xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/FixedPoint.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsPowerPC.h"
40 #include "llvm/IR/Module.h"
41 #include <cstdarg>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 using llvm::Value;
46 
47 //===----------------------------------------------------------------------===//
48 //                         Scalar Expression Emitter
49 //===----------------------------------------------------------------------===//
50 
51 namespace {
52 
53 /// Determine whether the given binary operation may overflow.
54 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
55 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
56 /// the returned overflow check is precise. The returned value is 'true' for
57 /// all other opcodes, to be conservative.
58 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
59                              BinaryOperator::Opcode Opcode, bool Signed,
60                              llvm::APInt &Result) {
61   // Assume overflow is possible, unless we can prove otherwise.
62   bool Overflow = true;
63   const auto &LHSAP = LHS->getValue();
64   const auto &RHSAP = RHS->getValue();
65   if (Opcode == BO_Add) {
66     if (Signed)
67       Result = LHSAP.sadd_ov(RHSAP, Overflow);
68     else
69       Result = LHSAP.uadd_ov(RHSAP, Overflow);
70   } else if (Opcode == BO_Sub) {
71     if (Signed)
72       Result = LHSAP.ssub_ov(RHSAP, Overflow);
73     else
74       Result = LHSAP.usub_ov(RHSAP, Overflow);
75   } else if (Opcode == BO_Mul) {
76     if (Signed)
77       Result = LHSAP.smul_ov(RHSAP, Overflow);
78     else
79       Result = LHSAP.umul_ov(RHSAP, Overflow);
80   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
81     if (Signed && !RHS->isZero())
82       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
83     else
84       return false;
85   }
86   return Overflow;
87 }
88 
89 struct BinOpInfo {
90   Value *LHS;
91   Value *RHS;
92   QualType Ty;  // Computation Type.
93   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
94   FPOptions FPFeatures;
95   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
96 
97   /// Check if the binop can result in integer overflow.
98   bool mayHaveIntegerOverflow() const {
99     // Without constant input, we can't rule out overflow.
100     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
101     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
102     if (!LHSCI || !RHSCI)
103       return true;
104 
105     llvm::APInt Result;
106     return ::mayHaveIntegerOverflow(
107         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
108   }
109 
110   /// Check if the binop computes a division or a remainder.
111   bool isDivremOp() const {
112     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
113            Opcode == BO_RemAssign;
114   }
115 
116   /// Check if the binop can result in an integer division by zero.
117   bool mayHaveIntegerDivisionByZero() const {
118     if (isDivremOp())
119       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
120         return CI->isZero();
121     return true;
122   }
123 
124   /// Check if the binop can result in a float division by zero.
125   bool mayHaveFloatDivisionByZero() const {
126     if (isDivremOp())
127       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
128         return CFP->isZero();
129     return true;
130   }
131 
132   /// Check if either operand is a fixed point type or integer type, with at
133   /// least one being a fixed point type. In any case, this
134   /// operation did not follow usual arithmetic conversion and both operands may
135   /// not be the same.
136   bool isFixedPointBinOp() const {
137     // We cannot simply check the result type since comparison operations return
138     // an int.
139     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
140       QualType LHSType = BinOp->getLHS()->getType();
141       QualType RHSType = BinOp->getRHS()->getType();
142       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
143     }
144     return false;
145   }
146 };
147 
148 static bool MustVisitNullValue(const Expr *E) {
149   // If a null pointer expression's type is the C++0x nullptr_t, then
150   // it's not necessarily a simple constant and it must be evaluated
151   // for its potential side effects.
152   return E->getType()->isNullPtrType();
153 }
154 
155 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
156 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
157                                                         const Expr *E) {
158   const Expr *Base = E->IgnoreImpCasts();
159   if (E == Base)
160     return llvm::None;
161 
162   QualType BaseTy = Base->getType();
163   if (!BaseTy->isPromotableIntegerType() ||
164       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
165     return llvm::None;
166 
167   return BaseTy;
168 }
169 
170 /// Check if \p E is a widened promoted integer.
171 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
172   return getUnwidenedIntegerType(Ctx, E).hasValue();
173 }
174 
175 /// Check if we can skip the overflow check for \p Op.
176 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
177   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
178          "Expected a unary or binary operator");
179 
180   // If the binop has constant inputs and we can prove there is no overflow,
181   // we can elide the overflow check.
182   if (!Op.mayHaveIntegerOverflow())
183     return true;
184 
185   // If a unary op has a widened operand, the op cannot overflow.
186   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
187     return !UO->canOverflow();
188 
189   // We usually don't need overflow checks for binops with widened operands.
190   // Multiplication with promoted unsigned operands is a special case.
191   const auto *BO = cast<BinaryOperator>(Op.E);
192   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
193   if (!OptionalLHSTy)
194     return false;
195 
196   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
197   if (!OptionalRHSTy)
198     return false;
199 
200   QualType LHSTy = *OptionalLHSTy;
201   QualType RHSTy = *OptionalRHSTy;
202 
203   // This is the simple case: binops without unsigned multiplication, and with
204   // widened operands. No overflow check is needed here.
205   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
206       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
207     return true;
208 
209   // For unsigned multiplication the overflow check can be elided if either one
210   // of the unpromoted types are less than half the size of the promoted type.
211   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
212   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
213          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
214 }
215 
216 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
217 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
218                                 FPOptions FPFeatures) {
219   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
220 }
221 
222 /// Propagate fast-math flags from \p Op to the instruction in \p V.
223 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
224   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
225     llvm::FastMathFlags FMF = I->getFastMathFlags();
226     updateFastMathFlags(FMF, Op.FPFeatures);
227     I->setFastMathFlags(FMF);
228   }
229   return V;
230 }
231 
232 class ScalarExprEmitter
233   : public StmtVisitor<ScalarExprEmitter, Value*> {
234   CodeGenFunction &CGF;
235   CGBuilderTy &Builder;
236   bool IgnoreResultAssign;
237   llvm::LLVMContext &VMContext;
238 public:
239 
240   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
241     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
242       VMContext(cgf.getLLVMContext()) {
243   }
244 
245   //===--------------------------------------------------------------------===//
246   //                               Utilities
247   //===--------------------------------------------------------------------===//
248 
249   bool TestAndClearIgnoreResultAssign() {
250     bool I = IgnoreResultAssign;
251     IgnoreResultAssign = false;
252     return I;
253   }
254 
255   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
256   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
257   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
258     return CGF.EmitCheckedLValue(E, TCK);
259   }
260 
261   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
262                       const BinOpInfo &Info);
263 
264   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
265     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
266   }
267 
268   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
269     const AlignValueAttr *AVAttr = nullptr;
270     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
271       const ValueDecl *VD = DRE->getDecl();
272 
273       if (VD->getType()->isReferenceType()) {
274         if (const auto *TTy =
275             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
276           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
277       } else {
278         // Assumptions for function parameters are emitted at the start of the
279         // function, so there is no need to repeat that here,
280         // unless the alignment-assumption sanitizer is enabled,
281         // then we prefer the assumption over alignment attribute
282         // on IR function param.
283         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
284           return;
285 
286         AVAttr = VD->getAttr<AlignValueAttr>();
287       }
288     }
289 
290     if (!AVAttr)
291       if (const auto *TTy =
292           dyn_cast<TypedefType>(E->getType()))
293         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
294 
295     if (!AVAttr)
296       return;
297 
298     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
299     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
300     CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
301   }
302 
303   /// EmitLoadOfLValue - Given an expression with complex type that represents a
304   /// value l-value, this method emits the address of the l-value, then loads
305   /// and returns the result.
306   Value *EmitLoadOfLValue(const Expr *E) {
307     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
308                                 E->getExprLoc());
309 
310     EmitLValueAlignmentAssumption(E, V);
311     return V;
312   }
313 
314   /// EmitConversionToBool - Convert the specified expression value to a
315   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
316   Value *EmitConversionToBool(Value *Src, QualType DstTy);
317 
318   /// Emit a check that a conversion from a floating-point type does not
319   /// overflow.
320   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
321                                 Value *Src, QualType SrcType, QualType DstType,
322                                 llvm::Type *DstTy, SourceLocation Loc);
323 
324   /// Known implicit conversion check kinds.
325   /// Keep in sync with the enum of the same name in ubsan_handlers.h
326   enum ImplicitConversionCheckKind : unsigned char {
327     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
328     ICCK_UnsignedIntegerTruncation = 1,
329     ICCK_SignedIntegerTruncation = 2,
330     ICCK_IntegerSignChange = 3,
331     ICCK_SignedIntegerTruncationOrSignChange = 4,
332   };
333 
334   /// Emit a check that an [implicit] truncation of an integer  does not
335   /// discard any bits. It is not UB, so we use the value after truncation.
336   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
337                                   QualType DstType, SourceLocation Loc);
338 
339   /// Emit a check that an [implicit] conversion of an integer does not change
340   /// the sign of the value. It is not UB, so we use the value after conversion.
341   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
342   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
343                                   QualType DstType, SourceLocation Loc);
344 
345   /// Emit a conversion from the specified type to the specified destination
346   /// type, both of which are LLVM scalar types.
347   struct ScalarConversionOpts {
348     bool TreatBooleanAsSigned;
349     bool EmitImplicitIntegerTruncationChecks;
350     bool EmitImplicitIntegerSignChangeChecks;
351 
352     ScalarConversionOpts()
353         : TreatBooleanAsSigned(false),
354           EmitImplicitIntegerTruncationChecks(false),
355           EmitImplicitIntegerSignChangeChecks(false) {}
356 
357     ScalarConversionOpts(clang::SanitizerSet SanOpts)
358         : TreatBooleanAsSigned(false),
359           EmitImplicitIntegerTruncationChecks(
360               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
361           EmitImplicitIntegerSignChangeChecks(
362               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
363   };
364   Value *
365   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
366                        SourceLocation Loc,
367                        ScalarConversionOpts Opts = ScalarConversionOpts());
368 
369   /// Convert between either a fixed point and other fixed point or fixed point
370   /// and an integer.
371   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
372                                   SourceLocation Loc);
373   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
374                                   FixedPointSemantics &DstFixedSema,
375                                   SourceLocation Loc,
376                                   bool DstIsInteger = false);
377 
378   /// Emit a conversion from the specified complex type to the specified
379   /// destination type, where the destination type is an LLVM scalar type.
380   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
381                                        QualType SrcTy, QualType DstTy,
382                                        SourceLocation Loc);
383 
384   /// EmitNullValue - Emit a value that corresponds to null for the given type.
385   Value *EmitNullValue(QualType Ty);
386 
387   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
388   Value *EmitFloatToBoolConversion(Value *V) {
389     // Compare against 0.0 for fp scalars.
390     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
391     return Builder.CreateFCmpUNE(V, Zero, "tobool");
392   }
393 
394   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
395   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
396     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
397 
398     return Builder.CreateICmpNE(V, Zero, "tobool");
399   }
400 
401   Value *EmitIntToBoolConversion(Value *V) {
402     // Because of the type rules of C, we often end up computing a
403     // logical value, then zero extending it to int, then wanting it
404     // as a logical value again.  Optimize this common case.
405     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
406       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
407         Value *Result = ZI->getOperand(0);
408         // If there aren't any more uses, zap the instruction to save space.
409         // Note that there can be more uses, for example if this
410         // is the result of an assignment.
411         if (ZI->use_empty())
412           ZI->eraseFromParent();
413         return Result;
414       }
415     }
416 
417     return Builder.CreateIsNotNull(V, "tobool");
418   }
419 
420   //===--------------------------------------------------------------------===//
421   //                            Visitor Methods
422   //===--------------------------------------------------------------------===//
423 
424   Value *Visit(Expr *E) {
425     ApplyDebugLocation DL(CGF, E);
426     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
427   }
428 
429   Value *VisitStmt(Stmt *S) {
430     S->dump(CGF.getContext().getSourceManager());
431     llvm_unreachable("Stmt can't have complex result type!");
432   }
433   Value *VisitExpr(Expr *S);
434 
435   Value *VisitConstantExpr(ConstantExpr *E) {
436     return Visit(E->getSubExpr());
437   }
438   Value *VisitParenExpr(ParenExpr *PE) {
439     return Visit(PE->getSubExpr());
440   }
441   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
442     return Visit(E->getReplacement());
443   }
444   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
445     return Visit(GE->getResultExpr());
446   }
447   Value *VisitCoawaitExpr(CoawaitExpr *S) {
448     return CGF.EmitCoawaitExpr(*S).getScalarVal();
449   }
450   Value *VisitCoyieldExpr(CoyieldExpr *S) {
451     return CGF.EmitCoyieldExpr(*S).getScalarVal();
452   }
453   Value *VisitUnaryCoawait(const UnaryOperator *E) {
454     return Visit(E->getSubExpr());
455   }
456 
457   // Leaves.
458   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
459     return Builder.getInt(E->getValue());
460   }
461   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
462     return Builder.getInt(E->getValue());
463   }
464   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
465     return llvm::ConstantFP::get(VMContext, E->getValue());
466   }
467   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
468     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469   }
470   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
471     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472   }
473   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
474     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
475   }
476   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
477     return EmitNullValue(E->getType());
478   }
479   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
480     return EmitNullValue(E->getType());
481   }
482   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
483   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
484   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
485     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
486     return Builder.CreateBitCast(V, ConvertType(E->getType()));
487   }
488 
489   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
490     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
491   }
492 
493   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
494     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
495   }
496 
497   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
498     if (E->isGLValue())
499       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
500                               E->getExprLoc());
501 
502     // Otherwise, assume the mapping is the scalar directly.
503     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
504   }
505 
506   // l-values.
507   Value *VisitDeclRefExpr(DeclRefExpr *E) {
508     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
509       return CGF.emitScalarConstant(Constant, E);
510     return EmitLoadOfLValue(E);
511   }
512 
513   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
514     return CGF.EmitObjCSelectorExpr(E);
515   }
516   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
517     return CGF.EmitObjCProtocolExpr(E);
518   }
519   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
520     return EmitLoadOfLValue(E);
521   }
522   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
523     if (E->getMethodDecl() &&
524         E->getMethodDecl()->getReturnType()->isReferenceType())
525       return EmitLoadOfLValue(E);
526     return CGF.EmitObjCMessageExpr(E).getScalarVal();
527   }
528 
529   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
530     LValue LV = CGF.EmitObjCIsaExpr(E);
531     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
532     return V;
533   }
534 
535   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
536     VersionTuple Version = E->getVersion();
537 
538     // If we're checking for a platform older than our minimum deployment
539     // target, we can fold the check away.
540     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
541       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
542 
543     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
544     llvm::Value *Args[] = {
545         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
546         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
547         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
548     };
549 
550     return CGF.EmitBuiltinAvailable(Args);
551   }
552 
553   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
554   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
555   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
556   Value *VisitMemberExpr(MemberExpr *E);
557   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
558   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
559     return EmitLoadOfLValue(E);
560   }
561 
562   Value *VisitInitListExpr(InitListExpr *E);
563 
564   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
565     assert(CGF.getArrayInitIndex() &&
566            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
567     return CGF.getArrayInitIndex();
568   }
569 
570   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
571     return EmitNullValue(E->getType());
572   }
573   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
574     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
575     return VisitCastExpr(E);
576   }
577   Value *VisitCastExpr(CastExpr *E);
578 
579   Value *VisitCallExpr(const CallExpr *E) {
580     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
581       return EmitLoadOfLValue(E);
582 
583     Value *V = CGF.EmitCallExpr(E).getScalarVal();
584 
585     EmitLValueAlignmentAssumption(E, V);
586     return V;
587   }
588 
589   Value *VisitStmtExpr(const StmtExpr *E);
590 
591   // Unary Operators.
592   Value *VisitUnaryPostDec(const UnaryOperator *E) {
593     LValue LV = EmitLValue(E->getSubExpr());
594     return EmitScalarPrePostIncDec(E, LV, false, false);
595   }
596   Value *VisitUnaryPostInc(const UnaryOperator *E) {
597     LValue LV = EmitLValue(E->getSubExpr());
598     return EmitScalarPrePostIncDec(E, LV, true, false);
599   }
600   Value *VisitUnaryPreDec(const UnaryOperator *E) {
601     LValue LV = EmitLValue(E->getSubExpr());
602     return EmitScalarPrePostIncDec(E, LV, false, true);
603   }
604   Value *VisitUnaryPreInc(const UnaryOperator *E) {
605     LValue LV = EmitLValue(E->getSubExpr());
606     return EmitScalarPrePostIncDec(E, LV, true, true);
607   }
608 
609   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
610                                                   llvm::Value *InVal,
611                                                   bool IsInc);
612 
613   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
614                                        bool isInc, bool isPre);
615 
616 
617   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
618     if (isa<MemberPointerType>(E->getType())) // never sugared
619       return CGF.CGM.getMemberPointerConstant(E);
620 
621     return EmitLValue(E->getSubExpr()).getPointer(CGF);
622   }
623   Value *VisitUnaryDeref(const UnaryOperator *E) {
624     if (E->getType()->isVoidType())
625       return Visit(E->getSubExpr()); // the actual value should be unused
626     return EmitLoadOfLValue(E);
627   }
628   Value *VisitUnaryPlus(const UnaryOperator *E) {
629     // This differs from gcc, though, most likely due to a bug in gcc.
630     TestAndClearIgnoreResultAssign();
631     return Visit(E->getSubExpr());
632   }
633   Value *VisitUnaryMinus    (const UnaryOperator *E);
634   Value *VisitUnaryNot      (const UnaryOperator *E);
635   Value *VisitUnaryLNot     (const UnaryOperator *E);
636   Value *VisitUnaryReal     (const UnaryOperator *E);
637   Value *VisitUnaryImag     (const UnaryOperator *E);
638   Value *VisitUnaryExtension(const UnaryOperator *E) {
639     return Visit(E->getSubExpr());
640   }
641 
642   // C++
643   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
644     return EmitLoadOfLValue(E);
645   }
646   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
647     auto &Ctx = CGF.getContext();
648     APValue Evaluated =
649         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
650     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
651                                              SLE->getType());
652   }
653 
654   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
655     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
656     return Visit(DAE->getExpr());
657   }
658   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
659     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
660     return Visit(DIE->getExpr());
661   }
662   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
663     return CGF.LoadCXXThis();
664   }
665 
666   Value *VisitExprWithCleanups(ExprWithCleanups *E);
667   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
668     return CGF.EmitCXXNewExpr(E);
669   }
670   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
671     CGF.EmitCXXDeleteExpr(E);
672     return nullptr;
673   }
674 
675   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
676     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
677   }
678 
679   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
680     return Builder.getInt1(E->isSatisfied());
681   }
682 
683   Value *VisitRequiresExpr(const RequiresExpr *E) {
684     return Builder.getInt1(E->isSatisfied());
685   }
686 
687   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
688     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
689   }
690 
691   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
692     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
693   }
694 
695   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
696     // C++ [expr.pseudo]p1:
697     //   The result shall only be used as the operand for the function call
698     //   operator (), and the result of such a call has type void. The only
699     //   effect is the evaluation of the postfix-expression before the dot or
700     //   arrow.
701     CGF.EmitScalarExpr(E->getBase());
702     return nullptr;
703   }
704 
705   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
706     return EmitNullValue(E->getType());
707   }
708 
709   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
710     CGF.EmitCXXThrowExpr(E);
711     return nullptr;
712   }
713 
714   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
715     return Builder.getInt1(E->getValue());
716   }
717 
718   // Binary Operators.
719   Value *EmitMul(const BinOpInfo &Ops) {
720     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
721       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
722       case LangOptions::SOB_Defined:
723         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
724       case LangOptions::SOB_Undefined:
725         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
726           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
727         LLVM_FALLTHROUGH;
728       case LangOptions::SOB_Trapping:
729         if (CanElideOverflowCheck(CGF.getContext(), Ops))
730           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
731         return EmitOverflowCheckedBinOp(Ops);
732       }
733     }
734 
735     if (Ops.Ty->isUnsignedIntegerType() &&
736         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
737         !CanElideOverflowCheck(CGF.getContext(), Ops))
738       return EmitOverflowCheckedBinOp(Ops);
739 
740     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
741       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
742       return propagateFMFlags(V, Ops);
743     }
744     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
745   }
746   /// Create a binary op that checks for overflow.
747   /// Currently only supports +, - and *.
748   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
749 
750   // Check for undefined division and modulus behaviors.
751   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
752                                                   llvm::Value *Zero,bool isDiv);
753   // Common helper for getting how wide LHS of shift is.
754   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
755   Value *EmitDiv(const BinOpInfo &Ops);
756   Value *EmitRem(const BinOpInfo &Ops);
757   Value *EmitAdd(const BinOpInfo &Ops);
758   Value *EmitSub(const BinOpInfo &Ops);
759   Value *EmitShl(const BinOpInfo &Ops);
760   Value *EmitShr(const BinOpInfo &Ops);
761   Value *EmitAnd(const BinOpInfo &Ops) {
762     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
763   }
764   Value *EmitXor(const BinOpInfo &Ops) {
765     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
766   }
767   Value *EmitOr (const BinOpInfo &Ops) {
768     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
769   }
770 
771   // Helper functions for fixed point binary operations.
772   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
773 
774   BinOpInfo EmitBinOps(const BinaryOperator *E);
775   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
776                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
777                                   Value *&Result);
778 
779   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
780                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
781 
782   // Binary operators and binary compound assignment operators.
783 #define HANDLEBINOP(OP) \
784   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
785     return Emit ## OP(EmitBinOps(E));                                      \
786   }                                                                        \
787   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
788     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
789   }
790   HANDLEBINOP(Mul)
791   HANDLEBINOP(Div)
792   HANDLEBINOP(Rem)
793   HANDLEBINOP(Add)
794   HANDLEBINOP(Sub)
795   HANDLEBINOP(Shl)
796   HANDLEBINOP(Shr)
797   HANDLEBINOP(And)
798   HANDLEBINOP(Xor)
799   HANDLEBINOP(Or)
800 #undef HANDLEBINOP
801 
802   // Comparisons.
803   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
804                      llvm::CmpInst::Predicate SICmpOpc,
805                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
806 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
807     Value *VisitBin##CODE(const BinaryOperator *E) { \
808       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
809                          llvm::FCmpInst::FP, SIG); }
810   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
811   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
812   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
813   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
814   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
815   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
816 #undef VISITCOMP
817 
818   Value *VisitBinAssign     (const BinaryOperator *E);
819 
820   Value *VisitBinLAnd       (const BinaryOperator *E);
821   Value *VisitBinLOr        (const BinaryOperator *E);
822   Value *VisitBinComma      (const BinaryOperator *E);
823 
824   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
825   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
826 
827   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
828     return Visit(E->getSemanticForm());
829   }
830 
831   // Other Operators.
832   Value *VisitBlockExpr(const BlockExpr *BE);
833   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
834   Value *VisitChooseExpr(ChooseExpr *CE);
835   Value *VisitVAArgExpr(VAArgExpr *VE);
836   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
837     return CGF.EmitObjCStringLiteral(E);
838   }
839   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
840     return CGF.EmitObjCBoxedExpr(E);
841   }
842   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
843     return CGF.EmitObjCArrayLiteral(E);
844   }
845   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
846     return CGF.EmitObjCDictionaryLiteral(E);
847   }
848   Value *VisitAsTypeExpr(AsTypeExpr *CE);
849   Value *VisitAtomicExpr(AtomicExpr *AE);
850 };
851 }  // end anonymous namespace.
852 
853 //===----------------------------------------------------------------------===//
854 //                                Utilities
855 //===----------------------------------------------------------------------===//
856 
857 /// EmitConversionToBool - Convert the specified expression value to a
858 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
859 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
860   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
861 
862   if (SrcType->isRealFloatingType())
863     return EmitFloatToBoolConversion(Src);
864 
865   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
866     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
867 
868   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
869          "Unknown scalar type to convert");
870 
871   if (isa<llvm::IntegerType>(Src->getType()))
872     return EmitIntToBoolConversion(Src);
873 
874   assert(isa<llvm::PointerType>(Src->getType()));
875   return EmitPointerToBoolConversion(Src, SrcType);
876 }
877 
878 void ScalarExprEmitter::EmitFloatConversionCheck(
879     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
880     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
881   assert(SrcType->isFloatingType() && "not a conversion from floating point");
882   if (!isa<llvm::IntegerType>(DstTy))
883     return;
884 
885   CodeGenFunction::SanitizerScope SanScope(&CGF);
886   using llvm::APFloat;
887   using llvm::APSInt;
888 
889   llvm::Value *Check = nullptr;
890   const llvm::fltSemantics &SrcSema =
891     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
892 
893   // Floating-point to integer. This has undefined behavior if the source is
894   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
895   // to an integer).
896   unsigned Width = CGF.getContext().getIntWidth(DstType);
897   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
898 
899   APSInt Min = APSInt::getMinValue(Width, Unsigned);
900   APFloat MinSrc(SrcSema, APFloat::uninitialized);
901   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
902       APFloat::opOverflow)
903     // Don't need an overflow check for lower bound. Just check for
904     // -Inf/NaN.
905     MinSrc = APFloat::getInf(SrcSema, true);
906   else
907     // Find the largest value which is too small to represent (before
908     // truncation toward zero).
909     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
910 
911   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
912   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
913   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
914       APFloat::opOverflow)
915     // Don't need an overflow check for upper bound. Just check for
916     // +Inf/NaN.
917     MaxSrc = APFloat::getInf(SrcSema, false);
918   else
919     // Find the smallest value which is too large to represent (before
920     // truncation toward zero).
921     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
922 
923   // If we're converting from __half, convert the range to float to match
924   // the type of src.
925   if (OrigSrcType->isHalfType()) {
926     const llvm::fltSemantics &Sema =
927       CGF.getContext().getFloatTypeSemantics(SrcType);
928     bool IsInexact;
929     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
930     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
931   }
932 
933   llvm::Value *GE =
934     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
935   llvm::Value *LE =
936     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
937   Check = Builder.CreateAnd(GE, LE);
938 
939   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
940                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
941                                   CGF.EmitCheckTypeDescriptor(DstType)};
942   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
943                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
944 }
945 
946 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
947 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
948 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
949                  std::pair<llvm::Value *, SanitizerMask>>
950 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
951                                  QualType DstType, CGBuilderTy &Builder) {
952   llvm::Type *SrcTy = Src->getType();
953   llvm::Type *DstTy = Dst->getType();
954   (void)DstTy; // Only used in assert()
955 
956   // This should be truncation of integral types.
957   assert(Src != Dst);
958   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
959   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
960          "non-integer llvm type");
961 
962   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
963   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
964 
965   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
966   // Else, it is a signed truncation.
967   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
968   SanitizerMask Mask;
969   if (!SrcSigned && !DstSigned) {
970     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
971     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
972   } else {
973     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
974     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
975   }
976 
977   llvm::Value *Check = nullptr;
978   // 1. Extend the truncated value back to the same width as the Src.
979   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
980   // 2. Equality-compare with the original source value
981   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
982   // If the comparison result is 'i1 false', then the truncation was lossy.
983   return std::make_pair(Kind, std::make_pair(Check, Mask));
984 }
985 
986 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
987     QualType SrcType, QualType DstType) {
988   return SrcType->isIntegerType() && DstType->isIntegerType();
989 }
990 
991 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
992                                                    Value *Dst, QualType DstType,
993                                                    SourceLocation Loc) {
994   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
995     return;
996 
997   // We only care about int->int conversions here.
998   // We ignore conversions to/from pointer and/or bool.
999   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1000                                                                        DstType))
1001     return;
1002 
1003   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1004   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1005   // This must be truncation. Else we do not care.
1006   if (SrcBits <= DstBits)
1007     return;
1008 
1009   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1010 
1011   // If the integer sign change sanitizer is enabled,
1012   // and we are truncating from larger unsigned type to smaller signed type,
1013   // let that next sanitizer deal with it.
1014   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1015   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1016   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1017       (!SrcSigned && DstSigned))
1018     return;
1019 
1020   CodeGenFunction::SanitizerScope SanScope(&CGF);
1021 
1022   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1023             std::pair<llvm::Value *, SanitizerMask>>
1024       Check =
1025           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1026   // If the comparison result is 'i1 false', then the truncation was lossy.
1027 
1028   // Do we care about this type of truncation?
1029   if (!CGF.SanOpts.has(Check.second.second))
1030     return;
1031 
1032   llvm::Constant *StaticArgs[] = {
1033       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1034       CGF.EmitCheckTypeDescriptor(DstType),
1035       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1036   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1037                 {Src, Dst});
1038 }
1039 
1040 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1041 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1042 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1043                  std::pair<llvm::Value *, SanitizerMask>>
1044 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1045                                  QualType DstType, CGBuilderTy &Builder) {
1046   llvm::Type *SrcTy = Src->getType();
1047   llvm::Type *DstTy = Dst->getType();
1048 
1049   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1050          "non-integer llvm type");
1051 
1052   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1053   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1054   (void)SrcSigned; // Only used in assert()
1055   (void)DstSigned; // Only used in assert()
1056   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1057   unsigned DstBits = DstTy->getScalarSizeInBits();
1058   (void)SrcBits; // Only used in assert()
1059   (void)DstBits; // Only used in assert()
1060 
1061   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1062          "either the widths should be different, or the signednesses.");
1063 
1064   // NOTE: zero value is considered to be non-negative.
1065   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1066                                        const char *Name) -> Value * {
1067     // Is this value a signed type?
1068     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1069     llvm::Type *VTy = V->getType();
1070     if (!VSigned) {
1071       // If the value is unsigned, then it is never negative.
1072       // FIXME: can we encounter non-scalar VTy here?
1073       return llvm::ConstantInt::getFalse(VTy->getContext());
1074     }
1075     // Get the zero of the same type with which we will be comparing.
1076     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1077     // %V.isnegative = icmp slt %V, 0
1078     // I.e is %V *strictly* less than zero, does it have negative value?
1079     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1080                               llvm::Twine(Name) + "." + V->getName() +
1081                                   ".negativitycheck");
1082   };
1083 
1084   // 1. Was the old Value negative?
1085   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1086   // 2. Is the new Value negative?
1087   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1088   // 3. Now, was the 'negativity status' preserved during the conversion?
1089   //    NOTE: conversion from negative to zero is considered to change the sign.
1090   //    (We want to get 'false' when the conversion changed the sign)
1091   //    So we should just equality-compare the negativity statuses.
1092   llvm::Value *Check = nullptr;
1093   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1094   // If the comparison result is 'false', then the conversion changed the sign.
1095   return std::make_pair(
1096       ScalarExprEmitter::ICCK_IntegerSignChange,
1097       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1098 }
1099 
1100 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1101                                                    Value *Dst, QualType DstType,
1102                                                    SourceLocation Loc) {
1103   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1104     return;
1105 
1106   llvm::Type *SrcTy = Src->getType();
1107   llvm::Type *DstTy = Dst->getType();
1108 
1109   // We only care about int->int conversions here.
1110   // We ignore conversions to/from pointer and/or bool.
1111   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1112                                                                        DstType))
1113     return;
1114 
1115   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1116   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1117   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1118   unsigned DstBits = DstTy->getScalarSizeInBits();
1119 
1120   // Now, we do not need to emit the check in *all* of the cases.
1121   // We can avoid emitting it in some obvious cases where it would have been
1122   // dropped by the opt passes (instcombine) always anyways.
1123   // If it's a cast between effectively the same type, no check.
1124   // NOTE: this is *not* equivalent to checking the canonical types.
1125   if (SrcSigned == DstSigned && SrcBits == DstBits)
1126     return;
1127   // At least one of the values needs to have signed type.
1128   // If both are unsigned, then obviously, neither of them can be negative.
1129   if (!SrcSigned && !DstSigned)
1130     return;
1131   // If the conversion is to *larger* *signed* type, then no check is needed.
1132   // Because either sign-extension happens (so the sign will remain),
1133   // or zero-extension will happen (the sign bit will be zero.)
1134   if ((DstBits > SrcBits) && DstSigned)
1135     return;
1136   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1137       (SrcBits > DstBits) && SrcSigned) {
1138     // If the signed integer truncation sanitizer is enabled,
1139     // and this is a truncation from signed type, then no check is needed.
1140     // Because here sign change check is interchangeable with truncation check.
1141     return;
1142   }
1143   // That's it. We can't rule out any more cases with the data we have.
1144 
1145   CodeGenFunction::SanitizerScope SanScope(&CGF);
1146 
1147   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1148             std::pair<llvm::Value *, SanitizerMask>>
1149       Check;
1150 
1151   // Each of these checks needs to return 'false' when an issue was detected.
1152   ImplicitConversionCheckKind CheckKind;
1153   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1154   // So we can 'and' all the checks together, and still get 'false',
1155   // if at least one of the checks detected an issue.
1156 
1157   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1158   CheckKind = Check.first;
1159   Checks.emplace_back(Check.second);
1160 
1161   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1162       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1163     // If the signed integer truncation sanitizer was enabled,
1164     // and we are truncating from larger unsigned type to smaller signed type,
1165     // let's handle the case we skipped in that check.
1166     Check =
1167         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1168     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1169     Checks.emplace_back(Check.second);
1170     // If the comparison result is 'i1 false', then the truncation was lossy.
1171   }
1172 
1173   llvm::Constant *StaticArgs[] = {
1174       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1175       CGF.EmitCheckTypeDescriptor(DstType),
1176       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1177   // EmitCheck() will 'and' all the checks together.
1178   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1179                 {Src, Dst});
1180 }
1181 
1182 /// Emit a conversion from the specified type to the specified destination type,
1183 /// both of which are LLVM scalar types.
1184 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1185                                                QualType DstType,
1186                                                SourceLocation Loc,
1187                                                ScalarConversionOpts Opts) {
1188   // All conversions involving fixed point types should be handled by the
1189   // EmitFixedPoint family functions. This is done to prevent bloating up this
1190   // function more, and although fixed point numbers are represented by
1191   // integers, we do not want to follow any logic that assumes they should be
1192   // treated as integers.
1193   // TODO(leonardchan): When necessary, add another if statement checking for
1194   // conversions to fixed point types from other types.
1195   if (SrcType->isFixedPointType()) {
1196     if (DstType->isBooleanType())
1197       // It is important that we check this before checking if the dest type is
1198       // an integer because booleans are technically integer types.
1199       // We do not need to check the padding bit on unsigned types if unsigned
1200       // padding is enabled because overflow into this bit is undefined
1201       // behavior.
1202       return Builder.CreateIsNotNull(Src, "tobool");
1203     if (DstType->isFixedPointType() || DstType->isIntegerType())
1204       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1205 
1206     llvm_unreachable(
1207         "Unhandled scalar conversion from a fixed point type to another type.");
1208   } else if (DstType->isFixedPointType()) {
1209     if (SrcType->isIntegerType())
1210       // This also includes converting booleans and enums to fixed point types.
1211       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1212 
1213     llvm_unreachable(
1214         "Unhandled scalar conversion to a fixed point type from another type.");
1215   }
1216 
1217   QualType NoncanonicalSrcType = SrcType;
1218   QualType NoncanonicalDstType = DstType;
1219 
1220   SrcType = CGF.getContext().getCanonicalType(SrcType);
1221   DstType = CGF.getContext().getCanonicalType(DstType);
1222   if (SrcType == DstType) return Src;
1223 
1224   if (DstType->isVoidType()) return nullptr;
1225 
1226   llvm::Value *OrigSrc = Src;
1227   QualType OrigSrcType = SrcType;
1228   llvm::Type *SrcTy = Src->getType();
1229 
1230   // Handle conversions to bool first, they are special: comparisons against 0.
1231   if (DstType->isBooleanType())
1232     return EmitConversionToBool(Src, SrcType);
1233 
1234   llvm::Type *DstTy = ConvertType(DstType);
1235 
1236   // Cast from half through float if half isn't a native type.
1237   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1238     // Cast to FP using the intrinsic if the half type itself isn't supported.
1239     if (DstTy->isFloatingPointTy()) {
1240       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1241         return Builder.CreateCall(
1242             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1243             Src);
1244     } else {
1245       // Cast to other types through float, using either the intrinsic or FPExt,
1246       // depending on whether the half type itself is supported
1247       // (as opposed to operations on half, available with NativeHalfType).
1248       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1249         Src = Builder.CreateCall(
1250             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1251                                  CGF.CGM.FloatTy),
1252             Src);
1253       } else {
1254         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1255       }
1256       SrcType = CGF.getContext().FloatTy;
1257       SrcTy = CGF.FloatTy;
1258     }
1259   }
1260 
1261   // Ignore conversions like int -> uint.
1262   if (SrcTy == DstTy) {
1263     if (Opts.EmitImplicitIntegerSignChangeChecks)
1264       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1265                                  NoncanonicalDstType, Loc);
1266 
1267     return Src;
1268   }
1269 
1270   // Handle pointer conversions next: pointers can only be converted to/from
1271   // other pointers and integers. Check for pointer types in terms of LLVM, as
1272   // some native types (like Obj-C id) may map to a pointer type.
1273   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1274     // The source value may be an integer, or a pointer.
1275     if (isa<llvm::PointerType>(SrcTy))
1276       return Builder.CreateBitCast(Src, DstTy, "conv");
1277 
1278     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1279     // First, convert to the correct width so that we control the kind of
1280     // extension.
1281     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1282     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1283     llvm::Value* IntResult =
1284         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1285     // Then, cast to pointer.
1286     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1287   }
1288 
1289   if (isa<llvm::PointerType>(SrcTy)) {
1290     // Must be an ptr to int cast.
1291     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1292     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1293   }
1294 
1295   // A scalar can be splatted to an extended vector of the same element type
1296   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1297     // Sema should add casts to make sure that the source expression's type is
1298     // the same as the vector's element type (sans qualifiers)
1299     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1300                SrcType.getTypePtr() &&
1301            "Splatted expr doesn't match with vector element type?");
1302 
1303     // Splat the element across to all elements
1304     unsigned NumElements = DstTy->getVectorNumElements();
1305     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1306   }
1307 
1308   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1309     // Allow bitcast from vector to integer/fp of the same size.
1310     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1311     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1312     if (SrcSize == DstSize)
1313       return Builder.CreateBitCast(Src, DstTy, "conv");
1314 
1315     // Conversions between vectors of different sizes are not allowed except
1316     // when vectors of half are involved. Operations on storage-only half
1317     // vectors require promoting half vector operands to float vectors and
1318     // truncating the result, which is either an int or float vector, to a
1319     // short or half vector.
1320 
1321     // Source and destination are both expected to be vectors.
1322     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1323     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1324     (void)DstElementTy;
1325 
1326     assert(((SrcElementTy->isIntegerTy() &&
1327              DstElementTy->isIntegerTy()) ||
1328             (SrcElementTy->isFloatingPointTy() &&
1329              DstElementTy->isFloatingPointTy())) &&
1330            "unexpected conversion between a floating-point vector and an "
1331            "integer vector");
1332 
1333     // Truncate an i32 vector to an i16 vector.
1334     if (SrcElementTy->isIntegerTy())
1335       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1336 
1337     // Truncate a float vector to a half vector.
1338     if (SrcSize > DstSize)
1339       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1340 
1341     // Promote a half vector to a float vector.
1342     return Builder.CreateFPExt(Src, DstTy, "conv");
1343   }
1344 
1345   // Finally, we have the arithmetic types: real int/float.
1346   Value *Res = nullptr;
1347   llvm::Type *ResTy = DstTy;
1348 
1349   // An overflowing conversion has undefined behavior if either the source type
1350   // or the destination type is a floating-point type. However, we consider the
1351   // range of representable values for all floating-point types to be
1352   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1353   // floating-point type.
1354   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1355       OrigSrcType->isFloatingType())
1356     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1357                              Loc);
1358 
1359   // Cast to half through float if half isn't a native type.
1360   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1361     // Make sure we cast in a single step if from another FP type.
1362     if (SrcTy->isFloatingPointTy()) {
1363       // Use the intrinsic if the half type itself isn't supported
1364       // (as opposed to operations on half, available with NativeHalfType).
1365       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1366         return Builder.CreateCall(
1367             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1368       // If the half type is supported, just use an fptrunc.
1369       return Builder.CreateFPTrunc(Src, DstTy);
1370     }
1371     DstTy = CGF.FloatTy;
1372   }
1373 
1374   if (isa<llvm::IntegerType>(SrcTy)) {
1375     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1376     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1377       InputSigned = true;
1378     }
1379     if (isa<llvm::IntegerType>(DstTy))
1380       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1381     else if (InputSigned)
1382       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1383     else
1384       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1385   } else if (isa<llvm::IntegerType>(DstTy)) {
1386     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1387     if (DstType->isSignedIntegerOrEnumerationType())
1388       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1389     else
1390       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1391   } else {
1392     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1393            "Unknown real conversion");
1394     if (DstTy->getTypeID() < SrcTy->getTypeID())
1395       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1396     else
1397       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1398   }
1399 
1400   if (DstTy != ResTy) {
1401     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1402       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1403       Res = Builder.CreateCall(
1404         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1405         Res);
1406     } else {
1407       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1408     }
1409   }
1410 
1411   if (Opts.EmitImplicitIntegerTruncationChecks)
1412     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1413                                NoncanonicalDstType, Loc);
1414 
1415   if (Opts.EmitImplicitIntegerSignChangeChecks)
1416     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1417                                NoncanonicalDstType, Loc);
1418 
1419   return Res;
1420 }
1421 
1422 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1423                                                    QualType DstTy,
1424                                                    SourceLocation Loc) {
1425   FixedPointSemantics SrcFPSema =
1426       CGF.getContext().getFixedPointSemantics(SrcTy);
1427   FixedPointSemantics DstFPSema =
1428       CGF.getContext().getFixedPointSemantics(DstTy);
1429   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1430                                   DstTy->isIntegerType());
1431 }
1432 
1433 Value *ScalarExprEmitter::EmitFixedPointConversion(
1434     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1435     SourceLocation Loc, bool DstIsInteger) {
1436   using llvm::APInt;
1437   using llvm::ConstantInt;
1438   using llvm::Value;
1439 
1440   unsigned SrcWidth = SrcFPSema.getWidth();
1441   unsigned DstWidth = DstFPSema.getWidth();
1442   unsigned SrcScale = SrcFPSema.getScale();
1443   unsigned DstScale = DstFPSema.getScale();
1444   bool SrcIsSigned = SrcFPSema.isSigned();
1445   bool DstIsSigned = DstFPSema.isSigned();
1446 
1447   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1448 
1449   Value *Result = Src;
1450   unsigned ResultWidth = SrcWidth;
1451 
1452   // Downscale.
1453   if (DstScale < SrcScale) {
1454     // When converting to integers, we round towards zero. For negative numbers,
1455     // right shifting rounds towards negative infinity. In this case, we can
1456     // just round up before shifting.
1457     if (DstIsInteger && SrcIsSigned) {
1458       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1459       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1460       Value *LowBits = ConstantInt::get(
1461           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1462       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1463       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1464     }
1465 
1466     Result = SrcIsSigned
1467                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1468                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1469   }
1470 
1471   if (!DstFPSema.isSaturated()) {
1472     // Resize.
1473     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1474 
1475     // Upscale.
1476     if (DstScale > SrcScale)
1477       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1478   } else {
1479     // Adjust the number of fractional bits.
1480     if (DstScale > SrcScale) {
1481       // Compare to DstWidth to prevent resizing twice.
1482       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1483       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1484       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1485       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1486     }
1487 
1488     // Handle saturation.
1489     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1490     if (LessIntBits) {
1491       Value *Max = ConstantInt::get(
1492           CGF.getLLVMContext(),
1493           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1494       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1495                                    : Builder.CreateICmpUGT(Result, Max);
1496       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1497     }
1498     // Cannot overflow min to dest type if src is unsigned since all fixed
1499     // point types can cover the unsigned min of 0.
1500     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1501       Value *Min = ConstantInt::get(
1502           CGF.getLLVMContext(),
1503           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1504       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1505       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1506     }
1507 
1508     // Resize the integer part to get the final destination size.
1509     if (ResultWidth != DstWidth)
1510       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1511   }
1512   return Result;
1513 }
1514 
1515 /// Emit a conversion from the specified complex type to the specified
1516 /// destination type, where the destination type is an LLVM scalar type.
1517 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1518     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1519     SourceLocation Loc) {
1520   // Get the source element type.
1521   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1522 
1523   // Handle conversions to bool first, they are special: comparisons against 0.
1524   if (DstTy->isBooleanType()) {
1525     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1526     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1527     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1528     return Builder.CreateOr(Src.first, Src.second, "tobool");
1529   }
1530 
1531   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1532   // the imaginary part of the complex value is discarded and the value of the
1533   // real part is converted according to the conversion rules for the
1534   // corresponding real type.
1535   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1536 }
1537 
1538 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1539   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1540 }
1541 
1542 /// Emit a sanitization check for the given "binary" operation (which
1543 /// might actually be a unary increment which has been lowered to a binary
1544 /// operation). The check passes if all values in \p Checks (which are \c i1),
1545 /// are \c true.
1546 void ScalarExprEmitter::EmitBinOpCheck(
1547     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1548   assert(CGF.IsSanitizerScope);
1549   SanitizerHandler Check;
1550   SmallVector<llvm::Constant *, 4> StaticData;
1551   SmallVector<llvm::Value *, 2> DynamicData;
1552 
1553   BinaryOperatorKind Opcode = Info.Opcode;
1554   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1555     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1556 
1557   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1558   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1559   if (UO && UO->getOpcode() == UO_Minus) {
1560     Check = SanitizerHandler::NegateOverflow;
1561     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1562     DynamicData.push_back(Info.RHS);
1563   } else {
1564     if (BinaryOperator::isShiftOp(Opcode)) {
1565       // Shift LHS negative or too large, or RHS out of bounds.
1566       Check = SanitizerHandler::ShiftOutOfBounds;
1567       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1568       StaticData.push_back(
1569         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1570       StaticData.push_back(
1571         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1572     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1573       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1574       Check = SanitizerHandler::DivremOverflow;
1575       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1576     } else {
1577       // Arithmetic overflow (+, -, *).
1578       switch (Opcode) {
1579       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1580       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1581       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1582       default: llvm_unreachable("unexpected opcode for bin op check");
1583       }
1584       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1585     }
1586     DynamicData.push_back(Info.LHS);
1587     DynamicData.push_back(Info.RHS);
1588   }
1589 
1590   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1591 }
1592 
1593 //===----------------------------------------------------------------------===//
1594 //                            Visitor Methods
1595 //===----------------------------------------------------------------------===//
1596 
1597 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1598   CGF.ErrorUnsupported(E, "scalar expression");
1599   if (E->getType()->isVoidType())
1600     return nullptr;
1601   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1602 }
1603 
1604 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1605   // Vector Mask Case
1606   if (E->getNumSubExprs() == 2) {
1607     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1608     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1609     Value *Mask;
1610 
1611     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1612     unsigned LHSElts = LTy->getNumElements();
1613 
1614     Mask = RHS;
1615 
1616     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1617 
1618     // Mask off the high bits of each shuffle index.
1619     Value *MaskBits =
1620         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1621     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1622 
1623     // newv = undef
1624     // mask = mask & maskbits
1625     // for each elt
1626     //   n = extract mask i
1627     //   x = extract val n
1628     //   newv = insert newv, x, i
1629     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1630                                                   MTy->getNumElements());
1631     Value* NewV = llvm::UndefValue::get(RTy);
1632     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1633       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1634       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1635 
1636       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1637       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1638     }
1639     return NewV;
1640   }
1641 
1642   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1643   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1644 
1645   SmallVector<llvm::Constant*, 32> indices;
1646   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1647     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1648     // Check for -1 and output it as undef in the IR.
1649     if (Idx.isSigned() && Idx.isAllOnesValue())
1650       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1651     else
1652       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1653   }
1654 
1655   Value *SV = llvm::ConstantVector::get(indices);
1656   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1657 }
1658 
1659 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1660   QualType SrcType = E->getSrcExpr()->getType(),
1661            DstType = E->getType();
1662 
1663   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1664 
1665   SrcType = CGF.getContext().getCanonicalType(SrcType);
1666   DstType = CGF.getContext().getCanonicalType(DstType);
1667   if (SrcType == DstType) return Src;
1668 
1669   assert(SrcType->isVectorType() &&
1670          "ConvertVector source type must be a vector");
1671   assert(DstType->isVectorType() &&
1672          "ConvertVector destination type must be a vector");
1673 
1674   llvm::Type *SrcTy = Src->getType();
1675   llvm::Type *DstTy = ConvertType(DstType);
1676 
1677   // Ignore conversions like int -> uint.
1678   if (SrcTy == DstTy)
1679     return Src;
1680 
1681   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1682            DstEltType = DstType->castAs<VectorType>()->getElementType();
1683 
1684   assert(SrcTy->isVectorTy() &&
1685          "ConvertVector source IR type must be a vector");
1686   assert(DstTy->isVectorTy() &&
1687          "ConvertVector destination IR type must be a vector");
1688 
1689   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1690              *DstEltTy = DstTy->getVectorElementType();
1691 
1692   if (DstEltType->isBooleanType()) {
1693     assert((SrcEltTy->isFloatingPointTy() ||
1694             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1695 
1696     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1697     if (SrcEltTy->isFloatingPointTy()) {
1698       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1699     } else {
1700       return Builder.CreateICmpNE(Src, Zero, "tobool");
1701     }
1702   }
1703 
1704   // We have the arithmetic types: real int/float.
1705   Value *Res = nullptr;
1706 
1707   if (isa<llvm::IntegerType>(SrcEltTy)) {
1708     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1709     if (isa<llvm::IntegerType>(DstEltTy))
1710       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1711     else if (InputSigned)
1712       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1713     else
1714       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1715   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1716     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1717     if (DstEltType->isSignedIntegerOrEnumerationType())
1718       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1719     else
1720       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1721   } else {
1722     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1723            "Unknown real conversion");
1724     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1725       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1726     else
1727       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1728   }
1729 
1730   return Res;
1731 }
1732 
1733 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1734   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1735     CGF.EmitIgnoredExpr(E->getBase());
1736     return CGF.emitScalarConstant(Constant, E);
1737   } else {
1738     Expr::EvalResult Result;
1739     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1740       llvm::APSInt Value = Result.Val.getInt();
1741       CGF.EmitIgnoredExpr(E->getBase());
1742       return Builder.getInt(Value);
1743     }
1744   }
1745 
1746   return EmitLoadOfLValue(E);
1747 }
1748 
1749 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1750   TestAndClearIgnoreResultAssign();
1751 
1752   // Emit subscript expressions in rvalue context's.  For most cases, this just
1753   // loads the lvalue formed by the subscript expr.  However, we have to be
1754   // careful, because the base of a vector subscript is occasionally an rvalue,
1755   // so we can't get it as an lvalue.
1756   if (!E->getBase()->getType()->isVectorType())
1757     return EmitLoadOfLValue(E);
1758 
1759   // Handle the vector case.  The base must be a vector, the index must be an
1760   // integer value.
1761   Value *Base = Visit(E->getBase());
1762   Value *Idx  = Visit(E->getIdx());
1763   QualType IdxTy = E->getIdx()->getType();
1764 
1765   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1766     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1767 
1768   return Builder.CreateExtractElement(Base, Idx, "vecext");
1769 }
1770 
1771 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1772                                   unsigned Off, llvm::Type *I32Ty) {
1773   int MV = SVI->getMaskValue(Idx);
1774   if (MV == -1)
1775     return llvm::UndefValue::get(I32Ty);
1776   return llvm::ConstantInt::get(I32Ty, Off+MV);
1777 }
1778 
1779 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1780   if (C->getBitWidth() != 32) {
1781       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1782                                                     C->getZExtValue()) &&
1783              "Index operand too large for shufflevector mask!");
1784       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1785   }
1786   return C;
1787 }
1788 
1789 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1790   bool Ignore = TestAndClearIgnoreResultAssign();
1791   (void)Ignore;
1792   assert (Ignore == false && "init list ignored");
1793   unsigned NumInitElements = E->getNumInits();
1794 
1795   if (E->hadArrayRangeDesignator())
1796     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1797 
1798   llvm::VectorType *VType =
1799     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1800 
1801   if (!VType) {
1802     if (NumInitElements == 0) {
1803       // C++11 value-initialization for the scalar.
1804       return EmitNullValue(E->getType());
1805     }
1806     // We have a scalar in braces. Just use the first element.
1807     return Visit(E->getInit(0));
1808   }
1809 
1810   unsigned ResElts = VType->getNumElements();
1811 
1812   // Loop over initializers collecting the Value for each, and remembering
1813   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1814   // us to fold the shuffle for the swizzle into the shuffle for the vector
1815   // initializer, since LLVM optimizers generally do not want to touch
1816   // shuffles.
1817   unsigned CurIdx = 0;
1818   bool VIsUndefShuffle = false;
1819   llvm::Value *V = llvm::UndefValue::get(VType);
1820   for (unsigned i = 0; i != NumInitElements; ++i) {
1821     Expr *IE = E->getInit(i);
1822     Value *Init = Visit(IE);
1823     SmallVector<llvm::Constant*, 16> Args;
1824 
1825     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1826 
1827     // Handle scalar elements.  If the scalar initializer is actually one
1828     // element of a different vector of the same width, use shuffle instead of
1829     // extract+insert.
1830     if (!VVT) {
1831       if (isa<ExtVectorElementExpr>(IE)) {
1832         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1833 
1834         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1835           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1836           Value *LHS = nullptr, *RHS = nullptr;
1837           if (CurIdx == 0) {
1838             // insert into undef -> shuffle (src, undef)
1839             // shufflemask must use an i32
1840             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1841             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1842 
1843             LHS = EI->getVectorOperand();
1844             RHS = V;
1845             VIsUndefShuffle = true;
1846           } else if (VIsUndefShuffle) {
1847             // insert into undefshuffle && size match -> shuffle (v, src)
1848             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1849             for (unsigned j = 0; j != CurIdx; ++j)
1850               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1851             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1852             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1853 
1854             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1855             RHS = EI->getVectorOperand();
1856             VIsUndefShuffle = false;
1857           }
1858           if (!Args.empty()) {
1859             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1860             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1861             ++CurIdx;
1862             continue;
1863           }
1864         }
1865       }
1866       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1867                                       "vecinit");
1868       VIsUndefShuffle = false;
1869       ++CurIdx;
1870       continue;
1871     }
1872 
1873     unsigned InitElts = VVT->getNumElements();
1874 
1875     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1876     // input is the same width as the vector being constructed, generate an
1877     // optimized shuffle of the swizzle input into the result.
1878     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1879     if (isa<ExtVectorElementExpr>(IE)) {
1880       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1881       Value *SVOp = SVI->getOperand(0);
1882       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1883 
1884       if (OpTy->getNumElements() == ResElts) {
1885         for (unsigned j = 0; j != CurIdx; ++j) {
1886           // If the current vector initializer is a shuffle with undef, merge
1887           // this shuffle directly into it.
1888           if (VIsUndefShuffle) {
1889             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1890                                       CGF.Int32Ty));
1891           } else {
1892             Args.push_back(Builder.getInt32(j));
1893           }
1894         }
1895         for (unsigned j = 0, je = InitElts; j != je; ++j)
1896           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1897         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1898 
1899         if (VIsUndefShuffle)
1900           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1901 
1902         Init = SVOp;
1903       }
1904     }
1905 
1906     // Extend init to result vector length, and then shuffle its contribution
1907     // to the vector initializer into V.
1908     if (Args.empty()) {
1909       for (unsigned j = 0; j != InitElts; ++j)
1910         Args.push_back(Builder.getInt32(j));
1911       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1912       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1913       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1914                                          Mask, "vext");
1915 
1916       Args.clear();
1917       for (unsigned j = 0; j != CurIdx; ++j)
1918         Args.push_back(Builder.getInt32(j));
1919       for (unsigned j = 0; j != InitElts; ++j)
1920         Args.push_back(Builder.getInt32(j+Offset));
1921       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1922     }
1923 
1924     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1925     // merging subsequent shuffles into this one.
1926     if (CurIdx == 0)
1927       std::swap(V, Init);
1928     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1929     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1930     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1931     CurIdx += InitElts;
1932   }
1933 
1934   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1935   // Emit remaining default initializers.
1936   llvm::Type *EltTy = VType->getElementType();
1937 
1938   // Emit remaining default initializers
1939   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1940     Value *Idx = Builder.getInt32(CurIdx);
1941     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1942     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1943   }
1944   return V;
1945 }
1946 
1947 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1948   const Expr *E = CE->getSubExpr();
1949 
1950   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1951     return false;
1952 
1953   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1954     // We always assume that 'this' is never null.
1955     return false;
1956   }
1957 
1958   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1959     // And that glvalue casts are never null.
1960     if (ICE->getValueKind() != VK_RValue)
1961       return false;
1962   }
1963 
1964   return true;
1965 }
1966 
1967 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1968 // have to handle a more broad range of conversions than explicit casts, as they
1969 // handle things like function to ptr-to-function decay etc.
1970 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1971   Expr *E = CE->getSubExpr();
1972   QualType DestTy = CE->getType();
1973   CastKind Kind = CE->getCastKind();
1974 
1975   // These cases are generally not written to ignore the result of
1976   // evaluating their sub-expressions, so we clear this now.
1977   bool Ignored = TestAndClearIgnoreResultAssign();
1978 
1979   // Since almost all cast kinds apply to scalars, this switch doesn't have
1980   // a default case, so the compiler will warn on a missing case.  The cases
1981   // are in the same order as in the CastKind enum.
1982   switch (Kind) {
1983   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1984   case CK_BuiltinFnToFnPtr:
1985     llvm_unreachable("builtin functions are handled elsewhere");
1986 
1987   case CK_LValueBitCast:
1988   case CK_ObjCObjectLValueCast: {
1989     Address Addr = EmitLValue(E).getAddress(CGF);
1990     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1991     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1992     return EmitLoadOfLValue(LV, CE->getExprLoc());
1993   }
1994 
1995   case CK_LValueToRValueBitCast: {
1996     LValue SourceLVal = CGF.EmitLValue(E);
1997     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1998                                                 CGF.ConvertTypeForMem(DestTy));
1999     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2000     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2001     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2002   }
2003 
2004   case CK_CPointerToObjCPointerCast:
2005   case CK_BlockPointerToObjCPointerCast:
2006   case CK_AnyPointerToBlockPointerCast:
2007   case CK_BitCast: {
2008     Value *Src = Visit(const_cast<Expr*>(E));
2009     llvm::Type *SrcTy = Src->getType();
2010     llvm::Type *DstTy = ConvertType(DestTy);
2011     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2012         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2013       llvm_unreachable("wrong cast for pointers in different address spaces"
2014                        "(must be an address space cast)!");
2015     }
2016 
2017     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2018       if (auto PT = DestTy->getAs<PointerType>())
2019         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2020                                       /*MayBeNull=*/true,
2021                                       CodeGenFunction::CFITCK_UnrelatedCast,
2022                                       CE->getBeginLoc());
2023     }
2024 
2025     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2026       const QualType SrcType = E->getType();
2027 
2028       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2029         // Casting to pointer that could carry dynamic information (provided by
2030         // invariant.group) requires launder.
2031         Src = Builder.CreateLaunderInvariantGroup(Src);
2032       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2033         // Casting to pointer that does not carry dynamic information (provided
2034         // by invariant.group) requires stripping it.  Note that we don't do it
2035         // if the source could not be dynamic type and destination could be
2036         // dynamic because dynamic information is already laundered.  It is
2037         // because launder(strip(src)) == launder(src), so there is no need to
2038         // add extra strip before launder.
2039         Src = Builder.CreateStripInvariantGroup(Src);
2040       }
2041     }
2042 
2043     // Update heapallocsite metadata when there is an explicit cast.
2044     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2045       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2046           CGF.getDebugInfo()->
2047               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2048 
2049     return Builder.CreateBitCast(Src, DstTy);
2050   }
2051   case CK_AddressSpaceConversion: {
2052     Expr::EvalResult Result;
2053     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2054         Result.Val.isNullPointer()) {
2055       // If E has side effect, it is emitted even if its final result is a
2056       // null pointer. In that case, a DCE pass should be able to
2057       // eliminate the useless instructions emitted during translating E.
2058       if (Result.HasSideEffects)
2059         Visit(E);
2060       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2061           ConvertType(DestTy)), DestTy);
2062     }
2063     // Since target may map different address spaces in AST to the same address
2064     // space, an address space conversion may end up as a bitcast.
2065     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2066         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2067         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2068   }
2069   case CK_AtomicToNonAtomic:
2070   case CK_NonAtomicToAtomic:
2071   case CK_NoOp:
2072   case CK_UserDefinedConversion:
2073     return Visit(const_cast<Expr*>(E));
2074 
2075   case CK_BaseToDerived: {
2076     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2077     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2078 
2079     Address Base = CGF.EmitPointerWithAlignment(E);
2080     Address Derived =
2081       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2082                                    CE->path_begin(), CE->path_end(),
2083                                    CGF.ShouldNullCheckClassCastValue(CE));
2084 
2085     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2086     // performed and the object is not of the derived type.
2087     if (CGF.sanitizePerformTypeCheck())
2088       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2089                         Derived.getPointer(), DestTy->getPointeeType());
2090 
2091     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2092       CGF.EmitVTablePtrCheckForCast(
2093           DestTy->getPointeeType(), Derived.getPointer(),
2094           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2095           CE->getBeginLoc());
2096 
2097     return Derived.getPointer();
2098   }
2099   case CK_UncheckedDerivedToBase:
2100   case CK_DerivedToBase: {
2101     // The EmitPointerWithAlignment path does this fine; just discard
2102     // the alignment.
2103     return CGF.EmitPointerWithAlignment(CE).getPointer();
2104   }
2105 
2106   case CK_Dynamic: {
2107     Address V = CGF.EmitPointerWithAlignment(E);
2108     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2109     return CGF.EmitDynamicCast(V, DCE);
2110   }
2111 
2112   case CK_ArrayToPointerDecay:
2113     return CGF.EmitArrayToPointerDecay(E).getPointer();
2114   case CK_FunctionToPointerDecay:
2115     return EmitLValue(E).getPointer(CGF);
2116 
2117   case CK_NullToPointer:
2118     if (MustVisitNullValue(E))
2119       CGF.EmitIgnoredExpr(E);
2120 
2121     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2122                               DestTy);
2123 
2124   case CK_NullToMemberPointer: {
2125     if (MustVisitNullValue(E))
2126       CGF.EmitIgnoredExpr(E);
2127 
2128     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2129     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2130   }
2131 
2132   case CK_ReinterpretMemberPointer:
2133   case CK_BaseToDerivedMemberPointer:
2134   case CK_DerivedToBaseMemberPointer: {
2135     Value *Src = Visit(E);
2136 
2137     // Note that the AST doesn't distinguish between checked and
2138     // unchecked member pointer conversions, so we always have to
2139     // implement checked conversions here.  This is inefficient when
2140     // actual control flow may be required in order to perform the
2141     // check, which it is for data member pointers (but not member
2142     // function pointers on Itanium and ARM).
2143     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2144   }
2145 
2146   case CK_ARCProduceObject:
2147     return CGF.EmitARCRetainScalarExpr(E);
2148   case CK_ARCConsumeObject:
2149     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2150   case CK_ARCReclaimReturnedObject:
2151     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2152   case CK_ARCExtendBlockObject:
2153     return CGF.EmitARCExtendBlockObject(E);
2154 
2155   case CK_CopyAndAutoreleaseBlockObject:
2156     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2157 
2158   case CK_FloatingRealToComplex:
2159   case CK_FloatingComplexCast:
2160   case CK_IntegralRealToComplex:
2161   case CK_IntegralComplexCast:
2162   case CK_IntegralComplexToFloatingComplex:
2163   case CK_FloatingComplexToIntegralComplex:
2164   case CK_ConstructorConversion:
2165   case CK_ToUnion:
2166     llvm_unreachable("scalar cast to non-scalar value");
2167 
2168   case CK_LValueToRValue:
2169     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2170     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2171     return Visit(const_cast<Expr*>(E));
2172 
2173   case CK_IntegralToPointer: {
2174     Value *Src = Visit(const_cast<Expr*>(E));
2175 
2176     // First, convert to the correct width so that we control the kind of
2177     // extension.
2178     auto DestLLVMTy = ConvertType(DestTy);
2179     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2180     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2181     llvm::Value* IntResult =
2182       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2183 
2184     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2185 
2186     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2187       // Going from integer to pointer that could be dynamic requires reloading
2188       // dynamic information from invariant.group.
2189       if (DestTy.mayBeDynamicClass())
2190         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2191     }
2192     return IntToPtr;
2193   }
2194   case CK_PointerToIntegral: {
2195     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2196     auto *PtrExpr = Visit(E);
2197 
2198     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2199       const QualType SrcType = E->getType();
2200 
2201       // Casting to integer requires stripping dynamic information as it does
2202       // not carries it.
2203       if (SrcType.mayBeDynamicClass())
2204         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2205     }
2206 
2207     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2208   }
2209   case CK_ToVoid: {
2210     CGF.EmitIgnoredExpr(E);
2211     return nullptr;
2212   }
2213   case CK_VectorSplat: {
2214     llvm::Type *DstTy = ConvertType(DestTy);
2215     Value *Elt = Visit(const_cast<Expr*>(E));
2216     // Splat the element across to all elements
2217     unsigned NumElements = DstTy->getVectorNumElements();
2218     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2219   }
2220 
2221   case CK_FixedPointCast:
2222     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2223                                 CE->getExprLoc());
2224 
2225   case CK_FixedPointToBoolean:
2226     assert(E->getType()->isFixedPointType() &&
2227            "Expected src type to be fixed point type");
2228     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2229     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2230                                 CE->getExprLoc());
2231 
2232   case CK_FixedPointToIntegral:
2233     assert(E->getType()->isFixedPointType() &&
2234            "Expected src type to be fixed point type");
2235     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2236     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2237                                 CE->getExprLoc());
2238 
2239   case CK_IntegralToFixedPoint:
2240     assert(E->getType()->isIntegerType() &&
2241            "Expected src type to be an integer");
2242     assert(DestTy->isFixedPointType() &&
2243            "Expected dest type to be fixed point type");
2244     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2245                                 CE->getExprLoc());
2246 
2247   case CK_IntegralCast: {
2248     ScalarConversionOpts Opts;
2249     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2250       if (!ICE->isPartOfExplicitCast())
2251         Opts = ScalarConversionOpts(CGF.SanOpts);
2252     }
2253     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2254                                 CE->getExprLoc(), Opts);
2255   }
2256   case CK_IntegralToFloating:
2257   case CK_FloatingToIntegral:
2258   case CK_FloatingCast:
2259     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2260                                 CE->getExprLoc());
2261   case CK_BooleanToSignedIntegral: {
2262     ScalarConversionOpts Opts;
2263     Opts.TreatBooleanAsSigned = true;
2264     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2265                                 CE->getExprLoc(), Opts);
2266   }
2267   case CK_IntegralToBoolean:
2268     return EmitIntToBoolConversion(Visit(E));
2269   case CK_PointerToBoolean:
2270     return EmitPointerToBoolConversion(Visit(E), E->getType());
2271   case CK_FloatingToBoolean:
2272     return EmitFloatToBoolConversion(Visit(E));
2273   case CK_MemberPointerToBoolean: {
2274     llvm::Value *MemPtr = Visit(E);
2275     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2276     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2277   }
2278 
2279   case CK_FloatingComplexToReal:
2280   case CK_IntegralComplexToReal:
2281     return CGF.EmitComplexExpr(E, false, true).first;
2282 
2283   case CK_FloatingComplexToBoolean:
2284   case CK_IntegralComplexToBoolean: {
2285     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2286 
2287     // TODO: kill this function off, inline appropriate case here
2288     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2289                                          CE->getExprLoc());
2290   }
2291 
2292   case CK_ZeroToOCLOpaqueType: {
2293     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2294             DestTy->isOCLIntelSubgroupAVCType()) &&
2295            "CK_ZeroToOCLEvent cast on non-event type");
2296     return llvm::Constant::getNullValue(ConvertType(DestTy));
2297   }
2298 
2299   case CK_IntToOCLSampler:
2300     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2301 
2302   } // end of switch
2303 
2304   llvm_unreachable("unknown scalar cast");
2305 }
2306 
2307 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2308   CodeGenFunction::StmtExprEvaluation eval(CGF);
2309   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2310                                            !E->getType()->isVoidType());
2311   if (!RetAlloca.isValid())
2312     return nullptr;
2313   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2314                               E->getExprLoc());
2315 }
2316 
2317 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2318   CGF.enterFullExpression(E);
2319   CodeGenFunction::RunCleanupsScope Scope(CGF);
2320   Value *V = Visit(E->getSubExpr());
2321   // Defend against dominance problems caused by jumps out of expression
2322   // evaluation through the shared cleanup block.
2323   Scope.ForceCleanup({&V});
2324   return V;
2325 }
2326 
2327 //===----------------------------------------------------------------------===//
2328 //                             Unary Operators
2329 //===----------------------------------------------------------------------===//
2330 
2331 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2332                                            llvm::Value *InVal, bool IsInc) {
2333   BinOpInfo BinOp;
2334   BinOp.LHS = InVal;
2335   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2336   BinOp.Ty = E->getType();
2337   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2338   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2339   BinOp.E = E;
2340   return BinOp;
2341 }
2342 
2343 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2344     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2345   llvm::Value *Amount =
2346       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2347   StringRef Name = IsInc ? "inc" : "dec";
2348   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2349   case LangOptions::SOB_Defined:
2350     return Builder.CreateAdd(InVal, Amount, Name);
2351   case LangOptions::SOB_Undefined:
2352     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2353       return Builder.CreateNSWAdd(InVal, Amount, Name);
2354     LLVM_FALLTHROUGH;
2355   case LangOptions::SOB_Trapping:
2356     if (!E->canOverflow())
2357       return Builder.CreateNSWAdd(InVal, Amount, Name);
2358     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2359   }
2360   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2361 }
2362 
2363 namespace {
2364 /// Handles check and update for lastprivate conditional variables.
2365 class OMPLastprivateConditionalUpdateRAII {
2366 private:
2367   CodeGenFunction &CGF;
2368   const UnaryOperator *E;
2369 
2370 public:
2371   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2372                                       const UnaryOperator *E)
2373       : CGF(CGF), E(E) {}
2374   ~OMPLastprivateConditionalUpdateRAII() {
2375     if (CGF.getLangOpts().OpenMP)
2376       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2377           CGF, E->getSubExpr());
2378   }
2379 };
2380 } // namespace
2381 
2382 llvm::Value *
2383 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2384                                            bool isInc, bool isPre) {
2385   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2386   QualType type = E->getSubExpr()->getType();
2387   llvm::PHINode *atomicPHI = nullptr;
2388   llvm::Value *value;
2389   llvm::Value *input;
2390 
2391   int amount = (isInc ? 1 : -1);
2392   bool isSubtraction = !isInc;
2393 
2394   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2395     type = atomicTy->getValueType();
2396     if (isInc && type->isBooleanType()) {
2397       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2398       if (isPre) {
2399         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2400             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2401         return Builder.getTrue();
2402       }
2403       // For atomic bool increment, we just store true and return it for
2404       // preincrement, do an atomic swap with true for postincrement
2405       return Builder.CreateAtomicRMW(
2406           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2407           llvm::AtomicOrdering::SequentiallyConsistent);
2408     }
2409     // Special case for atomic increment / decrement on integers, emit
2410     // atomicrmw instructions.  We skip this if we want to be doing overflow
2411     // checking, and fall into the slow path with the atomic cmpxchg loop.
2412     if (!type->isBooleanType() && type->isIntegerType() &&
2413         !(type->isUnsignedIntegerType() &&
2414           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2415         CGF.getLangOpts().getSignedOverflowBehavior() !=
2416             LangOptions::SOB_Trapping) {
2417       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2418         llvm::AtomicRMWInst::Sub;
2419       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2420         llvm::Instruction::Sub;
2421       llvm::Value *amt = CGF.EmitToMemory(
2422           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2423       llvm::Value *old =
2424           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2425                                   llvm::AtomicOrdering::SequentiallyConsistent);
2426       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2427     }
2428     value = EmitLoadOfLValue(LV, E->getExprLoc());
2429     input = value;
2430     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2431     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2432     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2433     value = CGF.EmitToMemory(value, type);
2434     Builder.CreateBr(opBB);
2435     Builder.SetInsertPoint(opBB);
2436     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2437     atomicPHI->addIncoming(value, startBB);
2438     value = atomicPHI;
2439   } else {
2440     value = EmitLoadOfLValue(LV, E->getExprLoc());
2441     input = value;
2442   }
2443 
2444   // Special case of integer increment that we have to check first: bool++.
2445   // Due to promotion rules, we get:
2446   //   bool++ -> bool = bool + 1
2447   //          -> bool = (int)bool + 1
2448   //          -> bool = ((int)bool + 1 != 0)
2449   // An interesting aspect of this is that increment is always true.
2450   // Decrement does not have this property.
2451   if (isInc && type->isBooleanType()) {
2452     value = Builder.getTrue();
2453 
2454   // Most common case by far: integer increment.
2455   } else if (type->isIntegerType()) {
2456     QualType promotedType;
2457     bool canPerformLossyDemotionCheck = false;
2458     if (type->isPromotableIntegerType()) {
2459       promotedType = CGF.getContext().getPromotedIntegerType(type);
2460       assert(promotedType != type && "Shouldn't promote to the same type.");
2461       canPerformLossyDemotionCheck = true;
2462       canPerformLossyDemotionCheck &=
2463           CGF.getContext().getCanonicalType(type) !=
2464           CGF.getContext().getCanonicalType(promotedType);
2465       canPerformLossyDemotionCheck &=
2466           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2467               type, promotedType);
2468       assert((!canPerformLossyDemotionCheck ||
2469               type->isSignedIntegerOrEnumerationType() ||
2470               promotedType->isSignedIntegerOrEnumerationType() ||
2471               ConvertType(type)->getScalarSizeInBits() ==
2472                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2473              "The following check expects that if we do promotion to different "
2474              "underlying canonical type, at least one of the types (either "
2475              "base or promoted) will be signed, or the bitwidths will match.");
2476     }
2477     if (CGF.SanOpts.hasOneOf(
2478             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2479         canPerformLossyDemotionCheck) {
2480       // While `x += 1` (for `x` with width less than int) is modeled as
2481       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2482       // ease; inc/dec with width less than int can't overflow because of
2483       // promotion rules, so we omit promotion+demotion, which means that we can
2484       // not catch lossy "demotion". Because we still want to catch these cases
2485       // when the sanitizer is enabled, we perform the promotion, then perform
2486       // the increment/decrement in the wider type, and finally
2487       // perform the demotion. This will catch lossy demotions.
2488 
2489       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2490       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2491       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2492       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2493       // emitted.
2494       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2495                                    ScalarConversionOpts(CGF.SanOpts));
2496 
2497       // Note that signed integer inc/dec with width less than int can't
2498       // overflow because of promotion rules; we're just eliding a few steps
2499       // here.
2500     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2501       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2502     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2503                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2504       value =
2505           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2506     } else {
2507       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2508       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2509     }
2510 
2511   // Next most common: pointer increment.
2512   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2513     QualType type = ptr->getPointeeType();
2514 
2515     // VLA types don't have constant size.
2516     if (const VariableArrayType *vla
2517           = CGF.getContext().getAsVariableArrayType(type)) {
2518       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2519       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2520       if (CGF.getLangOpts().isSignedOverflowDefined())
2521         value = Builder.CreateGEP(value, numElts, "vla.inc");
2522       else
2523         value = CGF.EmitCheckedInBoundsGEP(
2524             value, numElts, /*SignedIndices=*/false, isSubtraction,
2525             E->getExprLoc(), "vla.inc");
2526 
2527     // Arithmetic on function pointers (!) is just +-1.
2528     } else if (type->isFunctionType()) {
2529       llvm::Value *amt = Builder.getInt32(amount);
2530 
2531       value = CGF.EmitCastToVoidPtr(value);
2532       if (CGF.getLangOpts().isSignedOverflowDefined())
2533         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2534       else
2535         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2536                                            isSubtraction, E->getExprLoc(),
2537                                            "incdec.funcptr");
2538       value = Builder.CreateBitCast(value, input->getType());
2539 
2540     // For everything else, we can just do a simple increment.
2541     } else {
2542       llvm::Value *amt = Builder.getInt32(amount);
2543       if (CGF.getLangOpts().isSignedOverflowDefined())
2544         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2545       else
2546         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2547                                            isSubtraction, E->getExprLoc(),
2548                                            "incdec.ptr");
2549     }
2550 
2551   // Vector increment/decrement.
2552   } else if (type->isVectorType()) {
2553     if (type->hasIntegerRepresentation()) {
2554       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2555 
2556       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2557     } else {
2558       value = Builder.CreateFAdd(
2559                   value,
2560                   llvm::ConstantFP::get(value->getType(), amount),
2561                   isInc ? "inc" : "dec");
2562     }
2563 
2564   // Floating point.
2565   } else if (type->isRealFloatingType()) {
2566     // Add the inc/dec to the real part.
2567     llvm::Value *amt;
2568 
2569     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2570       // Another special case: half FP increment should be done via float
2571       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2572         value = Builder.CreateCall(
2573             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2574                                  CGF.CGM.FloatTy),
2575             input, "incdec.conv");
2576       } else {
2577         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2578       }
2579     }
2580 
2581     if (value->getType()->isFloatTy())
2582       amt = llvm::ConstantFP::get(VMContext,
2583                                   llvm::APFloat(static_cast<float>(amount)));
2584     else if (value->getType()->isDoubleTy())
2585       amt = llvm::ConstantFP::get(VMContext,
2586                                   llvm::APFloat(static_cast<double>(amount)));
2587     else {
2588       // Remaining types are Half, LongDouble or __float128. Convert from float.
2589       llvm::APFloat F(static_cast<float>(amount));
2590       bool ignored;
2591       const llvm::fltSemantics *FS;
2592       // Don't use getFloatTypeSemantics because Half isn't
2593       // necessarily represented using the "half" LLVM type.
2594       if (value->getType()->isFP128Ty())
2595         FS = &CGF.getTarget().getFloat128Format();
2596       else if (value->getType()->isHalfTy())
2597         FS = &CGF.getTarget().getHalfFormat();
2598       else
2599         FS = &CGF.getTarget().getLongDoubleFormat();
2600       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2601       amt = llvm::ConstantFP::get(VMContext, F);
2602     }
2603     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2604 
2605     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2606       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2607         value = Builder.CreateCall(
2608             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2609                                  CGF.CGM.FloatTy),
2610             value, "incdec.conv");
2611       } else {
2612         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2613       }
2614     }
2615 
2616   // Objective-C pointer types.
2617   } else {
2618     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2619     value = CGF.EmitCastToVoidPtr(value);
2620 
2621     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2622     if (!isInc) size = -size;
2623     llvm::Value *sizeValue =
2624       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2625 
2626     if (CGF.getLangOpts().isSignedOverflowDefined())
2627       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2628     else
2629       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2630                                          /*SignedIndices=*/false, isSubtraction,
2631                                          E->getExprLoc(), "incdec.objptr");
2632     value = Builder.CreateBitCast(value, input->getType());
2633   }
2634 
2635   if (atomicPHI) {
2636     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2637     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2638     auto Pair = CGF.EmitAtomicCompareExchange(
2639         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2640     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2641     llvm::Value *success = Pair.second;
2642     atomicPHI->addIncoming(old, curBlock);
2643     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2644     Builder.SetInsertPoint(contBB);
2645     return isPre ? value : input;
2646   }
2647 
2648   // Store the updated result through the lvalue.
2649   if (LV.isBitField())
2650     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2651   else
2652     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2653 
2654   // If this is a postinc, return the value read from memory, otherwise use the
2655   // updated value.
2656   return isPre ? value : input;
2657 }
2658 
2659 
2660 
2661 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2662   TestAndClearIgnoreResultAssign();
2663   Value *Op = Visit(E->getSubExpr());
2664 
2665   // Generate a unary FNeg for FP ops.
2666   if (Op->getType()->isFPOrFPVectorTy())
2667     return Builder.CreateFNeg(Op, "fneg");
2668 
2669   // Emit unary minus with EmitSub so we handle overflow cases etc.
2670   BinOpInfo BinOp;
2671   BinOp.RHS = Op;
2672   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2673   BinOp.Ty = E->getType();
2674   BinOp.Opcode = BO_Sub;
2675   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2676   BinOp.E = E;
2677   return EmitSub(BinOp);
2678 }
2679 
2680 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2681   TestAndClearIgnoreResultAssign();
2682   Value *Op = Visit(E->getSubExpr());
2683   return Builder.CreateNot(Op, "neg");
2684 }
2685 
2686 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2687   // Perform vector logical not on comparison with zero vector.
2688   if (E->getType()->isExtVectorType()) {
2689     Value *Oper = Visit(E->getSubExpr());
2690     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2691     Value *Result;
2692     if (Oper->getType()->isFPOrFPVectorTy())
2693       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2694     else
2695       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2696     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2697   }
2698 
2699   // Compare operand to zero.
2700   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2701 
2702   // Invert value.
2703   // TODO: Could dynamically modify easy computations here.  For example, if
2704   // the operand is an icmp ne, turn into icmp eq.
2705   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2706 
2707   // ZExt result to the expr type.
2708   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2709 }
2710 
2711 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2712   // Try folding the offsetof to a constant.
2713   Expr::EvalResult EVResult;
2714   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2715     llvm::APSInt Value = EVResult.Val.getInt();
2716     return Builder.getInt(Value);
2717   }
2718 
2719   // Loop over the components of the offsetof to compute the value.
2720   unsigned n = E->getNumComponents();
2721   llvm::Type* ResultType = ConvertType(E->getType());
2722   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2723   QualType CurrentType = E->getTypeSourceInfo()->getType();
2724   for (unsigned i = 0; i != n; ++i) {
2725     OffsetOfNode ON = E->getComponent(i);
2726     llvm::Value *Offset = nullptr;
2727     switch (ON.getKind()) {
2728     case OffsetOfNode::Array: {
2729       // Compute the index
2730       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2731       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2732       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2733       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2734 
2735       // Save the element type
2736       CurrentType =
2737           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2738 
2739       // Compute the element size
2740       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2741           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2742 
2743       // Multiply out to compute the result
2744       Offset = Builder.CreateMul(Idx, ElemSize);
2745       break;
2746     }
2747 
2748     case OffsetOfNode::Field: {
2749       FieldDecl *MemberDecl = ON.getField();
2750       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2751       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2752 
2753       // Compute the index of the field in its parent.
2754       unsigned i = 0;
2755       // FIXME: It would be nice if we didn't have to loop here!
2756       for (RecordDecl::field_iterator Field = RD->field_begin(),
2757                                       FieldEnd = RD->field_end();
2758            Field != FieldEnd; ++Field, ++i) {
2759         if (*Field == MemberDecl)
2760           break;
2761       }
2762       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2763 
2764       // Compute the offset to the field
2765       int64_t OffsetInt = RL.getFieldOffset(i) /
2766                           CGF.getContext().getCharWidth();
2767       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2768 
2769       // Save the element type.
2770       CurrentType = MemberDecl->getType();
2771       break;
2772     }
2773 
2774     case OffsetOfNode::Identifier:
2775       llvm_unreachable("dependent __builtin_offsetof");
2776 
2777     case OffsetOfNode::Base: {
2778       if (ON.getBase()->isVirtual()) {
2779         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2780         continue;
2781       }
2782 
2783       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2784       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2785 
2786       // Save the element type.
2787       CurrentType = ON.getBase()->getType();
2788 
2789       // Compute the offset to the base.
2790       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2791       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2792       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2793       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2794       break;
2795     }
2796     }
2797     Result = Builder.CreateAdd(Result, Offset);
2798   }
2799   return Result;
2800 }
2801 
2802 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2803 /// argument of the sizeof expression as an integer.
2804 Value *
2805 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2806                               const UnaryExprOrTypeTraitExpr *E) {
2807   QualType TypeToSize = E->getTypeOfArgument();
2808   if (E->getKind() == UETT_SizeOf) {
2809     if (const VariableArrayType *VAT =
2810           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2811       if (E->isArgumentType()) {
2812         // sizeof(type) - make sure to emit the VLA size.
2813         CGF.EmitVariablyModifiedType(TypeToSize);
2814       } else {
2815         // C99 6.5.3.4p2: If the argument is an expression of type
2816         // VLA, it is evaluated.
2817         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2818       }
2819 
2820       auto VlaSize = CGF.getVLASize(VAT);
2821       llvm::Value *size = VlaSize.NumElts;
2822 
2823       // Scale the number of non-VLA elements by the non-VLA element size.
2824       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2825       if (!eltSize.isOne())
2826         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2827 
2828       return size;
2829     }
2830   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2831     auto Alignment =
2832         CGF.getContext()
2833             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2834                 E->getTypeOfArgument()->getPointeeType()))
2835             .getQuantity();
2836     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2837   }
2838 
2839   // If this isn't sizeof(vla), the result must be constant; use the constant
2840   // folding logic so we don't have to duplicate it here.
2841   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2842 }
2843 
2844 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2845   Expr *Op = E->getSubExpr();
2846   if (Op->getType()->isAnyComplexType()) {
2847     // If it's an l-value, load through the appropriate subobject l-value.
2848     // Note that we have to ask E because Op might be an l-value that
2849     // this won't work for, e.g. an Obj-C property.
2850     if (E->isGLValue())
2851       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2852                                   E->getExprLoc()).getScalarVal();
2853 
2854     // Otherwise, calculate and project.
2855     return CGF.EmitComplexExpr(Op, false, true).first;
2856   }
2857 
2858   return Visit(Op);
2859 }
2860 
2861 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2862   Expr *Op = E->getSubExpr();
2863   if (Op->getType()->isAnyComplexType()) {
2864     // If it's an l-value, load through the appropriate subobject l-value.
2865     // Note that we have to ask E because Op might be an l-value that
2866     // this won't work for, e.g. an Obj-C property.
2867     if (Op->isGLValue())
2868       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2869                                   E->getExprLoc()).getScalarVal();
2870 
2871     // Otherwise, calculate and project.
2872     return CGF.EmitComplexExpr(Op, true, false).second;
2873   }
2874 
2875   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2876   // effects are evaluated, but not the actual value.
2877   if (Op->isGLValue())
2878     CGF.EmitLValue(Op);
2879   else
2880     CGF.EmitScalarExpr(Op, true);
2881   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2882 }
2883 
2884 //===----------------------------------------------------------------------===//
2885 //                           Binary Operators
2886 //===----------------------------------------------------------------------===//
2887 
2888 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2889   TestAndClearIgnoreResultAssign();
2890   BinOpInfo Result;
2891   Result.LHS = Visit(E->getLHS());
2892   Result.RHS = Visit(E->getRHS());
2893   Result.Ty  = E->getType();
2894   Result.Opcode = E->getOpcode();
2895   Result.FPFeatures = E->getFPFeatures();
2896   Result.E = E;
2897   return Result;
2898 }
2899 
2900 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2901                                               const CompoundAssignOperator *E,
2902                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2903                                                    Value *&Result) {
2904   QualType LHSTy = E->getLHS()->getType();
2905   BinOpInfo OpInfo;
2906 
2907   if (E->getComputationResultType()->isAnyComplexType())
2908     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2909 
2910   // Emit the RHS first.  __block variables need to have the rhs evaluated
2911   // first, plus this should improve codegen a little.
2912   OpInfo.RHS = Visit(E->getRHS());
2913   OpInfo.Ty = E->getComputationResultType();
2914   OpInfo.Opcode = E->getOpcode();
2915   OpInfo.FPFeatures = E->getFPFeatures();
2916   OpInfo.E = E;
2917   // Load/convert the LHS.
2918   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2919 
2920   llvm::PHINode *atomicPHI = nullptr;
2921   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2922     QualType type = atomicTy->getValueType();
2923     if (!type->isBooleanType() && type->isIntegerType() &&
2924         !(type->isUnsignedIntegerType() &&
2925           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2926         CGF.getLangOpts().getSignedOverflowBehavior() !=
2927             LangOptions::SOB_Trapping) {
2928       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2929       llvm::Instruction::BinaryOps Op;
2930       switch (OpInfo.Opcode) {
2931         // We don't have atomicrmw operands for *, %, /, <<, >>
2932         case BO_MulAssign: case BO_DivAssign:
2933         case BO_RemAssign:
2934         case BO_ShlAssign:
2935         case BO_ShrAssign:
2936           break;
2937         case BO_AddAssign:
2938           AtomicOp = llvm::AtomicRMWInst::Add;
2939           Op = llvm::Instruction::Add;
2940           break;
2941         case BO_SubAssign:
2942           AtomicOp = llvm::AtomicRMWInst::Sub;
2943           Op = llvm::Instruction::Sub;
2944           break;
2945         case BO_AndAssign:
2946           AtomicOp = llvm::AtomicRMWInst::And;
2947           Op = llvm::Instruction::And;
2948           break;
2949         case BO_XorAssign:
2950           AtomicOp = llvm::AtomicRMWInst::Xor;
2951           Op = llvm::Instruction::Xor;
2952           break;
2953         case BO_OrAssign:
2954           AtomicOp = llvm::AtomicRMWInst::Or;
2955           Op = llvm::Instruction::Or;
2956           break;
2957         default:
2958           llvm_unreachable("Invalid compound assignment type");
2959       }
2960       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2961         llvm::Value *Amt = CGF.EmitToMemory(
2962             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2963                                  E->getExprLoc()),
2964             LHSTy);
2965         Value *OldVal = Builder.CreateAtomicRMW(
2966             AtomicOp, LHSLV.getPointer(CGF), Amt,
2967             llvm::AtomicOrdering::SequentiallyConsistent);
2968 
2969         // Since operation is atomic, the result type is guaranteed to be the
2970         // same as the input in LLVM terms.
2971         Result = Builder.CreateBinOp(Op, OldVal, Amt);
2972         return LHSLV;
2973       }
2974     }
2975     // FIXME: For floating point types, we should be saving and restoring the
2976     // floating point environment in the loop.
2977     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2978     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2979     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2980     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2981     Builder.CreateBr(opBB);
2982     Builder.SetInsertPoint(opBB);
2983     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2984     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2985     OpInfo.LHS = atomicPHI;
2986   }
2987   else
2988     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2989 
2990   SourceLocation Loc = E->getExprLoc();
2991   OpInfo.LHS =
2992       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2993 
2994   // Expand the binary operator.
2995   Result = (this->*Func)(OpInfo);
2996 
2997   // Convert the result back to the LHS type,
2998   // potentially with Implicit Conversion sanitizer check.
2999   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3000                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3001 
3002   if (atomicPHI) {
3003     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3004     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3005     auto Pair = CGF.EmitAtomicCompareExchange(
3006         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3007     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3008     llvm::Value *success = Pair.second;
3009     atomicPHI->addIncoming(old, curBlock);
3010     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3011     Builder.SetInsertPoint(contBB);
3012     return LHSLV;
3013   }
3014 
3015   // Store the result value into the LHS lvalue. Bit-fields are handled
3016   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3017   // 'An assignment expression has the value of the left operand after the
3018   // assignment...'.
3019   if (LHSLV.isBitField())
3020     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3021   else
3022     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3023 
3024   if (CGF.getLangOpts().OpenMP)
3025     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3026                                                                   E->getLHS());
3027   return LHSLV;
3028 }
3029 
3030 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3031                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3032   bool Ignore = TestAndClearIgnoreResultAssign();
3033   Value *RHS = nullptr;
3034   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3035 
3036   // If the result is clearly ignored, return now.
3037   if (Ignore)
3038     return nullptr;
3039 
3040   // The result of an assignment in C is the assigned r-value.
3041   if (!CGF.getLangOpts().CPlusPlus)
3042     return RHS;
3043 
3044   // If the lvalue is non-volatile, return the computed value of the assignment.
3045   if (!LHS.isVolatileQualified())
3046     return RHS;
3047 
3048   // Otherwise, reload the value.
3049   return EmitLoadOfLValue(LHS, E->getExprLoc());
3050 }
3051 
3052 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3053     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3054   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3055 
3056   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3057     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3058                                     SanitizerKind::IntegerDivideByZero));
3059   }
3060 
3061   const auto *BO = cast<BinaryOperator>(Ops.E);
3062   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3063       Ops.Ty->hasSignedIntegerRepresentation() &&
3064       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3065       Ops.mayHaveIntegerOverflow()) {
3066     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3067 
3068     llvm::Value *IntMin =
3069       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3070     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3071 
3072     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3073     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3074     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3075     Checks.push_back(
3076         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3077   }
3078 
3079   if (Checks.size() > 0)
3080     EmitBinOpCheck(Checks, Ops);
3081 }
3082 
3083 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3084   {
3085     CodeGenFunction::SanitizerScope SanScope(&CGF);
3086     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3087          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3088         Ops.Ty->isIntegerType() &&
3089         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3090       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3091       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3092     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3093                Ops.Ty->isRealFloatingType() &&
3094                Ops.mayHaveFloatDivisionByZero()) {
3095       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3096       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3097       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3098                      Ops);
3099     }
3100   }
3101 
3102   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3103     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3104     if (CGF.getLangOpts().OpenCL &&
3105         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3106       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3107       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3108       // build option allows an application to specify that single precision
3109       // floating-point divide (x/y and 1/x) and sqrt used in the program
3110       // source are correctly rounded.
3111       llvm::Type *ValTy = Val->getType();
3112       if (ValTy->isFloatTy() ||
3113           (isa<llvm::VectorType>(ValTy) &&
3114            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3115         CGF.SetFPAccuracy(Val, 2.5);
3116     }
3117     return Val;
3118   }
3119   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3120     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3121   else
3122     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3123 }
3124 
3125 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3126   // Rem in C can't be a floating point type: C99 6.5.5p2.
3127   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3128        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3129       Ops.Ty->isIntegerType() &&
3130       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3131     CodeGenFunction::SanitizerScope SanScope(&CGF);
3132     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3133     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3134   }
3135 
3136   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3137     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3138   else
3139     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3140 }
3141 
3142 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3143   unsigned IID;
3144   unsigned OpID = 0;
3145 
3146   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3147   switch (Ops.Opcode) {
3148   case BO_Add:
3149   case BO_AddAssign:
3150     OpID = 1;
3151     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3152                      llvm::Intrinsic::uadd_with_overflow;
3153     break;
3154   case BO_Sub:
3155   case BO_SubAssign:
3156     OpID = 2;
3157     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3158                      llvm::Intrinsic::usub_with_overflow;
3159     break;
3160   case BO_Mul:
3161   case BO_MulAssign:
3162     OpID = 3;
3163     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3164                      llvm::Intrinsic::umul_with_overflow;
3165     break;
3166   default:
3167     llvm_unreachable("Unsupported operation for overflow detection");
3168   }
3169   OpID <<= 1;
3170   if (isSigned)
3171     OpID |= 1;
3172 
3173   CodeGenFunction::SanitizerScope SanScope(&CGF);
3174   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3175 
3176   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3177 
3178   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3179   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3180   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3181 
3182   // Handle overflow with llvm.trap if no custom handler has been specified.
3183   const std::string *handlerName =
3184     &CGF.getLangOpts().OverflowHandler;
3185   if (handlerName->empty()) {
3186     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3187     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3188     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3189       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3190       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3191                               : SanitizerKind::UnsignedIntegerOverflow;
3192       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3193     } else
3194       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3195     return result;
3196   }
3197 
3198   // Branch in case of overflow.
3199   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3200   llvm::BasicBlock *continueBB =
3201       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3202   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3203 
3204   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3205 
3206   // If an overflow handler is set, then we want to call it and then use its
3207   // result, if it returns.
3208   Builder.SetInsertPoint(overflowBB);
3209 
3210   // Get the overflow handler.
3211   llvm::Type *Int8Ty = CGF.Int8Ty;
3212   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3213   llvm::FunctionType *handlerTy =
3214       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3215   llvm::FunctionCallee handler =
3216       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3217 
3218   // Sign extend the args to 64-bit, so that we can use the same handler for
3219   // all types of overflow.
3220   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3221   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3222 
3223   // Call the handler with the two arguments, the operation, and the size of
3224   // the result.
3225   llvm::Value *handlerArgs[] = {
3226     lhs,
3227     rhs,
3228     Builder.getInt8(OpID),
3229     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3230   };
3231   llvm::Value *handlerResult =
3232     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3233 
3234   // Truncate the result back to the desired size.
3235   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3236   Builder.CreateBr(continueBB);
3237 
3238   Builder.SetInsertPoint(continueBB);
3239   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3240   phi->addIncoming(result, initialBB);
3241   phi->addIncoming(handlerResult, overflowBB);
3242 
3243   return phi;
3244 }
3245 
3246 /// Emit pointer + index arithmetic.
3247 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3248                                     const BinOpInfo &op,
3249                                     bool isSubtraction) {
3250   // Must have binary (not unary) expr here.  Unary pointer
3251   // increment/decrement doesn't use this path.
3252   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3253 
3254   Value *pointer = op.LHS;
3255   Expr *pointerOperand = expr->getLHS();
3256   Value *index = op.RHS;
3257   Expr *indexOperand = expr->getRHS();
3258 
3259   // In a subtraction, the LHS is always the pointer.
3260   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3261     std::swap(pointer, index);
3262     std::swap(pointerOperand, indexOperand);
3263   }
3264 
3265   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3266 
3267   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3268   auto &DL = CGF.CGM.getDataLayout();
3269   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3270 
3271   // Some versions of glibc and gcc use idioms (particularly in their malloc
3272   // routines) that add a pointer-sized integer (known to be a pointer value)
3273   // to a null pointer in order to cast the value back to an integer or as
3274   // part of a pointer alignment algorithm.  This is undefined behavior, but
3275   // we'd like to be able to compile programs that use it.
3276   //
3277   // Normally, we'd generate a GEP with a null-pointer base here in response
3278   // to that code, but it's also UB to dereference a pointer created that
3279   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3280   // generate a direct cast of the integer value to a pointer.
3281   //
3282   // The idiom (p = nullptr + N) is not met if any of the following are true:
3283   //
3284   //   The operation is subtraction.
3285   //   The index is not pointer-sized.
3286   //   The pointer type is not byte-sized.
3287   //
3288   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3289                                                        op.Opcode,
3290                                                        expr->getLHS(),
3291                                                        expr->getRHS()))
3292     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3293 
3294   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3295     // Zero-extend or sign-extend the pointer value according to
3296     // whether the index is signed or not.
3297     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3298                                       "idx.ext");
3299   }
3300 
3301   // If this is subtraction, negate the index.
3302   if (isSubtraction)
3303     index = CGF.Builder.CreateNeg(index, "idx.neg");
3304 
3305   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3306     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3307                         /*Accessed*/ false);
3308 
3309   const PointerType *pointerType
3310     = pointerOperand->getType()->getAs<PointerType>();
3311   if (!pointerType) {
3312     QualType objectType = pointerOperand->getType()
3313                                         ->castAs<ObjCObjectPointerType>()
3314                                         ->getPointeeType();
3315     llvm::Value *objectSize
3316       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3317 
3318     index = CGF.Builder.CreateMul(index, objectSize);
3319 
3320     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3321     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3322     return CGF.Builder.CreateBitCast(result, pointer->getType());
3323   }
3324 
3325   QualType elementType = pointerType->getPointeeType();
3326   if (const VariableArrayType *vla
3327         = CGF.getContext().getAsVariableArrayType(elementType)) {
3328     // The element count here is the total number of non-VLA elements.
3329     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3330 
3331     // Effectively, the multiply by the VLA size is part of the GEP.
3332     // GEP indexes are signed, and scaling an index isn't permitted to
3333     // signed-overflow, so we use the same semantics for our explicit
3334     // multiply.  We suppress this if overflow is not undefined behavior.
3335     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3336       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3337       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3338     } else {
3339       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3340       pointer =
3341           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3342                                      op.E->getExprLoc(), "add.ptr");
3343     }
3344     return pointer;
3345   }
3346 
3347   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3348   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3349   // future proof.
3350   if (elementType->isVoidType() || elementType->isFunctionType()) {
3351     Value *result = CGF.EmitCastToVoidPtr(pointer);
3352     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3353     return CGF.Builder.CreateBitCast(result, pointer->getType());
3354   }
3355 
3356   if (CGF.getLangOpts().isSignedOverflowDefined())
3357     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3358 
3359   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3360                                     op.E->getExprLoc(), "add.ptr");
3361 }
3362 
3363 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3364 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3365 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3366 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3367 // efficient operations.
3368 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3369                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3370                            bool negMul, bool negAdd) {
3371   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3372 
3373   Value *MulOp0 = MulOp->getOperand(0);
3374   Value *MulOp1 = MulOp->getOperand(1);
3375   if (negMul)
3376     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3377   if (negAdd)
3378     Addend = Builder.CreateFNeg(Addend, "neg");
3379 
3380   Value *FMulAdd = Builder.CreateCall(
3381       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3382       {MulOp0, MulOp1, Addend});
3383    MulOp->eraseFromParent();
3384 
3385    return FMulAdd;
3386 }
3387 
3388 // Check whether it would be legal to emit an fmuladd intrinsic call to
3389 // represent op and if so, build the fmuladd.
3390 //
3391 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3392 // Does NOT check the type of the operation - it's assumed that this function
3393 // will be called from contexts where it's known that the type is contractable.
3394 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3395                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3396                          bool isSub=false) {
3397 
3398   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3399           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3400          "Only fadd/fsub can be the root of an fmuladd.");
3401 
3402   // Check whether this op is marked as fusable.
3403   if (!op.FPFeatures.allowFPContractWithinStatement())
3404     return nullptr;
3405 
3406   // We have a potentially fusable op. Look for a mul on one of the operands.
3407   // Also, make sure that the mul result isn't used directly. In that case,
3408   // there's no point creating a muladd operation.
3409   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3410     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3411         LHSBinOp->use_empty())
3412       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3413   }
3414   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3415     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3416         RHSBinOp->use_empty())
3417       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3418   }
3419 
3420   return nullptr;
3421 }
3422 
3423 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3424   if (op.LHS->getType()->isPointerTy() ||
3425       op.RHS->getType()->isPointerTy())
3426     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3427 
3428   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3429     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3430     case LangOptions::SOB_Defined:
3431       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3432     case LangOptions::SOB_Undefined:
3433       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3434         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3435       LLVM_FALLTHROUGH;
3436     case LangOptions::SOB_Trapping:
3437       if (CanElideOverflowCheck(CGF.getContext(), op))
3438         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3439       return EmitOverflowCheckedBinOp(op);
3440     }
3441   }
3442 
3443   if (op.Ty->isUnsignedIntegerType() &&
3444       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3445       !CanElideOverflowCheck(CGF.getContext(), op))
3446     return EmitOverflowCheckedBinOp(op);
3447 
3448   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3449     // Try to form an fmuladd.
3450     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3451       return FMulAdd;
3452 
3453     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3454     return propagateFMFlags(V, op);
3455   }
3456 
3457   if (op.isFixedPointBinOp())
3458     return EmitFixedPointBinOp(op);
3459 
3460   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3461 }
3462 
3463 /// The resulting value must be calculated with exact precision, so the operands
3464 /// may not be the same type.
3465 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3466   using llvm::APSInt;
3467   using llvm::ConstantInt;
3468 
3469   const auto *BinOp = cast<BinaryOperator>(op.E);
3470 
3471   // The result is a fixed point type and at least one of the operands is fixed
3472   // point while the other is either fixed point or an int. This resulting type
3473   // should be determined by Sema::handleFixedPointConversions().
3474   QualType ResultTy = op.Ty;
3475   QualType LHSTy = BinOp->getLHS()->getType();
3476   QualType RHSTy = BinOp->getRHS()->getType();
3477   ASTContext &Ctx = CGF.getContext();
3478   Value *LHS = op.LHS;
3479   Value *RHS = op.RHS;
3480 
3481   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3482   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3483   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3484   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3485 
3486   // Convert the operands to the full precision type.
3487   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3488                                             BinOp->getExprLoc());
3489   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3490                                             BinOp->getExprLoc());
3491 
3492   // Perform the actual addition.
3493   Value *Result;
3494   switch (BinOp->getOpcode()) {
3495   case BO_Add: {
3496     if (ResultFixedSema.isSaturated()) {
3497       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3498                                     ? llvm::Intrinsic::sadd_sat
3499                                     : llvm::Intrinsic::uadd_sat;
3500       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3501     } else {
3502       Result = Builder.CreateAdd(FullLHS, FullRHS);
3503     }
3504     break;
3505   }
3506   case BO_Sub: {
3507     if (ResultFixedSema.isSaturated()) {
3508       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3509                                     ? llvm::Intrinsic::ssub_sat
3510                                     : llvm::Intrinsic::usub_sat;
3511       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3512     } else {
3513       Result = Builder.CreateSub(FullLHS, FullRHS);
3514     }
3515     break;
3516   }
3517   case BO_LT:
3518     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3519                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3520   case BO_GT:
3521     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3522                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3523   case BO_LE:
3524     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3525                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3526   case BO_GE:
3527     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3528                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3529   case BO_EQ:
3530     // For equality operations, we assume any padding bits on unsigned types are
3531     // zero'd out. They could be overwritten through non-saturating operations
3532     // that cause overflow, but this leads to undefined behavior.
3533     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3534   case BO_NE:
3535     return Builder.CreateICmpNE(FullLHS, FullRHS);
3536   case BO_Mul:
3537   case BO_Div:
3538   case BO_Shl:
3539   case BO_Shr:
3540   case BO_Cmp:
3541   case BO_LAnd:
3542   case BO_LOr:
3543   case BO_MulAssign:
3544   case BO_DivAssign:
3545   case BO_AddAssign:
3546   case BO_SubAssign:
3547   case BO_ShlAssign:
3548   case BO_ShrAssign:
3549     llvm_unreachable("Found unimplemented fixed point binary operation");
3550   case BO_PtrMemD:
3551   case BO_PtrMemI:
3552   case BO_Rem:
3553   case BO_Xor:
3554   case BO_And:
3555   case BO_Or:
3556   case BO_Assign:
3557   case BO_RemAssign:
3558   case BO_AndAssign:
3559   case BO_XorAssign:
3560   case BO_OrAssign:
3561   case BO_Comma:
3562     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3563   }
3564 
3565   // Convert to the result type.
3566   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3567                                   BinOp->getExprLoc());
3568 }
3569 
3570 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3571   // The LHS is always a pointer if either side is.
3572   if (!op.LHS->getType()->isPointerTy()) {
3573     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3574       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3575       case LangOptions::SOB_Defined:
3576         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3577       case LangOptions::SOB_Undefined:
3578         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3579           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3580         LLVM_FALLTHROUGH;
3581       case LangOptions::SOB_Trapping:
3582         if (CanElideOverflowCheck(CGF.getContext(), op))
3583           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3584         return EmitOverflowCheckedBinOp(op);
3585       }
3586     }
3587 
3588     if (op.Ty->isUnsignedIntegerType() &&
3589         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3590         !CanElideOverflowCheck(CGF.getContext(), op))
3591       return EmitOverflowCheckedBinOp(op);
3592 
3593     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3594       // Try to form an fmuladd.
3595       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3596         return FMulAdd;
3597       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3598       return propagateFMFlags(V, op);
3599     }
3600 
3601     if (op.isFixedPointBinOp())
3602       return EmitFixedPointBinOp(op);
3603 
3604     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3605   }
3606 
3607   // If the RHS is not a pointer, then we have normal pointer
3608   // arithmetic.
3609   if (!op.RHS->getType()->isPointerTy())
3610     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3611 
3612   // Otherwise, this is a pointer subtraction.
3613 
3614   // Do the raw subtraction part.
3615   llvm::Value *LHS
3616     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3617   llvm::Value *RHS
3618     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3619   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3620 
3621   // Okay, figure out the element size.
3622   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3623   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3624 
3625   llvm::Value *divisor = nullptr;
3626 
3627   // For a variable-length array, this is going to be non-constant.
3628   if (const VariableArrayType *vla
3629         = CGF.getContext().getAsVariableArrayType(elementType)) {
3630     auto VlaSize = CGF.getVLASize(vla);
3631     elementType = VlaSize.Type;
3632     divisor = VlaSize.NumElts;
3633 
3634     // Scale the number of non-VLA elements by the non-VLA element size.
3635     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3636     if (!eltSize.isOne())
3637       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3638 
3639   // For everything elese, we can just compute it, safe in the
3640   // assumption that Sema won't let anything through that we can't
3641   // safely compute the size of.
3642   } else {
3643     CharUnits elementSize;
3644     // Handle GCC extension for pointer arithmetic on void* and
3645     // function pointer types.
3646     if (elementType->isVoidType() || elementType->isFunctionType())
3647       elementSize = CharUnits::One();
3648     else
3649       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3650 
3651     // Don't even emit the divide for element size of 1.
3652     if (elementSize.isOne())
3653       return diffInChars;
3654 
3655     divisor = CGF.CGM.getSize(elementSize);
3656   }
3657 
3658   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3659   // pointer difference in C is only defined in the case where both operands
3660   // are pointing to elements of an array.
3661   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3662 }
3663 
3664 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3665   llvm::IntegerType *Ty;
3666   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3667     Ty = cast<llvm::IntegerType>(VT->getElementType());
3668   else
3669     Ty = cast<llvm::IntegerType>(LHS->getType());
3670   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3671 }
3672 
3673 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3674   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3675   // RHS to the same size as the LHS.
3676   Value *RHS = Ops.RHS;
3677   if (Ops.LHS->getType() != RHS->getType())
3678     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3679 
3680   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3681                       Ops.Ty->hasSignedIntegerRepresentation() &&
3682                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3683                       !CGF.getLangOpts().CPlusPlus2a;
3684   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3685   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3686   if (CGF.getLangOpts().OpenCL)
3687     RHS =
3688         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3689   else if ((SanitizeBase || SanitizeExponent) &&
3690            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3691     CodeGenFunction::SanitizerScope SanScope(&CGF);
3692     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3693     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3694     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3695 
3696     if (SanitizeExponent) {
3697       Checks.push_back(
3698           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3699     }
3700 
3701     if (SanitizeBase) {
3702       // Check whether we are shifting any non-zero bits off the top of the
3703       // integer. We only emit this check if exponent is valid - otherwise
3704       // instructions below will have undefined behavior themselves.
3705       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3706       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3707       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3708       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3709       llvm::Value *PromotedWidthMinusOne =
3710           (RHS == Ops.RHS) ? WidthMinusOne
3711                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3712       CGF.EmitBlock(CheckShiftBase);
3713       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3714           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3715                                      /*NUW*/ true, /*NSW*/ true),
3716           "shl.check");
3717       if (CGF.getLangOpts().CPlusPlus) {
3718         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3719         // Under C++11's rules, shifting a 1 bit into the sign bit is
3720         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3721         // define signed left shifts, so we use the C99 and C++11 rules there).
3722         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3723         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3724       }
3725       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3726       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3727       CGF.EmitBlock(Cont);
3728       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3729       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3730       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3731       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3732     }
3733 
3734     assert(!Checks.empty());
3735     EmitBinOpCheck(Checks, Ops);
3736   }
3737 
3738   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3739 }
3740 
3741 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3742   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3743   // RHS to the same size as the LHS.
3744   Value *RHS = Ops.RHS;
3745   if (Ops.LHS->getType() != RHS->getType())
3746     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3747 
3748   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3749   if (CGF.getLangOpts().OpenCL)
3750     RHS =
3751         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3752   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3753            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3754     CodeGenFunction::SanitizerScope SanScope(&CGF);
3755     llvm::Value *Valid =
3756         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3757     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3758   }
3759 
3760   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3761     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3762   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3763 }
3764 
3765 enum IntrinsicType { VCMPEQ, VCMPGT };
3766 // return corresponding comparison intrinsic for given vector type
3767 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3768                                         BuiltinType::Kind ElemKind) {
3769   switch (ElemKind) {
3770   default: llvm_unreachable("unexpected element type");
3771   case BuiltinType::Char_U:
3772   case BuiltinType::UChar:
3773     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3774                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3775   case BuiltinType::Char_S:
3776   case BuiltinType::SChar:
3777     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3778                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3779   case BuiltinType::UShort:
3780     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3781                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3782   case BuiltinType::Short:
3783     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3784                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3785   case BuiltinType::UInt:
3786     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3787                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3788   case BuiltinType::Int:
3789     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3790                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3791   case BuiltinType::ULong:
3792   case BuiltinType::ULongLong:
3793     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3794                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3795   case BuiltinType::Long:
3796   case BuiltinType::LongLong:
3797     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3798                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3799   case BuiltinType::Float:
3800     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3801                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3802   case BuiltinType::Double:
3803     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3804                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3805   }
3806 }
3807 
3808 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3809                                       llvm::CmpInst::Predicate UICmpOpc,
3810                                       llvm::CmpInst::Predicate SICmpOpc,
3811                                       llvm::CmpInst::Predicate FCmpOpc,
3812                                       bool IsSignaling) {
3813   TestAndClearIgnoreResultAssign();
3814   Value *Result;
3815   QualType LHSTy = E->getLHS()->getType();
3816   QualType RHSTy = E->getRHS()->getType();
3817   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3818     assert(E->getOpcode() == BO_EQ ||
3819            E->getOpcode() == BO_NE);
3820     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3821     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3822     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3823                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3824   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3825     BinOpInfo BOInfo = EmitBinOps(E);
3826     Value *LHS = BOInfo.LHS;
3827     Value *RHS = BOInfo.RHS;
3828 
3829     // If AltiVec, the comparison results in a numeric type, so we use
3830     // intrinsics comparing vectors and giving 0 or 1 as a result
3831     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3832       // constants for mapping CR6 register bits to predicate result
3833       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3834 
3835       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3836 
3837       // in several cases vector arguments order will be reversed
3838       Value *FirstVecArg = LHS,
3839             *SecondVecArg = RHS;
3840 
3841       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3842       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3843 
3844       switch(E->getOpcode()) {
3845       default: llvm_unreachable("is not a comparison operation");
3846       case BO_EQ:
3847         CR6 = CR6_LT;
3848         ID = GetIntrinsic(VCMPEQ, ElementKind);
3849         break;
3850       case BO_NE:
3851         CR6 = CR6_EQ;
3852         ID = GetIntrinsic(VCMPEQ, ElementKind);
3853         break;
3854       case BO_LT:
3855         CR6 = CR6_LT;
3856         ID = GetIntrinsic(VCMPGT, ElementKind);
3857         std::swap(FirstVecArg, SecondVecArg);
3858         break;
3859       case BO_GT:
3860         CR6 = CR6_LT;
3861         ID = GetIntrinsic(VCMPGT, ElementKind);
3862         break;
3863       case BO_LE:
3864         if (ElementKind == BuiltinType::Float) {
3865           CR6 = CR6_LT;
3866           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3867           std::swap(FirstVecArg, SecondVecArg);
3868         }
3869         else {
3870           CR6 = CR6_EQ;
3871           ID = GetIntrinsic(VCMPGT, ElementKind);
3872         }
3873         break;
3874       case BO_GE:
3875         if (ElementKind == BuiltinType::Float) {
3876           CR6 = CR6_LT;
3877           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3878         }
3879         else {
3880           CR6 = CR6_EQ;
3881           ID = GetIntrinsic(VCMPGT, ElementKind);
3882           std::swap(FirstVecArg, SecondVecArg);
3883         }
3884         break;
3885       }
3886 
3887       Value *CR6Param = Builder.getInt32(CR6);
3888       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3889       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3890 
3891       // The result type of intrinsic may not be same as E->getType().
3892       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3893       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3894       // do nothing, if ResultTy is not i1 at the same time, it will cause
3895       // crash later.
3896       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3897       if (ResultTy->getBitWidth() > 1 &&
3898           E->getType() == CGF.getContext().BoolTy)
3899         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3900       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3901                                   E->getExprLoc());
3902     }
3903 
3904     if (BOInfo.isFixedPointBinOp()) {
3905       Result = EmitFixedPointBinOp(BOInfo);
3906     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3907       if (!IsSignaling)
3908         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3909       else
3910         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
3911     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3912       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3913     } else {
3914       // Unsigned integers and pointers.
3915 
3916       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3917           !isa<llvm::ConstantPointerNull>(LHS) &&
3918           !isa<llvm::ConstantPointerNull>(RHS)) {
3919 
3920         // Dynamic information is required to be stripped for comparisons,
3921         // because it could leak the dynamic information.  Based on comparisons
3922         // of pointers to dynamic objects, the optimizer can replace one pointer
3923         // with another, which might be incorrect in presence of invariant
3924         // groups. Comparison with null is safe because null does not carry any
3925         // dynamic information.
3926         if (LHSTy.mayBeDynamicClass())
3927           LHS = Builder.CreateStripInvariantGroup(LHS);
3928         if (RHSTy.mayBeDynamicClass())
3929           RHS = Builder.CreateStripInvariantGroup(RHS);
3930       }
3931 
3932       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3933     }
3934 
3935     // If this is a vector comparison, sign extend the result to the appropriate
3936     // vector integer type and return it (don't convert to bool).
3937     if (LHSTy->isVectorType())
3938       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3939 
3940   } else {
3941     // Complex Comparison: can only be an equality comparison.
3942     CodeGenFunction::ComplexPairTy LHS, RHS;
3943     QualType CETy;
3944     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3945       LHS = CGF.EmitComplexExpr(E->getLHS());
3946       CETy = CTy->getElementType();
3947     } else {
3948       LHS.first = Visit(E->getLHS());
3949       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3950       CETy = LHSTy;
3951     }
3952     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3953       RHS = CGF.EmitComplexExpr(E->getRHS());
3954       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3955                                                      CTy->getElementType()) &&
3956              "The element types must always match.");
3957       (void)CTy;
3958     } else {
3959       RHS.first = Visit(E->getRHS());
3960       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3961       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3962              "The element types must always match.");
3963     }
3964 
3965     Value *ResultR, *ResultI;
3966     if (CETy->isRealFloatingType()) {
3967       // As complex comparisons can only be equality comparisons, they
3968       // are never signaling comparisons.
3969       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3970       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3971     } else {
3972       // Complex comparisons can only be equality comparisons.  As such, signed
3973       // and unsigned opcodes are the same.
3974       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3975       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3976     }
3977 
3978     if (E->getOpcode() == BO_EQ) {
3979       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3980     } else {
3981       assert(E->getOpcode() == BO_NE &&
3982              "Complex comparison other than == or != ?");
3983       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3984     }
3985   }
3986 
3987   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3988                               E->getExprLoc());
3989 }
3990 
3991 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3992   bool Ignore = TestAndClearIgnoreResultAssign();
3993 
3994   Value *RHS;
3995   LValue LHS;
3996 
3997   switch (E->getLHS()->getType().getObjCLifetime()) {
3998   case Qualifiers::OCL_Strong:
3999     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4000     break;
4001 
4002   case Qualifiers::OCL_Autoreleasing:
4003     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4004     break;
4005 
4006   case Qualifiers::OCL_ExplicitNone:
4007     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4008     break;
4009 
4010   case Qualifiers::OCL_Weak:
4011     RHS = Visit(E->getRHS());
4012     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4013     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4014     break;
4015 
4016   case Qualifiers::OCL_None:
4017     // __block variables need to have the rhs evaluated first, plus
4018     // this should improve codegen just a little.
4019     RHS = Visit(E->getRHS());
4020     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4021 
4022     // Store the value into the LHS.  Bit-fields are handled specially
4023     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4024     // 'An assignment expression has the value of the left operand after
4025     // the assignment...'.
4026     if (LHS.isBitField()) {
4027       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4028     } else {
4029       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4030       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4031     }
4032   }
4033 
4034   // If the result is clearly ignored, return now.
4035   if (Ignore)
4036     return nullptr;
4037 
4038   // The result of an assignment in C is the assigned r-value.
4039   if (!CGF.getLangOpts().CPlusPlus)
4040     return RHS;
4041 
4042   // If the lvalue is non-volatile, return the computed value of the assignment.
4043   if (!LHS.isVolatileQualified())
4044     return RHS;
4045 
4046   // Otherwise, reload the value.
4047   return EmitLoadOfLValue(LHS, E->getExprLoc());
4048 }
4049 
4050 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4051   // Perform vector logical and on comparisons with zero vectors.
4052   if (E->getType()->isVectorType()) {
4053     CGF.incrementProfileCounter(E);
4054 
4055     Value *LHS = Visit(E->getLHS());
4056     Value *RHS = Visit(E->getRHS());
4057     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4058     if (LHS->getType()->isFPOrFPVectorTy()) {
4059       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4060       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4061     } else {
4062       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4063       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4064     }
4065     Value *And = Builder.CreateAnd(LHS, RHS);
4066     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4067   }
4068 
4069   llvm::Type *ResTy = ConvertType(E->getType());
4070 
4071   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4072   // If we have 1 && X, just emit X without inserting the control flow.
4073   bool LHSCondVal;
4074   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4075     if (LHSCondVal) { // If we have 1 && X, just emit X.
4076       CGF.incrementProfileCounter(E);
4077 
4078       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4079       // ZExt result to int or bool.
4080       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4081     }
4082 
4083     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4084     if (!CGF.ContainsLabel(E->getRHS()))
4085       return llvm::Constant::getNullValue(ResTy);
4086   }
4087 
4088   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4089   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4090 
4091   CodeGenFunction::ConditionalEvaluation eval(CGF);
4092 
4093   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4094   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4095                            CGF.getProfileCount(E->getRHS()));
4096 
4097   // Any edges into the ContBlock are now from an (indeterminate number of)
4098   // edges from this first condition.  All of these values will be false.  Start
4099   // setting up the PHI node in the Cont Block for this.
4100   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4101                                             "", ContBlock);
4102   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4103        PI != PE; ++PI)
4104     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4105 
4106   eval.begin(CGF);
4107   CGF.EmitBlock(RHSBlock);
4108   CGF.incrementProfileCounter(E);
4109   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4110   eval.end(CGF);
4111 
4112   // Reaquire the RHS block, as there may be subblocks inserted.
4113   RHSBlock = Builder.GetInsertBlock();
4114 
4115   // Emit an unconditional branch from this block to ContBlock.
4116   {
4117     // There is no need to emit line number for unconditional branch.
4118     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4119     CGF.EmitBlock(ContBlock);
4120   }
4121   // Insert an entry into the phi node for the edge with the value of RHSCond.
4122   PN->addIncoming(RHSCond, RHSBlock);
4123 
4124   // Artificial location to preserve the scope information
4125   {
4126     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4127     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4128   }
4129 
4130   // ZExt result to int.
4131   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4132 }
4133 
4134 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4135   // Perform vector logical or on comparisons with zero vectors.
4136   if (E->getType()->isVectorType()) {
4137     CGF.incrementProfileCounter(E);
4138 
4139     Value *LHS = Visit(E->getLHS());
4140     Value *RHS = Visit(E->getRHS());
4141     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4142     if (LHS->getType()->isFPOrFPVectorTy()) {
4143       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4144       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4145     } else {
4146       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4147       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4148     }
4149     Value *Or = Builder.CreateOr(LHS, RHS);
4150     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4151   }
4152 
4153   llvm::Type *ResTy = ConvertType(E->getType());
4154 
4155   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4156   // If we have 0 || X, just emit X without inserting the control flow.
4157   bool LHSCondVal;
4158   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4159     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4160       CGF.incrementProfileCounter(E);
4161 
4162       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4163       // ZExt result to int or bool.
4164       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4165     }
4166 
4167     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4168     if (!CGF.ContainsLabel(E->getRHS()))
4169       return llvm::ConstantInt::get(ResTy, 1);
4170   }
4171 
4172   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4173   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4174 
4175   CodeGenFunction::ConditionalEvaluation eval(CGF);
4176 
4177   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4178   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4179                            CGF.getCurrentProfileCount() -
4180                                CGF.getProfileCount(E->getRHS()));
4181 
4182   // Any edges into the ContBlock are now from an (indeterminate number of)
4183   // edges from this first condition.  All of these values will be true.  Start
4184   // setting up the PHI node in the Cont Block for this.
4185   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4186                                             "", ContBlock);
4187   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4188        PI != PE; ++PI)
4189     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4190 
4191   eval.begin(CGF);
4192 
4193   // Emit the RHS condition as a bool value.
4194   CGF.EmitBlock(RHSBlock);
4195   CGF.incrementProfileCounter(E);
4196   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4197 
4198   eval.end(CGF);
4199 
4200   // Reaquire the RHS block, as there may be subblocks inserted.
4201   RHSBlock = Builder.GetInsertBlock();
4202 
4203   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4204   // into the phi node for the edge with the value of RHSCond.
4205   CGF.EmitBlock(ContBlock);
4206   PN->addIncoming(RHSCond, RHSBlock);
4207 
4208   // ZExt result to int.
4209   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4210 }
4211 
4212 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4213   CGF.EmitIgnoredExpr(E->getLHS());
4214   CGF.EnsureInsertPoint();
4215   return Visit(E->getRHS());
4216 }
4217 
4218 //===----------------------------------------------------------------------===//
4219 //                             Other Operators
4220 //===----------------------------------------------------------------------===//
4221 
4222 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4223 /// expression is cheap enough and side-effect-free enough to evaluate
4224 /// unconditionally instead of conditionally.  This is used to convert control
4225 /// flow into selects in some cases.
4226 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4227                                                    CodeGenFunction &CGF) {
4228   // Anything that is an integer or floating point constant is fine.
4229   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4230 
4231   // Even non-volatile automatic variables can't be evaluated unconditionally.
4232   // Referencing a thread_local may cause non-trivial initialization work to
4233   // occur. If we're inside a lambda and one of the variables is from the scope
4234   // outside the lambda, that function may have returned already. Reading its
4235   // locals is a bad idea. Also, these reads may introduce races there didn't
4236   // exist in the source-level program.
4237 }
4238 
4239 
4240 Value *ScalarExprEmitter::
4241 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4242   TestAndClearIgnoreResultAssign();
4243 
4244   // Bind the common expression if necessary.
4245   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4246 
4247   Expr *condExpr = E->getCond();
4248   Expr *lhsExpr = E->getTrueExpr();
4249   Expr *rhsExpr = E->getFalseExpr();
4250 
4251   // If the condition constant folds and can be elided, try to avoid emitting
4252   // the condition and the dead arm.
4253   bool CondExprBool;
4254   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4255     Expr *live = lhsExpr, *dead = rhsExpr;
4256     if (!CondExprBool) std::swap(live, dead);
4257 
4258     // If the dead side doesn't have labels we need, just emit the Live part.
4259     if (!CGF.ContainsLabel(dead)) {
4260       if (CondExprBool)
4261         CGF.incrementProfileCounter(E);
4262       Value *Result = Visit(live);
4263 
4264       // If the live part is a throw expression, it acts like it has a void
4265       // type, so evaluating it returns a null Value*.  However, a conditional
4266       // with non-void type must return a non-null Value*.
4267       if (!Result && !E->getType()->isVoidType())
4268         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4269 
4270       return Result;
4271     }
4272   }
4273 
4274   // OpenCL: If the condition is a vector, we can treat this condition like
4275   // the select function.
4276   if (CGF.getLangOpts().OpenCL
4277       && condExpr->getType()->isVectorType()) {
4278     CGF.incrementProfileCounter(E);
4279 
4280     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4281     llvm::Value *LHS = Visit(lhsExpr);
4282     llvm::Value *RHS = Visit(rhsExpr);
4283 
4284     llvm::Type *condType = ConvertType(condExpr->getType());
4285     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4286 
4287     unsigned numElem = vecTy->getNumElements();
4288     llvm::Type *elemType = vecTy->getElementType();
4289 
4290     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4291     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4292     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4293                                           llvm::VectorType::get(elemType,
4294                                                                 numElem),
4295                                           "sext");
4296     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4297 
4298     // Cast float to int to perform ANDs if necessary.
4299     llvm::Value *RHSTmp = RHS;
4300     llvm::Value *LHSTmp = LHS;
4301     bool wasCast = false;
4302     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4303     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4304       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4305       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4306       wasCast = true;
4307     }
4308 
4309     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4310     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4311     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4312     if (wasCast)
4313       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4314 
4315     return tmp5;
4316   }
4317 
4318   if (condExpr->getType()->isVectorType()) {
4319     CGF.incrementProfileCounter(E);
4320 
4321     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4322     llvm::Value *LHS = Visit(lhsExpr);
4323     llvm::Value *RHS = Visit(rhsExpr);
4324 
4325     llvm::Type *CondType = ConvertType(condExpr->getType());
4326     auto *VecTy = cast<llvm::VectorType>(CondType);
4327     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4328 
4329     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4330     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4331   }
4332 
4333   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4334   // select instead of as control flow.  We can only do this if it is cheap and
4335   // safe to evaluate the LHS and RHS unconditionally.
4336   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4337       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4338     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4339     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4340 
4341     CGF.incrementProfileCounter(E, StepV);
4342 
4343     llvm::Value *LHS = Visit(lhsExpr);
4344     llvm::Value *RHS = Visit(rhsExpr);
4345     if (!LHS) {
4346       // If the conditional has void type, make sure we return a null Value*.
4347       assert(!RHS && "LHS and RHS types must match");
4348       return nullptr;
4349     }
4350     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4351   }
4352 
4353   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4354   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4355   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4356 
4357   CodeGenFunction::ConditionalEvaluation eval(CGF);
4358   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4359                            CGF.getProfileCount(lhsExpr));
4360 
4361   CGF.EmitBlock(LHSBlock);
4362   CGF.incrementProfileCounter(E);
4363   eval.begin(CGF);
4364   Value *LHS = Visit(lhsExpr);
4365   eval.end(CGF);
4366 
4367   LHSBlock = Builder.GetInsertBlock();
4368   Builder.CreateBr(ContBlock);
4369 
4370   CGF.EmitBlock(RHSBlock);
4371   eval.begin(CGF);
4372   Value *RHS = Visit(rhsExpr);
4373   eval.end(CGF);
4374 
4375   RHSBlock = Builder.GetInsertBlock();
4376   CGF.EmitBlock(ContBlock);
4377 
4378   // If the LHS or RHS is a throw expression, it will be legitimately null.
4379   if (!LHS)
4380     return RHS;
4381   if (!RHS)
4382     return LHS;
4383 
4384   // Create a PHI node for the real part.
4385   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4386   PN->addIncoming(LHS, LHSBlock);
4387   PN->addIncoming(RHS, RHSBlock);
4388   return PN;
4389 }
4390 
4391 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4392   return Visit(E->getChosenSubExpr());
4393 }
4394 
4395 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4396   QualType Ty = VE->getType();
4397 
4398   if (Ty->isVariablyModifiedType())
4399     CGF.EmitVariablyModifiedType(Ty);
4400 
4401   Address ArgValue = Address::invalid();
4402   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4403 
4404   llvm::Type *ArgTy = ConvertType(VE->getType());
4405 
4406   // If EmitVAArg fails, emit an error.
4407   if (!ArgPtr.isValid()) {
4408     CGF.ErrorUnsupported(VE, "va_arg expression");
4409     return llvm::UndefValue::get(ArgTy);
4410   }
4411 
4412   // FIXME Volatility.
4413   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4414 
4415   // If EmitVAArg promoted the type, we must truncate it.
4416   if (ArgTy != Val->getType()) {
4417     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4418       Val = Builder.CreateIntToPtr(Val, ArgTy);
4419     else
4420       Val = Builder.CreateTrunc(Val, ArgTy);
4421   }
4422 
4423   return Val;
4424 }
4425 
4426 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4427   return CGF.EmitBlockLiteral(block);
4428 }
4429 
4430 // Convert a vec3 to vec4, or vice versa.
4431 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4432                                  Value *Src, unsigned NumElementsDst) {
4433   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4434   SmallVector<llvm::Constant*, 4> Args;
4435   Args.push_back(Builder.getInt32(0));
4436   Args.push_back(Builder.getInt32(1));
4437   Args.push_back(Builder.getInt32(2));
4438   if (NumElementsDst == 4)
4439     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4440   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4441   return Builder.CreateShuffleVector(Src, UnV, Mask);
4442 }
4443 
4444 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4445 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4446 // but could be scalar or vectors of different lengths, and either can be
4447 // pointer.
4448 // There are 4 cases:
4449 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4450 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4451 // 3. pointer -> non-pointer
4452 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4453 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4454 // 4. non-pointer -> pointer
4455 //   a) intptr_t -> pointer       : needs 1 inttoptr
4456 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4457 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4458 // allow casting directly between pointer types and non-integer non-pointer
4459 // types.
4460 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4461                                            const llvm::DataLayout &DL,
4462                                            Value *Src, llvm::Type *DstTy,
4463                                            StringRef Name = "") {
4464   auto SrcTy = Src->getType();
4465 
4466   // Case 1.
4467   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4468     return Builder.CreateBitCast(Src, DstTy, Name);
4469 
4470   // Case 2.
4471   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4472     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4473 
4474   // Case 3.
4475   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4476     // Case 3b.
4477     if (!DstTy->isIntegerTy())
4478       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4479     // Cases 3a and 3b.
4480     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4481   }
4482 
4483   // Case 4b.
4484   if (!SrcTy->isIntegerTy())
4485     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4486   // Cases 4a and 4b.
4487   return Builder.CreateIntToPtr(Src, DstTy, Name);
4488 }
4489 
4490 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4491   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4492   llvm::Type *DstTy = ConvertType(E->getType());
4493 
4494   llvm::Type *SrcTy = Src->getType();
4495   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4496     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4497   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4498     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4499 
4500   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4501   // vector to get a vec4, then a bitcast if the target type is different.
4502   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4503     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4504 
4505     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4506       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4507                                          DstTy);
4508     }
4509 
4510     Src->setName("astype");
4511     return Src;
4512   }
4513 
4514   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4515   // to vec4 if the original type is not vec4, then a shuffle vector to
4516   // get a vec3.
4517   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4518     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4519       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4520       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4521                                          Vec4Ty);
4522     }
4523 
4524     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4525     Src->setName("astype");
4526     return Src;
4527   }
4528 
4529   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4530                                       Src, DstTy, "astype");
4531 }
4532 
4533 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4534   return CGF.EmitAtomicExpr(E).getScalarVal();
4535 }
4536 
4537 //===----------------------------------------------------------------------===//
4538 //                         Entry Point into this File
4539 //===----------------------------------------------------------------------===//
4540 
4541 /// Emit the computation of the specified expression of scalar type, ignoring
4542 /// the result.
4543 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4544   assert(E && hasScalarEvaluationKind(E->getType()) &&
4545          "Invalid scalar expression to emit");
4546 
4547   return ScalarExprEmitter(*this, IgnoreResultAssign)
4548       .Visit(const_cast<Expr *>(E));
4549 }
4550 
4551 /// Emit a conversion from the specified type to the specified destination type,
4552 /// both of which are LLVM scalar types.
4553 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4554                                              QualType DstTy,
4555                                              SourceLocation Loc) {
4556   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4557          "Invalid scalar expression to emit");
4558   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4559 }
4560 
4561 /// Emit a conversion from the specified complex type to the specified
4562 /// destination type, where the destination type is an LLVM scalar type.
4563 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4564                                                       QualType SrcTy,
4565                                                       QualType DstTy,
4566                                                       SourceLocation Loc) {
4567   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4568          "Invalid complex -> scalar conversion");
4569   return ScalarExprEmitter(*this)
4570       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4571 }
4572 
4573 
4574 llvm::Value *CodeGenFunction::
4575 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4576                         bool isInc, bool isPre) {
4577   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4578 }
4579 
4580 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4581   // object->isa or (*object).isa
4582   // Generate code as for: *(Class*)object
4583 
4584   Expr *BaseExpr = E->getBase();
4585   Address Addr = Address::invalid();
4586   if (BaseExpr->isRValue()) {
4587     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4588   } else {
4589     Addr = EmitLValue(BaseExpr).getAddress(*this);
4590   }
4591 
4592   // Cast the address to Class*.
4593   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4594   return MakeAddrLValue(Addr, E->getType());
4595 }
4596 
4597 
4598 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4599                                             const CompoundAssignOperator *E) {
4600   ScalarExprEmitter Scalar(*this);
4601   Value *Result = nullptr;
4602   switch (E->getOpcode()) {
4603 #define COMPOUND_OP(Op)                                                       \
4604     case BO_##Op##Assign:                                                     \
4605       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4606                                              Result)
4607   COMPOUND_OP(Mul);
4608   COMPOUND_OP(Div);
4609   COMPOUND_OP(Rem);
4610   COMPOUND_OP(Add);
4611   COMPOUND_OP(Sub);
4612   COMPOUND_OP(Shl);
4613   COMPOUND_OP(Shr);
4614   COMPOUND_OP(And);
4615   COMPOUND_OP(Xor);
4616   COMPOUND_OP(Or);
4617 #undef COMPOUND_OP
4618 
4619   case BO_PtrMemD:
4620   case BO_PtrMemI:
4621   case BO_Mul:
4622   case BO_Div:
4623   case BO_Rem:
4624   case BO_Add:
4625   case BO_Sub:
4626   case BO_Shl:
4627   case BO_Shr:
4628   case BO_LT:
4629   case BO_GT:
4630   case BO_LE:
4631   case BO_GE:
4632   case BO_EQ:
4633   case BO_NE:
4634   case BO_Cmp:
4635   case BO_And:
4636   case BO_Xor:
4637   case BO_Or:
4638   case BO_LAnd:
4639   case BO_LOr:
4640   case BO_Assign:
4641   case BO_Comma:
4642     llvm_unreachable("Not valid compound assignment operators");
4643   }
4644 
4645   llvm_unreachable("Unhandled compound assignment operator");
4646 }
4647 
4648 struct GEPOffsetAndOverflow {
4649   // The total (signed) byte offset for the GEP.
4650   llvm::Value *TotalOffset;
4651   // The offset overflow flag - true if the total offset overflows.
4652   llvm::Value *OffsetOverflows;
4653 };
4654 
4655 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4656 /// and compute the total offset it applies from it's base pointer BasePtr.
4657 /// Returns offset in bytes and a boolean flag whether an overflow happened
4658 /// during evaluation.
4659 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4660                                                  llvm::LLVMContext &VMContext,
4661                                                  CodeGenModule &CGM,
4662                                                  CGBuilderTy Builder) {
4663   const auto &DL = CGM.getDataLayout();
4664 
4665   // The total (signed) byte offset for the GEP.
4666   llvm::Value *TotalOffset = nullptr;
4667 
4668   // Was the GEP already reduced to a constant?
4669   if (isa<llvm::Constant>(GEPVal)) {
4670     // Compute the offset by casting both pointers to integers and subtracting:
4671     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4672     Value *BasePtr_int =
4673         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4674     Value *GEPVal_int =
4675         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4676     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4677     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4678   }
4679 
4680   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4681   assert(GEP->getPointerOperand() == BasePtr &&
4682          "BasePtr must be the the base of the GEP.");
4683   assert(GEP->isInBounds() && "Expected inbounds GEP");
4684 
4685   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4686 
4687   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4688   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4689   auto *SAddIntrinsic =
4690       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4691   auto *SMulIntrinsic =
4692       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4693 
4694   // The offset overflow flag - true if the total offset overflows.
4695   llvm::Value *OffsetOverflows = Builder.getFalse();
4696 
4697   /// Return the result of the given binary operation.
4698   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4699                   llvm::Value *RHS) -> llvm::Value * {
4700     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4701 
4702     // If the operands are constants, return a constant result.
4703     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4704       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4705         llvm::APInt N;
4706         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4707                                                   /*Signed=*/true, N);
4708         if (HasOverflow)
4709           OffsetOverflows = Builder.getTrue();
4710         return llvm::ConstantInt::get(VMContext, N);
4711       }
4712     }
4713 
4714     // Otherwise, compute the result with checked arithmetic.
4715     auto *ResultAndOverflow = Builder.CreateCall(
4716         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4717     OffsetOverflows = Builder.CreateOr(
4718         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4719     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4720   };
4721 
4722   // Determine the total byte offset by looking at each GEP operand.
4723   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4724        GTI != GTE; ++GTI) {
4725     llvm::Value *LocalOffset;
4726     auto *Index = GTI.getOperand();
4727     // Compute the local offset contributed by this indexing step:
4728     if (auto *STy = GTI.getStructTypeOrNull()) {
4729       // For struct indexing, the local offset is the byte position of the
4730       // specified field.
4731       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4732       LocalOffset = llvm::ConstantInt::get(
4733           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4734     } else {
4735       // Otherwise this is array-like indexing. The local offset is the index
4736       // multiplied by the element size.
4737       auto *ElementSize = llvm::ConstantInt::get(
4738           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4739       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4740       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4741     }
4742 
4743     // If this is the first offset, set it as the total offset. Otherwise, add
4744     // the local offset into the running total.
4745     if (!TotalOffset || TotalOffset == Zero)
4746       TotalOffset = LocalOffset;
4747     else
4748       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4749   }
4750 
4751   return {TotalOffset, OffsetOverflows};
4752 }
4753 
4754 Value *
4755 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4756                                         bool SignedIndices, bool IsSubtraction,
4757                                         SourceLocation Loc, const Twine &Name) {
4758   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4759 
4760   // If the pointer overflow sanitizer isn't enabled, do nothing.
4761   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4762     return GEPVal;
4763 
4764   llvm::Type *PtrTy = Ptr->getType();
4765 
4766   // Perform nullptr-and-offset check unless the nullptr is defined.
4767   bool PerformNullCheck = !NullPointerIsDefined(
4768       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4769   // Check for overflows unless the GEP got constant-folded,
4770   // and only in the default address space
4771   bool PerformOverflowCheck =
4772       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4773 
4774   if (!(PerformNullCheck || PerformOverflowCheck))
4775     return GEPVal;
4776 
4777   const auto &DL = CGM.getDataLayout();
4778 
4779   SanitizerScope SanScope(this);
4780   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4781 
4782   GEPOffsetAndOverflow EvaluatedGEP =
4783       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4784 
4785   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4786           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4787          "If the offset got constant-folded, we don't expect that there was an "
4788          "overflow.");
4789 
4790   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4791 
4792   // Common case: if the total offset is zero, and we are using C++ semantics,
4793   // where nullptr+0 is defined, don't emit a check.
4794   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4795     return GEPVal;
4796 
4797   // Now that we've computed the total offset, add it to the base pointer (with
4798   // wrapping semantics).
4799   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4800   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4801 
4802   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4803 
4804   if (PerformNullCheck) {
4805     // In C++, if the base pointer evaluates to a null pointer value,
4806     // the only valid  pointer this inbounds GEP can produce is also
4807     // a null pointer, so the offset must also evaluate to zero.
4808     // Likewise, if we have non-zero base pointer, we can not get null pointer
4809     // as a result, so the offset can not be -intptr_t(BasePtr).
4810     // In other words, both pointers are either null, or both are non-null,
4811     // or the behaviour is undefined.
4812     //
4813     // C, however, is more strict in this regard, and gives more
4814     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4815     // So both the input to the 'gep inbounds' AND the output must not be null.
4816     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4817     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4818     auto *Valid =
4819         CGM.getLangOpts().CPlusPlus
4820             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4821             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4822     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4823   }
4824 
4825   if (PerformOverflowCheck) {
4826     // The GEP is valid if:
4827     // 1) The total offset doesn't overflow, and
4828     // 2) The sign of the difference between the computed address and the base
4829     // pointer matches the sign of the total offset.
4830     llvm::Value *ValidGEP;
4831     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4832     if (SignedIndices) {
4833       // GEP is computed as `unsigned base + signed offset`, therefore:
4834       // * If offset was positive, then the computed pointer can not be
4835       //   [unsigned] less than the base pointer, unless it overflowed.
4836       // * If offset was negative, then the computed pointer can not be
4837       //   [unsigned] greater than the bas pointere, unless it overflowed.
4838       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4839       auto *PosOrZeroOffset =
4840           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4841       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4842       ValidGEP =
4843           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4844     } else if (!IsSubtraction) {
4845       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4846       // computed pointer can not be [unsigned] less than base pointer,
4847       // unless there was an overflow.
4848       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4849       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4850     } else {
4851       // GEP is computed as `unsigned base - unsigned offset`, therefore the
4852       // computed pointer can not be [unsigned] greater than base pointer,
4853       // unless there was an overflow.
4854       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4855       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4856     }
4857     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4858     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4859   }
4860 
4861   assert(!Checks.empty() && "Should have produced some checks.");
4862 
4863   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4864   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4865   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4866   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4867 
4868   return GEPVal;
4869 }
4870