xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/FixedPoint.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Module.h"
38 #include <cstdarg>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 using llvm::Value;
43 
44 //===----------------------------------------------------------------------===//
45 //                         Scalar Expression Emitter
46 //===----------------------------------------------------------------------===//
47 
48 namespace {
49 
50 /// Determine whether the given binary operation may overflow.
51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53 /// the returned overflow check is precise. The returned value is 'true' for
54 /// all other opcodes, to be conservative.
55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56                              BinaryOperator::Opcode Opcode, bool Signed,
57                              llvm::APInt &Result) {
58   // Assume overflow is possible, unless we can prove otherwise.
59   bool Overflow = true;
60   const auto &LHSAP = LHS->getValue();
61   const auto &RHSAP = RHS->getValue();
62   if (Opcode == BO_Add) {
63     if (Signed)
64       Result = LHSAP.sadd_ov(RHSAP, Overflow);
65     else
66       Result = LHSAP.uadd_ov(RHSAP, Overflow);
67   } else if (Opcode == BO_Sub) {
68     if (Signed)
69       Result = LHSAP.ssub_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.usub_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Mul) {
73     if (Signed)
74       Result = LHSAP.smul_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.umul_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78     if (Signed && !RHS->isZero())
79       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80     else
81       return false;
82   }
83   return Overflow;
84 }
85 
86 struct BinOpInfo {
87   Value *LHS;
88   Value *RHS;
89   QualType Ty;  // Computation Type.
90   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91   FPOptions FPFeatures;
92   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
93 
94   /// Check if the binop can result in integer overflow.
95   bool mayHaveIntegerOverflow() const {
96     // Without constant input, we can't rule out overflow.
97     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99     if (!LHSCI || !RHSCI)
100       return true;
101 
102     llvm::APInt Result;
103     return ::mayHaveIntegerOverflow(
104         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105   }
106 
107   /// Check if the binop computes a division or a remainder.
108   bool isDivremOp() const {
109     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110            Opcode == BO_RemAssign;
111   }
112 
113   /// Check if the binop can result in an integer division by zero.
114   bool mayHaveIntegerDivisionByZero() const {
115     if (isDivremOp())
116       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117         return CI->isZero();
118     return true;
119   }
120 
121   /// Check if the binop can result in a float division by zero.
122   bool mayHaveFloatDivisionByZero() const {
123     if (isDivremOp())
124       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125         return CFP->isZero();
126     return true;
127   }
128 
129   /// Check if either operand is a fixed point type or integer type, with at
130   /// least one being a fixed point type. In any case, this
131   /// operation did not follow usual arithmetic conversion and both operands may
132   /// not be the same.
133   bool isFixedPointBinOp() const {
134     // We cannot simply check the result type since comparison operations return
135     // an int.
136     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137       QualType LHSType = BinOp->getLHS()->getType();
138       QualType RHSType = BinOp->getRHS()->getType();
139       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140     }
141     return false;
142   }
143 };
144 
145 static bool MustVisitNullValue(const Expr *E) {
146   // If a null pointer expression's type is the C++0x nullptr_t, then
147   // it's not necessarily a simple constant and it must be evaluated
148   // for its potential side effects.
149   return E->getType()->isNullPtrType();
150 }
151 
152 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
154                                                         const Expr *E) {
155   const Expr *Base = E->IgnoreImpCasts();
156   if (E == Base)
157     return llvm::None;
158 
159   QualType BaseTy = Base->getType();
160   if (!BaseTy->isPromotableIntegerType() ||
161       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
162     return llvm::None;
163 
164   return BaseTy;
165 }
166 
167 /// Check if \p E is a widened promoted integer.
168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
169   return getUnwidenedIntegerType(Ctx, E).hasValue();
170 }
171 
172 /// Check if we can skip the overflow check for \p Op.
173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
174   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
175          "Expected a unary or binary operator");
176 
177   // If the binop has constant inputs and we can prove there is no overflow,
178   // we can elide the overflow check.
179   if (!Op.mayHaveIntegerOverflow())
180     return true;
181 
182   // If a unary op has a widened operand, the op cannot overflow.
183   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
184     return !UO->canOverflow();
185 
186   // We usually don't need overflow checks for binops with widened operands.
187   // Multiplication with promoted unsigned operands is a special case.
188   const auto *BO = cast<BinaryOperator>(Op.E);
189   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
190   if (!OptionalLHSTy)
191     return false;
192 
193   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
194   if (!OptionalRHSTy)
195     return false;
196 
197   QualType LHSTy = *OptionalLHSTy;
198   QualType RHSTy = *OptionalRHSTy;
199 
200   // This is the simple case: binops without unsigned multiplication, and with
201   // widened operands. No overflow check is needed here.
202   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
203       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
204     return true;
205 
206   // For unsigned multiplication the overflow check can be elided if either one
207   // of the unpromoted types are less than half the size of the promoted type.
208   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
209   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
210          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
211 }
212 
213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
214 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
215                                 FPOptions FPFeatures) {
216   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
217 }
218 
219 /// Propagate fast-math flags from \p Op to the instruction in \p V.
220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
221   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
222     llvm::FastMathFlags FMF = I->getFastMathFlags();
223     updateFastMathFlags(FMF, Op.FPFeatures);
224     I->setFastMathFlags(FMF);
225   }
226   return V;
227 }
228 
229 class ScalarExprEmitter
230   : public StmtVisitor<ScalarExprEmitter, Value*> {
231   CodeGenFunction &CGF;
232   CGBuilderTy &Builder;
233   bool IgnoreResultAssign;
234   llvm::LLVMContext &VMContext;
235 public:
236 
237   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239       VMContext(cgf.getLLVMContext()) {
240   }
241 
242   //===--------------------------------------------------------------------===//
243   //                               Utilities
244   //===--------------------------------------------------------------------===//
245 
246   bool TestAndClearIgnoreResultAssign() {
247     bool I = IgnoreResultAssign;
248     IgnoreResultAssign = false;
249     return I;
250   }
251 
252   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255     return CGF.EmitCheckedLValue(E, TCK);
256   }
257 
258   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259                       const BinOpInfo &Info);
260 
261   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263   }
264 
265   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266     const AlignValueAttr *AVAttr = nullptr;
267     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268       const ValueDecl *VD = DRE->getDecl();
269 
270       if (VD->getType()->isReferenceType()) {
271         if (const auto *TTy =
272             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
273           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274       } else {
275         // Assumptions for function parameters are emitted at the start of the
276         // function, so there is no need to repeat that here,
277         // unless the alignment-assumption sanitizer is enabled,
278         // then we prefer the assumption over alignment attribute
279         // on IR function param.
280         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281           return;
282 
283         AVAttr = VD->getAttr<AlignValueAttr>();
284       }
285     }
286 
287     if (!AVAttr)
288       if (const auto *TTy =
289           dyn_cast<TypedefType>(E->getType()))
290         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
291 
292     if (!AVAttr)
293       return;
294 
295     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
296     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
297     CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
298   }
299 
300   /// EmitLoadOfLValue - Given an expression with complex type that represents a
301   /// value l-value, this method emits the address of the l-value, then loads
302   /// and returns the result.
303   Value *EmitLoadOfLValue(const Expr *E) {
304     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
305                                 E->getExprLoc());
306 
307     EmitLValueAlignmentAssumption(E, V);
308     return V;
309   }
310 
311   /// EmitConversionToBool - Convert the specified expression value to a
312   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
313   Value *EmitConversionToBool(Value *Src, QualType DstTy);
314 
315   /// Emit a check that a conversion from a floating-point type does not
316   /// overflow.
317   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
318                                 Value *Src, QualType SrcType, QualType DstType,
319                                 llvm::Type *DstTy, SourceLocation Loc);
320 
321   /// Known implicit conversion check kinds.
322   /// Keep in sync with the enum of the same name in ubsan_handlers.h
323   enum ImplicitConversionCheckKind : unsigned char {
324     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
325     ICCK_UnsignedIntegerTruncation = 1,
326     ICCK_SignedIntegerTruncation = 2,
327     ICCK_IntegerSignChange = 3,
328     ICCK_SignedIntegerTruncationOrSignChange = 4,
329   };
330 
331   /// Emit a check that an [implicit] truncation of an integer  does not
332   /// discard any bits. It is not UB, so we use the value after truncation.
333   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
334                                   QualType DstType, SourceLocation Loc);
335 
336   /// Emit a check that an [implicit] conversion of an integer does not change
337   /// the sign of the value. It is not UB, so we use the value after conversion.
338   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
339   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
340                                   QualType DstType, SourceLocation Loc);
341 
342   /// Emit a conversion from the specified type to the specified destination
343   /// type, both of which are LLVM scalar types.
344   struct ScalarConversionOpts {
345     bool TreatBooleanAsSigned;
346     bool EmitImplicitIntegerTruncationChecks;
347     bool EmitImplicitIntegerSignChangeChecks;
348 
349     ScalarConversionOpts()
350         : TreatBooleanAsSigned(false),
351           EmitImplicitIntegerTruncationChecks(false),
352           EmitImplicitIntegerSignChangeChecks(false) {}
353 
354     ScalarConversionOpts(clang::SanitizerSet SanOpts)
355         : TreatBooleanAsSigned(false),
356           EmitImplicitIntegerTruncationChecks(
357               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
358           EmitImplicitIntegerSignChangeChecks(
359               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
360   };
361   Value *
362   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
363                        SourceLocation Loc,
364                        ScalarConversionOpts Opts = ScalarConversionOpts());
365 
366   /// Convert between either a fixed point and other fixed point or fixed point
367   /// and an integer.
368   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
369                                   SourceLocation Loc);
370   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
371                                   FixedPointSemantics &DstFixedSema,
372                                   SourceLocation Loc,
373                                   bool DstIsInteger = false);
374 
375   /// Emit a conversion from the specified complex type to the specified
376   /// destination type, where the destination type is an LLVM scalar type.
377   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
378                                        QualType SrcTy, QualType DstTy,
379                                        SourceLocation Loc);
380 
381   /// EmitNullValue - Emit a value that corresponds to null for the given type.
382   Value *EmitNullValue(QualType Ty);
383 
384   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
385   Value *EmitFloatToBoolConversion(Value *V) {
386     // Compare against 0.0 for fp scalars.
387     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
388     return Builder.CreateFCmpUNE(V, Zero, "tobool");
389   }
390 
391   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
392   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
393     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
394 
395     return Builder.CreateICmpNE(V, Zero, "tobool");
396   }
397 
398   Value *EmitIntToBoolConversion(Value *V) {
399     // Because of the type rules of C, we often end up computing a
400     // logical value, then zero extending it to int, then wanting it
401     // as a logical value again.  Optimize this common case.
402     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
403       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
404         Value *Result = ZI->getOperand(0);
405         // If there aren't any more uses, zap the instruction to save space.
406         // Note that there can be more uses, for example if this
407         // is the result of an assignment.
408         if (ZI->use_empty())
409           ZI->eraseFromParent();
410         return Result;
411       }
412     }
413 
414     return Builder.CreateIsNotNull(V, "tobool");
415   }
416 
417   //===--------------------------------------------------------------------===//
418   //                            Visitor Methods
419   //===--------------------------------------------------------------------===//
420 
421   Value *Visit(Expr *E) {
422     ApplyDebugLocation DL(CGF, E);
423     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
424   }
425 
426   Value *VisitStmt(Stmt *S) {
427     S->dump(CGF.getContext().getSourceManager());
428     llvm_unreachable("Stmt can't have complex result type!");
429   }
430   Value *VisitExpr(Expr *S);
431 
432   Value *VisitConstantExpr(ConstantExpr *E) {
433     return Visit(E->getSubExpr());
434   }
435   Value *VisitParenExpr(ParenExpr *PE) {
436     return Visit(PE->getSubExpr());
437   }
438   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
439     return Visit(E->getReplacement());
440   }
441   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
442     return Visit(GE->getResultExpr());
443   }
444   Value *VisitCoawaitExpr(CoawaitExpr *S) {
445     return CGF.EmitCoawaitExpr(*S).getScalarVal();
446   }
447   Value *VisitCoyieldExpr(CoyieldExpr *S) {
448     return CGF.EmitCoyieldExpr(*S).getScalarVal();
449   }
450   Value *VisitUnaryCoawait(const UnaryOperator *E) {
451     return Visit(E->getSubExpr());
452   }
453 
454   // Leaves.
455   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
456     return Builder.getInt(E->getValue());
457   }
458   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
459     return Builder.getInt(E->getValue());
460   }
461   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
462     return llvm::ConstantFP::get(VMContext, E->getValue());
463   }
464   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
465     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466   }
467   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
468     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469   }
470   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
471     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472   }
473   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
474     return EmitNullValue(E->getType());
475   }
476   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
477     return EmitNullValue(E->getType());
478   }
479   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
480   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
481   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
482     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
483     return Builder.CreateBitCast(V, ConvertType(E->getType()));
484   }
485 
486   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
487     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
488   }
489 
490   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
491     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
492   }
493 
494   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
495     if (E->isGLValue())
496       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
497                               E->getExprLoc());
498 
499     // Otherwise, assume the mapping is the scalar directly.
500     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
501   }
502 
503   // l-values.
504   Value *VisitDeclRefExpr(DeclRefExpr *E) {
505     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
506       return CGF.emitScalarConstant(Constant, E);
507     return EmitLoadOfLValue(E);
508   }
509 
510   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
511     return CGF.EmitObjCSelectorExpr(E);
512   }
513   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
514     return CGF.EmitObjCProtocolExpr(E);
515   }
516   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
517     return EmitLoadOfLValue(E);
518   }
519   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
520     if (E->getMethodDecl() &&
521         E->getMethodDecl()->getReturnType()->isReferenceType())
522       return EmitLoadOfLValue(E);
523     return CGF.EmitObjCMessageExpr(E).getScalarVal();
524   }
525 
526   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
527     LValue LV = CGF.EmitObjCIsaExpr(E);
528     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
529     return V;
530   }
531 
532   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
533     VersionTuple Version = E->getVersion();
534 
535     // If we're checking for a platform older than our minimum deployment
536     // target, we can fold the check away.
537     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
538       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
539 
540     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
541     llvm::Value *Args[] = {
542         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
543         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
544         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
545     };
546 
547     return CGF.EmitBuiltinAvailable(Args);
548   }
549 
550   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
551   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
552   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
553   Value *VisitMemberExpr(MemberExpr *E);
554   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
555   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
556     return EmitLoadOfLValue(E);
557   }
558 
559   Value *VisitInitListExpr(InitListExpr *E);
560 
561   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562     assert(CGF.getArrayInitIndex() &&
563            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564     return CGF.getArrayInitIndex();
565   }
566 
567   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568     return EmitNullValue(E->getType());
569   }
570   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572     return VisitCastExpr(E);
573   }
574   Value *VisitCastExpr(CastExpr *E);
575 
576   Value *VisitCallExpr(const CallExpr *E) {
577     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578       return EmitLoadOfLValue(E);
579 
580     Value *V = CGF.EmitCallExpr(E).getScalarVal();
581 
582     EmitLValueAlignmentAssumption(E, V);
583     return V;
584   }
585 
586   Value *VisitStmtExpr(const StmtExpr *E);
587 
588   // Unary Operators.
589   Value *VisitUnaryPostDec(const UnaryOperator *E) {
590     LValue LV = EmitLValue(E->getSubExpr());
591     return EmitScalarPrePostIncDec(E, LV, false, false);
592   }
593   Value *VisitUnaryPostInc(const UnaryOperator *E) {
594     LValue LV = EmitLValue(E->getSubExpr());
595     return EmitScalarPrePostIncDec(E, LV, true, false);
596   }
597   Value *VisitUnaryPreDec(const UnaryOperator *E) {
598     LValue LV = EmitLValue(E->getSubExpr());
599     return EmitScalarPrePostIncDec(E, LV, false, true);
600   }
601   Value *VisitUnaryPreInc(const UnaryOperator *E) {
602     LValue LV = EmitLValue(E->getSubExpr());
603     return EmitScalarPrePostIncDec(E, LV, true, true);
604   }
605 
606   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607                                                   llvm::Value *InVal,
608                                                   bool IsInc);
609 
610   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611                                        bool isInc, bool isPre);
612 
613 
614   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615     if (isa<MemberPointerType>(E->getType())) // never sugared
616       return CGF.CGM.getMemberPointerConstant(E);
617 
618     return EmitLValue(E->getSubExpr()).getPointer();
619   }
620   Value *VisitUnaryDeref(const UnaryOperator *E) {
621     if (E->getType()->isVoidType())
622       return Visit(E->getSubExpr()); // the actual value should be unused
623     return EmitLoadOfLValue(E);
624   }
625   Value *VisitUnaryPlus(const UnaryOperator *E) {
626     // This differs from gcc, though, most likely due to a bug in gcc.
627     TestAndClearIgnoreResultAssign();
628     return Visit(E->getSubExpr());
629   }
630   Value *VisitUnaryMinus    (const UnaryOperator *E);
631   Value *VisitUnaryNot      (const UnaryOperator *E);
632   Value *VisitUnaryLNot     (const UnaryOperator *E);
633   Value *VisitUnaryReal     (const UnaryOperator *E);
634   Value *VisitUnaryImag     (const UnaryOperator *E);
635   Value *VisitUnaryExtension(const UnaryOperator *E) {
636     return Visit(E->getSubExpr());
637   }
638 
639   // C++
640   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
641     return EmitLoadOfLValue(E);
642   }
643   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
644     auto &Ctx = CGF.getContext();
645     APValue Evaluated =
646         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
647     return ConstantEmitter(CGF.CGM, &CGF)
648         .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType());
649   }
650 
651   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
652     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
653     return Visit(DAE->getExpr());
654   }
655   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
656     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
657     return Visit(DIE->getExpr());
658   }
659   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
660     return CGF.LoadCXXThis();
661   }
662 
663   Value *VisitExprWithCleanups(ExprWithCleanups *E);
664   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
665     return CGF.EmitCXXNewExpr(E);
666   }
667   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
668     CGF.EmitCXXDeleteExpr(E);
669     return nullptr;
670   }
671 
672   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
673     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
674   }
675 
676   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
677     return Builder.getInt1(E->isSatisfied());
678   }
679 
680   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
681     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
682   }
683 
684   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
685     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
686   }
687 
688   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
689     // C++ [expr.pseudo]p1:
690     //   The result shall only be used as the operand for the function call
691     //   operator (), and the result of such a call has type void. The only
692     //   effect is the evaluation of the postfix-expression before the dot or
693     //   arrow.
694     CGF.EmitScalarExpr(E->getBase());
695     return nullptr;
696   }
697 
698   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
699     return EmitNullValue(E->getType());
700   }
701 
702   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
703     CGF.EmitCXXThrowExpr(E);
704     return nullptr;
705   }
706 
707   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
708     return Builder.getInt1(E->getValue());
709   }
710 
711   // Binary Operators.
712   Value *EmitMul(const BinOpInfo &Ops) {
713     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
714       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
715       case LangOptions::SOB_Defined:
716         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
717       case LangOptions::SOB_Undefined:
718         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
719           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
720         LLVM_FALLTHROUGH;
721       case LangOptions::SOB_Trapping:
722         if (CanElideOverflowCheck(CGF.getContext(), Ops))
723           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
724         return EmitOverflowCheckedBinOp(Ops);
725       }
726     }
727 
728     if (Ops.Ty->isUnsignedIntegerType() &&
729         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
730         !CanElideOverflowCheck(CGF.getContext(), Ops))
731       return EmitOverflowCheckedBinOp(Ops);
732 
733     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
734       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
735       return propagateFMFlags(V, Ops);
736     }
737     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
738   }
739   /// Create a binary op that checks for overflow.
740   /// Currently only supports +, - and *.
741   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
742 
743   // Check for undefined division and modulus behaviors.
744   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
745                                                   llvm::Value *Zero,bool isDiv);
746   // Common helper for getting how wide LHS of shift is.
747   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
748   Value *EmitDiv(const BinOpInfo &Ops);
749   Value *EmitRem(const BinOpInfo &Ops);
750   Value *EmitAdd(const BinOpInfo &Ops);
751   Value *EmitSub(const BinOpInfo &Ops);
752   Value *EmitShl(const BinOpInfo &Ops);
753   Value *EmitShr(const BinOpInfo &Ops);
754   Value *EmitAnd(const BinOpInfo &Ops) {
755     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
756   }
757   Value *EmitXor(const BinOpInfo &Ops) {
758     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
759   }
760   Value *EmitOr (const BinOpInfo &Ops) {
761     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
762   }
763 
764   // Helper functions for fixed point binary operations.
765   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
766 
767   BinOpInfo EmitBinOps(const BinaryOperator *E);
768   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
769                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
770                                   Value *&Result);
771 
772   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
773                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
774 
775   // Binary operators and binary compound assignment operators.
776 #define HANDLEBINOP(OP) \
777   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
778     return Emit ## OP(EmitBinOps(E));                                      \
779   }                                                                        \
780   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
781     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
782   }
783   HANDLEBINOP(Mul)
784   HANDLEBINOP(Div)
785   HANDLEBINOP(Rem)
786   HANDLEBINOP(Add)
787   HANDLEBINOP(Sub)
788   HANDLEBINOP(Shl)
789   HANDLEBINOP(Shr)
790   HANDLEBINOP(And)
791   HANDLEBINOP(Xor)
792   HANDLEBINOP(Or)
793 #undef HANDLEBINOP
794 
795   // Comparisons.
796   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
797                      llvm::CmpInst::Predicate SICmpOpc,
798                      llvm::CmpInst::Predicate FCmpOpc);
799 #define VISITCOMP(CODE, UI, SI, FP) \
800     Value *VisitBin##CODE(const BinaryOperator *E) { \
801       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
802                          llvm::FCmpInst::FP); }
803   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
804   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
805   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
806   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
807   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
808   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
809 #undef VISITCOMP
810 
811   Value *VisitBinAssign     (const BinaryOperator *E);
812 
813   Value *VisitBinLAnd       (const BinaryOperator *E);
814   Value *VisitBinLOr        (const BinaryOperator *E);
815   Value *VisitBinComma      (const BinaryOperator *E);
816 
817   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
818   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
819 
820   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
821     return Visit(E->getSemanticForm());
822   }
823 
824   // Other Operators.
825   Value *VisitBlockExpr(const BlockExpr *BE);
826   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
827   Value *VisitChooseExpr(ChooseExpr *CE);
828   Value *VisitVAArgExpr(VAArgExpr *VE);
829   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
830     return CGF.EmitObjCStringLiteral(E);
831   }
832   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
833     return CGF.EmitObjCBoxedExpr(E);
834   }
835   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
836     return CGF.EmitObjCArrayLiteral(E);
837   }
838   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
839     return CGF.EmitObjCDictionaryLiteral(E);
840   }
841   Value *VisitAsTypeExpr(AsTypeExpr *CE);
842   Value *VisitAtomicExpr(AtomicExpr *AE);
843 };
844 }  // end anonymous namespace.
845 
846 //===----------------------------------------------------------------------===//
847 //                                Utilities
848 //===----------------------------------------------------------------------===//
849 
850 /// EmitConversionToBool - Convert the specified expression value to a
851 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
852 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
853   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
854 
855   if (SrcType->isRealFloatingType())
856     return EmitFloatToBoolConversion(Src);
857 
858   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
859     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
860 
861   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
862          "Unknown scalar type to convert");
863 
864   if (isa<llvm::IntegerType>(Src->getType()))
865     return EmitIntToBoolConversion(Src);
866 
867   assert(isa<llvm::PointerType>(Src->getType()));
868   return EmitPointerToBoolConversion(Src, SrcType);
869 }
870 
871 void ScalarExprEmitter::EmitFloatConversionCheck(
872     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
873     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
874   assert(SrcType->isFloatingType() && "not a conversion from floating point");
875   if (!isa<llvm::IntegerType>(DstTy))
876     return;
877 
878   CodeGenFunction::SanitizerScope SanScope(&CGF);
879   using llvm::APFloat;
880   using llvm::APSInt;
881 
882   llvm::Value *Check = nullptr;
883   const llvm::fltSemantics &SrcSema =
884     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
885 
886   // Floating-point to integer. This has undefined behavior if the source is
887   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
888   // to an integer).
889   unsigned Width = CGF.getContext().getIntWidth(DstType);
890   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
891 
892   APSInt Min = APSInt::getMinValue(Width, Unsigned);
893   APFloat MinSrc(SrcSema, APFloat::uninitialized);
894   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
895       APFloat::opOverflow)
896     // Don't need an overflow check for lower bound. Just check for
897     // -Inf/NaN.
898     MinSrc = APFloat::getInf(SrcSema, true);
899   else
900     // Find the largest value which is too small to represent (before
901     // truncation toward zero).
902     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
903 
904   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
905   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
906   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
907       APFloat::opOverflow)
908     // Don't need an overflow check for upper bound. Just check for
909     // +Inf/NaN.
910     MaxSrc = APFloat::getInf(SrcSema, false);
911   else
912     // Find the smallest value which is too large to represent (before
913     // truncation toward zero).
914     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
915 
916   // If we're converting from __half, convert the range to float to match
917   // the type of src.
918   if (OrigSrcType->isHalfType()) {
919     const llvm::fltSemantics &Sema =
920       CGF.getContext().getFloatTypeSemantics(SrcType);
921     bool IsInexact;
922     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
923     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
924   }
925 
926   llvm::Value *GE =
927     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
928   llvm::Value *LE =
929     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
930   Check = Builder.CreateAnd(GE, LE);
931 
932   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
933                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
934                                   CGF.EmitCheckTypeDescriptor(DstType)};
935   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
936                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
937 }
938 
939 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
940 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
941 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
942                  std::pair<llvm::Value *, SanitizerMask>>
943 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
944                                  QualType DstType, CGBuilderTy &Builder) {
945   llvm::Type *SrcTy = Src->getType();
946   llvm::Type *DstTy = Dst->getType();
947   (void)DstTy; // Only used in assert()
948 
949   // This should be truncation of integral types.
950   assert(Src != Dst);
951   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
952   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
953          "non-integer llvm type");
954 
955   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
956   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
957 
958   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
959   // Else, it is a signed truncation.
960   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
961   SanitizerMask Mask;
962   if (!SrcSigned && !DstSigned) {
963     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
964     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
965   } else {
966     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
967     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
968   }
969 
970   llvm::Value *Check = nullptr;
971   // 1. Extend the truncated value back to the same width as the Src.
972   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
973   // 2. Equality-compare with the original source value
974   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
975   // If the comparison result is 'i1 false', then the truncation was lossy.
976   return std::make_pair(Kind, std::make_pair(Check, Mask));
977 }
978 
979 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
980                                                    Value *Dst, QualType DstType,
981                                                    SourceLocation Loc) {
982   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
983     return;
984 
985   // We only care about int->int conversions here.
986   // We ignore conversions to/from pointer and/or bool.
987   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
988     return;
989 
990   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
991   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
992   // This must be truncation. Else we do not care.
993   if (SrcBits <= DstBits)
994     return;
995 
996   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
997 
998   // If the integer sign change sanitizer is enabled,
999   // and we are truncating from larger unsigned type to smaller signed type,
1000   // let that next sanitizer deal with it.
1001   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1002   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1003   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1004       (!SrcSigned && DstSigned))
1005     return;
1006 
1007   CodeGenFunction::SanitizerScope SanScope(&CGF);
1008 
1009   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1010             std::pair<llvm::Value *, SanitizerMask>>
1011       Check =
1012           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1013   // If the comparison result is 'i1 false', then the truncation was lossy.
1014 
1015   // Do we care about this type of truncation?
1016   if (!CGF.SanOpts.has(Check.second.second))
1017     return;
1018 
1019   llvm::Constant *StaticArgs[] = {
1020       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1021       CGF.EmitCheckTypeDescriptor(DstType),
1022       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1023   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1024                 {Src, Dst});
1025 }
1026 
1027 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1028 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1029 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1030                  std::pair<llvm::Value *, SanitizerMask>>
1031 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1032                                  QualType DstType, CGBuilderTy &Builder) {
1033   llvm::Type *SrcTy = Src->getType();
1034   llvm::Type *DstTy = Dst->getType();
1035 
1036   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1037          "non-integer llvm type");
1038 
1039   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1040   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1041   (void)SrcSigned; // Only used in assert()
1042   (void)DstSigned; // Only used in assert()
1043   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1044   unsigned DstBits = DstTy->getScalarSizeInBits();
1045   (void)SrcBits; // Only used in assert()
1046   (void)DstBits; // Only used in assert()
1047 
1048   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1049          "either the widths should be different, or the signednesses.");
1050 
1051   // NOTE: zero value is considered to be non-negative.
1052   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1053                                        const char *Name) -> Value * {
1054     // Is this value a signed type?
1055     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1056     llvm::Type *VTy = V->getType();
1057     if (!VSigned) {
1058       // If the value is unsigned, then it is never negative.
1059       // FIXME: can we encounter non-scalar VTy here?
1060       return llvm::ConstantInt::getFalse(VTy->getContext());
1061     }
1062     // Get the zero of the same type with which we will be comparing.
1063     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1064     // %V.isnegative = icmp slt %V, 0
1065     // I.e is %V *strictly* less than zero, does it have negative value?
1066     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1067                               llvm::Twine(Name) + "." + V->getName() +
1068                                   ".negativitycheck");
1069   };
1070 
1071   // 1. Was the old Value negative?
1072   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1073   // 2. Is the new Value negative?
1074   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1075   // 3. Now, was the 'negativity status' preserved during the conversion?
1076   //    NOTE: conversion from negative to zero is considered to change the sign.
1077   //    (We want to get 'false' when the conversion changed the sign)
1078   //    So we should just equality-compare the negativity statuses.
1079   llvm::Value *Check = nullptr;
1080   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1081   // If the comparison result is 'false', then the conversion changed the sign.
1082   return std::make_pair(
1083       ScalarExprEmitter::ICCK_IntegerSignChange,
1084       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1085 }
1086 
1087 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1088                                                    Value *Dst, QualType DstType,
1089                                                    SourceLocation Loc) {
1090   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1091     return;
1092 
1093   llvm::Type *SrcTy = Src->getType();
1094   llvm::Type *DstTy = Dst->getType();
1095 
1096   // We only care about int->int conversions here.
1097   // We ignore conversions to/from pointer and/or bool.
1098   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1099     return;
1100 
1101   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1102   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1103   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1104   unsigned DstBits = DstTy->getScalarSizeInBits();
1105 
1106   // Now, we do not need to emit the check in *all* of the cases.
1107   // We can avoid emitting it in some obvious cases where it would have been
1108   // dropped by the opt passes (instcombine) always anyways.
1109   // If it's a cast between effectively the same type, no check.
1110   // NOTE: this is *not* equivalent to checking the canonical types.
1111   if (SrcSigned == DstSigned && SrcBits == DstBits)
1112     return;
1113   // At least one of the values needs to have signed type.
1114   // If both are unsigned, then obviously, neither of them can be negative.
1115   if (!SrcSigned && !DstSigned)
1116     return;
1117   // If the conversion is to *larger* *signed* type, then no check is needed.
1118   // Because either sign-extension happens (so the sign will remain),
1119   // or zero-extension will happen (the sign bit will be zero.)
1120   if ((DstBits > SrcBits) && DstSigned)
1121     return;
1122   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1123       (SrcBits > DstBits) && SrcSigned) {
1124     // If the signed integer truncation sanitizer is enabled,
1125     // and this is a truncation from signed type, then no check is needed.
1126     // Because here sign change check is interchangeable with truncation check.
1127     return;
1128   }
1129   // That's it. We can't rule out any more cases with the data we have.
1130 
1131   CodeGenFunction::SanitizerScope SanScope(&CGF);
1132 
1133   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1134             std::pair<llvm::Value *, SanitizerMask>>
1135       Check;
1136 
1137   // Each of these checks needs to return 'false' when an issue was detected.
1138   ImplicitConversionCheckKind CheckKind;
1139   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1140   // So we can 'and' all the checks together, and still get 'false',
1141   // if at least one of the checks detected an issue.
1142 
1143   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1144   CheckKind = Check.first;
1145   Checks.emplace_back(Check.second);
1146 
1147   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1148       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1149     // If the signed integer truncation sanitizer was enabled,
1150     // and we are truncating from larger unsigned type to smaller signed type,
1151     // let's handle the case we skipped in that check.
1152     Check =
1153         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1154     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1155     Checks.emplace_back(Check.second);
1156     // If the comparison result is 'i1 false', then the truncation was lossy.
1157   }
1158 
1159   llvm::Constant *StaticArgs[] = {
1160       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1161       CGF.EmitCheckTypeDescriptor(DstType),
1162       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1163   // EmitCheck() will 'and' all the checks together.
1164   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1165                 {Src, Dst});
1166 }
1167 
1168 /// Emit a conversion from the specified type to the specified destination type,
1169 /// both of which are LLVM scalar types.
1170 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1171                                                QualType DstType,
1172                                                SourceLocation Loc,
1173                                                ScalarConversionOpts Opts) {
1174   // All conversions involving fixed point types should be handled by the
1175   // EmitFixedPoint family functions. This is done to prevent bloating up this
1176   // function more, and although fixed point numbers are represented by
1177   // integers, we do not want to follow any logic that assumes they should be
1178   // treated as integers.
1179   // TODO(leonardchan): When necessary, add another if statement checking for
1180   // conversions to fixed point types from other types.
1181   if (SrcType->isFixedPointType()) {
1182     if (DstType->isBooleanType())
1183       // It is important that we check this before checking if the dest type is
1184       // an integer because booleans are technically integer types.
1185       // We do not need to check the padding bit on unsigned types if unsigned
1186       // padding is enabled because overflow into this bit is undefined
1187       // behavior.
1188       return Builder.CreateIsNotNull(Src, "tobool");
1189     if (DstType->isFixedPointType() || DstType->isIntegerType())
1190       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1191 
1192     llvm_unreachable(
1193         "Unhandled scalar conversion from a fixed point type to another type.");
1194   } else if (DstType->isFixedPointType()) {
1195     if (SrcType->isIntegerType())
1196       // This also includes converting booleans and enums to fixed point types.
1197       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1198 
1199     llvm_unreachable(
1200         "Unhandled scalar conversion to a fixed point type from another type.");
1201   }
1202 
1203   QualType NoncanonicalSrcType = SrcType;
1204   QualType NoncanonicalDstType = DstType;
1205 
1206   SrcType = CGF.getContext().getCanonicalType(SrcType);
1207   DstType = CGF.getContext().getCanonicalType(DstType);
1208   if (SrcType == DstType) return Src;
1209 
1210   if (DstType->isVoidType()) return nullptr;
1211 
1212   llvm::Value *OrigSrc = Src;
1213   QualType OrigSrcType = SrcType;
1214   llvm::Type *SrcTy = Src->getType();
1215 
1216   // Handle conversions to bool first, they are special: comparisons against 0.
1217   if (DstType->isBooleanType())
1218     return EmitConversionToBool(Src, SrcType);
1219 
1220   llvm::Type *DstTy = ConvertType(DstType);
1221 
1222   // Cast from half through float if half isn't a native type.
1223   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1224     // Cast to FP using the intrinsic if the half type itself isn't supported.
1225     if (DstTy->isFloatingPointTy()) {
1226       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1227         return Builder.CreateCall(
1228             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1229             Src);
1230     } else {
1231       // Cast to other types through float, using either the intrinsic or FPExt,
1232       // depending on whether the half type itself is supported
1233       // (as opposed to operations on half, available with NativeHalfType).
1234       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1235         Src = Builder.CreateCall(
1236             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1237                                  CGF.CGM.FloatTy),
1238             Src);
1239       } else {
1240         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1241       }
1242       SrcType = CGF.getContext().FloatTy;
1243       SrcTy = CGF.FloatTy;
1244     }
1245   }
1246 
1247   // Ignore conversions like int -> uint.
1248   if (SrcTy == DstTy) {
1249     if (Opts.EmitImplicitIntegerSignChangeChecks)
1250       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1251                                  NoncanonicalDstType, Loc);
1252 
1253     return Src;
1254   }
1255 
1256   // Handle pointer conversions next: pointers can only be converted to/from
1257   // other pointers and integers. Check for pointer types in terms of LLVM, as
1258   // some native types (like Obj-C id) may map to a pointer type.
1259   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1260     // The source value may be an integer, or a pointer.
1261     if (isa<llvm::PointerType>(SrcTy))
1262       return Builder.CreateBitCast(Src, DstTy, "conv");
1263 
1264     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1265     // First, convert to the correct width so that we control the kind of
1266     // extension.
1267     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1268     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1269     llvm::Value* IntResult =
1270         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1271     // Then, cast to pointer.
1272     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1273   }
1274 
1275   if (isa<llvm::PointerType>(SrcTy)) {
1276     // Must be an ptr to int cast.
1277     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1278     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1279   }
1280 
1281   // A scalar can be splatted to an extended vector of the same element type
1282   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1283     // Sema should add casts to make sure that the source expression's type is
1284     // the same as the vector's element type (sans qualifiers)
1285     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1286                SrcType.getTypePtr() &&
1287            "Splatted expr doesn't match with vector element type?");
1288 
1289     // Splat the element across to all elements
1290     unsigned NumElements = DstTy->getVectorNumElements();
1291     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1292   }
1293 
1294   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1295     // Allow bitcast from vector to integer/fp of the same size.
1296     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1297     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1298     if (SrcSize == DstSize)
1299       return Builder.CreateBitCast(Src, DstTy, "conv");
1300 
1301     // Conversions between vectors of different sizes are not allowed except
1302     // when vectors of half are involved. Operations on storage-only half
1303     // vectors require promoting half vector operands to float vectors and
1304     // truncating the result, which is either an int or float vector, to a
1305     // short or half vector.
1306 
1307     // Source and destination are both expected to be vectors.
1308     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1309     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1310     (void)DstElementTy;
1311 
1312     assert(((SrcElementTy->isIntegerTy() &&
1313              DstElementTy->isIntegerTy()) ||
1314             (SrcElementTy->isFloatingPointTy() &&
1315              DstElementTy->isFloatingPointTy())) &&
1316            "unexpected conversion between a floating-point vector and an "
1317            "integer vector");
1318 
1319     // Truncate an i32 vector to an i16 vector.
1320     if (SrcElementTy->isIntegerTy())
1321       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1322 
1323     // Truncate a float vector to a half vector.
1324     if (SrcSize > DstSize)
1325       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1326 
1327     // Promote a half vector to a float vector.
1328     return Builder.CreateFPExt(Src, DstTy, "conv");
1329   }
1330 
1331   // Finally, we have the arithmetic types: real int/float.
1332   Value *Res = nullptr;
1333   llvm::Type *ResTy = DstTy;
1334 
1335   // An overflowing conversion has undefined behavior if either the source type
1336   // or the destination type is a floating-point type. However, we consider the
1337   // range of representable values for all floating-point types to be
1338   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1339   // floating-point type.
1340   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1341       OrigSrcType->isFloatingType())
1342     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1343                              Loc);
1344 
1345   // Cast to half through float if half isn't a native type.
1346   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1347     // Make sure we cast in a single step if from another FP type.
1348     if (SrcTy->isFloatingPointTy()) {
1349       // Use the intrinsic if the half type itself isn't supported
1350       // (as opposed to operations on half, available with NativeHalfType).
1351       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1352         return Builder.CreateCall(
1353             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1354       // If the half type is supported, just use an fptrunc.
1355       return Builder.CreateFPTrunc(Src, DstTy);
1356     }
1357     DstTy = CGF.FloatTy;
1358   }
1359 
1360   if (isa<llvm::IntegerType>(SrcTy)) {
1361     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1362     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1363       InputSigned = true;
1364     }
1365     if (isa<llvm::IntegerType>(DstTy))
1366       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1367     else if (InputSigned)
1368       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1369     else
1370       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1371   } else if (isa<llvm::IntegerType>(DstTy)) {
1372     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1373     if (DstType->isSignedIntegerOrEnumerationType())
1374       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1375     else
1376       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1377   } else {
1378     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1379            "Unknown real conversion");
1380     if (DstTy->getTypeID() < SrcTy->getTypeID())
1381       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1382     else
1383       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1384   }
1385 
1386   if (DstTy != ResTy) {
1387     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1388       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1389       Res = Builder.CreateCall(
1390         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1391         Res);
1392     } else {
1393       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1394     }
1395   }
1396 
1397   if (Opts.EmitImplicitIntegerTruncationChecks)
1398     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1399                                NoncanonicalDstType, Loc);
1400 
1401   if (Opts.EmitImplicitIntegerSignChangeChecks)
1402     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1403                                NoncanonicalDstType, Loc);
1404 
1405   return Res;
1406 }
1407 
1408 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1409                                                    QualType DstTy,
1410                                                    SourceLocation Loc) {
1411   FixedPointSemantics SrcFPSema =
1412       CGF.getContext().getFixedPointSemantics(SrcTy);
1413   FixedPointSemantics DstFPSema =
1414       CGF.getContext().getFixedPointSemantics(DstTy);
1415   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1416                                   DstTy->isIntegerType());
1417 }
1418 
1419 Value *ScalarExprEmitter::EmitFixedPointConversion(
1420     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1421     SourceLocation Loc, bool DstIsInteger) {
1422   using llvm::APInt;
1423   using llvm::ConstantInt;
1424   using llvm::Value;
1425 
1426   unsigned SrcWidth = SrcFPSema.getWidth();
1427   unsigned DstWidth = DstFPSema.getWidth();
1428   unsigned SrcScale = SrcFPSema.getScale();
1429   unsigned DstScale = DstFPSema.getScale();
1430   bool SrcIsSigned = SrcFPSema.isSigned();
1431   bool DstIsSigned = DstFPSema.isSigned();
1432 
1433   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1434 
1435   Value *Result = Src;
1436   unsigned ResultWidth = SrcWidth;
1437 
1438   // Downscale.
1439   if (DstScale < SrcScale) {
1440     // When converting to integers, we round towards zero. For negative numbers,
1441     // right shifting rounds towards negative infinity. In this case, we can
1442     // just round up before shifting.
1443     if (DstIsInteger && SrcIsSigned) {
1444       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1445       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1446       Value *LowBits = ConstantInt::get(
1447           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1448       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1449       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1450     }
1451 
1452     Result = SrcIsSigned
1453                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1454                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1455   }
1456 
1457   if (!DstFPSema.isSaturated()) {
1458     // Resize.
1459     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1460 
1461     // Upscale.
1462     if (DstScale > SrcScale)
1463       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1464   } else {
1465     // Adjust the number of fractional bits.
1466     if (DstScale > SrcScale) {
1467       // Compare to DstWidth to prevent resizing twice.
1468       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1469       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1470       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1471       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1472     }
1473 
1474     // Handle saturation.
1475     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1476     if (LessIntBits) {
1477       Value *Max = ConstantInt::get(
1478           CGF.getLLVMContext(),
1479           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1480       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1481                                    : Builder.CreateICmpUGT(Result, Max);
1482       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1483     }
1484     // Cannot overflow min to dest type if src is unsigned since all fixed
1485     // point types can cover the unsigned min of 0.
1486     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1487       Value *Min = ConstantInt::get(
1488           CGF.getLLVMContext(),
1489           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1490       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1491       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1492     }
1493 
1494     // Resize the integer part to get the final destination size.
1495     if (ResultWidth != DstWidth)
1496       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1497   }
1498   return Result;
1499 }
1500 
1501 /// Emit a conversion from the specified complex type to the specified
1502 /// destination type, where the destination type is an LLVM scalar type.
1503 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1504     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1505     SourceLocation Loc) {
1506   // Get the source element type.
1507   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1508 
1509   // Handle conversions to bool first, they are special: comparisons against 0.
1510   if (DstTy->isBooleanType()) {
1511     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1512     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1513     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1514     return Builder.CreateOr(Src.first, Src.second, "tobool");
1515   }
1516 
1517   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1518   // the imaginary part of the complex value is discarded and the value of the
1519   // real part is converted according to the conversion rules for the
1520   // corresponding real type.
1521   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1522 }
1523 
1524 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1525   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1526 }
1527 
1528 /// Emit a sanitization check for the given "binary" operation (which
1529 /// might actually be a unary increment which has been lowered to a binary
1530 /// operation). The check passes if all values in \p Checks (which are \c i1),
1531 /// are \c true.
1532 void ScalarExprEmitter::EmitBinOpCheck(
1533     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1534   assert(CGF.IsSanitizerScope);
1535   SanitizerHandler Check;
1536   SmallVector<llvm::Constant *, 4> StaticData;
1537   SmallVector<llvm::Value *, 2> DynamicData;
1538 
1539   BinaryOperatorKind Opcode = Info.Opcode;
1540   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1541     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1542 
1543   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1544   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1545   if (UO && UO->getOpcode() == UO_Minus) {
1546     Check = SanitizerHandler::NegateOverflow;
1547     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1548     DynamicData.push_back(Info.RHS);
1549   } else {
1550     if (BinaryOperator::isShiftOp(Opcode)) {
1551       // Shift LHS negative or too large, or RHS out of bounds.
1552       Check = SanitizerHandler::ShiftOutOfBounds;
1553       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1554       StaticData.push_back(
1555         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1556       StaticData.push_back(
1557         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1558     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1559       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1560       Check = SanitizerHandler::DivremOverflow;
1561       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1562     } else {
1563       // Arithmetic overflow (+, -, *).
1564       switch (Opcode) {
1565       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1566       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1567       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1568       default: llvm_unreachable("unexpected opcode for bin op check");
1569       }
1570       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1571     }
1572     DynamicData.push_back(Info.LHS);
1573     DynamicData.push_back(Info.RHS);
1574   }
1575 
1576   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1577 }
1578 
1579 //===----------------------------------------------------------------------===//
1580 //                            Visitor Methods
1581 //===----------------------------------------------------------------------===//
1582 
1583 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1584   CGF.ErrorUnsupported(E, "scalar expression");
1585   if (E->getType()->isVoidType())
1586     return nullptr;
1587   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1588 }
1589 
1590 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1591   // Vector Mask Case
1592   if (E->getNumSubExprs() == 2) {
1593     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1594     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1595     Value *Mask;
1596 
1597     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1598     unsigned LHSElts = LTy->getNumElements();
1599 
1600     Mask = RHS;
1601 
1602     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1603 
1604     // Mask off the high bits of each shuffle index.
1605     Value *MaskBits =
1606         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1607     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1608 
1609     // newv = undef
1610     // mask = mask & maskbits
1611     // for each elt
1612     //   n = extract mask i
1613     //   x = extract val n
1614     //   newv = insert newv, x, i
1615     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1616                                                   MTy->getNumElements());
1617     Value* NewV = llvm::UndefValue::get(RTy);
1618     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1619       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1620       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1621 
1622       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1623       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1624     }
1625     return NewV;
1626   }
1627 
1628   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1629   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1630 
1631   SmallVector<llvm::Constant*, 32> indices;
1632   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1633     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1634     // Check for -1 and output it as undef in the IR.
1635     if (Idx.isSigned() && Idx.isAllOnesValue())
1636       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1637     else
1638       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1639   }
1640 
1641   Value *SV = llvm::ConstantVector::get(indices);
1642   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1643 }
1644 
1645 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1646   QualType SrcType = E->getSrcExpr()->getType(),
1647            DstType = E->getType();
1648 
1649   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1650 
1651   SrcType = CGF.getContext().getCanonicalType(SrcType);
1652   DstType = CGF.getContext().getCanonicalType(DstType);
1653   if (SrcType == DstType) return Src;
1654 
1655   assert(SrcType->isVectorType() &&
1656          "ConvertVector source type must be a vector");
1657   assert(DstType->isVectorType() &&
1658          "ConvertVector destination type must be a vector");
1659 
1660   llvm::Type *SrcTy = Src->getType();
1661   llvm::Type *DstTy = ConvertType(DstType);
1662 
1663   // Ignore conversions like int -> uint.
1664   if (SrcTy == DstTy)
1665     return Src;
1666 
1667   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1668            DstEltType = DstType->castAs<VectorType>()->getElementType();
1669 
1670   assert(SrcTy->isVectorTy() &&
1671          "ConvertVector source IR type must be a vector");
1672   assert(DstTy->isVectorTy() &&
1673          "ConvertVector destination IR type must be a vector");
1674 
1675   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1676              *DstEltTy = DstTy->getVectorElementType();
1677 
1678   if (DstEltType->isBooleanType()) {
1679     assert((SrcEltTy->isFloatingPointTy() ||
1680             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1681 
1682     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1683     if (SrcEltTy->isFloatingPointTy()) {
1684       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1685     } else {
1686       return Builder.CreateICmpNE(Src, Zero, "tobool");
1687     }
1688   }
1689 
1690   // We have the arithmetic types: real int/float.
1691   Value *Res = nullptr;
1692 
1693   if (isa<llvm::IntegerType>(SrcEltTy)) {
1694     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1695     if (isa<llvm::IntegerType>(DstEltTy))
1696       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1697     else if (InputSigned)
1698       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1699     else
1700       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1701   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1702     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1703     if (DstEltType->isSignedIntegerOrEnumerationType())
1704       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1705     else
1706       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1707   } else {
1708     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1709            "Unknown real conversion");
1710     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1711       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1712     else
1713       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1714   }
1715 
1716   return Res;
1717 }
1718 
1719 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1720   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1721     CGF.EmitIgnoredExpr(E->getBase());
1722     return CGF.emitScalarConstant(Constant, E);
1723   } else {
1724     Expr::EvalResult Result;
1725     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1726       llvm::APSInt Value = Result.Val.getInt();
1727       CGF.EmitIgnoredExpr(E->getBase());
1728       return Builder.getInt(Value);
1729     }
1730   }
1731 
1732   return EmitLoadOfLValue(E);
1733 }
1734 
1735 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1736   TestAndClearIgnoreResultAssign();
1737 
1738   // Emit subscript expressions in rvalue context's.  For most cases, this just
1739   // loads the lvalue formed by the subscript expr.  However, we have to be
1740   // careful, because the base of a vector subscript is occasionally an rvalue,
1741   // so we can't get it as an lvalue.
1742   if (!E->getBase()->getType()->isVectorType())
1743     return EmitLoadOfLValue(E);
1744 
1745   // Handle the vector case.  The base must be a vector, the index must be an
1746   // integer value.
1747   Value *Base = Visit(E->getBase());
1748   Value *Idx  = Visit(E->getIdx());
1749   QualType IdxTy = E->getIdx()->getType();
1750 
1751   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1752     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1753 
1754   return Builder.CreateExtractElement(Base, Idx, "vecext");
1755 }
1756 
1757 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1758                                   unsigned Off, llvm::Type *I32Ty) {
1759   int MV = SVI->getMaskValue(Idx);
1760   if (MV == -1)
1761     return llvm::UndefValue::get(I32Ty);
1762   return llvm::ConstantInt::get(I32Ty, Off+MV);
1763 }
1764 
1765 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1766   if (C->getBitWidth() != 32) {
1767       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1768                                                     C->getZExtValue()) &&
1769              "Index operand too large for shufflevector mask!");
1770       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1771   }
1772   return C;
1773 }
1774 
1775 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1776   bool Ignore = TestAndClearIgnoreResultAssign();
1777   (void)Ignore;
1778   assert (Ignore == false && "init list ignored");
1779   unsigned NumInitElements = E->getNumInits();
1780 
1781   if (E->hadArrayRangeDesignator())
1782     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1783 
1784   llvm::VectorType *VType =
1785     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1786 
1787   if (!VType) {
1788     if (NumInitElements == 0) {
1789       // C++11 value-initialization for the scalar.
1790       return EmitNullValue(E->getType());
1791     }
1792     // We have a scalar in braces. Just use the first element.
1793     return Visit(E->getInit(0));
1794   }
1795 
1796   unsigned ResElts = VType->getNumElements();
1797 
1798   // Loop over initializers collecting the Value for each, and remembering
1799   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1800   // us to fold the shuffle for the swizzle into the shuffle for the vector
1801   // initializer, since LLVM optimizers generally do not want to touch
1802   // shuffles.
1803   unsigned CurIdx = 0;
1804   bool VIsUndefShuffle = false;
1805   llvm::Value *V = llvm::UndefValue::get(VType);
1806   for (unsigned i = 0; i != NumInitElements; ++i) {
1807     Expr *IE = E->getInit(i);
1808     Value *Init = Visit(IE);
1809     SmallVector<llvm::Constant*, 16> Args;
1810 
1811     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1812 
1813     // Handle scalar elements.  If the scalar initializer is actually one
1814     // element of a different vector of the same width, use shuffle instead of
1815     // extract+insert.
1816     if (!VVT) {
1817       if (isa<ExtVectorElementExpr>(IE)) {
1818         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1819 
1820         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1821           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1822           Value *LHS = nullptr, *RHS = nullptr;
1823           if (CurIdx == 0) {
1824             // insert into undef -> shuffle (src, undef)
1825             // shufflemask must use an i32
1826             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1827             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1828 
1829             LHS = EI->getVectorOperand();
1830             RHS = V;
1831             VIsUndefShuffle = true;
1832           } else if (VIsUndefShuffle) {
1833             // insert into undefshuffle && size match -> shuffle (v, src)
1834             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1835             for (unsigned j = 0; j != CurIdx; ++j)
1836               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1837             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1838             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1839 
1840             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1841             RHS = EI->getVectorOperand();
1842             VIsUndefShuffle = false;
1843           }
1844           if (!Args.empty()) {
1845             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1846             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1847             ++CurIdx;
1848             continue;
1849           }
1850         }
1851       }
1852       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1853                                       "vecinit");
1854       VIsUndefShuffle = false;
1855       ++CurIdx;
1856       continue;
1857     }
1858 
1859     unsigned InitElts = VVT->getNumElements();
1860 
1861     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1862     // input is the same width as the vector being constructed, generate an
1863     // optimized shuffle of the swizzle input into the result.
1864     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1865     if (isa<ExtVectorElementExpr>(IE)) {
1866       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1867       Value *SVOp = SVI->getOperand(0);
1868       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1869 
1870       if (OpTy->getNumElements() == ResElts) {
1871         for (unsigned j = 0; j != CurIdx; ++j) {
1872           // If the current vector initializer is a shuffle with undef, merge
1873           // this shuffle directly into it.
1874           if (VIsUndefShuffle) {
1875             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1876                                       CGF.Int32Ty));
1877           } else {
1878             Args.push_back(Builder.getInt32(j));
1879           }
1880         }
1881         for (unsigned j = 0, je = InitElts; j != je; ++j)
1882           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1883         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1884 
1885         if (VIsUndefShuffle)
1886           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1887 
1888         Init = SVOp;
1889       }
1890     }
1891 
1892     // Extend init to result vector length, and then shuffle its contribution
1893     // to the vector initializer into V.
1894     if (Args.empty()) {
1895       for (unsigned j = 0; j != InitElts; ++j)
1896         Args.push_back(Builder.getInt32(j));
1897       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1898       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1899       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1900                                          Mask, "vext");
1901 
1902       Args.clear();
1903       for (unsigned j = 0; j != CurIdx; ++j)
1904         Args.push_back(Builder.getInt32(j));
1905       for (unsigned j = 0; j != InitElts; ++j)
1906         Args.push_back(Builder.getInt32(j+Offset));
1907       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1908     }
1909 
1910     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1911     // merging subsequent shuffles into this one.
1912     if (CurIdx == 0)
1913       std::swap(V, Init);
1914     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1915     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1916     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1917     CurIdx += InitElts;
1918   }
1919 
1920   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1921   // Emit remaining default initializers.
1922   llvm::Type *EltTy = VType->getElementType();
1923 
1924   // Emit remaining default initializers
1925   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1926     Value *Idx = Builder.getInt32(CurIdx);
1927     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1928     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1929   }
1930   return V;
1931 }
1932 
1933 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1934   const Expr *E = CE->getSubExpr();
1935 
1936   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1937     return false;
1938 
1939   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1940     // We always assume that 'this' is never null.
1941     return false;
1942   }
1943 
1944   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1945     // And that glvalue casts are never null.
1946     if (ICE->getValueKind() != VK_RValue)
1947       return false;
1948   }
1949 
1950   return true;
1951 }
1952 
1953 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1954 // have to handle a more broad range of conversions than explicit casts, as they
1955 // handle things like function to ptr-to-function decay etc.
1956 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1957   Expr *E = CE->getSubExpr();
1958   QualType DestTy = CE->getType();
1959   CastKind Kind = CE->getCastKind();
1960 
1961   // These cases are generally not written to ignore the result of
1962   // evaluating their sub-expressions, so we clear this now.
1963   bool Ignored = TestAndClearIgnoreResultAssign();
1964 
1965   // Since almost all cast kinds apply to scalars, this switch doesn't have
1966   // a default case, so the compiler will warn on a missing case.  The cases
1967   // are in the same order as in the CastKind enum.
1968   switch (Kind) {
1969   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1970   case CK_BuiltinFnToFnPtr:
1971     llvm_unreachable("builtin functions are handled elsewhere");
1972 
1973   case CK_LValueBitCast:
1974   case CK_ObjCObjectLValueCast: {
1975     Address Addr = EmitLValue(E).getAddress();
1976     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1977     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1978     return EmitLoadOfLValue(LV, CE->getExprLoc());
1979   }
1980 
1981   case CK_LValueToRValueBitCast: {
1982     LValue SourceLVal = CGF.EmitLValue(E);
1983     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(),
1984                                                 CGF.ConvertTypeForMem(DestTy));
1985     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1986     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1987     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1988   }
1989 
1990   case CK_CPointerToObjCPointerCast:
1991   case CK_BlockPointerToObjCPointerCast:
1992   case CK_AnyPointerToBlockPointerCast:
1993   case CK_BitCast: {
1994     Value *Src = Visit(const_cast<Expr*>(E));
1995     llvm::Type *SrcTy = Src->getType();
1996     llvm::Type *DstTy = ConvertType(DestTy);
1997     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1998         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1999       llvm_unreachable("wrong cast for pointers in different address spaces"
2000                        "(must be an address space cast)!");
2001     }
2002 
2003     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2004       if (auto PT = DestTy->getAs<PointerType>())
2005         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2006                                       /*MayBeNull=*/true,
2007                                       CodeGenFunction::CFITCK_UnrelatedCast,
2008                                       CE->getBeginLoc());
2009     }
2010 
2011     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2012       const QualType SrcType = E->getType();
2013 
2014       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2015         // Casting to pointer that could carry dynamic information (provided by
2016         // invariant.group) requires launder.
2017         Src = Builder.CreateLaunderInvariantGroup(Src);
2018       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2019         // Casting to pointer that does not carry dynamic information (provided
2020         // by invariant.group) requires stripping it.  Note that we don't do it
2021         // if the source could not be dynamic type and destination could be
2022         // dynamic because dynamic information is already laundered.  It is
2023         // because launder(strip(src)) == launder(src), so there is no need to
2024         // add extra strip before launder.
2025         Src = Builder.CreateStripInvariantGroup(Src);
2026       }
2027     }
2028 
2029     // Update heapallocsite metadata when there is an explicit cast.
2030     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2031       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2032           CGF.getDebugInfo()->
2033               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2034 
2035     return Builder.CreateBitCast(Src, DstTy);
2036   }
2037   case CK_AddressSpaceConversion: {
2038     Expr::EvalResult Result;
2039     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2040         Result.Val.isNullPointer()) {
2041       // If E has side effect, it is emitted even if its final result is a
2042       // null pointer. In that case, a DCE pass should be able to
2043       // eliminate the useless instructions emitted during translating E.
2044       if (Result.HasSideEffects)
2045         Visit(E);
2046       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2047           ConvertType(DestTy)), DestTy);
2048     }
2049     // Since target may map different address spaces in AST to the same address
2050     // space, an address space conversion may end up as a bitcast.
2051     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2052         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2053         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2054   }
2055   case CK_AtomicToNonAtomic:
2056   case CK_NonAtomicToAtomic:
2057   case CK_NoOp:
2058   case CK_UserDefinedConversion:
2059     return Visit(const_cast<Expr*>(E));
2060 
2061   case CK_BaseToDerived: {
2062     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2063     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2064 
2065     Address Base = CGF.EmitPointerWithAlignment(E);
2066     Address Derived =
2067       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2068                                    CE->path_begin(), CE->path_end(),
2069                                    CGF.ShouldNullCheckClassCastValue(CE));
2070 
2071     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2072     // performed and the object is not of the derived type.
2073     if (CGF.sanitizePerformTypeCheck())
2074       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2075                         Derived.getPointer(), DestTy->getPointeeType());
2076 
2077     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2078       CGF.EmitVTablePtrCheckForCast(
2079           DestTy->getPointeeType(), Derived.getPointer(),
2080           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2081           CE->getBeginLoc());
2082 
2083     return Derived.getPointer();
2084   }
2085   case CK_UncheckedDerivedToBase:
2086   case CK_DerivedToBase: {
2087     // The EmitPointerWithAlignment path does this fine; just discard
2088     // the alignment.
2089     return CGF.EmitPointerWithAlignment(CE).getPointer();
2090   }
2091 
2092   case CK_Dynamic: {
2093     Address V = CGF.EmitPointerWithAlignment(E);
2094     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2095     return CGF.EmitDynamicCast(V, DCE);
2096   }
2097 
2098   case CK_ArrayToPointerDecay:
2099     return CGF.EmitArrayToPointerDecay(E).getPointer();
2100   case CK_FunctionToPointerDecay:
2101     return EmitLValue(E).getPointer();
2102 
2103   case CK_NullToPointer:
2104     if (MustVisitNullValue(E))
2105       CGF.EmitIgnoredExpr(E);
2106 
2107     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2108                               DestTy);
2109 
2110   case CK_NullToMemberPointer: {
2111     if (MustVisitNullValue(E))
2112       CGF.EmitIgnoredExpr(E);
2113 
2114     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2115     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2116   }
2117 
2118   case CK_ReinterpretMemberPointer:
2119   case CK_BaseToDerivedMemberPointer:
2120   case CK_DerivedToBaseMemberPointer: {
2121     Value *Src = Visit(E);
2122 
2123     // Note that the AST doesn't distinguish between checked and
2124     // unchecked member pointer conversions, so we always have to
2125     // implement checked conversions here.  This is inefficient when
2126     // actual control flow may be required in order to perform the
2127     // check, which it is for data member pointers (but not member
2128     // function pointers on Itanium and ARM).
2129     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2130   }
2131 
2132   case CK_ARCProduceObject:
2133     return CGF.EmitARCRetainScalarExpr(E);
2134   case CK_ARCConsumeObject:
2135     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2136   case CK_ARCReclaimReturnedObject:
2137     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2138   case CK_ARCExtendBlockObject:
2139     return CGF.EmitARCExtendBlockObject(E);
2140 
2141   case CK_CopyAndAutoreleaseBlockObject:
2142     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2143 
2144   case CK_FloatingRealToComplex:
2145   case CK_FloatingComplexCast:
2146   case CK_IntegralRealToComplex:
2147   case CK_IntegralComplexCast:
2148   case CK_IntegralComplexToFloatingComplex:
2149   case CK_FloatingComplexToIntegralComplex:
2150   case CK_ConstructorConversion:
2151   case CK_ToUnion:
2152     llvm_unreachable("scalar cast to non-scalar value");
2153 
2154   case CK_LValueToRValue:
2155     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2156     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2157     return Visit(const_cast<Expr*>(E));
2158 
2159   case CK_IntegralToPointer: {
2160     Value *Src = Visit(const_cast<Expr*>(E));
2161 
2162     // First, convert to the correct width so that we control the kind of
2163     // extension.
2164     auto DestLLVMTy = ConvertType(DestTy);
2165     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2166     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2167     llvm::Value* IntResult =
2168       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2169 
2170     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2171 
2172     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2173       // Going from integer to pointer that could be dynamic requires reloading
2174       // dynamic information from invariant.group.
2175       if (DestTy.mayBeDynamicClass())
2176         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2177     }
2178     return IntToPtr;
2179   }
2180   case CK_PointerToIntegral: {
2181     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2182     auto *PtrExpr = Visit(E);
2183 
2184     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2185       const QualType SrcType = E->getType();
2186 
2187       // Casting to integer requires stripping dynamic information as it does
2188       // not carries it.
2189       if (SrcType.mayBeDynamicClass())
2190         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2191     }
2192 
2193     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2194   }
2195   case CK_ToVoid: {
2196     CGF.EmitIgnoredExpr(E);
2197     return nullptr;
2198   }
2199   case CK_VectorSplat: {
2200     llvm::Type *DstTy = ConvertType(DestTy);
2201     Value *Elt = Visit(const_cast<Expr*>(E));
2202     // Splat the element across to all elements
2203     unsigned NumElements = DstTy->getVectorNumElements();
2204     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2205   }
2206 
2207   case CK_FixedPointCast:
2208     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2209                                 CE->getExprLoc());
2210 
2211   case CK_FixedPointToBoolean:
2212     assert(E->getType()->isFixedPointType() &&
2213            "Expected src type to be fixed point type");
2214     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2215     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2216                                 CE->getExprLoc());
2217 
2218   case CK_FixedPointToIntegral:
2219     assert(E->getType()->isFixedPointType() &&
2220            "Expected src type to be fixed point type");
2221     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2222     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2223                                 CE->getExprLoc());
2224 
2225   case CK_IntegralToFixedPoint:
2226     assert(E->getType()->isIntegerType() &&
2227            "Expected src type to be an integer");
2228     assert(DestTy->isFixedPointType() &&
2229            "Expected dest type to be fixed point type");
2230     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2231                                 CE->getExprLoc());
2232 
2233   case CK_IntegralCast: {
2234     ScalarConversionOpts Opts;
2235     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2236       if (!ICE->isPartOfExplicitCast())
2237         Opts = ScalarConversionOpts(CGF.SanOpts);
2238     }
2239     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2240                                 CE->getExprLoc(), Opts);
2241   }
2242   case CK_IntegralToFloating:
2243   case CK_FloatingToIntegral:
2244   case CK_FloatingCast:
2245     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2246                                 CE->getExprLoc());
2247   case CK_BooleanToSignedIntegral: {
2248     ScalarConversionOpts Opts;
2249     Opts.TreatBooleanAsSigned = true;
2250     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2251                                 CE->getExprLoc(), Opts);
2252   }
2253   case CK_IntegralToBoolean:
2254     return EmitIntToBoolConversion(Visit(E));
2255   case CK_PointerToBoolean:
2256     return EmitPointerToBoolConversion(Visit(E), E->getType());
2257   case CK_FloatingToBoolean:
2258     return EmitFloatToBoolConversion(Visit(E));
2259   case CK_MemberPointerToBoolean: {
2260     llvm::Value *MemPtr = Visit(E);
2261     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2262     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2263   }
2264 
2265   case CK_FloatingComplexToReal:
2266   case CK_IntegralComplexToReal:
2267     return CGF.EmitComplexExpr(E, false, true).first;
2268 
2269   case CK_FloatingComplexToBoolean:
2270   case CK_IntegralComplexToBoolean: {
2271     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2272 
2273     // TODO: kill this function off, inline appropriate case here
2274     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2275                                          CE->getExprLoc());
2276   }
2277 
2278   case CK_ZeroToOCLOpaqueType: {
2279     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2280             DestTy->isOCLIntelSubgroupAVCType()) &&
2281            "CK_ZeroToOCLEvent cast on non-event type");
2282     return llvm::Constant::getNullValue(ConvertType(DestTy));
2283   }
2284 
2285   case CK_IntToOCLSampler:
2286     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2287 
2288   } // end of switch
2289 
2290   llvm_unreachable("unknown scalar cast");
2291 }
2292 
2293 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2294   CodeGenFunction::StmtExprEvaluation eval(CGF);
2295   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2296                                            !E->getType()->isVoidType());
2297   if (!RetAlloca.isValid())
2298     return nullptr;
2299   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2300                               E->getExprLoc());
2301 }
2302 
2303 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2304   CGF.enterFullExpression(E);
2305   CodeGenFunction::RunCleanupsScope Scope(CGF);
2306   Value *V = Visit(E->getSubExpr());
2307   // Defend against dominance problems caused by jumps out of expression
2308   // evaluation through the shared cleanup block.
2309   Scope.ForceCleanup({&V});
2310   return V;
2311 }
2312 
2313 //===----------------------------------------------------------------------===//
2314 //                             Unary Operators
2315 //===----------------------------------------------------------------------===//
2316 
2317 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2318                                            llvm::Value *InVal, bool IsInc) {
2319   BinOpInfo BinOp;
2320   BinOp.LHS = InVal;
2321   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2322   BinOp.Ty = E->getType();
2323   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2324   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2325   BinOp.E = E;
2326   return BinOp;
2327 }
2328 
2329 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2330     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2331   llvm::Value *Amount =
2332       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2333   StringRef Name = IsInc ? "inc" : "dec";
2334   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2335   case LangOptions::SOB_Defined:
2336     return Builder.CreateAdd(InVal, Amount, Name);
2337   case LangOptions::SOB_Undefined:
2338     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2339       return Builder.CreateNSWAdd(InVal, Amount, Name);
2340     LLVM_FALLTHROUGH;
2341   case LangOptions::SOB_Trapping:
2342     if (!E->canOverflow())
2343       return Builder.CreateNSWAdd(InVal, Amount, Name);
2344     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2345   }
2346   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2347 }
2348 
2349 llvm::Value *
2350 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2351                                            bool isInc, bool isPre) {
2352 
2353   QualType type = E->getSubExpr()->getType();
2354   llvm::PHINode *atomicPHI = nullptr;
2355   llvm::Value *value;
2356   llvm::Value *input;
2357 
2358   int amount = (isInc ? 1 : -1);
2359   bool isSubtraction = !isInc;
2360 
2361   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2362     type = atomicTy->getValueType();
2363     if (isInc && type->isBooleanType()) {
2364       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2365       if (isPre) {
2366         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2367           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2368         return Builder.getTrue();
2369       }
2370       // For atomic bool increment, we just store true and return it for
2371       // preincrement, do an atomic swap with true for postincrement
2372       return Builder.CreateAtomicRMW(
2373           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2374           llvm::AtomicOrdering::SequentiallyConsistent);
2375     }
2376     // Special case for atomic increment / decrement on integers, emit
2377     // atomicrmw instructions.  We skip this if we want to be doing overflow
2378     // checking, and fall into the slow path with the atomic cmpxchg loop.
2379     if (!type->isBooleanType() && type->isIntegerType() &&
2380         !(type->isUnsignedIntegerType() &&
2381           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2382         CGF.getLangOpts().getSignedOverflowBehavior() !=
2383             LangOptions::SOB_Trapping) {
2384       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2385         llvm::AtomicRMWInst::Sub;
2386       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2387         llvm::Instruction::Sub;
2388       llvm::Value *amt = CGF.EmitToMemory(
2389           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2390       llvm::Value *old = Builder.CreateAtomicRMW(aop,
2391           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2392       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2393     }
2394     value = EmitLoadOfLValue(LV, E->getExprLoc());
2395     input = value;
2396     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2397     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2398     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2399     value = CGF.EmitToMemory(value, type);
2400     Builder.CreateBr(opBB);
2401     Builder.SetInsertPoint(opBB);
2402     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2403     atomicPHI->addIncoming(value, startBB);
2404     value = atomicPHI;
2405   } else {
2406     value = EmitLoadOfLValue(LV, E->getExprLoc());
2407     input = value;
2408   }
2409 
2410   // Special case of integer increment that we have to check first: bool++.
2411   // Due to promotion rules, we get:
2412   //   bool++ -> bool = bool + 1
2413   //          -> bool = (int)bool + 1
2414   //          -> bool = ((int)bool + 1 != 0)
2415   // An interesting aspect of this is that increment is always true.
2416   // Decrement does not have this property.
2417   if (isInc && type->isBooleanType()) {
2418     value = Builder.getTrue();
2419 
2420   // Most common case by far: integer increment.
2421   } else if (type->isIntegerType()) {
2422     // Note that signed integer inc/dec with width less than int can't
2423     // overflow because of promotion rules; we're just eliding a few steps here.
2424     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2425       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2426     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2427                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2428       value =
2429           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2430     } else {
2431       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2432       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2433     }
2434 
2435   // Next most common: pointer increment.
2436   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2437     QualType type = ptr->getPointeeType();
2438 
2439     // VLA types don't have constant size.
2440     if (const VariableArrayType *vla
2441           = CGF.getContext().getAsVariableArrayType(type)) {
2442       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2443       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2444       if (CGF.getLangOpts().isSignedOverflowDefined())
2445         value = Builder.CreateGEP(value, numElts, "vla.inc");
2446       else
2447         value = CGF.EmitCheckedInBoundsGEP(
2448             value, numElts, /*SignedIndices=*/false, isSubtraction,
2449             E->getExprLoc(), "vla.inc");
2450 
2451     // Arithmetic on function pointers (!) is just +-1.
2452     } else if (type->isFunctionType()) {
2453       llvm::Value *amt = Builder.getInt32(amount);
2454 
2455       value = CGF.EmitCastToVoidPtr(value);
2456       if (CGF.getLangOpts().isSignedOverflowDefined())
2457         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2458       else
2459         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2460                                            isSubtraction, E->getExprLoc(),
2461                                            "incdec.funcptr");
2462       value = Builder.CreateBitCast(value, input->getType());
2463 
2464     // For everything else, we can just do a simple increment.
2465     } else {
2466       llvm::Value *amt = Builder.getInt32(amount);
2467       if (CGF.getLangOpts().isSignedOverflowDefined())
2468         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2469       else
2470         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2471                                            isSubtraction, E->getExprLoc(),
2472                                            "incdec.ptr");
2473     }
2474 
2475   // Vector increment/decrement.
2476   } else if (type->isVectorType()) {
2477     if (type->hasIntegerRepresentation()) {
2478       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2479 
2480       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2481     } else {
2482       value = Builder.CreateFAdd(
2483                   value,
2484                   llvm::ConstantFP::get(value->getType(), amount),
2485                   isInc ? "inc" : "dec");
2486     }
2487 
2488   // Floating point.
2489   } else if (type->isRealFloatingType()) {
2490     // Add the inc/dec to the real part.
2491     llvm::Value *amt;
2492 
2493     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2494       // Another special case: half FP increment should be done via float
2495       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2496         value = Builder.CreateCall(
2497             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2498                                  CGF.CGM.FloatTy),
2499             input, "incdec.conv");
2500       } else {
2501         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2502       }
2503     }
2504 
2505     if (value->getType()->isFloatTy())
2506       amt = llvm::ConstantFP::get(VMContext,
2507                                   llvm::APFloat(static_cast<float>(amount)));
2508     else if (value->getType()->isDoubleTy())
2509       amt = llvm::ConstantFP::get(VMContext,
2510                                   llvm::APFloat(static_cast<double>(amount)));
2511     else {
2512       // Remaining types are Half, LongDouble or __float128. Convert from float.
2513       llvm::APFloat F(static_cast<float>(amount));
2514       bool ignored;
2515       const llvm::fltSemantics *FS;
2516       // Don't use getFloatTypeSemantics because Half isn't
2517       // necessarily represented using the "half" LLVM type.
2518       if (value->getType()->isFP128Ty())
2519         FS = &CGF.getTarget().getFloat128Format();
2520       else if (value->getType()->isHalfTy())
2521         FS = &CGF.getTarget().getHalfFormat();
2522       else
2523         FS = &CGF.getTarget().getLongDoubleFormat();
2524       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2525       amt = llvm::ConstantFP::get(VMContext, F);
2526     }
2527     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2528 
2529     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2530       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2531         value = Builder.CreateCall(
2532             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2533                                  CGF.CGM.FloatTy),
2534             value, "incdec.conv");
2535       } else {
2536         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2537       }
2538     }
2539 
2540   // Objective-C pointer types.
2541   } else {
2542     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2543     value = CGF.EmitCastToVoidPtr(value);
2544 
2545     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2546     if (!isInc) size = -size;
2547     llvm::Value *sizeValue =
2548       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2549 
2550     if (CGF.getLangOpts().isSignedOverflowDefined())
2551       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2552     else
2553       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2554                                          /*SignedIndices=*/false, isSubtraction,
2555                                          E->getExprLoc(), "incdec.objptr");
2556     value = Builder.CreateBitCast(value, input->getType());
2557   }
2558 
2559   if (atomicPHI) {
2560     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2561     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2562     auto Pair = CGF.EmitAtomicCompareExchange(
2563         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2564     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2565     llvm::Value *success = Pair.second;
2566     atomicPHI->addIncoming(old, curBlock);
2567     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2568     Builder.SetInsertPoint(contBB);
2569     return isPre ? value : input;
2570   }
2571 
2572   // Store the updated result through the lvalue.
2573   if (LV.isBitField())
2574     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2575   else
2576     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2577 
2578   // If this is a postinc, return the value read from memory, otherwise use the
2579   // updated value.
2580   return isPre ? value : input;
2581 }
2582 
2583 
2584 
2585 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2586   TestAndClearIgnoreResultAssign();
2587   Value *Op = Visit(E->getSubExpr());
2588 
2589   // Generate a unary FNeg for FP ops.
2590   if (Op->getType()->isFPOrFPVectorTy())
2591     return Builder.CreateFNeg(Op, "fneg");
2592 
2593   // Emit unary minus with EmitSub so we handle overflow cases etc.
2594   BinOpInfo BinOp;
2595   BinOp.RHS = Op;
2596   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2597   BinOp.Ty = E->getType();
2598   BinOp.Opcode = BO_Sub;
2599   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2600   BinOp.E = E;
2601   return EmitSub(BinOp);
2602 }
2603 
2604 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2605   TestAndClearIgnoreResultAssign();
2606   Value *Op = Visit(E->getSubExpr());
2607   return Builder.CreateNot(Op, "neg");
2608 }
2609 
2610 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2611   // Perform vector logical not on comparison with zero vector.
2612   if (E->getType()->isExtVectorType()) {
2613     Value *Oper = Visit(E->getSubExpr());
2614     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2615     Value *Result;
2616     if (Oper->getType()->isFPOrFPVectorTy())
2617       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2618     else
2619       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2620     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2621   }
2622 
2623   // Compare operand to zero.
2624   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2625 
2626   // Invert value.
2627   // TODO: Could dynamically modify easy computations here.  For example, if
2628   // the operand is an icmp ne, turn into icmp eq.
2629   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2630 
2631   // ZExt result to the expr type.
2632   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2633 }
2634 
2635 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2636   // Try folding the offsetof to a constant.
2637   Expr::EvalResult EVResult;
2638   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2639     llvm::APSInt Value = EVResult.Val.getInt();
2640     return Builder.getInt(Value);
2641   }
2642 
2643   // Loop over the components of the offsetof to compute the value.
2644   unsigned n = E->getNumComponents();
2645   llvm::Type* ResultType = ConvertType(E->getType());
2646   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2647   QualType CurrentType = E->getTypeSourceInfo()->getType();
2648   for (unsigned i = 0; i != n; ++i) {
2649     OffsetOfNode ON = E->getComponent(i);
2650     llvm::Value *Offset = nullptr;
2651     switch (ON.getKind()) {
2652     case OffsetOfNode::Array: {
2653       // Compute the index
2654       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2655       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2656       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2657       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2658 
2659       // Save the element type
2660       CurrentType =
2661           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2662 
2663       // Compute the element size
2664       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2665           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2666 
2667       // Multiply out to compute the result
2668       Offset = Builder.CreateMul(Idx, ElemSize);
2669       break;
2670     }
2671 
2672     case OffsetOfNode::Field: {
2673       FieldDecl *MemberDecl = ON.getField();
2674       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2675       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2676 
2677       // Compute the index of the field in its parent.
2678       unsigned i = 0;
2679       // FIXME: It would be nice if we didn't have to loop here!
2680       for (RecordDecl::field_iterator Field = RD->field_begin(),
2681                                       FieldEnd = RD->field_end();
2682            Field != FieldEnd; ++Field, ++i) {
2683         if (*Field == MemberDecl)
2684           break;
2685       }
2686       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2687 
2688       // Compute the offset to the field
2689       int64_t OffsetInt = RL.getFieldOffset(i) /
2690                           CGF.getContext().getCharWidth();
2691       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2692 
2693       // Save the element type.
2694       CurrentType = MemberDecl->getType();
2695       break;
2696     }
2697 
2698     case OffsetOfNode::Identifier:
2699       llvm_unreachable("dependent __builtin_offsetof");
2700 
2701     case OffsetOfNode::Base: {
2702       if (ON.getBase()->isVirtual()) {
2703         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2704         continue;
2705       }
2706 
2707       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2708       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2709 
2710       // Save the element type.
2711       CurrentType = ON.getBase()->getType();
2712 
2713       // Compute the offset to the base.
2714       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2715       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2716       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2717       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2718       break;
2719     }
2720     }
2721     Result = Builder.CreateAdd(Result, Offset);
2722   }
2723   return Result;
2724 }
2725 
2726 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2727 /// argument of the sizeof expression as an integer.
2728 Value *
2729 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2730                               const UnaryExprOrTypeTraitExpr *E) {
2731   QualType TypeToSize = E->getTypeOfArgument();
2732   if (E->getKind() == UETT_SizeOf) {
2733     if (const VariableArrayType *VAT =
2734           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2735       if (E->isArgumentType()) {
2736         // sizeof(type) - make sure to emit the VLA size.
2737         CGF.EmitVariablyModifiedType(TypeToSize);
2738       } else {
2739         // C99 6.5.3.4p2: If the argument is an expression of type
2740         // VLA, it is evaluated.
2741         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2742       }
2743 
2744       auto VlaSize = CGF.getVLASize(VAT);
2745       llvm::Value *size = VlaSize.NumElts;
2746 
2747       // Scale the number of non-VLA elements by the non-VLA element size.
2748       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2749       if (!eltSize.isOne())
2750         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2751 
2752       return size;
2753     }
2754   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2755     auto Alignment =
2756         CGF.getContext()
2757             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2758                 E->getTypeOfArgument()->getPointeeType()))
2759             .getQuantity();
2760     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2761   }
2762 
2763   // If this isn't sizeof(vla), the result must be constant; use the constant
2764   // folding logic so we don't have to duplicate it here.
2765   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2766 }
2767 
2768 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2769   Expr *Op = E->getSubExpr();
2770   if (Op->getType()->isAnyComplexType()) {
2771     // If it's an l-value, load through the appropriate subobject l-value.
2772     // Note that we have to ask E because Op might be an l-value that
2773     // this won't work for, e.g. an Obj-C property.
2774     if (E->isGLValue())
2775       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2776                                   E->getExprLoc()).getScalarVal();
2777 
2778     // Otherwise, calculate and project.
2779     return CGF.EmitComplexExpr(Op, false, true).first;
2780   }
2781 
2782   return Visit(Op);
2783 }
2784 
2785 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2786   Expr *Op = E->getSubExpr();
2787   if (Op->getType()->isAnyComplexType()) {
2788     // If it's an l-value, load through the appropriate subobject l-value.
2789     // Note that we have to ask E because Op might be an l-value that
2790     // this won't work for, e.g. an Obj-C property.
2791     if (Op->isGLValue())
2792       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2793                                   E->getExprLoc()).getScalarVal();
2794 
2795     // Otherwise, calculate and project.
2796     return CGF.EmitComplexExpr(Op, true, false).second;
2797   }
2798 
2799   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2800   // effects are evaluated, but not the actual value.
2801   if (Op->isGLValue())
2802     CGF.EmitLValue(Op);
2803   else
2804     CGF.EmitScalarExpr(Op, true);
2805   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2806 }
2807 
2808 //===----------------------------------------------------------------------===//
2809 //                           Binary Operators
2810 //===----------------------------------------------------------------------===//
2811 
2812 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2813   TestAndClearIgnoreResultAssign();
2814   BinOpInfo Result;
2815   Result.LHS = Visit(E->getLHS());
2816   Result.RHS = Visit(E->getRHS());
2817   Result.Ty  = E->getType();
2818   Result.Opcode = E->getOpcode();
2819   Result.FPFeatures = E->getFPFeatures();
2820   Result.E = E;
2821   return Result;
2822 }
2823 
2824 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2825                                               const CompoundAssignOperator *E,
2826                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2827                                                    Value *&Result) {
2828   QualType LHSTy = E->getLHS()->getType();
2829   BinOpInfo OpInfo;
2830 
2831   if (E->getComputationResultType()->isAnyComplexType())
2832     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2833 
2834   // Emit the RHS first.  __block variables need to have the rhs evaluated
2835   // first, plus this should improve codegen a little.
2836   OpInfo.RHS = Visit(E->getRHS());
2837   OpInfo.Ty = E->getComputationResultType();
2838   OpInfo.Opcode = E->getOpcode();
2839   OpInfo.FPFeatures = E->getFPFeatures();
2840   OpInfo.E = E;
2841   // Load/convert the LHS.
2842   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2843 
2844   llvm::PHINode *atomicPHI = nullptr;
2845   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2846     QualType type = atomicTy->getValueType();
2847     if (!type->isBooleanType() && type->isIntegerType() &&
2848         !(type->isUnsignedIntegerType() &&
2849           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2850         CGF.getLangOpts().getSignedOverflowBehavior() !=
2851             LangOptions::SOB_Trapping) {
2852       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2853       switch (OpInfo.Opcode) {
2854         // We don't have atomicrmw operands for *, %, /, <<, >>
2855         case BO_MulAssign: case BO_DivAssign:
2856         case BO_RemAssign:
2857         case BO_ShlAssign:
2858         case BO_ShrAssign:
2859           break;
2860         case BO_AddAssign:
2861           aop = llvm::AtomicRMWInst::Add;
2862           break;
2863         case BO_SubAssign:
2864           aop = llvm::AtomicRMWInst::Sub;
2865           break;
2866         case BO_AndAssign:
2867           aop = llvm::AtomicRMWInst::And;
2868           break;
2869         case BO_XorAssign:
2870           aop = llvm::AtomicRMWInst::Xor;
2871           break;
2872         case BO_OrAssign:
2873           aop = llvm::AtomicRMWInst::Or;
2874           break;
2875         default:
2876           llvm_unreachable("Invalid compound assignment type");
2877       }
2878       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2879         llvm::Value *amt = CGF.EmitToMemory(
2880             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2881                                  E->getExprLoc()),
2882             LHSTy);
2883         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2884             llvm::AtomicOrdering::SequentiallyConsistent);
2885         return LHSLV;
2886       }
2887     }
2888     // FIXME: For floating point types, we should be saving and restoring the
2889     // floating point environment in the loop.
2890     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2891     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2892     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2893     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2894     Builder.CreateBr(opBB);
2895     Builder.SetInsertPoint(opBB);
2896     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2897     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2898     OpInfo.LHS = atomicPHI;
2899   }
2900   else
2901     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2902 
2903   SourceLocation Loc = E->getExprLoc();
2904   OpInfo.LHS =
2905       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2906 
2907   // Expand the binary operator.
2908   Result = (this->*Func)(OpInfo);
2909 
2910   // Convert the result back to the LHS type,
2911   // potentially with Implicit Conversion sanitizer check.
2912   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2913                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2914 
2915   if (atomicPHI) {
2916     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2917     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2918     auto Pair = CGF.EmitAtomicCompareExchange(
2919         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2920     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2921     llvm::Value *success = Pair.second;
2922     atomicPHI->addIncoming(old, curBlock);
2923     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2924     Builder.SetInsertPoint(contBB);
2925     return LHSLV;
2926   }
2927 
2928   // Store the result value into the LHS lvalue. Bit-fields are handled
2929   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2930   // 'An assignment expression has the value of the left operand after the
2931   // assignment...'.
2932   if (LHSLV.isBitField())
2933     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2934   else
2935     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2936 
2937   return LHSLV;
2938 }
2939 
2940 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2941                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2942   bool Ignore = TestAndClearIgnoreResultAssign();
2943   Value *RHS = nullptr;
2944   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2945 
2946   // If the result is clearly ignored, return now.
2947   if (Ignore)
2948     return nullptr;
2949 
2950   // The result of an assignment in C is the assigned r-value.
2951   if (!CGF.getLangOpts().CPlusPlus)
2952     return RHS;
2953 
2954   // If the lvalue is non-volatile, return the computed value of the assignment.
2955   if (!LHS.isVolatileQualified())
2956     return RHS;
2957 
2958   // Otherwise, reload the value.
2959   return EmitLoadOfLValue(LHS, E->getExprLoc());
2960 }
2961 
2962 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2963     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2964   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2965 
2966   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2967     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2968                                     SanitizerKind::IntegerDivideByZero));
2969   }
2970 
2971   const auto *BO = cast<BinaryOperator>(Ops.E);
2972   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2973       Ops.Ty->hasSignedIntegerRepresentation() &&
2974       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2975       Ops.mayHaveIntegerOverflow()) {
2976     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2977 
2978     llvm::Value *IntMin =
2979       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2980     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2981 
2982     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2983     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2984     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2985     Checks.push_back(
2986         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2987   }
2988 
2989   if (Checks.size() > 0)
2990     EmitBinOpCheck(Checks, Ops);
2991 }
2992 
2993 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2994   {
2995     CodeGenFunction::SanitizerScope SanScope(&CGF);
2996     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2997          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2998         Ops.Ty->isIntegerType() &&
2999         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3000       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3001       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3002     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3003                Ops.Ty->isRealFloatingType() &&
3004                Ops.mayHaveFloatDivisionByZero()) {
3005       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3006       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3007       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3008                      Ops);
3009     }
3010   }
3011 
3012   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3013     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3014     if (CGF.getLangOpts().OpenCL &&
3015         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3016       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3017       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3018       // build option allows an application to specify that single precision
3019       // floating-point divide (x/y and 1/x) and sqrt used in the program
3020       // source are correctly rounded.
3021       llvm::Type *ValTy = Val->getType();
3022       if (ValTy->isFloatTy() ||
3023           (isa<llvm::VectorType>(ValTy) &&
3024            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3025         CGF.SetFPAccuracy(Val, 2.5);
3026     }
3027     return Val;
3028   }
3029   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3030     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3031   else
3032     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3033 }
3034 
3035 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3036   // Rem in C can't be a floating point type: C99 6.5.5p2.
3037   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3038        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3039       Ops.Ty->isIntegerType() &&
3040       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3041     CodeGenFunction::SanitizerScope SanScope(&CGF);
3042     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3043     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3044   }
3045 
3046   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3047     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3048   else
3049     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3050 }
3051 
3052 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3053   unsigned IID;
3054   unsigned OpID = 0;
3055 
3056   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3057   switch (Ops.Opcode) {
3058   case BO_Add:
3059   case BO_AddAssign:
3060     OpID = 1;
3061     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3062                      llvm::Intrinsic::uadd_with_overflow;
3063     break;
3064   case BO_Sub:
3065   case BO_SubAssign:
3066     OpID = 2;
3067     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3068                      llvm::Intrinsic::usub_with_overflow;
3069     break;
3070   case BO_Mul:
3071   case BO_MulAssign:
3072     OpID = 3;
3073     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3074                      llvm::Intrinsic::umul_with_overflow;
3075     break;
3076   default:
3077     llvm_unreachable("Unsupported operation for overflow detection");
3078   }
3079   OpID <<= 1;
3080   if (isSigned)
3081     OpID |= 1;
3082 
3083   CodeGenFunction::SanitizerScope SanScope(&CGF);
3084   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3085 
3086   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3087 
3088   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3089   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3090   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3091 
3092   // Handle overflow with llvm.trap if no custom handler has been specified.
3093   const std::string *handlerName =
3094     &CGF.getLangOpts().OverflowHandler;
3095   if (handlerName->empty()) {
3096     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3097     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3098     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3099       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3100       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3101                               : SanitizerKind::UnsignedIntegerOverflow;
3102       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3103     } else
3104       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3105     return result;
3106   }
3107 
3108   // Branch in case of overflow.
3109   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3110   llvm::BasicBlock *continueBB =
3111       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3112   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3113 
3114   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3115 
3116   // If an overflow handler is set, then we want to call it and then use its
3117   // result, if it returns.
3118   Builder.SetInsertPoint(overflowBB);
3119 
3120   // Get the overflow handler.
3121   llvm::Type *Int8Ty = CGF.Int8Ty;
3122   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3123   llvm::FunctionType *handlerTy =
3124       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3125   llvm::FunctionCallee handler =
3126       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3127 
3128   // Sign extend the args to 64-bit, so that we can use the same handler for
3129   // all types of overflow.
3130   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3131   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3132 
3133   // Call the handler with the two arguments, the operation, and the size of
3134   // the result.
3135   llvm::Value *handlerArgs[] = {
3136     lhs,
3137     rhs,
3138     Builder.getInt8(OpID),
3139     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3140   };
3141   llvm::Value *handlerResult =
3142     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3143 
3144   // Truncate the result back to the desired size.
3145   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3146   Builder.CreateBr(continueBB);
3147 
3148   Builder.SetInsertPoint(continueBB);
3149   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3150   phi->addIncoming(result, initialBB);
3151   phi->addIncoming(handlerResult, overflowBB);
3152 
3153   return phi;
3154 }
3155 
3156 /// Emit pointer + index arithmetic.
3157 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3158                                     const BinOpInfo &op,
3159                                     bool isSubtraction) {
3160   // Must have binary (not unary) expr here.  Unary pointer
3161   // increment/decrement doesn't use this path.
3162   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3163 
3164   Value *pointer = op.LHS;
3165   Expr *pointerOperand = expr->getLHS();
3166   Value *index = op.RHS;
3167   Expr *indexOperand = expr->getRHS();
3168 
3169   // In a subtraction, the LHS is always the pointer.
3170   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3171     std::swap(pointer, index);
3172     std::swap(pointerOperand, indexOperand);
3173   }
3174 
3175   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3176 
3177   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3178   auto &DL = CGF.CGM.getDataLayout();
3179   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3180 
3181   // Some versions of glibc and gcc use idioms (particularly in their malloc
3182   // routines) that add a pointer-sized integer (known to be a pointer value)
3183   // to a null pointer in order to cast the value back to an integer or as
3184   // part of a pointer alignment algorithm.  This is undefined behavior, but
3185   // we'd like to be able to compile programs that use it.
3186   //
3187   // Normally, we'd generate a GEP with a null-pointer base here in response
3188   // to that code, but it's also UB to dereference a pointer created that
3189   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3190   // generate a direct cast of the integer value to a pointer.
3191   //
3192   // The idiom (p = nullptr + N) is not met if any of the following are true:
3193   //
3194   //   The operation is subtraction.
3195   //   The index is not pointer-sized.
3196   //   The pointer type is not byte-sized.
3197   //
3198   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3199                                                        op.Opcode,
3200                                                        expr->getLHS(),
3201                                                        expr->getRHS()))
3202     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3203 
3204   if (width != DL.getTypeSizeInBits(PtrTy)) {
3205     // Zero-extend or sign-extend the pointer value according to
3206     // whether the index is signed or not.
3207     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3208                                       "idx.ext");
3209   }
3210 
3211   // If this is subtraction, negate the index.
3212   if (isSubtraction)
3213     index = CGF.Builder.CreateNeg(index, "idx.neg");
3214 
3215   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3216     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3217                         /*Accessed*/ false);
3218 
3219   const PointerType *pointerType
3220     = pointerOperand->getType()->getAs<PointerType>();
3221   if (!pointerType) {
3222     QualType objectType = pointerOperand->getType()
3223                                         ->castAs<ObjCObjectPointerType>()
3224                                         ->getPointeeType();
3225     llvm::Value *objectSize
3226       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3227 
3228     index = CGF.Builder.CreateMul(index, objectSize);
3229 
3230     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3231     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3232     return CGF.Builder.CreateBitCast(result, pointer->getType());
3233   }
3234 
3235   QualType elementType = pointerType->getPointeeType();
3236   if (const VariableArrayType *vla
3237         = CGF.getContext().getAsVariableArrayType(elementType)) {
3238     // The element count here is the total number of non-VLA elements.
3239     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3240 
3241     // Effectively, the multiply by the VLA size is part of the GEP.
3242     // GEP indexes are signed, and scaling an index isn't permitted to
3243     // signed-overflow, so we use the same semantics for our explicit
3244     // multiply.  We suppress this if overflow is not undefined behavior.
3245     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3246       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3247       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3248     } else {
3249       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3250       pointer =
3251           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3252                                      op.E->getExprLoc(), "add.ptr");
3253     }
3254     return pointer;
3255   }
3256 
3257   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3258   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3259   // future proof.
3260   if (elementType->isVoidType() || elementType->isFunctionType()) {
3261     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3262     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3263     return CGF.Builder.CreateBitCast(result, pointer->getType());
3264   }
3265 
3266   if (CGF.getLangOpts().isSignedOverflowDefined())
3267     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3268 
3269   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3270                                     op.E->getExprLoc(), "add.ptr");
3271 }
3272 
3273 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3274 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3275 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3276 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3277 // efficient operations.
3278 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3279                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3280                            bool negMul, bool negAdd) {
3281   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3282 
3283   Value *MulOp0 = MulOp->getOperand(0);
3284   Value *MulOp1 = MulOp->getOperand(1);
3285   if (negMul) {
3286     MulOp0 =
3287       Builder.CreateFSub(
3288         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3289         "neg");
3290   } else if (negAdd) {
3291     Addend =
3292       Builder.CreateFSub(
3293         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3294         "neg");
3295   }
3296 
3297   Value *FMulAdd = Builder.CreateCall(
3298       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3299       {MulOp0, MulOp1, Addend});
3300    MulOp->eraseFromParent();
3301 
3302    return FMulAdd;
3303 }
3304 
3305 // Check whether it would be legal to emit an fmuladd intrinsic call to
3306 // represent op and if so, build the fmuladd.
3307 //
3308 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3309 // Does NOT check the type of the operation - it's assumed that this function
3310 // will be called from contexts where it's known that the type is contractable.
3311 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3312                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3313                          bool isSub=false) {
3314 
3315   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3316           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3317          "Only fadd/fsub can be the root of an fmuladd.");
3318 
3319   // Check whether this op is marked as fusable.
3320   if (!op.FPFeatures.allowFPContractWithinStatement())
3321     return nullptr;
3322 
3323   // We have a potentially fusable op. Look for a mul on one of the operands.
3324   // Also, make sure that the mul result isn't used directly. In that case,
3325   // there's no point creating a muladd operation.
3326   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3327     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3328         LHSBinOp->use_empty())
3329       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3330   }
3331   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3332     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3333         RHSBinOp->use_empty())
3334       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3335   }
3336 
3337   return nullptr;
3338 }
3339 
3340 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3341   if (op.LHS->getType()->isPointerTy() ||
3342       op.RHS->getType()->isPointerTy())
3343     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3344 
3345   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3346     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3347     case LangOptions::SOB_Defined:
3348       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3349     case LangOptions::SOB_Undefined:
3350       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3351         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3352       LLVM_FALLTHROUGH;
3353     case LangOptions::SOB_Trapping:
3354       if (CanElideOverflowCheck(CGF.getContext(), op))
3355         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3356       return EmitOverflowCheckedBinOp(op);
3357     }
3358   }
3359 
3360   if (op.Ty->isUnsignedIntegerType() &&
3361       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3362       !CanElideOverflowCheck(CGF.getContext(), op))
3363     return EmitOverflowCheckedBinOp(op);
3364 
3365   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3366     // Try to form an fmuladd.
3367     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3368       return FMulAdd;
3369 
3370     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3371     return propagateFMFlags(V, op);
3372   }
3373 
3374   if (op.isFixedPointBinOp())
3375     return EmitFixedPointBinOp(op);
3376 
3377   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3378 }
3379 
3380 /// The resulting value must be calculated with exact precision, so the operands
3381 /// may not be the same type.
3382 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3383   using llvm::APSInt;
3384   using llvm::ConstantInt;
3385 
3386   const auto *BinOp = cast<BinaryOperator>(op.E);
3387 
3388   // The result is a fixed point type and at least one of the operands is fixed
3389   // point while the other is either fixed point or an int. This resulting type
3390   // should be determined by Sema::handleFixedPointConversions().
3391   QualType ResultTy = op.Ty;
3392   QualType LHSTy = BinOp->getLHS()->getType();
3393   QualType RHSTy = BinOp->getRHS()->getType();
3394   ASTContext &Ctx = CGF.getContext();
3395   Value *LHS = op.LHS;
3396   Value *RHS = op.RHS;
3397 
3398   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3399   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3400   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3401   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3402 
3403   // Convert the operands to the full precision type.
3404   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3405                                             BinOp->getExprLoc());
3406   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3407                                             BinOp->getExprLoc());
3408 
3409   // Perform the actual addition.
3410   Value *Result;
3411   switch (BinOp->getOpcode()) {
3412   case BO_Add: {
3413     if (ResultFixedSema.isSaturated()) {
3414       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3415                                     ? llvm::Intrinsic::sadd_sat
3416                                     : llvm::Intrinsic::uadd_sat;
3417       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3418     } else {
3419       Result = Builder.CreateAdd(FullLHS, FullRHS);
3420     }
3421     break;
3422   }
3423   case BO_Sub: {
3424     if (ResultFixedSema.isSaturated()) {
3425       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3426                                     ? llvm::Intrinsic::ssub_sat
3427                                     : llvm::Intrinsic::usub_sat;
3428       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3429     } else {
3430       Result = Builder.CreateSub(FullLHS, FullRHS);
3431     }
3432     break;
3433   }
3434   case BO_LT:
3435     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3436                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3437   case BO_GT:
3438     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3439                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3440   case BO_LE:
3441     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3442                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3443   case BO_GE:
3444     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3445                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3446   case BO_EQ:
3447     // For equality operations, we assume any padding bits on unsigned types are
3448     // zero'd out. They could be overwritten through non-saturating operations
3449     // that cause overflow, but this leads to undefined behavior.
3450     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3451   case BO_NE:
3452     return Builder.CreateICmpNE(FullLHS, FullRHS);
3453   case BO_Mul:
3454   case BO_Div:
3455   case BO_Shl:
3456   case BO_Shr:
3457   case BO_Cmp:
3458   case BO_LAnd:
3459   case BO_LOr:
3460   case BO_MulAssign:
3461   case BO_DivAssign:
3462   case BO_AddAssign:
3463   case BO_SubAssign:
3464   case BO_ShlAssign:
3465   case BO_ShrAssign:
3466     llvm_unreachable("Found unimplemented fixed point binary operation");
3467   case BO_PtrMemD:
3468   case BO_PtrMemI:
3469   case BO_Rem:
3470   case BO_Xor:
3471   case BO_And:
3472   case BO_Or:
3473   case BO_Assign:
3474   case BO_RemAssign:
3475   case BO_AndAssign:
3476   case BO_XorAssign:
3477   case BO_OrAssign:
3478   case BO_Comma:
3479     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3480   }
3481 
3482   // Convert to the result type.
3483   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3484                                   BinOp->getExprLoc());
3485 }
3486 
3487 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3488   // The LHS is always a pointer if either side is.
3489   if (!op.LHS->getType()->isPointerTy()) {
3490     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3491       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3492       case LangOptions::SOB_Defined:
3493         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3494       case LangOptions::SOB_Undefined:
3495         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3496           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3497         LLVM_FALLTHROUGH;
3498       case LangOptions::SOB_Trapping:
3499         if (CanElideOverflowCheck(CGF.getContext(), op))
3500           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3501         return EmitOverflowCheckedBinOp(op);
3502       }
3503     }
3504 
3505     if (op.Ty->isUnsignedIntegerType() &&
3506         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3507         !CanElideOverflowCheck(CGF.getContext(), op))
3508       return EmitOverflowCheckedBinOp(op);
3509 
3510     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3511       // Try to form an fmuladd.
3512       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3513         return FMulAdd;
3514       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3515       return propagateFMFlags(V, op);
3516     }
3517 
3518     if (op.isFixedPointBinOp())
3519       return EmitFixedPointBinOp(op);
3520 
3521     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3522   }
3523 
3524   // If the RHS is not a pointer, then we have normal pointer
3525   // arithmetic.
3526   if (!op.RHS->getType()->isPointerTy())
3527     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3528 
3529   // Otherwise, this is a pointer subtraction.
3530 
3531   // Do the raw subtraction part.
3532   llvm::Value *LHS
3533     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3534   llvm::Value *RHS
3535     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3536   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3537 
3538   // Okay, figure out the element size.
3539   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3540   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3541 
3542   llvm::Value *divisor = nullptr;
3543 
3544   // For a variable-length array, this is going to be non-constant.
3545   if (const VariableArrayType *vla
3546         = CGF.getContext().getAsVariableArrayType(elementType)) {
3547     auto VlaSize = CGF.getVLASize(vla);
3548     elementType = VlaSize.Type;
3549     divisor = VlaSize.NumElts;
3550 
3551     // Scale the number of non-VLA elements by the non-VLA element size.
3552     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3553     if (!eltSize.isOne())
3554       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3555 
3556   // For everything elese, we can just compute it, safe in the
3557   // assumption that Sema won't let anything through that we can't
3558   // safely compute the size of.
3559   } else {
3560     CharUnits elementSize;
3561     // Handle GCC extension for pointer arithmetic on void* and
3562     // function pointer types.
3563     if (elementType->isVoidType() || elementType->isFunctionType())
3564       elementSize = CharUnits::One();
3565     else
3566       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3567 
3568     // Don't even emit the divide for element size of 1.
3569     if (elementSize.isOne())
3570       return diffInChars;
3571 
3572     divisor = CGF.CGM.getSize(elementSize);
3573   }
3574 
3575   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3576   // pointer difference in C is only defined in the case where both operands
3577   // are pointing to elements of an array.
3578   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3579 }
3580 
3581 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3582   llvm::IntegerType *Ty;
3583   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3584     Ty = cast<llvm::IntegerType>(VT->getElementType());
3585   else
3586     Ty = cast<llvm::IntegerType>(LHS->getType());
3587   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3588 }
3589 
3590 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3591   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3592   // RHS to the same size as the LHS.
3593   Value *RHS = Ops.RHS;
3594   if (Ops.LHS->getType() != RHS->getType())
3595     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3596 
3597   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3598                       Ops.Ty->hasSignedIntegerRepresentation() &&
3599                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3600                       !CGF.getLangOpts().CPlusPlus2a;
3601   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3602   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3603   if (CGF.getLangOpts().OpenCL)
3604     RHS =
3605         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3606   else if ((SanitizeBase || SanitizeExponent) &&
3607            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3608     CodeGenFunction::SanitizerScope SanScope(&CGF);
3609     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3610     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3611     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3612 
3613     if (SanitizeExponent) {
3614       Checks.push_back(
3615           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3616     }
3617 
3618     if (SanitizeBase) {
3619       // Check whether we are shifting any non-zero bits off the top of the
3620       // integer. We only emit this check if exponent is valid - otherwise
3621       // instructions below will have undefined behavior themselves.
3622       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3623       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3624       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3625       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3626       llvm::Value *PromotedWidthMinusOne =
3627           (RHS == Ops.RHS) ? WidthMinusOne
3628                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3629       CGF.EmitBlock(CheckShiftBase);
3630       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3631           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3632                                      /*NUW*/ true, /*NSW*/ true),
3633           "shl.check");
3634       if (CGF.getLangOpts().CPlusPlus) {
3635         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3636         // Under C++11's rules, shifting a 1 bit into the sign bit is
3637         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3638         // define signed left shifts, so we use the C99 and C++11 rules there).
3639         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3640         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3641       }
3642       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3643       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3644       CGF.EmitBlock(Cont);
3645       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3646       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3647       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3648       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3649     }
3650 
3651     assert(!Checks.empty());
3652     EmitBinOpCheck(Checks, Ops);
3653   }
3654 
3655   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3656 }
3657 
3658 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3659   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3660   // RHS to the same size as the LHS.
3661   Value *RHS = Ops.RHS;
3662   if (Ops.LHS->getType() != RHS->getType())
3663     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3664 
3665   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3666   if (CGF.getLangOpts().OpenCL)
3667     RHS =
3668         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3669   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3670            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3671     CodeGenFunction::SanitizerScope SanScope(&CGF);
3672     llvm::Value *Valid =
3673         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3674     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3675   }
3676 
3677   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3678     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3679   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3680 }
3681 
3682 enum IntrinsicType { VCMPEQ, VCMPGT };
3683 // return corresponding comparison intrinsic for given vector type
3684 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3685                                         BuiltinType::Kind ElemKind) {
3686   switch (ElemKind) {
3687   default: llvm_unreachable("unexpected element type");
3688   case BuiltinType::Char_U:
3689   case BuiltinType::UChar:
3690     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3691                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3692   case BuiltinType::Char_S:
3693   case BuiltinType::SChar:
3694     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3695                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3696   case BuiltinType::UShort:
3697     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3698                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3699   case BuiltinType::Short:
3700     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3701                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3702   case BuiltinType::UInt:
3703     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3704                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3705   case BuiltinType::Int:
3706     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3707                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3708   case BuiltinType::ULong:
3709   case BuiltinType::ULongLong:
3710     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3711                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3712   case BuiltinType::Long:
3713   case BuiltinType::LongLong:
3714     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3715                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3716   case BuiltinType::Float:
3717     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3718                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3719   case BuiltinType::Double:
3720     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3721                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3722   }
3723 }
3724 
3725 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3726                                       llvm::CmpInst::Predicate UICmpOpc,
3727                                       llvm::CmpInst::Predicate SICmpOpc,
3728                                       llvm::CmpInst::Predicate FCmpOpc) {
3729   TestAndClearIgnoreResultAssign();
3730   Value *Result;
3731   QualType LHSTy = E->getLHS()->getType();
3732   QualType RHSTy = E->getRHS()->getType();
3733   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3734     assert(E->getOpcode() == BO_EQ ||
3735            E->getOpcode() == BO_NE);
3736     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3737     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3738     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3739                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3740   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3741     BinOpInfo BOInfo = EmitBinOps(E);
3742     Value *LHS = BOInfo.LHS;
3743     Value *RHS = BOInfo.RHS;
3744 
3745     // If AltiVec, the comparison results in a numeric type, so we use
3746     // intrinsics comparing vectors and giving 0 or 1 as a result
3747     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3748       // constants for mapping CR6 register bits to predicate result
3749       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3750 
3751       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3752 
3753       // in several cases vector arguments order will be reversed
3754       Value *FirstVecArg = LHS,
3755             *SecondVecArg = RHS;
3756 
3757       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3758       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3759       BuiltinType::Kind ElementKind = BTy->getKind();
3760 
3761       switch(E->getOpcode()) {
3762       default: llvm_unreachable("is not a comparison operation");
3763       case BO_EQ:
3764         CR6 = CR6_LT;
3765         ID = GetIntrinsic(VCMPEQ, ElementKind);
3766         break;
3767       case BO_NE:
3768         CR6 = CR6_EQ;
3769         ID = GetIntrinsic(VCMPEQ, ElementKind);
3770         break;
3771       case BO_LT:
3772         CR6 = CR6_LT;
3773         ID = GetIntrinsic(VCMPGT, ElementKind);
3774         std::swap(FirstVecArg, SecondVecArg);
3775         break;
3776       case BO_GT:
3777         CR6 = CR6_LT;
3778         ID = GetIntrinsic(VCMPGT, ElementKind);
3779         break;
3780       case BO_LE:
3781         if (ElementKind == BuiltinType::Float) {
3782           CR6 = CR6_LT;
3783           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3784           std::swap(FirstVecArg, SecondVecArg);
3785         }
3786         else {
3787           CR6 = CR6_EQ;
3788           ID = GetIntrinsic(VCMPGT, ElementKind);
3789         }
3790         break;
3791       case BO_GE:
3792         if (ElementKind == BuiltinType::Float) {
3793           CR6 = CR6_LT;
3794           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3795         }
3796         else {
3797           CR6 = CR6_EQ;
3798           ID = GetIntrinsic(VCMPGT, ElementKind);
3799           std::swap(FirstVecArg, SecondVecArg);
3800         }
3801         break;
3802       }
3803 
3804       Value *CR6Param = Builder.getInt32(CR6);
3805       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3806       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3807 
3808       // The result type of intrinsic may not be same as E->getType().
3809       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3810       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3811       // do nothing, if ResultTy is not i1 at the same time, it will cause
3812       // crash later.
3813       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3814       if (ResultTy->getBitWidth() > 1 &&
3815           E->getType() == CGF.getContext().BoolTy)
3816         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3817       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3818                                   E->getExprLoc());
3819     }
3820 
3821     if (BOInfo.isFixedPointBinOp()) {
3822       Result = EmitFixedPointBinOp(BOInfo);
3823     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3824       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3825     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3826       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3827     } else {
3828       // Unsigned integers and pointers.
3829 
3830       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3831           !isa<llvm::ConstantPointerNull>(LHS) &&
3832           !isa<llvm::ConstantPointerNull>(RHS)) {
3833 
3834         // Dynamic information is required to be stripped for comparisons,
3835         // because it could leak the dynamic information.  Based on comparisons
3836         // of pointers to dynamic objects, the optimizer can replace one pointer
3837         // with another, which might be incorrect in presence of invariant
3838         // groups. Comparison with null is safe because null does not carry any
3839         // dynamic information.
3840         if (LHSTy.mayBeDynamicClass())
3841           LHS = Builder.CreateStripInvariantGroup(LHS);
3842         if (RHSTy.mayBeDynamicClass())
3843           RHS = Builder.CreateStripInvariantGroup(RHS);
3844       }
3845 
3846       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3847     }
3848 
3849     // If this is a vector comparison, sign extend the result to the appropriate
3850     // vector integer type and return it (don't convert to bool).
3851     if (LHSTy->isVectorType())
3852       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3853 
3854   } else {
3855     // Complex Comparison: can only be an equality comparison.
3856     CodeGenFunction::ComplexPairTy LHS, RHS;
3857     QualType CETy;
3858     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3859       LHS = CGF.EmitComplexExpr(E->getLHS());
3860       CETy = CTy->getElementType();
3861     } else {
3862       LHS.first = Visit(E->getLHS());
3863       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3864       CETy = LHSTy;
3865     }
3866     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3867       RHS = CGF.EmitComplexExpr(E->getRHS());
3868       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3869                                                      CTy->getElementType()) &&
3870              "The element types must always match.");
3871       (void)CTy;
3872     } else {
3873       RHS.first = Visit(E->getRHS());
3874       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3875       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3876              "The element types must always match.");
3877     }
3878 
3879     Value *ResultR, *ResultI;
3880     if (CETy->isRealFloatingType()) {
3881       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3882       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3883     } else {
3884       // Complex comparisons can only be equality comparisons.  As such, signed
3885       // and unsigned opcodes are the same.
3886       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3887       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3888     }
3889 
3890     if (E->getOpcode() == BO_EQ) {
3891       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3892     } else {
3893       assert(E->getOpcode() == BO_NE &&
3894              "Complex comparison other than == or != ?");
3895       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3896     }
3897   }
3898 
3899   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3900                               E->getExprLoc());
3901 }
3902 
3903 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3904   bool Ignore = TestAndClearIgnoreResultAssign();
3905 
3906   Value *RHS;
3907   LValue LHS;
3908 
3909   switch (E->getLHS()->getType().getObjCLifetime()) {
3910   case Qualifiers::OCL_Strong:
3911     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3912     break;
3913 
3914   case Qualifiers::OCL_Autoreleasing:
3915     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3916     break;
3917 
3918   case Qualifiers::OCL_ExplicitNone:
3919     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3920     break;
3921 
3922   case Qualifiers::OCL_Weak:
3923     RHS = Visit(E->getRHS());
3924     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3925     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3926     break;
3927 
3928   case Qualifiers::OCL_None:
3929     // __block variables need to have the rhs evaluated first, plus
3930     // this should improve codegen just a little.
3931     RHS = Visit(E->getRHS());
3932     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3933 
3934     // Store the value into the LHS.  Bit-fields are handled specially
3935     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3936     // 'An assignment expression has the value of the left operand after
3937     // the assignment...'.
3938     if (LHS.isBitField()) {
3939       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3940     } else {
3941       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3942       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3943     }
3944   }
3945 
3946   // If the result is clearly ignored, return now.
3947   if (Ignore)
3948     return nullptr;
3949 
3950   // The result of an assignment in C is the assigned r-value.
3951   if (!CGF.getLangOpts().CPlusPlus)
3952     return RHS;
3953 
3954   // If the lvalue is non-volatile, return the computed value of the assignment.
3955   if (!LHS.isVolatileQualified())
3956     return RHS;
3957 
3958   // Otherwise, reload the value.
3959   return EmitLoadOfLValue(LHS, E->getExprLoc());
3960 }
3961 
3962 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3963   // Perform vector logical and on comparisons with zero vectors.
3964   if (E->getType()->isVectorType()) {
3965     CGF.incrementProfileCounter(E);
3966 
3967     Value *LHS = Visit(E->getLHS());
3968     Value *RHS = Visit(E->getRHS());
3969     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3970     if (LHS->getType()->isFPOrFPVectorTy()) {
3971       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3972       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3973     } else {
3974       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3975       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3976     }
3977     Value *And = Builder.CreateAnd(LHS, RHS);
3978     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3979   }
3980 
3981   llvm::Type *ResTy = ConvertType(E->getType());
3982 
3983   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3984   // If we have 1 && X, just emit X without inserting the control flow.
3985   bool LHSCondVal;
3986   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3987     if (LHSCondVal) { // If we have 1 && X, just emit X.
3988       CGF.incrementProfileCounter(E);
3989 
3990       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3991       // ZExt result to int or bool.
3992       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3993     }
3994 
3995     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3996     if (!CGF.ContainsLabel(E->getRHS()))
3997       return llvm::Constant::getNullValue(ResTy);
3998   }
3999 
4000   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4001   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4002 
4003   CodeGenFunction::ConditionalEvaluation eval(CGF);
4004 
4005   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4006   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4007                            CGF.getProfileCount(E->getRHS()));
4008 
4009   // Any edges into the ContBlock are now from an (indeterminate number of)
4010   // edges from this first condition.  All of these values will be false.  Start
4011   // setting up the PHI node in the Cont Block for this.
4012   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4013                                             "", ContBlock);
4014   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4015        PI != PE; ++PI)
4016     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4017 
4018   eval.begin(CGF);
4019   CGF.EmitBlock(RHSBlock);
4020   CGF.incrementProfileCounter(E);
4021   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4022   eval.end(CGF);
4023 
4024   // Reaquire the RHS block, as there may be subblocks inserted.
4025   RHSBlock = Builder.GetInsertBlock();
4026 
4027   // Emit an unconditional branch from this block to ContBlock.
4028   {
4029     // There is no need to emit line number for unconditional branch.
4030     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4031     CGF.EmitBlock(ContBlock);
4032   }
4033   // Insert an entry into the phi node for the edge with the value of RHSCond.
4034   PN->addIncoming(RHSCond, RHSBlock);
4035 
4036   // Artificial location to preserve the scope information
4037   {
4038     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4039     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4040   }
4041 
4042   // ZExt result to int.
4043   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4044 }
4045 
4046 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4047   // Perform vector logical or on comparisons with zero vectors.
4048   if (E->getType()->isVectorType()) {
4049     CGF.incrementProfileCounter(E);
4050 
4051     Value *LHS = Visit(E->getLHS());
4052     Value *RHS = Visit(E->getRHS());
4053     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4054     if (LHS->getType()->isFPOrFPVectorTy()) {
4055       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4056       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4057     } else {
4058       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4059       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4060     }
4061     Value *Or = Builder.CreateOr(LHS, RHS);
4062     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4063   }
4064 
4065   llvm::Type *ResTy = ConvertType(E->getType());
4066 
4067   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4068   // If we have 0 || X, just emit X without inserting the control flow.
4069   bool LHSCondVal;
4070   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4071     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4072       CGF.incrementProfileCounter(E);
4073 
4074       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4075       // ZExt result to int or bool.
4076       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4077     }
4078 
4079     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4080     if (!CGF.ContainsLabel(E->getRHS()))
4081       return llvm::ConstantInt::get(ResTy, 1);
4082   }
4083 
4084   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4085   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4086 
4087   CodeGenFunction::ConditionalEvaluation eval(CGF);
4088 
4089   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4090   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4091                            CGF.getCurrentProfileCount() -
4092                                CGF.getProfileCount(E->getRHS()));
4093 
4094   // Any edges into the ContBlock are now from an (indeterminate number of)
4095   // edges from this first condition.  All of these values will be true.  Start
4096   // setting up the PHI node in the Cont Block for this.
4097   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4098                                             "", ContBlock);
4099   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4100        PI != PE; ++PI)
4101     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4102 
4103   eval.begin(CGF);
4104 
4105   // Emit the RHS condition as a bool value.
4106   CGF.EmitBlock(RHSBlock);
4107   CGF.incrementProfileCounter(E);
4108   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4109 
4110   eval.end(CGF);
4111 
4112   // Reaquire the RHS block, as there may be subblocks inserted.
4113   RHSBlock = Builder.GetInsertBlock();
4114 
4115   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4116   // into the phi node for the edge with the value of RHSCond.
4117   CGF.EmitBlock(ContBlock);
4118   PN->addIncoming(RHSCond, RHSBlock);
4119 
4120   // ZExt result to int.
4121   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4122 }
4123 
4124 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4125   CGF.EmitIgnoredExpr(E->getLHS());
4126   CGF.EnsureInsertPoint();
4127   return Visit(E->getRHS());
4128 }
4129 
4130 //===----------------------------------------------------------------------===//
4131 //                             Other Operators
4132 //===----------------------------------------------------------------------===//
4133 
4134 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4135 /// expression is cheap enough and side-effect-free enough to evaluate
4136 /// unconditionally instead of conditionally.  This is used to convert control
4137 /// flow into selects in some cases.
4138 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4139                                                    CodeGenFunction &CGF) {
4140   // Anything that is an integer or floating point constant is fine.
4141   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4142 
4143   // Even non-volatile automatic variables can't be evaluated unconditionally.
4144   // Referencing a thread_local may cause non-trivial initialization work to
4145   // occur. If we're inside a lambda and one of the variables is from the scope
4146   // outside the lambda, that function may have returned already. Reading its
4147   // locals is a bad idea. Also, these reads may introduce races there didn't
4148   // exist in the source-level program.
4149 }
4150 
4151 
4152 Value *ScalarExprEmitter::
4153 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4154   TestAndClearIgnoreResultAssign();
4155 
4156   // Bind the common expression if necessary.
4157   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4158 
4159   Expr *condExpr = E->getCond();
4160   Expr *lhsExpr = E->getTrueExpr();
4161   Expr *rhsExpr = E->getFalseExpr();
4162 
4163   // If the condition constant folds and can be elided, try to avoid emitting
4164   // the condition and the dead arm.
4165   bool CondExprBool;
4166   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4167     Expr *live = lhsExpr, *dead = rhsExpr;
4168     if (!CondExprBool) std::swap(live, dead);
4169 
4170     // If the dead side doesn't have labels we need, just emit the Live part.
4171     if (!CGF.ContainsLabel(dead)) {
4172       if (CondExprBool)
4173         CGF.incrementProfileCounter(E);
4174       Value *Result = Visit(live);
4175 
4176       // If the live part is a throw expression, it acts like it has a void
4177       // type, so evaluating it returns a null Value*.  However, a conditional
4178       // with non-void type must return a non-null Value*.
4179       if (!Result && !E->getType()->isVoidType())
4180         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4181 
4182       return Result;
4183     }
4184   }
4185 
4186   // OpenCL: If the condition is a vector, we can treat this condition like
4187   // the select function.
4188   if (CGF.getLangOpts().OpenCL
4189       && condExpr->getType()->isVectorType()) {
4190     CGF.incrementProfileCounter(E);
4191 
4192     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4193     llvm::Value *LHS = Visit(lhsExpr);
4194     llvm::Value *RHS = Visit(rhsExpr);
4195 
4196     llvm::Type *condType = ConvertType(condExpr->getType());
4197     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4198 
4199     unsigned numElem = vecTy->getNumElements();
4200     llvm::Type *elemType = vecTy->getElementType();
4201 
4202     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4203     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4204     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4205                                           llvm::VectorType::get(elemType,
4206                                                                 numElem),
4207                                           "sext");
4208     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4209 
4210     // Cast float to int to perform ANDs if necessary.
4211     llvm::Value *RHSTmp = RHS;
4212     llvm::Value *LHSTmp = LHS;
4213     bool wasCast = false;
4214     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4215     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4216       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4217       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4218       wasCast = true;
4219     }
4220 
4221     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4222     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4223     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4224     if (wasCast)
4225       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4226 
4227     return tmp5;
4228   }
4229 
4230   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4231   // select instead of as control flow.  We can only do this if it is cheap and
4232   // safe to evaluate the LHS and RHS unconditionally.
4233   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4234       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4235     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4236     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4237 
4238     CGF.incrementProfileCounter(E, StepV);
4239 
4240     llvm::Value *LHS = Visit(lhsExpr);
4241     llvm::Value *RHS = Visit(rhsExpr);
4242     if (!LHS) {
4243       // If the conditional has void type, make sure we return a null Value*.
4244       assert(!RHS && "LHS and RHS types must match");
4245       return nullptr;
4246     }
4247     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4248   }
4249 
4250   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4251   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4252   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4253 
4254   CodeGenFunction::ConditionalEvaluation eval(CGF);
4255   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4256                            CGF.getProfileCount(lhsExpr));
4257 
4258   CGF.EmitBlock(LHSBlock);
4259   CGF.incrementProfileCounter(E);
4260   eval.begin(CGF);
4261   Value *LHS = Visit(lhsExpr);
4262   eval.end(CGF);
4263 
4264   LHSBlock = Builder.GetInsertBlock();
4265   Builder.CreateBr(ContBlock);
4266 
4267   CGF.EmitBlock(RHSBlock);
4268   eval.begin(CGF);
4269   Value *RHS = Visit(rhsExpr);
4270   eval.end(CGF);
4271 
4272   RHSBlock = Builder.GetInsertBlock();
4273   CGF.EmitBlock(ContBlock);
4274 
4275   // If the LHS or RHS is a throw expression, it will be legitimately null.
4276   if (!LHS)
4277     return RHS;
4278   if (!RHS)
4279     return LHS;
4280 
4281   // Create a PHI node for the real part.
4282   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4283   PN->addIncoming(LHS, LHSBlock);
4284   PN->addIncoming(RHS, RHSBlock);
4285   return PN;
4286 }
4287 
4288 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4289   return Visit(E->getChosenSubExpr());
4290 }
4291 
4292 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4293   QualType Ty = VE->getType();
4294 
4295   if (Ty->isVariablyModifiedType())
4296     CGF.EmitVariablyModifiedType(Ty);
4297 
4298   Address ArgValue = Address::invalid();
4299   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4300 
4301   llvm::Type *ArgTy = ConvertType(VE->getType());
4302 
4303   // If EmitVAArg fails, emit an error.
4304   if (!ArgPtr.isValid()) {
4305     CGF.ErrorUnsupported(VE, "va_arg expression");
4306     return llvm::UndefValue::get(ArgTy);
4307   }
4308 
4309   // FIXME Volatility.
4310   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4311 
4312   // If EmitVAArg promoted the type, we must truncate it.
4313   if (ArgTy != Val->getType()) {
4314     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4315       Val = Builder.CreateIntToPtr(Val, ArgTy);
4316     else
4317       Val = Builder.CreateTrunc(Val, ArgTy);
4318   }
4319 
4320   return Val;
4321 }
4322 
4323 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4324   return CGF.EmitBlockLiteral(block);
4325 }
4326 
4327 // Convert a vec3 to vec4, or vice versa.
4328 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4329                                  Value *Src, unsigned NumElementsDst) {
4330   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4331   SmallVector<llvm::Constant*, 4> Args;
4332   Args.push_back(Builder.getInt32(0));
4333   Args.push_back(Builder.getInt32(1));
4334   Args.push_back(Builder.getInt32(2));
4335   if (NumElementsDst == 4)
4336     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4337   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4338   return Builder.CreateShuffleVector(Src, UnV, Mask);
4339 }
4340 
4341 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4342 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4343 // but could be scalar or vectors of different lengths, and either can be
4344 // pointer.
4345 // There are 4 cases:
4346 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4347 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4348 // 3. pointer -> non-pointer
4349 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4350 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4351 // 4. non-pointer -> pointer
4352 //   a) intptr_t -> pointer       : needs 1 inttoptr
4353 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4354 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4355 // allow casting directly between pointer types and non-integer non-pointer
4356 // types.
4357 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4358                                            const llvm::DataLayout &DL,
4359                                            Value *Src, llvm::Type *DstTy,
4360                                            StringRef Name = "") {
4361   auto SrcTy = Src->getType();
4362 
4363   // Case 1.
4364   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4365     return Builder.CreateBitCast(Src, DstTy, Name);
4366 
4367   // Case 2.
4368   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4369     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4370 
4371   // Case 3.
4372   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4373     // Case 3b.
4374     if (!DstTy->isIntegerTy())
4375       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4376     // Cases 3a and 3b.
4377     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4378   }
4379 
4380   // Case 4b.
4381   if (!SrcTy->isIntegerTy())
4382     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4383   // Cases 4a and 4b.
4384   return Builder.CreateIntToPtr(Src, DstTy, Name);
4385 }
4386 
4387 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4388   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4389   llvm::Type *DstTy = ConvertType(E->getType());
4390 
4391   llvm::Type *SrcTy = Src->getType();
4392   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4393     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4394   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4395     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4396 
4397   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4398   // vector to get a vec4, then a bitcast if the target type is different.
4399   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4400     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4401 
4402     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4403       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4404                                          DstTy);
4405     }
4406 
4407     Src->setName("astype");
4408     return Src;
4409   }
4410 
4411   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4412   // to vec4 if the original type is not vec4, then a shuffle vector to
4413   // get a vec3.
4414   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4415     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4416       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4417       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4418                                          Vec4Ty);
4419     }
4420 
4421     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4422     Src->setName("astype");
4423     return Src;
4424   }
4425 
4426   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4427                                       Src, DstTy, "astype");
4428 }
4429 
4430 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4431   return CGF.EmitAtomicExpr(E).getScalarVal();
4432 }
4433 
4434 //===----------------------------------------------------------------------===//
4435 //                         Entry Point into this File
4436 //===----------------------------------------------------------------------===//
4437 
4438 /// Emit the computation of the specified expression of scalar type, ignoring
4439 /// the result.
4440 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4441   assert(E && hasScalarEvaluationKind(E->getType()) &&
4442          "Invalid scalar expression to emit");
4443 
4444   return ScalarExprEmitter(*this, IgnoreResultAssign)
4445       .Visit(const_cast<Expr *>(E));
4446 }
4447 
4448 /// Emit a conversion from the specified type to the specified destination type,
4449 /// both of which are LLVM scalar types.
4450 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4451                                              QualType DstTy,
4452                                              SourceLocation Loc) {
4453   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4454          "Invalid scalar expression to emit");
4455   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4456 }
4457 
4458 /// Emit a conversion from the specified complex type to the specified
4459 /// destination type, where the destination type is an LLVM scalar type.
4460 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4461                                                       QualType SrcTy,
4462                                                       QualType DstTy,
4463                                                       SourceLocation Loc) {
4464   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4465          "Invalid complex -> scalar conversion");
4466   return ScalarExprEmitter(*this)
4467       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4468 }
4469 
4470 
4471 llvm::Value *CodeGenFunction::
4472 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4473                         bool isInc, bool isPre) {
4474   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4475 }
4476 
4477 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4478   // object->isa or (*object).isa
4479   // Generate code as for: *(Class*)object
4480 
4481   Expr *BaseExpr = E->getBase();
4482   Address Addr = Address::invalid();
4483   if (BaseExpr->isRValue()) {
4484     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4485   } else {
4486     Addr = EmitLValue(BaseExpr).getAddress();
4487   }
4488 
4489   // Cast the address to Class*.
4490   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4491   return MakeAddrLValue(Addr, E->getType());
4492 }
4493 
4494 
4495 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4496                                             const CompoundAssignOperator *E) {
4497   ScalarExprEmitter Scalar(*this);
4498   Value *Result = nullptr;
4499   switch (E->getOpcode()) {
4500 #define COMPOUND_OP(Op)                                                       \
4501     case BO_##Op##Assign:                                                     \
4502       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4503                                              Result)
4504   COMPOUND_OP(Mul);
4505   COMPOUND_OP(Div);
4506   COMPOUND_OP(Rem);
4507   COMPOUND_OP(Add);
4508   COMPOUND_OP(Sub);
4509   COMPOUND_OP(Shl);
4510   COMPOUND_OP(Shr);
4511   COMPOUND_OP(And);
4512   COMPOUND_OP(Xor);
4513   COMPOUND_OP(Or);
4514 #undef COMPOUND_OP
4515 
4516   case BO_PtrMemD:
4517   case BO_PtrMemI:
4518   case BO_Mul:
4519   case BO_Div:
4520   case BO_Rem:
4521   case BO_Add:
4522   case BO_Sub:
4523   case BO_Shl:
4524   case BO_Shr:
4525   case BO_LT:
4526   case BO_GT:
4527   case BO_LE:
4528   case BO_GE:
4529   case BO_EQ:
4530   case BO_NE:
4531   case BO_Cmp:
4532   case BO_And:
4533   case BO_Xor:
4534   case BO_Or:
4535   case BO_LAnd:
4536   case BO_LOr:
4537   case BO_Assign:
4538   case BO_Comma:
4539     llvm_unreachable("Not valid compound assignment operators");
4540   }
4541 
4542   llvm_unreachable("Unhandled compound assignment operator");
4543 }
4544 
4545 struct GEPOffsetAndOverflow {
4546   // The total (signed) byte offset for the GEP.
4547   llvm::Value *TotalOffset;
4548   // The offset overflow flag - true if the total offset overflows.
4549   llvm::Value *OffsetOverflows;
4550 };
4551 
4552 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4553 /// and compute the total offset it applies from it's base pointer BasePtr.
4554 /// Returns offset in bytes and a boolean flag whether an overflow happened
4555 /// during evaluation.
4556 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4557                                                  llvm::LLVMContext &VMContext,
4558                                                  CodeGenModule &CGM,
4559                                                  CGBuilderTy Builder) {
4560   const auto &DL = CGM.getDataLayout();
4561 
4562   // The total (signed) byte offset for the GEP.
4563   llvm::Value *TotalOffset = nullptr;
4564 
4565   // Was the GEP already reduced to a constant?
4566   if (isa<llvm::Constant>(GEPVal)) {
4567     // Compute the offset by casting both pointers to integers and subtracting:
4568     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4569     Value *BasePtr_int =
4570         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4571     Value *GEPVal_int =
4572         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4573     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4574     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4575   }
4576 
4577   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4578   assert(GEP->getPointerOperand() == BasePtr &&
4579          "BasePtr must be the the base of the GEP.");
4580   assert(GEP->isInBounds() && "Expected inbounds GEP");
4581 
4582   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4583 
4584   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4585   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4586   auto *SAddIntrinsic =
4587       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4588   auto *SMulIntrinsic =
4589       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4590 
4591   // The offset overflow flag - true if the total offset overflows.
4592   llvm::Value *OffsetOverflows = Builder.getFalse();
4593 
4594   /// Return the result of the given binary operation.
4595   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4596                   llvm::Value *RHS) -> llvm::Value * {
4597     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4598 
4599     // If the operands are constants, return a constant result.
4600     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4601       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4602         llvm::APInt N;
4603         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4604                                                   /*Signed=*/true, N);
4605         if (HasOverflow)
4606           OffsetOverflows = Builder.getTrue();
4607         return llvm::ConstantInt::get(VMContext, N);
4608       }
4609     }
4610 
4611     // Otherwise, compute the result with checked arithmetic.
4612     auto *ResultAndOverflow = Builder.CreateCall(
4613         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4614     OffsetOverflows = Builder.CreateOr(
4615         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4616     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4617   };
4618 
4619   // Determine the total byte offset by looking at each GEP operand.
4620   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4621        GTI != GTE; ++GTI) {
4622     llvm::Value *LocalOffset;
4623     auto *Index = GTI.getOperand();
4624     // Compute the local offset contributed by this indexing step:
4625     if (auto *STy = GTI.getStructTypeOrNull()) {
4626       // For struct indexing, the local offset is the byte position of the
4627       // specified field.
4628       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4629       LocalOffset = llvm::ConstantInt::get(
4630           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4631     } else {
4632       // Otherwise this is array-like indexing. The local offset is the index
4633       // multiplied by the element size.
4634       auto *ElementSize = llvm::ConstantInt::get(
4635           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4636       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4637       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4638     }
4639 
4640     // If this is the first offset, set it as the total offset. Otherwise, add
4641     // the local offset into the running total.
4642     if (!TotalOffset || TotalOffset == Zero)
4643       TotalOffset = LocalOffset;
4644     else
4645       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4646   }
4647 
4648   return {TotalOffset, OffsetOverflows};
4649 }
4650 
4651 Value *
4652 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4653                                         bool SignedIndices, bool IsSubtraction,
4654                                         SourceLocation Loc, const Twine &Name) {
4655   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4656 
4657   // If the pointer overflow sanitizer isn't enabled, do nothing.
4658   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4659     return GEPVal;
4660 
4661   llvm::Type *PtrTy = Ptr->getType();
4662 
4663   // Perform nullptr-and-offset check unless the nullptr is defined.
4664   bool PerformNullCheck = !NullPointerIsDefined(
4665       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4666   // Check for overflows unless the GEP got constant-folded,
4667   // and only in the default address space
4668   bool PerformOverflowCheck =
4669       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4670 
4671   if (!(PerformNullCheck || PerformOverflowCheck))
4672     return GEPVal;
4673 
4674   const auto &DL = CGM.getDataLayout();
4675 
4676   SanitizerScope SanScope(this);
4677   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4678 
4679   GEPOffsetAndOverflow EvaluatedGEP =
4680       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4681 
4682   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4683           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4684          "If the offset got constant-folded, we don't expect that there was an "
4685          "overflow.");
4686 
4687   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4688 
4689   // Common case: if the total offset is zero, and we are using C++ semantics,
4690   // where nullptr+0 is defined, don't emit a check.
4691   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4692     return GEPVal;
4693 
4694   // Now that we've computed the total offset, add it to the base pointer (with
4695   // wrapping semantics).
4696   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4697   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4698 
4699   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4700 
4701   if (PerformNullCheck) {
4702     // In C++, if the base pointer evaluates to a null pointer value,
4703     // the only valid  pointer this inbounds GEP can produce is also
4704     // a null pointer, so the offset must also evaluate to zero.
4705     // Likewise, if we have non-zero base pointer, we can not get null pointer
4706     // as a result, so the offset can not be -intptr_t(BasePtr).
4707     // In other words, both pointers are either null, or both are non-null,
4708     // or the behaviour is undefined.
4709     //
4710     // C, however, is more strict in this regard, and gives more
4711     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4712     // So both the input to the 'gep inbounds' AND the output must not be null.
4713     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4714     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4715     auto *Valid =
4716         CGM.getLangOpts().CPlusPlus
4717             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4718             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4719     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4720   }
4721 
4722   if (PerformOverflowCheck) {
4723     // The GEP is valid if:
4724     // 1) The total offset doesn't overflow, and
4725     // 2) The sign of the difference between the computed address and the base
4726     // pointer matches the sign of the total offset.
4727     llvm::Value *ValidGEP;
4728     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4729     if (SignedIndices) {
4730       // GEP is computed as `unsigned base + signed offset`, therefore:
4731       // * If offset was positive, then the computed pointer can not be
4732       //   [unsigned] less than the base pointer, unless it overflowed.
4733       // * If offset was negative, then the computed pointer can not be
4734       //   [unsigned] greater than the bas pointere, unless it overflowed.
4735       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4736       auto *PosOrZeroOffset =
4737           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4738       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4739       ValidGEP =
4740           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4741     } else if (!IsSubtraction) {
4742       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4743       // computed pointer can not be [unsigned] less than base pointer,
4744       // unless there was an overflow.
4745       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4746       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4747     } else {
4748       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4749       // computed pointer can not be [unsigned] greater than base pointer,
4750       // unless there was an overflow.
4751       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4752       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4753     }
4754     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4755     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4756   }
4757 
4758   assert(!Checks.empty() && "Should have produced some checks.");
4759 
4760   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4761   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4762   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4763   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4764 
4765   return GEPVal;
4766 }
4767