1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/FixedPoint.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 129 /// Check if either operand is a fixed point type or integer type, with at 130 /// least one being a fixed point type. In any case, this 131 /// operation did not follow usual arithmetic conversion and both operands may 132 /// not be the same. 133 bool isFixedPointBinOp() const { 134 // We cannot simply check the result type since comparison operations return 135 // an int. 136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 137 QualType LHSType = BinOp->getLHS()->getType(); 138 QualType RHSType = BinOp->getRHS()->getType(); 139 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 140 } 141 return false; 142 } 143 }; 144 145 static bool MustVisitNullValue(const Expr *E) { 146 // If a null pointer expression's type is the C++0x nullptr_t, then 147 // it's not necessarily a simple constant and it must be evaluated 148 // for its potential side effects. 149 return E->getType()->isNullPtrType(); 150 } 151 152 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 154 const Expr *E) { 155 const Expr *Base = E->IgnoreImpCasts(); 156 if (E == Base) 157 return llvm::None; 158 159 QualType BaseTy = Base->getType(); 160 if (!BaseTy->isPromotableIntegerType() || 161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 162 return llvm::None; 163 164 return BaseTy; 165 } 166 167 /// Check if \p E is a widened promoted integer. 168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 169 return getUnwidenedIntegerType(Ctx, E).hasValue(); 170 } 171 172 /// Check if we can skip the overflow check for \p Op. 173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 175 "Expected a unary or binary operator"); 176 177 // If the binop has constant inputs and we can prove there is no overflow, 178 // we can elide the overflow check. 179 if (!Op.mayHaveIntegerOverflow()) 180 return true; 181 182 // If a unary op has a widened operand, the op cannot overflow. 183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 184 return !UO->canOverflow(); 185 186 // We usually don't need overflow checks for binops with widened operands. 187 // Multiplication with promoted unsigned operands is a special case. 188 const auto *BO = cast<BinaryOperator>(Op.E); 189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 190 if (!OptionalLHSTy) 191 return false; 192 193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 194 if (!OptionalRHSTy) 195 return false; 196 197 QualType LHSTy = *OptionalLHSTy; 198 QualType RHSTy = *OptionalRHSTy; 199 200 // This is the simple case: binops without unsigned multiplication, and with 201 // widened operands. No overflow check is needed here. 202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 204 return true; 205 206 // For unsigned multiplication the overflow check can be elided if either one 207 // of the unpromoted types are less than half the size of the promoted type. 208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 211 } 212 213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 214 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 215 FPOptions FPFeatures) { 216 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 217 } 218 219 /// Propagate fast-math flags from \p Op to the instruction in \p V. 220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 221 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 222 llvm::FastMathFlags FMF = I->getFastMathFlags(); 223 updateFastMathFlags(FMF, Op.FPFeatures); 224 I->setFastMathFlags(FMF); 225 } 226 return V; 227 } 228 229 class ScalarExprEmitter 230 : public StmtVisitor<ScalarExprEmitter, Value*> { 231 CodeGenFunction &CGF; 232 CGBuilderTy &Builder; 233 bool IgnoreResultAssign; 234 llvm::LLVMContext &VMContext; 235 public: 236 237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 239 VMContext(cgf.getLLVMContext()) { 240 } 241 242 //===--------------------------------------------------------------------===// 243 // Utilities 244 //===--------------------------------------------------------------------===// 245 246 bool TestAndClearIgnoreResultAssign() { 247 bool I = IgnoreResultAssign; 248 IgnoreResultAssign = false; 249 return I; 250 } 251 252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 255 return CGF.EmitCheckedLValue(E, TCK); 256 } 257 258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 259 const BinOpInfo &Info); 260 261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 263 } 264 265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 266 const AlignValueAttr *AVAttr = nullptr; 267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 268 const ValueDecl *VD = DRE->getDecl(); 269 270 if (VD->getType()->isReferenceType()) { 271 if (const auto *TTy = 272 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 274 } else { 275 // Assumptions for function parameters are emitted at the start of the 276 // function, so there is no need to repeat that here, 277 // unless the alignment-assumption sanitizer is enabled, 278 // then we prefer the assumption over alignment attribute 279 // on IR function param. 280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 281 return; 282 283 AVAttr = VD->getAttr<AlignValueAttr>(); 284 } 285 } 286 287 if (!AVAttr) 288 if (const auto *TTy = 289 dyn_cast<TypedefType>(E->getType())) 290 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 291 292 if (!AVAttr) 293 return; 294 295 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 296 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 297 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 298 } 299 300 /// EmitLoadOfLValue - Given an expression with complex type that represents a 301 /// value l-value, this method emits the address of the l-value, then loads 302 /// and returns the result. 303 Value *EmitLoadOfLValue(const Expr *E) { 304 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 305 E->getExprLoc()); 306 307 EmitLValueAlignmentAssumption(E, V); 308 return V; 309 } 310 311 /// EmitConversionToBool - Convert the specified expression value to a 312 /// boolean (i1) truth value. This is equivalent to "Val != 0". 313 Value *EmitConversionToBool(Value *Src, QualType DstTy); 314 315 /// Emit a check that a conversion from a floating-point type does not 316 /// overflow. 317 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 318 Value *Src, QualType SrcType, QualType DstType, 319 llvm::Type *DstTy, SourceLocation Loc); 320 321 /// Known implicit conversion check kinds. 322 /// Keep in sync with the enum of the same name in ubsan_handlers.h 323 enum ImplicitConversionCheckKind : unsigned char { 324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 325 ICCK_UnsignedIntegerTruncation = 1, 326 ICCK_SignedIntegerTruncation = 2, 327 ICCK_IntegerSignChange = 3, 328 ICCK_SignedIntegerTruncationOrSignChange = 4, 329 }; 330 331 /// Emit a check that an [implicit] truncation of an integer does not 332 /// discard any bits. It is not UB, so we use the value after truncation. 333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 334 QualType DstType, SourceLocation Loc); 335 336 /// Emit a check that an [implicit] conversion of an integer does not change 337 /// the sign of the value. It is not UB, so we use the value after conversion. 338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 340 QualType DstType, SourceLocation Loc); 341 342 /// Emit a conversion from the specified type to the specified destination 343 /// type, both of which are LLVM scalar types. 344 struct ScalarConversionOpts { 345 bool TreatBooleanAsSigned; 346 bool EmitImplicitIntegerTruncationChecks; 347 bool EmitImplicitIntegerSignChangeChecks; 348 349 ScalarConversionOpts() 350 : TreatBooleanAsSigned(false), 351 EmitImplicitIntegerTruncationChecks(false), 352 EmitImplicitIntegerSignChangeChecks(false) {} 353 354 ScalarConversionOpts(clang::SanitizerSet SanOpts) 355 : TreatBooleanAsSigned(false), 356 EmitImplicitIntegerTruncationChecks( 357 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 358 EmitImplicitIntegerSignChangeChecks( 359 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 360 }; 361 Value * 362 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 363 SourceLocation Loc, 364 ScalarConversionOpts Opts = ScalarConversionOpts()); 365 366 /// Convert between either a fixed point and other fixed point or fixed point 367 /// and an integer. 368 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 369 SourceLocation Loc); 370 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 371 FixedPointSemantics &DstFixedSema, 372 SourceLocation Loc, 373 bool DstIsInteger = false); 374 375 /// Emit a conversion from the specified complex type to the specified 376 /// destination type, where the destination type is an LLVM scalar type. 377 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 378 QualType SrcTy, QualType DstTy, 379 SourceLocation Loc); 380 381 /// EmitNullValue - Emit a value that corresponds to null for the given type. 382 Value *EmitNullValue(QualType Ty); 383 384 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 385 Value *EmitFloatToBoolConversion(Value *V) { 386 // Compare against 0.0 for fp scalars. 387 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 388 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 389 } 390 391 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 392 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 393 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 394 395 return Builder.CreateICmpNE(V, Zero, "tobool"); 396 } 397 398 Value *EmitIntToBoolConversion(Value *V) { 399 // Because of the type rules of C, we often end up computing a 400 // logical value, then zero extending it to int, then wanting it 401 // as a logical value again. Optimize this common case. 402 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 403 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 404 Value *Result = ZI->getOperand(0); 405 // If there aren't any more uses, zap the instruction to save space. 406 // Note that there can be more uses, for example if this 407 // is the result of an assignment. 408 if (ZI->use_empty()) 409 ZI->eraseFromParent(); 410 return Result; 411 } 412 } 413 414 return Builder.CreateIsNotNull(V, "tobool"); 415 } 416 417 //===--------------------------------------------------------------------===// 418 // Visitor Methods 419 //===--------------------------------------------------------------------===// 420 421 Value *Visit(Expr *E) { 422 ApplyDebugLocation DL(CGF, E); 423 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 424 } 425 426 Value *VisitStmt(Stmt *S) { 427 S->dump(CGF.getContext().getSourceManager()); 428 llvm_unreachable("Stmt can't have complex result type!"); 429 } 430 Value *VisitExpr(Expr *S); 431 432 Value *VisitConstantExpr(ConstantExpr *E) { 433 return Visit(E->getSubExpr()); 434 } 435 Value *VisitParenExpr(ParenExpr *PE) { 436 return Visit(PE->getSubExpr()); 437 } 438 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 439 return Visit(E->getReplacement()); 440 } 441 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 442 return Visit(GE->getResultExpr()); 443 } 444 Value *VisitCoawaitExpr(CoawaitExpr *S) { 445 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 446 } 447 Value *VisitCoyieldExpr(CoyieldExpr *S) { 448 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 449 } 450 Value *VisitUnaryCoawait(const UnaryOperator *E) { 451 return Visit(E->getSubExpr()); 452 } 453 454 // Leaves. 455 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 456 return Builder.getInt(E->getValue()); 457 } 458 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 462 return llvm::ConstantFP::get(VMContext, E->getValue()); 463 } 464 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 474 return EmitNullValue(E->getType()); 475 } 476 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 480 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 481 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 482 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 483 return Builder.CreateBitCast(V, ConvertType(E->getType())); 484 } 485 486 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 487 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 488 } 489 490 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 491 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 492 } 493 494 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 495 if (E->isGLValue()) 496 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 497 E->getExprLoc()); 498 499 // Otherwise, assume the mapping is the scalar directly. 500 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 501 } 502 503 // l-values. 504 Value *VisitDeclRefExpr(DeclRefExpr *E) { 505 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 506 return CGF.emitScalarConstant(Constant, E); 507 return EmitLoadOfLValue(E); 508 } 509 510 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 511 return CGF.EmitObjCSelectorExpr(E); 512 } 513 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 514 return CGF.EmitObjCProtocolExpr(E); 515 } 516 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 517 return EmitLoadOfLValue(E); 518 } 519 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 520 if (E->getMethodDecl() && 521 E->getMethodDecl()->getReturnType()->isReferenceType()) 522 return EmitLoadOfLValue(E); 523 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 524 } 525 526 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 527 LValue LV = CGF.EmitObjCIsaExpr(E); 528 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 529 return V; 530 } 531 532 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 533 VersionTuple Version = E->getVersion(); 534 535 // If we're checking for a platform older than our minimum deployment 536 // target, we can fold the check away. 537 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 538 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 539 540 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 541 llvm::Value *Args[] = { 542 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 545 }; 546 547 return CGF.EmitBuiltinAvailable(Args); 548 } 549 550 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 551 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 552 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 553 Value *VisitMemberExpr(MemberExpr *E); 554 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 555 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 556 return EmitLoadOfLValue(E); 557 } 558 559 Value *VisitInitListExpr(InitListExpr *E); 560 561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 562 assert(CGF.getArrayInitIndex() && 563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 564 return CGF.getArrayInitIndex(); 565 } 566 567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 568 return EmitNullValue(E->getType()); 569 } 570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 571 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 572 return VisitCastExpr(E); 573 } 574 Value *VisitCastExpr(CastExpr *E); 575 576 Value *VisitCallExpr(const CallExpr *E) { 577 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 578 return EmitLoadOfLValue(E); 579 580 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 581 582 EmitLValueAlignmentAssumption(E, V); 583 return V; 584 } 585 586 Value *VisitStmtExpr(const StmtExpr *E); 587 588 // Unary Operators. 589 Value *VisitUnaryPostDec(const UnaryOperator *E) { 590 LValue LV = EmitLValue(E->getSubExpr()); 591 return EmitScalarPrePostIncDec(E, LV, false, false); 592 } 593 Value *VisitUnaryPostInc(const UnaryOperator *E) { 594 LValue LV = EmitLValue(E->getSubExpr()); 595 return EmitScalarPrePostIncDec(E, LV, true, false); 596 } 597 Value *VisitUnaryPreDec(const UnaryOperator *E) { 598 LValue LV = EmitLValue(E->getSubExpr()); 599 return EmitScalarPrePostIncDec(E, LV, false, true); 600 } 601 Value *VisitUnaryPreInc(const UnaryOperator *E) { 602 LValue LV = EmitLValue(E->getSubExpr()); 603 return EmitScalarPrePostIncDec(E, LV, true, true); 604 } 605 606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 607 llvm::Value *InVal, 608 bool IsInc); 609 610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 611 bool isInc, bool isPre); 612 613 614 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 615 if (isa<MemberPointerType>(E->getType())) // never sugared 616 return CGF.CGM.getMemberPointerConstant(E); 617 618 return EmitLValue(E->getSubExpr()).getPointer(); 619 } 620 Value *VisitUnaryDeref(const UnaryOperator *E) { 621 if (E->getType()->isVoidType()) 622 return Visit(E->getSubExpr()); // the actual value should be unused 623 return EmitLoadOfLValue(E); 624 } 625 Value *VisitUnaryPlus(const UnaryOperator *E) { 626 // This differs from gcc, though, most likely due to a bug in gcc. 627 TestAndClearIgnoreResultAssign(); 628 return Visit(E->getSubExpr()); 629 } 630 Value *VisitUnaryMinus (const UnaryOperator *E); 631 Value *VisitUnaryNot (const UnaryOperator *E); 632 Value *VisitUnaryLNot (const UnaryOperator *E); 633 Value *VisitUnaryReal (const UnaryOperator *E); 634 Value *VisitUnaryImag (const UnaryOperator *E); 635 Value *VisitUnaryExtension(const UnaryOperator *E) { 636 return Visit(E->getSubExpr()); 637 } 638 639 // C++ 640 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 641 return EmitLoadOfLValue(E); 642 } 643 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 644 auto &Ctx = CGF.getContext(); 645 APValue Evaluated = 646 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 647 return ConstantEmitter(CGF.CGM, &CGF) 648 .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType()); 649 } 650 651 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 652 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 653 return Visit(DAE->getExpr()); 654 } 655 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 656 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 657 return Visit(DIE->getExpr()); 658 } 659 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 660 return CGF.LoadCXXThis(); 661 } 662 663 Value *VisitExprWithCleanups(ExprWithCleanups *E); 664 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 665 return CGF.EmitCXXNewExpr(E); 666 } 667 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 668 CGF.EmitCXXDeleteExpr(E); 669 return nullptr; 670 } 671 672 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 673 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 674 } 675 676 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 677 return Builder.getInt1(E->isSatisfied()); 678 } 679 680 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 681 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 682 } 683 684 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 685 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 686 } 687 688 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 689 // C++ [expr.pseudo]p1: 690 // The result shall only be used as the operand for the function call 691 // operator (), and the result of such a call has type void. The only 692 // effect is the evaluation of the postfix-expression before the dot or 693 // arrow. 694 CGF.EmitScalarExpr(E->getBase()); 695 return nullptr; 696 } 697 698 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 699 return EmitNullValue(E->getType()); 700 } 701 702 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 703 CGF.EmitCXXThrowExpr(E); 704 return nullptr; 705 } 706 707 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 708 return Builder.getInt1(E->getValue()); 709 } 710 711 // Binary Operators. 712 Value *EmitMul(const BinOpInfo &Ops) { 713 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 714 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 715 case LangOptions::SOB_Defined: 716 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 717 case LangOptions::SOB_Undefined: 718 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 719 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 720 LLVM_FALLTHROUGH; 721 case LangOptions::SOB_Trapping: 722 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 723 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 724 return EmitOverflowCheckedBinOp(Ops); 725 } 726 } 727 728 if (Ops.Ty->isUnsignedIntegerType() && 729 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 730 !CanElideOverflowCheck(CGF.getContext(), Ops)) 731 return EmitOverflowCheckedBinOp(Ops); 732 733 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 734 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 735 return propagateFMFlags(V, Ops); 736 } 737 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 738 } 739 /// Create a binary op that checks for overflow. 740 /// Currently only supports +, - and *. 741 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 742 743 // Check for undefined division and modulus behaviors. 744 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 745 llvm::Value *Zero,bool isDiv); 746 // Common helper for getting how wide LHS of shift is. 747 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 748 Value *EmitDiv(const BinOpInfo &Ops); 749 Value *EmitRem(const BinOpInfo &Ops); 750 Value *EmitAdd(const BinOpInfo &Ops); 751 Value *EmitSub(const BinOpInfo &Ops); 752 Value *EmitShl(const BinOpInfo &Ops); 753 Value *EmitShr(const BinOpInfo &Ops); 754 Value *EmitAnd(const BinOpInfo &Ops) { 755 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 756 } 757 Value *EmitXor(const BinOpInfo &Ops) { 758 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 759 } 760 Value *EmitOr (const BinOpInfo &Ops) { 761 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 762 } 763 764 // Helper functions for fixed point binary operations. 765 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 766 767 BinOpInfo EmitBinOps(const BinaryOperator *E); 768 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 769 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 770 Value *&Result); 771 772 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 773 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 774 775 // Binary operators and binary compound assignment operators. 776 #define HANDLEBINOP(OP) \ 777 Value *VisitBin ## OP(const BinaryOperator *E) { \ 778 return Emit ## OP(EmitBinOps(E)); \ 779 } \ 780 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 781 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 782 } 783 HANDLEBINOP(Mul) 784 HANDLEBINOP(Div) 785 HANDLEBINOP(Rem) 786 HANDLEBINOP(Add) 787 HANDLEBINOP(Sub) 788 HANDLEBINOP(Shl) 789 HANDLEBINOP(Shr) 790 HANDLEBINOP(And) 791 HANDLEBINOP(Xor) 792 HANDLEBINOP(Or) 793 #undef HANDLEBINOP 794 795 // Comparisons. 796 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 797 llvm::CmpInst::Predicate SICmpOpc, 798 llvm::CmpInst::Predicate FCmpOpc); 799 #define VISITCOMP(CODE, UI, SI, FP) \ 800 Value *VisitBin##CODE(const BinaryOperator *E) { \ 801 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 802 llvm::FCmpInst::FP); } 803 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 804 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 805 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 806 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 807 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 808 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 809 #undef VISITCOMP 810 811 Value *VisitBinAssign (const BinaryOperator *E); 812 813 Value *VisitBinLAnd (const BinaryOperator *E); 814 Value *VisitBinLOr (const BinaryOperator *E); 815 Value *VisitBinComma (const BinaryOperator *E); 816 817 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 818 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 819 820 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 821 return Visit(E->getSemanticForm()); 822 } 823 824 // Other Operators. 825 Value *VisitBlockExpr(const BlockExpr *BE); 826 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 827 Value *VisitChooseExpr(ChooseExpr *CE); 828 Value *VisitVAArgExpr(VAArgExpr *VE); 829 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 830 return CGF.EmitObjCStringLiteral(E); 831 } 832 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 833 return CGF.EmitObjCBoxedExpr(E); 834 } 835 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 836 return CGF.EmitObjCArrayLiteral(E); 837 } 838 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 839 return CGF.EmitObjCDictionaryLiteral(E); 840 } 841 Value *VisitAsTypeExpr(AsTypeExpr *CE); 842 Value *VisitAtomicExpr(AtomicExpr *AE); 843 }; 844 } // end anonymous namespace. 845 846 //===----------------------------------------------------------------------===// 847 // Utilities 848 //===----------------------------------------------------------------------===// 849 850 /// EmitConversionToBool - Convert the specified expression value to a 851 /// boolean (i1) truth value. This is equivalent to "Val != 0". 852 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 853 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 854 855 if (SrcType->isRealFloatingType()) 856 return EmitFloatToBoolConversion(Src); 857 858 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 859 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 860 861 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 862 "Unknown scalar type to convert"); 863 864 if (isa<llvm::IntegerType>(Src->getType())) 865 return EmitIntToBoolConversion(Src); 866 867 assert(isa<llvm::PointerType>(Src->getType())); 868 return EmitPointerToBoolConversion(Src, SrcType); 869 } 870 871 void ScalarExprEmitter::EmitFloatConversionCheck( 872 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 873 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 874 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 875 if (!isa<llvm::IntegerType>(DstTy)) 876 return; 877 878 CodeGenFunction::SanitizerScope SanScope(&CGF); 879 using llvm::APFloat; 880 using llvm::APSInt; 881 882 llvm::Value *Check = nullptr; 883 const llvm::fltSemantics &SrcSema = 884 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 885 886 // Floating-point to integer. This has undefined behavior if the source is 887 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 888 // to an integer). 889 unsigned Width = CGF.getContext().getIntWidth(DstType); 890 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 891 892 APSInt Min = APSInt::getMinValue(Width, Unsigned); 893 APFloat MinSrc(SrcSema, APFloat::uninitialized); 894 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 895 APFloat::opOverflow) 896 // Don't need an overflow check for lower bound. Just check for 897 // -Inf/NaN. 898 MinSrc = APFloat::getInf(SrcSema, true); 899 else 900 // Find the largest value which is too small to represent (before 901 // truncation toward zero). 902 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 903 904 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 905 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 906 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 907 APFloat::opOverflow) 908 // Don't need an overflow check for upper bound. Just check for 909 // +Inf/NaN. 910 MaxSrc = APFloat::getInf(SrcSema, false); 911 else 912 // Find the smallest value which is too large to represent (before 913 // truncation toward zero). 914 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 915 916 // If we're converting from __half, convert the range to float to match 917 // the type of src. 918 if (OrigSrcType->isHalfType()) { 919 const llvm::fltSemantics &Sema = 920 CGF.getContext().getFloatTypeSemantics(SrcType); 921 bool IsInexact; 922 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 923 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 924 } 925 926 llvm::Value *GE = 927 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 928 llvm::Value *LE = 929 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 930 Check = Builder.CreateAnd(GE, LE); 931 932 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 933 CGF.EmitCheckTypeDescriptor(OrigSrcType), 934 CGF.EmitCheckTypeDescriptor(DstType)}; 935 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 936 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 937 } 938 939 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 940 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 941 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 942 std::pair<llvm::Value *, SanitizerMask>> 943 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 944 QualType DstType, CGBuilderTy &Builder) { 945 llvm::Type *SrcTy = Src->getType(); 946 llvm::Type *DstTy = Dst->getType(); 947 (void)DstTy; // Only used in assert() 948 949 // This should be truncation of integral types. 950 assert(Src != Dst); 951 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 952 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 953 "non-integer llvm type"); 954 955 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 956 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 957 958 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 959 // Else, it is a signed truncation. 960 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 961 SanitizerMask Mask; 962 if (!SrcSigned && !DstSigned) { 963 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 964 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 965 } else { 966 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 967 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 968 } 969 970 llvm::Value *Check = nullptr; 971 // 1. Extend the truncated value back to the same width as the Src. 972 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 973 // 2. Equality-compare with the original source value 974 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 975 // If the comparison result is 'i1 false', then the truncation was lossy. 976 return std::make_pair(Kind, std::make_pair(Check, Mask)); 977 } 978 979 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 980 Value *Dst, QualType DstType, 981 SourceLocation Loc) { 982 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 983 return; 984 985 // We only care about int->int conversions here. 986 // We ignore conversions to/from pointer and/or bool. 987 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 988 return; 989 990 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 991 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 992 // This must be truncation. Else we do not care. 993 if (SrcBits <= DstBits) 994 return; 995 996 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 997 998 // If the integer sign change sanitizer is enabled, 999 // and we are truncating from larger unsigned type to smaller signed type, 1000 // let that next sanitizer deal with it. 1001 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1002 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1003 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1004 (!SrcSigned && DstSigned)) 1005 return; 1006 1007 CodeGenFunction::SanitizerScope SanScope(&CGF); 1008 1009 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1010 std::pair<llvm::Value *, SanitizerMask>> 1011 Check = 1012 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1013 // If the comparison result is 'i1 false', then the truncation was lossy. 1014 1015 // Do we care about this type of truncation? 1016 if (!CGF.SanOpts.has(Check.second.second)) 1017 return; 1018 1019 llvm::Constant *StaticArgs[] = { 1020 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1021 CGF.EmitCheckTypeDescriptor(DstType), 1022 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1023 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1024 {Src, Dst}); 1025 } 1026 1027 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1028 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1029 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1030 std::pair<llvm::Value *, SanitizerMask>> 1031 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1032 QualType DstType, CGBuilderTy &Builder) { 1033 llvm::Type *SrcTy = Src->getType(); 1034 llvm::Type *DstTy = Dst->getType(); 1035 1036 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1037 "non-integer llvm type"); 1038 1039 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1040 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1041 (void)SrcSigned; // Only used in assert() 1042 (void)DstSigned; // Only used in assert() 1043 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1044 unsigned DstBits = DstTy->getScalarSizeInBits(); 1045 (void)SrcBits; // Only used in assert() 1046 (void)DstBits; // Only used in assert() 1047 1048 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1049 "either the widths should be different, or the signednesses."); 1050 1051 // NOTE: zero value is considered to be non-negative. 1052 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1053 const char *Name) -> Value * { 1054 // Is this value a signed type? 1055 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1056 llvm::Type *VTy = V->getType(); 1057 if (!VSigned) { 1058 // If the value is unsigned, then it is never negative. 1059 // FIXME: can we encounter non-scalar VTy here? 1060 return llvm::ConstantInt::getFalse(VTy->getContext()); 1061 } 1062 // Get the zero of the same type with which we will be comparing. 1063 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1064 // %V.isnegative = icmp slt %V, 0 1065 // I.e is %V *strictly* less than zero, does it have negative value? 1066 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1067 llvm::Twine(Name) + "." + V->getName() + 1068 ".negativitycheck"); 1069 }; 1070 1071 // 1. Was the old Value negative? 1072 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1073 // 2. Is the new Value negative? 1074 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1075 // 3. Now, was the 'negativity status' preserved during the conversion? 1076 // NOTE: conversion from negative to zero is considered to change the sign. 1077 // (We want to get 'false' when the conversion changed the sign) 1078 // So we should just equality-compare the negativity statuses. 1079 llvm::Value *Check = nullptr; 1080 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1081 // If the comparison result is 'false', then the conversion changed the sign. 1082 return std::make_pair( 1083 ScalarExprEmitter::ICCK_IntegerSignChange, 1084 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1085 } 1086 1087 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1088 Value *Dst, QualType DstType, 1089 SourceLocation Loc) { 1090 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1091 return; 1092 1093 llvm::Type *SrcTy = Src->getType(); 1094 llvm::Type *DstTy = Dst->getType(); 1095 1096 // We only care about int->int conversions here. 1097 // We ignore conversions to/from pointer and/or bool. 1098 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1099 return; 1100 1101 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1102 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1103 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1104 unsigned DstBits = DstTy->getScalarSizeInBits(); 1105 1106 // Now, we do not need to emit the check in *all* of the cases. 1107 // We can avoid emitting it in some obvious cases where it would have been 1108 // dropped by the opt passes (instcombine) always anyways. 1109 // If it's a cast between effectively the same type, no check. 1110 // NOTE: this is *not* equivalent to checking the canonical types. 1111 if (SrcSigned == DstSigned && SrcBits == DstBits) 1112 return; 1113 // At least one of the values needs to have signed type. 1114 // If both are unsigned, then obviously, neither of them can be negative. 1115 if (!SrcSigned && !DstSigned) 1116 return; 1117 // If the conversion is to *larger* *signed* type, then no check is needed. 1118 // Because either sign-extension happens (so the sign will remain), 1119 // or zero-extension will happen (the sign bit will be zero.) 1120 if ((DstBits > SrcBits) && DstSigned) 1121 return; 1122 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1123 (SrcBits > DstBits) && SrcSigned) { 1124 // If the signed integer truncation sanitizer is enabled, 1125 // and this is a truncation from signed type, then no check is needed. 1126 // Because here sign change check is interchangeable with truncation check. 1127 return; 1128 } 1129 // That's it. We can't rule out any more cases with the data we have. 1130 1131 CodeGenFunction::SanitizerScope SanScope(&CGF); 1132 1133 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1134 std::pair<llvm::Value *, SanitizerMask>> 1135 Check; 1136 1137 // Each of these checks needs to return 'false' when an issue was detected. 1138 ImplicitConversionCheckKind CheckKind; 1139 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1140 // So we can 'and' all the checks together, and still get 'false', 1141 // if at least one of the checks detected an issue. 1142 1143 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1144 CheckKind = Check.first; 1145 Checks.emplace_back(Check.second); 1146 1147 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1148 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1149 // If the signed integer truncation sanitizer was enabled, 1150 // and we are truncating from larger unsigned type to smaller signed type, 1151 // let's handle the case we skipped in that check. 1152 Check = 1153 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1154 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1155 Checks.emplace_back(Check.second); 1156 // If the comparison result is 'i1 false', then the truncation was lossy. 1157 } 1158 1159 llvm::Constant *StaticArgs[] = { 1160 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1161 CGF.EmitCheckTypeDescriptor(DstType), 1162 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1163 // EmitCheck() will 'and' all the checks together. 1164 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1165 {Src, Dst}); 1166 } 1167 1168 /// Emit a conversion from the specified type to the specified destination type, 1169 /// both of which are LLVM scalar types. 1170 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1171 QualType DstType, 1172 SourceLocation Loc, 1173 ScalarConversionOpts Opts) { 1174 // All conversions involving fixed point types should be handled by the 1175 // EmitFixedPoint family functions. This is done to prevent bloating up this 1176 // function more, and although fixed point numbers are represented by 1177 // integers, we do not want to follow any logic that assumes they should be 1178 // treated as integers. 1179 // TODO(leonardchan): When necessary, add another if statement checking for 1180 // conversions to fixed point types from other types. 1181 if (SrcType->isFixedPointType()) { 1182 if (DstType->isBooleanType()) 1183 // It is important that we check this before checking if the dest type is 1184 // an integer because booleans are technically integer types. 1185 // We do not need to check the padding bit on unsigned types if unsigned 1186 // padding is enabled because overflow into this bit is undefined 1187 // behavior. 1188 return Builder.CreateIsNotNull(Src, "tobool"); 1189 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1190 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1191 1192 llvm_unreachable( 1193 "Unhandled scalar conversion from a fixed point type to another type."); 1194 } else if (DstType->isFixedPointType()) { 1195 if (SrcType->isIntegerType()) 1196 // This also includes converting booleans and enums to fixed point types. 1197 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1198 1199 llvm_unreachable( 1200 "Unhandled scalar conversion to a fixed point type from another type."); 1201 } 1202 1203 QualType NoncanonicalSrcType = SrcType; 1204 QualType NoncanonicalDstType = DstType; 1205 1206 SrcType = CGF.getContext().getCanonicalType(SrcType); 1207 DstType = CGF.getContext().getCanonicalType(DstType); 1208 if (SrcType == DstType) return Src; 1209 1210 if (DstType->isVoidType()) return nullptr; 1211 1212 llvm::Value *OrigSrc = Src; 1213 QualType OrigSrcType = SrcType; 1214 llvm::Type *SrcTy = Src->getType(); 1215 1216 // Handle conversions to bool first, they are special: comparisons against 0. 1217 if (DstType->isBooleanType()) 1218 return EmitConversionToBool(Src, SrcType); 1219 1220 llvm::Type *DstTy = ConvertType(DstType); 1221 1222 // Cast from half through float if half isn't a native type. 1223 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1224 // Cast to FP using the intrinsic if the half type itself isn't supported. 1225 if (DstTy->isFloatingPointTy()) { 1226 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1227 return Builder.CreateCall( 1228 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1229 Src); 1230 } else { 1231 // Cast to other types through float, using either the intrinsic or FPExt, 1232 // depending on whether the half type itself is supported 1233 // (as opposed to operations on half, available with NativeHalfType). 1234 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1235 Src = Builder.CreateCall( 1236 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1237 CGF.CGM.FloatTy), 1238 Src); 1239 } else { 1240 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1241 } 1242 SrcType = CGF.getContext().FloatTy; 1243 SrcTy = CGF.FloatTy; 1244 } 1245 } 1246 1247 // Ignore conversions like int -> uint. 1248 if (SrcTy == DstTy) { 1249 if (Opts.EmitImplicitIntegerSignChangeChecks) 1250 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1251 NoncanonicalDstType, Loc); 1252 1253 return Src; 1254 } 1255 1256 // Handle pointer conversions next: pointers can only be converted to/from 1257 // other pointers and integers. Check for pointer types in terms of LLVM, as 1258 // some native types (like Obj-C id) may map to a pointer type. 1259 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1260 // The source value may be an integer, or a pointer. 1261 if (isa<llvm::PointerType>(SrcTy)) 1262 return Builder.CreateBitCast(Src, DstTy, "conv"); 1263 1264 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1265 // First, convert to the correct width so that we control the kind of 1266 // extension. 1267 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1268 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1269 llvm::Value* IntResult = 1270 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1271 // Then, cast to pointer. 1272 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1273 } 1274 1275 if (isa<llvm::PointerType>(SrcTy)) { 1276 // Must be an ptr to int cast. 1277 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1278 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1279 } 1280 1281 // A scalar can be splatted to an extended vector of the same element type 1282 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1283 // Sema should add casts to make sure that the source expression's type is 1284 // the same as the vector's element type (sans qualifiers) 1285 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1286 SrcType.getTypePtr() && 1287 "Splatted expr doesn't match with vector element type?"); 1288 1289 // Splat the element across to all elements 1290 unsigned NumElements = DstTy->getVectorNumElements(); 1291 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1292 } 1293 1294 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1295 // Allow bitcast from vector to integer/fp of the same size. 1296 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1297 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1298 if (SrcSize == DstSize) 1299 return Builder.CreateBitCast(Src, DstTy, "conv"); 1300 1301 // Conversions between vectors of different sizes are not allowed except 1302 // when vectors of half are involved. Operations on storage-only half 1303 // vectors require promoting half vector operands to float vectors and 1304 // truncating the result, which is either an int or float vector, to a 1305 // short or half vector. 1306 1307 // Source and destination are both expected to be vectors. 1308 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1309 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1310 (void)DstElementTy; 1311 1312 assert(((SrcElementTy->isIntegerTy() && 1313 DstElementTy->isIntegerTy()) || 1314 (SrcElementTy->isFloatingPointTy() && 1315 DstElementTy->isFloatingPointTy())) && 1316 "unexpected conversion between a floating-point vector and an " 1317 "integer vector"); 1318 1319 // Truncate an i32 vector to an i16 vector. 1320 if (SrcElementTy->isIntegerTy()) 1321 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1322 1323 // Truncate a float vector to a half vector. 1324 if (SrcSize > DstSize) 1325 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1326 1327 // Promote a half vector to a float vector. 1328 return Builder.CreateFPExt(Src, DstTy, "conv"); 1329 } 1330 1331 // Finally, we have the arithmetic types: real int/float. 1332 Value *Res = nullptr; 1333 llvm::Type *ResTy = DstTy; 1334 1335 // An overflowing conversion has undefined behavior if either the source type 1336 // or the destination type is a floating-point type. However, we consider the 1337 // range of representable values for all floating-point types to be 1338 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1339 // floating-point type. 1340 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1341 OrigSrcType->isFloatingType()) 1342 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1343 Loc); 1344 1345 // Cast to half through float if half isn't a native type. 1346 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1347 // Make sure we cast in a single step if from another FP type. 1348 if (SrcTy->isFloatingPointTy()) { 1349 // Use the intrinsic if the half type itself isn't supported 1350 // (as opposed to operations on half, available with NativeHalfType). 1351 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1352 return Builder.CreateCall( 1353 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1354 // If the half type is supported, just use an fptrunc. 1355 return Builder.CreateFPTrunc(Src, DstTy); 1356 } 1357 DstTy = CGF.FloatTy; 1358 } 1359 1360 if (isa<llvm::IntegerType>(SrcTy)) { 1361 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1362 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1363 InputSigned = true; 1364 } 1365 if (isa<llvm::IntegerType>(DstTy)) 1366 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1367 else if (InputSigned) 1368 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1369 else 1370 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1371 } else if (isa<llvm::IntegerType>(DstTy)) { 1372 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1373 if (DstType->isSignedIntegerOrEnumerationType()) 1374 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1375 else 1376 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1377 } else { 1378 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1379 "Unknown real conversion"); 1380 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1381 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1382 else 1383 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1384 } 1385 1386 if (DstTy != ResTy) { 1387 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1388 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1389 Res = Builder.CreateCall( 1390 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1391 Res); 1392 } else { 1393 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1394 } 1395 } 1396 1397 if (Opts.EmitImplicitIntegerTruncationChecks) 1398 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1399 NoncanonicalDstType, Loc); 1400 1401 if (Opts.EmitImplicitIntegerSignChangeChecks) 1402 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1403 NoncanonicalDstType, Loc); 1404 1405 return Res; 1406 } 1407 1408 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1409 QualType DstTy, 1410 SourceLocation Loc) { 1411 FixedPointSemantics SrcFPSema = 1412 CGF.getContext().getFixedPointSemantics(SrcTy); 1413 FixedPointSemantics DstFPSema = 1414 CGF.getContext().getFixedPointSemantics(DstTy); 1415 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1416 DstTy->isIntegerType()); 1417 } 1418 1419 Value *ScalarExprEmitter::EmitFixedPointConversion( 1420 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1421 SourceLocation Loc, bool DstIsInteger) { 1422 using llvm::APInt; 1423 using llvm::ConstantInt; 1424 using llvm::Value; 1425 1426 unsigned SrcWidth = SrcFPSema.getWidth(); 1427 unsigned DstWidth = DstFPSema.getWidth(); 1428 unsigned SrcScale = SrcFPSema.getScale(); 1429 unsigned DstScale = DstFPSema.getScale(); 1430 bool SrcIsSigned = SrcFPSema.isSigned(); 1431 bool DstIsSigned = DstFPSema.isSigned(); 1432 1433 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1434 1435 Value *Result = Src; 1436 unsigned ResultWidth = SrcWidth; 1437 1438 // Downscale. 1439 if (DstScale < SrcScale) { 1440 // When converting to integers, we round towards zero. For negative numbers, 1441 // right shifting rounds towards negative infinity. In this case, we can 1442 // just round up before shifting. 1443 if (DstIsInteger && SrcIsSigned) { 1444 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1445 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1446 Value *LowBits = ConstantInt::get( 1447 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1448 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1449 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1450 } 1451 1452 Result = SrcIsSigned 1453 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1454 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1455 } 1456 1457 if (!DstFPSema.isSaturated()) { 1458 // Resize. 1459 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1460 1461 // Upscale. 1462 if (DstScale > SrcScale) 1463 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1464 } else { 1465 // Adjust the number of fractional bits. 1466 if (DstScale > SrcScale) { 1467 // Compare to DstWidth to prevent resizing twice. 1468 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1469 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1470 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1471 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1472 } 1473 1474 // Handle saturation. 1475 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1476 if (LessIntBits) { 1477 Value *Max = ConstantInt::get( 1478 CGF.getLLVMContext(), 1479 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1480 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1481 : Builder.CreateICmpUGT(Result, Max); 1482 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1483 } 1484 // Cannot overflow min to dest type if src is unsigned since all fixed 1485 // point types can cover the unsigned min of 0. 1486 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1487 Value *Min = ConstantInt::get( 1488 CGF.getLLVMContext(), 1489 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1490 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1491 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1492 } 1493 1494 // Resize the integer part to get the final destination size. 1495 if (ResultWidth != DstWidth) 1496 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1497 } 1498 return Result; 1499 } 1500 1501 /// Emit a conversion from the specified complex type to the specified 1502 /// destination type, where the destination type is an LLVM scalar type. 1503 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1504 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1505 SourceLocation Loc) { 1506 // Get the source element type. 1507 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1508 1509 // Handle conversions to bool first, they are special: comparisons against 0. 1510 if (DstTy->isBooleanType()) { 1511 // Complex != 0 -> (Real != 0) | (Imag != 0) 1512 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1513 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1514 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1515 } 1516 1517 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1518 // the imaginary part of the complex value is discarded and the value of the 1519 // real part is converted according to the conversion rules for the 1520 // corresponding real type. 1521 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1522 } 1523 1524 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1525 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1526 } 1527 1528 /// Emit a sanitization check for the given "binary" operation (which 1529 /// might actually be a unary increment which has been lowered to a binary 1530 /// operation). The check passes if all values in \p Checks (which are \c i1), 1531 /// are \c true. 1532 void ScalarExprEmitter::EmitBinOpCheck( 1533 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1534 assert(CGF.IsSanitizerScope); 1535 SanitizerHandler Check; 1536 SmallVector<llvm::Constant *, 4> StaticData; 1537 SmallVector<llvm::Value *, 2> DynamicData; 1538 1539 BinaryOperatorKind Opcode = Info.Opcode; 1540 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1541 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1542 1543 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1544 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1545 if (UO && UO->getOpcode() == UO_Minus) { 1546 Check = SanitizerHandler::NegateOverflow; 1547 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1548 DynamicData.push_back(Info.RHS); 1549 } else { 1550 if (BinaryOperator::isShiftOp(Opcode)) { 1551 // Shift LHS negative or too large, or RHS out of bounds. 1552 Check = SanitizerHandler::ShiftOutOfBounds; 1553 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1554 StaticData.push_back( 1555 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1556 StaticData.push_back( 1557 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1558 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1559 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1560 Check = SanitizerHandler::DivremOverflow; 1561 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1562 } else { 1563 // Arithmetic overflow (+, -, *). 1564 switch (Opcode) { 1565 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1566 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1567 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1568 default: llvm_unreachable("unexpected opcode for bin op check"); 1569 } 1570 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1571 } 1572 DynamicData.push_back(Info.LHS); 1573 DynamicData.push_back(Info.RHS); 1574 } 1575 1576 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1577 } 1578 1579 //===----------------------------------------------------------------------===// 1580 // Visitor Methods 1581 //===----------------------------------------------------------------------===// 1582 1583 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1584 CGF.ErrorUnsupported(E, "scalar expression"); 1585 if (E->getType()->isVoidType()) 1586 return nullptr; 1587 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1588 } 1589 1590 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1591 // Vector Mask Case 1592 if (E->getNumSubExprs() == 2) { 1593 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1594 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1595 Value *Mask; 1596 1597 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1598 unsigned LHSElts = LTy->getNumElements(); 1599 1600 Mask = RHS; 1601 1602 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1603 1604 // Mask off the high bits of each shuffle index. 1605 Value *MaskBits = 1606 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1607 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1608 1609 // newv = undef 1610 // mask = mask & maskbits 1611 // for each elt 1612 // n = extract mask i 1613 // x = extract val n 1614 // newv = insert newv, x, i 1615 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1616 MTy->getNumElements()); 1617 Value* NewV = llvm::UndefValue::get(RTy); 1618 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1619 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1620 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1621 1622 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1623 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1624 } 1625 return NewV; 1626 } 1627 1628 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1629 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1630 1631 SmallVector<llvm::Constant*, 32> indices; 1632 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1633 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1634 // Check for -1 and output it as undef in the IR. 1635 if (Idx.isSigned() && Idx.isAllOnesValue()) 1636 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1637 else 1638 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1639 } 1640 1641 Value *SV = llvm::ConstantVector::get(indices); 1642 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1643 } 1644 1645 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1646 QualType SrcType = E->getSrcExpr()->getType(), 1647 DstType = E->getType(); 1648 1649 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1650 1651 SrcType = CGF.getContext().getCanonicalType(SrcType); 1652 DstType = CGF.getContext().getCanonicalType(DstType); 1653 if (SrcType == DstType) return Src; 1654 1655 assert(SrcType->isVectorType() && 1656 "ConvertVector source type must be a vector"); 1657 assert(DstType->isVectorType() && 1658 "ConvertVector destination type must be a vector"); 1659 1660 llvm::Type *SrcTy = Src->getType(); 1661 llvm::Type *DstTy = ConvertType(DstType); 1662 1663 // Ignore conversions like int -> uint. 1664 if (SrcTy == DstTy) 1665 return Src; 1666 1667 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1668 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1669 1670 assert(SrcTy->isVectorTy() && 1671 "ConvertVector source IR type must be a vector"); 1672 assert(DstTy->isVectorTy() && 1673 "ConvertVector destination IR type must be a vector"); 1674 1675 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1676 *DstEltTy = DstTy->getVectorElementType(); 1677 1678 if (DstEltType->isBooleanType()) { 1679 assert((SrcEltTy->isFloatingPointTy() || 1680 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1681 1682 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1683 if (SrcEltTy->isFloatingPointTy()) { 1684 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1685 } else { 1686 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1687 } 1688 } 1689 1690 // We have the arithmetic types: real int/float. 1691 Value *Res = nullptr; 1692 1693 if (isa<llvm::IntegerType>(SrcEltTy)) { 1694 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1695 if (isa<llvm::IntegerType>(DstEltTy)) 1696 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1697 else if (InputSigned) 1698 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1699 else 1700 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1701 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1702 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1703 if (DstEltType->isSignedIntegerOrEnumerationType()) 1704 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1705 else 1706 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1707 } else { 1708 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1709 "Unknown real conversion"); 1710 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1711 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1712 else 1713 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1714 } 1715 1716 return Res; 1717 } 1718 1719 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1720 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1721 CGF.EmitIgnoredExpr(E->getBase()); 1722 return CGF.emitScalarConstant(Constant, E); 1723 } else { 1724 Expr::EvalResult Result; 1725 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1726 llvm::APSInt Value = Result.Val.getInt(); 1727 CGF.EmitIgnoredExpr(E->getBase()); 1728 return Builder.getInt(Value); 1729 } 1730 } 1731 1732 return EmitLoadOfLValue(E); 1733 } 1734 1735 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1736 TestAndClearIgnoreResultAssign(); 1737 1738 // Emit subscript expressions in rvalue context's. For most cases, this just 1739 // loads the lvalue formed by the subscript expr. However, we have to be 1740 // careful, because the base of a vector subscript is occasionally an rvalue, 1741 // so we can't get it as an lvalue. 1742 if (!E->getBase()->getType()->isVectorType()) 1743 return EmitLoadOfLValue(E); 1744 1745 // Handle the vector case. The base must be a vector, the index must be an 1746 // integer value. 1747 Value *Base = Visit(E->getBase()); 1748 Value *Idx = Visit(E->getIdx()); 1749 QualType IdxTy = E->getIdx()->getType(); 1750 1751 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1752 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1753 1754 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1755 } 1756 1757 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1758 unsigned Off, llvm::Type *I32Ty) { 1759 int MV = SVI->getMaskValue(Idx); 1760 if (MV == -1) 1761 return llvm::UndefValue::get(I32Ty); 1762 return llvm::ConstantInt::get(I32Ty, Off+MV); 1763 } 1764 1765 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1766 if (C->getBitWidth() != 32) { 1767 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1768 C->getZExtValue()) && 1769 "Index operand too large for shufflevector mask!"); 1770 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1771 } 1772 return C; 1773 } 1774 1775 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1776 bool Ignore = TestAndClearIgnoreResultAssign(); 1777 (void)Ignore; 1778 assert (Ignore == false && "init list ignored"); 1779 unsigned NumInitElements = E->getNumInits(); 1780 1781 if (E->hadArrayRangeDesignator()) 1782 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1783 1784 llvm::VectorType *VType = 1785 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1786 1787 if (!VType) { 1788 if (NumInitElements == 0) { 1789 // C++11 value-initialization for the scalar. 1790 return EmitNullValue(E->getType()); 1791 } 1792 // We have a scalar in braces. Just use the first element. 1793 return Visit(E->getInit(0)); 1794 } 1795 1796 unsigned ResElts = VType->getNumElements(); 1797 1798 // Loop over initializers collecting the Value for each, and remembering 1799 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1800 // us to fold the shuffle for the swizzle into the shuffle for the vector 1801 // initializer, since LLVM optimizers generally do not want to touch 1802 // shuffles. 1803 unsigned CurIdx = 0; 1804 bool VIsUndefShuffle = false; 1805 llvm::Value *V = llvm::UndefValue::get(VType); 1806 for (unsigned i = 0; i != NumInitElements; ++i) { 1807 Expr *IE = E->getInit(i); 1808 Value *Init = Visit(IE); 1809 SmallVector<llvm::Constant*, 16> Args; 1810 1811 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1812 1813 // Handle scalar elements. If the scalar initializer is actually one 1814 // element of a different vector of the same width, use shuffle instead of 1815 // extract+insert. 1816 if (!VVT) { 1817 if (isa<ExtVectorElementExpr>(IE)) { 1818 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1819 1820 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1821 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1822 Value *LHS = nullptr, *RHS = nullptr; 1823 if (CurIdx == 0) { 1824 // insert into undef -> shuffle (src, undef) 1825 // shufflemask must use an i32 1826 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1827 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1828 1829 LHS = EI->getVectorOperand(); 1830 RHS = V; 1831 VIsUndefShuffle = true; 1832 } else if (VIsUndefShuffle) { 1833 // insert into undefshuffle && size match -> shuffle (v, src) 1834 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1835 for (unsigned j = 0; j != CurIdx; ++j) 1836 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1837 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1838 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1839 1840 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1841 RHS = EI->getVectorOperand(); 1842 VIsUndefShuffle = false; 1843 } 1844 if (!Args.empty()) { 1845 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1846 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1847 ++CurIdx; 1848 continue; 1849 } 1850 } 1851 } 1852 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1853 "vecinit"); 1854 VIsUndefShuffle = false; 1855 ++CurIdx; 1856 continue; 1857 } 1858 1859 unsigned InitElts = VVT->getNumElements(); 1860 1861 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1862 // input is the same width as the vector being constructed, generate an 1863 // optimized shuffle of the swizzle input into the result. 1864 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1865 if (isa<ExtVectorElementExpr>(IE)) { 1866 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1867 Value *SVOp = SVI->getOperand(0); 1868 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1869 1870 if (OpTy->getNumElements() == ResElts) { 1871 for (unsigned j = 0; j != CurIdx; ++j) { 1872 // If the current vector initializer is a shuffle with undef, merge 1873 // this shuffle directly into it. 1874 if (VIsUndefShuffle) { 1875 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1876 CGF.Int32Ty)); 1877 } else { 1878 Args.push_back(Builder.getInt32(j)); 1879 } 1880 } 1881 for (unsigned j = 0, je = InitElts; j != je; ++j) 1882 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1883 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1884 1885 if (VIsUndefShuffle) 1886 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1887 1888 Init = SVOp; 1889 } 1890 } 1891 1892 // Extend init to result vector length, and then shuffle its contribution 1893 // to the vector initializer into V. 1894 if (Args.empty()) { 1895 for (unsigned j = 0; j != InitElts; ++j) 1896 Args.push_back(Builder.getInt32(j)); 1897 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1898 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1899 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1900 Mask, "vext"); 1901 1902 Args.clear(); 1903 for (unsigned j = 0; j != CurIdx; ++j) 1904 Args.push_back(Builder.getInt32(j)); 1905 for (unsigned j = 0; j != InitElts; ++j) 1906 Args.push_back(Builder.getInt32(j+Offset)); 1907 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1908 } 1909 1910 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1911 // merging subsequent shuffles into this one. 1912 if (CurIdx == 0) 1913 std::swap(V, Init); 1914 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1915 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1916 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1917 CurIdx += InitElts; 1918 } 1919 1920 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1921 // Emit remaining default initializers. 1922 llvm::Type *EltTy = VType->getElementType(); 1923 1924 // Emit remaining default initializers 1925 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1926 Value *Idx = Builder.getInt32(CurIdx); 1927 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1928 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1929 } 1930 return V; 1931 } 1932 1933 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1934 const Expr *E = CE->getSubExpr(); 1935 1936 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1937 return false; 1938 1939 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1940 // We always assume that 'this' is never null. 1941 return false; 1942 } 1943 1944 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1945 // And that glvalue casts are never null. 1946 if (ICE->getValueKind() != VK_RValue) 1947 return false; 1948 } 1949 1950 return true; 1951 } 1952 1953 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1954 // have to handle a more broad range of conversions than explicit casts, as they 1955 // handle things like function to ptr-to-function decay etc. 1956 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1957 Expr *E = CE->getSubExpr(); 1958 QualType DestTy = CE->getType(); 1959 CastKind Kind = CE->getCastKind(); 1960 1961 // These cases are generally not written to ignore the result of 1962 // evaluating their sub-expressions, so we clear this now. 1963 bool Ignored = TestAndClearIgnoreResultAssign(); 1964 1965 // Since almost all cast kinds apply to scalars, this switch doesn't have 1966 // a default case, so the compiler will warn on a missing case. The cases 1967 // are in the same order as in the CastKind enum. 1968 switch (Kind) { 1969 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1970 case CK_BuiltinFnToFnPtr: 1971 llvm_unreachable("builtin functions are handled elsewhere"); 1972 1973 case CK_LValueBitCast: 1974 case CK_ObjCObjectLValueCast: { 1975 Address Addr = EmitLValue(E).getAddress(); 1976 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1977 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1978 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1979 } 1980 1981 case CK_LValueToRValueBitCast: { 1982 LValue SourceLVal = CGF.EmitLValue(E); 1983 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(), 1984 CGF.ConvertTypeForMem(DestTy)); 1985 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1986 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1987 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1988 } 1989 1990 case CK_CPointerToObjCPointerCast: 1991 case CK_BlockPointerToObjCPointerCast: 1992 case CK_AnyPointerToBlockPointerCast: 1993 case CK_BitCast: { 1994 Value *Src = Visit(const_cast<Expr*>(E)); 1995 llvm::Type *SrcTy = Src->getType(); 1996 llvm::Type *DstTy = ConvertType(DestTy); 1997 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1998 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1999 llvm_unreachable("wrong cast for pointers in different address spaces" 2000 "(must be an address space cast)!"); 2001 } 2002 2003 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2004 if (auto PT = DestTy->getAs<PointerType>()) 2005 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2006 /*MayBeNull=*/true, 2007 CodeGenFunction::CFITCK_UnrelatedCast, 2008 CE->getBeginLoc()); 2009 } 2010 2011 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2012 const QualType SrcType = E->getType(); 2013 2014 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2015 // Casting to pointer that could carry dynamic information (provided by 2016 // invariant.group) requires launder. 2017 Src = Builder.CreateLaunderInvariantGroup(Src); 2018 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2019 // Casting to pointer that does not carry dynamic information (provided 2020 // by invariant.group) requires stripping it. Note that we don't do it 2021 // if the source could not be dynamic type and destination could be 2022 // dynamic because dynamic information is already laundered. It is 2023 // because launder(strip(src)) == launder(src), so there is no need to 2024 // add extra strip before launder. 2025 Src = Builder.CreateStripInvariantGroup(Src); 2026 } 2027 } 2028 2029 // Update heapallocsite metadata when there is an explicit cast. 2030 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2031 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2032 CGF.getDebugInfo()-> 2033 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2034 2035 return Builder.CreateBitCast(Src, DstTy); 2036 } 2037 case CK_AddressSpaceConversion: { 2038 Expr::EvalResult Result; 2039 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2040 Result.Val.isNullPointer()) { 2041 // If E has side effect, it is emitted even if its final result is a 2042 // null pointer. In that case, a DCE pass should be able to 2043 // eliminate the useless instructions emitted during translating E. 2044 if (Result.HasSideEffects) 2045 Visit(E); 2046 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2047 ConvertType(DestTy)), DestTy); 2048 } 2049 // Since target may map different address spaces in AST to the same address 2050 // space, an address space conversion may end up as a bitcast. 2051 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2052 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2053 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2054 } 2055 case CK_AtomicToNonAtomic: 2056 case CK_NonAtomicToAtomic: 2057 case CK_NoOp: 2058 case CK_UserDefinedConversion: 2059 return Visit(const_cast<Expr*>(E)); 2060 2061 case CK_BaseToDerived: { 2062 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2063 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2064 2065 Address Base = CGF.EmitPointerWithAlignment(E); 2066 Address Derived = 2067 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2068 CE->path_begin(), CE->path_end(), 2069 CGF.ShouldNullCheckClassCastValue(CE)); 2070 2071 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2072 // performed and the object is not of the derived type. 2073 if (CGF.sanitizePerformTypeCheck()) 2074 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2075 Derived.getPointer(), DestTy->getPointeeType()); 2076 2077 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2078 CGF.EmitVTablePtrCheckForCast( 2079 DestTy->getPointeeType(), Derived.getPointer(), 2080 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2081 CE->getBeginLoc()); 2082 2083 return Derived.getPointer(); 2084 } 2085 case CK_UncheckedDerivedToBase: 2086 case CK_DerivedToBase: { 2087 // The EmitPointerWithAlignment path does this fine; just discard 2088 // the alignment. 2089 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2090 } 2091 2092 case CK_Dynamic: { 2093 Address V = CGF.EmitPointerWithAlignment(E); 2094 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2095 return CGF.EmitDynamicCast(V, DCE); 2096 } 2097 2098 case CK_ArrayToPointerDecay: 2099 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2100 case CK_FunctionToPointerDecay: 2101 return EmitLValue(E).getPointer(); 2102 2103 case CK_NullToPointer: 2104 if (MustVisitNullValue(E)) 2105 CGF.EmitIgnoredExpr(E); 2106 2107 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2108 DestTy); 2109 2110 case CK_NullToMemberPointer: { 2111 if (MustVisitNullValue(E)) 2112 CGF.EmitIgnoredExpr(E); 2113 2114 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2115 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2116 } 2117 2118 case CK_ReinterpretMemberPointer: 2119 case CK_BaseToDerivedMemberPointer: 2120 case CK_DerivedToBaseMemberPointer: { 2121 Value *Src = Visit(E); 2122 2123 // Note that the AST doesn't distinguish between checked and 2124 // unchecked member pointer conversions, so we always have to 2125 // implement checked conversions here. This is inefficient when 2126 // actual control flow may be required in order to perform the 2127 // check, which it is for data member pointers (but not member 2128 // function pointers on Itanium and ARM). 2129 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2130 } 2131 2132 case CK_ARCProduceObject: 2133 return CGF.EmitARCRetainScalarExpr(E); 2134 case CK_ARCConsumeObject: 2135 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2136 case CK_ARCReclaimReturnedObject: 2137 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2138 case CK_ARCExtendBlockObject: 2139 return CGF.EmitARCExtendBlockObject(E); 2140 2141 case CK_CopyAndAutoreleaseBlockObject: 2142 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2143 2144 case CK_FloatingRealToComplex: 2145 case CK_FloatingComplexCast: 2146 case CK_IntegralRealToComplex: 2147 case CK_IntegralComplexCast: 2148 case CK_IntegralComplexToFloatingComplex: 2149 case CK_FloatingComplexToIntegralComplex: 2150 case CK_ConstructorConversion: 2151 case CK_ToUnion: 2152 llvm_unreachable("scalar cast to non-scalar value"); 2153 2154 case CK_LValueToRValue: 2155 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2156 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2157 return Visit(const_cast<Expr*>(E)); 2158 2159 case CK_IntegralToPointer: { 2160 Value *Src = Visit(const_cast<Expr*>(E)); 2161 2162 // First, convert to the correct width so that we control the kind of 2163 // extension. 2164 auto DestLLVMTy = ConvertType(DestTy); 2165 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2166 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2167 llvm::Value* IntResult = 2168 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2169 2170 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2171 2172 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2173 // Going from integer to pointer that could be dynamic requires reloading 2174 // dynamic information from invariant.group. 2175 if (DestTy.mayBeDynamicClass()) 2176 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2177 } 2178 return IntToPtr; 2179 } 2180 case CK_PointerToIntegral: { 2181 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2182 auto *PtrExpr = Visit(E); 2183 2184 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2185 const QualType SrcType = E->getType(); 2186 2187 // Casting to integer requires stripping dynamic information as it does 2188 // not carries it. 2189 if (SrcType.mayBeDynamicClass()) 2190 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2191 } 2192 2193 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2194 } 2195 case CK_ToVoid: { 2196 CGF.EmitIgnoredExpr(E); 2197 return nullptr; 2198 } 2199 case CK_VectorSplat: { 2200 llvm::Type *DstTy = ConvertType(DestTy); 2201 Value *Elt = Visit(const_cast<Expr*>(E)); 2202 // Splat the element across to all elements 2203 unsigned NumElements = DstTy->getVectorNumElements(); 2204 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2205 } 2206 2207 case CK_FixedPointCast: 2208 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2209 CE->getExprLoc()); 2210 2211 case CK_FixedPointToBoolean: 2212 assert(E->getType()->isFixedPointType() && 2213 "Expected src type to be fixed point type"); 2214 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2215 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2216 CE->getExprLoc()); 2217 2218 case CK_FixedPointToIntegral: 2219 assert(E->getType()->isFixedPointType() && 2220 "Expected src type to be fixed point type"); 2221 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2222 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2223 CE->getExprLoc()); 2224 2225 case CK_IntegralToFixedPoint: 2226 assert(E->getType()->isIntegerType() && 2227 "Expected src type to be an integer"); 2228 assert(DestTy->isFixedPointType() && 2229 "Expected dest type to be fixed point type"); 2230 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2231 CE->getExprLoc()); 2232 2233 case CK_IntegralCast: { 2234 ScalarConversionOpts Opts; 2235 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2236 if (!ICE->isPartOfExplicitCast()) 2237 Opts = ScalarConversionOpts(CGF.SanOpts); 2238 } 2239 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2240 CE->getExprLoc(), Opts); 2241 } 2242 case CK_IntegralToFloating: 2243 case CK_FloatingToIntegral: 2244 case CK_FloatingCast: 2245 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2246 CE->getExprLoc()); 2247 case CK_BooleanToSignedIntegral: { 2248 ScalarConversionOpts Opts; 2249 Opts.TreatBooleanAsSigned = true; 2250 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2251 CE->getExprLoc(), Opts); 2252 } 2253 case CK_IntegralToBoolean: 2254 return EmitIntToBoolConversion(Visit(E)); 2255 case CK_PointerToBoolean: 2256 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2257 case CK_FloatingToBoolean: 2258 return EmitFloatToBoolConversion(Visit(E)); 2259 case CK_MemberPointerToBoolean: { 2260 llvm::Value *MemPtr = Visit(E); 2261 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2262 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2263 } 2264 2265 case CK_FloatingComplexToReal: 2266 case CK_IntegralComplexToReal: 2267 return CGF.EmitComplexExpr(E, false, true).first; 2268 2269 case CK_FloatingComplexToBoolean: 2270 case CK_IntegralComplexToBoolean: { 2271 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2272 2273 // TODO: kill this function off, inline appropriate case here 2274 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2275 CE->getExprLoc()); 2276 } 2277 2278 case CK_ZeroToOCLOpaqueType: { 2279 assert((DestTy->isEventT() || DestTy->isQueueT() || 2280 DestTy->isOCLIntelSubgroupAVCType()) && 2281 "CK_ZeroToOCLEvent cast on non-event type"); 2282 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2283 } 2284 2285 case CK_IntToOCLSampler: 2286 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2287 2288 } // end of switch 2289 2290 llvm_unreachable("unknown scalar cast"); 2291 } 2292 2293 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2294 CodeGenFunction::StmtExprEvaluation eval(CGF); 2295 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2296 !E->getType()->isVoidType()); 2297 if (!RetAlloca.isValid()) 2298 return nullptr; 2299 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2300 E->getExprLoc()); 2301 } 2302 2303 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2304 CGF.enterFullExpression(E); 2305 CodeGenFunction::RunCleanupsScope Scope(CGF); 2306 Value *V = Visit(E->getSubExpr()); 2307 // Defend against dominance problems caused by jumps out of expression 2308 // evaluation through the shared cleanup block. 2309 Scope.ForceCleanup({&V}); 2310 return V; 2311 } 2312 2313 //===----------------------------------------------------------------------===// 2314 // Unary Operators 2315 //===----------------------------------------------------------------------===// 2316 2317 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2318 llvm::Value *InVal, bool IsInc) { 2319 BinOpInfo BinOp; 2320 BinOp.LHS = InVal; 2321 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2322 BinOp.Ty = E->getType(); 2323 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2324 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2325 BinOp.E = E; 2326 return BinOp; 2327 } 2328 2329 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2330 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2331 llvm::Value *Amount = 2332 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2333 StringRef Name = IsInc ? "inc" : "dec"; 2334 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2335 case LangOptions::SOB_Defined: 2336 return Builder.CreateAdd(InVal, Amount, Name); 2337 case LangOptions::SOB_Undefined: 2338 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2339 return Builder.CreateNSWAdd(InVal, Amount, Name); 2340 LLVM_FALLTHROUGH; 2341 case LangOptions::SOB_Trapping: 2342 if (!E->canOverflow()) 2343 return Builder.CreateNSWAdd(InVal, Amount, Name); 2344 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2345 } 2346 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2347 } 2348 2349 llvm::Value * 2350 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2351 bool isInc, bool isPre) { 2352 2353 QualType type = E->getSubExpr()->getType(); 2354 llvm::PHINode *atomicPHI = nullptr; 2355 llvm::Value *value; 2356 llvm::Value *input; 2357 2358 int amount = (isInc ? 1 : -1); 2359 bool isSubtraction = !isInc; 2360 2361 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2362 type = atomicTy->getValueType(); 2363 if (isInc && type->isBooleanType()) { 2364 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2365 if (isPre) { 2366 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2367 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2368 return Builder.getTrue(); 2369 } 2370 // For atomic bool increment, we just store true and return it for 2371 // preincrement, do an atomic swap with true for postincrement 2372 return Builder.CreateAtomicRMW( 2373 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2374 llvm::AtomicOrdering::SequentiallyConsistent); 2375 } 2376 // Special case for atomic increment / decrement on integers, emit 2377 // atomicrmw instructions. We skip this if we want to be doing overflow 2378 // checking, and fall into the slow path with the atomic cmpxchg loop. 2379 if (!type->isBooleanType() && type->isIntegerType() && 2380 !(type->isUnsignedIntegerType() && 2381 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2382 CGF.getLangOpts().getSignedOverflowBehavior() != 2383 LangOptions::SOB_Trapping) { 2384 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2385 llvm::AtomicRMWInst::Sub; 2386 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2387 llvm::Instruction::Sub; 2388 llvm::Value *amt = CGF.EmitToMemory( 2389 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2390 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2391 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2392 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2393 } 2394 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2395 input = value; 2396 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2397 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2398 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2399 value = CGF.EmitToMemory(value, type); 2400 Builder.CreateBr(opBB); 2401 Builder.SetInsertPoint(opBB); 2402 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2403 atomicPHI->addIncoming(value, startBB); 2404 value = atomicPHI; 2405 } else { 2406 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2407 input = value; 2408 } 2409 2410 // Special case of integer increment that we have to check first: bool++. 2411 // Due to promotion rules, we get: 2412 // bool++ -> bool = bool + 1 2413 // -> bool = (int)bool + 1 2414 // -> bool = ((int)bool + 1 != 0) 2415 // An interesting aspect of this is that increment is always true. 2416 // Decrement does not have this property. 2417 if (isInc && type->isBooleanType()) { 2418 value = Builder.getTrue(); 2419 2420 // Most common case by far: integer increment. 2421 } else if (type->isIntegerType()) { 2422 // Note that signed integer inc/dec with width less than int can't 2423 // overflow because of promotion rules; we're just eliding a few steps here. 2424 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2425 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2426 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2427 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2428 value = 2429 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2430 } else { 2431 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2432 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2433 } 2434 2435 // Next most common: pointer increment. 2436 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2437 QualType type = ptr->getPointeeType(); 2438 2439 // VLA types don't have constant size. 2440 if (const VariableArrayType *vla 2441 = CGF.getContext().getAsVariableArrayType(type)) { 2442 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2443 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2444 if (CGF.getLangOpts().isSignedOverflowDefined()) 2445 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2446 else 2447 value = CGF.EmitCheckedInBoundsGEP( 2448 value, numElts, /*SignedIndices=*/false, isSubtraction, 2449 E->getExprLoc(), "vla.inc"); 2450 2451 // Arithmetic on function pointers (!) is just +-1. 2452 } else if (type->isFunctionType()) { 2453 llvm::Value *amt = Builder.getInt32(amount); 2454 2455 value = CGF.EmitCastToVoidPtr(value); 2456 if (CGF.getLangOpts().isSignedOverflowDefined()) 2457 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2458 else 2459 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2460 isSubtraction, E->getExprLoc(), 2461 "incdec.funcptr"); 2462 value = Builder.CreateBitCast(value, input->getType()); 2463 2464 // For everything else, we can just do a simple increment. 2465 } else { 2466 llvm::Value *amt = Builder.getInt32(amount); 2467 if (CGF.getLangOpts().isSignedOverflowDefined()) 2468 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2469 else 2470 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2471 isSubtraction, E->getExprLoc(), 2472 "incdec.ptr"); 2473 } 2474 2475 // Vector increment/decrement. 2476 } else if (type->isVectorType()) { 2477 if (type->hasIntegerRepresentation()) { 2478 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2479 2480 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2481 } else { 2482 value = Builder.CreateFAdd( 2483 value, 2484 llvm::ConstantFP::get(value->getType(), amount), 2485 isInc ? "inc" : "dec"); 2486 } 2487 2488 // Floating point. 2489 } else if (type->isRealFloatingType()) { 2490 // Add the inc/dec to the real part. 2491 llvm::Value *amt; 2492 2493 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2494 // Another special case: half FP increment should be done via float 2495 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2496 value = Builder.CreateCall( 2497 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2498 CGF.CGM.FloatTy), 2499 input, "incdec.conv"); 2500 } else { 2501 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2502 } 2503 } 2504 2505 if (value->getType()->isFloatTy()) 2506 amt = llvm::ConstantFP::get(VMContext, 2507 llvm::APFloat(static_cast<float>(amount))); 2508 else if (value->getType()->isDoubleTy()) 2509 amt = llvm::ConstantFP::get(VMContext, 2510 llvm::APFloat(static_cast<double>(amount))); 2511 else { 2512 // Remaining types are Half, LongDouble or __float128. Convert from float. 2513 llvm::APFloat F(static_cast<float>(amount)); 2514 bool ignored; 2515 const llvm::fltSemantics *FS; 2516 // Don't use getFloatTypeSemantics because Half isn't 2517 // necessarily represented using the "half" LLVM type. 2518 if (value->getType()->isFP128Ty()) 2519 FS = &CGF.getTarget().getFloat128Format(); 2520 else if (value->getType()->isHalfTy()) 2521 FS = &CGF.getTarget().getHalfFormat(); 2522 else 2523 FS = &CGF.getTarget().getLongDoubleFormat(); 2524 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2525 amt = llvm::ConstantFP::get(VMContext, F); 2526 } 2527 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2528 2529 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2530 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2531 value = Builder.CreateCall( 2532 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2533 CGF.CGM.FloatTy), 2534 value, "incdec.conv"); 2535 } else { 2536 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2537 } 2538 } 2539 2540 // Objective-C pointer types. 2541 } else { 2542 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2543 value = CGF.EmitCastToVoidPtr(value); 2544 2545 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2546 if (!isInc) size = -size; 2547 llvm::Value *sizeValue = 2548 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2549 2550 if (CGF.getLangOpts().isSignedOverflowDefined()) 2551 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2552 else 2553 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2554 /*SignedIndices=*/false, isSubtraction, 2555 E->getExprLoc(), "incdec.objptr"); 2556 value = Builder.CreateBitCast(value, input->getType()); 2557 } 2558 2559 if (atomicPHI) { 2560 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2561 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2562 auto Pair = CGF.EmitAtomicCompareExchange( 2563 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2564 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2565 llvm::Value *success = Pair.second; 2566 atomicPHI->addIncoming(old, curBlock); 2567 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2568 Builder.SetInsertPoint(contBB); 2569 return isPre ? value : input; 2570 } 2571 2572 // Store the updated result through the lvalue. 2573 if (LV.isBitField()) 2574 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2575 else 2576 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2577 2578 // If this is a postinc, return the value read from memory, otherwise use the 2579 // updated value. 2580 return isPre ? value : input; 2581 } 2582 2583 2584 2585 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2586 TestAndClearIgnoreResultAssign(); 2587 Value *Op = Visit(E->getSubExpr()); 2588 2589 // Generate a unary FNeg for FP ops. 2590 if (Op->getType()->isFPOrFPVectorTy()) 2591 return Builder.CreateFNeg(Op, "fneg"); 2592 2593 // Emit unary minus with EmitSub so we handle overflow cases etc. 2594 BinOpInfo BinOp; 2595 BinOp.RHS = Op; 2596 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2597 BinOp.Ty = E->getType(); 2598 BinOp.Opcode = BO_Sub; 2599 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2600 BinOp.E = E; 2601 return EmitSub(BinOp); 2602 } 2603 2604 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2605 TestAndClearIgnoreResultAssign(); 2606 Value *Op = Visit(E->getSubExpr()); 2607 return Builder.CreateNot(Op, "neg"); 2608 } 2609 2610 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2611 // Perform vector logical not on comparison with zero vector. 2612 if (E->getType()->isExtVectorType()) { 2613 Value *Oper = Visit(E->getSubExpr()); 2614 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2615 Value *Result; 2616 if (Oper->getType()->isFPOrFPVectorTy()) 2617 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2618 else 2619 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2620 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2621 } 2622 2623 // Compare operand to zero. 2624 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2625 2626 // Invert value. 2627 // TODO: Could dynamically modify easy computations here. For example, if 2628 // the operand is an icmp ne, turn into icmp eq. 2629 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2630 2631 // ZExt result to the expr type. 2632 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2633 } 2634 2635 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2636 // Try folding the offsetof to a constant. 2637 Expr::EvalResult EVResult; 2638 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2639 llvm::APSInt Value = EVResult.Val.getInt(); 2640 return Builder.getInt(Value); 2641 } 2642 2643 // Loop over the components of the offsetof to compute the value. 2644 unsigned n = E->getNumComponents(); 2645 llvm::Type* ResultType = ConvertType(E->getType()); 2646 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2647 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2648 for (unsigned i = 0; i != n; ++i) { 2649 OffsetOfNode ON = E->getComponent(i); 2650 llvm::Value *Offset = nullptr; 2651 switch (ON.getKind()) { 2652 case OffsetOfNode::Array: { 2653 // Compute the index 2654 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2655 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2656 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2657 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2658 2659 // Save the element type 2660 CurrentType = 2661 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2662 2663 // Compute the element size 2664 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2665 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2666 2667 // Multiply out to compute the result 2668 Offset = Builder.CreateMul(Idx, ElemSize); 2669 break; 2670 } 2671 2672 case OffsetOfNode::Field: { 2673 FieldDecl *MemberDecl = ON.getField(); 2674 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2675 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2676 2677 // Compute the index of the field in its parent. 2678 unsigned i = 0; 2679 // FIXME: It would be nice if we didn't have to loop here! 2680 for (RecordDecl::field_iterator Field = RD->field_begin(), 2681 FieldEnd = RD->field_end(); 2682 Field != FieldEnd; ++Field, ++i) { 2683 if (*Field == MemberDecl) 2684 break; 2685 } 2686 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2687 2688 // Compute the offset to the field 2689 int64_t OffsetInt = RL.getFieldOffset(i) / 2690 CGF.getContext().getCharWidth(); 2691 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2692 2693 // Save the element type. 2694 CurrentType = MemberDecl->getType(); 2695 break; 2696 } 2697 2698 case OffsetOfNode::Identifier: 2699 llvm_unreachable("dependent __builtin_offsetof"); 2700 2701 case OffsetOfNode::Base: { 2702 if (ON.getBase()->isVirtual()) { 2703 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2704 continue; 2705 } 2706 2707 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2708 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2709 2710 // Save the element type. 2711 CurrentType = ON.getBase()->getType(); 2712 2713 // Compute the offset to the base. 2714 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2715 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2716 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2717 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2718 break; 2719 } 2720 } 2721 Result = Builder.CreateAdd(Result, Offset); 2722 } 2723 return Result; 2724 } 2725 2726 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2727 /// argument of the sizeof expression as an integer. 2728 Value * 2729 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2730 const UnaryExprOrTypeTraitExpr *E) { 2731 QualType TypeToSize = E->getTypeOfArgument(); 2732 if (E->getKind() == UETT_SizeOf) { 2733 if (const VariableArrayType *VAT = 2734 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2735 if (E->isArgumentType()) { 2736 // sizeof(type) - make sure to emit the VLA size. 2737 CGF.EmitVariablyModifiedType(TypeToSize); 2738 } else { 2739 // C99 6.5.3.4p2: If the argument is an expression of type 2740 // VLA, it is evaluated. 2741 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2742 } 2743 2744 auto VlaSize = CGF.getVLASize(VAT); 2745 llvm::Value *size = VlaSize.NumElts; 2746 2747 // Scale the number of non-VLA elements by the non-VLA element size. 2748 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2749 if (!eltSize.isOne()) 2750 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2751 2752 return size; 2753 } 2754 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2755 auto Alignment = 2756 CGF.getContext() 2757 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2758 E->getTypeOfArgument()->getPointeeType())) 2759 .getQuantity(); 2760 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2761 } 2762 2763 // If this isn't sizeof(vla), the result must be constant; use the constant 2764 // folding logic so we don't have to duplicate it here. 2765 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2766 } 2767 2768 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2769 Expr *Op = E->getSubExpr(); 2770 if (Op->getType()->isAnyComplexType()) { 2771 // If it's an l-value, load through the appropriate subobject l-value. 2772 // Note that we have to ask E because Op might be an l-value that 2773 // this won't work for, e.g. an Obj-C property. 2774 if (E->isGLValue()) 2775 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2776 E->getExprLoc()).getScalarVal(); 2777 2778 // Otherwise, calculate and project. 2779 return CGF.EmitComplexExpr(Op, false, true).first; 2780 } 2781 2782 return Visit(Op); 2783 } 2784 2785 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2786 Expr *Op = E->getSubExpr(); 2787 if (Op->getType()->isAnyComplexType()) { 2788 // If it's an l-value, load through the appropriate subobject l-value. 2789 // Note that we have to ask E because Op might be an l-value that 2790 // this won't work for, e.g. an Obj-C property. 2791 if (Op->isGLValue()) 2792 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2793 E->getExprLoc()).getScalarVal(); 2794 2795 // Otherwise, calculate and project. 2796 return CGF.EmitComplexExpr(Op, true, false).second; 2797 } 2798 2799 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2800 // effects are evaluated, but not the actual value. 2801 if (Op->isGLValue()) 2802 CGF.EmitLValue(Op); 2803 else 2804 CGF.EmitScalarExpr(Op, true); 2805 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2806 } 2807 2808 //===----------------------------------------------------------------------===// 2809 // Binary Operators 2810 //===----------------------------------------------------------------------===// 2811 2812 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2813 TestAndClearIgnoreResultAssign(); 2814 BinOpInfo Result; 2815 Result.LHS = Visit(E->getLHS()); 2816 Result.RHS = Visit(E->getRHS()); 2817 Result.Ty = E->getType(); 2818 Result.Opcode = E->getOpcode(); 2819 Result.FPFeatures = E->getFPFeatures(); 2820 Result.E = E; 2821 return Result; 2822 } 2823 2824 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2825 const CompoundAssignOperator *E, 2826 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2827 Value *&Result) { 2828 QualType LHSTy = E->getLHS()->getType(); 2829 BinOpInfo OpInfo; 2830 2831 if (E->getComputationResultType()->isAnyComplexType()) 2832 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2833 2834 // Emit the RHS first. __block variables need to have the rhs evaluated 2835 // first, plus this should improve codegen a little. 2836 OpInfo.RHS = Visit(E->getRHS()); 2837 OpInfo.Ty = E->getComputationResultType(); 2838 OpInfo.Opcode = E->getOpcode(); 2839 OpInfo.FPFeatures = E->getFPFeatures(); 2840 OpInfo.E = E; 2841 // Load/convert the LHS. 2842 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2843 2844 llvm::PHINode *atomicPHI = nullptr; 2845 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2846 QualType type = atomicTy->getValueType(); 2847 if (!type->isBooleanType() && type->isIntegerType() && 2848 !(type->isUnsignedIntegerType() && 2849 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2850 CGF.getLangOpts().getSignedOverflowBehavior() != 2851 LangOptions::SOB_Trapping) { 2852 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2853 switch (OpInfo.Opcode) { 2854 // We don't have atomicrmw operands for *, %, /, <<, >> 2855 case BO_MulAssign: case BO_DivAssign: 2856 case BO_RemAssign: 2857 case BO_ShlAssign: 2858 case BO_ShrAssign: 2859 break; 2860 case BO_AddAssign: 2861 aop = llvm::AtomicRMWInst::Add; 2862 break; 2863 case BO_SubAssign: 2864 aop = llvm::AtomicRMWInst::Sub; 2865 break; 2866 case BO_AndAssign: 2867 aop = llvm::AtomicRMWInst::And; 2868 break; 2869 case BO_XorAssign: 2870 aop = llvm::AtomicRMWInst::Xor; 2871 break; 2872 case BO_OrAssign: 2873 aop = llvm::AtomicRMWInst::Or; 2874 break; 2875 default: 2876 llvm_unreachable("Invalid compound assignment type"); 2877 } 2878 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2879 llvm::Value *amt = CGF.EmitToMemory( 2880 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2881 E->getExprLoc()), 2882 LHSTy); 2883 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2884 llvm::AtomicOrdering::SequentiallyConsistent); 2885 return LHSLV; 2886 } 2887 } 2888 // FIXME: For floating point types, we should be saving and restoring the 2889 // floating point environment in the loop. 2890 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2891 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2892 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2893 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2894 Builder.CreateBr(opBB); 2895 Builder.SetInsertPoint(opBB); 2896 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2897 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2898 OpInfo.LHS = atomicPHI; 2899 } 2900 else 2901 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2902 2903 SourceLocation Loc = E->getExprLoc(); 2904 OpInfo.LHS = 2905 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2906 2907 // Expand the binary operator. 2908 Result = (this->*Func)(OpInfo); 2909 2910 // Convert the result back to the LHS type, 2911 // potentially with Implicit Conversion sanitizer check. 2912 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2913 Loc, ScalarConversionOpts(CGF.SanOpts)); 2914 2915 if (atomicPHI) { 2916 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2917 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2918 auto Pair = CGF.EmitAtomicCompareExchange( 2919 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2920 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2921 llvm::Value *success = Pair.second; 2922 atomicPHI->addIncoming(old, curBlock); 2923 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2924 Builder.SetInsertPoint(contBB); 2925 return LHSLV; 2926 } 2927 2928 // Store the result value into the LHS lvalue. Bit-fields are handled 2929 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2930 // 'An assignment expression has the value of the left operand after the 2931 // assignment...'. 2932 if (LHSLV.isBitField()) 2933 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2934 else 2935 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2936 2937 return LHSLV; 2938 } 2939 2940 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2941 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2942 bool Ignore = TestAndClearIgnoreResultAssign(); 2943 Value *RHS = nullptr; 2944 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2945 2946 // If the result is clearly ignored, return now. 2947 if (Ignore) 2948 return nullptr; 2949 2950 // The result of an assignment in C is the assigned r-value. 2951 if (!CGF.getLangOpts().CPlusPlus) 2952 return RHS; 2953 2954 // If the lvalue is non-volatile, return the computed value of the assignment. 2955 if (!LHS.isVolatileQualified()) 2956 return RHS; 2957 2958 // Otherwise, reload the value. 2959 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2960 } 2961 2962 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2963 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2964 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2965 2966 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2967 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2968 SanitizerKind::IntegerDivideByZero)); 2969 } 2970 2971 const auto *BO = cast<BinaryOperator>(Ops.E); 2972 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2973 Ops.Ty->hasSignedIntegerRepresentation() && 2974 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2975 Ops.mayHaveIntegerOverflow()) { 2976 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2977 2978 llvm::Value *IntMin = 2979 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2980 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2981 2982 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2983 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2984 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2985 Checks.push_back( 2986 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2987 } 2988 2989 if (Checks.size() > 0) 2990 EmitBinOpCheck(Checks, Ops); 2991 } 2992 2993 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2994 { 2995 CodeGenFunction::SanitizerScope SanScope(&CGF); 2996 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2997 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2998 Ops.Ty->isIntegerType() && 2999 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3000 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3001 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3002 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3003 Ops.Ty->isRealFloatingType() && 3004 Ops.mayHaveFloatDivisionByZero()) { 3005 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3006 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3007 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3008 Ops); 3009 } 3010 } 3011 3012 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3013 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3014 if (CGF.getLangOpts().OpenCL && 3015 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3016 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3017 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3018 // build option allows an application to specify that single precision 3019 // floating-point divide (x/y and 1/x) and sqrt used in the program 3020 // source are correctly rounded. 3021 llvm::Type *ValTy = Val->getType(); 3022 if (ValTy->isFloatTy() || 3023 (isa<llvm::VectorType>(ValTy) && 3024 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3025 CGF.SetFPAccuracy(Val, 2.5); 3026 } 3027 return Val; 3028 } 3029 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3030 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3031 else 3032 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3033 } 3034 3035 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3036 // Rem in C can't be a floating point type: C99 6.5.5p2. 3037 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3038 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3039 Ops.Ty->isIntegerType() && 3040 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3041 CodeGenFunction::SanitizerScope SanScope(&CGF); 3042 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3043 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3044 } 3045 3046 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3047 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3048 else 3049 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3050 } 3051 3052 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3053 unsigned IID; 3054 unsigned OpID = 0; 3055 3056 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3057 switch (Ops.Opcode) { 3058 case BO_Add: 3059 case BO_AddAssign: 3060 OpID = 1; 3061 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3062 llvm::Intrinsic::uadd_with_overflow; 3063 break; 3064 case BO_Sub: 3065 case BO_SubAssign: 3066 OpID = 2; 3067 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3068 llvm::Intrinsic::usub_with_overflow; 3069 break; 3070 case BO_Mul: 3071 case BO_MulAssign: 3072 OpID = 3; 3073 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3074 llvm::Intrinsic::umul_with_overflow; 3075 break; 3076 default: 3077 llvm_unreachable("Unsupported operation for overflow detection"); 3078 } 3079 OpID <<= 1; 3080 if (isSigned) 3081 OpID |= 1; 3082 3083 CodeGenFunction::SanitizerScope SanScope(&CGF); 3084 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3085 3086 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3087 3088 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3089 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3090 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3091 3092 // Handle overflow with llvm.trap if no custom handler has been specified. 3093 const std::string *handlerName = 3094 &CGF.getLangOpts().OverflowHandler; 3095 if (handlerName->empty()) { 3096 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3097 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3098 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3099 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3100 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3101 : SanitizerKind::UnsignedIntegerOverflow; 3102 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3103 } else 3104 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3105 return result; 3106 } 3107 3108 // Branch in case of overflow. 3109 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3110 llvm::BasicBlock *continueBB = 3111 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3112 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3113 3114 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3115 3116 // If an overflow handler is set, then we want to call it and then use its 3117 // result, if it returns. 3118 Builder.SetInsertPoint(overflowBB); 3119 3120 // Get the overflow handler. 3121 llvm::Type *Int8Ty = CGF.Int8Ty; 3122 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3123 llvm::FunctionType *handlerTy = 3124 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3125 llvm::FunctionCallee handler = 3126 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3127 3128 // Sign extend the args to 64-bit, so that we can use the same handler for 3129 // all types of overflow. 3130 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3131 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3132 3133 // Call the handler with the two arguments, the operation, and the size of 3134 // the result. 3135 llvm::Value *handlerArgs[] = { 3136 lhs, 3137 rhs, 3138 Builder.getInt8(OpID), 3139 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3140 }; 3141 llvm::Value *handlerResult = 3142 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3143 3144 // Truncate the result back to the desired size. 3145 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3146 Builder.CreateBr(continueBB); 3147 3148 Builder.SetInsertPoint(continueBB); 3149 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3150 phi->addIncoming(result, initialBB); 3151 phi->addIncoming(handlerResult, overflowBB); 3152 3153 return phi; 3154 } 3155 3156 /// Emit pointer + index arithmetic. 3157 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3158 const BinOpInfo &op, 3159 bool isSubtraction) { 3160 // Must have binary (not unary) expr here. Unary pointer 3161 // increment/decrement doesn't use this path. 3162 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3163 3164 Value *pointer = op.LHS; 3165 Expr *pointerOperand = expr->getLHS(); 3166 Value *index = op.RHS; 3167 Expr *indexOperand = expr->getRHS(); 3168 3169 // In a subtraction, the LHS is always the pointer. 3170 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3171 std::swap(pointer, index); 3172 std::swap(pointerOperand, indexOperand); 3173 } 3174 3175 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3176 3177 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3178 auto &DL = CGF.CGM.getDataLayout(); 3179 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3180 3181 // Some versions of glibc and gcc use idioms (particularly in their malloc 3182 // routines) that add a pointer-sized integer (known to be a pointer value) 3183 // to a null pointer in order to cast the value back to an integer or as 3184 // part of a pointer alignment algorithm. This is undefined behavior, but 3185 // we'd like to be able to compile programs that use it. 3186 // 3187 // Normally, we'd generate a GEP with a null-pointer base here in response 3188 // to that code, but it's also UB to dereference a pointer created that 3189 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3190 // generate a direct cast of the integer value to a pointer. 3191 // 3192 // The idiom (p = nullptr + N) is not met if any of the following are true: 3193 // 3194 // The operation is subtraction. 3195 // The index is not pointer-sized. 3196 // The pointer type is not byte-sized. 3197 // 3198 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3199 op.Opcode, 3200 expr->getLHS(), 3201 expr->getRHS())) 3202 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3203 3204 if (width != DL.getTypeSizeInBits(PtrTy)) { 3205 // Zero-extend or sign-extend the pointer value according to 3206 // whether the index is signed or not. 3207 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3208 "idx.ext"); 3209 } 3210 3211 // If this is subtraction, negate the index. 3212 if (isSubtraction) 3213 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3214 3215 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3216 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3217 /*Accessed*/ false); 3218 3219 const PointerType *pointerType 3220 = pointerOperand->getType()->getAs<PointerType>(); 3221 if (!pointerType) { 3222 QualType objectType = pointerOperand->getType() 3223 ->castAs<ObjCObjectPointerType>() 3224 ->getPointeeType(); 3225 llvm::Value *objectSize 3226 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3227 3228 index = CGF.Builder.CreateMul(index, objectSize); 3229 3230 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3231 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3232 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3233 } 3234 3235 QualType elementType = pointerType->getPointeeType(); 3236 if (const VariableArrayType *vla 3237 = CGF.getContext().getAsVariableArrayType(elementType)) { 3238 // The element count here is the total number of non-VLA elements. 3239 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3240 3241 // Effectively, the multiply by the VLA size is part of the GEP. 3242 // GEP indexes are signed, and scaling an index isn't permitted to 3243 // signed-overflow, so we use the same semantics for our explicit 3244 // multiply. We suppress this if overflow is not undefined behavior. 3245 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3246 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3247 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3248 } else { 3249 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3250 pointer = 3251 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3252 op.E->getExprLoc(), "add.ptr"); 3253 } 3254 return pointer; 3255 } 3256 3257 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3258 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3259 // future proof. 3260 if (elementType->isVoidType() || elementType->isFunctionType()) { 3261 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3262 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3263 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3264 } 3265 3266 if (CGF.getLangOpts().isSignedOverflowDefined()) 3267 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3268 3269 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3270 op.E->getExprLoc(), "add.ptr"); 3271 } 3272 3273 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3274 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3275 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3276 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3277 // efficient operations. 3278 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3279 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3280 bool negMul, bool negAdd) { 3281 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3282 3283 Value *MulOp0 = MulOp->getOperand(0); 3284 Value *MulOp1 = MulOp->getOperand(1); 3285 if (negMul) { 3286 MulOp0 = 3287 Builder.CreateFSub( 3288 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3289 "neg"); 3290 } else if (negAdd) { 3291 Addend = 3292 Builder.CreateFSub( 3293 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3294 "neg"); 3295 } 3296 3297 Value *FMulAdd = Builder.CreateCall( 3298 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3299 {MulOp0, MulOp1, Addend}); 3300 MulOp->eraseFromParent(); 3301 3302 return FMulAdd; 3303 } 3304 3305 // Check whether it would be legal to emit an fmuladd intrinsic call to 3306 // represent op and if so, build the fmuladd. 3307 // 3308 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3309 // Does NOT check the type of the operation - it's assumed that this function 3310 // will be called from contexts where it's known that the type is contractable. 3311 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3312 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3313 bool isSub=false) { 3314 3315 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3316 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3317 "Only fadd/fsub can be the root of an fmuladd."); 3318 3319 // Check whether this op is marked as fusable. 3320 if (!op.FPFeatures.allowFPContractWithinStatement()) 3321 return nullptr; 3322 3323 // We have a potentially fusable op. Look for a mul on one of the operands. 3324 // Also, make sure that the mul result isn't used directly. In that case, 3325 // there's no point creating a muladd operation. 3326 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3327 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3328 LHSBinOp->use_empty()) 3329 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3330 } 3331 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3332 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3333 RHSBinOp->use_empty()) 3334 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3335 } 3336 3337 return nullptr; 3338 } 3339 3340 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3341 if (op.LHS->getType()->isPointerTy() || 3342 op.RHS->getType()->isPointerTy()) 3343 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3344 3345 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3346 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3347 case LangOptions::SOB_Defined: 3348 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3349 case LangOptions::SOB_Undefined: 3350 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3351 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3352 LLVM_FALLTHROUGH; 3353 case LangOptions::SOB_Trapping: 3354 if (CanElideOverflowCheck(CGF.getContext(), op)) 3355 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3356 return EmitOverflowCheckedBinOp(op); 3357 } 3358 } 3359 3360 if (op.Ty->isUnsignedIntegerType() && 3361 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3362 !CanElideOverflowCheck(CGF.getContext(), op)) 3363 return EmitOverflowCheckedBinOp(op); 3364 3365 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3366 // Try to form an fmuladd. 3367 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3368 return FMulAdd; 3369 3370 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3371 return propagateFMFlags(V, op); 3372 } 3373 3374 if (op.isFixedPointBinOp()) 3375 return EmitFixedPointBinOp(op); 3376 3377 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3378 } 3379 3380 /// The resulting value must be calculated with exact precision, so the operands 3381 /// may not be the same type. 3382 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3383 using llvm::APSInt; 3384 using llvm::ConstantInt; 3385 3386 const auto *BinOp = cast<BinaryOperator>(op.E); 3387 3388 // The result is a fixed point type and at least one of the operands is fixed 3389 // point while the other is either fixed point or an int. This resulting type 3390 // should be determined by Sema::handleFixedPointConversions(). 3391 QualType ResultTy = op.Ty; 3392 QualType LHSTy = BinOp->getLHS()->getType(); 3393 QualType RHSTy = BinOp->getRHS()->getType(); 3394 ASTContext &Ctx = CGF.getContext(); 3395 Value *LHS = op.LHS; 3396 Value *RHS = op.RHS; 3397 3398 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3399 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3400 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3401 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3402 3403 // Convert the operands to the full precision type. 3404 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3405 BinOp->getExprLoc()); 3406 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3407 BinOp->getExprLoc()); 3408 3409 // Perform the actual addition. 3410 Value *Result; 3411 switch (BinOp->getOpcode()) { 3412 case BO_Add: { 3413 if (ResultFixedSema.isSaturated()) { 3414 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3415 ? llvm::Intrinsic::sadd_sat 3416 : llvm::Intrinsic::uadd_sat; 3417 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3418 } else { 3419 Result = Builder.CreateAdd(FullLHS, FullRHS); 3420 } 3421 break; 3422 } 3423 case BO_Sub: { 3424 if (ResultFixedSema.isSaturated()) { 3425 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3426 ? llvm::Intrinsic::ssub_sat 3427 : llvm::Intrinsic::usub_sat; 3428 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3429 } else { 3430 Result = Builder.CreateSub(FullLHS, FullRHS); 3431 } 3432 break; 3433 } 3434 case BO_LT: 3435 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3436 : Builder.CreateICmpULT(FullLHS, FullRHS); 3437 case BO_GT: 3438 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3439 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3440 case BO_LE: 3441 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3442 : Builder.CreateICmpULE(FullLHS, FullRHS); 3443 case BO_GE: 3444 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3445 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3446 case BO_EQ: 3447 // For equality operations, we assume any padding bits on unsigned types are 3448 // zero'd out. They could be overwritten through non-saturating operations 3449 // that cause overflow, but this leads to undefined behavior. 3450 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3451 case BO_NE: 3452 return Builder.CreateICmpNE(FullLHS, FullRHS); 3453 case BO_Mul: 3454 case BO_Div: 3455 case BO_Shl: 3456 case BO_Shr: 3457 case BO_Cmp: 3458 case BO_LAnd: 3459 case BO_LOr: 3460 case BO_MulAssign: 3461 case BO_DivAssign: 3462 case BO_AddAssign: 3463 case BO_SubAssign: 3464 case BO_ShlAssign: 3465 case BO_ShrAssign: 3466 llvm_unreachable("Found unimplemented fixed point binary operation"); 3467 case BO_PtrMemD: 3468 case BO_PtrMemI: 3469 case BO_Rem: 3470 case BO_Xor: 3471 case BO_And: 3472 case BO_Or: 3473 case BO_Assign: 3474 case BO_RemAssign: 3475 case BO_AndAssign: 3476 case BO_XorAssign: 3477 case BO_OrAssign: 3478 case BO_Comma: 3479 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3480 } 3481 3482 // Convert to the result type. 3483 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3484 BinOp->getExprLoc()); 3485 } 3486 3487 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3488 // The LHS is always a pointer if either side is. 3489 if (!op.LHS->getType()->isPointerTy()) { 3490 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3491 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3492 case LangOptions::SOB_Defined: 3493 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3494 case LangOptions::SOB_Undefined: 3495 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3496 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3497 LLVM_FALLTHROUGH; 3498 case LangOptions::SOB_Trapping: 3499 if (CanElideOverflowCheck(CGF.getContext(), op)) 3500 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3501 return EmitOverflowCheckedBinOp(op); 3502 } 3503 } 3504 3505 if (op.Ty->isUnsignedIntegerType() && 3506 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3507 !CanElideOverflowCheck(CGF.getContext(), op)) 3508 return EmitOverflowCheckedBinOp(op); 3509 3510 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3511 // Try to form an fmuladd. 3512 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3513 return FMulAdd; 3514 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3515 return propagateFMFlags(V, op); 3516 } 3517 3518 if (op.isFixedPointBinOp()) 3519 return EmitFixedPointBinOp(op); 3520 3521 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3522 } 3523 3524 // If the RHS is not a pointer, then we have normal pointer 3525 // arithmetic. 3526 if (!op.RHS->getType()->isPointerTy()) 3527 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3528 3529 // Otherwise, this is a pointer subtraction. 3530 3531 // Do the raw subtraction part. 3532 llvm::Value *LHS 3533 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3534 llvm::Value *RHS 3535 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3536 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3537 3538 // Okay, figure out the element size. 3539 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3540 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3541 3542 llvm::Value *divisor = nullptr; 3543 3544 // For a variable-length array, this is going to be non-constant. 3545 if (const VariableArrayType *vla 3546 = CGF.getContext().getAsVariableArrayType(elementType)) { 3547 auto VlaSize = CGF.getVLASize(vla); 3548 elementType = VlaSize.Type; 3549 divisor = VlaSize.NumElts; 3550 3551 // Scale the number of non-VLA elements by the non-VLA element size. 3552 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3553 if (!eltSize.isOne()) 3554 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3555 3556 // For everything elese, we can just compute it, safe in the 3557 // assumption that Sema won't let anything through that we can't 3558 // safely compute the size of. 3559 } else { 3560 CharUnits elementSize; 3561 // Handle GCC extension for pointer arithmetic on void* and 3562 // function pointer types. 3563 if (elementType->isVoidType() || elementType->isFunctionType()) 3564 elementSize = CharUnits::One(); 3565 else 3566 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3567 3568 // Don't even emit the divide for element size of 1. 3569 if (elementSize.isOne()) 3570 return diffInChars; 3571 3572 divisor = CGF.CGM.getSize(elementSize); 3573 } 3574 3575 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3576 // pointer difference in C is only defined in the case where both operands 3577 // are pointing to elements of an array. 3578 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3579 } 3580 3581 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3582 llvm::IntegerType *Ty; 3583 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3584 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3585 else 3586 Ty = cast<llvm::IntegerType>(LHS->getType()); 3587 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3588 } 3589 3590 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3591 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3592 // RHS to the same size as the LHS. 3593 Value *RHS = Ops.RHS; 3594 if (Ops.LHS->getType() != RHS->getType()) 3595 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3596 3597 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3598 Ops.Ty->hasSignedIntegerRepresentation() && 3599 !CGF.getLangOpts().isSignedOverflowDefined() && 3600 !CGF.getLangOpts().CPlusPlus2a; 3601 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3602 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3603 if (CGF.getLangOpts().OpenCL) 3604 RHS = 3605 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3606 else if ((SanitizeBase || SanitizeExponent) && 3607 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3608 CodeGenFunction::SanitizerScope SanScope(&CGF); 3609 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3610 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3611 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3612 3613 if (SanitizeExponent) { 3614 Checks.push_back( 3615 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3616 } 3617 3618 if (SanitizeBase) { 3619 // Check whether we are shifting any non-zero bits off the top of the 3620 // integer. We only emit this check if exponent is valid - otherwise 3621 // instructions below will have undefined behavior themselves. 3622 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3623 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3624 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3625 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3626 llvm::Value *PromotedWidthMinusOne = 3627 (RHS == Ops.RHS) ? WidthMinusOne 3628 : GetWidthMinusOneValue(Ops.LHS, RHS); 3629 CGF.EmitBlock(CheckShiftBase); 3630 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3631 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3632 /*NUW*/ true, /*NSW*/ true), 3633 "shl.check"); 3634 if (CGF.getLangOpts().CPlusPlus) { 3635 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3636 // Under C++11's rules, shifting a 1 bit into the sign bit is 3637 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3638 // define signed left shifts, so we use the C99 and C++11 rules there). 3639 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3640 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3641 } 3642 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3643 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3644 CGF.EmitBlock(Cont); 3645 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3646 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3647 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3648 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3649 } 3650 3651 assert(!Checks.empty()); 3652 EmitBinOpCheck(Checks, Ops); 3653 } 3654 3655 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3656 } 3657 3658 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3659 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3660 // RHS to the same size as the LHS. 3661 Value *RHS = Ops.RHS; 3662 if (Ops.LHS->getType() != RHS->getType()) 3663 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3664 3665 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3666 if (CGF.getLangOpts().OpenCL) 3667 RHS = 3668 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3669 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3670 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3671 CodeGenFunction::SanitizerScope SanScope(&CGF); 3672 llvm::Value *Valid = 3673 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3674 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3675 } 3676 3677 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3678 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3679 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3680 } 3681 3682 enum IntrinsicType { VCMPEQ, VCMPGT }; 3683 // return corresponding comparison intrinsic for given vector type 3684 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3685 BuiltinType::Kind ElemKind) { 3686 switch (ElemKind) { 3687 default: llvm_unreachable("unexpected element type"); 3688 case BuiltinType::Char_U: 3689 case BuiltinType::UChar: 3690 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3691 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3692 case BuiltinType::Char_S: 3693 case BuiltinType::SChar: 3694 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3695 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3696 case BuiltinType::UShort: 3697 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3698 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3699 case BuiltinType::Short: 3700 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3701 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3702 case BuiltinType::UInt: 3703 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3704 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3705 case BuiltinType::Int: 3706 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3707 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3708 case BuiltinType::ULong: 3709 case BuiltinType::ULongLong: 3710 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3711 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3712 case BuiltinType::Long: 3713 case BuiltinType::LongLong: 3714 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3715 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3716 case BuiltinType::Float: 3717 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3718 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3719 case BuiltinType::Double: 3720 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3721 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3722 } 3723 } 3724 3725 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3726 llvm::CmpInst::Predicate UICmpOpc, 3727 llvm::CmpInst::Predicate SICmpOpc, 3728 llvm::CmpInst::Predicate FCmpOpc) { 3729 TestAndClearIgnoreResultAssign(); 3730 Value *Result; 3731 QualType LHSTy = E->getLHS()->getType(); 3732 QualType RHSTy = E->getRHS()->getType(); 3733 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3734 assert(E->getOpcode() == BO_EQ || 3735 E->getOpcode() == BO_NE); 3736 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3737 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3738 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3739 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3740 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3741 BinOpInfo BOInfo = EmitBinOps(E); 3742 Value *LHS = BOInfo.LHS; 3743 Value *RHS = BOInfo.RHS; 3744 3745 // If AltiVec, the comparison results in a numeric type, so we use 3746 // intrinsics comparing vectors and giving 0 or 1 as a result 3747 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3748 // constants for mapping CR6 register bits to predicate result 3749 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3750 3751 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3752 3753 // in several cases vector arguments order will be reversed 3754 Value *FirstVecArg = LHS, 3755 *SecondVecArg = RHS; 3756 3757 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3758 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3759 BuiltinType::Kind ElementKind = BTy->getKind(); 3760 3761 switch(E->getOpcode()) { 3762 default: llvm_unreachable("is not a comparison operation"); 3763 case BO_EQ: 3764 CR6 = CR6_LT; 3765 ID = GetIntrinsic(VCMPEQ, ElementKind); 3766 break; 3767 case BO_NE: 3768 CR6 = CR6_EQ; 3769 ID = GetIntrinsic(VCMPEQ, ElementKind); 3770 break; 3771 case BO_LT: 3772 CR6 = CR6_LT; 3773 ID = GetIntrinsic(VCMPGT, ElementKind); 3774 std::swap(FirstVecArg, SecondVecArg); 3775 break; 3776 case BO_GT: 3777 CR6 = CR6_LT; 3778 ID = GetIntrinsic(VCMPGT, ElementKind); 3779 break; 3780 case BO_LE: 3781 if (ElementKind == BuiltinType::Float) { 3782 CR6 = CR6_LT; 3783 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3784 std::swap(FirstVecArg, SecondVecArg); 3785 } 3786 else { 3787 CR6 = CR6_EQ; 3788 ID = GetIntrinsic(VCMPGT, ElementKind); 3789 } 3790 break; 3791 case BO_GE: 3792 if (ElementKind == BuiltinType::Float) { 3793 CR6 = CR6_LT; 3794 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3795 } 3796 else { 3797 CR6 = CR6_EQ; 3798 ID = GetIntrinsic(VCMPGT, ElementKind); 3799 std::swap(FirstVecArg, SecondVecArg); 3800 } 3801 break; 3802 } 3803 3804 Value *CR6Param = Builder.getInt32(CR6); 3805 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3806 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3807 3808 // The result type of intrinsic may not be same as E->getType(). 3809 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3810 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3811 // do nothing, if ResultTy is not i1 at the same time, it will cause 3812 // crash later. 3813 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3814 if (ResultTy->getBitWidth() > 1 && 3815 E->getType() == CGF.getContext().BoolTy) 3816 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3817 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3818 E->getExprLoc()); 3819 } 3820 3821 if (BOInfo.isFixedPointBinOp()) { 3822 Result = EmitFixedPointBinOp(BOInfo); 3823 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3824 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3825 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3826 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3827 } else { 3828 // Unsigned integers and pointers. 3829 3830 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3831 !isa<llvm::ConstantPointerNull>(LHS) && 3832 !isa<llvm::ConstantPointerNull>(RHS)) { 3833 3834 // Dynamic information is required to be stripped for comparisons, 3835 // because it could leak the dynamic information. Based on comparisons 3836 // of pointers to dynamic objects, the optimizer can replace one pointer 3837 // with another, which might be incorrect in presence of invariant 3838 // groups. Comparison with null is safe because null does not carry any 3839 // dynamic information. 3840 if (LHSTy.mayBeDynamicClass()) 3841 LHS = Builder.CreateStripInvariantGroup(LHS); 3842 if (RHSTy.mayBeDynamicClass()) 3843 RHS = Builder.CreateStripInvariantGroup(RHS); 3844 } 3845 3846 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3847 } 3848 3849 // If this is a vector comparison, sign extend the result to the appropriate 3850 // vector integer type and return it (don't convert to bool). 3851 if (LHSTy->isVectorType()) 3852 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3853 3854 } else { 3855 // Complex Comparison: can only be an equality comparison. 3856 CodeGenFunction::ComplexPairTy LHS, RHS; 3857 QualType CETy; 3858 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3859 LHS = CGF.EmitComplexExpr(E->getLHS()); 3860 CETy = CTy->getElementType(); 3861 } else { 3862 LHS.first = Visit(E->getLHS()); 3863 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3864 CETy = LHSTy; 3865 } 3866 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3867 RHS = CGF.EmitComplexExpr(E->getRHS()); 3868 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3869 CTy->getElementType()) && 3870 "The element types must always match."); 3871 (void)CTy; 3872 } else { 3873 RHS.first = Visit(E->getRHS()); 3874 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3875 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3876 "The element types must always match."); 3877 } 3878 3879 Value *ResultR, *ResultI; 3880 if (CETy->isRealFloatingType()) { 3881 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3882 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3883 } else { 3884 // Complex comparisons can only be equality comparisons. As such, signed 3885 // and unsigned opcodes are the same. 3886 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3887 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3888 } 3889 3890 if (E->getOpcode() == BO_EQ) { 3891 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3892 } else { 3893 assert(E->getOpcode() == BO_NE && 3894 "Complex comparison other than == or != ?"); 3895 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3896 } 3897 } 3898 3899 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3900 E->getExprLoc()); 3901 } 3902 3903 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3904 bool Ignore = TestAndClearIgnoreResultAssign(); 3905 3906 Value *RHS; 3907 LValue LHS; 3908 3909 switch (E->getLHS()->getType().getObjCLifetime()) { 3910 case Qualifiers::OCL_Strong: 3911 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3912 break; 3913 3914 case Qualifiers::OCL_Autoreleasing: 3915 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3916 break; 3917 3918 case Qualifiers::OCL_ExplicitNone: 3919 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3920 break; 3921 3922 case Qualifiers::OCL_Weak: 3923 RHS = Visit(E->getRHS()); 3924 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3925 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3926 break; 3927 3928 case Qualifiers::OCL_None: 3929 // __block variables need to have the rhs evaluated first, plus 3930 // this should improve codegen just a little. 3931 RHS = Visit(E->getRHS()); 3932 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3933 3934 // Store the value into the LHS. Bit-fields are handled specially 3935 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3936 // 'An assignment expression has the value of the left operand after 3937 // the assignment...'. 3938 if (LHS.isBitField()) { 3939 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3940 } else { 3941 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3942 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3943 } 3944 } 3945 3946 // If the result is clearly ignored, return now. 3947 if (Ignore) 3948 return nullptr; 3949 3950 // The result of an assignment in C is the assigned r-value. 3951 if (!CGF.getLangOpts().CPlusPlus) 3952 return RHS; 3953 3954 // If the lvalue is non-volatile, return the computed value of the assignment. 3955 if (!LHS.isVolatileQualified()) 3956 return RHS; 3957 3958 // Otherwise, reload the value. 3959 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3960 } 3961 3962 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3963 // Perform vector logical and on comparisons with zero vectors. 3964 if (E->getType()->isVectorType()) { 3965 CGF.incrementProfileCounter(E); 3966 3967 Value *LHS = Visit(E->getLHS()); 3968 Value *RHS = Visit(E->getRHS()); 3969 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3970 if (LHS->getType()->isFPOrFPVectorTy()) { 3971 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3972 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3973 } else { 3974 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3975 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3976 } 3977 Value *And = Builder.CreateAnd(LHS, RHS); 3978 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3979 } 3980 3981 llvm::Type *ResTy = ConvertType(E->getType()); 3982 3983 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3984 // If we have 1 && X, just emit X without inserting the control flow. 3985 bool LHSCondVal; 3986 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3987 if (LHSCondVal) { // If we have 1 && X, just emit X. 3988 CGF.incrementProfileCounter(E); 3989 3990 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3991 // ZExt result to int or bool. 3992 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3993 } 3994 3995 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3996 if (!CGF.ContainsLabel(E->getRHS())) 3997 return llvm::Constant::getNullValue(ResTy); 3998 } 3999 4000 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4001 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4002 4003 CodeGenFunction::ConditionalEvaluation eval(CGF); 4004 4005 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4006 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4007 CGF.getProfileCount(E->getRHS())); 4008 4009 // Any edges into the ContBlock are now from an (indeterminate number of) 4010 // edges from this first condition. All of these values will be false. Start 4011 // setting up the PHI node in the Cont Block for this. 4012 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4013 "", ContBlock); 4014 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4015 PI != PE; ++PI) 4016 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4017 4018 eval.begin(CGF); 4019 CGF.EmitBlock(RHSBlock); 4020 CGF.incrementProfileCounter(E); 4021 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4022 eval.end(CGF); 4023 4024 // Reaquire the RHS block, as there may be subblocks inserted. 4025 RHSBlock = Builder.GetInsertBlock(); 4026 4027 // Emit an unconditional branch from this block to ContBlock. 4028 { 4029 // There is no need to emit line number for unconditional branch. 4030 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4031 CGF.EmitBlock(ContBlock); 4032 } 4033 // Insert an entry into the phi node for the edge with the value of RHSCond. 4034 PN->addIncoming(RHSCond, RHSBlock); 4035 4036 // Artificial location to preserve the scope information 4037 { 4038 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4039 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4040 } 4041 4042 // ZExt result to int. 4043 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4044 } 4045 4046 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4047 // Perform vector logical or on comparisons with zero vectors. 4048 if (E->getType()->isVectorType()) { 4049 CGF.incrementProfileCounter(E); 4050 4051 Value *LHS = Visit(E->getLHS()); 4052 Value *RHS = Visit(E->getRHS()); 4053 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4054 if (LHS->getType()->isFPOrFPVectorTy()) { 4055 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4056 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4057 } else { 4058 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4059 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4060 } 4061 Value *Or = Builder.CreateOr(LHS, RHS); 4062 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4063 } 4064 4065 llvm::Type *ResTy = ConvertType(E->getType()); 4066 4067 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4068 // If we have 0 || X, just emit X without inserting the control flow. 4069 bool LHSCondVal; 4070 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4071 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4072 CGF.incrementProfileCounter(E); 4073 4074 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4075 // ZExt result to int or bool. 4076 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4077 } 4078 4079 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4080 if (!CGF.ContainsLabel(E->getRHS())) 4081 return llvm::ConstantInt::get(ResTy, 1); 4082 } 4083 4084 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4085 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4086 4087 CodeGenFunction::ConditionalEvaluation eval(CGF); 4088 4089 // Branch on the LHS first. If it is true, go to the success (cont) block. 4090 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4091 CGF.getCurrentProfileCount() - 4092 CGF.getProfileCount(E->getRHS())); 4093 4094 // Any edges into the ContBlock are now from an (indeterminate number of) 4095 // edges from this first condition. All of these values will be true. Start 4096 // setting up the PHI node in the Cont Block for this. 4097 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4098 "", ContBlock); 4099 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4100 PI != PE; ++PI) 4101 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4102 4103 eval.begin(CGF); 4104 4105 // Emit the RHS condition as a bool value. 4106 CGF.EmitBlock(RHSBlock); 4107 CGF.incrementProfileCounter(E); 4108 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4109 4110 eval.end(CGF); 4111 4112 // Reaquire the RHS block, as there may be subblocks inserted. 4113 RHSBlock = Builder.GetInsertBlock(); 4114 4115 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4116 // into the phi node for the edge with the value of RHSCond. 4117 CGF.EmitBlock(ContBlock); 4118 PN->addIncoming(RHSCond, RHSBlock); 4119 4120 // ZExt result to int. 4121 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4122 } 4123 4124 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4125 CGF.EmitIgnoredExpr(E->getLHS()); 4126 CGF.EnsureInsertPoint(); 4127 return Visit(E->getRHS()); 4128 } 4129 4130 //===----------------------------------------------------------------------===// 4131 // Other Operators 4132 //===----------------------------------------------------------------------===// 4133 4134 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4135 /// expression is cheap enough and side-effect-free enough to evaluate 4136 /// unconditionally instead of conditionally. This is used to convert control 4137 /// flow into selects in some cases. 4138 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4139 CodeGenFunction &CGF) { 4140 // Anything that is an integer or floating point constant is fine. 4141 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4142 4143 // Even non-volatile automatic variables can't be evaluated unconditionally. 4144 // Referencing a thread_local may cause non-trivial initialization work to 4145 // occur. If we're inside a lambda and one of the variables is from the scope 4146 // outside the lambda, that function may have returned already. Reading its 4147 // locals is a bad idea. Also, these reads may introduce races there didn't 4148 // exist in the source-level program. 4149 } 4150 4151 4152 Value *ScalarExprEmitter:: 4153 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4154 TestAndClearIgnoreResultAssign(); 4155 4156 // Bind the common expression if necessary. 4157 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4158 4159 Expr *condExpr = E->getCond(); 4160 Expr *lhsExpr = E->getTrueExpr(); 4161 Expr *rhsExpr = E->getFalseExpr(); 4162 4163 // If the condition constant folds and can be elided, try to avoid emitting 4164 // the condition and the dead arm. 4165 bool CondExprBool; 4166 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4167 Expr *live = lhsExpr, *dead = rhsExpr; 4168 if (!CondExprBool) std::swap(live, dead); 4169 4170 // If the dead side doesn't have labels we need, just emit the Live part. 4171 if (!CGF.ContainsLabel(dead)) { 4172 if (CondExprBool) 4173 CGF.incrementProfileCounter(E); 4174 Value *Result = Visit(live); 4175 4176 // If the live part is a throw expression, it acts like it has a void 4177 // type, so evaluating it returns a null Value*. However, a conditional 4178 // with non-void type must return a non-null Value*. 4179 if (!Result && !E->getType()->isVoidType()) 4180 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4181 4182 return Result; 4183 } 4184 } 4185 4186 // OpenCL: If the condition is a vector, we can treat this condition like 4187 // the select function. 4188 if (CGF.getLangOpts().OpenCL 4189 && condExpr->getType()->isVectorType()) { 4190 CGF.incrementProfileCounter(E); 4191 4192 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4193 llvm::Value *LHS = Visit(lhsExpr); 4194 llvm::Value *RHS = Visit(rhsExpr); 4195 4196 llvm::Type *condType = ConvertType(condExpr->getType()); 4197 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4198 4199 unsigned numElem = vecTy->getNumElements(); 4200 llvm::Type *elemType = vecTy->getElementType(); 4201 4202 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4203 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4204 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4205 llvm::VectorType::get(elemType, 4206 numElem), 4207 "sext"); 4208 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4209 4210 // Cast float to int to perform ANDs if necessary. 4211 llvm::Value *RHSTmp = RHS; 4212 llvm::Value *LHSTmp = LHS; 4213 bool wasCast = false; 4214 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4215 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4216 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4217 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4218 wasCast = true; 4219 } 4220 4221 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4222 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4223 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4224 if (wasCast) 4225 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4226 4227 return tmp5; 4228 } 4229 4230 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4231 // select instead of as control flow. We can only do this if it is cheap and 4232 // safe to evaluate the LHS and RHS unconditionally. 4233 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4234 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4235 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4236 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4237 4238 CGF.incrementProfileCounter(E, StepV); 4239 4240 llvm::Value *LHS = Visit(lhsExpr); 4241 llvm::Value *RHS = Visit(rhsExpr); 4242 if (!LHS) { 4243 // If the conditional has void type, make sure we return a null Value*. 4244 assert(!RHS && "LHS and RHS types must match"); 4245 return nullptr; 4246 } 4247 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4248 } 4249 4250 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4251 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4252 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4253 4254 CodeGenFunction::ConditionalEvaluation eval(CGF); 4255 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4256 CGF.getProfileCount(lhsExpr)); 4257 4258 CGF.EmitBlock(LHSBlock); 4259 CGF.incrementProfileCounter(E); 4260 eval.begin(CGF); 4261 Value *LHS = Visit(lhsExpr); 4262 eval.end(CGF); 4263 4264 LHSBlock = Builder.GetInsertBlock(); 4265 Builder.CreateBr(ContBlock); 4266 4267 CGF.EmitBlock(RHSBlock); 4268 eval.begin(CGF); 4269 Value *RHS = Visit(rhsExpr); 4270 eval.end(CGF); 4271 4272 RHSBlock = Builder.GetInsertBlock(); 4273 CGF.EmitBlock(ContBlock); 4274 4275 // If the LHS or RHS is a throw expression, it will be legitimately null. 4276 if (!LHS) 4277 return RHS; 4278 if (!RHS) 4279 return LHS; 4280 4281 // Create a PHI node for the real part. 4282 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4283 PN->addIncoming(LHS, LHSBlock); 4284 PN->addIncoming(RHS, RHSBlock); 4285 return PN; 4286 } 4287 4288 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4289 return Visit(E->getChosenSubExpr()); 4290 } 4291 4292 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4293 QualType Ty = VE->getType(); 4294 4295 if (Ty->isVariablyModifiedType()) 4296 CGF.EmitVariablyModifiedType(Ty); 4297 4298 Address ArgValue = Address::invalid(); 4299 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4300 4301 llvm::Type *ArgTy = ConvertType(VE->getType()); 4302 4303 // If EmitVAArg fails, emit an error. 4304 if (!ArgPtr.isValid()) { 4305 CGF.ErrorUnsupported(VE, "va_arg expression"); 4306 return llvm::UndefValue::get(ArgTy); 4307 } 4308 4309 // FIXME Volatility. 4310 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4311 4312 // If EmitVAArg promoted the type, we must truncate it. 4313 if (ArgTy != Val->getType()) { 4314 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4315 Val = Builder.CreateIntToPtr(Val, ArgTy); 4316 else 4317 Val = Builder.CreateTrunc(Val, ArgTy); 4318 } 4319 4320 return Val; 4321 } 4322 4323 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4324 return CGF.EmitBlockLiteral(block); 4325 } 4326 4327 // Convert a vec3 to vec4, or vice versa. 4328 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4329 Value *Src, unsigned NumElementsDst) { 4330 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4331 SmallVector<llvm::Constant*, 4> Args; 4332 Args.push_back(Builder.getInt32(0)); 4333 Args.push_back(Builder.getInt32(1)); 4334 Args.push_back(Builder.getInt32(2)); 4335 if (NumElementsDst == 4) 4336 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4337 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4338 return Builder.CreateShuffleVector(Src, UnV, Mask); 4339 } 4340 4341 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4342 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4343 // but could be scalar or vectors of different lengths, and either can be 4344 // pointer. 4345 // There are 4 cases: 4346 // 1. non-pointer -> non-pointer : needs 1 bitcast 4347 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4348 // 3. pointer -> non-pointer 4349 // a) pointer -> intptr_t : needs 1 ptrtoint 4350 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4351 // 4. non-pointer -> pointer 4352 // a) intptr_t -> pointer : needs 1 inttoptr 4353 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4354 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4355 // allow casting directly between pointer types and non-integer non-pointer 4356 // types. 4357 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4358 const llvm::DataLayout &DL, 4359 Value *Src, llvm::Type *DstTy, 4360 StringRef Name = "") { 4361 auto SrcTy = Src->getType(); 4362 4363 // Case 1. 4364 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4365 return Builder.CreateBitCast(Src, DstTy, Name); 4366 4367 // Case 2. 4368 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4369 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4370 4371 // Case 3. 4372 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4373 // Case 3b. 4374 if (!DstTy->isIntegerTy()) 4375 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4376 // Cases 3a and 3b. 4377 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4378 } 4379 4380 // Case 4b. 4381 if (!SrcTy->isIntegerTy()) 4382 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4383 // Cases 4a and 4b. 4384 return Builder.CreateIntToPtr(Src, DstTy, Name); 4385 } 4386 4387 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4388 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4389 llvm::Type *DstTy = ConvertType(E->getType()); 4390 4391 llvm::Type *SrcTy = Src->getType(); 4392 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4393 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4394 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4395 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4396 4397 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4398 // vector to get a vec4, then a bitcast if the target type is different. 4399 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4400 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4401 4402 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4403 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4404 DstTy); 4405 } 4406 4407 Src->setName("astype"); 4408 return Src; 4409 } 4410 4411 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4412 // to vec4 if the original type is not vec4, then a shuffle vector to 4413 // get a vec3. 4414 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4415 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4416 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4417 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4418 Vec4Ty); 4419 } 4420 4421 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4422 Src->setName("astype"); 4423 return Src; 4424 } 4425 4426 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4427 Src, DstTy, "astype"); 4428 } 4429 4430 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4431 return CGF.EmitAtomicExpr(E).getScalarVal(); 4432 } 4433 4434 //===----------------------------------------------------------------------===// 4435 // Entry Point into this File 4436 //===----------------------------------------------------------------------===// 4437 4438 /// Emit the computation of the specified expression of scalar type, ignoring 4439 /// the result. 4440 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4441 assert(E && hasScalarEvaluationKind(E->getType()) && 4442 "Invalid scalar expression to emit"); 4443 4444 return ScalarExprEmitter(*this, IgnoreResultAssign) 4445 .Visit(const_cast<Expr *>(E)); 4446 } 4447 4448 /// Emit a conversion from the specified type to the specified destination type, 4449 /// both of which are LLVM scalar types. 4450 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4451 QualType DstTy, 4452 SourceLocation Loc) { 4453 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4454 "Invalid scalar expression to emit"); 4455 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4456 } 4457 4458 /// Emit a conversion from the specified complex type to the specified 4459 /// destination type, where the destination type is an LLVM scalar type. 4460 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4461 QualType SrcTy, 4462 QualType DstTy, 4463 SourceLocation Loc) { 4464 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4465 "Invalid complex -> scalar conversion"); 4466 return ScalarExprEmitter(*this) 4467 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4468 } 4469 4470 4471 llvm::Value *CodeGenFunction:: 4472 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4473 bool isInc, bool isPre) { 4474 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4475 } 4476 4477 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4478 // object->isa or (*object).isa 4479 // Generate code as for: *(Class*)object 4480 4481 Expr *BaseExpr = E->getBase(); 4482 Address Addr = Address::invalid(); 4483 if (BaseExpr->isRValue()) { 4484 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4485 } else { 4486 Addr = EmitLValue(BaseExpr).getAddress(); 4487 } 4488 4489 // Cast the address to Class*. 4490 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4491 return MakeAddrLValue(Addr, E->getType()); 4492 } 4493 4494 4495 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4496 const CompoundAssignOperator *E) { 4497 ScalarExprEmitter Scalar(*this); 4498 Value *Result = nullptr; 4499 switch (E->getOpcode()) { 4500 #define COMPOUND_OP(Op) \ 4501 case BO_##Op##Assign: \ 4502 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4503 Result) 4504 COMPOUND_OP(Mul); 4505 COMPOUND_OP(Div); 4506 COMPOUND_OP(Rem); 4507 COMPOUND_OP(Add); 4508 COMPOUND_OP(Sub); 4509 COMPOUND_OP(Shl); 4510 COMPOUND_OP(Shr); 4511 COMPOUND_OP(And); 4512 COMPOUND_OP(Xor); 4513 COMPOUND_OP(Or); 4514 #undef COMPOUND_OP 4515 4516 case BO_PtrMemD: 4517 case BO_PtrMemI: 4518 case BO_Mul: 4519 case BO_Div: 4520 case BO_Rem: 4521 case BO_Add: 4522 case BO_Sub: 4523 case BO_Shl: 4524 case BO_Shr: 4525 case BO_LT: 4526 case BO_GT: 4527 case BO_LE: 4528 case BO_GE: 4529 case BO_EQ: 4530 case BO_NE: 4531 case BO_Cmp: 4532 case BO_And: 4533 case BO_Xor: 4534 case BO_Or: 4535 case BO_LAnd: 4536 case BO_LOr: 4537 case BO_Assign: 4538 case BO_Comma: 4539 llvm_unreachable("Not valid compound assignment operators"); 4540 } 4541 4542 llvm_unreachable("Unhandled compound assignment operator"); 4543 } 4544 4545 struct GEPOffsetAndOverflow { 4546 // The total (signed) byte offset for the GEP. 4547 llvm::Value *TotalOffset; 4548 // The offset overflow flag - true if the total offset overflows. 4549 llvm::Value *OffsetOverflows; 4550 }; 4551 4552 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4553 /// and compute the total offset it applies from it's base pointer BasePtr. 4554 /// Returns offset in bytes and a boolean flag whether an overflow happened 4555 /// during evaluation. 4556 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4557 llvm::LLVMContext &VMContext, 4558 CodeGenModule &CGM, 4559 CGBuilderTy Builder) { 4560 const auto &DL = CGM.getDataLayout(); 4561 4562 // The total (signed) byte offset for the GEP. 4563 llvm::Value *TotalOffset = nullptr; 4564 4565 // Was the GEP already reduced to a constant? 4566 if (isa<llvm::Constant>(GEPVal)) { 4567 // Compute the offset by casting both pointers to integers and subtracting: 4568 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4569 Value *BasePtr_int = 4570 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4571 Value *GEPVal_int = 4572 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4573 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4574 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4575 } 4576 4577 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4578 assert(GEP->getPointerOperand() == BasePtr && 4579 "BasePtr must be the the base of the GEP."); 4580 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4581 4582 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4583 4584 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4585 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4586 auto *SAddIntrinsic = 4587 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4588 auto *SMulIntrinsic = 4589 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4590 4591 // The offset overflow flag - true if the total offset overflows. 4592 llvm::Value *OffsetOverflows = Builder.getFalse(); 4593 4594 /// Return the result of the given binary operation. 4595 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4596 llvm::Value *RHS) -> llvm::Value * { 4597 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4598 4599 // If the operands are constants, return a constant result. 4600 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4601 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4602 llvm::APInt N; 4603 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4604 /*Signed=*/true, N); 4605 if (HasOverflow) 4606 OffsetOverflows = Builder.getTrue(); 4607 return llvm::ConstantInt::get(VMContext, N); 4608 } 4609 } 4610 4611 // Otherwise, compute the result with checked arithmetic. 4612 auto *ResultAndOverflow = Builder.CreateCall( 4613 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4614 OffsetOverflows = Builder.CreateOr( 4615 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4616 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4617 }; 4618 4619 // Determine the total byte offset by looking at each GEP operand. 4620 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4621 GTI != GTE; ++GTI) { 4622 llvm::Value *LocalOffset; 4623 auto *Index = GTI.getOperand(); 4624 // Compute the local offset contributed by this indexing step: 4625 if (auto *STy = GTI.getStructTypeOrNull()) { 4626 // For struct indexing, the local offset is the byte position of the 4627 // specified field. 4628 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4629 LocalOffset = llvm::ConstantInt::get( 4630 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4631 } else { 4632 // Otherwise this is array-like indexing. The local offset is the index 4633 // multiplied by the element size. 4634 auto *ElementSize = llvm::ConstantInt::get( 4635 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4636 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4637 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4638 } 4639 4640 // If this is the first offset, set it as the total offset. Otherwise, add 4641 // the local offset into the running total. 4642 if (!TotalOffset || TotalOffset == Zero) 4643 TotalOffset = LocalOffset; 4644 else 4645 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4646 } 4647 4648 return {TotalOffset, OffsetOverflows}; 4649 } 4650 4651 Value * 4652 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4653 bool SignedIndices, bool IsSubtraction, 4654 SourceLocation Loc, const Twine &Name) { 4655 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4656 4657 // If the pointer overflow sanitizer isn't enabled, do nothing. 4658 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4659 return GEPVal; 4660 4661 llvm::Type *PtrTy = Ptr->getType(); 4662 4663 // Perform nullptr-and-offset check unless the nullptr is defined. 4664 bool PerformNullCheck = !NullPointerIsDefined( 4665 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4666 // Check for overflows unless the GEP got constant-folded, 4667 // and only in the default address space 4668 bool PerformOverflowCheck = 4669 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4670 4671 if (!(PerformNullCheck || PerformOverflowCheck)) 4672 return GEPVal; 4673 4674 const auto &DL = CGM.getDataLayout(); 4675 4676 SanitizerScope SanScope(this); 4677 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4678 4679 GEPOffsetAndOverflow EvaluatedGEP = 4680 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4681 4682 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4683 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4684 "If the offset got constant-folded, we don't expect that there was an " 4685 "overflow."); 4686 4687 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4688 4689 // Common case: if the total offset is zero, and we are using C++ semantics, 4690 // where nullptr+0 is defined, don't emit a check. 4691 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4692 return GEPVal; 4693 4694 // Now that we've computed the total offset, add it to the base pointer (with 4695 // wrapping semantics). 4696 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4697 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4698 4699 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4700 4701 if (PerformNullCheck) { 4702 // In C++, if the base pointer evaluates to a null pointer value, 4703 // the only valid pointer this inbounds GEP can produce is also 4704 // a null pointer, so the offset must also evaluate to zero. 4705 // Likewise, if we have non-zero base pointer, we can not get null pointer 4706 // as a result, so the offset can not be -intptr_t(BasePtr). 4707 // In other words, both pointers are either null, or both are non-null, 4708 // or the behaviour is undefined. 4709 // 4710 // C, however, is more strict in this regard, and gives more 4711 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4712 // So both the input to the 'gep inbounds' AND the output must not be null. 4713 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4714 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4715 auto *Valid = 4716 CGM.getLangOpts().CPlusPlus 4717 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4718 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4719 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4720 } 4721 4722 if (PerformOverflowCheck) { 4723 // The GEP is valid if: 4724 // 1) The total offset doesn't overflow, and 4725 // 2) The sign of the difference between the computed address and the base 4726 // pointer matches the sign of the total offset. 4727 llvm::Value *ValidGEP; 4728 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4729 if (SignedIndices) { 4730 // GEP is computed as `unsigned base + signed offset`, therefore: 4731 // * If offset was positive, then the computed pointer can not be 4732 // [unsigned] less than the base pointer, unless it overflowed. 4733 // * If offset was negative, then the computed pointer can not be 4734 // [unsigned] greater than the bas pointere, unless it overflowed. 4735 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4736 auto *PosOrZeroOffset = 4737 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4738 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4739 ValidGEP = 4740 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4741 } else if (!IsSubtraction) { 4742 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4743 // computed pointer can not be [unsigned] less than base pointer, 4744 // unless there was an overflow. 4745 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4746 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4747 } else { 4748 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4749 // computed pointer can not be [unsigned] greater than base pointer, 4750 // unless there was an overflow. 4751 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4752 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4753 } 4754 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4755 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4756 } 4757 4758 assert(!Checks.empty() && "Should have produced some checks."); 4759 4760 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4761 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4762 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4763 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4764 4765 return GEPVal; 4766 } 4767