2647       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2648       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2649       llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2650       if (CGF.getLangOpts().isSignedOverflowDefined())
2651         value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2652       else
2653         value = CGF.EmitCheckedInBoundsGEP(
2654             elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2655             E->getExprLoc(), "vla.inc");
2656 
2657     // Arithmetic on function pointers (!) is just +-1.
2658     } else if (type->isFunctionType()) {
2659       llvm::Value *amt = Builder.getInt32(amount);
2660 
2661       value = CGF.EmitCastToVoidPtr(value);
2662       if (CGF.getLangOpts().isSignedOverflowDefined())
2663         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2664       else
2665         value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2666                                            /*SignedIndices=*/false,
2667                                            isSubtraction, E->getExprLoc(),
2668                                            "incdec.funcptr");
2669       value = Builder.CreateBitCast(value, input->getType());
2670 
2671     // For everything else, we can just do a simple increment.
2672     } else {
2673       llvm::Value *amt = Builder.getInt32(amount);
2674       llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2675       if (CGF.getLangOpts().isSignedOverflowDefined())
2676         value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2677       else
2678         value = CGF.EmitCheckedInBoundsGEP(
2679             elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2680             E->getExprLoc(), "incdec.ptr");
2681     }
2682 
2683   // Vector increment/decrement.
2684   } else if (type->isVectorType()) {
2685     if (type->hasIntegerRepresentation()) {
2686       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2687 
2688       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2689     } else {
2690       value = Builder.CreateFAdd(
2691                   value,
2692                   llvm::ConstantFP::get(value->getType(), amount),
2693                   isInc ? "inc" : "dec");
2694     }
2695 
2696   // Floating point.
2697   } else if (type->isRealFloatingType()) {
2698     // Add the inc/dec to the real part.
2699     llvm::Value *amt;
2700     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2701 
2702     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2703       // Another special case: half FP increment should be done via float
2704       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2705         value = Builder.CreateCall(
2706             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2707                                  CGF.CGM.FloatTy),
2708             input, "incdec.conv");
2709       } else {
2710         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2711       }
2712     }
2713 
2714     if (value->getType()->isFloatTy())
2715       amt = llvm::ConstantFP::get(VMContext,
2716                                   llvm::APFloat(static_cast<float>(amount)));
2717     else if (value->getType()->isDoubleTy())
2718       amt = llvm::ConstantFP::get(VMContext,
2719                                   llvm::APFloat(static_cast<double>(amount)));
2720     else {
2721       // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2722       // from float.
2723       llvm::APFloat F(static_cast<float>(amount));
2724       bool ignored;
2725       const llvm::fltSemantics *FS;
2726       // Don't use getFloatTypeSemantics because Half isn't
2727       // necessarily represented using the "half" LLVM type.
2728       if (value->getType()->isFP128Ty())
2729         FS = &CGF.getTarget().getFloat128Format();
2730       else if (value->getType()->isHalfTy())
2731         FS = &CGF.getTarget().getHalfFormat();
2732       else if (value->getType()->isPPC_FP128Ty())
2733         FS = &CGF.getTarget().getIbm128Format();
2734       else
2735         FS = &CGF.getTarget().getLongDoubleFormat();
2736       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2737       amt = llvm::ConstantFP::get(VMContext, F);
2738     }
2739     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2740 
2741     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2742       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2743         value = Builder.CreateCall(
2744             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2745                                  CGF.CGM.FloatTy),
2746             value, "incdec.conv");
2747       } else {
2748         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2749       }
2750     }
2751 
2752   // Fixed-point types.
2753   } else if (type->isFixedPointType()) {
2754     // Fixed-point types are tricky. In some cases, it isn't possible to
2755     // represent a 1 or a -1 in the type at all. Piggyback off of
2756     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2757     BinOpInfo Info;
2758     Info.E = E;
2759     Info.Ty = E->getType();
2760     Info.Opcode = isInc ? BO_Add : BO_Sub;
2761     Info.LHS = value;
2762     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2763     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2764     // since -1 is guaranteed to be representable.
2765     if (type->isSignedFixedPointType()) {
2766       Info.Opcode = isInc ? BO_Sub : BO_Add;
2767       Info.RHS = Builder.CreateNeg(Info.RHS);
2768     }
2769     // Now, convert from our invented integer literal to the type of the unary
2770     // op. This will upscale and saturate if necessary. This value can become
2771     // undef in some cases.
2772     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2773     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2774     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2775     value = EmitFixedPointBinOp(Info);
2776 
2777   // Objective-C pointer types.
2778   } else {
2779     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2780     value = CGF.EmitCastToVoidPtr(value);
2781 
2782     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2783     if (!isInc) size = -size;
2784     llvm::Value *sizeValue =
2785       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2786 
2787     if (CGF.getLangOpts().isSignedOverflowDefined())
2788       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2789     else
2790       value = CGF.EmitCheckedInBoundsGEP(
2791           CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2792           E->getExprLoc(), "incdec.objptr");
2793     value = Builder.CreateBitCast(value, input->getType());
2794   }
2795 
2796   if (atomicPHI) {
2797     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2798     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2799     auto Pair = CGF.EmitAtomicCompareExchange(
2800         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2801     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2802     llvm::Value *success = Pair.second;
2803     atomicPHI->addIncoming(old, curBlock);
2804     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2805     Builder.SetInsertPoint(contBB);
2806     return isPre ? value : input;
2807   }
2808 
2809   // Store the updated result through the lvalue.
2810   if (LV.isBitField())
2811     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2812   else
2813     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2814 
2815   // If this is a postinc, return the value read from memory, otherwise use the
2816   // updated value.
2817   return isPre ? value : input;
2818 }
2819 
2820 
2821 
2822 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2823   TestAndClearIgnoreResultAssign();
2824   Value *Op = Visit(E->getSubExpr());
2825 
2826   // Generate a unary FNeg for FP ops.
2827   if (Op->getType()->isFPOrFPVectorTy())
2828     return Builder.CreateFNeg(Op, "fneg");
2829 
2830   // Emit unary minus with EmitSub so we handle overflow cases etc.
2831   BinOpInfo BinOp;
2832   BinOp.RHS = Op;
2833   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2834   BinOp.Ty = E->getType();
2835   BinOp.Opcode = BO_Sub;
2836   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2837   BinOp.E = E;
2838   return EmitSub(BinOp);
2839 }
2840 
2841 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2842   TestAndClearIgnoreResultAssign();
2843   Value *Op = Visit(E->getSubExpr());
2844   return Builder.CreateNot(Op, "neg");
2845 }
2846 
2847 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2848   // Perform vector logical not on comparison with zero vector.
2849   if (E->getType()->isVectorType() &&
2850       E->getType()->castAs<VectorType>()->getVectorKind() ==
2851           VectorType::GenericVector) {
2852     Value *Oper = Visit(E->getSubExpr());
2853     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2854     Value *Result;
2855     if (Oper->getType()->isFPOrFPVectorTy()) {
2856       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2857           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2858       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2859     } else
2860       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2861     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2862   }
2863 
2864   // Compare operand to zero.
2865   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2866 
2867   // Invert value.
2868   // TODO: Could dynamically modify easy computations here.  For example, if
2869   // the operand is an icmp ne, turn into icmp eq.
2870   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2871 
2872   // ZExt result to the expr type.
2873   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2874 }
2875 
2876 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2877   // Try folding the offsetof to a constant.
2878   Expr::EvalResult EVResult;
2879   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2880     llvm::APSInt Value = EVResult.Val.getInt();
2881     return Builder.getInt(Value);
2882   }
2883 
2884   // Loop over the components of the offsetof to compute the value.
2885   unsigned n = E->getNumComponents();
2886   llvm::Type* ResultType = ConvertType(E->getType());
2887   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2888   QualType CurrentType = E->getTypeSourceInfo()->getType();
2889   for (unsigned i = 0; i != n; ++i) {
2890     OffsetOfNode ON = E->getComponent(i);
2891     llvm::Value *Offset = nullptr;
2892     switch (ON.getKind()) {
2893     case OffsetOfNode::Array: {
2894       // Compute the index
2895       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2896       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2897       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2898       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2899 
2900       // Save the element type
2901       CurrentType =
2902           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2903 
2904       // Compute the element size
2905       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2906           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2907 
2908       // Multiply out to compute the result
2909       Offset = Builder.CreateMul(Idx, ElemSize);
2910       break;
2911     }
2912 
2913     case OffsetOfNode::Field: {
2914       FieldDecl *MemberDecl = ON.getField();
2915       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2916       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2917 
2918       // Compute the index of the field in its parent.
2919       unsigned i = 0;
2920       // FIXME: It would be nice if we didn't have to loop here!
2921       for (RecordDecl::field_iterator Field = RD->field_begin(),
2922                                       FieldEnd = RD->field_end();
2923            Field != FieldEnd; ++Field, ++i) {
2924         if (*Field == MemberDecl)
2925           break;
2926       }
2927       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2928 
2929       // Compute the offset to the field
2930       int64_t OffsetInt = RL.getFieldOffset(i) /
2931                           CGF.getContext().getCharWidth();
2932       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2933 
2934       // Save the element type.
2935       CurrentType = MemberDecl->getType();
2936       break;
2937     }
2938 
2939     case OffsetOfNode::Identifier:
2940       llvm_unreachable("dependent __builtin_offsetof");
2941 
2942     case OffsetOfNode::Base: {
2943       if (ON.getBase()->isVirtual()) {
2944         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2945         continue;
2946       }
2947 
2948       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2949       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2950 
2951       // Save the element type.
2952       CurrentType = ON.getBase()->getType();
2953 
2954       // Compute the offset to the base.
2955       auto *BaseRT = CurrentType->castAs<RecordType>();
2956       auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2957       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2958       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2959       break;
2960     }
2961     }
2962     Result = Builder.CreateAdd(Result, Offset);
2963   }
2964   return Result;
2965 }
2966 
2967 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2968 /// argument of the sizeof expression as an integer.
2969 Value *
2970 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2971                               const UnaryExprOrTypeTraitExpr *E) {
2972   QualType TypeToSize = E->getTypeOfArgument();
2973   if (E->getKind() == UETT_SizeOf) {
2974     if (const VariableArrayType *VAT =
2975           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2976       if (E->isArgumentType()) {
2977         // sizeof(type) - make sure to emit the VLA size.
2978         CGF.EmitVariablyModifiedType(TypeToSize);
2979       } else {
2980         // C99 6.5.3.4p2: If the argument is an expression of type
2981         // VLA, it is evaluated.
2982         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2983       }
2984 
2985       auto VlaSize = CGF.getVLASize(VAT);
2986       llvm::Value *size = VlaSize.NumElts;
2987 
2988       // Scale the number of non-VLA elements by the non-VLA element size.
2989       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2990       if (!eltSize.isOne())
2991         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2992 
2993       return size;
2994     }
2995   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2996     auto Alignment =
2997         CGF.getContext()
2998             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2999                 E->getTypeOfArgument()->getPointeeType()))
3000             .getQuantity();
3001     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3002   }
3003 
3004   // If this isn't sizeof(vla), the result must be constant; use the constant
3005   // folding logic so we don't have to duplicate it here.
3006   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3007 }
3008 
3009 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
3010   Expr *Op = E->getSubExpr();
3011   if (Op->getType()->isAnyComplexType()) {
3012     // If it's an l-value, load through the appropriate subobject l-value.
3013     // Note that we have to ask E because Op might be an l-value that
3014     // this won't work for, e.g. an Obj-C property.
3015     if (E->isGLValue())
3016       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3017                                   E->getExprLoc()).getScalarVal();
3018 
3019     // Otherwise, calculate and project.
3020     return CGF.EmitComplexExpr(Op, false, true).first;
3021   }
3022 
3023   return Visit(Op);
3024 }
3025 
3026 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
3027   Expr *Op = E->getSubExpr();
3028   if (Op->getType()->isAnyComplexType()) {
3029     // If it's an l-value, load through the appropriate subobject l-value.
3030     // Note that we have to ask E because Op might be an l-value that
3031     // this won't work for, e.g. an Obj-C property.
3032     if (Op->isGLValue())
3033       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
3034                                   E->getExprLoc()).getScalarVal();
3035 
3036     // Otherwise, calculate and project.
3037     return CGF.EmitComplexExpr(Op, true, false).second;
3038   }
3039 
3040   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3041   // effects are evaluated, but not the actual value.
3042   if (Op->isGLValue())
3043     CGF.EmitLValue(Op);
3044   else
3045     CGF.EmitScalarExpr(Op, true);
3046   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3047 }
3048 
3049 //===----------------------------------------------------------------------===//
3050 //                           Binary Operators
3051 //===----------------------------------------------------------------------===//
3052 
3053 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
3054   TestAndClearIgnoreResultAssign();
3055   BinOpInfo Result;
3056   Result.LHS = Visit(E->getLHS());
3057   Result.RHS = Visit(E->getRHS());
3058   Result.Ty  = E->getType();
3059   Result.Opcode = E->getOpcode();
3060   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3061   Result.E = E;
3062   return Result;
3063 }
3064 
3065 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3066                                               const CompoundAssignOperator *E,
3067                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3068                                                    Value *&Result) {
3069   QualType LHSTy = E->getLHS()->getType();
3070   BinOpInfo OpInfo;
3071 
3072   if (E->getComputationResultType()->isAnyComplexType())
3073     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3074 
3075   // Emit the RHS first.  __block variables need to have the rhs evaluated
3076   // first, plus this should improve codegen a little.
3077   OpInfo.RHS = Visit(E->getRHS());
3078   OpInfo.Ty = E->getComputationResultType();
3079   OpInfo.Opcode = E->getOpcode();
3080   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3081   OpInfo.E = E;
3082   // Load/convert the LHS.
3083   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3084 
3085   llvm::PHINode *atomicPHI = nullptr;
3086   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3087     QualType type = atomicTy->getValueType();
3088     if (!type->isBooleanType() && type->isIntegerType() &&
3089         !(type->isUnsignedIntegerType() &&
3090           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3091         CGF.getLangOpts().getSignedOverflowBehavior() !=
3092             LangOptions::SOB_Trapping) {
3093       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3094       llvm::Instruction::BinaryOps Op;
3095       switch (OpInfo.Opcode) {
3096         // We don't have atomicrmw operands for *, %, /, <<, >>
3097         case BO_MulAssign: case BO_DivAssign:
3098         case BO_RemAssign:
3099         case BO_ShlAssign:
3100         case BO_ShrAssign:
3101           break;
3102         case BO_AddAssign:
3103           AtomicOp = llvm::AtomicRMWInst::Add;
3104           Op = llvm::Instruction::Add;
3105           break;
3106         case BO_SubAssign:
3107           AtomicOp = llvm::AtomicRMWInst::Sub;
3108           Op = llvm::Instruction::Sub;
3109           break;
3110         case BO_AndAssign:
3111           AtomicOp = llvm::AtomicRMWInst::And;
3112           Op = llvm::Instruction::And;
3113           break;
3114         case BO_XorAssign:
3115           AtomicOp = llvm::AtomicRMWInst::Xor;
3116           Op = llvm::Instruction::Xor;
3117           break;
3118         case BO_OrAssign:
3119           AtomicOp = llvm::AtomicRMWInst::Or;
3120           Op = llvm::Instruction::Or;
3121           break;
3122         default:
3123           llvm_unreachable("Invalid compound assignment type");
3124       }
3125       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3126         llvm::Value *Amt = CGF.EmitToMemory(
3127             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3128                                  E->getExprLoc()),
3129             LHSTy);
3130         Value *OldVal = Builder.CreateAtomicRMW(
3131             AtomicOp, LHSLV.getPointer(CGF), Amt,
3132             llvm::AtomicOrdering::SequentiallyConsistent);
3133 
3134         // Since operation is atomic, the result type is guaranteed to be the
3135         // same as the input in LLVM terms.
3136         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3137         return LHSLV;
3138       }
3139     }
3140     // FIXME: For floating point types, we should be saving and restoring the
3141     // floating point environment in the loop.
3142     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3143     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3144     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3145     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3146     Builder.CreateBr(opBB);
3147     Builder.SetInsertPoint(opBB);
3148     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3149     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3150     OpInfo.LHS = atomicPHI;
3151   }
3152   else
3153     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3154 
3155   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3156   SourceLocation Loc = E->getExprLoc();
3157   OpInfo.LHS =
3158       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3159 
3160   // Expand the binary operator.
3161   Result = (this->*Func)(OpInfo);
3162 
3163   // Convert the result back to the LHS type,
3164   // potentially with Implicit Conversion sanitizer check.
3165   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3166                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3167 
3168   if (atomicPHI) {
3169     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3170     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3171     auto Pair = CGF.EmitAtomicCompareExchange(
3172         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3173     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3174     llvm::Value *success = Pair.second;
3175     atomicPHI->addIncoming(old, curBlock);
3176     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3177     Builder.SetInsertPoint(contBB);
3178     return LHSLV;
3179   }
3180 
3181   // Store the result value into the LHS lvalue. Bit-fields are handled
3182   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3183   // 'An assignment expression has the value of the left operand after the
3184   // assignment...'.
3185   if (LHSLV.isBitField())
3186     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3187   else
3188     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3189 
3190   if (CGF.getLangOpts().OpenMP)
3191     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3192                                                                   E->getLHS());
3193   return LHSLV;
3194 }
3195 
3196 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3197                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3198   bool Ignore = TestAndClearIgnoreResultAssign();
3199   Value *RHS = nullptr;
3200   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3201 
3202   // If the result is clearly ignored, return now.
3203   if (Ignore)
3204     return nullptr;
3205 
3206   // The result of an assignment in C is the assigned r-value.
3207   if (!CGF.getLangOpts().CPlusPlus)
3208     return RHS;
3209 
3210   // If the lvalue is non-volatile, return the computed value of the assignment.
3211   if (!LHS.isVolatileQualified())
3212     return RHS;
3213 
3214   // Otherwise, reload the value.
3215   return EmitLoadOfLValue(LHS, E->getExprLoc());
3216 }
3217 
3218 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3219     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3220   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3221 
3222   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3223     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3224                                     SanitizerKind::IntegerDivideByZero));
3225   }
3226 
3227   const auto *BO = cast<BinaryOperator>(Ops.E);
3228   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3229       Ops.Ty->hasSignedIntegerRepresentation() &&
3230       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3231       Ops.mayHaveIntegerOverflow()) {
3232     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3233 
3234     llvm::Value *IntMin =
3235       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3236     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3237 
3238     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3239     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3240     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3241     Checks.push_back(
3242         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3243   }
3244 
3245   if (Checks.size() > 0)
3246     EmitBinOpCheck(Checks, Ops);
3247 }
3248 
3249 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3250   {
3251     CodeGenFunction::SanitizerScope SanScope(&CGF);
3252     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3253          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3254         Ops.Ty->isIntegerType() &&
3255         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3256       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3257       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3258     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3259                Ops.Ty->isRealFloatingType() &&
3260                Ops.mayHaveFloatDivisionByZero()) {
3261       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3262       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3263       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3264                      Ops);
3265     }
3266   }
3267 
3268   if (Ops.Ty->isConstantMatrixType()) {
3269     llvm::MatrixBuilder MB(Builder);
3270     // We need to check the types of the operands of the operator to get the
3271     // correct matrix dimensions.
3272     auto *BO = cast<BinaryOperator>(Ops.E);
3273     (void)BO;
3274     assert(
3275         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3276         "first operand must be a matrix");
3277     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3278            "second operand must be an arithmetic type");
3279     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3280     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3281                               Ops.Ty->hasUnsignedIntegerRepresentation());
3282   }
3283 
3284   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3285     llvm::Value *Val;
3286     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3287     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3288     if ((CGF.getLangOpts().OpenCL &&
3289          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3290         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3291          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3292       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3293       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3294       // build option allows an application to specify that single precision
3295       // floating-point divide (x/y and 1/x) and sqrt used in the program
3296       // source are correctly rounded.
3297       llvm::Type *ValTy = Val->getType();
3298       if (ValTy->isFloatTy() ||
3299           (isa<llvm::VectorType>(ValTy) &&
3300            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3301         CGF.SetFPAccuracy(Val, 2.5);
3302     }
3303     return Val;
3304   }
3305   else if (Ops.isFixedPointOp())
3306     return EmitFixedPointBinOp(Ops);
3307   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3308     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3309   else
3310     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3311 }
3312 
3313 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3314   // Rem in C can't be a floating point type: C99 6.5.5p2.
3315   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3316        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3317       Ops.Ty->isIntegerType() &&
3318       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3319     CodeGenFunction::SanitizerScope SanScope(&CGF);
3320     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3321     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3322   }
3323 
3324   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3325     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3326   else
3327     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3328 }
3329 
3330 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3331   unsigned IID;
3332   unsigned OpID = 0;
3333   SanitizerHandler OverflowKind;
3334 
3335   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3336   switch (Ops.Opcode) {
3337   case BO_Add:
3338   case BO_AddAssign:
3339     OpID = 1;
3340     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3341                      llvm::Intrinsic::uadd_with_overflow;
3342     OverflowKind = SanitizerHandler::AddOverflow;
3343     break;
3344   case BO_Sub:
3345   case BO_SubAssign:
3346     OpID = 2;
3347     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3348                      llvm::Intrinsic::usub_with_overflow;
3349     OverflowKind = SanitizerHandler::SubOverflow;
3350     break;
3351   case BO_Mul:
3352   case BO_MulAssign:
3353     OpID = 3;
3354     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3355                      llvm::Intrinsic::umul_with_overflow;
3356     OverflowKind = SanitizerHandler::MulOverflow;
3357     break;
3358   default:
3359     llvm_unreachable("Unsupported operation for overflow detection");
3360   }
3361   OpID <<= 1;
3362   if (isSigned)
3363     OpID |= 1;
3364 
3365   CodeGenFunction::SanitizerScope SanScope(&CGF);
3366   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3367 
3368   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3369 
3370   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3371   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3372   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3373 
3374   // Handle overflow with llvm.trap if no custom handler has been specified.
3375   const std::string *handlerName =
3376     &CGF.getLangOpts().OverflowHandler;
3377   if (handlerName->empty()) {
3378     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3379     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3380     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3381       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3382       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3383                               : SanitizerKind::UnsignedIntegerOverflow;
3384       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3385     } else
3386       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3387     return result;
3388   }
3389 
3390   // Branch in case of overflow.
3391   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3392   llvm::BasicBlock *continueBB =
3393       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3394   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3395 
3396   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3397 
3398   // If an overflow handler is set, then we want to call it and then use its
3399   // result, if it returns.
3400   Builder.SetInsertPoint(overflowBB);
3401 
3402   // Get the overflow handler.
3403   llvm::Type *Int8Ty = CGF.Int8Ty;
3404   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3405   llvm::FunctionType *handlerTy =
3406       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3407   llvm::FunctionCallee handler =
3408       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3409 
3410   // Sign extend the args to 64-bit, so that we can use the same handler for
3411   // all types of overflow.
3412   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3413   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3414 
3415   // Call the handler with the two arguments, the operation, and the size of
3416   // the result.
3417   llvm::Value *handlerArgs[] = {
3418     lhs,
3419     rhs,
3420     Builder.getInt8(OpID),
3421     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3422   };
3423   llvm::Value *handlerResult =
3424     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3425 
3426   // Truncate the result back to the desired size.
3427   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3428   Builder.CreateBr(continueBB);
3429 
3430   Builder.SetInsertPoint(continueBB);
3431   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3432   phi->addIncoming(result, initialBB);
3433   phi->addIncoming(handlerResult, overflowBB);
3434 
3435   return phi;
3436 }
3437 
3438 /// Emit pointer + index arithmetic.
3439 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3440                                     const BinOpInfo &op,
3441                                     bool isSubtraction) {
3442   // Must have binary (not unary) expr here.  Unary pointer
3443   // increment/decrement doesn't use this path.
3444   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3445 
3446   Value *pointer = op.LHS;
3447   Expr *pointerOperand = expr->getLHS();
3448   Value *index = op.RHS;
3449   Expr *indexOperand = expr->getRHS();
3450 
3451   // In a subtraction, the LHS is always the pointer.
3452   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3453     std::swap(pointer, index);
3454     std::swap(pointerOperand, indexOperand);
3455   }
3456 
3457   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3458 
3459   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3460   auto &DL = CGF.CGM.getDataLayout();
3461   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3462 
3463   // Some versions of glibc and gcc use idioms (particularly in their malloc
3464   // routines) that add a pointer-sized integer (known to be a pointer value)
3465   // to a null pointer in order to cast the value back to an integer or as
3466   // part of a pointer alignment algorithm.  This is undefined behavior, but
3467   // we'd like to be able to compile programs that use it.
3468   //
3469   // Normally, we'd generate a GEP with a null-pointer base here in response
3470   // to that code, but it's also UB to dereference a pointer created that
3471   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3472   // generate a direct cast of the integer value to a pointer.
3473   //
3474   // The idiom (p = nullptr + N) is not met if any of the following are true:
3475   //
3476   //   The operation is subtraction.
3477   //   The index is not pointer-sized.
3478   //   The pointer type is not byte-sized.
3479   //
3480   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3481                                                        op.Opcode,
3482                                                        expr->getLHS(),
3483                                                        expr->getRHS()))
3484     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3485 
3486   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3487     // Zero-extend or sign-extend the pointer value according to
3488     // whether the index is signed or not.
3489     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3490                                       "idx.ext");
3491   }
3492 
3493   // If this is subtraction, negate the index.
3494   if (isSubtraction)
3495     index = CGF.Builder.CreateNeg(index, "idx.neg");
3496 
3497   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3498     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3499                         /*Accessed*/ false);
3500 
3501   const PointerType *pointerType
3502     = pointerOperand->getType()->getAs<PointerType>();
3503   if (!pointerType) {
3504     QualType objectType = pointerOperand->getType()
3505                                         ->castAs<ObjCObjectPointerType>()
3506                                         ->getPointeeType();
3507     llvm::Value *objectSize
3508       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3509 
3510     index = CGF.Builder.CreateMul(index, objectSize);
3511 
3512     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3513     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3514     return CGF.Builder.CreateBitCast(result, pointer->getType());
3515   }
3516 
3517   QualType elementType = pointerType->getPointeeType();
3518   if (const VariableArrayType *vla
3519         = CGF.getContext().getAsVariableArrayType(elementType)) {
3520     // The element count here is the total number of non-VLA elements.
3521     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3522 
3523     // Effectively, the multiply by the VLA size is part of the GEP.
3524     // GEP indexes are signed, and scaling an index isn't permitted to
3525     // signed-overflow, so we use the same semantics for our explicit
3526     // multiply.  We suppress this if overflow is not undefined behavior.
3527     llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3528     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3529       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3530       pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3531     } else {
3532       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3533       pointer = CGF.EmitCheckedInBoundsGEP(
3534           elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3535           "add.ptr");
3536     }
3537     return pointer;
3538   }
3539 
3540   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3541   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3542   // future proof.
3543   if (elementType->isVoidType() || elementType->isFunctionType()) {
3544     Value *result = CGF.EmitCastToVoidPtr(pointer);
3545     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3546     return CGF.Builder.CreateBitCast(result, pointer->getType());
3547   }
3548 
3549   llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
3550   if (CGF.getLangOpts().isSignedOverflowDefined())
3551     return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3552 
3553   return CGF.EmitCheckedInBoundsGEP(
3554       elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3555       "add.ptr");
3556 }
3557 
3558 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3559 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3560 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3561 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3562 // efficient operations.
3563 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3564                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3565                            bool negMul, bool negAdd) {
3566   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3567 
3568   Value *MulOp0 = MulOp->getOperand(0);
3569   Value *MulOp1 = MulOp->getOperand(1);
3570   if (negMul)
3571     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3572   if (negAdd)
3573     Addend = Builder.CreateFNeg(Addend, "neg");
3574 
3575   Value *FMulAdd = nullptr;
3576   if (Builder.getIsFPConstrained()) {
3577     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3578            "Only constrained operation should be created when Builder is in FP "
3579            "constrained mode");
3580     FMulAdd = Builder.CreateConstrainedFPCall(
3581         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3582                              Addend->getType()),
3583         {MulOp0, MulOp1, Addend});
3584   } else {
3585     FMulAdd = Builder.CreateCall(
3586         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3587         {MulOp0, MulOp1, Addend});
3588   }
3589   MulOp->eraseFromParent();
3590 
3591   return FMulAdd;
3592 }
3593 
3594 // Check whether it would be legal to emit an fmuladd intrinsic call to
3595 // represent op and if so, build the fmuladd.
3596 //
3597 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3598 // Does NOT check the type of the operation - it's assumed that this function
3599 // will be called from contexts where it's known that the type is contractable.
3600 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3601                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3602                          bool isSub=false) {
3603 
3604   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3605           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3606          "Only fadd/fsub can be the root of an fmuladd.");
3607 
3608   // Check whether this op is marked as fusable.
3609   if (!op.FPFeatures.allowFPContractWithinStatement())
3610     return nullptr;
3611 
3612   // We have a potentially fusable op. Look for a mul on one of the operands.
3613   // Also, make sure that the mul result isn't used directly. In that case,
3614   // there's no point creating a muladd operation.
3615   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3616     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3617         LHSBinOp->use_empty())
3618       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3619   }
3620   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3621     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3622         RHSBinOp->use_empty())
3623       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3624   }
3625 
3626   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3627     if (LHSBinOp->getIntrinsicID() ==
3628             llvm::Intrinsic::experimental_constrained_fmul &&
3629         LHSBinOp->use_empty())
3630       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3631   }
3632   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3633     if (RHSBinOp->getIntrinsicID() ==
3634             llvm::Intrinsic::experimental_constrained_fmul &&
3635         RHSBinOp->use_empty())
3636       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3637   }
3638 
3639   return nullptr;
3640 }
3641 
3642 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3643   if (op.LHS->getType()->isPointerTy() ||
3644       op.RHS->getType()->isPointerTy())
3645     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3646 
3647   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3648     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3649     case LangOptions::SOB_Defined:
3650       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3651     case LangOptions::SOB_Undefined:
3652       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3653         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3654       LLVM_FALLTHROUGH;
3655     case LangOptions::SOB_Trapping:
3656       if (CanElideOverflowCheck(CGF.getContext(), op))
3657         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3658       return EmitOverflowCheckedBinOp(op);
3659     }
3660   }
3661 
3662   if (op.Ty->isConstantMatrixType()) {
3663     llvm::MatrixBuilder MB(Builder);
3664     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3665     return MB.CreateAdd(op.LHS, op.RHS);
3666   }
3667 
3668   if (op.Ty->isUnsignedIntegerType() &&
3669       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3670       !CanElideOverflowCheck(CGF.getContext(), op))
3671     return EmitOverflowCheckedBinOp(op);
3672 
3673   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3674     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3675     // Try to form an fmuladd.
3676     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3677       return FMulAdd;
3678 
3679     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3680   }
3681 
3682   if (op.isFixedPointOp())
3683     return EmitFixedPointBinOp(op);
3684 
3685   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3686 }
3687 
3688 /// The resulting value must be calculated with exact precision, so the operands
3689 /// may not be the same type.
3690 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3691   using llvm::APSInt;
3692   using llvm::ConstantInt;
3693 
3694   // This is either a binary operation where at least one of the operands is
3695   // a fixed-point type, or a unary operation where the operand is a fixed-point
3696   // type. The result type of a binary operation is determined by
3697   // Sema::handleFixedPointConversions().
3698   QualType ResultTy = op.Ty;
3699   QualType LHSTy, RHSTy;
3700   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3701     RHSTy = BinOp->getRHS()->getType();
3702     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3703       // For compound assignment, the effective type of the LHS at this point
3704       // is the computation LHS type, not the actual LHS type, and the final
3705       // result type is not the type of the expression but rather the
3706       // computation result type.
3707       LHSTy = CAO->getComputationLHSType();
3708       ResultTy = CAO->getComputationResultType();
3709     } else
3710       LHSTy = BinOp->getLHS()->getType();
3711   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3712     LHSTy = UnOp->getSubExpr()->getType();
3713     RHSTy = UnOp->getSubExpr()->getType();
3714   }
3715   ASTContext &Ctx = CGF.getContext();
3716   Value *LHS = op.LHS;
3717   Value *RHS = op.RHS;
3718 
3719   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3720   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3721   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3722   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3723 
3724   // Perform the actual operation.
3725   Value *Result;
3726   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3727   switch (op.Opcode) {
3728   case BO_AddAssign:
3729   case BO_Add:
3730     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3731     break;
3732   case BO_SubAssign:
3733   case BO_Sub:
3734     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3735     break;
3736   case BO_MulAssign:
3737   case BO_Mul:
3738     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3739     break;
3740   case BO_DivAssign:
3741   case BO_Div:
3742     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3743     break;
3744   case BO_ShlAssign:
3745   case BO_Shl:
3746     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3747     break;
3748   case BO_ShrAssign:
3749   case BO_Shr:
3750     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3751     break;
3752   case BO_LT:
3753     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3754   case BO_GT:
3755     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3756   case BO_LE:
3757     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3758   case BO_GE:
3759     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3760   case BO_EQ:
3761     // For equality operations, we assume any padding bits on unsigned types are
3762     // zero'd out. They could be overwritten through non-saturating operations
3763     // that cause overflow, but this leads to undefined behavior.
3764     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3765   case BO_NE:
3766     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3767   case BO_Cmp:
3768   case BO_LAnd:
3769   case BO_LOr:
3770     llvm_unreachable("Found unimplemented fixed point binary operation");
3771   case BO_PtrMemD:
3772   case BO_PtrMemI:
3773   case BO_Rem:
3774   case BO_Xor:
3775   case BO_And:
3776   case BO_Or:
3777   case BO_Assign:
3778   case BO_RemAssign:
3779   case BO_AndAssign:
3780   case BO_XorAssign:
3781   case BO_OrAssign:
3782   case BO_Comma:
3783     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3784   }
3785 
3786   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3787                  BinaryOperator::isShiftAssignOp(op.Opcode);
3788   // Convert to the result type.
3789   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3790                                                       : CommonFixedSema,
3791                                       ResultFixedSema);
3792 }
3793 
3794 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3795   // The LHS is always a pointer if either side is.
3796   if (!op.LHS->getType()->isPointerTy()) {
3797     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3798       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3799       case LangOptions::SOB_Defined:
3800         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3801       case LangOptions::SOB_Undefined:
3802         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3803           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3804         LLVM_FALLTHROUGH;
3805       case LangOptions::SOB_Trapping:
3806         if (CanElideOverflowCheck(CGF.getContext(), op))
3807           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3808         return EmitOverflowCheckedBinOp(op);
3809       }
3810     }
3811 
3812     if (op.Ty->isConstantMatrixType()) {
3813       llvm::MatrixBuilder MB(Builder);
3814       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3815       return MB.CreateSub(op.LHS, op.RHS);
3816     }
3817 
3818     if (op.Ty->isUnsignedIntegerType() &&
3819         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3820         !CanElideOverflowCheck(CGF.getContext(), op))
3821       return EmitOverflowCheckedBinOp(op);
3822 
3823     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3824       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3825       // Try to form an fmuladd.
3826       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3827         return FMulAdd;
3828       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3829     }
3830 
3831     if (op.isFixedPointOp())
3832       return EmitFixedPointBinOp(op);
3833 
3834     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3835   }
3836 
3837   // If the RHS is not a pointer, then we have normal pointer
3838   // arithmetic.
3839   if (!op.RHS->getType()->isPointerTy())
3840     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3841 
3842   // Otherwise, this is a pointer subtraction.
3843 
3844   // Do the raw subtraction part.
3845   llvm::Value *LHS
3846     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3847   llvm::Value *RHS
3848     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3849   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3850 
3851   // Okay, figure out the element size.
3852   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3853   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3854 
3855   llvm::Value *divisor = nullptr;
3856 
3857   // For a variable-length array, this is going to be non-constant.
3858   if (const VariableArrayType *vla
3859         = CGF.getContext().getAsVariableArrayType(elementType)) {
3860     auto VlaSize = CGF.getVLASize(vla);
3861     elementType = VlaSize.Type;
3862     divisor = VlaSize.NumElts;
3863 
3864     // Scale the number of non-VLA elements by the non-VLA element size.
3865     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3866     if (!eltSize.isOne())
3867       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3868 
3869   // For everything elese, we can just compute it, safe in the
3870   // assumption that Sema won't let anything through that we can't
3871   // safely compute the size of.
3872   } else {
3873     CharUnits elementSize;
3874     // Handle GCC extension for pointer arithmetic on void* and
3875     // function pointer types.
3876     if (elementType->isVoidType() || elementType->isFunctionType())
3877       elementSize = CharUnits::One();
3878     else
3879       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3880 
3881     // Don't even emit the divide for element size of 1.
3882     if (elementSize.isOne())
3883       return diffInChars;
3884 
3885     divisor = CGF.CGM.getSize(elementSize);
3886   }
3887 
3888   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3889   // pointer difference in C is only defined in the case where both operands
3890   // are pointing to elements of an array.
3891   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3892 }
3893 
3894 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3895   llvm::IntegerType *Ty;
3896   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3897     Ty = cast<llvm::IntegerType>(VT->getElementType());
3898   else
3899     Ty = cast<llvm::IntegerType>(LHS->getType());
3900   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3901 }
3902 
3903 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3904                                               const Twine &Name) {
3905   llvm::IntegerType *Ty;
3906   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3907     Ty = cast<llvm::IntegerType>(VT->getElementType());
3908   else
3909     Ty = cast<llvm::IntegerType>(LHS->getType());
3910 
3911   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3912         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3913 
3914   return Builder.CreateURem(
3915       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3916 }
3917 
3918 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3919   // TODO: This misses out on the sanitizer check below.
3920   if (Ops.isFixedPointOp())
3921     return EmitFixedPointBinOp(Ops);
3922 
3923   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3924   // RHS to the same size as the LHS.
3925   Value *RHS = Ops.RHS;
3926   if (Ops.LHS->getType() != RHS->getType())
3927     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3928 
3929   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3930                             Ops.Ty->hasSignedIntegerRepresentation() &&
3931                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3932                             !CGF.getLangOpts().CPlusPlus20;
3933   bool SanitizeUnsignedBase =
3934       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3935       Ops.Ty->hasUnsignedIntegerRepresentation();
3936   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3937   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3938   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3939   if (CGF.getLangOpts().OpenCL)
3940     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3941   else if ((SanitizeBase || SanitizeExponent) &&
3942            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3943     CodeGenFunction::SanitizerScope SanScope(&CGF);
3944     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3945     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3946     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3947 
3948     if (SanitizeExponent) {
3949       Checks.push_back(
3950           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3951     }
3952 
3953     if (SanitizeBase) {
3954       // Check whether we are shifting any non-zero bits off the top of the
3955       // integer. We only emit this check if exponent is valid - otherwise
3956       // instructions below will have undefined behavior themselves.
3957       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3958       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3959       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3960       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3961       llvm::Value *PromotedWidthMinusOne =
3962           (RHS == Ops.RHS) ? WidthMinusOne
3963                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3964       CGF.EmitBlock(CheckShiftBase);
3965       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3966           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3967                                      /*NUW*/ true, /*NSW*/ true),
3968           "shl.check");
3969       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3970         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3971         // Under C++11's rules, shifting a 1 bit into the sign bit is
3972         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3973         // define signed left shifts, so we use the C99 and C++11 rules there).
3974         // Unsigned shifts can always shift into the top bit.
3975         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3976         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3977       }
3978       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3979       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3980       CGF.EmitBlock(Cont);
3981       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3982       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3983       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3984       Checks.push_back(std::make_pair(
3985           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3986                                         : SanitizerKind::UnsignedShiftBase));
3987     }
3988 
3989     assert(!Checks.empty());
3990     EmitBinOpCheck(Checks, Ops);
3991   }
3992 
3993   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3994 }
3995 
3996 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3997   // TODO: This misses out on the sanitizer check below.
3998   if (Ops.isFixedPointOp())
3999     return EmitFixedPointBinOp(Ops);
4000 
4001   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4002   // RHS to the same size as the LHS.
4003   Value *RHS = Ops.RHS;
4004   if (Ops.LHS->getType() != RHS->getType())
4005     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4006 
4007   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4008   if (CGF.getLangOpts().OpenCL)
4009     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4010   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4011            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4012     CodeGenFunction::SanitizerScope SanScope(&CGF);
4013     llvm::Value *Valid =
4014         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4015     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4016   }
4017 
4018   if (Ops.Ty->hasUnsignedIntegerRepresentation())
4019     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4020   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4021 }
4022 
4023 enum IntrinsicType { VCMPEQ, VCMPGT };
4024 // return corresponding comparison intrinsic for given vector type
4025 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4026                                         BuiltinType::Kind ElemKind) {
4027   switch (ElemKind) {
4028   default: llvm_unreachable("unexpected element type");
4029   case BuiltinType::Char_U:
4030   case BuiltinType::UChar:
4031     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4032                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4033   case BuiltinType::Char_S:
4034   case BuiltinType::SChar:
4035     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4036                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4037   case BuiltinType::UShort:
4038     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4039                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4040   case BuiltinType::Short:
4041     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4042                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4043   case BuiltinType::UInt:
4044     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4045                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4046   case BuiltinType::Int:
4047     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4048                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4049   case BuiltinType::ULong:
4050   case BuiltinType::ULongLong:
4051     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4052                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4053   case BuiltinType::Long:
4054   case BuiltinType::LongLong:
4055     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4056                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4057   case BuiltinType::Float:
4058     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4059                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4060   case BuiltinType::Double:
4061     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4062                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4063   case BuiltinType::UInt128:
4064     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4065                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4066   case BuiltinType::Int128:
4067     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4068                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4069   }
4070 }
4071 
4072 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4073                                       llvm::CmpInst::Predicate UICmpOpc,
4074                                       llvm::CmpInst::Predicate SICmpOpc,
4075                                       llvm::CmpInst::Predicate FCmpOpc,
4076                                       bool IsSignaling) {
4077   TestAndClearIgnoreResultAssign();
4078   Value *Result;
4079   QualType LHSTy = E->getLHS()->getType();
4080   QualType RHSTy = E->getRHS()->getType();
4081   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4082     assert(E->getOpcode() == BO_EQ ||
4083            E->getOpcode() == BO_NE);
4084     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4085     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4086     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4087                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4088   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4089     BinOpInfo BOInfo = EmitBinOps(E);
4090     Value *LHS = BOInfo.LHS;
4091     Value *RHS = BOInfo.RHS;
4092 
4093     // If AltiVec, the comparison results in a numeric type, so we use
4094     // intrinsics comparing vectors and giving 0 or 1 as a result
4095     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4096       // constants for mapping CR6 register bits to predicate result
4097       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4098 
4099       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4100 
4101       // in several cases vector arguments order will be reversed
4102       Value *FirstVecArg = LHS,
4103             *SecondVecArg = RHS;
4104 
4105       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4106       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4107 
4108       switch(E->getOpcode()) {
4109       default: llvm_unreachable("is not a comparison operation");
4110       case BO_EQ:
4111         CR6 = CR6_LT;
4112         ID = GetIntrinsic(VCMPEQ, ElementKind);
4113         break;
4114       case BO_NE:
4115         CR6 = CR6_EQ;
4116         ID = GetIntrinsic(VCMPEQ, ElementKind);
4117         break;
4118       case BO_LT:
4119         CR6 = CR6_LT;
4120         ID = GetIntrinsic(VCMPGT, ElementKind);
4121         std::swap(FirstVecArg, SecondVecArg);
4122         break;
4123       case BO_GT:
4124         CR6 = CR6_LT;
4125         ID = GetIntrinsic(VCMPGT, ElementKind);
4126         break;
4127       case BO_LE:
4128         if (ElementKind == BuiltinType::Float) {
4129           CR6 = CR6_LT;
4130           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4131           std::swap(FirstVecArg, SecondVecArg);
4132         }
4133         else {
4134           CR6 = CR6_EQ;
4135           ID = GetIntrinsic(VCMPGT, ElementKind);
4136         }
4137         break;
4138       case BO_GE:
4139         if (ElementKind == BuiltinType::Float) {
4140           CR6 = CR6_LT;
4141           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4142         }
4143         else {
4144           CR6 = CR6_EQ;
4145           ID = GetIntrinsic(VCMPGT, ElementKind);
4146           std::swap(FirstVecArg, SecondVecArg);
4147         }
4148         break;
4149       }
4150 
4151       Value *CR6Param = Builder.getInt32(CR6);
4152       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4153       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4154 
4155       // The result type of intrinsic may not be same as E->getType().
4156       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4157       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4158       // do nothing, if ResultTy is not i1 at the same time, it will cause
4159       // crash later.
4160       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4161       if (ResultTy->getBitWidth() > 1 &&
4162           E->getType() == CGF.getContext().BoolTy)
4163         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4164       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4165                                   E->getExprLoc());
4166     }
4167 
4168     if (BOInfo.isFixedPointOp()) {
4169       Result = EmitFixedPointBinOp(BOInfo);
4170     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4171       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4172       if (!IsSignaling)
4173         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4174       else
4175         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4176     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4177       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4178     } else {
4179       // Unsigned integers and pointers.
4180 
4181       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4182           !isa<llvm::ConstantPointerNull>(LHS) &&
4183           !isa<llvm::ConstantPointerNull>(RHS)) {
4184 
4185         // Dynamic information is required to be stripped for comparisons,
4186         // because it could leak the dynamic information.  Based on comparisons
4187         // of pointers to dynamic objects, the optimizer can replace one pointer
4188         // with another, which might be incorrect in presence of invariant
4189         // groups. Comparison with null is safe because null does not carry any
4190         // dynamic information.
4191         if (LHSTy.mayBeDynamicClass())
4192           LHS = Builder.CreateStripInvariantGroup(LHS);
4193         if (RHSTy.mayBeDynamicClass())
4194           RHS = Builder.CreateStripInvariantGroup(RHS);
4195       }
4196 
4197       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4198     }
4199 
4200     // If this is a vector comparison, sign extend the result to the appropriate
4201     // vector integer type and return it (don't convert to bool).
4202     if (LHSTy->isVectorType())
4203       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4204 
4205   } else {
4206     // Complex Comparison: can only be an equality comparison.
4207     CodeGenFunction::ComplexPairTy LHS, RHS;
4208     QualType CETy;
4209     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4210       LHS = CGF.EmitComplexExpr(E->getLHS());
4211       CETy = CTy->getElementType();
4212     } else {
4213       LHS.first = Visit(E->getLHS());
4214       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4215       CETy = LHSTy;
4216     }
4217     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4218       RHS = CGF.EmitComplexExpr(E->getRHS());
4219       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4220                                                      CTy->getElementType()) &&
4221              "The element types must always match.");
4222       (void)CTy;
4223     } else {
4224       RHS.first = Visit(E->getRHS());
4225       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4226       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4227              "The element types must always match.");
4228     }
4229 
4230     Value *ResultR, *ResultI;
4231     if (CETy->isRealFloatingType()) {
4232       // As complex comparisons can only be equality comparisons, they
4233       // are never signaling comparisons.
4234       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4235       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4236     } else {
4237       // Complex comparisons can only be equality comparisons.  As such, signed
4238       // and unsigned opcodes are the same.
4239       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4240       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4241     }
4242 
4243     if (E->getOpcode() == BO_EQ) {
4244       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4245     } else {
4246       assert(E->getOpcode() == BO_NE &&
4247              "Complex comparison other than == or != ?");
4248       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4249     }
4250   }
4251 
4252   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4253                               E->getExprLoc());
4254 }
4255 
4256 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4257   bool Ignore = TestAndClearIgnoreResultAssign();
4258 
4259   Value *RHS;
4260   LValue LHS;
4261 
4262   switch (E->getLHS()->getType().getObjCLifetime()) {
4263   case Qualifiers::OCL_Strong:
4264     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4265     break;
4266 
4267   case Qualifiers::OCL_Autoreleasing:
4268     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4269     break;
4270 
4271   case Qualifiers::OCL_ExplicitNone:
4272     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4273     break;
4274 
4275   case Qualifiers::OCL_Weak:
4276     RHS = Visit(E->getRHS());
4277     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4278     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4279     break;
4280 
4281   case Qualifiers::OCL_None:
4282     // __block variables need to have the rhs evaluated first, plus
4283     // this should improve codegen just a little.
4284     RHS = Visit(E->getRHS());
4285     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4286 
4287     // Store the value into the LHS.  Bit-fields are handled specially
4288     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4289     // 'An assignment expression has the value of the left operand after
4290     // the assignment...'.
4291     if (LHS.isBitField()) {
4292       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4293     } else {
4294       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4295       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4296     }
4297   }
4298 
4299   // If the result is clearly ignored, return now.
4300   if (Ignore)
4301     return nullptr;
4302 
4303   // The result of an assignment in C is the assigned r-value.
4304   if (!CGF.getLangOpts().CPlusPlus)
4305     return RHS;
4306 
4307   // If the lvalue is non-volatile, return the computed value of the assignment.
4308   if (!LHS.isVolatileQualified())
4309     return RHS;
4310 
4311   // Otherwise, reload the value.
4312   return EmitLoadOfLValue(LHS, E->getExprLoc());
4313 }
4314 
4315 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4316   // Perform vector logical and on comparisons with zero vectors.
4317   if (E->getType()->isVectorType()) {
4318     CGF.incrementProfileCounter(E);
4319 
4320     Value *LHS = Visit(E->getLHS());
4321     Value *RHS = Visit(E->getRHS());
4322     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4323     if (LHS->getType()->isFPOrFPVectorTy()) {
4324       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4325           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4326       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4327       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4328     } else {
4329       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4330       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4331     }
4332     Value *And = Builder.CreateAnd(LHS, RHS);
4333     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4334   }
4335 
4336   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4337   llvm::Type *ResTy = ConvertType(E->getType());
4338 
4339   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4340   // If we have 1 && X, just emit X without inserting the control flow.
4341   bool LHSCondVal;
4342   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4343     if (LHSCondVal) { // If we have 1 && X, just emit X.
4344       CGF.incrementProfileCounter(E);
4345 
4346       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4347 
4348       // If we're generating for profiling or coverage, generate a branch to a
4349       // block that increments the RHS counter needed to track branch condition
4350       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4351       // "FalseBlock" after the increment is done.
4352       if (InstrumentRegions &&
4353           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4354         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4355         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4356         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4357         CGF.EmitBlock(RHSBlockCnt);
4358         CGF.incrementProfileCounter(E->getRHS());
4359         CGF.EmitBranch(FBlock);
4360         CGF.EmitBlock(FBlock);
4361       }
4362 
4363       // ZExt result to int or bool.
4364       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4365     }
4366 
4367     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4368     if (!CGF.ContainsLabel(E->getRHS()))
4369       return llvm::Constant::getNullValue(ResTy);
4370   }
4371 
4372   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4373   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4374 
4375   CodeGenFunction::ConditionalEvaluation eval(CGF);
4376 
4377   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4378   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4379                            CGF.getProfileCount(E->getRHS()));
4380 
4381   // Any edges into the ContBlock are now from an (indeterminate number of)
4382   // edges from this first condition.  All of these values will be false.  Start
4383   // setting up the PHI node in the Cont Block for this.
4384   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4385                                             "", ContBlock);
4386   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4387        PI != PE; ++PI)
4388     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4389 
4390   eval.begin(CGF);
4391   CGF.EmitBlock(RHSBlock);
4392   CGF.incrementProfileCounter(E);
4393   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4394   eval.end(CGF);
4395 
4396   // Reaquire the RHS block, as there may be subblocks inserted.
4397   RHSBlock = Builder.GetInsertBlock();
4398 
4399   // If we're generating for profiling or coverage, generate a branch on the
4400   // RHS to a block that increments the RHS true counter needed to track branch
4401   // condition coverage.
4402   if (InstrumentRegions &&
4403       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4404     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4405     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4406     CGF.EmitBlock(RHSBlockCnt);
4407     CGF.incrementProfileCounter(E->getRHS());
4408     CGF.EmitBranch(ContBlock);
4409     PN->addIncoming(RHSCond, RHSBlockCnt);
4410   }
4411 
4412   // Emit an unconditional branch from this block to ContBlock.
4413   {
4414     // There is no need to emit line number for unconditional branch.
4415     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4416     CGF.EmitBlock(ContBlock);
4417   }
4418   // Insert an entry into the phi node for the edge with the value of RHSCond.
4419   PN->addIncoming(RHSCond, RHSBlock);
4420 
4421   // Artificial location to preserve the scope information
4422   {
4423     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4424     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4425   }
4426 
4427   // ZExt result to int.
4428   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4429 }
4430 
4431 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4432   // Perform vector logical or on comparisons with zero vectors.
4433   if (E->getType()->isVectorType()) {
4434     CGF.incrementProfileCounter(E);
4435 
4436     Value *LHS = Visit(E->getLHS());
4437     Value *RHS = Visit(E->getRHS());
4438     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4439     if (LHS->getType()->isFPOrFPVectorTy()) {
4440       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4441           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4442       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4443       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4444     } else {
4445       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4446       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4447     }
4448     Value *Or = Builder.CreateOr(LHS, RHS);
4449     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4450   }
4451 
4452   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4453   llvm::Type *ResTy = ConvertType(E->getType());
4454 
4455   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4456   // If we have 0 || X, just emit X without inserting the control flow.
4457   bool LHSCondVal;
4458   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4459     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4460       CGF.incrementProfileCounter(E);
4461 
4462       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4463 
4464       // If we're generating for profiling or coverage, generate a branch to a
4465       // block that increments the RHS counter need to track branch condition
4466       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4467       // "FalseBlock" after the increment is done.
4468       if (InstrumentRegions &&
4469           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4470         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4471         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4472         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4473         CGF.EmitBlock(RHSBlockCnt);
4474         CGF.incrementProfileCounter(E->getRHS());
4475         CGF.EmitBranch(FBlock);
4476         CGF.EmitBlock(FBlock);
4477       }
4478 
4479       // ZExt result to int or bool.
4480       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4481     }
4482 
4483     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4484     if (!CGF.ContainsLabel(E->getRHS()))
4485       return llvm::ConstantInt::get(ResTy, 1);
4486   }
4487 
4488   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4489   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4490 
4491   CodeGenFunction::ConditionalEvaluation eval(CGF);
4492 
4493   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4494   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4495                            CGF.getCurrentProfileCount() -
4496                                CGF.getProfileCount(E->getRHS()));
4497 
4498   // Any edges into the ContBlock are now from an (indeterminate number of)
4499   // edges from this first condition.  All of these values will be true.  Start
4500   // setting up the PHI node in the Cont Block for this.
4501   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4502                                             "", ContBlock);
4503   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4504        PI != PE; ++PI)
4505     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4506 
4507   eval.begin(CGF);
4508 
4509   // Emit the RHS condition as a bool value.
4510   CGF.EmitBlock(RHSBlock);
4511   CGF.incrementProfileCounter(E);
4512   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4513 
4514   eval.end(CGF);
4515 
4516   // Reaquire the RHS block, as there may be subblocks inserted.
4517   RHSBlock = Builder.GetInsertBlock();
4518 
4519   // If we're generating for profiling or coverage, generate a branch on the
4520   // RHS to a block that increments the RHS true counter needed to track branch
4521   // condition coverage.
4522   if (InstrumentRegions &&
4523       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4524     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4525     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4526     CGF.EmitBlock(RHSBlockCnt);
4527     CGF.incrementProfileCounter(E->getRHS());
4528     CGF.EmitBranch(ContBlock);
4529     PN->addIncoming(RHSCond, RHSBlockCnt);
4530   }
4531 
4532   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4533   // into the phi node for the edge with the value of RHSCond.
4534   CGF.EmitBlock(ContBlock);
4535   PN->addIncoming(RHSCond, RHSBlock);
4536 
4537   // ZExt result to int.
4538   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4539 }
4540 
4541 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4542   CGF.EmitIgnoredExpr(E->getLHS());
4543   CGF.EnsureInsertPoint();
4544   return Visit(E->getRHS());
4545 }
4546 
4547 //===----------------------------------------------------------------------===//
4548 //                             Other Operators
4549 //===----------------------------------------------------------------------===//
4550 
4551 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4552 /// expression is cheap enough and side-effect-free enough to evaluate
4553 /// unconditionally instead of conditionally.  This is used to convert control
4554 /// flow into selects in some cases.
4555 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4556                                                    CodeGenFunction &CGF) {
4557   // Anything that is an integer or floating point constant is fine.
4558   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4559 
4560   // Even non-volatile automatic variables can't be evaluated unconditionally.
4561   // Referencing a thread_local may cause non-trivial initialization work to
4562   // occur. If we're inside a lambda and one of the variables is from the scope
4563   // outside the lambda, that function may have returned already. Reading its
4564   // locals is a bad idea. Also, these reads may introduce races there didn't
4565   // exist in the source-level program.
4566 }
4567 
4568 
4569 Value *ScalarExprEmitter::
4570 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4571   TestAndClearIgnoreResultAssign();
4572 
4573   // Bind the common expression if necessary.
4574   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4575 
4576   Expr *condExpr = E->getCond();
4577   Expr *lhsExpr = E->getTrueExpr();
4578   Expr *rhsExpr = E->getFalseExpr();
4579 
4580   // If the condition constant folds and can be elided, try to avoid emitting
4581   // the condition and the dead arm.
4582   bool CondExprBool;
4583   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4584     Expr *live = lhsExpr, *dead = rhsExpr;
4585     if (!CondExprBool) std::swap(live, dead);
4586 
4587     // If the dead side doesn't have labels we need, just emit the Live part.
4588     if (!CGF.ContainsLabel(dead)) {
4589       if (CondExprBool)
4590         CGF.incrementProfileCounter(E);
4591       Value *Result = Visit(live);
4592 
4593       // If the live part is a throw expression, it acts like it has a void
4594       // type, so evaluating it returns a null Value*.  However, a conditional
4595       // with non-void type must return a non-null Value*.
4596       if (!Result && !E->getType()->isVoidType())
4597         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4598 
4599       return Result;
4600     }
4601   }
4602 
4603   // OpenCL: If the condition is a vector, we can treat this condition like
4604   // the select function.
4605   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4606       condExpr->getType()->isExtVectorType()) {
4607     CGF.incrementProfileCounter(E);
4608 
4609     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4610     llvm::Value *LHS = Visit(lhsExpr);
4611     llvm::Value *RHS = Visit(rhsExpr);
4612 
4613     llvm::Type *condType = ConvertType(condExpr->getType());
4614     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4615 
4616     unsigned numElem = vecTy->getNumElements();
4617     llvm::Type *elemType = vecTy->getElementType();
4618 
4619     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4620     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4621     llvm::Value *tmp = Builder.CreateSExt(
4622         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4623     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4624 
4625     // Cast float to int to perform ANDs if necessary.
4626     llvm::Value *RHSTmp = RHS;
4627     llvm::Value *LHSTmp = LHS;
4628     bool wasCast = false;
4629     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4630     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4631       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4632       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4633       wasCast = true;
4634     }
4635 
4636     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4637     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4638     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4639     if (wasCast)
4640       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4641 
4642     return tmp5;
4643   }
4644 
4645   if (condExpr->getType()->isVectorType() ||
4646       condExpr->getType()->isVLSTBuiltinType()) {
4647     CGF.incrementProfileCounter(E);
4648 
4649     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4650     llvm::Value *LHS = Visit(lhsExpr);
4651     llvm::Value *RHS = Visit(rhsExpr);
4652 
4653     llvm::Type *CondType = ConvertType(condExpr->getType());
4654     auto *VecTy = cast<llvm::VectorType>(CondType);
4655     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4656 
4657     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4658     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4659   }
4660 
4661   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4662   // select instead of as control flow.  We can only do this if it is cheap and
4663   // safe to evaluate the LHS and RHS unconditionally.
4664   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4665       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4666     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4667     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4668 
4669     CGF.incrementProfileCounter(E, StepV);
4670 
4671     llvm::Value *LHS = Visit(lhsExpr);
4672     llvm::Value *RHS = Visit(rhsExpr);
4673     if (!LHS) {
4674       // If the conditional has void type, make sure we return a null Value*.
4675       assert(!RHS && "LHS and RHS types must match");
4676       return nullptr;
4677     }
4678     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4679   }
4680 
4681   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4682   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4683   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4684 
4685   CodeGenFunction::ConditionalEvaluation eval(CGF);
4686   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4687                            CGF.getProfileCount(lhsExpr));
4688 
4689   CGF.EmitBlock(LHSBlock);
4690   CGF.incrementProfileCounter(E);
4691   eval.begin(CGF);
4692   Value *LHS = Visit(lhsExpr);
4693   eval.end(CGF);
4694 
4695   LHSBlock = Builder.GetInsertBlock();
4696   Builder.CreateBr(ContBlock);
4697 
4698   CGF.EmitBlock(RHSBlock);
4699   eval.begin(CGF);
4700   Value *RHS = Visit(rhsExpr);
4701   eval.end(CGF);
4702 
4703   RHSBlock = Builder.GetInsertBlock();
4704   CGF.EmitBlock(ContBlock);
4705 
4706   // If the LHS or RHS is a throw expression, it will be legitimately null.
4707   if (!LHS)
4708     return RHS;
4709   if (!RHS)
4710     return LHS;
4711 
4712   // Create a PHI node for the real part.
4713   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4714   PN->addIncoming(LHS, LHSBlock);
4715   PN->addIncoming(RHS, RHSBlock);
4716   return PN;
4717 }
4718 
4719 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4720   return Visit(E->getChosenSubExpr());
4721 }
4722 
4723 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4724   QualType Ty = VE->getType();
4725 
4726   if (Ty->isVariablyModifiedType())
4727     CGF.EmitVariablyModifiedType(Ty);
4728 
4729   Address ArgValue = Address::invalid();
4730   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4731 
4732   llvm::Type *ArgTy = ConvertType(VE->getType());
4733 
4734   // If EmitVAArg fails, emit an error.
4735   if (!ArgPtr.isValid()) {
4736     CGF.ErrorUnsupported(VE, "va_arg expression");
4737     return llvm::UndefValue::get(ArgTy);
4738   }
4739 
4740   // FIXME Volatility.
4741   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4742 
4743   // If EmitVAArg promoted the type, we must truncate it.
4744   if (ArgTy != Val->getType()) {
4745     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4746       Val = Builder.CreateIntToPtr(Val, ArgTy);
4747     else
4748       Val = Builder.CreateTrunc(Val, ArgTy);
4749   }
4750 
4751   return Val;
4752 }
4753 
4754 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4755   return CGF.EmitBlockLiteral(block);
4756 }
4757 
4758 // Convert a vec3 to vec4, or vice versa.
4759 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4760                                  Value *Src, unsigned NumElementsDst) {
4761   static constexpr int Mask[] = {0, 1, 2, -1};
4762   return Builder.CreateShuffleVector(Src,
4763                                      llvm::makeArrayRef(Mask, NumElementsDst));
4764 }
4765 
4766 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4767 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4768 // but could be scalar or vectors of different lengths, and either can be
4769 // pointer.
4770 // There are 4 cases:
4771 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4772 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4773 // 3. pointer -> non-pointer
4774 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4775 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4776 // 4. non-pointer -> pointer
4777 //   a) intptr_t -> pointer       : needs 1 inttoptr
4778 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4779 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4780 // allow casting directly between pointer types and non-integer non-pointer
4781 // types.
4782 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4783                                            const llvm::DataLayout &DL,
4784                                            Value *Src, llvm::Type *DstTy,
4785                                            StringRef Name = "") {
4786   auto SrcTy = Src->getType();
4787 
4788   // Case 1.
4789   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4790     return Builder.CreateBitCast(Src, DstTy, Name);
4791 
4792   // Case 2.
4793   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4794     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4795 
4796   // Case 3.
4797   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4798     // Case 3b.
4799     if (!DstTy->isIntegerTy())
4800       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4801     // Cases 3a and 3b.
4802     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4803   }
4804 
4805   // Case 4b.
4806   if (!SrcTy->isIntegerTy())
4807     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4808   // Cases 4a and 4b.
4809   return Builder.CreateIntToPtr(Src, DstTy, Name);
4810 }
4811 
4812 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4813   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4814   llvm::Type *DstTy = ConvertType(E->getType());
4815 
4816   llvm::Type *SrcTy = Src->getType();
4817   unsigned NumElementsSrc =
4818       isa<llvm::VectorType>(SrcTy)
4819           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4820           : 0;
4821   unsigned NumElementsDst =
4822       isa<llvm::VectorType>(DstTy)
4823           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4824           : 0;
4825 
4826   // Use bit vector expansion for ext_vector_type boolean vectors.
4827   if (E->getType()->isExtVectorBoolType())
4828     return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
4829 
4830   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4831   // vector to get a vec4, then a bitcast if the target type is different.
4832   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4833     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4834     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4835                                        DstTy);
4836 
4837     Src->setName("astype");
4838     return Src;
4839   }
4840 
4841   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4842   // to vec4 if the original type is not vec4, then a shuffle vector to
4843   // get a vec3.
4844   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4845     auto *Vec4Ty = llvm::FixedVectorType::get(
4846         cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4847     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4848                                        Vec4Ty);
4849 
4850     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4851     Src->setName("astype");
4852     return Src;
4853   }
4854 
4855   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4856                                       Src, DstTy, "astype");
4857 }
4858 
4859 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4860   return CGF.EmitAtomicExpr(E).getScalarVal();
4861 }
4862 
4863 //===----------------------------------------------------------------------===//
4864 //                         Entry Point into this File
4865 //===----------------------------------------------------------------------===//
4866 
4867 /// Emit the computation of the specified expression of scalar type, ignoring
4868 /// the result.
4869 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4870   assert(E && hasScalarEvaluationKind(E->getType()) &&
4871          "Invalid scalar expression to emit");
4872 
4873   return ScalarExprEmitter(*this, IgnoreResultAssign)
4874       .Visit(const_cast<Expr *>(E));
4875 }
4876 
4877 /// Emit a conversion from the specified type to the specified destination type,
4878 /// both of which are LLVM scalar types.
4879 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4880                                              QualType DstTy,
4881                                              SourceLocation Loc) {
4882   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4883          "Invalid scalar expression to emit");
4884   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4885 }
4886 
4887 /// Emit a conversion from the specified complex type to the specified
4888 /// destination type, where the destination type is an LLVM scalar type.
4889 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4890                                                       QualType SrcTy,
4891                                                       QualType DstTy,
4892                                                       SourceLocation Loc) {
4893   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4894          "Invalid complex -> scalar conversion");
4895   return ScalarExprEmitter(*this)
4896       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4897 }
4898 
4899 
4900 llvm::Value *CodeGenFunction::
4901 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4902                         bool isInc, bool isPre) {
4903   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4904 }
4905 
4906 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4907   // object->isa or (*object).isa
4908   // Generate code as for: *(Class*)object
4909 
4910   Expr *BaseExpr = E->getBase();
4911   Address Addr = Address::invalid();
4912   if (BaseExpr->isPRValue()) {
4913     llvm::Type *BaseTy =
4914         ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
4915     Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
4916   } else {
4917     Addr = EmitLValue(BaseExpr).getAddress(*this);
4918   }
4919 
4920   // Cast the address to Class*.
4921   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4922   return MakeAddrLValue(Addr, E->getType());
4923 }
4924 
4925 
4926 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4927                                             const CompoundAssignOperator *E) {
4928   ScalarExprEmitter Scalar(*this);
4929   Value *Result = nullptr;
4930   switch (E->getOpcode()) {
4931 #define COMPOUND_OP(Op)                                                       \
4932     case BO_##Op##Assign:                                                     \
4933       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4934                                              Result)
4935   COMPOUND_OP(Mul);
4936   COMPOUND_OP(Div);
4937   COMPOUND_OP(Rem);
4938   COMPOUND_OP(Add);
4939   COMPOUND_OP(Sub);
4940   COMPOUND_OP(Shl);
4941   COMPOUND_OP(Shr);
4942   COMPOUND_OP(And);
4943   COMPOUND_OP(Xor);
4944   COMPOUND_OP(Or);
4945 #undef COMPOUND_OP
4946 
4947   case BO_PtrMemD:
4948   case BO_PtrMemI:
4949   case BO_Mul:
4950   case BO_Div:
4951   case BO_Rem:
4952   case BO_Add:
4953   case BO_Sub:
4954   case BO_Shl:
4955   case BO_Shr:
4956   case BO_LT:
4957   case BO_GT:
4958   case BO_LE:
4959   case BO_GE:
4960   case BO_EQ:
4961   case BO_NE:
4962   case BO_Cmp:
4963   case BO_And:
4964   case BO_Xor:
4965   case BO_Or:
4966   case BO_LAnd:
4967   case BO_LOr:
4968   case BO_Assign:
4969   case BO_Comma:
4970     llvm_unreachable("Not valid compound assignment operators");
4971   }
4972 
4973   llvm_unreachable("Unhandled compound assignment operator");
4974 }
4975 
4976 struct GEPOffsetAndOverflow {
4977   // The total (signed) byte offset for the GEP.
4978   llvm::Value *TotalOffset;
4979   // The offset overflow flag - true if the total offset overflows.
4980   llvm::Value *OffsetOverflows;
4981 };
4982 
4983 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4984 /// and compute the total offset it applies from it's base pointer BasePtr.
4985 /// Returns offset in bytes and a boolean flag whether an overflow happened
4986 /// during evaluation.
4987 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4988                                                  llvm::LLVMContext &VMContext,
4989                                                  CodeGenModule &CGM,
4990                                                  CGBuilderTy &Builder) {
4991   const auto &DL = CGM.getDataLayout();
4992 
4993   // The total (signed) byte offset for the GEP.
4994   llvm::Value *TotalOffset = nullptr;
4995 
4996   // Was the GEP already reduced to a constant?
4997   if (isa<llvm::Constant>(GEPVal)) {
4998     // Compute the offset by casting both pointers to integers and subtracting:
4999     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5000     Value *BasePtr_int =
5001         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5002     Value *GEPVal_int =
5003         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5004     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5005     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5006   }
5007 
5008   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5009   assert(GEP->getPointerOperand() == BasePtr &&
5010          "BasePtr must be the base of the GEP.");
5011   assert(GEP->isInBounds() && "Expected inbounds GEP");
5012 
5013   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5014 
5015   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5016   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5017   auto *SAddIntrinsic =
5018       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5019   auto *SMulIntrinsic =
5020       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5021 
5022   // The offset overflow flag - true if the total offset overflows.
5023   llvm::Value *OffsetOverflows = Builder.getFalse();
5024 
5025   /// Return the result of the given binary operation.
5026   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5027                   llvm::Value *RHS) -> llvm::Value * {
5028     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5029 
5030     // If the operands are constants, return a constant result.
5031     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5032       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5033         llvm::APInt N;
5034         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5035                                                   /*Signed=*/true, N);
5036         if (HasOverflow)
5037           OffsetOverflows = Builder.getTrue();
5038         return llvm::ConstantInt::get(VMContext, N);
5039       }
5040     }
5041 
5042     // Otherwise, compute the result with checked arithmetic.
5043     auto *ResultAndOverflow = Builder.CreateCall(
5044         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5045     OffsetOverflows = Builder.CreateOr(
5046         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5047     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5048   };
5049 
5050   // Determine the total byte offset by looking at each GEP operand.
5051   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5052        GTI != GTE; ++GTI) {
5053     llvm::Value *LocalOffset;
5054     auto *Index = GTI.getOperand();
5055     // Compute the local offset contributed by this indexing step:
5056     if (auto *STy = GTI.getStructTypeOrNull()) {
5057       // For struct indexing, the local offset is the byte position of the
5058       // specified field.
5059       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5060       LocalOffset = llvm::ConstantInt::get(
5061           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5062     } else {
5063       // Otherwise this is array-like indexing. The local offset is the index
5064       // multiplied by the element size.
5065       auto *ElementSize = llvm::ConstantInt::get(
5066           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5067       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5068       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5069     }
5070 
5071     // If this is the first offset, set it as the total offset. Otherwise, add
5072     // the local offset into the running total.
5073     if (!TotalOffset || TotalOffset == Zero)
5074       TotalOffset = LocalOffset;
5075     else
5076       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5077   }
5078 
5079   return {TotalOffset, OffsetOverflows};
5080 }
5081 
5082 Value *
5083 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5084                                         ArrayRef<Value *> IdxList,
5085                                         bool SignedIndices, bool IsSubtraction,
5086                                         SourceLocation Loc, const Twine &Name) {
5087   llvm::Type *PtrTy = Ptr->getType();
5088   Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5089 
5090   // If the pointer overflow sanitizer isn't enabled, do nothing.
5091   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5092     return GEPVal;
5093 
5094   // Perform nullptr-and-offset check unless the nullptr is defined.
5095   bool PerformNullCheck = !NullPointerIsDefined(
5096       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5097   // Check for overflows unless the GEP got constant-folded,
5098   // and only in the default address space
5099   bool PerformOverflowCheck =
5100       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5101 
5102   if (!(PerformNullCheck || PerformOverflowCheck))
5103     return GEPVal;
5104 
5105   const auto &DL = CGM.getDataLayout();
5106 
5107   SanitizerScope SanScope(this);
5108   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5109 
5110   GEPOffsetAndOverflow EvaluatedGEP =
5111       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5112 
5113   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5114           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5115          "If the offset got constant-folded, we don't expect that there was an "
5116          "overflow.");
5117 
5118   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5119 
5120   // Common case: if the total offset is zero, and we are using C++ semantics,
5121   // where nullptr+0 is defined, don't emit a check.
5122   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5123     return GEPVal;
5124 
5125   // Now that we've computed the total offset, add it to the base pointer (with
5126   // wrapping semantics).
5127   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5128   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5129 
5130   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5131 
5132   if (PerformNullCheck) {
5133     // In C++, if the base pointer evaluates to a null pointer value,
5134     // the only valid  pointer this inbounds GEP can produce is also
5135     // a null pointer, so the offset must also evaluate to zero.
5136     // Likewise, if we have non-zero base pointer, we can not get null pointer
5137     // as a result, so the offset can not be -intptr_t(BasePtr).
5138     // In other words, both pointers are either null, or both are non-null,
5139     // or the behaviour is undefined.
5140     //
5141     // C, however, is more strict in this regard, and gives more
5142     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5143     // So both the input to the 'gep inbounds' AND the output must not be null.
5144     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5145     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5146     auto *Valid =
5147         CGM.getLangOpts().CPlusPlus
5148             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5149             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5150     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5151   }
5152 
5153   if (PerformOverflowCheck) {
5154     // The GEP is valid if:
5155     // 1) The total offset doesn't overflow, and
5156     // 2) The sign of the difference between the computed address and the base
5157     // pointer matches the sign of the total offset.
5158     llvm::Value *ValidGEP;
5159     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5160     if (SignedIndices) {
5161       // GEP is computed as `unsigned base + signed offset`, therefore:
5162       // * If offset was positive, then the computed pointer can not be
5163       //   [unsigned] less than the base pointer, unless it overflowed.
5164       // * If offset was negative, then the computed pointer can not be
5165       //   [unsigned] greater than the bas pointere, unless it overflowed.
5166       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5167       auto *PosOrZeroOffset =
5168           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5169       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5170       ValidGEP =
5171           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5172     } else if (!IsSubtraction) {
5173       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5174       // computed pointer can not be [unsigned] less than base pointer,
5175       // unless there was an overflow.
5176       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5177       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5178     } else {
5179       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5180       // computed pointer can not be [unsigned] greater than base pointer,
5181       // unless there was an overflow.
5182       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5183       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5184     }
5185     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5186     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5187   }
5188 
5189   assert(!Checks.empty() && "Should have produced some checks.");
5190 
5191   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5192   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5193   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5194   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5195 
5196   return GEPVal;
5197 }
5198