xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Support/TypeSize.h"
44 #include <cstdarg>
45 #include <optional>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 using llvm::Value;
50 
51 //===----------------------------------------------------------------------===//
52 //                         Scalar Expression Emitter
53 //===----------------------------------------------------------------------===//
54 
55 namespace {
56 
57 /// Determine whether the given binary operation may overflow.
58 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
59 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
60 /// the returned overflow check is precise. The returned value is 'true' for
61 /// all other opcodes, to be conservative.
62 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
63                              BinaryOperator::Opcode Opcode, bool Signed,
64                              llvm::APInt &Result) {
65   // Assume overflow is possible, unless we can prove otherwise.
66   bool Overflow = true;
67   const auto &LHSAP = LHS->getValue();
68   const auto &RHSAP = RHS->getValue();
69   if (Opcode == BO_Add) {
70     Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
71                     : LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
74                     : LHSAP.usub_ov(RHSAP, Overflow);
75   } else if (Opcode == BO_Mul) {
76     Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
77                     : LHSAP.umul_ov(RHSAP, Overflow);
78   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
79     if (Signed && !RHS->isZero())
80       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
81     else
82       return false;
83   }
84   return Overflow;
85 }
86 
87 struct BinOpInfo {
88   Value *LHS;
89   Value *RHS;
90   QualType Ty;  // Computation Type.
91   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
92   FPOptions FPFeatures;
93   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
94 
95   /// Check if the binop can result in integer overflow.
96   bool mayHaveIntegerOverflow() const {
97     // Without constant input, we can't rule out overflow.
98     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
99     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
100     if (!LHSCI || !RHSCI)
101       return true;
102 
103     llvm::APInt Result;
104     return ::mayHaveIntegerOverflow(
105         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
106   }
107 
108   /// Check if the binop computes a division or a remainder.
109   bool isDivremOp() const {
110     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
111            Opcode == BO_RemAssign;
112   }
113 
114   /// Check if the binop can result in an integer division by zero.
115   bool mayHaveIntegerDivisionByZero() const {
116     if (isDivremOp())
117       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
118         return CI->isZero();
119     return true;
120   }
121 
122   /// Check if the binop can result in a float division by zero.
123   bool mayHaveFloatDivisionByZero() const {
124     if (isDivremOp())
125       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
126         return CFP->isZero();
127     return true;
128   }
129 
130   /// Check if at least one operand is a fixed point type. In such cases, this
131   /// operation did not follow usual arithmetic conversion and both operands
132   /// might not be of the same type.
133   bool isFixedPointOp() const {
134     // We cannot simply check the result type since comparison operations return
135     // an int.
136     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137       QualType LHSType = BinOp->getLHS()->getType();
138       QualType RHSType = BinOp->getRHS()->getType();
139       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140     }
141     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
142       return UnOp->getSubExpr()->getType()->isFixedPointType();
143     return false;
144   }
145 };
146 
147 static bool MustVisitNullValue(const Expr *E) {
148   // If a null pointer expression's type is the C++0x nullptr_t, then
149   // it's not necessarily a simple constant and it must be evaluated
150   // for its potential side effects.
151   return E->getType()->isNullPtrType();
152 }
153 
154 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
155 static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
156                                                        const Expr *E) {
157   const Expr *Base = E->IgnoreImpCasts();
158   if (E == Base)
159     return std::nullopt;
160 
161   QualType BaseTy = Base->getType();
162   if (!Ctx.isPromotableIntegerType(BaseTy) ||
163       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
164     return std::nullopt;
165 
166   return BaseTy;
167 }
168 
169 /// Check if \p E is a widened promoted integer.
170 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
171   return getUnwidenedIntegerType(Ctx, E).has_value();
172 }
173 
174 /// Check if we can skip the overflow check for \p Op.
175 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
176   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
177          "Expected a unary or binary operator");
178 
179   // If the binop has constant inputs and we can prove there is no overflow,
180   // we can elide the overflow check.
181   if (!Op.mayHaveIntegerOverflow())
182     return true;
183 
184   // If a unary op has a widened operand, the op cannot overflow.
185   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
186     return !UO->canOverflow();
187 
188   // We usually don't need overflow checks for binops with widened operands.
189   // Multiplication with promoted unsigned operands is a special case.
190   const auto *BO = cast<BinaryOperator>(Op.E);
191   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
192   if (!OptionalLHSTy)
193     return false;
194 
195   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
196   if (!OptionalRHSTy)
197     return false;
198 
199   QualType LHSTy = *OptionalLHSTy;
200   QualType RHSTy = *OptionalRHSTy;
201 
202   // This is the simple case: binops without unsigned multiplication, and with
203   // widened operands. No overflow check is needed here.
204   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
205       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
206     return true;
207 
208   // For unsigned multiplication the overflow check can be elided if either one
209   // of the unpromoted types are less than half the size of the promoted type.
210   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
211   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
212          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
213 }
214 
215 class ScalarExprEmitter
216   : public StmtVisitor<ScalarExprEmitter, Value*> {
217   CodeGenFunction &CGF;
218   CGBuilderTy &Builder;
219   bool IgnoreResultAssign;
220   llvm::LLVMContext &VMContext;
221 public:
222 
223   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
224     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
225       VMContext(cgf.getLLVMContext()) {
226   }
227 
228   //===--------------------------------------------------------------------===//
229   //                               Utilities
230   //===--------------------------------------------------------------------===//
231 
232   bool TestAndClearIgnoreResultAssign() {
233     bool I = IgnoreResultAssign;
234     IgnoreResultAssign = false;
235     return I;
236   }
237 
238   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
239   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
240   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
241     return CGF.EmitCheckedLValue(E, TCK);
242   }
243 
244   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
245                       const BinOpInfo &Info);
246 
247   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
248     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
249   }
250 
251   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
252     const AlignValueAttr *AVAttr = nullptr;
253     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
254       const ValueDecl *VD = DRE->getDecl();
255 
256       if (VD->getType()->isReferenceType()) {
257         if (const auto *TTy =
258                 VD->getType().getNonReferenceType()->getAs<TypedefType>())
259           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
260       } else {
261         // Assumptions for function parameters are emitted at the start of the
262         // function, so there is no need to repeat that here,
263         // unless the alignment-assumption sanitizer is enabled,
264         // then we prefer the assumption over alignment attribute
265         // on IR function param.
266         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
267           return;
268 
269         AVAttr = VD->getAttr<AlignValueAttr>();
270       }
271     }
272 
273     if (!AVAttr)
274       if (const auto *TTy = E->getType()->getAs<TypedefType>())
275         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
276 
277     if (!AVAttr)
278       return;
279 
280     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
281     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
282     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
283   }
284 
285   /// EmitLoadOfLValue - Given an expression with complex type that represents a
286   /// value l-value, this method emits the address of the l-value, then loads
287   /// and returns the result.
288   Value *EmitLoadOfLValue(const Expr *E) {
289     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
290                                 E->getExprLoc());
291 
292     EmitLValueAlignmentAssumption(E, V);
293     return V;
294   }
295 
296   /// EmitConversionToBool - Convert the specified expression value to a
297   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
298   Value *EmitConversionToBool(Value *Src, QualType DstTy);
299 
300   /// Emit a check that a conversion from a floating-point type does not
301   /// overflow.
302   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
303                                 Value *Src, QualType SrcType, QualType DstType,
304                                 llvm::Type *DstTy, SourceLocation Loc);
305 
306   /// Known implicit conversion check kinds.
307   /// Keep in sync with the enum of the same name in ubsan_handlers.h
308   enum ImplicitConversionCheckKind : unsigned char {
309     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
310     ICCK_UnsignedIntegerTruncation = 1,
311     ICCK_SignedIntegerTruncation = 2,
312     ICCK_IntegerSignChange = 3,
313     ICCK_SignedIntegerTruncationOrSignChange = 4,
314   };
315 
316   /// Emit a check that an [implicit] truncation of an integer  does not
317   /// discard any bits. It is not UB, so we use the value after truncation.
318   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
319                                   QualType DstType, SourceLocation Loc);
320 
321   /// Emit a check that an [implicit] conversion of an integer does not change
322   /// the sign of the value. It is not UB, so we use the value after conversion.
323   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
324   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
325                                   QualType DstType, SourceLocation Loc);
326 
327   /// Emit a conversion from the specified type to the specified destination
328   /// type, both of which are LLVM scalar types.
329   struct ScalarConversionOpts {
330     bool TreatBooleanAsSigned;
331     bool EmitImplicitIntegerTruncationChecks;
332     bool EmitImplicitIntegerSignChangeChecks;
333 
334     ScalarConversionOpts()
335         : TreatBooleanAsSigned(false),
336           EmitImplicitIntegerTruncationChecks(false),
337           EmitImplicitIntegerSignChangeChecks(false) {}
338 
339     ScalarConversionOpts(clang::SanitizerSet SanOpts)
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(
342               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
343           EmitImplicitIntegerSignChangeChecks(
344               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
345   };
346   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
347                         llvm::Type *SrcTy, llvm::Type *DstTy,
348                         ScalarConversionOpts Opts);
349   Value *
350   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
351                        SourceLocation Loc,
352                        ScalarConversionOpts Opts = ScalarConversionOpts());
353 
354   /// Convert between either a fixed point and other fixed point or fixed point
355   /// and an integer.
356   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
357                                   SourceLocation Loc);
358 
359   /// Emit a conversion from the specified complex type to the specified
360   /// destination type, where the destination type is an LLVM scalar type.
361   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
362                                        QualType SrcTy, QualType DstTy,
363                                        SourceLocation Loc);
364 
365   /// EmitNullValue - Emit a value that corresponds to null for the given type.
366   Value *EmitNullValue(QualType Ty);
367 
368   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
369   Value *EmitFloatToBoolConversion(Value *V) {
370     // Compare against 0.0 for fp scalars.
371     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
372     return Builder.CreateFCmpUNE(V, Zero, "tobool");
373   }
374 
375   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
376   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
377     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
378 
379     return Builder.CreateICmpNE(V, Zero, "tobool");
380   }
381 
382   Value *EmitIntToBoolConversion(Value *V) {
383     // Because of the type rules of C, we often end up computing a
384     // logical value, then zero extending it to int, then wanting it
385     // as a logical value again.  Optimize this common case.
386     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
387       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
388         Value *Result = ZI->getOperand(0);
389         // If there aren't any more uses, zap the instruction to save space.
390         // Note that there can be more uses, for example if this
391         // is the result of an assignment.
392         if (ZI->use_empty())
393           ZI->eraseFromParent();
394         return Result;
395       }
396     }
397 
398     return Builder.CreateIsNotNull(V, "tobool");
399   }
400 
401   //===--------------------------------------------------------------------===//
402   //                            Visitor Methods
403   //===--------------------------------------------------------------------===//
404 
405   Value *Visit(Expr *E) {
406     ApplyDebugLocation DL(CGF, E);
407     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
408   }
409 
410   Value *VisitStmt(Stmt *S) {
411     S->dump(llvm::errs(), CGF.getContext());
412     llvm_unreachable("Stmt can't have complex result type!");
413   }
414   Value *VisitExpr(Expr *S);
415 
416   Value *VisitConstantExpr(ConstantExpr *E) {
417     // A constant expression of type 'void' generates no code and produces no
418     // value.
419     if (E->getType()->isVoidType())
420       return nullptr;
421 
422     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423       if (E->isGLValue())
424         return CGF.Builder.CreateLoad(Address(
425             Result, CGF.ConvertTypeForMem(E->getType()),
426             CGF.getContext().getTypeAlignInChars(E->getType())));
427       return Result;
428     }
429     return Visit(E->getSubExpr());
430   }
431   Value *VisitParenExpr(ParenExpr *PE) {
432     return Visit(PE->getSubExpr());
433   }
434   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
435     return Visit(E->getReplacement());
436   }
437   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
438     return Visit(GE->getResultExpr());
439   }
440   Value *VisitCoawaitExpr(CoawaitExpr *S) {
441     return CGF.EmitCoawaitExpr(*S).getScalarVal();
442   }
443   Value *VisitCoyieldExpr(CoyieldExpr *S) {
444     return CGF.EmitCoyieldExpr(*S).getScalarVal();
445   }
446   Value *VisitUnaryCoawait(const UnaryOperator *E) {
447     return Visit(E->getSubExpr());
448   }
449 
450   // Leaves.
451   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
452     return Builder.getInt(E->getValue());
453   }
454   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
455     return Builder.getInt(E->getValue());
456   }
457   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
458     return llvm::ConstantFP::get(VMContext, E->getValue());
459   }
460   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
461     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
462   }
463   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
464     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
465   }
466   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
467     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
468   }
469   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
470     if (E->getType()->isVoidType())
471       return nullptr;
472 
473     return EmitNullValue(E->getType());
474   }
475   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
476     return EmitNullValue(E->getType());
477   }
478   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
479   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
480   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
481     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
482     return Builder.CreateBitCast(V, ConvertType(E->getType()));
483   }
484 
485   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
486     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
487   }
488 
489   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
490     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
491   }
492 
493   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
494 
495   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496     if (E->isGLValue())
497       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498                               E->getExprLoc());
499 
500     // Otherwise, assume the mapping is the scalar directly.
501     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
502   }
503 
504   // l-values.
505   Value *VisitDeclRefExpr(DeclRefExpr *E) {
506     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507       return CGF.emitScalarConstant(Constant, E);
508     return EmitLoadOfLValue(E);
509   }
510 
511   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512     return CGF.EmitObjCSelectorExpr(E);
513   }
514   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515     return CGF.EmitObjCProtocolExpr(E);
516   }
517   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518     return EmitLoadOfLValue(E);
519   }
520   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521     if (E->getMethodDecl() &&
522         E->getMethodDecl()->getReturnType()->isReferenceType())
523       return EmitLoadOfLValue(E);
524     return CGF.EmitObjCMessageExpr(E).getScalarVal();
525   }
526 
527   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528     LValue LV = CGF.EmitObjCIsaExpr(E);
529     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530     return V;
531   }
532 
533   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534     VersionTuple Version = E->getVersion();
535 
536     // If we're checking for a platform older than our minimum deployment
537     // target, we can fold the check away.
538     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
540 
541     return CGF.EmitBuiltinAvailable(Version);
542   }
543 
544   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
545   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
546   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
547   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
548   Value *VisitMemberExpr(MemberExpr *E);
549   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
550   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
551     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
552     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
553     // literals aren't l-values in C++. We do so simply because that's the
554     // cleanest way to handle compound literals in C++.
555     // See the discussion here: https://reviews.llvm.org/D64464
556     return EmitLoadOfLValue(E);
557   }
558 
559   Value *VisitInitListExpr(InitListExpr *E);
560 
561   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562     assert(CGF.getArrayInitIndex() &&
563            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564     return CGF.getArrayInitIndex();
565   }
566 
567   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568     return EmitNullValue(E->getType());
569   }
570   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572     return VisitCastExpr(E);
573   }
574   Value *VisitCastExpr(CastExpr *E);
575 
576   Value *VisitCallExpr(const CallExpr *E) {
577     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578       return EmitLoadOfLValue(E);
579 
580     Value *V = CGF.EmitCallExpr(E).getScalarVal();
581 
582     EmitLValueAlignmentAssumption(E, V);
583     return V;
584   }
585 
586   Value *VisitStmtExpr(const StmtExpr *E);
587 
588   // Unary Operators.
589   Value *VisitUnaryPostDec(const UnaryOperator *E) {
590     LValue LV = EmitLValue(E->getSubExpr());
591     return EmitScalarPrePostIncDec(E, LV, false, false);
592   }
593   Value *VisitUnaryPostInc(const UnaryOperator *E) {
594     LValue LV = EmitLValue(E->getSubExpr());
595     return EmitScalarPrePostIncDec(E, LV, true, false);
596   }
597   Value *VisitUnaryPreDec(const UnaryOperator *E) {
598     LValue LV = EmitLValue(E->getSubExpr());
599     return EmitScalarPrePostIncDec(E, LV, false, true);
600   }
601   Value *VisitUnaryPreInc(const UnaryOperator *E) {
602     LValue LV = EmitLValue(E->getSubExpr());
603     return EmitScalarPrePostIncDec(E, LV, true, true);
604   }
605 
606   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607                                                   llvm::Value *InVal,
608                                                   bool IsInc);
609 
610   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611                                        bool isInc, bool isPre);
612 
613 
614   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615     if (isa<MemberPointerType>(E->getType())) // never sugared
616       return CGF.CGM.getMemberPointerConstant(E);
617 
618     return EmitLValue(E->getSubExpr()).getPointer(CGF);
619   }
620   Value *VisitUnaryDeref(const UnaryOperator *E) {
621     if (E->getType()->isVoidType())
622       return Visit(E->getSubExpr()); // the actual value should be unused
623     return EmitLoadOfLValue(E);
624   }
625 
626   Value *VisitUnaryPlus(const UnaryOperator *E,
627                         QualType PromotionType = QualType());
628   Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
629   Value *VisitUnaryMinus(const UnaryOperator *E,
630                          QualType PromotionType = QualType());
631   Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
632 
633   Value *VisitUnaryNot      (const UnaryOperator *E);
634   Value *VisitUnaryLNot     (const UnaryOperator *E);
635   Value *VisitUnaryReal(const UnaryOperator *E,
636                         QualType PromotionType = QualType());
637   Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
638   Value *VisitUnaryImag(const UnaryOperator *E,
639                         QualType PromotionType = QualType());
640   Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
641   Value *VisitUnaryExtension(const UnaryOperator *E) {
642     return Visit(E->getSubExpr());
643   }
644 
645   // C++
646   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
647     return EmitLoadOfLValue(E);
648   }
649   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
650     auto &Ctx = CGF.getContext();
651     APValue Evaluated =
652         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
653     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
654                                              SLE->getType());
655   }
656 
657   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
658     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
659     return Visit(DAE->getExpr());
660   }
661   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
662     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
663     return Visit(DIE->getExpr());
664   }
665   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
666     return CGF.LoadCXXThis();
667   }
668 
669   Value *VisitExprWithCleanups(ExprWithCleanups *E);
670   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
671     return CGF.EmitCXXNewExpr(E);
672   }
673   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
674     CGF.EmitCXXDeleteExpr(E);
675     return nullptr;
676   }
677 
678   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
679     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
680   }
681 
682   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
683     return Builder.getInt1(E->isSatisfied());
684   }
685 
686   Value *VisitRequiresExpr(const RequiresExpr *E) {
687     return Builder.getInt1(E->isSatisfied());
688   }
689 
690   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
691     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
692   }
693 
694   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
695     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
696   }
697 
698   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
699     // C++ [expr.pseudo]p1:
700     //   The result shall only be used as the operand for the function call
701     //   operator (), and the result of such a call has type void. The only
702     //   effect is the evaluation of the postfix-expression before the dot or
703     //   arrow.
704     CGF.EmitScalarExpr(E->getBase());
705     return nullptr;
706   }
707 
708   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
709     return EmitNullValue(E->getType());
710   }
711 
712   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
713     CGF.EmitCXXThrowExpr(E);
714     return nullptr;
715   }
716 
717   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
718     return Builder.getInt1(E->getValue());
719   }
720 
721   // Binary Operators.
722   Value *EmitMul(const BinOpInfo &Ops) {
723     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
724       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
725       case LangOptions::SOB_Defined:
726         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
727       case LangOptions::SOB_Undefined:
728         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
729           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
730         [[fallthrough]];
731       case LangOptions::SOB_Trapping:
732         if (CanElideOverflowCheck(CGF.getContext(), Ops))
733           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
734         return EmitOverflowCheckedBinOp(Ops);
735       }
736     }
737 
738     if (Ops.Ty->isConstantMatrixType()) {
739       llvm::MatrixBuilder MB(Builder);
740       // We need to check the types of the operands of the operator to get the
741       // correct matrix dimensions.
742       auto *BO = cast<BinaryOperator>(Ops.E);
743       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
744           BO->getLHS()->getType().getCanonicalType());
745       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
746           BO->getRHS()->getType().getCanonicalType());
747       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
748       if (LHSMatTy && RHSMatTy)
749         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
750                                        LHSMatTy->getNumColumns(),
751                                        RHSMatTy->getNumColumns());
752       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
753     }
754 
755     if (Ops.Ty->isUnsignedIntegerType() &&
756         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
757         !CanElideOverflowCheck(CGF.getContext(), Ops))
758       return EmitOverflowCheckedBinOp(Ops);
759 
760     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
761       //  Preserve the old values
762       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
763       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
764     }
765     if (Ops.isFixedPointOp())
766       return EmitFixedPointBinOp(Ops);
767     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
768   }
769   /// Create a binary op that checks for overflow.
770   /// Currently only supports +, - and *.
771   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
772 
773   // Check for undefined division and modulus behaviors.
774   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
775                                                   llvm::Value *Zero,bool isDiv);
776   // Common helper for getting how wide LHS of shift is.
777   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
778 
779   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
780   // non powers of two.
781   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
782 
783   Value *EmitDiv(const BinOpInfo &Ops);
784   Value *EmitRem(const BinOpInfo &Ops);
785   Value *EmitAdd(const BinOpInfo &Ops);
786   Value *EmitSub(const BinOpInfo &Ops);
787   Value *EmitShl(const BinOpInfo &Ops);
788   Value *EmitShr(const BinOpInfo &Ops);
789   Value *EmitAnd(const BinOpInfo &Ops) {
790     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
791   }
792   Value *EmitXor(const BinOpInfo &Ops) {
793     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
794   }
795   Value *EmitOr (const BinOpInfo &Ops) {
796     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
797   }
798 
799   // Helper functions for fixed point binary operations.
800   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
801 
802   BinOpInfo EmitBinOps(const BinaryOperator *E,
803                        QualType PromotionTy = QualType());
804 
805   Value *EmitPromotedValue(Value *result, QualType PromotionType);
806   Value *EmitUnPromotedValue(Value *result, QualType ExprType);
807   Value *EmitPromoted(const Expr *E, QualType PromotionType);
808 
809   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
810                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
811                                   Value *&Result);
812 
813   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
814                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
815 
816   QualType getPromotionType(QualType Ty) {
817     if (auto *CT = Ty->getAs<ComplexType>()) {
818       QualType ElementType = CT->getElementType();
819       if (ElementType.UseExcessPrecision(CGF.getContext()))
820         return CGF.getContext().getComplexType(CGF.getContext().FloatTy);
821     }
822     if (Ty.UseExcessPrecision(CGF.getContext()))
823       return CGF.getContext().FloatTy;
824     return QualType();
825   }
826 
827   // Binary operators and binary compound assignment operators.
828 #define HANDLEBINOP(OP)                                                        \
829   Value *VisitBin##OP(const BinaryOperator *E) {                               \
830     QualType promotionTy = getPromotionType(E->getType());                     \
831     auto result = Emit##OP(EmitBinOps(E, promotionTy));                        \
832     if (result && !promotionTy.isNull())                                       \
833       result = EmitUnPromotedValue(result, E->getType());                      \
834     return result;                                                             \
835   }                                                                            \
836   Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) {               \
837     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP);                \
838   }
839   HANDLEBINOP(Mul)
840   HANDLEBINOP(Div)
841   HANDLEBINOP(Rem)
842   HANDLEBINOP(Add)
843   HANDLEBINOP(Sub)
844   HANDLEBINOP(Shl)
845   HANDLEBINOP(Shr)
846   HANDLEBINOP(And)
847   HANDLEBINOP(Xor)
848   HANDLEBINOP(Or)
849 #undef HANDLEBINOP
850 
851   // Comparisons.
852   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
853                      llvm::CmpInst::Predicate SICmpOpc,
854                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
855 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
856     Value *VisitBin##CODE(const BinaryOperator *E) { \
857       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
858                          llvm::FCmpInst::FP, SIG); }
859   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
860   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
861   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
862   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
863   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
864   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
865 #undef VISITCOMP
866 
867   Value *VisitBinAssign     (const BinaryOperator *E);
868 
869   Value *VisitBinLAnd       (const BinaryOperator *E);
870   Value *VisitBinLOr        (const BinaryOperator *E);
871   Value *VisitBinComma      (const BinaryOperator *E);
872 
873   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
874   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
875 
876   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
877     return Visit(E->getSemanticForm());
878   }
879 
880   // Other Operators.
881   Value *VisitBlockExpr(const BlockExpr *BE);
882   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
883   Value *VisitChooseExpr(ChooseExpr *CE);
884   Value *VisitVAArgExpr(VAArgExpr *VE);
885   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
886     return CGF.EmitObjCStringLiteral(E);
887   }
888   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
889     return CGF.EmitObjCBoxedExpr(E);
890   }
891   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
892     return CGF.EmitObjCArrayLiteral(E);
893   }
894   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
895     return CGF.EmitObjCDictionaryLiteral(E);
896   }
897   Value *VisitAsTypeExpr(AsTypeExpr *CE);
898   Value *VisitAtomicExpr(AtomicExpr *AE);
899 };
900 }  // end anonymous namespace.
901 
902 //===----------------------------------------------------------------------===//
903 //                                Utilities
904 //===----------------------------------------------------------------------===//
905 
906 /// EmitConversionToBool - Convert the specified expression value to a
907 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
908 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
909   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
910 
911   if (SrcType->isRealFloatingType())
912     return EmitFloatToBoolConversion(Src);
913 
914   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
915     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
916 
917   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
918          "Unknown scalar type to convert");
919 
920   if (isa<llvm::IntegerType>(Src->getType()))
921     return EmitIntToBoolConversion(Src);
922 
923   assert(isa<llvm::PointerType>(Src->getType()));
924   return EmitPointerToBoolConversion(Src, SrcType);
925 }
926 
927 void ScalarExprEmitter::EmitFloatConversionCheck(
928     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
929     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
930   assert(SrcType->isFloatingType() && "not a conversion from floating point");
931   if (!isa<llvm::IntegerType>(DstTy))
932     return;
933 
934   CodeGenFunction::SanitizerScope SanScope(&CGF);
935   using llvm::APFloat;
936   using llvm::APSInt;
937 
938   llvm::Value *Check = nullptr;
939   const llvm::fltSemantics &SrcSema =
940     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
941 
942   // Floating-point to integer. This has undefined behavior if the source is
943   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
944   // to an integer).
945   unsigned Width = CGF.getContext().getIntWidth(DstType);
946   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
947 
948   APSInt Min = APSInt::getMinValue(Width, Unsigned);
949   APFloat MinSrc(SrcSema, APFloat::uninitialized);
950   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
951       APFloat::opOverflow)
952     // Don't need an overflow check for lower bound. Just check for
953     // -Inf/NaN.
954     MinSrc = APFloat::getInf(SrcSema, true);
955   else
956     // Find the largest value which is too small to represent (before
957     // truncation toward zero).
958     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
959 
960   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
961   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
962   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
963       APFloat::opOverflow)
964     // Don't need an overflow check for upper bound. Just check for
965     // +Inf/NaN.
966     MaxSrc = APFloat::getInf(SrcSema, false);
967   else
968     // Find the smallest value which is too large to represent (before
969     // truncation toward zero).
970     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
971 
972   // If we're converting from __half, convert the range to float to match
973   // the type of src.
974   if (OrigSrcType->isHalfType()) {
975     const llvm::fltSemantics &Sema =
976       CGF.getContext().getFloatTypeSemantics(SrcType);
977     bool IsInexact;
978     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
979     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
980   }
981 
982   llvm::Value *GE =
983     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
984   llvm::Value *LE =
985     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
986   Check = Builder.CreateAnd(GE, LE);
987 
988   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
989                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
990                                   CGF.EmitCheckTypeDescriptor(DstType)};
991   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
992                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
993 }
994 
995 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
996 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
997 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
998                  std::pair<llvm::Value *, SanitizerMask>>
999 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1000                                  QualType DstType, CGBuilderTy &Builder) {
1001   llvm::Type *SrcTy = Src->getType();
1002   llvm::Type *DstTy = Dst->getType();
1003   (void)DstTy; // Only used in assert()
1004 
1005   // This should be truncation of integral types.
1006   assert(Src != Dst);
1007   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1008   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1009          "non-integer llvm type");
1010 
1011   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1012   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1013 
1014   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1015   // Else, it is a signed truncation.
1016   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1017   SanitizerMask Mask;
1018   if (!SrcSigned && !DstSigned) {
1019     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1020     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1021   } else {
1022     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1023     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1024   }
1025 
1026   llvm::Value *Check = nullptr;
1027   // 1. Extend the truncated value back to the same width as the Src.
1028   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1029   // 2. Equality-compare with the original source value
1030   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1031   // If the comparison result is 'i1 false', then the truncation was lossy.
1032   return std::make_pair(Kind, std::make_pair(Check, Mask));
1033 }
1034 
1035 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1036     QualType SrcType, QualType DstType) {
1037   return SrcType->isIntegerType() && DstType->isIntegerType();
1038 }
1039 
1040 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1041                                                    Value *Dst, QualType DstType,
1042                                                    SourceLocation Loc) {
1043   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1044     return;
1045 
1046   // We only care about int->int conversions here.
1047   // We ignore conversions to/from pointer and/or bool.
1048   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1049                                                                        DstType))
1050     return;
1051 
1052   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1053   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1054   // This must be truncation. Else we do not care.
1055   if (SrcBits <= DstBits)
1056     return;
1057 
1058   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1059 
1060   // If the integer sign change sanitizer is enabled,
1061   // and we are truncating from larger unsigned type to smaller signed type,
1062   // let that next sanitizer deal with it.
1063   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1064   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1065   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1066       (!SrcSigned && DstSigned))
1067     return;
1068 
1069   CodeGenFunction::SanitizerScope SanScope(&CGF);
1070 
1071   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1072             std::pair<llvm::Value *, SanitizerMask>>
1073       Check =
1074           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1075   // If the comparison result is 'i1 false', then the truncation was lossy.
1076 
1077   // Do we care about this type of truncation?
1078   if (!CGF.SanOpts.has(Check.second.second))
1079     return;
1080 
1081   llvm::Constant *StaticArgs[] = {
1082       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1083       CGF.EmitCheckTypeDescriptor(DstType),
1084       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1085   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1086                 {Src, Dst});
1087 }
1088 
1089 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1090 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1091 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1092                  std::pair<llvm::Value *, SanitizerMask>>
1093 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1094                                  QualType DstType, CGBuilderTy &Builder) {
1095   llvm::Type *SrcTy = Src->getType();
1096   llvm::Type *DstTy = Dst->getType();
1097 
1098   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1099          "non-integer llvm type");
1100 
1101   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1102   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1103   (void)SrcSigned; // Only used in assert()
1104   (void)DstSigned; // Only used in assert()
1105   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1106   unsigned DstBits = DstTy->getScalarSizeInBits();
1107   (void)SrcBits; // Only used in assert()
1108   (void)DstBits; // Only used in assert()
1109 
1110   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1111          "either the widths should be different, or the signednesses.");
1112 
1113   // NOTE: zero value is considered to be non-negative.
1114   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1115                                        const char *Name) -> Value * {
1116     // Is this value a signed type?
1117     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1118     llvm::Type *VTy = V->getType();
1119     if (!VSigned) {
1120       // If the value is unsigned, then it is never negative.
1121       // FIXME: can we encounter non-scalar VTy here?
1122       return llvm::ConstantInt::getFalse(VTy->getContext());
1123     }
1124     // Get the zero of the same type with which we will be comparing.
1125     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1126     // %V.isnegative = icmp slt %V, 0
1127     // I.e is %V *strictly* less than zero, does it have negative value?
1128     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1129                               llvm::Twine(Name) + "." + V->getName() +
1130                                   ".negativitycheck");
1131   };
1132 
1133   // 1. Was the old Value negative?
1134   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1135   // 2. Is the new Value negative?
1136   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1137   // 3. Now, was the 'negativity status' preserved during the conversion?
1138   //    NOTE: conversion from negative to zero is considered to change the sign.
1139   //    (We want to get 'false' when the conversion changed the sign)
1140   //    So we should just equality-compare the negativity statuses.
1141   llvm::Value *Check = nullptr;
1142   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1143   // If the comparison result is 'false', then the conversion changed the sign.
1144   return std::make_pair(
1145       ScalarExprEmitter::ICCK_IntegerSignChange,
1146       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1147 }
1148 
1149 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1150                                                    Value *Dst, QualType DstType,
1151                                                    SourceLocation Loc) {
1152   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1153     return;
1154 
1155   llvm::Type *SrcTy = Src->getType();
1156   llvm::Type *DstTy = Dst->getType();
1157 
1158   // We only care about int->int conversions here.
1159   // We ignore conversions to/from pointer and/or bool.
1160   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1161                                                                        DstType))
1162     return;
1163 
1164   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1165   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1166   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1167   unsigned DstBits = DstTy->getScalarSizeInBits();
1168 
1169   // Now, we do not need to emit the check in *all* of the cases.
1170   // We can avoid emitting it in some obvious cases where it would have been
1171   // dropped by the opt passes (instcombine) always anyways.
1172   // If it's a cast between effectively the same type, no check.
1173   // NOTE: this is *not* equivalent to checking the canonical types.
1174   if (SrcSigned == DstSigned && SrcBits == DstBits)
1175     return;
1176   // At least one of the values needs to have signed type.
1177   // If both are unsigned, then obviously, neither of them can be negative.
1178   if (!SrcSigned && !DstSigned)
1179     return;
1180   // If the conversion is to *larger* *signed* type, then no check is needed.
1181   // Because either sign-extension happens (so the sign will remain),
1182   // or zero-extension will happen (the sign bit will be zero.)
1183   if ((DstBits > SrcBits) && DstSigned)
1184     return;
1185   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1186       (SrcBits > DstBits) && SrcSigned) {
1187     // If the signed integer truncation sanitizer is enabled,
1188     // and this is a truncation from signed type, then no check is needed.
1189     // Because here sign change check is interchangeable with truncation check.
1190     return;
1191   }
1192   // That's it. We can't rule out any more cases with the data we have.
1193 
1194   CodeGenFunction::SanitizerScope SanScope(&CGF);
1195 
1196   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1197             std::pair<llvm::Value *, SanitizerMask>>
1198       Check;
1199 
1200   // Each of these checks needs to return 'false' when an issue was detected.
1201   ImplicitConversionCheckKind CheckKind;
1202   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1203   // So we can 'and' all the checks together, and still get 'false',
1204   // if at least one of the checks detected an issue.
1205 
1206   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1207   CheckKind = Check.first;
1208   Checks.emplace_back(Check.second);
1209 
1210   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1211       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1212     // If the signed integer truncation sanitizer was enabled,
1213     // and we are truncating from larger unsigned type to smaller signed type,
1214     // let's handle the case we skipped in that check.
1215     Check =
1216         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1217     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1218     Checks.emplace_back(Check.second);
1219     // If the comparison result is 'i1 false', then the truncation was lossy.
1220   }
1221 
1222   llvm::Constant *StaticArgs[] = {
1223       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1224       CGF.EmitCheckTypeDescriptor(DstType),
1225       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1226   // EmitCheck() will 'and' all the checks together.
1227   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1228                 {Src, Dst});
1229 }
1230 
1231 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1232                                          QualType DstType, llvm::Type *SrcTy,
1233                                          llvm::Type *DstTy,
1234                                          ScalarConversionOpts Opts) {
1235   // The Element types determine the type of cast to perform.
1236   llvm::Type *SrcElementTy;
1237   llvm::Type *DstElementTy;
1238   QualType SrcElementType;
1239   QualType DstElementType;
1240   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1241     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1242     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1243     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1244     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1245   } else {
1246     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1247            "cannot cast between matrix and non-matrix types");
1248     SrcElementTy = SrcTy;
1249     DstElementTy = DstTy;
1250     SrcElementType = SrcType;
1251     DstElementType = DstType;
1252   }
1253 
1254   if (isa<llvm::IntegerType>(SrcElementTy)) {
1255     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1256     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1257       InputSigned = true;
1258     }
1259 
1260     if (isa<llvm::IntegerType>(DstElementTy))
1261       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1262     if (InputSigned)
1263       return Builder.CreateSIToFP(Src, DstTy, "conv");
1264     return Builder.CreateUIToFP(Src, DstTy, "conv");
1265   }
1266 
1267   if (isa<llvm::IntegerType>(DstElementTy)) {
1268     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1269     bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1270 
1271     // If we can't recognize overflow as undefined behavior, assume that
1272     // overflow saturates. This protects against normal optimizations if we are
1273     // compiling with non-standard FP semantics.
1274     if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1275       llvm::Intrinsic::ID IID =
1276           IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1277       return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1278     }
1279 
1280     if (IsSigned)
1281       return Builder.CreateFPToSI(Src, DstTy, "conv");
1282     return Builder.CreateFPToUI(Src, DstTy, "conv");
1283   }
1284 
1285   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1286     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1287   return Builder.CreateFPExt(Src, DstTy, "conv");
1288 }
1289 
1290 /// Emit a conversion from the specified type to the specified destination type,
1291 /// both of which are LLVM scalar types.
1292 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1293                                                QualType DstType,
1294                                                SourceLocation Loc,
1295                                                ScalarConversionOpts Opts) {
1296   // All conversions involving fixed point types should be handled by the
1297   // EmitFixedPoint family functions. This is done to prevent bloating up this
1298   // function more, and although fixed point numbers are represented by
1299   // integers, we do not want to follow any logic that assumes they should be
1300   // treated as integers.
1301   // TODO(leonardchan): When necessary, add another if statement checking for
1302   // conversions to fixed point types from other types.
1303   if (SrcType->isFixedPointType()) {
1304     if (DstType->isBooleanType())
1305       // It is important that we check this before checking if the dest type is
1306       // an integer because booleans are technically integer types.
1307       // We do not need to check the padding bit on unsigned types if unsigned
1308       // padding is enabled because overflow into this bit is undefined
1309       // behavior.
1310       return Builder.CreateIsNotNull(Src, "tobool");
1311     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1312         DstType->isRealFloatingType())
1313       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1314 
1315     llvm_unreachable(
1316         "Unhandled scalar conversion from a fixed point type to another type.");
1317   } else if (DstType->isFixedPointType()) {
1318     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1319       // This also includes converting booleans and enums to fixed point types.
1320       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1321 
1322     llvm_unreachable(
1323         "Unhandled scalar conversion to a fixed point type from another type.");
1324   }
1325 
1326   QualType NoncanonicalSrcType = SrcType;
1327   QualType NoncanonicalDstType = DstType;
1328 
1329   SrcType = CGF.getContext().getCanonicalType(SrcType);
1330   DstType = CGF.getContext().getCanonicalType(DstType);
1331   if (SrcType == DstType) return Src;
1332 
1333   if (DstType->isVoidType()) return nullptr;
1334 
1335   llvm::Value *OrigSrc = Src;
1336   QualType OrigSrcType = SrcType;
1337   llvm::Type *SrcTy = Src->getType();
1338 
1339   // Handle conversions to bool first, they are special: comparisons against 0.
1340   if (DstType->isBooleanType())
1341     return EmitConversionToBool(Src, SrcType);
1342 
1343   llvm::Type *DstTy = ConvertType(DstType);
1344 
1345   // Cast from half through float if half isn't a native type.
1346   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1347     // Cast to FP using the intrinsic if the half type itself isn't supported.
1348     if (DstTy->isFloatingPointTy()) {
1349       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1350         return Builder.CreateCall(
1351             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1352             Src);
1353     } else {
1354       // Cast to other types through float, using either the intrinsic or FPExt,
1355       // depending on whether the half type itself is supported
1356       // (as opposed to operations on half, available with NativeHalfType).
1357       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1358         Src = Builder.CreateCall(
1359             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1360                                  CGF.CGM.FloatTy),
1361             Src);
1362       } else {
1363         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1364       }
1365       SrcType = CGF.getContext().FloatTy;
1366       SrcTy = CGF.FloatTy;
1367     }
1368   }
1369 
1370   // Ignore conversions like int -> uint.
1371   if (SrcTy == DstTy) {
1372     if (Opts.EmitImplicitIntegerSignChangeChecks)
1373       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1374                                  NoncanonicalDstType, Loc);
1375 
1376     return Src;
1377   }
1378 
1379   // Handle pointer conversions next: pointers can only be converted to/from
1380   // other pointers and integers. Check for pointer types in terms of LLVM, as
1381   // some native types (like Obj-C id) may map to a pointer type.
1382   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1383     // The source value may be an integer, or a pointer.
1384     if (isa<llvm::PointerType>(SrcTy))
1385       return Builder.CreateBitCast(Src, DstTy, "conv");
1386 
1387     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1388     // First, convert to the correct width so that we control the kind of
1389     // extension.
1390     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1391     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1392     llvm::Value* IntResult =
1393         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1394     // Then, cast to pointer.
1395     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1396   }
1397 
1398   if (isa<llvm::PointerType>(SrcTy)) {
1399     // Must be an ptr to int cast.
1400     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1401     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1402   }
1403 
1404   // A scalar can be splatted to an extended vector of the same element type
1405   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1406     // Sema should add casts to make sure that the source expression's type is
1407     // the same as the vector's element type (sans qualifiers)
1408     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1409                SrcType.getTypePtr() &&
1410            "Splatted expr doesn't match with vector element type?");
1411 
1412     // Splat the element across to all elements
1413     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1414     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1415   }
1416 
1417   if (SrcType->isMatrixType() && DstType->isMatrixType())
1418     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1419 
1420   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1421     // Allow bitcast from vector to integer/fp of the same size.
1422     llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1423     llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1424     if (SrcSize == DstSize)
1425       return Builder.CreateBitCast(Src, DstTy, "conv");
1426 
1427     // Conversions between vectors of different sizes are not allowed except
1428     // when vectors of half are involved. Operations on storage-only half
1429     // vectors require promoting half vector operands to float vectors and
1430     // truncating the result, which is either an int or float vector, to a
1431     // short or half vector.
1432 
1433     // Source and destination are both expected to be vectors.
1434     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1435     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1436     (void)DstElementTy;
1437 
1438     assert(((SrcElementTy->isIntegerTy() &&
1439              DstElementTy->isIntegerTy()) ||
1440             (SrcElementTy->isFloatingPointTy() &&
1441              DstElementTy->isFloatingPointTy())) &&
1442            "unexpected conversion between a floating-point vector and an "
1443            "integer vector");
1444 
1445     // Truncate an i32 vector to an i16 vector.
1446     if (SrcElementTy->isIntegerTy())
1447       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1448 
1449     // Truncate a float vector to a half vector.
1450     if (SrcSize > DstSize)
1451       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1452 
1453     // Promote a half vector to a float vector.
1454     return Builder.CreateFPExt(Src, DstTy, "conv");
1455   }
1456 
1457   // Finally, we have the arithmetic types: real int/float.
1458   Value *Res = nullptr;
1459   llvm::Type *ResTy = DstTy;
1460 
1461   // An overflowing conversion has undefined behavior if either the source type
1462   // or the destination type is a floating-point type. However, we consider the
1463   // range of representable values for all floating-point types to be
1464   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1465   // floating-point type.
1466   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1467       OrigSrcType->isFloatingType())
1468     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1469                              Loc);
1470 
1471   // Cast to half through float if half isn't a native type.
1472   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1473     // Make sure we cast in a single step if from another FP type.
1474     if (SrcTy->isFloatingPointTy()) {
1475       // Use the intrinsic if the half type itself isn't supported
1476       // (as opposed to operations on half, available with NativeHalfType).
1477       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1478         return Builder.CreateCall(
1479             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1480       // If the half type is supported, just use an fptrunc.
1481       return Builder.CreateFPTrunc(Src, DstTy);
1482     }
1483     DstTy = CGF.FloatTy;
1484   }
1485 
1486   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1487 
1488   if (DstTy != ResTy) {
1489     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1490       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1491       Res = Builder.CreateCall(
1492         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1493         Res);
1494     } else {
1495       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1496     }
1497   }
1498 
1499   if (Opts.EmitImplicitIntegerTruncationChecks)
1500     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1501                                NoncanonicalDstType, Loc);
1502 
1503   if (Opts.EmitImplicitIntegerSignChangeChecks)
1504     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1505                                NoncanonicalDstType, Loc);
1506 
1507   return Res;
1508 }
1509 
1510 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1511                                                    QualType DstTy,
1512                                                    SourceLocation Loc) {
1513   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1514   llvm::Value *Result;
1515   if (SrcTy->isRealFloatingType())
1516     Result = FPBuilder.CreateFloatingToFixed(Src,
1517         CGF.getContext().getFixedPointSemantics(DstTy));
1518   else if (DstTy->isRealFloatingType())
1519     Result = FPBuilder.CreateFixedToFloating(Src,
1520         CGF.getContext().getFixedPointSemantics(SrcTy),
1521         ConvertType(DstTy));
1522   else {
1523     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1524     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1525 
1526     if (DstTy->isIntegerType())
1527       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1528                                               DstFPSema.getWidth(),
1529                                               DstFPSema.isSigned());
1530     else if (SrcTy->isIntegerType())
1531       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1532                                                DstFPSema);
1533     else
1534       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1535   }
1536   return Result;
1537 }
1538 
1539 /// Emit a conversion from the specified complex type to the specified
1540 /// destination type, where the destination type is an LLVM scalar type.
1541 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1542     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1543     SourceLocation Loc) {
1544   // Get the source element type.
1545   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1546 
1547   // Handle conversions to bool first, they are special: comparisons against 0.
1548   if (DstTy->isBooleanType()) {
1549     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1550     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1551     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1552     return Builder.CreateOr(Src.first, Src.second, "tobool");
1553   }
1554 
1555   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1556   // the imaginary part of the complex value is discarded and the value of the
1557   // real part is converted according to the conversion rules for the
1558   // corresponding real type.
1559   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1560 }
1561 
1562 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1563   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1564 }
1565 
1566 /// Emit a sanitization check for the given "binary" operation (which
1567 /// might actually be a unary increment which has been lowered to a binary
1568 /// operation). The check passes if all values in \p Checks (which are \c i1),
1569 /// are \c true.
1570 void ScalarExprEmitter::EmitBinOpCheck(
1571     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1572   assert(CGF.IsSanitizerScope);
1573   SanitizerHandler Check;
1574   SmallVector<llvm::Constant *, 4> StaticData;
1575   SmallVector<llvm::Value *, 2> DynamicData;
1576 
1577   BinaryOperatorKind Opcode = Info.Opcode;
1578   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1579     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1580 
1581   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1582   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1583   if (UO && UO->getOpcode() == UO_Minus) {
1584     Check = SanitizerHandler::NegateOverflow;
1585     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1586     DynamicData.push_back(Info.RHS);
1587   } else {
1588     if (BinaryOperator::isShiftOp(Opcode)) {
1589       // Shift LHS negative or too large, or RHS out of bounds.
1590       Check = SanitizerHandler::ShiftOutOfBounds;
1591       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1592       StaticData.push_back(
1593         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1594       StaticData.push_back(
1595         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1596     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1597       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1598       Check = SanitizerHandler::DivremOverflow;
1599       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1600     } else {
1601       // Arithmetic overflow (+, -, *).
1602       switch (Opcode) {
1603       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1604       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1605       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1606       default: llvm_unreachable("unexpected opcode for bin op check");
1607       }
1608       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1609     }
1610     DynamicData.push_back(Info.LHS);
1611     DynamicData.push_back(Info.RHS);
1612   }
1613 
1614   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1615 }
1616 
1617 //===----------------------------------------------------------------------===//
1618 //                            Visitor Methods
1619 //===----------------------------------------------------------------------===//
1620 
1621 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1622   CGF.ErrorUnsupported(E, "scalar expression");
1623   if (E->getType()->isVoidType())
1624     return nullptr;
1625   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1626 }
1627 
1628 Value *
1629 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1630   ASTContext &Context = CGF.getContext();
1631   unsigned AddrSpace =
1632       Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
1633   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1634       E->ComputeName(Context), "__usn_str", AddrSpace);
1635 
1636   llvm::Type *ExprTy = ConvertType(E->getType());
1637   return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1638                                                      "usn_addr_cast");
1639 }
1640 
1641 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1642   // Vector Mask Case
1643   if (E->getNumSubExprs() == 2) {
1644     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1645     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1646     Value *Mask;
1647 
1648     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1649     unsigned LHSElts = LTy->getNumElements();
1650 
1651     Mask = RHS;
1652 
1653     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1654 
1655     // Mask off the high bits of each shuffle index.
1656     Value *MaskBits =
1657         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1658     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1659 
1660     // newv = undef
1661     // mask = mask & maskbits
1662     // for each elt
1663     //   n = extract mask i
1664     //   x = extract val n
1665     //   newv = insert newv, x, i
1666     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1667                                            MTy->getNumElements());
1668     Value* NewV = llvm::PoisonValue::get(RTy);
1669     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1670       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1671       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1672 
1673       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1674       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1675     }
1676     return NewV;
1677   }
1678 
1679   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1680   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1681 
1682   SmallVector<int, 32> Indices;
1683   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1684     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1685     // Check for -1 and output it as undef in the IR.
1686     if (Idx.isSigned() && Idx.isAllOnes())
1687       Indices.push_back(-1);
1688     else
1689       Indices.push_back(Idx.getZExtValue());
1690   }
1691 
1692   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1693 }
1694 
1695 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1696   QualType SrcType = E->getSrcExpr()->getType(),
1697            DstType = E->getType();
1698 
1699   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1700 
1701   SrcType = CGF.getContext().getCanonicalType(SrcType);
1702   DstType = CGF.getContext().getCanonicalType(DstType);
1703   if (SrcType == DstType) return Src;
1704 
1705   assert(SrcType->isVectorType() &&
1706          "ConvertVector source type must be a vector");
1707   assert(DstType->isVectorType() &&
1708          "ConvertVector destination type must be a vector");
1709 
1710   llvm::Type *SrcTy = Src->getType();
1711   llvm::Type *DstTy = ConvertType(DstType);
1712 
1713   // Ignore conversions like int -> uint.
1714   if (SrcTy == DstTy)
1715     return Src;
1716 
1717   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1718            DstEltType = DstType->castAs<VectorType>()->getElementType();
1719 
1720   assert(SrcTy->isVectorTy() &&
1721          "ConvertVector source IR type must be a vector");
1722   assert(DstTy->isVectorTy() &&
1723          "ConvertVector destination IR type must be a vector");
1724 
1725   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1726              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1727 
1728   if (DstEltType->isBooleanType()) {
1729     assert((SrcEltTy->isFloatingPointTy() ||
1730             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1731 
1732     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1733     if (SrcEltTy->isFloatingPointTy()) {
1734       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1735     } else {
1736       return Builder.CreateICmpNE(Src, Zero, "tobool");
1737     }
1738   }
1739 
1740   // We have the arithmetic types: real int/float.
1741   Value *Res = nullptr;
1742 
1743   if (isa<llvm::IntegerType>(SrcEltTy)) {
1744     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1745     if (isa<llvm::IntegerType>(DstEltTy))
1746       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1747     else if (InputSigned)
1748       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1749     else
1750       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1751   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1752     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1753     if (DstEltType->isSignedIntegerOrEnumerationType())
1754       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1755     else
1756       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1757   } else {
1758     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1759            "Unknown real conversion");
1760     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1761       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1762     else
1763       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1764   }
1765 
1766   return Res;
1767 }
1768 
1769 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1770   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1771     CGF.EmitIgnoredExpr(E->getBase());
1772     return CGF.emitScalarConstant(Constant, E);
1773   } else {
1774     Expr::EvalResult Result;
1775     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1776       llvm::APSInt Value = Result.Val.getInt();
1777       CGF.EmitIgnoredExpr(E->getBase());
1778       return Builder.getInt(Value);
1779     }
1780   }
1781 
1782   return EmitLoadOfLValue(E);
1783 }
1784 
1785 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1786   TestAndClearIgnoreResultAssign();
1787 
1788   // Emit subscript expressions in rvalue context's.  For most cases, this just
1789   // loads the lvalue formed by the subscript expr.  However, we have to be
1790   // careful, because the base of a vector subscript is occasionally an rvalue,
1791   // so we can't get it as an lvalue.
1792   if (!E->getBase()->getType()->isVectorType() &&
1793       !E->getBase()->getType()->isVLSTBuiltinType())
1794     return EmitLoadOfLValue(E);
1795 
1796   // Handle the vector case.  The base must be a vector, the index must be an
1797   // integer value.
1798   Value *Base = Visit(E->getBase());
1799   Value *Idx  = Visit(E->getIdx());
1800   QualType IdxTy = E->getIdx()->getType();
1801 
1802   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1803     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1804 
1805   return Builder.CreateExtractElement(Base, Idx, "vecext");
1806 }
1807 
1808 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1809   TestAndClearIgnoreResultAssign();
1810 
1811   // Handle the vector case.  The base must be a vector, the index must be an
1812   // integer value.
1813   Value *RowIdx = Visit(E->getRowIdx());
1814   Value *ColumnIdx = Visit(E->getColumnIdx());
1815 
1816   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1817   unsigned NumRows = MatrixTy->getNumRows();
1818   llvm::MatrixBuilder MB(Builder);
1819   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1820   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1821     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1822 
1823   Value *Matrix = Visit(E->getBase());
1824 
1825   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1826   return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1827 }
1828 
1829 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1830                       unsigned Off) {
1831   int MV = SVI->getMaskValue(Idx);
1832   if (MV == -1)
1833     return -1;
1834   return Off + MV;
1835 }
1836 
1837 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1838   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1839          "Index operand too large for shufflevector mask!");
1840   return C->getZExtValue();
1841 }
1842 
1843 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1844   bool Ignore = TestAndClearIgnoreResultAssign();
1845   (void)Ignore;
1846   assert (Ignore == false && "init list ignored");
1847   unsigned NumInitElements = E->getNumInits();
1848 
1849   if (E->hadArrayRangeDesignator())
1850     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1851 
1852   llvm::VectorType *VType =
1853     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1854 
1855   if (!VType) {
1856     if (NumInitElements == 0) {
1857       // C++11 value-initialization for the scalar.
1858       return EmitNullValue(E->getType());
1859     }
1860     // We have a scalar in braces. Just use the first element.
1861     return Visit(E->getInit(0));
1862   }
1863 
1864   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1865 
1866   // Loop over initializers collecting the Value for each, and remembering
1867   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1868   // us to fold the shuffle for the swizzle into the shuffle for the vector
1869   // initializer, since LLVM optimizers generally do not want to touch
1870   // shuffles.
1871   unsigned CurIdx = 0;
1872   bool VIsUndefShuffle = false;
1873   llvm::Value *V = llvm::UndefValue::get(VType);
1874   for (unsigned i = 0; i != NumInitElements; ++i) {
1875     Expr *IE = E->getInit(i);
1876     Value *Init = Visit(IE);
1877     SmallVector<int, 16> Args;
1878 
1879     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1880 
1881     // Handle scalar elements.  If the scalar initializer is actually one
1882     // element of a different vector of the same width, use shuffle instead of
1883     // extract+insert.
1884     if (!VVT) {
1885       if (isa<ExtVectorElementExpr>(IE)) {
1886         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1887 
1888         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1889                 ->getNumElements() == ResElts) {
1890           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1891           Value *LHS = nullptr, *RHS = nullptr;
1892           if (CurIdx == 0) {
1893             // insert into undef -> shuffle (src, undef)
1894             // shufflemask must use an i32
1895             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1896             Args.resize(ResElts, -1);
1897 
1898             LHS = EI->getVectorOperand();
1899             RHS = V;
1900             VIsUndefShuffle = true;
1901           } else if (VIsUndefShuffle) {
1902             // insert into undefshuffle && size match -> shuffle (v, src)
1903             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1904             for (unsigned j = 0; j != CurIdx; ++j)
1905               Args.push_back(getMaskElt(SVV, j, 0));
1906             Args.push_back(ResElts + C->getZExtValue());
1907             Args.resize(ResElts, -1);
1908 
1909             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1910             RHS = EI->getVectorOperand();
1911             VIsUndefShuffle = false;
1912           }
1913           if (!Args.empty()) {
1914             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1915             ++CurIdx;
1916             continue;
1917           }
1918         }
1919       }
1920       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1921                                       "vecinit");
1922       VIsUndefShuffle = false;
1923       ++CurIdx;
1924       continue;
1925     }
1926 
1927     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1928 
1929     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1930     // input is the same width as the vector being constructed, generate an
1931     // optimized shuffle of the swizzle input into the result.
1932     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1933     if (isa<ExtVectorElementExpr>(IE)) {
1934       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1935       Value *SVOp = SVI->getOperand(0);
1936       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1937 
1938       if (OpTy->getNumElements() == ResElts) {
1939         for (unsigned j = 0; j != CurIdx; ++j) {
1940           // If the current vector initializer is a shuffle with undef, merge
1941           // this shuffle directly into it.
1942           if (VIsUndefShuffle) {
1943             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1944           } else {
1945             Args.push_back(j);
1946           }
1947         }
1948         for (unsigned j = 0, je = InitElts; j != je; ++j)
1949           Args.push_back(getMaskElt(SVI, j, Offset));
1950         Args.resize(ResElts, -1);
1951 
1952         if (VIsUndefShuffle)
1953           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1954 
1955         Init = SVOp;
1956       }
1957     }
1958 
1959     // Extend init to result vector length, and then shuffle its contribution
1960     // to the vector initializer into V.
1961     if (Args.empty()) {
1962       for (unsigned j = 0; j != InitElts; ++j)
1963         Args.push_back(j);
1964       Args.resize(ResElts, -1);
1965       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1966 
1967       Args.clear();
1968       for (unsigned j = 0; j != CurIdx; ++j)
1969         Args.push_back(j);
1970       for (unsigned j = 0; j != InitElts; ++j)
1971         Args.push_back(j + Offset);
1972       Args.resize(ResElts, -1);
1973     }
1974 
1975     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1976     // merging subsequent shuffles into this one.
1977     if (CurIdx == 0)
1978       std::swap(V, Init);
1979     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1980     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1981     CurIdx += InitElts;
1982   }
1983 
1984   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1985   // Emit remaining default initializers.
1986   llvm::Type *EltTy = VType->getElementType();
1987 
1988   // Emit remaining default initializers
1989   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1990     Value *Idx = Builder.getInt32(CurIdx);
1991     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1992     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1993   }
1994   return V;
1995 }
1996 
1997 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1998   const Expr *E = CE->getSubExpr();
1999 
2000   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2001     return false;
2002 
2003   if (isa<CXXThisExpr>(E->IgnoreParens())) {
2004     // We always assume that 'this' is never null.
2005     return false;
2006   }
2007 
2008   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2009     // And that glvalue casts are never null.
2010     if (ICE->isGLValue())
2011       return false;
2012   }
2013 
2014   return true;
2015 }
2016 
2017 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
2018 // have to handle a more broad range of conversions than explicit casts, as they
2019 // handle things like function to ptr-to-function decay etc.
2020 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2021   Expr *E = CE->getSubExpr();
2022   QualType DestTy = CE->getType();
2023   CastKind Kind = CE->getCastKind();
2024   CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2025 
2026   // These cases are generally not written to ignore the result of
2027   // evaluating their sub-expressions, so we clear this now.
2028   bool Ignored = TestAndClearIgnoreResultAssign();
2029 
2030   // Since almost all cast kinds apply to scalars, this switch doesn't have
2031   // a default case, so the compiler will warn on a missing case.  The cases
2032   // are in the same order as in the CastKind enum.
2033   switch (Kind) {
2034   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2035   case CK_BuiltinFnToFnPtr:
2036     llvm_unreachable("builtin functions are handled elsewhere");
2037 
2038   case CK_LValueBitCast:
2039   case CK_ObjCObjectLValueCast: {
2040     Address Addr = EmitLValue(E).getAddress(CGF);
2041     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2042     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2043     return EmitLoadOfLValue(LV, CE->getExprLoc());
2044   }
2045 
2046   case CK_LValueToRValueBitCast: {
2047     LValue SourceLVal = CGF.EmitLValue(E);
2048     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2049                                                 CGF.ConvertTypeForMem(DestTy));
2050     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2051     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2052     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2053   }
2054 
2055   case CK_CPointerToObjCPointerCast:
2056   case CK_BlockPointerToObjCPointerCast:
2057   case CK_AnyPointerToBlockPointerCast:
2058   case CK_BitCast: {
2059     Value *Src = Visit(const_cast<Expr*>(E));
2060     llvm::Type *SrcTy = Src->getType();
2061     llvm::Type *DstTy = ConvertType(DestTy);
2062     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2063         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2064       llvm_unreachable("wrong cast for pointers in different address spaces"
2065                        "(must be an address space cast)!");
2066     }
2067 
2068     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2069       if (auto *PT = DestTy->getAs<PointerType>()) {
2070         CGF.EmitVTablePtrCheckForCast(
2071             PT->getPointeeType(),
2072             Address(Src,
2073                     CGF.ConvertTypeForMem(
2074                         E->getType()->castAs<PointerType>()->getPointeeType()),
2075                     CGF.getPointerAlign()),
2076             /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2077             CE->getBeginLoc());
2078       }
2079     }
2080 
2081     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2082       const QualType SrcType = E->getType();
2083 
2084       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2085         // Casting to pointer that could carry dynamic information (provided by
2086         // invariant.group) requires launder.
2087         Src = Builder.CreateLaunderInvariantGroup(Src);
2088       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2089         // Casting to pointer that does not carry dynamic information (provided
2090         // by invariant.group) requires stripping it.  Note that we don't do it
2091         // if the source could not be dynamic type and destination could be
2092         // dynamic because dynamic information is already laundered.  It is
2093         // because launder(strip(src)) == launder(src), so there is no need to
2094         // add extra strip before launder.
2095         Src = Builder.CreateStripInvariantGroup(Src);
2096       }
2097     }
2098 
2099     // Update heapallocsite metadata when there is an explicit pointer cast.
2100     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2101       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2102         QualType PointeeType = DestTy->getPointeeType();
2103         if (!PointeeType.isNull())
2104           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2105                                                        CE->getExprLoc());
2106       }
2107     }
2108 
2109     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2110     // same element type, use the llvm.vector.insert intrinsic to perform the
2111     // bitcast.
2112     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2113       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2114         // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2115         // vector, use a vector insert and bitcast the result.
2116         bool NeedsBitCast = false;
2117         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2118         llvm::Type *OrigType = DstTy;
2119         if (ScalableDst == PredType &&
2120             FixedSrc->getElementType() == Builder.getInt8Ty()) {
2121           DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2122           ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
2123           NeedsBitCast = true;
2124         }
2125         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2126           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2127           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2128           llvm::Value *Result = Builder.CreateInsertVector(
2129               DstTy, UndefVec, Src, Zero, "castScalableSve");
2130           if (NeedsBitCast)
2131             Result = Builder.CreateBitCast(Result, OrigType);
2132           return Result;
2133         }
2134       }
2135     }
2136 
2137     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2138     // same element type, use the llvm.vector.extract intrinsic to perform the
2139     // bitcast.
2140     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2141       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2142         // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2143         // vector, bitcast the source and use a vector extract.
2144         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2145         if (ScalableSrc == PredType &&
2146             FixedDst->getElementType() == Builder.getInt8Ty()) {
2147           SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2148           ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
2149           Src = Builder.CreateBitCast(Src, SrcTy);
2150         }
2151         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2152           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2153           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2154         }
2155       }
2156     }
2157 
2158     // Perform VLAT <-> VLST bitcast through memory.
2159     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2160     //       require the element types of the vectors to be the same, we
2161     //       need to keep this around for bitcasts between VLAT <-> VLST where
2162     //       the element types of the vectors are not the same, until we figure
2163     //       out a better way of doing these casts.
2164     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2165          isa<llvm::ScalableVectorType>(DstTy)) ||
2166         (isa<llvm::ScalableVectorType>(SrcTy) &&
2167          isa<llvm::FixedVectorType>(DstTy))) {
2168       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2169       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2170       CGF.EmitStoreOfScalar(Src, LV);
2171       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2172                                           "castFixedSve");
2173       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2174       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2175       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2176     }
2177     return Builder.CreateBitCast(Src, DstTy);
2178   }
2179   case CK_AddressSpaceConversion: {
2180     Expr::EvalResult Result;
2181     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2182         Result.Val.isNullPointer()) {
2183       // If E has side effect, it is emitted even if its final result is a
2184       // null pointer. In that case, a DCE pass should be able to
2185       // eliminate the useless instructions emitted during translating E.
2186       if (Result.HasSideEffects)
2187         Visit(E);
2188       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2189           ConvertType(DestTy)), DestTy);
2190     }
2191     // Since target may map different address spaces in AST to the same address
2192     // space, an address space conversion may end up as a bitcast.
2193     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2194         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2195         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2196   }
2197   case CK_AtomicToNonAtomic:
2198   case CK_NonAtomicToAtomic:
2199   case CK_UserDefinedConversion:
2200     return Visit(const_cast<Expr*>(E));
2201 
2202   case CK_NoOp: {
2203     llvm::Value *V = Visit(const_cast<Expr *>(E));
2204     if (V) {
2205       // CK_NoOp can model a pointer qualification conversion, which can remove
2206       // an array bound and change the IR type.
2207       // FIXME: Once pointee types are removed from IR, remove this.
2208       llvm::Type *T = ConvertType(DestTy);
2209       if (T != V->getType())
2210         V = Builder.CreateBitCast(V, T);
2211     }
2212     return V;
2213   }
2214 
2215   case CK_BaseToDerived: {
2216     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2217     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2218 
2219     Address Base = CGF.EmitPointerWithAlignment(E);
2220     Address Derived =
2221       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2222                                    CE->path_begin(), CE->path_end(),
2223                                    CGF.ShouldNullCheckClassCastValue(CE));
2224 
2225     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2226     // performed and the object is not of the derived type.
2227     if (CGF.sanitizePerformTypeCheck())
2228       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2229                         Derived.getPointer(), DestTy->getPointeeType());
2230 
2231     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2232       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2233                                     /*MayBeNull=*/true,
2234                                     CodeGenFunction::CFITCK_DerivedCast,
2235                                     CE->getBeginLoc());
2236 
2237     return Derived.getPointer();
2238   }
2239   case CK_UncheckedDerivedToBase:
2240   case CK_DerivedToBase: {
2241     // The EmitPointerWithAlignment path does this fine; just discard
2242     // the alignment.
2243     return CGF.EmitPointerWithAlignment(CE).getPointer();
2244   }
2245 
2246   case CK_Dynamic: {
2247     Address V = CGF.EmitPointerWithAlignment(E);
2248     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2249     return CGF.EmitDynamicCast(V, DCE);
2250   }
2251 
2252   case CK_ArrayToPointerDecay:
2253     return CGF.EmitArrayToPointerDecay(E).getPointer();
2254   case CK_FunctionToPointerDecay:
2255     return EmitLValue(E).getPointer(CGF);
2256 
2257   case CK_NullToPointer:
2258     if (MustVisitNullValue(E))
2259       CGF.EmitIgnoredExpr(E);
2260 
2261     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2262                               DestTy);
2263 
2264   case CK_NullToMemberPointer: {
2265     if (MustVisitNullValue(E))
2266       CGF.EmitIgnoredExpr(E);
2267 
2268     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2269     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2270   }
2271 
2272   case CK_ReinterpretMemberPointer:
2273   case CK_BaseToDerivedMemberPointer:
2274   case CK_DerivedToBaseMemberPointer: {
2275     Value *Src = Visit(E);
2276 
2277     // Note that the AST doesn't distinguish between checked and
2278     // unchecked member pointer conversions, so we always have to
2279     // implement checked conversions here.  This is inefficient when
2280     // actual control flow may be required in order to perform the
2281     // check, which it is for data member pointers (but not member
2282     // function pointers on Itanium and ARM).
2283     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2284   }
2285 
2286   case CK_ARCProduceObject:
2287     return CGF.EmitARCRetainScalarExpr(E);
2288   case CK_ARCConsumeObject:
2289     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2290   case CK_ARCReclaimReturnedObject:
2291     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2292   case CK_ARCExtendBlockObject:
2293     return CGF.EmitARCExtendBlockObject(E);
2294 
2295   case CK_CopyAndAutoreleaseBlockObject:
2296     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2297 
2298   case CK_FloatingRealToComplex:
2299   case CK_FloatingComplexCast:
2300   case CK_IntegralRealToComplex:
2301   case CK_IntegralComplexCast:
2302   case CK_IntegralComplexToFloatingComplex:
2303   case CK_FloatingComplexToIntegralComplex:
2304   case CK_ConstructorConversion:
2305   case CK_ToUnion:
2306     llvm_unreachable("scalar cast to non-scalar value");
2307 
2308   case CK_LValueToRValue:
2309     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2310     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2311     return Visit(const_cast<Expr*>(E));
2312 
2313   case CK_IntegralToPointer: {
2314     Value *Src = Visit(const_cast<Expr*>(E));
2315 
2316     // First, convert to the correct width so that we control the kind of
2317     // extension.
2318     auto DestLLVMTy = ConvertType(DestTy);
2319     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2320     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2321     llvm::Value* IntResult =
2322       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2323 
2324     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2325 
2326     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2327       // Going from integer to pointer that could be dynamic requires reloading
2328       // dynamic information from invariant.group.
2329       if (DestTy.mayBeDynamicClass())
2330         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2331     }
2332     return IntToPtr;
2333   }
2334   case CK_PointerToIntegral: {
2335     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2336     auto *PtrExpr = Visit(E);
2337 
2338     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2339       const QualType SrcType = E->getType();
2340 
2341       // Casting to integer requires stripping dynamic information as it does
2342       // not carries it.
2343       if (SrcType.mayBeDynamicClass())
2344         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2345     }
2346 
2347     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2348   }
2349   case CK_ToVoid: {
2350     CGF.EmitIgnoredExpr(E);
2351     return nullptr;
2352   }
2353   case CK_MatrixCast: {
2354     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2355                                 CE->getExprLoc());
2356   }
2357   case CK_VectorSplat: {
2358     llvm::Type *DstTy = ConvertType(DestTy);
2359     Value *Elt = Visit(const_cast<Expr *>(E));
2360     // Splat the element across to all elements
2361     llvm::ElementCount NumElements =
2362         cast<llvm::VectorType>(DstTy)->getElementCount();
2363     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2364   }
2365 
2366   case CK_FixedPointCast:
2367     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2368                                 CE->getExprLoc());
2369 
2370   case CK_FixedPointToBoolean:
2371     assert(E->getType()->isFixedPointType() &&
2372            "Expected src type to be fixed point type");
2373     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2374     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2375                                 CE->getExprLoc());
2376 
2377   case CK_FixedPointToIntegral:
2378     assert(E->getType()->isFixedPointType() &&
2379            "Expected src type to be fixed point type");
2380     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2381     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2382                                 CE->getExprLoc());
2383 
2384   case CK_IntegralToFixedPoint:
2385     assert(E->getType()->isIntegerType() &&
2386            "Expected src type to be an integer");
2387     assert(DestTy->isFixedPointType() &&
2388            "Expected dest type to be fixed point type");
2389     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2390                                 CE->getExprLoc());
2391 
2392   case CK_IntegralCast: {
2393     ScalarConversionOpts Opts;
2394     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2395       if (!ICE->isPartOfExplicitCast())
2396         Opts = ScalarConversionOpts(CGF.SanOpts);
2397     }
2398     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2399                                 CE->getExprLoc(), Opts);
2400   }
2401   case CK_IntegralToFloating:
2402   case CK_FloatingToIntegral:
2403   case CK_FloatingCast:
2404   case CK_FixedPointToFloating:
2405   case CK_FloatingToFixedPoint: {
2406     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2407     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2408                                 CE->getExprLoc());
2409   }
2410   case CK_BooleanToSignedIntegral: {
2411     ScalarConversionOpts Opts;
2412     Opts.TreatBooleanAsSigned = true;
2413     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2414                                 CE->getExprLoc(), Opts);
2415   }
2416   case CK_IntegralToBoolean:
2417     return EmitIntToBoolConversion(Visit(E));
2418   case CK_PointerToBoolean:
2419     return EmitPointerToBoolConversion(Visit(E), E->getType());
2420   case CK_FloatingToBoolean: {
2421     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2422     return EmitFloatToBoolConversion(Visit(E));
2423   }
2424   case CK_MemberPointerToBoolean: {
2425     llvm::Value *MemPtr = Visit(E);
2426     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2427     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2428   }
2429 
2430   case CK_FloatingComplexToReal:
2431   case CK_IntegralComplexToReal:
2432     return CGF.EmitComplexExpr(E, false, true).first;
2433 
2434   case CK_FloatingComplexToBoolean:
2435   case CK_IntegralComplexToBoolean: {
2436     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2437 
2438     // TODO: kill this function off, inline appropriate case here
2439     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2440                                          CE->getExprLoc());
2441   }
2442 
2443   case CK_ZeroToOCLOpaqueType: {
2444     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2445             DestTy->isOCLIntelSubgroupAVCType()) &&
2446            "CK_ZeroToOCLEvent cast on non-event type");
2447     return llvm::Constant::getNullValue(ConvertType(DestTy));
2448   }
2449 
2450   case CK_IntToOCLSampler:
2451     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2452 
2453   } // end of switch
2454 
2455   llvm_unreachable("unknown scalar cast");
2456 }
2457 
2458 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2459   CodeGenFunction::StmtExprEvaluation eval(CGF);
2460   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2461                                            !E->getType()->isVoidType());
2462   if (!RetAlloca.isValid())
2463     return nullptr;
2464   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2465                               E->getExprLoc());
2466 }
2467 
2468 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2469   CodeGenFunction::RunCleanupsScope Scope(CGF);
2470   Value *V = Visit(E->getSubExpr());
2471   // Defend against dominance problems caused by jumps out of expression
2472   // evaluation through the shared cleanup block.
2473   Scope.ForceCleanup({&V});
2474   return V;
2475 }
2476 
2477 //===----------------------------------------------------------------------===//
2478 //                             Unary Operators
2479 //===----------------------------------------------------------------------===//
2480 
2481 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2482                                            llvm::Value *InVal, bool IsInc,
2483                                            FPOptions FPFeatures) {
2484   BinOpInfo BinOp;
2485   BinOp.LHS = InVal;
2486   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2487   BinOp.Ty = E->getType();
2488   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2489   BinOp.FPFeatures = FPFeatures;
2490   BinOp.E = E;
2491   return BinOp;
2492 }
2493 
2494 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2495     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2496   llvm::Value *Amount =
2497       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2498   StringRef Name = IsInc ? "inc" : "dec";
2499   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2500   case LangOptions::SOB_Defined:
2501     return Builder.CreateAdd(InVal, Amount, Name);
2502   case LangOptions::SOB_Undefined:
2503     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2504       return Builder.CreateNSWAdd(InVal, Amount, Name);
2505     [[fallthrough]];
2506   case LangOptions::SOB_Trapping:
2507     if (!E->canOverflow())
2508       return Builder.CreateNSWAdd(InVal, Amount, Name);
2509     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2510         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2511   }
2512   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2513 }
2514 
2515 namespace {
2516 /// Handles check and update for lastprivate conditional variables.
2517 class OMPLastprivateConditionalUpdateRAII {
2518 private:
2519   CodeGenFunction &CGF;
2520   const UnaryOperator *E;
2521 
2522 public:
2523   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2524                                       const UnaryOperator *E)
2525       : CGF(CGF), E(E) {}
2526   ~OMPLastprivateConditionalUpdateRAII() {
2527     if (CGF.getLangOpts().OpenMP)
2528       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2529           CGF, E->getSubExpr());
2530   }
2531 };
2532 } // namespace
2533 
2534 llvm::Value *
2535 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2536                                            bool isInc, bool isPre) {
2537   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2538   QualType type = E->getSubExpr()->getType();
2539   llvm::PHINode *atomicPHI = nullptr;
2540   llvm::Value *value;
2541   llvm::Value *input;
2542 
2543   int amount = (isInc ? 1 : -1);
2544   bool isSubtraction = !isInc;
2545 
2546   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2547     type = atomicTy->getValueType();
2548     if (isInc && type->isBooleanType()) {
2549       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2550       if (isPre) {
2551         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2552             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2553         return Builder.getTrue();
2554       }
2555       // For atomic bool increment, we just store true and return it for
2556       // preincrement, do an atomic swap with true for postincrement
2557       return Builder.CreateAtomicRMW(
2558           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2559           llvm::AtomicOrdering::SequentiallyConsistent);
2560     }
2561     // Special case for atomic increment / decrement on integers, emit
2562     // atomicrmw instructions.  We skip this if we want to be doing overflow
2563     // checking, and fall into the slow path with the atomic cmpxchg loop.
2564     if (!type->isBooleanType() && type->isIntegerType() &&
2565         !(type->isUnsignedIntegerType() &&
2566           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2567         CGF.getLangOpts().getSignedOverflowBehavior() !=
2568             LangOptions::SOB_Trapping) {
2569       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2570         llvm::AtomicRMWInst::Sub;
2571       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2572         llvm::Instruction::Sub;
2573       llvm::Value *amt = CGF.EmitToMemory(
2574           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2575       llvm::Value *old =
2576           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2577                                   llvm::AtomicOrdering::SequentiallyConsistent);
2578       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2579     }
2580     value = EmitLoadOfLValue(LV, E->getExprLoc());
2581     input = value;
2582     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2583     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2584     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2585     value = CGF.EmitToMemory(value, type);
2586     Builder.CreateBr(opBB);
2587     Builder.SetInsertPoint(opBB);
2588     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2589     atomicPHI->addIncoming(value, startBB);
2590     value = atomicPHI;
2591   } else {
2592     value = EmitLoadOfLValue(LV, E->getExprLoc());
2593     input = value;
2594   }
2595 
2596   // Special case of integer increment that we have to check first: bool++.
2597   // Due to promotion rules, we get:
2598   //   bool++ -> bool = bool + 1
2599   //          -> bool = (int)bool + 1
2600   //          -> bool = ((int)bool + 1 != 0)
2601   // An interesting aspect of this is that increment is always true.
2602   // Decrement does not have this property.
2603   if (isInc && type->isBooleanType()) {
2604     value = Builder.getTrue();
2605 
2606   // Most common case by far: integer increment.
2607   } else if (type->isIntegerType()) {
2608     QualType promotedType;
2609     bool canPerformLossyDemotionCheck = false;
2610     if (CGF.getContext().isPromotableIntegerType(type)) {
2611       promotedType = CGF.getContext().getPromotedIntegerType(type);
2612       assert(promotedType != type && "Shouldn't promote to the same type.");
2613       canPerformLossyDemotionCheck = true;
2614       canPerformLossyDemotionCheck &=
2615           CGF.getContext().getCanonicalType(type) !=
2616           CGF.getContext().getCanonicalType(promotedType);
2617       canPerformLossyDemotionCheck &=
2618           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2619               type, promotedType);
2620       assert((!canPerformLossyDemotionCheck ||
2621               type->isSignedIntegerOrEnumerationType() ||
2622               promotedType->isSignedIntegerOrEnumerationType() ||
2623               ConvertType(type)->getScalarSizeInBits() ==
2624                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2625              "The following check expects that if we do promotion to different "
2626              "underlying canonical type, at least one of the types (either "
2627              "base or promoted) will be signed, or the bitwidths will match.");
2628     }
2629     if (CGF.SanOpts.hasOneOf(
2630             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2631         canPerformLossyDemotionCheck) {
2632       // While `x += 1` (for `x` with width less than int) is modeled as
2633       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2634       // ease; inc/dec with width less than int can't overflow because of
2635       // promotion rules, so we omit promotion+demotion, which means that we can
2636       // not catch lossy "demotion". Because we still want to catch these cases
2637       // when the sanitizer is enabled, we perform the promotion, then perform
2638       // the increment/decrement in the wider type, and finally
2639       // perform the demotion. This will catch lossy demotions.
2640 
2641       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2642       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2643       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2644       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2645       // emitted.
2646       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2647                                    ScalarConversionOpts(CGF.SanOpts));
2648 
2649       // Note that signed integer inc/dec with width less than int can't
2650       // overflow because of promotion rules; we're just eliding a few steps
2651       // here.
2652     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2653       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2654     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2655                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2656       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2657           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2658     } else {
2659       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2660       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2661     }
2662 
2663   // Next most common: pointer increment.
2664   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2665     QualType type = ptr->getPointeeType();
2666 
2667     // VLA types don't have constant size.
2668     if (const VariableArrayType *vla
2669           = CGF.getContext().getAsVariableArrayType(type)) {
2670       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2671       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2672       llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2673       if (CGF.getLangOpts().isSignedOverflowDefined())
2674         value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2675       else
2676         value = CGF.EmitCheckedInBoundsGEP(
2677             elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2678             E->getExprLoc(), "vla.inc");
2679 
2680     // Arithmetic on function pointers (!) is just +-1.
2681     } else if (type->isFunctionType()) {
2682       llvm::Value *amt = Builder.getInt32(amount);
2683 
2684       value = CGF.EmitCastToVoidPtr(value);
2685       if (CGF.getLangOpts().isSignedOverflowDefined())
2686         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2687       else
2688         value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2689                                            /*SignedIndices=*/false,
2690                                            isSubtraction, E->getExprLoc(),
2691                                            "incdec.funcptr");
2692       value = Builder.CreateBitCast(value, input->getType());
2693 
2694     // For everything else, we can just do a simple increment.
2695     } else {
2696       llvm::Value *amt = Builder.getInt32(amount);
2697       llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2698       if (CGF.getLangOpts().isSignedOverflowDefined())
2699         value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2700       else
2701         value = CGF.EmitCheckedInBoundsGEP(
2702             elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2703             E->getExprLoc(), "incdec.ptr");
2704     }
2705 
2706   // Vector increment/decrement.
2707   } else if (type->isVectorType()) {
2708     if (type->hasIntegerRepresentation()) {
2709       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2710 
2711       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2712     } else {
2713       value = Builder.CreateFAdd(
2714                   value,
2715                   llvm::ConstantFP::get(value->getType(), amount),
2716                   isInc ? "inc" : "dec");
2717     }
2718 
2719   // Floating point.
2720   } else if (type->isRealFloatingType()) {
2721     // Add the inc/dec to the real part.
2722     llvm::Value *amt;
2723     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2724 
2725     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2726       // Another special case: half FP increment should be done via float
2727       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2728         value = Builder.CreateCall(
2729             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2730                                  CGF.CGM.FloatTy),
2731             input, "incdec.conv");
2732       } else {
2733         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2734       }
2735     }
2736 
2737     if (value->getType()->isFloatTy())
2738       amt = llvm::ConstantFP::get(VMContext,
2739                                   llvm::APFloat(static_cast<float>(amount)));
2740     else if (value->getType()->isDoubleTy())
2741       amt = llvm::ConstantFP::get(VMContext,
2742                                   llvm::APFloat(static_cast<double>(amount)));
2743     else {
2744       // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2745       // from float.
2746       llvm::APFloat F(static_cast<float>(amount));
2747       bool ignored;
2748       const llvm::fltSemantics *FS;
2749       // Don't use getFloatTypeSemantics because Half isn't
2750       // necessarily represented using the "half" LLVM type.
2751       if (value->getType()->isFP128Ty())
2752         FS = &CGF.getTarget().getFloat128Format();
2753       else if (value->getType()->isHalfTy())
2754         FS = &CGF.getTarget().getHalfFormat();
2755       else if (value->getType()->isPPC_FP128Ty())
2756         FS = &CGF.getTarget().getIbm128Format();
2757       else
2758         FS = &CGF.getTarget().getLongDoubleFormat();
2759       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2760       amt = llvm::ConstantFP::get(VMContext, F);
2761     }
2762     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2763 
2764     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2765       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2766         value = Builder.CreateCall(
2767             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2768                                  CGF.CGM.FloatTy),
2769             value, "incdec.conv");
2770       } else {
2771         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2772       }
2773     }
2774 
2775   // Fixed-point types.
2776   } else if (type->isFixedPointType()) {
2777     // Fixed-point types are tricky. In some cases, it isn't possible to
2778     // represent a 1 or a -1 in the type at all. Piggyback off of
2779     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2780     BinOpInfo Info;
2781     Info.E = E;
2782     Info.Ty = E->getType();
2783     Info.Opcode = isInc ? BO_Add : BO_Sub;
2784     Info.LHS = value;
2785     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2786     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2787     // since -1 is guaranteed to be representable.
2788     if (type->isSignedFixedPointType()) {
2789       Info.Opcode = isInc ? BO_Sub : BO_Add;
2790       Info.RHS = Builder.CreateNeg(Info.RHS);
2791     }
2792     // Now, convert from our invented integer literal to the type of the unary
2793     // op. This will upscale and saturate if necessary. This value can become
2794     // undef in some cases.
2795     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2796     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2797     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2798     value = EmitFixedPointBinOp(Info);
2799 
2800   // Objective-C pointer types.
2801   } else {
2802     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2803     value = CGF.EmitCastToVoidPtr(value);
2804 
2805     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2806     if (!isInc) size = -size;
2807     llvm::Value *sizeValue =
2808       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2809 
2810     if (CGF.getLangOpts().isSignedOverflowDefined())
2811       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2812     else
2813       value = CGF.EmitCheckedInBoundsGEP(
2814           CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2815           E->getExprLoc(), "incdec.objptr");
2816     value = Builder.CreateBitCast(value, input->getType());
2817   }
2818 
2819   if (atomicPHI) {
2820     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2821     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2822     auto Pair = CGF.EmitAtomicCompareExchange(
2823         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2824     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2825     llvm::Value *success = Pair.second;
2826     atomicPHI->addIncoming(old, curBlock);
2827     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2828     Builder.SetInsertPoint(contBB);
2829     return isPre ? value : input;
2830   }
2831 
2832   // Store the updated result through the lvalue.
2833   if (LV.isBitField())
2834     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2835   else
2836     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2837 
2838   // If this is a postinc, return the value read from memory, otherwise use the
2839   // updated value.
2840   return isPre ? value : input;
2841 }
2842 
2843 
2844 Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
2845                                          QualType PromotionType) {
2846   QualType promotionTy = PromotionType.isNull()
2847                              ? getPromotionType(E->getSubExpr()->getType())
2848                              : PromotionType;
2849   Value *result = VisitPlus(E, promotionTy);
2850   if (result && !promotionTy.isNull())
2851     result = EmitUnPromotedValue(result, E->getType());
2852   return result;
2853 }
2854 
2855 Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
2856                                     QualType PromotionType) {
2857   // This differs from gcc, though, most likely due to a bug in gcc.
2858   TestAndClearIgnoreResultAssign();
2859   if (!PromotionType.isNull())
2860     return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2861   return Visit(E->getSubExpr());
2862 }
2863 
2864 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
2865                                           QualType PromotionType) {
2866   QualType promotionTy = PromotionType.isNull()
2867                              ? getPromotionType(E->getSubExpr()->getType())
2868                              : PromotionType;
2869   Value *result = VisitMinus(E, promotionTy);
2870   if (result && !promotionTy.isNull())
2871     result = EmitUnPromotedValue(result, E->getType());
2872   return result;
2873 }
2874 
2875 Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
2876                                      QualType PromotionType) {
2877   TestAndClearIgnoreResultAssign();
2878   Value *Op;
2879   if (!PromotionType.isNull())
2880     Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2881   else
2882     Op = Visit(E->getSubExpr());
2883 
2884   // Generate a unary FNeg for FP ops.
2885   if (Op->getType()->isFPOrFPVectorTy())
2886     return Builder.CreateFNeg(Op, "fneg");
2887 
2888   // Emit unary minus with EmitSub so we handle overflow cases etc.
2889   BinOpInfo BinOp;
2890   BinOp.RHS = Op;
2891   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2892   BinOp.Ty = E->getType();
2893   BinOp.Opcode = BO_Sub;
2894   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2895   BinOp.E = E;
2896   return EmitSub(BinOp);
2897 }
2898 
2899 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2900   TestAndClearIgnoreResultAssign();
2901   Value *Op = Visit(E->getSubExpr());
2902   return Builder.CreateNot(Op, "not");
2903 }
2904 
2905 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2906   // Perform vector logical not on comparison with zero vector.
2907   if (E->getType()->isVectorType() &&
2908       E->getType()->castAs<VectorType>()->getVectorKind() ==
2909           VectorType::GenericVector) {
2910     Value *Oper = Visit(E->getSubExpr());
2911     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2912     Value *Result;
2913     if (Oper->getType()->isFPOrFPVectorTy()) {
2914       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2915           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2916       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2917     } else
2918       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2919     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2920   }
2921 
2922   // Compare operand to zero.
2923   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2924 
2925   // Invert value.
2926   // TODO: Could dynamically modify easy computations here.  For example, if
2927   // the operand is an icmp ne, turn into icmp eq.
2928   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2929 
2930   // ZExt result to the expr type.
2931   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2932 }
2933 
2934 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2935   // Try folding the offsetof to a constant.
2936   Expr::EvalResult EVResult;
2937   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2938     llvm::APSInt Value = EVResult.Val.getInt();
2939     return Builder.getInt(Value);
2940   }
2941 
2942   // Loop over the components of the offsetof to compute the value.
2943   unsigned n = E->getNumComponents();
2944   llvm::Type* ResultType = ConvertType(E->getType());
2945   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2946   QualType CurrentType = E->getTypeSourceInfo()->getType();
2947   for (unsigned i = 0; i != n; ++i) {
2948     OffsetOfNode ON = E->getComponent(i);
2949     llvm::Value *Offset = nullptr;
2950     switch (ON.getKind()) {
2951     case OffsetOfNode::Array: {
2952       // Compute the index
2953       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2954       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2955       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2956       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2957 
2958       // Save the element type
2959       CurrentType =
2960           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2961 
2962       // Compute the element size
2963       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2964           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2965 
2966       // Multiply out to compute the result
2967       Offset = Builder.CreateMul(Idx, ElemSize);
2968       break;
2969     }
2970 
2971     case OffsetOfNode::Field: {
2972       FieldDecl *MemberDecl = ON.getField();
2973       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2974       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2975 
2976       // Compute the index of the field in its parent.
2977       unsigned i = 0;
2978       // FIXME: It would be nice if we didn't have to loop here!
2979       for (RecordDecl::field_iterator Field = RD->field_begin(),
2980                                       FieldEnd = RD->field_end();
2981            Field != FieldEnd; ++Field, ++i) {
2982         if (*Field == MemberDecl)
2983           break;
2984       }
2985       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2986 
2987       // Compute the offset to the field
2988       int64_t OffsetInt = RL.getFieldOffset(i) /
2989                           CGF.getContext().getCharWidth();
2990       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2991 
2992       // Save the element type.
2993       CurrentType = MemberDecl->getType();
2994       break;
2995     }
2996 
2997     case OffsetOfNode::Identifier:
2998       llvm_unreachable("dependent __builtin_offsetof");
2999 
3000     case OffsetOfNode::Base: {
3001       if (ON.getBase()->isVirtual()) {
3002         CGF.ErrorUnsupported(E, "virtual base in offsetof");
3003         continue;
3004       }
3005 
3006       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3007       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3008 
3009       // Save the element type.
3010       CurrentType = ON.getBase()->getType();
3011 
3012       // Compute the offset to the base.
3013       auto *BaseRT = CurrentType->castAs<RecordType>();
3014       auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3015       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3016       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3017       break;
3018     }
3019     }
3020     Result = Builder.CreateAdd(Result, Offset);
3021   }
3022   return Result;
3023 }
3024 
3025 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3026 /// argument of the sizeof expression as an integer.
3027 Value *
3028 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3029                               const UnaryExprOrTypeTraitExpr *E) {
3030   QualType TypeToSize = E->getTypeOfArgument();
3031   if (E->getKind() == UETT_SizeOf) {
3032     if (const VariableArrayType *VAT =
3033           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3034       if (E->isArgumentType()) {
3035         // sizeof(type) - make sure to emit the VLA size.
3036         CGF.EmitVariablyModifiedType(TypeToSize);
3037       } else {
3038         // C99 6.5.3.4p2: If the argument is an expression of type
3039         // VLA, it is evaluated.
3040         CGF.EmitIgnoredExpr(E->getArgumentExpr());
3041       }
3042 
3043       auto VlaSize = CGF.getVLASize(VAT);
3044       llvm::Value *size = VlaSize.NumElts;
3045 
3046       // Scale the number of non-VLA elements by the non-VLA element size.
3047       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3048       if (!eltSize.isOne())
3049         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3050 
3051       return size;
3052     }
3053   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3054     auto Alignment =
3055         CGF.getContext()
3056             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
3057                 E->getTypeOfArgument()->getPointeeType()))
3058             .getQuantity();
3059     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3060   }
3061 
3062   // If this isn't sizeof(vla), the result must be constant; use the constant
3063   // folding logic so we don't have to duplicate it here.
3064   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3065 }
3066 
3067 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3068                                          QualType PromotionType) {
3069   QualType promotionTy = PromotionType.isNull()
3070                              ? getPromotionType(E->getSubExpr()->getType())
3071                              : PromotionType;
3072   Value *result = VisitReal(E, promotionTy);
3073   if (result && !promotionTy.isNull())
3074     result = EmitUnPromotedValue(result, E->getType());
3075   return result;
3076 }
3077 
3078 Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3079                                     QualType PromotionType) {
3080   Expr *Op = E->getSubExpr();
3081   if (Op->getType()->isAnyComplexType()) {
3082     // If it's an l-value, load through the appropriate subobject l-value.
3083     // Note that we have to ask E because Op might be an l-value that
3084     // this won't work for, e.g. an Obj-C property.
3085     if (E->isGLValue())  {
3086       if (!PromotionType.isNull()) {
3087         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3088             Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3089         if (result.first)
3090           result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3091         return result.first;
3092       } else {
3093         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3094             .getScalarVal();
3095       }
3096     }
3097     // Otherwise, calculate and project.
3098     return CGF.EmitComplexExpr(Op, false, true).first;
3099   }
3100 
3101   if (!PromotionType.isNull())
3102     return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3103   return Visit(Op);
3104 }
3105 
3106 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3107                                          QualType PromotionType) {
3108   QualType promotionTy = PromotionType.isNull()
3109                              ? getPromotionType(E->getSubExpr()->getType())
3110                              : PromotionType;
3111   Value *result = VisitImag(E, promotionTy);
3112   if (result && !promotionTy.isNull())
3113     result = EmitUnPromotedValue(result, E->getType());
3114   return result;
3115 }
3116 
3117 Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3118                                     QualType PromotionType) {
3119   Expr *Op = E->getSubExpr();
3120   if (Op->getType()->isAnyComplexType()) {
3121     // If it's an l-value, load through the appropriate subobject l-value.
3122     // Note that we have to ask E because Op might be an l-value that
3123     // this won't work for, e.g. an Obj-C property.
3124     if (Op->isGLValue()) {
3125       if (!PromotionType.isNull()) {
3126         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3127             Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3128         if (result.second)
3129           result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3130         return result.second;
3131       } else {
3132         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3133             .getScalarVal();
3134       }
3135     }
3136     // Otherwise, calculate and project.
3137     return CGF.EmitComplexExpr(Op, true, false).second;
3138   }
3139 
3140   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3141   // effects are evaluated, but not the actual value.
3142   if (Op->isGLValue())
3143     CGF.EmitLValue(Op);
3144   else if (!PromotionType.isNull())
3145     CGF.EmitPromotedScalarExpr(Op, PromotionType);
3146   else
3147     CGF.EmitScalarExpr(Op, true);
3148   if (!PromotionType.isNull())
3149     return llvm::Constant::getNullValue(ConvertType(PromotionType));
3150   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3151 }
3152 
3153 //===----------------------------------------------------------------------===//
3154 //                           Binary Operators
3155 //===----------------------------------------------------------------------===//
3156 
3157 Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3158                                             QualType PromotionType) {
3159   return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3160 }
3161 
3162 Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3163                                               QualType ExprType) {
3164   return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3165 }
3166 
3167 Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3168   E = E->IgnoreParens();
3169   if (auto BO = dyn_cast<BinaryOperator>(E)) {
3170     switch (BO->getOpcode()) {
3171 #define HANDLE_BINOP(OP)                                                       \
3172   case BO_##OP:                                                                \
3173     return Emit##OP(EmitBinOps(BO, PromotionType));
3174       HANDLE_BINOP(Add)
3175       HANDLE_BINOP(Sub)
3176       HANDLE_BINOP(Mul)
3177       HANDLE_BINOP(Div)
3178 #undef HANDLE_BINOP
3179     default:
3180       break;
3181     }
3182   } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3183     switch (UO->getOpcode()) {
3184     case UO_Imag:
3185       return VisitImag(UO, PromotionType);
3186     case UO_Real:
3187       return VisitReal(UO, PromotionType);
3188     case UO_Minus:
3189       return VisitMinus(UO, PromotionType);
3190     case UO_Plus:
3191       return VisitPlus(UO, PromotionType);
3192     default:
3193       break;
3194     }
3195   }
3196   auto result = Visit(const_cast<Expr *>(E));
3197   if (result) {
3198     if (!PromotionType.isNull())
3199       return EmitPromotedValue(result, PromotionType);
3200     else
3201       return EmitUnPromotedValue(result, E->getType());
3202   }
3203   return result;
3204 }
3205 
3206 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3207                                         QualType PromotionType) {
3208   TestAndClearIgnoreResultAssign();
3209   BinOpInfo Result;
3210   Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3211   Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3212   if (!PromotionType.isNull())
3213     Result.Ty = PromotionType;
3214   else
3215     Result.Ty  = E->getType();
3216   Result.Opcode = E->getOpcode();
3217   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3218   Result.E = E;
3219   return Result;
3220 }
3221 
3222 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3223                                               const CompoundAssignOperator *E,
3224                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3225                                                    Value *&Result) {
3226   QualType LHSTy = E->getLHS()->getType();
3227   BinOpInfo OpInfo;
3228 
3229   if (E->getComputationResultType()->isAnyComplexType())
3230     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3231 
3232   // Emit the RHS first.  __block variables need to have the rhs evaluated
3233   // first, plus this should improve codegen a little.
3234 
3235   QualType PromotionTypeCR;
3236   PromotionTypeCR = getPromotionType(E->getComputationResultType());
3237   if (PromotionTypeCR.isNull())
3238       PromotionTypeCR = E->getComputationResultType();
3239   QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3240   QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3241   if (!PromotionTypeRHS.isNull())
3242     OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3243   else
3244     OpInfo.RHS = Visit(E->getRHS());
3245   OpInfo.Ty = PromotionTypeCR;
3246   OpInfo.Opcode = E->getOpcode();
3247   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3248   OpInfo.E = E;
3249   // Load/convert the LHS.
3250   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3251 
3252   llvm::PHINode *atomicPHI = nullptr;
3253   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3254     QualType type = atomicTy->getValueType();
3255     if (!type->isBooleanType() && type->isIntegerType() &&
3256         !(type->isUnsignedIntegerType() &&
3257           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3258         CGF.getLangOpts().getSignedOverflowBehavior() !=
3259             LangOptions::SOB_Trapping) {
3260       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3261       llvm::Instruction::BinaryOps Op;
3262       switch (OpInfo.Opcode) {
3263         // We don't have atomicrmw operands for *, %, /, <<, >>
3264         case BO_MulAssign: case BO_DivAssign:
3265         case BO_RemAssign:
3266         case BO_ShlAssign:
3267         case BO_ShrAssign:
3268           break;
3269         case BO_AddAssign:
3270           AtomicOp = llvm::AtomicRMWInst::Add;
3271           Op = llvm::Instruction::Add;
3272           break;
3273         case BO_SubAssign:
3274           AtomicOp = llvm::AtomicRMWInst::Sub;
3275           Op = llvm::Instruction::Sub;
3276           break;
3277         case BO_AndAssign:
3278           AtomicOp = llvm::AtomicRMWInst::And;
3279           Op = llvm::Instruction::And;
3280           break;
3281         case BO_XorAssign:
3282           AtomicOp = llvm::AtomicRMWInst::Xor;
3283           Op = llvm::Instruction::Xor;
3284           break;
3285         case BO_OrAssign:
3286           AtomicOp = llvm::AtomicRMWInst::Or;
3287           Op = llvm::Instruction::Or;
3288           break;
3289         default:
3290           llvm_unreachable("Invalid compound assignment type");
3291       }
3292       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3293         llvm::Value *Amt = CGF.EmitToMemory(
3294             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3295                                  E->getExprLoc()),
3296             LHSTy);
3297         Value *OldVal = Builder.CreateAtomicRMW(
3298             AtomicOp, LHSLV.getPointer(CGF), Amt,
3299             llvm::AtomicOrdering::SequentiallyConsistent);
3300 
3301         // Since operation is atomic, the result type is guaranteed to be the
3302         // same as the input in LLVM terms.
3303         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3304         return LHSLV;
3305       }
3306     }
3307     // FIXME: For floating point types, we should be saving and restoring the
3308     // floating point environment in the loop.
3309     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3310     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3311     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3312     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3313     Builder.CreateBr(opBB);
3314     Builder.SetInsertPoint(opBB);
3315     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3316     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3317     OpInfo.LHS = atomicPHI;
3318   }
3319   else
3320     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3321 
3322   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3323   SourceLocation Loc = E->getExprLoc();
3324   if (!PromotionTypeLHS.isNull())
3325     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3326                                       E->getExprLoc());
3327   else
3328     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3329                                       E->getComputationLHSType(), Loc);
3330 
3331   // Expand the binary operator.
3332   Result = (this->*Func)(OpInfo);
3333 
3334   // Convert the result back to the LHS type,
3335   // potentially with Implicit Conversion sanitizer check.
3336   Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3337                                 ScalarConversionOpts(CGF.SanOpts));
3338 
3339   if (atomicPHI) {
3340     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3341     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3342     auto Pair = CGF.EmitAtomicCompareExchange(
3343         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3344     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3345     llvm::Value *success = Pair.second;
3346     atomicPHI->addIncoming(old, curBlock);
3347     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3348     Builder.SetInsertPoint(contBB);
3349     return LHSLV;
3350   }
3351 
3352   // Store the result value into the LHS lvalue. Bit-fields are handled
3353   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3354   // 'An assignment expression has the value of the left operand after the
3355   // assignment...'.
3356   if (LHSLV.isBitField())
3357     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3358   else
3359     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3360 
3361   if (CGF.getLangOpts().OpenMP)
3362     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3363                                                                   E->getLHS());
3364   return LHSLV;
3365 }
3366 
3367 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3368                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3369   bool Ignore = TestAndClearIgnoreResultAssign();
3370   Value *RHS = nullptr;
3371   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3372 
3373   // If the result is clearly ignored, return now.
3374   if (Ignore)
3375     return nullptr;
3376 
3377   // The result of an assignment in C is the assigned r-value.
3378   if (!CGF.getLangOpts().CPlusPlus)
3379     return RHS;
3380 
3381   // If the lvalue is non-volatile, return the computed value of the assignment.
3382   if (!LHS.isVolatileQualified())
3383     return RHS;
3384 
3385   // Otherwise, reload the value.
3386   return EmitLoadOfLValue(LHS, E->getExprLoc());
3387 }
3388 
3389 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3390     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3391   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3392 
3393   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3394     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3395                                     SanitizerKind::IntegerDivideByZero));
3396   }
3397 
3398   const auto *BO = cast<BinaryOperator>(Ops.E);
3399   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3400       Ops.Ty->hasSignedIntegerRepresentation() &&
3401       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3402       Ops.mayHaveIntegerOverflow()) {
3403     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3404 
3405     llvm::Value *IntMin =
3406       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3407     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3408 
3409     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3410     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3411     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3412     Checks.push_back(
3413         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3414   }
3415 
3416   if (Checks.size() > 0)
3417     EmitBinOpCheck(Checks, Ops);
3418 }
3419 
3420 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3421   {
3422     CodeGenFunction::SanitizerScope SanScope(&CGF);
3423     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3424          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3425         Ops.Ty->isIntegerType() &&
3426         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3427       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3428       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3429     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3430                Ops.Ty->isRealFloatingType() &&
3431                Ops.mayHaveFloatDivisionByZero()) {
3432       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3433       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3434       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3435                      Ops);
3436     }
3437   }
3438 
3439   if (Ops.Ty->isConstantMatrixType()) {
3440     llvm::MatrixBuilder MB(Builder);
3441     // We need to check the types of the operands of the operator to get the
3442     // correct matrix dimensions.
3443     auto *BO = cast<BinaryOperator>(Ops.E);
3444     (void)BO;
3445     assert(
3446         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3447         "first operand must be a matrix");
3448     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3449            "second operand must be an arithmetic type");
3450     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3451     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3452                               Ops.Ty->hasUnsignedIntegerRepresentation());
3453   }
3454 
3455   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3456     llvm::Value *Val;
3457     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3458     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3459     if ((CGF.getLangOpts().OpenCL &&
3460          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3461         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3462          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3463       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3464       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3465       // build option allows an application to specify that single precision
3466       // floating-point divide (x/y and 1/x) and sqrt used in the program
3467       // source are correctly rounded.
3468       llvm::Type *ValTy = Val->getType();
3469       if (ValTy->isFloatTy() ||
3470           (isa<llvm::VectorType>(ValTy) &&
3471            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3472         CGF.SetFPAccuracy(Val, 2.5);
3473     }
3474     return Val;
3475   }
3476   else if (Ops.isFixedPointOp())
3477     return EmitFixedPointBinOp(Ops);
3478   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3479     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3480   else
3481     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3482 }
3483 
3484 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3485   // Rem in C can't be a floating point type: C99 6.5.5p2.
3486   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3487        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3488       Ops.Ty->isIntegerType() &&
3489       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3490     CodeGenFunction::SanitizerScope SanScope(&CGF);
3491     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3492     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3493   }
3494 
3495   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3496     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3497   else
3498     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3499 }
3500 
3501 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3502   unsigned IID;
3503   unsigned OpID = 0;
3504   SanitizerHandler OverflowKind;
3505 
3506   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3507   switch (Ops.Opcode) {
3508   case BO_Add:
3509   case BO_AddAssign:
3510     OpID = 1;
3511     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3512                      llvm::Intrinsic::uadd_with_overflow;
3513     OverflowKind = SanitizerHandler::AddOverflow;
3514     break;
3515   case BO_Sub:
3516   case BO_SubAssign:
3517     OpID = 2;
3518     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3519                      llvm::Intrinsic::usub_with_overflow;
3520     OverflowKind = SanitizerHandler::SubOverflow;
3521     break;
3522   case BO_Mul:
3523   case BO_MulAssign:
3524     OpID = 3;
3525     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3526                      llvm::Intrinsic::umul_with_overflow;
3527     OverflowKind = SanitizerHandler::MulOverflow;
3528     break;
3529   default:
3530     llvm_unreachable("Unsupported operation for overflow detection");
3531   }
3532   OpID <<= 1;
3533   if (isSigned)
3534     OpID |= 1;
3535 
3536   CodeGenFunction::SanitizerScope SanScope(&CGF);
3537   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3538 
3539   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3540 
3541   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3542   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3543   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3544 
3545   // Handle overflow with llvm.trap if no custom handler has been specified.
3546   const std::string *handlerName =
3547     &CGF.getLangOpts().OverflowHandler;
3548   if (handlerName->empty()) {
3549     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3550     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3551     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3552       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3553       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3554                               : SanitizerKind::UnsignedIntegerOverflow;
3555       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3556     } else
3557       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3558     return result;
3559   }
3560 
3561   // Branch in case of overflow.
3562   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3563   llvm::BasicBlock *continueBB =
3564       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3565   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3566 
3567   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3568 
3569   // If an overflow handler is set, then we want to call it and then use its
3570   // result, if it returns.
3571   Builder.SetInsertPoint(overflowBB);
3572 
3573   // Get the overflow handler.
3574   llvm::Type *Int8Ty = CGF.Int8Ty;
3575   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3576   llvm::FunctionType *handlerTy =
3577       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3578   llvm::FunctionCallee handler =
3579       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3580 
3581   // Sign extend the args to 64-bit, so that we can use the same handler for
3582   // all types of overflow.
3583   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3584   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3585 
3586   // Call the handler with the two arguments, the operation, and the size of
3587   // the result.
3588   llvm::Value *handlerArgs[] = {
3589     lhs,
3590     rhs,
3591     Builder.getInt8(OpID),
3592     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3593   };
3594   llvm::Value *handlerResult =
3595     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3596 
3597   // Truncate the result back to the desired size.
3598   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3599   Builder.CreateBr(continueBB);
3600 
3601   Builder.SetInsertPoint(continueBB);
3602   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3603   phi->addIncoming(result, initialBB);
3604   phi->addIncoming(handlerResult, overflowBB);
3605 
3606   return phi;
3607 }
3608 
3609 /// Emit pointer + index arithmetic.
3610 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3611                                     const BinOpInfo &op,
3612                                     bool isSubtraction) {
3613   // Must have binary (not unary) expr here.  Unary pointer
3614   // increment/decrement doesn't use this path.
3615   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3616 
3617   Value *pointer = op.LHS;
3618   Expr *pointerOperand = expr->getLHS();
3619   Value *index = op.RHS;
3620   Expr *indexOperand = expr->getRHS();
3621 
3622   // In a subtraction, the LHS is always the pointer.
3623   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3624     std::swap(pointer, index);
3625     std::swap(pointerOperand, indexOperand);
3626   }
3627 
3628   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3629 
3630   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3631   auto &DL = CGF.CGM.getDataLayout();
3632   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3633 
3634   // Some versions of glibc and gcc use idioms (particularly in their malloc
3635   // routines) that add a pointer-sized integer (known to be a pointer value)
3636   // to a null pointer in order to cast the value back to an integer or as
3637   // part of a pointer alignment algorithm.  This is undefined behavior, but
3638   // we'd like to be able to compile programs that use it.
3639   //
3640   // Normally, we'd generate a GEP with a null-pointer base here in response
3641   // to that code, but it's also UB to dereference a pointer created that
3642   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3643   // generate a direct cast of the integer value to a pointer.
3644   //
3645   // The idiom (p = nullptr + N) is not met if any of the following are true:
3646   //
3647   //   The operation is subtraction.
3648   //   The index is not pointer-sized.
3649   //   The pointer type is not byte-sized.
3650   //
3651   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3652                                                        op.Opcode,
3653                                                        expr->getLHS(),
3654                                                        expr->getRHS()))
3655     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3656 
3657   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3658     // Zero-extend or sign-extend the pointer value according to
3659     // whether the index is signed or not.
3660     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3661                                       "idx.ext");
3662   }
3663 
3664   // If this is subtraction, negate the index.
3665   if (isSubtraction)
3666     index = CGF.Builder.CreateNeg(index, "idx.neg");
3667 
3668   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3669     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3670                         /*Accessed*/ false);
3671 
3672   const PointerType *pointerType
3673     = pointerOperand->getType()->getAs<PointerType>();
3674   if (!pointerType) {
3675     QualType objectType = pointerOperand->getType()
3676                                         ->castAs<ObjCObjectPointerType>()
3677                                         ->getPointeeType();
3678     llvm::Value *objectSize
3679       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3680 
3681     index = CGF.Builder.CreateMul(index, objectSize);
3682 
3683     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3684     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3685     return CGF.Builder.CreateBitCast(result, pointer->getType());
3686   }
3687 
3688   QualType elementType = pointerType->getPointeeType();
3689   if (const VariableArrayType *vla
3690         = CGF.getContext().getAsVariableArrayType(elementType)) {
3691     // The element count here is the total number of non-VLA elements.
3692     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3693 
3694     // Effectively, the multiply by the VLA size is part of the GEP.
3695     // GEP indexes are signed, and scaling an index isn't permitted to
3696     // signed-overflow, so we use the same semantics for our explicit
3697     // multiply.  We suppress this if overflow is not undefined behavior.
3698     llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3699     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3700       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3701       pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3702     } else {
3703       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3704       pointer = CGF.EmitCheckedInBoundsGEP(
3705           elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3706           "add.ptr");
3707     }
3708     return pointer;
3709   }
3710 
3711   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3712   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3713   // future proof.
3714   if (elementType->isVoidType() || elementType->isFunctionType()) {
3715     Value *result = CGF.EmitCastToVoidPtr(pointer);
3716     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3717     return CGF.Builder.CreateBitCast(result, pointer->getType());
3718   }
3719 
3720   llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
3721   if (CGF.getLangOpts().isSignedOverflowDefined())
3722     return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3723 
3724   return CGF.EmitCheckedInBoundsGEP(
3725       elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3726       "add.ptr");
3727 }
3728 
3729 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3730 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3731 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3732 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3733 // efficient operations.
3734 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3735                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3736                            bool negMul, bool negAdd) {
3737   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3738 
3739   Value *MulOp0 = MulOp->getOperand(0);
3740   Value *MulOp1 = MulOp->getOperand(1);
3741   if (negMul)
3742     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3743   if (negAdd)
3744     Addend = Builder.CreateFNeg(Addend, "neg");
3745 
3746   Value *FMulAdd = nullptr;
3747   if (Builder.getIsFPConstrained()) {
3748     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3749            "Only constrained operation should be created when Builder is in FP "
3750            "constrained mode");
3751     FMulAdd = Builder.CreateConstrainedFPCall(
3752         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3753                              Addend->getType()),
3754         {MulOp0, MulOp1, Addend});
3755   } else {
3756     FMulAdd = Builder.CreateCall(
3757         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3758         {MulOp0, MulOp1, Addend});
3759   }
3760   MulOp->eraseFromParent();
3761 
3762   return FMulAdd;
3763 }
3764 
3765 // Check whether it would be legal to emit an fmuladd intrinsic call to
3766 // represent op and if so, build the fmuladd.
3767 //
3768 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3769 // Does NOT check the type of the operation - it's assumed that this function
3770 // will be called from contexts where it's known that the type is contractable.
3771 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3772                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3773                          bool isSub=false) {
3774 
3775   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3776           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3777          "Only fadd/fsub can be the root of an fmuladd.");
3778 
3779   // Check whether this op is marked as fusable.
3780   if (!op.FPFeatures.allowFPContractWithinStatement())
3781     return nullptr;
3782 
3783   // We have a potentially fusable op. Look for a mul on one of the operands.
3784   // Also, make sure that the mul result isn't used directly. In that case,
3785   // there's no point creating a muladd operation.
3786   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3787     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3788         LHSBinOp->use_empty())
3789       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3790   }
3791   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3792     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3793         RHSBinOp->use_empty())
3794       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3795   }
3796 
3797   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3798     if (LHSBinOp->getIntrinsicID() ==
3799             llvm::Intrinsic::experimental_constrained_fmul &&
3800         LHSBinOp->use_empty())
3801       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3802   }
3803   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3804     if (RHSBinOp->getIntrinsicID() ==
3805             llvm::Intrinsic::experimental_constrained_fmul &&
3806         RHSBinOp->use_empty())
3807       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3808   }
3809 
3810   return nullptr;
3811 }
3812 
3813 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3814   if (op.LHS->getType()->isPointerTy() ||
3815       op.RHS->getType()->isPointerTy())
3816     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3817 
3818   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3819     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3820     case LangOptions::SOB_Defined:
3821       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3822     case LangOptions::SOB_Undefined:
3823       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3824         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3825       [[fallthrough]];
3826     case LangOptions::SOB_Trapping:
3827       if (CanElideOverflowCheck(CGF.getContext(), op))
3828         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3829       return EmitOverflowCheckedBinOp(op);
3830     }
3831   }
3832 
3833   if (op.Ty->isConstantMatrixType()) {
3834     llvm::MatrixBuilder MB(Builder);
3835     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3836     return MB.CreateAdd(op.LHS, op.RHS);
3837   }
3838 
3839   if (op.Ty->isUnsignedIntegerType() &&
3840       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3841       !CanElideOverflowCheck(CGF.getContext(), op))
3842     return EmitOverflowCheckedBinOp(op);
3843 
3844   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3845     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3846     // Try to form an fmuladd.
3847     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3848       return FMulAdd;
3849 
3850     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3851   }
3852 
3853   if (op.isFixedPointOp())
3854     return EmitFixedPointBinOp(op);
3855 
3856   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3857 }
3858 
3859 /// The resulting value must be calculated with exact precision, so the operands
3860 /// may not be the same type.
3861 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3862   using llvm::APSInt;
3863   using llvm::ConstantInt;
3864 
3865   // This is either a binary operation where at least one of the operands is
3866   // a fixed-point type, or a unary operation where the operand is a fixed-point
3867   // type. The result type of a binary operation is determined by
3868   // Sema::handleFixedPointConversions().
3869   QualType ResultTy = op.Ty;
3870   QualType LHSTy, RHSTy;
3871   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3872     RHSTy = BinOp->getRHS()->getType();
3873     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3874       // For compound assignment, the effective type of the LHS at this point
3875       // is the computation LHS type, not the actual LHS type, and the final
3876       // result type is not the type of the expression but rather the
3877       // computation result type.
3878       LHSTy = CAO->getComputationLHSType();
3879       ResultTy = CAO->getComputationResultType();
3880     } else
3881       LHSTy = BinOp->getLHS()->getType();
3882   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3883     LHSTy = UnOp->getSubExpr()->getType();
3884     RHSTy = UnOp->getSubExpr()->getType();
3885   }
3886   ASTContext &Ctx = CGF.getContext();
3887   Value *LHS = op.LHS;
3888   Value *RHS = op.RHS;
3889 
3890   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3891   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3892   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3893   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3894 
3895   // Perform the actual operation.
3896   Value *Result;
3897   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3898   switch (op.Opcode) {
3899   case BO_AddAssign:
3900   case BO_Add:
3901     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3902     break;
3903   case BO_SubAssign:
3904   case BO_Sub:
3905     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3906     break;
3907   case BO_MulAssign:
3908   case BO_Mul:
3909     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3910     break;
3911   case BO_DivAssign:
3912   case BO_Div:
3913     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3914     break;
3915   case BO_ShlAssign:
3916   case BO_Shl:
3917     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3918     break;
3919   case BO_ShrAssign:
3920   case BO_Shr:
3921     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3922     break;
3923   case BO_LT:
3924     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3925   case BO_GT:
3926     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3927   case BO_LE:
3928     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3929   case BO_GE:
3930     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3931   case BO_EQ:
3932     // For equality operations, we assume any padding bits on unsigned types are
3933     // zero'd out. They could be overwritten through non-saturating operations
3934     // that cause overflow, but this leads to undefined behavior.
3935     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3936   case BO_NE:
3937     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3938   case BO_Cmp:
3939   case BO_LAnd:
3940   case BO_LOr:
3941     llvm_unreachable("Found unimplemented fixed point binary operation");
3942   case BO_PtrMemD:
3943   case BO_PtrMemI:
3944   case BO_Rem:
3945   case BO_Xor:
3946   case BO_And:
3947   case BO_Or:
3948   case BO_Assign:
3949   case BO_RemAssign:
3950   case BO_AndAssign:
3951   case BO_XorAssign:
3952   case BO_OrAssign:
3953   case BO_Comma:
3954     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3955   }
3956 
3957   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3958                  BinaryOperator::isShiftAssignOp(op.Opcode);
3959   // Convert to the result type.
3960   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3961                                                       : CommonFixedSema,
3962                                       ResultFixedSema);
3963 }
3964 
3965 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3966   // The LHS is always a pointer if either side is.
3967   if (!op.LHS->getType()->isPointerTy()) {
3968     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3969       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3970       case LangOptions::SOB_Defined:
3971         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3972       case LangOptions::SOB_Undefined:
3973         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3974           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3975         [[fallthrough]];
3976       case LangOptions::SOB_Trapping:
3977         if (CanElideOverflowCheck(CGF.getContext(), op))
3978           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3979         return EmitOverflowCheckedBinOp(op);
3980       }
3981     }
3982 
3983     if (op.Ty->isConstantMatrixType()) {
3984       llvm::MatrixBuilder MB(Builder);
3985       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3986       return MB.CreateSub(op.LHS, op.RHS);
3987     }
3988 
3989     if (op.Ty->isUnsignedIntegerType() &&
3990         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3991         !CanElideOverflowCheck(CGF.getContext(), op))
3992       return EmitOverflowCheckedBinOp(op);
3993 
3994     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3995       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3996       // Try to form an fmuladd.
3997       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3998         return FMulAdd;
3999       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4000     }
4001 
4002     if (op.isFixedPointOp())
4003       return EmitFixedPointBinOp(op);
4004 
4005     return Builder.CreateSub(op.LHS, op.RHS, "sub");
4006   }
4007 
4008   // If the RHS is not a pointer, then we have normal pointer
4009   // arithmetic.
4010   if (!op.RHS->getType()->isPointerTy())
4011     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
4012 
4013   // Otherwise, this is a pointer subtraction.
4014 
4015   // Do the raw subtraction part.
4016   llvm::Value *LHS
4017     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4018   llvm::Value *RHS
4019     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4020   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4021 
4022   // Okay, figure out the element size.
4023   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4024   QualType elementType = expr->getLHS()->getType()->getPointeeType();
4025 
4026   llvm::Value *divisor = nullptr;
4027 
4028   // For a variable-length array, this is going to be non-constant.
4029   if (const VariableArrayType *vla
4030         = CGF.getContext().getAsVariableArrayType(elementType)) {
4031     auto VlaSize = CGF.getVLASize(vla);
4032     elementType = VlaSize.Type;
4033     divisor = VlaSize.NumElts;
4034 
4035     // Scale the number of non-VLA elements by the non-VLA element size.
4036     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4037     if (!eltSize.isOne())
4038       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4039 
4040   // For everything elese, we can just compute it, safe in the
4041   // assumption that Sema won't let anything through that we can't
4042   // safely compute the size of.
4043   } else {
4044     CharUnits elementSize;
4045     // Handle GCC extension for pointer arithmetic on void* and
4046     // function pointer types.
4047     if (elementType->isVoidType() || elementType->isFunctionType())
4048       elementSize = CharUnits::One();
4049     else
4050       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4051 
4052     // Don't even emit the divide for element size of 1.
4053     if (elementSize.isOne())
4054       return diffInChars;
4055 
4056     divisor = CGF.CGM.getSize(elementSize);
4057   }
4058 
4059   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4060   // pointer difference in C is only defined in the case where both operands
4061   // are pointing to elements of an array.
4062   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4063 }
4064 
4065 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
4066   llvm::IntegerType *Ty;
4067   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4068     Ty = cast<llvm::IntegerType>(VT->getElementType());
4069   else
4070     Ty = cast<llvm::IntegerType>(LHS->getType());
4071   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
4072 }
4073 
4074 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4075                                               const Twine &Name) {
4076   llvm::IntegerType *Ty;
4077   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4078     Ty = cast<llvm::IntegerType>(VT->getElementType());
4079   else
4080     Ty = cast<llvm::IntegerType>(LHS->getType());
4081 
4082   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4083         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
4084 
4085   return Builder.CreateURem(
4086       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4087 }
4088 
4089 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4090   // TODO: This misses out on the sanitizer check below.
4091   if (Ops.isFixedPointOp())
4092     return EmitFixedPointBinOp(Ops);
4093 
4094   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4095   // RHS to the same size as the LHS.
4096   Value *RHS = Ops.RHS;
4097   if (Ops.LHS->getType() != RHS->getType())
4098     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4099 
4100   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4101                             Ops.Ty->hasSignedIntegerRepresentation() &&
4102                             !CGF.getLangOpts().isSignedOverflowDefined() &&
4103                             !CGF.getLangOpts().CPlusPlus20;
4104   bool SanitizeUnsignedBase =
4105       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4106       Ops.Ty->hasUnsignedIntegerRepresentation();
4107   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4108   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4109   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4110   if (CGF.getLangOpts().OpenCL)
4111     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4112   else if ((SanitizeBase || SanitizeExponent) &&
4113            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4114     CodeGenFunction::SanitizerScope SanScope(&CGF);
4115     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
4116     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
4117     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4118 
4119     if (SanitizeExponent) {
4120       Checks.push_back(
4121           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4122     }
4123 
4124     if (SanitizeBase) {
4125       // Check whether we are shifting any non-zero bits off the top of the
4126       // integer. We only emit this check if exponent is valid - otherwise
4127       // instructions below will have undefined behavior themselves.
4128       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4129       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4130       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4131       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4132       llvm::Value *PromotedWidthMinusOne =
4133           (RHS == Ops.RHS) ? WidthMinusOne
4134                            : GetWidthMinusOneValue(Ops.LHS, RHS);
4135       CGF.EmitBlock(CheckShiftBase);
4136       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4137           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4138                                      /*NUW*/ true, /*NSW*/ true),
4139           "shl.check");
4140       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4141         // In C99, we are not permitted to shift a 1 bit into the sign bit.
4142         // Under C++11's rules, shifting a 1 bit into the sign bit is
4143         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4144         // define signed left shifts, so we use the C99 and C++11 rules there).
4145         // Unsigned shifts can always shift into the top bit.
4146         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4147         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4148       }
4149       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4150       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4151       CGF.EmitBlock(Cont);
4152       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4153       BaseCheck->addIncoming(Builder.getTrue(), Orig);
4154       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4155       Checks.push_back(std::make_pair(
4156           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4157                                         : SanitizerKind::UnsignedShiftBase));
4158     }
4159 
4160     assert(!Checks.empty());
4161     EmitBinOpCheck(Checks, Ops);
4162   }
4163 
4164   return Builder.CreateShl(Ops.LHS, RHS, "shl");
4165 }
4166 
4167 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4168   // TODO: This misses out on the sanitizer check below.
4169   if (Ops.isFixedPointOp())
4170     return EmitFixedPointBinOp(Ops);
4171 
4172   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4173   // RHS to the same size as the LHS.
4174   Value *RHS = Ops.RHS;
4175   if (Ops.LHS->getType() != RHS->getType())
4176     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4177 
4178   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4179   if (CGF.getLangOpts().OpenCL)
4180     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4181   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4182            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4183     CodeGenFunction::SanitizerScope SanScope(&CGF);
4184     llvm::Value *Valid =
4185         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4186     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4187   }
4188 
4189   if (Ops.Ty->hasUnsignedIntegerRepresentation())
4190     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4191   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4192 }
4193 
4194 enum IntrinsicType { VCMPEQ, VCMPGT };
4195 // return corresponding comparison intrinsic for given vector type
4196 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4197                                         BuiltinType::Kind ElemKind) {
4198   switch (ElemKind) {
4199   default: llvm_unreachable("unexpected element type");
4200   case BuiltinType::Char_U:
4201   case BuiltinType::UChar:
4202     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4203                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4204   case BuiltinType::Char_S:
4205   case BuiltinType::SChar:
4206     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4207                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4208   case BuiltinType::UShort:
4209     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4210                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4211   case BuiltinType::Short:
4212     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4213                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4214   case BuiltinType::UInt:
4215     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4216                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4217   case BuiltinType::Int:
4218     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4219                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4220   case BuiltinType::ULong:
4221   case BuiltinType::ULongLong:
4222     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4223                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4224   case BuiltinType::Long:
4225   case BuiltinType::LongLong:
4226     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4227                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4228   case BuiltinType::Float:
4229     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4230                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4231   case BuiltinType::Double:
4232     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4233                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4234   case BuiltinType::UInt128:
4235     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4236                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4237   case BuiltinType::Int128:
4238     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4239                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4240   }
4241 }
4242 
4243 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4244                                       llvm::CmpInst::Predicate UICmpOpc,
4245                                       llvm::CmpInst::Predicate SICmpOpc,
4246                                       llvm::CmpInst::Predicate FCmpOpc,
4247                                       bool IsSignaling) {
4248   TestAndClearIgnoreResultAssign();
4249   Value *Result;
4250   QualType LHSTy = E->getLHS()->getType();
4251   QualType RHSTy = E->getRHS()->getType();
4252   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4253     assert(E->getOpcode() == BO_EQ ||
4254            E->getOpcode() == BO_NE);
4255     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4256     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4257     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4258                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4259   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4260     BinOpInfo BOInfo = EmitBinOps(E);
4261     Value *LHS = BOInfo.LHS;
4262     Value *RHS = BOInfo.RHS;
4263 
4264     // If AltiVec, the comparison results in a numeric type, so we use
4265     // intrinsics comparing vectors and giving 0 or 1 as a result
4266     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4267       // constants for mapping CR6 register bits to predicate result
4268       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4269 
4270       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4271 
4272       // in several cases vector arguments order will be reversed
4273       Value *FirstVecArg = LHS,
4274             *SecondVecArg = RHS;
4275 
4276       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4277       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4278 
4279       switch(E->getOpcode()) {
4280       default: llvm_unreachable("is not a comparison operation");
4281       case BO_EQ:
4282         CR6 = CR6_LT;
4283         ID = GetIntrinsic(VCMPEQ, ElementKind);
4284         break;
4285       case BO_NE:
4286         CR6 = CR6_EQ;
4287         ID = GetIntrinsic(VCMPEQ, ElementKind);
4288         break;
4289       case BO_LT:
4290         CR6 = CR6_LT;
4291         ID = GetIntrinsic(VCMPGT, ElementKind);
4292         std::swap(FirstVecArg, SecondVecArg);
4293         break;
4294       case BO_GT:
4295         CR6 = CR6_LT;
4296         ID = GetIntrinsic(VCMPGT, ElementKind);
4297         break;
4298       case BO_LE:
4299         if (ElementKind == BuiltinType::Float) {
4300           CR6 = CR6_LT;
4301           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4302           std::swap(FirstVecArg, SecondVecArg);
4303         }
4304         else {
4305           CR6 = CR6_EQ;
4306           ID = GetIntrinsic(VCMPGT, ElementKind);
4307         }
4308         break;
4309       case BO_GE:
4310         if (ElementKind == BuiltinType::Float) {
4311           CR6 = CR6_LT;
4312           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4313         }
4314         else {
4315           CR6 = CR6_EQ;
4316           ID = GetIntrinsic(VCMPGT, ElementKind);
4317           std::swap(FirstVecArg, SecondVecArg);
4318         }
4319         break;
4320       }
4321 
4322       Value *CR6Param = Builder.getInt32(CR6);
4323       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4324       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4325 
4326       // The result type of intrinsic may not be same as E->getType().
4327       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4328       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4329       // do nothing, if ResultTy is not i1 at the same time, it will cause
4330       // crash later.
4331       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4332       if (ResultTy->getBitWidth() > 1 &&
4333           E->getType() == CGF.getContext().BoolTy)
4334         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4335       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4336                                   E->getExprLoc());
4337     }
4338 
4339     if (BOInfo.isFixedPointOp()) {
4340       Result = EmitFixedPointBinOp(BOInfo);
4341     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4342       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4343       if (!IsSignaling)
4344         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4345       else
4346         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4347     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4348       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4349     } else {
4350       // Unsigned integers and pointers.
4351 
4352       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4353           !isa<llvm::ConstantPointerNull>(LHS) &&
4354           !isa<llvm::ConstantPointerNull>(RHS)) {
4355 
4356         // Dynamic information is required to be stripped for comparisons,
4357         // because it could leak the dynamic information.  Based on comparisons
4358         // of pointers to dynamic objects, the optimizer can replace one pointer
4359         // with another, which might be incorrect in presence of invariant
4360         // groups. Comparison with null is safe because null does not carry any
4361         // dynamic information.
4362         if (LHSTy.mayBeDynamicClass())
4363           LHS = Builder.CreateStripInvariantGroup(LHS);
4364         if (RHSTy.mayBeDynamicClass())
4365           RHS = Builder.CreateStripInvariantGroup(RHS);
4366       }
4367 
4368       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4369     }
4370 
4371     // If this is a vector comparison, sign extend the result to the appropriate
4372     // vector integer type and return it (don't convert to bool).
4373     if (LHSTy->isVectorType())
4374       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4375 
4376   } else {
4377     // Complex Comparison: can only be an equality comparison.
4378     CodeGenFunction::ComplexPairTy LHS, RHS;
4379     QualType CETy;
4380     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4381       LHS = CGF.EmitComplexExpr(E->getLHS());
4382       CETy = CTy->getElementType();
4383     } else {
4384       LHS.first = Visit(E->getLHS());
4385       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4386       CETy = LHSTy;
4387     }
4388     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4389       RHS = CGF.EmitComplexExpr(E->getRHS());
4390       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4391                                                      CTy->getElementType()) &&
4392              "The element types must always match.");
4393       (void)CTy;
4394     } else {
4395       RHS.first = Visit(E->getRHS());
4396       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4397       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4398              "The element types must always match.");
4399     }
4400 
4401     Value *ResultR, *ResultI;
4402     if (CETy->isRealFloatingType()) {
4403       // As complex comparisons can only be equality comparisons, they
4404       // are never signaling comparisons.
4405       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4406       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4407     } else {
4408       // Complex comparisons can only be equality comparisons.  As such, signed
4409       // and unsigned opcodes are the same.
4410       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4411       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4412     }
4413 
4414     if (E->getOpcode() == BO_EQ) {
4415       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4416     } else {
4417       assert(E->getOpcode() == BO_NE &&
4418              "Complex comparison other than == or != ?");
4419       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4420     }
4421   }
4422 
4423   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4424                               E->getExprLoc());
4425 }
4426 
4427 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4428   bool Ignore = TestAndClearIgnoreResultAssign();
4429 
4430   Value *RHS;
4431   LValue LHS;
4432 
4433   switch (E->getLHS()->getType().getObjCLifetime()) {
4434   case Qualifiers::OCL_Strong:
4435     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4436     break;
4437 
4438   case Qualifiers::OCL_Autoreleasing:
4439     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4440     break;
4441 
4442   case Qualifiers::OCL_ExplicitNone:
4443     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4444     break;
4445 
4446   case Qualifiers::OCL_Weak:
4447     RHS = Visit(E->getRHS());
4448     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4449     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4450     break;
4451 
4452   case Qualifiers::OCL_None:
4453     // __block variables need to have the rhs evaluated first, plus
4454     // this should improve codegen just a little.
4455     RHS = Visit(E->getRHS());
4456     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4457 
4458     // Store the value into the LHS.  Bit-fields are handled specially
4459     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4460     // 'An assignment expression has the value of the left operand after
4461     // the assignment...'.
4462     if (LHS.isBitField()) {
4463       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4464     } else {
4465       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4466       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4467     }
4468   }
4469 
4470   // If the result is clearly ignored, return now.
4471   if (Ignore)
4472     return nullptr;
4473 
4474   // The result of an assignment in C is the assigned r-value.
4475   if (!CGF.getLangOpts().CPlusPlus)
4476     return RHS;
4477 
4478   // If the lvalue is non-volatile, return the computed value of the assignment.
4479   if (!LHS.isVolatileQualified())
4480     return RHS;
4481 
4482   // Otherwise, reload the value.
4483   return EmitLoadOfLValue(LHS, E->getExprLoc());
4484 }
4485 
4486 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4487   // Perform vector logical and on comparisons with zero vectors.
4488   if (E->getType()->isVectorType()) {
4489     CGF.incrementProfileCounter(E);
4490 
4491     Value *LHS = Visit(E->getLHS());
4492     Value *RHS = Visit(E->getRHS());
4493     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4494     if (LHS->getType()->isFPOrFPVectorTy()) {
4495       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4496           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4497       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4498       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4499     } else {
4500       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4501       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4502     }
4503     Value *And = Builder.CreateAnd(LHS, RHS);
4504     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4505   }
4506 
4507   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4508   llvm::Type *ResTy = ConvertType(E->getType());
4509 
4510   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4511   // If we have 1 && X, just emit X without inserting the control flow.
4512   bool LHSCondVal;
4513   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4514     if (LHSCondVal) { // If we have 1 && X, just emit X.
4515       CGF.incrementProfileCounter(E);
4516 
4517       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4518 
4519       // If we're generating for profiling or coverage, generate a branch to a
4520       // block that increments the RHS counter needed to track branch condition
4521       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4522       // "FalseBlock" after the increment is done.
4523       if (InstrumentRegions &&
4524           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4525         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4526         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4527         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4528         CGF.EmitBlock(RHSBlockCnt);
4529         CGF.incrementProfileCounter(E->getRHS());
4530         CGF.EmitBranch(FBlock);
4531         CGF.EmitBlock(FBlock);
4532       }
4533 
4534       // ZExt result to int or bool.
4535       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4536     }
4537 
4538     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4539     if (!CGF.ContainsLabel(E->getRHS()))
4540       return llvm::Constant::getNullValue(ResTy);
4541   }
4542 
4543   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4544   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4545 
4546   CodeGenFunction::ConditionalEvaluation eval(CGF);
4547 
4548   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4549   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4550                            CGF.getProfileCount(E->getRHS()));
4551 
4552   // Any edges into the ContBlock are now from an (indeterminate number of)
4553   // edges from this first condition.  All of these values will be false.  Start
4554   // setting up the PHI node in the Cont Block for this.
4555   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4556                                             "", ContBlock);
4557   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4558        PI != PE; ++PI)
4559     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4560 
4561   eval.begin(CGF);
4562   CGF.EmitBlock(RHSBlock);
4563   CGF.incrementProfileCounter(E);
4564   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4565   eval.end(CGF);
4566 
4567   // Reaquire the RHS block, as there may be subblocks inserted.
4568   RHSBlock = Builder.GetInsertBlock();
4569 
4570   // If we're generating for profiling or coverage, generate a branch on the
4571   // RHS to a block that increments the RHS true counter needed to track branch
4572   // condition coverage.
4573   if (InstrumentRegions &&
4574       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4575     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4576     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4577     CGF.EmitBlock(RHSBlockCnt);
4578     CGF.incrementProfileCounter(E->getRHS());
4579     CGF.EmitBranch(ContBlock);
4580     PN->addIncoming(RHSCond, RHSBlockCnt);
4581   }
4582 
4583   // Emit an unconditional branch from this block to ContBlock.
4584   {
4585     // There is no need to emit line number for unconditional branch.
4586     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4587     CGF.EmitBlock(ContBlock);
4588   }
4589   // Insert an entry into the phi node for the edge with the value of RHSCond.
4590   PN->addIncoming(RHSCond, RHSBlock);
4591 
4592   // Artificial location to preserve the scope information
4593   {
4594     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4595     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4596   }
4597 
4598   // ZExt result to int.
4599   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4600 }
4601 
4602 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4603   // Perform vector logical or on comparisons with zero vectors.
4604   if (E->getType()->isVectorType()) {
4605     CGF.incrementProfileCounter(E);
4606 
4607     Value *LHS = Visit(E->getLHS());
4608     Value *RHS = Visit(E->getRHS());
4609     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4610     if (LHS->getType()->isFPOrFPVectorTy()) {
4611       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4612           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4613       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4614       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4615     } else {
4616       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4617       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4618     }
4619     Value *Or = Builder.CreateOr(LHS, RHS);
4620     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4621   }
4622 
4623   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4624   llvm::Type *ResTy = ConvertType(E->getType());
4625 
4626   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4627   // If we have 0 || X, just emit X without inserting the control flow.
4628   bool LHSCondVal;
4629   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4630     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4631       CGF.incrementProfileCounter(E);
4632 
4633       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4634 
4635       // If we're generating for profiling or coverage, generate a branch to a
4636       // block that increments the RHS counter need to track branch condition
4637       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4638       // "FalseBlock" after the increment is done.
4639       if (InstrumentRegions &&
4640           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4641         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4642         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4643         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4644         CGF.EmitBlock(RHSBlockCnt);
4645         CGF.incrementProfileCounter(E->getRHS());
4646         CGF.EmitBranch(FBlock);
4647         CGF.EmitBlock(FBlock);
4648       }
4649 
4650       // ZExt result to int or bool.
4651       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4652     }
4653 
4654     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4655     if (!CGF.ContainsLabel(E->getRHS()))
4656       return llvm::ConstantInt::get(ResTy, 1);
4657   }
4658 
4659   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4660   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4661 
4662   CodeGenFunction::ConditionalEvaluation eval(CGF);
4663 
4664   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4665   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4666                            CGF.getCurrentProfileCount() -
4667                                CGF.getProfileCount(E->getRHS()));
4668 
4669   // Any edges into the ContBlock are now from an (indeterminate number of)
4670   // edges from this first condition.  All of these values will be true.  Start
4671   // setting up the PHI node in the Cont Block for this.
4672   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4673                                             "", ContBlock);
4674   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4675        PI != PE; ++PI)
4676     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4677 
4678   eval.begin(CGF);
4679 
4680   // Emit the RHS condition as a bool value.
4681   CGF.EmitBlock(RHSBlock);
4682   CGF.incrementProfileCounter(E);
4683   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4684 
4685   eval.end(CGF);
4686 
4687   // Reaquire the RHS block, as there may be subblocks inserted.
4688   RHSBlock = Builder.GetInsertBlock();
4689 
4690   // If we're generating for profiling or coverage, generate a branch on the
4691   // RHS to a block that increments the RHS true counter needed to track branch
4692   // condition coverage.
4693   if (InstrumentRegions &&
4694       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4695     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4696     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4697     CGF.EmitBlock(RHSBlockCnt);
4698     CGF.incrementProfileCounter(E->getRHS());
4699     CGF.EmitBranch(ContBlock);
4700     PN->addIncoming(RHSCond, RHSBlockCnt);
4701   }
4702 
4703   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4704   // into the phi node for the edge with the value of RHSCond.
4705   CGF.EmitBlock(ContBlock);
4706   PN->addIncoming(RHSCond, RHSBlock);
4707 
4708   // ZExt result to int.
4709   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4710 }
4711 
4712 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4713   CGF.EmitIgnoredExpr(E->getLHS());
4714   CGF.EnsureInsertPoint();
4715   return Visit(E->getRHS());
4716 }
4717 
4718 //===----------------------------------------------------------------------===//
4719 //                             Other Operators
4720 //===----------------------------------------------------------------------===//
4721 
4722 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4723 /// expression is cheap enough and side-effect-free enough to evaluate
4724 /// unconditionally instead of conditionally.  This is used to convert control
4725 /// flow into selects in some cases.
4726 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4727                                                    CodeGenFunction &CGF) {
4728   // Anything that is an integer or floating point constant is fine.
4729   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4730 
4731   // Even non-volatile automatic variables can't be evaluated unconditionally.
4732   // Referencing a thread_local may cause non-trivial initialization work to
4733   // occur. If we're inside a lambda and one of the variables is from the scope
4734   // outside the lambda, that function may have returned already. Reading its
4735   // locals is a bad idea. Also, these reads may introduce races there didn't
4736   // exist in the source-level program.
4737 }
4738 
4739 
4740 Value *ScalarExprEmitter::
4741 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4742   TestAndClearIgnoreResultAssign();
4743 
4744   // Bind the common expression if necessary.
4745   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4746 
4747   Expr *condExpr = E->getCond();
4748   Expr *lhsExpr = E->getTrueExpr();
4749   Expr *rhsExpr = E->getFalseExpr();
4750 
4751   // If the condition constant folds and can be elided, try to avoid emitting
4752   // the condition and the dead arm.
4753   bool CondExprBool;
4754   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4755     Expr *live = lhsExpr, *dead = rhsExpr;
4756     if (!CondExprBool) std::swap(live, dead);
4757 
4758     // If the dead side doesn't have labels we need, just emit the Live part.
4759     if (!CGF.ContainsLabel(dead)) {
4760       if (CondExprBool)
4761         CGF.incrementProfileCounter(E);
4762       Value *Result = Visit(live);
4763 
4764       // If the live part is a throw expression, it acts like it has a void
4765       // type, so evaluating it returns a null Value*.  However, a conditional
4766       // with non-void type must return a non-null Value*.
4767       if (!Result && !E->getType()->isVoidType())
4768         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4769 
4770       return Result;
4771     }
4772   }
4773 
4774   // OpenCL: If the condition is a vector, we can treat this condition like
4775   // the select function.
4776   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4777       condExpr->getType()->isExtVectorType()) {
4778     CGF.incrementProfileCounter(E);
4779 
4780     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4781     llvm::Value *LHS = Visit(lhsExpr);
4782     llvm::Value *RHS = Visit(rhsExpr);
4783 
4784     llvm::Type *condType = ConvertType(condExpr->getType());
4785     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4786 
4787     unsigned numElem = vecTy->getNumElements();
4788     llvm::Type *elemType = vecTy->getElementType();
4789 
4790     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4791     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4792     llvm::Value *tmp = Builder.CreateSExt(
4793         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4794     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4795 
4796     // Cast float to int to perform ANDs if necessary.
4797     llvm::Value *RHSTmp = RHS;
4798     llvm::Value *LHSTmp = LHS;
4799     bool wasCast = false;
4800     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4801     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4802       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4803       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4804       wasCast = true;
4805     }
4806 
4807     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4808     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4809     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4810     if (wasCast)
4811       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4812 
4813     return tmp5;
4814   }
4815 
4816   if (condExpr->getType()->isVectorType() ||
4817       condExpr->getType()->isVLSTBuiltinType()) {
4818     CGF.incrementProfileCounter(E);
4819 
4820     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4821     llvm::Value *LHS = Visit(lhsExpr);
4822     llvm::Value *RHS = Visit(rhsExpr);
4823 
4824     llvm::Type *CondType = ConvertType(condExpr->getType());
4825     auto *VecTy = cast<llvm::VectorType>(CondType);
4826     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4827 
4828     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4829     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4830   }
4831 
4832   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4833   // select instead of as control flow.  We can only do this if it is cheap and
4834   // safe to evaluate the LHS and RHS unconditionally.
4835   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4836       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4837     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4838     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4839 
4840     CGF.incrementProfileCounter(E, StepV);
4841 
4842     llvm::Value *LHS = Visit(lhsExpr);
4843     llvm::Value *RHS = Visit(rhsExpr);
4844     if (!LHS) {
4845       // If the conditional has void type, make sure we return a null Value*.
4846       assert(!RHS && "LHS and RHS types must match");
4847       return nullptr;
4848     }
4849     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4850   }
4851 
4852   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4853   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4854   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4855 
4856   CodeGenFunction::ConditionalEvaluation eval(CGF);
4857   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4858                            CGF.getProfileCount(lhsExpr));
4859 
4860   CGF.EmitBlock(LHSBlock);
4861   CGF.incrementProfileCounter(E);
4862   eval.begin(CGF);
4863   Value *LHS = Visit(lhsExpr);
4864   eval.end(CGF);
4865 
4866   LHSBlock = Builder.GetInsertBlock();
4867   Builder.CreateBr(ContBlock);
4868 
4869   CGF.EmitBlock(RHSBlock);
4870   eval.begin(CGF);
4871   Value *RHS = Visit(rhsExpr);
4872   eval.end(CGF);
4873 
4874   RHSBlock = Builder.GetInsertBlock();
4875   CGF.EmitBlock(ContBlock);
4876 
4877   // If the LHS or RHS is a throw expression, it will be legitimately null.
4878   if (!LHS)
4879     return RHS;
4880   if (!RHS)
4881     return LHS;
4882 
4883   // Create a PHI node for the real part.
4884   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4885   PN->addIncoming(LHS, LHSBlock);
4886   PN->addIncoming(RHS, RHSBlock);
4887   return PN;
4888 }
4889 
4890 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4891   return Visit(E->getChosenSubExpr());
4892 }
4893 
4894 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4895   QualType Ty = VE->getType();
4896 
4897   if (Ty->isVariablyModifiedType())
4898     CGF.EmitVariablyModifiedType(Ty);
4899 
4900   Address ArgValue = Address::invalid();
4901   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4902 
4903   llvm::Type *ArgTy = ConvertType(VE->getType());
4904 
4905   // If EmitVAArg fails, emit an error.
4906   if (!ArgPtr.isValid()) {
4907     CGF.ErrorUnsupported(VE, "va_arg expression");
4908     return llvm::UndefValue::get(ArgTy);
4909   }
4910 
4911   // FIXME Volatility.
4912   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4913 
4914   // If EmitVAArg promoted the type, we must truncate it.
4915   if (ArgTy != Val->getType()) {
4916     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4917       Val = Builder.CreateIntToPtr(Val, ArgTy);
4918     else
4919       Val = Builder.CreateTrunc(Val, ArgTy);
4920   }
4921 
4922   return Val;
4923 }
4924 
4925 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4926   return CGF.EmitBlockLiteral(block);
4927 }
4928 
4929 // Convert a vec3 to vec4, or vice versa.
4930 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4931                                  Value *Src, unsigned NumElementsDst) {
4932   static constexpr int Mask[] = {0, 1, 2, -1};
4933   return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
4934 }
4935 
4936 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4937 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4938 // but could be scalar or vectors of different lengths, and either can be
4939 // pointer.
4940 // There are 4 cases:
4941 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4942 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4943 // 3. pointer -> non-pointer
4944 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4945 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4946 // 4. non-pointer -> pointer
4947 //   a) intptr_t -> pointer       : needs 1 inttoptr
4948 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4949 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4950 // allow casting directly between pointer types and non-integer non-pointer
4951 // types.
4952 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4953                                            const llvm::DataLayout &DL,
4954                                            Value *Src, llvm::Type *DstTy,
4955                                            StringRef Name = "") {
4956   auto SrcTy = Src->getType();
4957 
4958   // Case 1.
4959   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4960     return Builder.CreateBitCast(Src, DstTy, Name);
4961 
4962   // Case 2.
4963   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4964     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4965 
4966   // Case 3.
4967   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4968     // Case 3b.
4969     if (!DstTy->isIntegerTy())
4970       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4971     // Cases 3a and 3b.
4972     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4973   }
4974 
4975   // Case 4b.
4976   if (!SrcTy->isIntegerTy())
4977     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4978   // Cases 4a and 4b.
4979   return Builder.CreateIntToPtr(Src, DstTy, Name);
4980 }
4981 
4982 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4983   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4984   llvm::Type *DstTy = ConvertType(E->getType());
4985 
4986   llvm::Type *SrcTy = Src->getType();
4987   unsigned NumElementsSrc =
4988       isa<llvm::VectorType>(SrcTy)
4989           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4990           : 0;
4991   unsigned NumElementsDst =
4992       isa<llvm::VectorType>(DstTy)
4993           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4994           : 0;
4995 
4996   // Use bit vector expansion for ext_vector_type boolean vectors.
4997   if (E->getType()->isExtVectorBoolType())
4998     return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
4999 
5000   // Going from vec3 to non-vec3 is a special case and requires a shuffle
5001   // vector to get a vec4, then a bitcast if the target type is different.
5002   if (NumElementsSrc == 3 && NumElementsDst != 3) {
5003     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5004     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5005                                        DstTy);
5006 
5007     Src->setName("astype");
5008     return Src;
5009   }
5010 
5011   // Going from non-vec3 to vec3 is a special case and requires a bitcast
5012   // to vec4 if the original type is not vec4, then a shuffle vector to
5013   // get a vec3.
5014   if (NumElementsSrc != 3 && NumElementsDst == 3) {
5015     auto *Vec4Ty = llvm::FixedVectorType::get(
5016         cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5017     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5018                                        Vec4Ty);
5019 
5020     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5021     Src->setName("astype");
5022     return Src;
5023   }
5024 
5025   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5026                                       Src, DstTy, "astype");
5027 }
5028 
5029 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5030   return CGF.EmitAtomicExpr(E).getScalarVal();
5031 }
5032 
5033 //===----------------------------------------------------------------------===//
5034 //                         Entry Point into this File
5035 //===----------------------------------------------------------------------===//
5036 
5037 /// Emit the computation of the specified expression of scalar type, ignoring
5038 /// the result.
5039 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5040   assert(E && hasScalarEvaluationKind(E->getType()) &&
5041          "Invalid scalar expression to emit");
5042 
5043   return ScalarExprEmitter(*this, IgnoreResultAssign)
5044       .Visit(const_cast<Expr *>(E));
5045 }
5046 
5047 /// Emit a conversion from the specified type to the specified destination type,
5048 /// both of which are LLVM scalar types.
5049 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5050                                              QualType DstTy,
5051                                              SourceLocation Loc) {
5052   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5053          "Invalid scalar expression to emit");
5054   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5055 }
5056 
5057 /// Emit a conversion from the specified complex type to the specified
5058 /// destination type, where the destination type is an LLVM scalar type.
5059 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5060                                                       QualType SrcTy,
5061                                                       QualType DstTy,
5062                                                       SourceLocation Loc) {
5063   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5064          "Invalid complex -> scalar conversion");
5065   return ScalarExprEmitter(*this)
5066       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5067 }
5068 
5069 
5070 Value *
5071 CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5072                                         QualType PromotionType) {
5073   if (!PromotionType.isNull())
5074     return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5075   else
5076     return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5077 }
5078 
5079 
5080 llvm::Value *CodeGenFunction::
5081 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5082                         bool isInc, bool isPre) {
5083   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5084 }
5085 
5086 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5087   // object->isa or (*object).isa
5088   // Generate code as for: *(Class*)object
5089 
5090   Expr *BaseExpr = E->getBase();
5091   Address Addr = Address::invalid();
5092   if (BaseExpr->isPRValue()) {
5093     llvm::Type *BaseTy =
5094         ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
5095     Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5096   } else {
5097     Addr = EmitLValue(BaseExpr).getAddress(*this);
5098   }
5099 
5100   // Cast the address to Class*.
5101   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
5102   return MakeAddrLValue(Addr, E->getType());
5103 }
5104 
5105 
5106 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5107                                             const CompoundAssignOperator *E) {
5108   ScalarExprEmitter Scalar(*this);
5109   Value *Result = nullptr;
5110   switch (E->getOpcode()) {
5111 #define COMPOUND_OP(Op)                                                       \
5112     case BO_##Op##Assign:                                                     \
5113       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5114                                              Result)
5115   COMPOUND_OP(Mul);
5116   COMPOUND_OP(Div);
5117   COMPOUND_OP(Rem);
5118   COMPOUND_OP(Add);
5119   COMPOUND_OP(Sub);
5120   COMPOUND_OP(Shl);
5121   COMPOUND_OP(Shr);
5122   COMPOUND_OP(And);
5123   COMPOUND_OP(Xor);
5124   COMPOUND_OP(Or);
5125 #undef COMPOUND_OP
5126 
5127   case BO_PtrMemD:
5128   case BO_PtrMemI:
5129   case BO_Mul:
5130   case BO_Div:
5131   case BO_Rem:
5132   case BO_Add:
5133   case BO_Sub:
5134   case BO_Shl:
5135   case BO_Shr:
5136   case BO_LT:
5137   case BO_GT:
5138   case BO_LE:
5139   case BO_GE:
5140   case BO_EQ:
5141   case BO_NE:
5142   case BO_Cmp:
5143   case BO_And:
5144   case BO_Xor:
5145   case BO_Or:
5146   case BO_LAnd:
5147   case BO_LOr:
5148   case BO_Assign:
5149   case BO_Comma:
5150     llvm_unreachable("Not valid compound assignment operators");
5151   }
5152 
5153   llvm_unreachable("Unhandled compound assignment operator");
5154 }
5155 
5156 struct GEPOffsetAndOverflow {
5157   // The total (signed) byte offset for the GEP.
5158   llvm::Value *TotalOffset;
5159   // The offset overflow flag - true if the total offset overflows.
5160   llvm::Value *OffsetOverflows;
5161 };
5162 
5163 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5164 /// and compute the total offset it applies from it's base pointer BasePtr.
5165 /// Returns offset in bytes and a boolean flag whether an overflow happened
5166 /// during evaluation.
5167 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5168                                                  llvm::LLVMContext &VMContext,
5169                                                  CodeGenModule &CGM,
5170                                                  CGBuilderTy &Builder) {
5171   const auto &DL = CGM.getDataLayout();
5172 
5173   // The total (signed) byte offset for the GEP.
5174   llvm::Value *TotalOffset = nullptr;
5175 
5176   // Was the GEP already reduced to a constant?
5177   if (isa<llvm::Constant>(GEPVal)) {
5178     // Compute the offset by casting both pointers to integers and subtracting:
5179     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5180     Value *BasePtr_int =
5181         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5182     Value *GEPVal_int =
5183         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5184     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5185     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5186   }
5187 
5188   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5189   assert(GEP->getPointerOperand() == BasePtr &&
5190          "BasePtr must be the base of the GEP.");
5191   assert(GEP->isInBounds() && "Expected inbounds GEP");
5192 
5193   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5194 
5195   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5196   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5197   auto *SAddIntrinsic =
5198       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5199   auto *SMulIntrinsic =
5200       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5201 
5202   // The offset overflow flag - true if the total offset overflows.
5203   llvm::Value *OffsetOverflows = Builder.getFalse();
5204 
5205   /// Return the result of the given binary operation.
5206   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5207                   llvm::Value *RHS) -> llvm::Value * {
5208     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5209 
5210     // If the operands are constants, return a constant result.
5211     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5212       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5213         llvm::APInt N;
5214         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5215                                                   /*Signed=*/true, N);
5216         if (HasOverflow)
5217           OffsetOverflows = Builder.getTrue();
5218         return llvm::ConstantInt::get(VMContext, N);
5219       }
5220     }
5221 
5222     // Otherwise, compute the result with checked arithmetic.
5223     auto *ResultAndOverflow = Builder.CreateCall(
5224         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5225     OffsetOverflows = Builder.CreateOr(
5226         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5227     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5228   };
5229 
5230   // Determine the total byte offset by looking at each GEP operand.
5231   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5232        GTI != GTE; ++GTI) {
5233     llvm::Value *LocalOffset;
5234     auto *Index = GTI.getOperand();
5235     // Compute the local offset contributed by this indexing step:
5236     if (auto *STy = GTI.getStructTypeOrNull()) {
5237       // For struct indexing, the local offset is the byte position of the
5238       // specified field.
5239       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5240       LocalOffset = llvm::ConstantInt::get(
5241           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5242     } else {
5243       // Otherwise this is array-like indexing. The local offset is the index
5244       // multiplied by the element size.
5245       auto *ElementSize = llvm::ConstantInt::get(
5246           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5247       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5248       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5249     }
5250 
5251     // If this is the first offset, set it as the total offset. Otherwise, add
5252     // the local offset into the running total.
5253     if (!TotalOffset || TotalOffset == Zero)
5254       TotalOffset = LocalOffset;
5255     else
5256       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5257   }
5258 
5259   return {TotalOffset, OffsetOverflows};
5260 }
5261 
5262 Value *
5263 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5264                                         ArrayRef<Value *> IdxList,
5265                                         bool SignedIndices, bool IsSubtraction,
5266                                         SourceLocation Loc, const Twine &Name) {
5267   llvm::Type *PtrTy = Ptr->getType();
5268   Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5269 
5270   // If the pointer overflow sanitizer isn't enabled, do nothing.
5271   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5272     return GEPVal;
5273 
5274   // Perform nullptr-and-offset check unless the nullptr is defined.
5275   bool PerformNullCheck = !NullPointerIsDefined(
5276       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5277   // Check for overflows unless the GEP got constant-folded,
5278   // and only in the default address space
5279   bool PerformOverflowCheck =
5280       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5281 
5282   if (!(PerformNullCheck || PerformOverflowCheck))
5283     return GEPVal;
5284 
5285   const auto &DL = CGM.getDataLayout();
5286 
5287   SanitizerScope SanScope(this);
5288   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5289 
5290   GEPOffsetAndOverflow EvaluatedGEP =
5291       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5292 
5293   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5294           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5295          "If the offset got constant-folded, we don't expect that there was an "
5296          "overflow.");
5297 
5298   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5299 
5300   // Common case: if the total offset is zero, and we are using C++ semantics,
5301   // where nullptr+0 is defined, don't emit a check.
5302   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5303     return GEPVal;
5304 
5305   // Now that we've computed the total offset, add it to the base pointer (with
5306   // wrapping semantics).
5307   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5308   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5309 
5310   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5311 
5312   if (PerformNullCheck) {
5313     // In C++, if the base pointer evaluates to a null pointer value,
5314     // the only valid  pointer this inbounds GEP can produce is also
5315     // a null pointer, so the offset must also evaluate to zero.
5316     // Likewise, if we have non-zero base pointer, we can not get null pointer
5317     // as a result, so the offset can not be -intptr_t(BasePtr).
5318     // In other words, both pointers are either null, or both are non-null,
5319     // or the behaviour is undefined.
5320     //
5321     // C, however, is more strict in this regard, and gives more
5322     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5323     // So both the input to the 'gep inbounds' AND the output must not be null.
5324     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5325     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5326     auto *Valid =
5327         CGM.getLangOpts().CPlusPlus
5328             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5329             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5330     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5331   }
5332 
5333   if (PerformOverflowCheck) {
5334     // The GEP is valid if:
5335     // 1) The total offset doesn't overflow, and
5336     // 2) The sign of the difference between the computed address and the base
5337     // pointer matches the sign of the total offset.
5338     llvm::Value *ValidGEP;
5339     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5340     if (SignedIndices) {
5341       // GEP is computed as `unsigned base + signed offset`, therefore:
5342       // * If offset was positive, then the computed pointer can not be
5343       //   [unsigned] less than the base pointer, unless it overflowed.
5344       // * If offset was negative, then the computed pointer can not be
5345       //   [unsigned] greater than the bas pointere, unless it overflowed.
5346       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5347       auto *PosOrZeroOffset =
5348           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5349       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5350       ValidGEP =
5351           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5352     } else if (!IsSubtraction) {
5353       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5354       // computed pointer can not be [unsigned] less than base pointer,
5355       // unless there was an overflow.
5356       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5357       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5358     } else {
5359       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5360       // computed pointer can not be [unsigned] greater than base pointer,
5361       // unless there was an overflow.
5362       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5363       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5364     }
5365     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5366     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5367   }
5368 
5369   assert(!Checks.empty() && "Should have produced some checks.");
5370 
5371   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5372   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5373   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5374   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5375 
5376   return GEPVal;
5377 }
5378