1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/FixedPoint.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicsPowerPC.h" 40 #include "llvm/IR/Module.h" 41 #include <cstdarg> 42 43 using namespace clang; 44 using namespace CodeGen; 45 using llvm::Value; 46 47 //===----------------------------------------------------------------------===// 48 // Scalar Expression Emitter 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 53 /// Determine whether the given binary operation may overflow. 54 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 55 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 56 /// the returned overflow check is precise. The returned value is 'true' for 57 /// all other opcodes, to be conservative. 58 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 59 BinaryOperator::Opcode Opcode, bool Signed, 60 llvm::APInt &Result) { 61 // Assume overflow is possible, unless we can prove otherwise. 62 bool Overflow = true; 63 const auto &LHSAP = LHS->getValue(); 64 const auto &RHSAP = RHS->getValue(); 65 if (Opcode == BO_Add) { 66 if (Signed) 67 Result = LHSAP.sadd_ov(RHSAP, Overflow); 68 else 69 Result = LHSAP.uadd_ov(RHSAP, Overflow); 70 } else if (Opcode == BO_Sub) { 71 if (Signed) 72 Result = LHSAP.ssub_ov(RHSAP, Overflow); 73 else 74 Result = LHSAP.usub_ov(RHSAP, Overflow); 75 } else if (Opcode == BO_Mul) { 76 if (Signed) 77 Result = LHSAP.smul_ov(RHSAP, Overflow); 78 else 79 Result = LHSAP.umul_ov(RHSAP, Overflow); 80 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 81 if (Signed && !RHS->isZero()) 82 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 83 else 84 return false; 85 } 86 return Overflow; 87 } 88 89 struct BinOpInfo { 90 Value *LHS; 91 Value *RHS; 92 QualType Ty; // Computation Type. 93 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 94 FPOptions FPFeatures; 95 const Expr *E; // Entire expr, for error unsupported. May not be binop. 96 97 /// Check if the binop can result in integer overflow. 98 bool mayHaveIntegerOverflow() const { 99 // Without constant input, we can't rule out overflow. 100 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 101 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 102 if (!LHSCI || !RHSCI) 103 return true; 104 105 llvm::APInt Result; 106 return ::mayHaveIntegerOverflow( 107 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 108 } 109 110 /// Check if the binop computes a division or a remainder. 111 bool isDivremOp() const { 112 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 113 Opcode == BO_RemAssign; 114 } 115 116 /// Check if the binop can result in an integer division by zero. 117 bool mayHaveIntegerDivisionByZero() const { 118 if (isDivremOp()) 119 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 120 return CI->isZero(); 121 return true; 122 } 123 124 /// Check if the binop can result in a float division by zero. 125 bool mayHaveFloatDivisionByZero() const { 126 if (isDivremOp()) 127 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 128 return CFP->isZero(); 129 return true; 130 } 131 132 /// Check if either operand is a fixed point type or integer type, with at 133 /// least one being a fixed point type. In any case, this 134 /// operation did not follow usual arithmetic conversion and both operands may 135 /// not be the same. 136 bool isFixedPointBinOp() const { 137 // We cannot simply check the result type since comparison operations return 138 // an int. 139 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 140 QualType LHSType = BinOp->getLHS()->getType(); 141 QualType RHSType = BinOp->getRHS()->getType(); 142 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 143 } 144 return false; 145 } 146 }; 147 148 static bool MustVisitNullValue(const Expr *E) { 149 // If a null pointer expression's type is the C++0x nullptr_t, then 150 // it's not necessarily a simple constant and it must be evaluated 151 // for its potential side effects. 152 return E->getType()->isNullPtrType(); 153 } 154 155 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 156 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 157 const Expr *E) { 158 const Expr *Base = E->IgnoreImpCasts(); 159 if (E == Base) 160 return llvm::None; 161 162 QualType BaseTy = Base->getType(); 163 if (!BaseTy->isPromotableIntegerType() || 164 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 165 return llvm::None; 166 167 return BaseTy; 168 } 169 170 /// Check if \p E is a widened promoted integer. 171 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 172 return getUnwidenedIntegerType(Ctx, E).hasValue(); 173 } 174 175 /// Check if we can skip the overflow check for \p Op. 176 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 177 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 178 "Expected a unary or binary operator"); 179 180 // If the binop has constant inputs and we can prove there is no overflow, 181 // we can elide the overflow check. 182 if (!Op.mayHaveIntegerOverflow()) 183 return true; 184 185 // If a unary op has a widened operand, the op cannot overflow. 186 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 187 return !UO->canOverflow(); 188 189 // We usually don't need overflow checks for binops with widened operands. 190 // Multiplication with promoted unsigned operands is a special case. 191 const auto *BO = cast<BinaryOperator>(Op.E); 192 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 193 if (!OptionalLHSTy) 194 return false; 195 196 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 197 if (!OptionalRHSTy) 198 return false; 199 200 QualType LHSTy = *OptionalLHSTy; 201 QualType RHSTy = *OptionalRHSTy; 202 203 // This is the simple case: binops without unsigned multiplication, and with 204 // widened operands. No overflow check is needed here. 205 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 206 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 207 return true; 208 209 // For unsigned multiplication the overflow check can be elided if either one 210 // of the unpromoted types are less than half the size of the promoted type. 211 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 212 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 213 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 214 } 215 216 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 217 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 218 FPOptions FPFeatures) { 219 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 220 } 221 222 /// Propagate fast-math flags from \p Op to the instruction in \p V. 223 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 224 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 225 llvm::FastMathFlags FMF = I->getFastMathFlags(); 226 updateFastMathFlags(FMF, Op.FPFeatures); 227 I->setFastMathFlags(FMF); 228 } 229 return V; 230 } 231 232 class ScalarExprEmitter 233 : public StmtVisitor<ScalarExprEmitter, Value*> { 234 CodeGenFunction &CGF; 235 CGBuilderTy &Builder; 236 bool IgnoreResultAssign; 237 llvm::LLVMContext &VMContext; 238 public: 239 240 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 241 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 242 VMContext(cgf.getLLVMContext()) { 243 } 244 245 //===--------------------------------------------------------------------===// 246 // Utilities 247 //===--------------------------------------------------------------------===// 248 249 bool TestAndClearIgnoreResultAssign() { 250 bool I = IgnoreResultAssign; 251 IgnoreResultAssign = false; 252 return I; 253 } 254 255 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 256 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 257 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 258 return CGF.EmitCheckedLValue(E, TCK); 259 } 260 261 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 262 const BinOpInfo &Info); 263 264 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 265 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 266 } 267 268 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 269 const AlignValueAttr *AVAttr = nullptr; 270 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 271 const ValueDecl *VD = DRE->getDecl(); 272 273 if (VD->getType()->isReferenceType()) { 274 if (const auto *TTy = 275 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 276 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 277 } else { 278 // Assumptions for function parameters are emitted at the start of the 279 // function, so there is no need to repeat that here, 280 // unless the alignment-assumption sanitizer is enabled, 281 // then we prefer the assumption over alignment attribute 282 // on IR function param. 283 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 284 return; 285 286 AVAttr = VD->getAttr<AlignValueAttr>(); 287 } 288 } 289 290 if (!AVAttr) 291 if (const auto *TTy = 292 dyn_cast<TypedefType>(E->getType())) 293 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 294 295 if (!AVAttr) 296 return; 297 298 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 299 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 300 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 301 } 302 303 /// EmitLoadOfLValue - Given an expression with complex type that represents a 304 /// value l-value, this method emits the address of the l-value, then loads 305 /// and returns the result. 306 Value *EmitLoadOfLValue(const Expr *E) { 307 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 308 E->getExprLoc()); 309 310 EmitLValueAlignmentAssumption(E, V); 311 return V; 312 } 313 314 /// EmitConversionToBool - Convert the specified expression value to a 315 /// boolean (i1) truth value. This is equivalent to "Val != 0". 316 Value *EmitConversionToBool(Value *Src, QualType DstTy); 317 318 /// Emit a check that a conversion from a floating-point type does not 319 /// overflow. 320 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 321 Value *Src, QualType SrcType, QualType DstType, 322 llvm::Type *DstTy, SourceLocation Loc); 323 324 /// Known implicit conversion check kinds. 325 /// Keep in sync with the enum of the same name in ubsan_handlers.h 326 enum ImplicitConversionCheckKind : unsigned char { 327 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 328 ICCK_UnsignedIntegerTruncation = 1, 329 ICCK_SignedIntegerTruncation = 2, 330 ICCK_IntegerSignChange = 3, 331 ICCK_SignedIntegerTruncationOrSignChange = 4, 332 }; 333 334 /// Emit a check that an [implicit] truncation of an integer does not 335 /// discard any bits. It is not UB, so we use the value after truncation. 336 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 337 QualType DstType, SourceLocation Loc); 338 339 /// Emit a check that an [implicit] conversion of an integer does not change 340 /// the sign of the value. It is not UB, so we use the value after conversion. 341 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 342 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 343 QualType DstType, SourceLocation Loc); 344 345 /// Emit a conversion from the specified type to the specified destination 346 /// type, both of which are LLVM scalar types. 347 struct ScalarConversionOpts { 348 bool TreatBooleanAsSigned; 349 bool EmitImplicitIntegerTruncationChecks; 350 bool EmitImplicitIntegerSignChangeChecks; 351 352 ScalarConversionOpts() 353 : TreatBooleanAsSigned(false), 354 EmitImplicitIntegerTruncationChecks(false), 355 EmitImplicitIntegerSignChangeChecks(false) {} 356 357 ScalarConversionOpts(clang::SanitizerSet SanOpts) 358 : TreatBooleanAsSigned(false), 359 EmitImplicitIntegerTruncationChecks( 360 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 361 EmitImplicitIntegerSignChangeChecks( 362 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 363 }; 364 Value * 365 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 366 SourceLocation Loc, 367 ScalarConversionOpts Opts = ScalarConversionOpts()); 368 369 /// Convert between either a fixed point and other fixed point or fixed point 370 /// and an integer. 371 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 372 SourceLocation Loc); 373 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 374 FixedPointSemantics &DstFixedSema, 375 SourceLocation Loc, 376 bool DstIsInteger = false); 377 378 /// Emit a conversion from the specified complex type to the specified 379 /// destination type, where the destination type is an LLVM scalar type. 380 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 381 QualType SrcTy, QualType DstTy, 382 SourceLocation Loc); 383 384 /// EmitNullValue - Emit a value that corresponds to null for the given type. 385 Value *EmitNullValue(QualType Ty); 386 387 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 388 Value *EmitFloatToBoolConversion(Value *V) { 389 // Compare against 0.0 for fp scalars. 390 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 391 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 392 } 393 394 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 395 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 396 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 397 398 return Builder.CreateICmpNE(V, Zero, "tobool"); 399 } 400 401 Value *EmitIntToBoolConversion(Value *V) { 402 // Because of the type rules of C, we often end up computing a 403 // logical value, then zero extending it to int, then wanting it 404 // as a logical value again. Optimize this common case. 405 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 406 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 407 Value *Result = ZI->getOperand(0); 408 // If there aren't any more uses, zap the instruction to save space. 409 // Note that there can be more uses, for example if this 410 // is the result of an assignment. 411 if (ZI->use_empty()) 412 ZI->eraseFromParent(); 413 return Result; 414 } 415 } 416 417 return Builder.CreateIsNotNull(V, "tobool"); 418 } 419 420 //===--------------------------------------------------------------------===// 421 // Visitor Methods 422 //===--------------------------------------------------------------------===// 423 424 Value *Visit(Expr *E) { 425 ApplyDebugLocation DL(CGF, E); 426 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 427 } 428 429 Value *VisitStmt(Stmt *S) { 430 S->dump(CGF.getContext().getSourceManager()); 431 llvm_unreachable("Stmt can't have complex result type!"); 432 } 433 Value *VisitExpr(Expr *S); 434 435 Value *VisitConstantExpr(ConstantExpr *E) { 436 return Visit(E->getSubExpr()); 437 } 438 Value *VisitParenExpr(ParenExpr *PE) { 439 return Visit(PE->getSubExpr()); 440 } 441 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 442 return Visit(E->getReplacement()); 443 } 444 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 445 return Visit(GE->getResultExpr()); 446 } 447 Value *VisitCoawaitExpr(CoawaitExpr *S) { 448 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 449 } 450 Value *VisitCoyieldExpr(CoyieldExpr *S) { 451 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 452 } 453 Value *VisitUnaryCoawait(const UnaryOperator *E) { 454 return Visit(E->getSubExpr()); 455 } 456 457 // Leaves. 458 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 462 return Builder.getInt(E->getValue()); 463 } 464 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 465 return llvm::ConstantFP::get(VMContext, E->getValue()); 466 } 467 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 474 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 475 } 476 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 480 return EmitNullValue(E->getType()); 481 } 482 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 483 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 484 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 485 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 486 return Builder.CreateBitCast(V, ConvertType(E->getType())); 487 } 488 489 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 490 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 491 } 492 493 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 494 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 495 } 496 497 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 498 if (E->isGLValue()) 499 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 500 E->getExprLoc()); 501 502 // Otherwise, assume the mapping is the scalar directly. 503 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 504 } 505 506 // l-values. 507 Value *VisitDeclRefExpr(DeclRefExpr *E) { 508 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 509 return CGF.emitScalarConstant(Constant, E); 510 return EmitLoadOfLValue(E); 511 } 512 513 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 514 return CGF.EmitObjCSelectorExpr(E); 515 } 516 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 517 return CGF.EmitObjCProtocolExpr(E); 518 } 519 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 520 return EmitLoadOfLValue(E); 521 } 522 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 523 if (E->getMethodDecl() && 524 E->getMethodDecl()->getReturnType()->isReferenceType()) 525 return EmitLoadOfLValue(E); 526 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 527 } 528 529 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 530 LValue LV = CGF.EmitObjCIsaExpr(E); 531 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 532 return V; 533 } 534 535 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 536 VersionTuple Version = E->getVersion(); 537 538 // If we're checking for a platform older than our minimum deployment 539 // target, we can fold the check away. 540 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 541 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 542 543 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 544 llvm::Value *Args[] = { 545 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 546 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 547 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 548 }; 549 550 return CGF.EmitBuiltinAvailable(Args); 551 } 552 553 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 554 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 555 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 556 Value *VisitMemberExpr(MemberExpr *E); 557 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 558 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 559 return EmitLoadOfLValue(E); 560 } 561 562 Value *VisitInitListExpr(InitListExpr *E); 563 564 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 565 assert(CGF.getArrayInitIndex() && 566 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 567 return CGF.getArrayInitIndex(); 568 } 569 570 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 571 return EmitNullValue(E->getType()); 572 } 573 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 574 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 575 return VisitCastExpr(E); 576 } 577 Value *VisitCastExpr(CastExpr *E); 578 579 Value *VisitCallExpr(const CallExpr *E) { 580 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 581 return EmitLoadOfLValue(E); 582 583 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 584 585 EmitLValueAlignmentAssumption(E, V); 586 return V; 587 } 588 589 Value *VisitStmtExpr(const StmtExpr *E); 590 591 // Unary Operators. 592 Value *VisitUnaryPostDec(const UnaryOperator *E) { 593 LValue LV = EmitLValue(E->getSubExpr()); 594 return EmitScalarPrePostIncDec(E, LV, false, false); 595 } 596 Value *VisitUnaryPostInc(const UnaryOperator *E) { 597 LValue LV = EmitLValue(E->getSubExpr()); 598 return EmitScalarPrePostIncDec(E, LV, true, false); 599 } 600 Value *VisitUnaryPreDec(const UnaryOperator *E) { 601 LValue LV = EmitLValue(E->getSubExpr()); 602 return EmitScalarPrePostIncDec(E, LV, false, true); 603 } 604 Value *VisitUnaryPreInc(const UnaryOperator *E) { 605 LValue LV = EmitLValue(E->getSubExpr()); 606 return EmitScalarPrePostIncDec(E, LV, true, true); 607 } 608 609 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 610 llvm::Value *InVal, 611 bool IsInc); 612 613 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 614 bool isInc, bool isPre); 615 616 617 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 618 if (isa<MemberPointerType>(E->getType())) // never sugared 619 return CGF.CGM.getMemberPointerConstant(E); 620 621 return EmitLValue(E->getSubExpr()).getPointer(CGF); 622 } 623 Value *VisitUnaryDeref(const UnaryOperator *E) { 624 if (E->getType()->isVoidType()) 625 return Visit(E->getSubExpr()); // the actual value should be unused 626 return EmitLoadOfLValue(E); 627 } 628 Value *VisitUnaryPlus(const UnaryOperator *E) { 629 // This differs from gcc, though, most likely due to a bug in gcc. 630 TestAndClearIgnoreResultAssign(); 631 return Visit(E->getSubExpr()); 632 } 633 Value *VisitUnaryMinus (const UnaryOperator *E); 634 Value *VisitUnaryNot (const UnaryOperator *E); 635 Value *VisitUnaryLNot (const UnaryOperator *E); 636 Value *VisitUnaryReal (const UnaryOperator *E); 637 Value *VisitUnaryImag (const UnaryOperator *E); 638 Value *VisitUnaryExtension(const UnaryOperator *E) { 639 return Visit(E->getSubExpr()); 640 } 641 642 // C++ 643 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 644 return EmitLoadOfLValue(E); 645 } 646 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 647 auto &Ctx = CGF.getContext(); 648 APValue Evaluated = 649 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 650 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 651 SLE->getType()); 652 } 653 654 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 655 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 656 return Visit(DAE->getExpr()); 657 } 658 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 659 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 660 return Visit(DIE->getExpr()); 661 } 662 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 663 return CGF.LoadCXXThis(); 664 } 665 666 Value *VisitExprWithCleanups(ExprWithCleanups *E); 667 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 668 return CGF.EmitCXXNewExpr(E); 669 } 670 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 671 CGF.EmitCXXDeleteExpr(E); 672 return nullptr; 673 } 674 675 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 676 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 677 } 678 679 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 680 return Builder.getInt1(E->isSatisfied()); 681 } 682 683 Value *VisitRequiresExpr(const RequiresExpr *E) { 684 return Builder.getInt1(E->isSatisfied()); 685 } 686 687 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 688 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 689 } 690 691 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 692 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 693 } 694 695 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 696 // C++ [expr.pseudo]p1: 697 // The result shall only be used as the operand for the function call 698 // operator (), and the result of such a call has type void. The only 699 // effect is the evaluation of the postfix-expression before the dot or 700 // arrow. 701 CGF.EmitScalarExpr(E->getBase()); 702 return nullptr; 703 } 704 705 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 706 return EmitNullValue(E->getType()); 707 } 708 709 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 710 CGF.EmitCXXThrowExpr(E); 711 return nullptr; 712 } 713 714 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 715 return Builder.getInt1(E->getValue()); 716 } 717 718 // Binary Operators. 719 Value *EmitMul(const BinOpInfo &Ops) { 720 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 721 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 722 case LangOptions::SOB_Defined: 723 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 724 case LangOptions::SOB_Undefined: 725 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 726 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 727 LLVM_FALLTHROUGH; 728 case LangOptions::SOB_Trapping: 729 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 730 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 731 return EmitOverflowCheckedBinOp(Ops); 732 } 733 } 734 735 if (Ops.Ty->isUnsignedIntegerType() && 736 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 737 !CanElideOverflowCheck(CGF.getContext(), Ops)) 738 return EmitOverflowCheckedBinOp(Ops); 739 740 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 741 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 742 return propagateFMFlags(V, Ops); 743 } 744 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 745 } 746 /// Create a binary op that checks for overflow. 747 /// Currently only supports +, - and *. 748 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 749 750 // Check for undefined division and modulus behaviors. 751 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 752 llvm::Value *Zero,bool isDiv); 753 // Common helper for getting how wide LHS of shift is. 754 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 755 Value *EmitDiv(const BinOpInfo &Ops); 756 Value *EmitRem(const BinOpInfo &Ops); 757 Value *EmitAdd(const BinOpInfo &Ops); 758 Value *EmitSub(const BinOpInfo &Ops); 759 Value *EmitShl(const BinOpInfo &Ops); 760 Value *EmitShr(const BinOpInfo &Ops); 761 Value *EmitAnd(const BinOpInfo &Ops) { 762 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 763 } 764 Value *EmitXor(const BinOpInfo &Ops) { 765 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 766 } 767 Value *EmitOr (const BinOpInfo &Ops) { 768 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 769 } 770 771 // Helper functions for fixed point binary operations. 772 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 773 774 BinOpInfo EmitBinOps(const BinaryOperator *E); 775 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 776 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 777 Value *&Result); 778 779 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 780 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 781 782 // Binary operators and binary compound assignment operators. 783 #define HANDLEBINOP(OP) \ 784 Value *VisitBin ## OP(const BinaryOperator *E) { \ 785 return Emit ## OP(EmitBinOps(E)); \ 786 } \ 787 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 788 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 789 } 790 HANDLEBINOP(Mul) 791 HANDLEBINOP(Div) 792 HANDLEBINOP(Rem) 793 HANDLEBINOP(Add) 794 HANDLEBINOP(Sub) 795 HANDLEBINOP(Shl) 796 HANDLEBINOP(Shr) 797 HANDLEBINOP(And) 798 HANDLEBINOP(Xor) 799 HANDLEBINOP(Or) 800 #undef HANDLEBINOP 801 802 // Comparisons. 803 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 804 llvm::CmpInst::Predicate SICmpOpc, 805 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 806 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 807 Value *VisitBin##CODE(const BinaryOperator *E) { \ 808 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 809 llvm::FCmpInst::FP, SIG); } 810 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 811 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 812 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 813 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 814 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 815 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 816 #undef VISITCOMP 817 818 Value *VisitBinAssign (const BinaryOperator *E); 819 820 Value *VisitBinLAnd (const BinaryOperator *E); 821 Value *VisitBinLOr (const BinaryOperator *E); 822 Value *VisitBinComma (const BinaryOperator *E); 823 824 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 825 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 826 827 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 828 return Visit(E->getSemanticForm()); 829 } 830 831 // Other Operators. 832 Value *VisitBlockExpr(const BlockExpr *BE); 833 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 834 Value *VisitChooseExpr(ChooseExpr *CE); 835 Value *VisitVAArgExpr(VAArgExpr *VE); 836 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 837 return CGF.EmitObjCStringLiteral(E); 838 } 839 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 840 return CGF.EmitObjCBoxedExpr(E); 841 } 842 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 843 return CGF.EmitObjCArrayLiteral(E); 844 } 845 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 846 return CGF.EmitObjCDictionaryLiteral(E); 847 } 848 Value *VisitAsTypeExpr(AsTypeExpr *CE); 849 Value *VisitAtomicExpr(AtomicExpr *AE); 850 }; 851 } // end anonymous namespace. 852 853 //===----------------------------------------------------------------------===// 854 // Utilities 855 //===----------------------------------------------------------------------===// 856 857 /// EmitConversionToBool - Convert the specified expression value to a 858 /// boolean (i1) truth value. This is equivalent to "Val != 0". 859 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 860 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 861 862 if (SrcType->isRealFloatingType()) 863 return EmitFloatToBoolConversion(Src); 864 865 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 866 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 867 868 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 869 "Unknown scalar type to convert"); 870 871 if (isa<llvm::IntegerType>(Src->getType())) 872 return EmitIntToBoolConversion(Src); 873 874 assert(isa<llvm::PointerType>(Src->getType())); 875 return EmitPointerToBoolConversion(Src, SrcType); 876 } 877 878 void ScalarExprEmitter::EmitFloatConversionCheck( 879 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 880 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 881 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 882 if (!isa<llvm::IntegerType>(DstTy)) 883 return; 884 885 CodeGenFunction::SanitizerScope SanScope(&CGF); 886 using llvm::APFloat; 887 using llvm::APSInt; 888 889 llvm::Value *Check = nullptr; 890 const llvm::fltSemantics &SrcSema = 891 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 892 893 // Floating-point to integer. This has undefined behavior if the source is 894 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 895 // to an integer). 896 unsigned Width = CGF.getContext().getIntWidth(DstType); 897 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 898 899 APSInt Min = APSInt::getMinValue(Width, Unsigned); 900 APFloat MinSrc(SrcSema, APFloat::uninitialized); 901 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 902 APFloat::opOverflow) 903 // Don't need an overflow check for lower bound. Just check for 904 // -Inf/NaN. 905 MinSrc = APFloat::getInf(SrcSema, true); 906 else 907 // Find the largest value which is too small to represent (before 908 // truncation toward zero). 909 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 910 911 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 912 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 913 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 914 APFloat::opOverflow) 915 // Don't need an overflow check for upper bound. Just check for 916 // +Inf/NaN. 917 MaxSrc = APFloat::getInf(SrcSema, false); 918 else 919 // Find the smallest value which is too large to represent (before 920 // truncation toward zero). 921 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 922 923 // If we're converting from __half, convert the range to float to match 924 // the type of src. 925 if (OrigSrcType->isHalfType()) { 926 const llvm::fltSemantics &Sema = 927 CGF.getContext().getFloatTypeSemantics(SrcType); 928 bool IsInexact; 929 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 930 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 931 } 932 933 llvm::Value *GE = 934 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 935 llvm::Value *LE = 936 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 937 Check = Builder.CreateAnd(GE, LE); 938 939 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 940 CGF.EmitCheckTypeDescriptor(OrigSrcType), 941 CGF.EmitCheckTypeDescriptor(DstType)}; 942 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 943 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 944 } 945 946 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 947 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 948 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 949 std::pair<llvm::Value *, SanitizerMask>> 950 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 951 QualType DstType, CGBuilderTy &Builder) { 952 llvm::Type *SrcTy = Src->getType(); 953 llvm::Type *DstTy = Dst->getType(); 954 (void)DstTy; // Only used in assert() 955 956 // This should be truncation of integral types. 957 assert(Src != Dst); 958 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 959 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 960 "non-integer llvm type"); 961 962 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 963 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 964 965 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 966 // Else, it is a signed truncation. 967 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 968 SanitizerMask Mask; 969 if (!SrcSigned && !DstSigned) { 970 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 971 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 972 } else { 973 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 974 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 975 } 976 977 llvm::Value *Check = nullptr; 978 // 1. Extend the truncated value back to the same width as the Src. 979 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 980 // 2. Equality-compare with the original source value 981 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 982 // If the comparison result is 'i1 false', then the truncation was lossy. 983 return std::make_pair(Kind, std::make_pair(Check, Mask)); 984 } 985 986 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 987 QualType SrcType, QualType DstType) { 988 return SrcType->isIntegerType() && DstType->isIntegerType(); 989 } 990 991 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 992 Value *Dst, QualType DstType, 993 SourceLocation Loc) { 994 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 995 return; 996 997 // We only care about int->int conversions here. 998 // We ignore conversions to/from pointer and/or bool. 999 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1000 DstType)) 1001 return; 1002 1003 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1004 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1005 // This must be truncation. Else we do not care. 1006 if (SrcBits <= DstBits) 1007 return; 1008 1009 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1010 1011 // If the integer sign change sanitizer is enabled, 1012 // and we are truncating from larger unsigned type to smaller signed type, 1013 // let that next sanitizer deal with it. 1014 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1015 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1016 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1017 (!SrcSigned && DstSigned)) 1018 return; 1019 1020 CodeGenFunction::SanitizerScope SanScope(&CGF); 1021 1022 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1023 std::pair<llvm::Value *, SanitizerMask>> 1024 Check = 1025 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1026 // If the comparison result is 'i1 false', then the truncation was lossy. 1027 1028 // Do we care about this type of truncation? 1029 if (!CGF.SanOpts.has(Check.second.second)) 1030 return; 1031 1032 llvm::Constant *StaticArgs[] = { 1033 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1034 CGF.EmitCheckTypeDescriptor(DstType), 1035 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1036 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1037 {Src, Dst}); 1038 } 1039 1040 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1041 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1042 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1043 std::pair<llvm::Value *, SanitizerMask>> 1044 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1045 QualType DstType, CGBuilderTy &Builder) { 1046 llvm::Type *SrcTy = Src->getType(); 1047 llvm::Type *DstTy = Dst->getType(); 1048 1049 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1050 "non-integer llvm type"); 1051 1052 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1053 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1054 (void)SrcSigned; // Only used in assert() 1055 (void)DstSigned; // Only used in assert() 1056 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1057 unsigned DstBits = DstTy->getScalarSizeInBits(); 1058 (void)SrcBits; // Only used in assert() 1059 (void)DstBits; // Only used in assert() 1060 1061 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1062 "either the widths should be different, or the signednesses."); 1063 1064 // NOTE: zero value is considered to be non-negative. 1065 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1066 const char *Name) -> Value * { 1067 // Is this value a signed type? 1068 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1069 llvm::Type *VTy = V->getType(); 1070 if (!VSigned) { 1071 // If the value is unsigned, then it is never negative. 1072 // FIXME: can we encounter non-scalar VTy here? 1073 return llvm::ConstantInt::getFalse(VTy->getContext()); 1074 } 1075 // Get the zero of the same type with which we will be comparing. 1076 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1077 // %V.isnegative = icmp slt %V, 0 1078 // I.e is %V *strictly* less than zero, does it have negative value? 1079 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1080 llvm::Twine(Name) + "." + V->getName() + 1081 ".negativitycheck"); 1082 }; 1083 1084 // 1. Was the old Value negative? 1085 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1086 // 2. Is the new Value negative? 1087 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1088 // 3. Now, was the 'negativity status' preserved during the conversion? 1089 // NOTE: conversion from negative to zero is considered to change the sign. 1090 // (We want to get 'false' when the conversion changed the sign) 1091 // So we should just equality-compare the negativity statuses. 1092 llvm::Value *Check = nullptr; 1093 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1094 // If the comparison result is 'false', then the conversion changed the sign. 1095 return std::make_pair( 1096 ScalarExprEmitter::ICCK_IntegerSignChange, 1097 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1098 } 1099 1100 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1101 Value *Dst, QualType DstType, 1102 SourceLocation Loc) { 1103 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1104 return; 1105 1106 llvm::Type *SrcTy = Src->getType(); 1107 llvm::Type *DstTy = Dst->getType(); 1108 1109 // We only care about int->int conversions here. 1110 // We ignore conversions to/from pointer and/or bool. 1111 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1112 DstType)) 1113 return; 1114 1115 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1116 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1117 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1118 unsigned DstBits = DstTy->getScalarSizeInBits(); 1119 1120 // Now, we do not need to emit the check in *all* of the cases. 1121 // We can avoid emitting it in some obvious cases where it would have been 1122 // dropped by the opt passes (instcombine) always anyways. 1123 // If it's a cast between effectively the same type, no check. 1124 // NOTE: this is *not* equivalent to checking the canonical types. 1125 if (SrcSigned == DstSigned && SrcBits == DstBits) 1126 return; 1127 // At least one of the values needs to have signed type. 1128 // If both are unsigned, then obviously, neither of them can be negative. 1129 if (!SrcSigned && !DstSigned) 1130 return; 1131 // If the conversion is to *larger* *signed* type, then no check is needed. 1132 // Because either sign-extension happens (so the sign will remain), 1133 // or zero-extension will happen (the sign bit will be zero.) 1134 if ((DstBits > SrcBits) && DstSigned) 1135 return; 1136 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1137 (SrcBits > DstBits) && SrcSigned) { 1138 // If the signed integer truncation sanitizer is enabled, 1139 // and this is a truncation from signed type, then no check is needed. 1140 // Because here sign change check is interchangeable with truncation check. 1141 return; 1142 } 1143 // That's it. We can't rule out any more cases with the data we have. 1144 1145 CodeGenFunction::SanitizerScope SanScope(&CGF); 1146 1147 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1148 std::pair<llvm::Value *, SanitizerMask>> 1149 Check; 1150 1151 // Each of these checks needs to return 'false' when an issue was detected. 1152 ImplicitConversionCheckKind CheckKind; 1153 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1154 // So we can 'and' all the checks together, and still get 'false', 1155 // if at least one of the checks detected an issue. 1156 1157 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1158 CheckKind = Check.first; 1159 Checks.emplace_back(Check.second); 1160 1161 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1162 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1163 // If the signed integer truncation sanitizer was enabled, 1164 // and we are truncating from larger unsigned type to smaller signed type, 1165 // let's handle the case we skipped in that check. 1166 Check = 1167 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1168 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1169 Checks.emplace_back(Check.second); 1170 // If the comparison result is 'i1 false', then the truncation was lossy. 1171 } 1172 1173 llvm::Constant *StaticArgs[] = { 1174 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1175 CGF.EmitCheckTypeDescriptor(DstType), 1176 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1177 // EmitCheck() will 'and' all the checks together. 1178 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1179 {Src, Dst}); 1180 } 1181 1182 /// Emit a conversion from the specified type to the specified destination type, 1183 /// both of which are LLVM scalar types. 1184 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1185 QualType DstType, 1186 SourceLocation Loc, 1187 ScalarConversionOpts Opts) { 1188 // All conversions involving fixed point types should be handled by the 1189 // EmitFixedPoint family functions. This is done to prevent bloating up this 1190 // function more, and although fixed point numbers are represented by 1191 // integers, we do not want to follow any logic that assumes they should be 1192 // treated as integers. 1193 // TODO(leonardchan): When necessary, add another if statement checking for 1194 // conversions to fixed point types from other types. 1195 if (SrcType->isFixedPointType()) { 1196 if (DstType->isBooleanType()) 1197 // It is important that we check this before checking if the dest type is 1198 // an integer because booleans are technically integer types. 1199 // We do not need to check the padding bit on unsigned types if unsigned 1200 // padding is enabled because overflow into this bit is undefined 1201 // behavior. 1202 return Builder.CreateIsNotNull(Src, "tobool"); 1203 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1204 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1205 1206 llvm_unreachable( 1207 "Unhandled scalar conversion from a fixed point type to another type."); 1208 } else if (DstType->isFixedPointType()) { 1209 if (SrcType->isIntegerType()) 1210 // This also includes converting booleans and enums to fixed point types. 1211 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1212 1213 llvm_unreachable( 1214 "Unhandled scalar conversion to a fixed point type from another type."); 1215 } 1216 1217 QualType NoncanonicalSrcType = SrcType; 1218 QualType NoncanonicalDstType = DstType; 1219 1220 SrcType = CGF.getContext().getCanonicalType(SrcType); 1221 DstType = CGF.getContext().getCanonicalType(DstType); 1222 if (SrcType == DstType) return Src; 1223 1224 if (DstType->isVoidType()) return nullptr; 1225 1226 llvm::Value *OrigSrc = Src; 1227 QualType OrigSrcType = SrcType; 1228 llvm::Type *SrcTy = Src->getType(); 1229 1230 // Handle conversions to bool first, they are special: comparisons against 0. 1231 if (DstType->isBooleanType()) 1232 return EmitConversionToBool(Src, SrcType); 1233 1234 llvm::Type *DstTy = ConvertType(DstType); 1235 1236 // Cast from half through float if half isn't a native type. 1237 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1238 // Cast to FP using the intrinsic if the half type itself isn't supported. 1239 if (DstTy->isFloatingPointTy()) { 1240 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1241 return Builder.CreateCall( 1242 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1243 Src); 1244 } else { 1245 // Cast to other types through float, using either the intrinsic or FPExt, 1246 // depending on whether the half type itself is supported 1247 // (as opposed to operations on half, available with NativeHalfType). 1248 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1249 Src = Builder.CreateCall( 1250 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1251 CGF.CGM.FloatTy), 1252 Src); 1253 } else { 1254 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1255 } 1256 SrcType = CGF.getContext().FloatTy; 1257 SrcTy = CGF.FloatTy; 1258 } 1259 } 1260 1261 // Ignore conversions like int -> uint. 1262 if (SrcTy == DstTy) { 1263 if (Opts.EmitImplicitIntegerSignChangeChecks) 1264 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1265 NoncanonicalDstType, Loc); 1266 1267 return Src; 1268 } 1269 1270 // Handle pointer conversions next: pointers can only be converted to/from 1271 // other pointers and integers. Check for pointer types in terms of LLVM, as 1272 // some native types (like Obj-C id) may map to a pointer type. 1273 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1274 // The source value may be an integer, or a pointer. 1275 if (isa<llvm::PointerType>(SrcTy)) 1276 return Builder.CreateBitCast(Src, DstTy, "conv"); 1277 1278 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1279 // First, convert to the correct width so that we control the kind of 1280 // extension. 1281 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1282 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1283 llvm::Value* IntResult = 1284 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1285 // Then, cast to pointer. 1286 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1287 } 1288 1289 if (isa<llvm::PointerType>(SrcTy)) { 1290 // Must be an ptr to int cast. 1291 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1292 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1293 } 1294 1295 // A scalar can be splatted to an extended vector of the same element type 1296 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1297 // Sema should add casts to make sure that the source expression's type is 1298 // the same as the vector's element type (sans qualifiers) 1299 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1300 SrcType.getTypePtr() && 1301 "Splatted expr doesn't match with vector element type?"); 1302 1303 // Splat the element across to all elements 1304 unsigned NumElements = DstTy->getVectorNumElements(); 1305 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1306 } 1307 1308 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1309 // Allow bitcast from vector to integer/fp of the same size. 1310 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1311 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1312 if (SrcSize == DstSize) 1313 return Builder.CreateBitCast(Src, DstTy, "conv"); 1314 1315 // Conversions between vectors of different sizes are not allowed except 1316 // when vectors of half are involved. Operations on storage-only half 1317 // vectors require promoting half vector operands to float vectors and 1318 // truncating the result, which is either an int or float vector, to a 1319 // short or half vector. 1320 1321 // Source and destination are both expected to be vectors. 1322 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1323 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1324 (void)DstElementTy; 1325 1326 assert(((SrcElementTy->isIntegerTy() && 1327 DstElementTy->isIntegerTy()) || 1328 (SrcElementTy->isFloatingPointTy() && 1329 DstElementTy->isFloatingPointTy())) && 1330 "unexpected conversion between a floating-point vector and an " 1331 "integer vector"); 1332 1333 // Truncate an i32 vector to an i16 vector. 1334 if (SrcElementTy->isIntegerTy()) 1335 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1336 1337 // Truncate a float vector to a half vector. 1338 if (SrcSize > DstSize) 1339 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1340 1341 // Promote a half vector to a float vector. 1342 return Builder.CreateFPExt(Src, DstTy, "conv"); 1343 } 1344 1345 // Finally, we have the arithmetic types: real int/float. 1346 Value *Res = nullptr; 1347 llvm::Type *ResTy = DstTy; 1348 1349 // An overflowing conversion has undefined behavior if either the source type 1350 // or the destination type is a floating-point type. However, we consider the 1351 // range of representable values for all floating-point types to be 1352 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1353 // floating-point type. 1354 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1355 OrigSrcType->isFloatingType()) 1356 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1357 Loc); 1358 1359 // Cast to half through float if half isn't a native type. 1360 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1361 // Make sure we cast in a single step if from another FP type. 1362 if (SrcTy->isFloatingPointTy()) { 1363 // Use the intrinsic if the half type itself isn't supported 1364 // (as opposed to operations on half, available with NativeHalfType). 1365 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1366 return Builder.CreateCall( 1367 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1368 // If the half type is supported, just use an fptrunc. 1369 return Builder.CreateFPTrunc(Src, DstTy); 1370 } 1371 DstTy = CGF.FloatTy; 1372 } 1373 1374 if (isa<llvm::IntegerType>(SrcTy)) { 1375 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1376 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1377 InputSigned = true; 1378 } 1379 if (isa<llvm::IntegerType>(DstTy)) 1380 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1381 else if (InputSigned) 1382 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1383 else 1384 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1385 } else if (isa<llvm::IntegerType>(DstTy)) { 1386 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1387 if (DstType->isSignedIntegerOrEnumerationType()) 1388 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1389 else 1390 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1391 } else { 1392 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1393 "Unknown real conversion"); 1394 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1395 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1396 else 1397 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1398 } 1399 1400 if (DstTy != ResTy) { 1401 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1402 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1403 Res = Builder.CreateCall( 1404 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1405 Res); 1406 } else { 1407 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1408 } 1409 } 1410 1411 if (Opts.EmitImplicitIntegerTruncationChecks) 1412 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1413 NoncanonicalDstType, Loc); 1414 1415 if (Opts.EmitImplicitIntegerSignChangeChecks) 1416 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1417 NoncanonicalDstType, Loc); 1418 1419 return Res; 1420 } 1421 1422 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1423 QualType DstTy, 1424 SourceLocation Loc) { 1425 FixedPointSemantics SrcFPSema = 1426 CGF.getContext().getFixedPointSemantics(SrcTy); 1427 FixedPointSemantics DstFPSema = 1428 CGF.getContext().getFixedPointSemantics(DstTy); 1429 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1430 DstTy->isIntegerType()); 1431 } 1432 1433 Value *ScalarExprEmitter::EmitFixedPointConversion( 1434 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1435 SourceLocation Loc, bool DstIsInteger) { 1436 using llvm::APInt; 1437 using llvm::ConstantInt; 1438 using llvm::Value; 1439 1440 unsigned SrcWidth = SrcFPSema.getWidth(); 1441 unsigned DstWidth = DstFPSema.getWidth(); 1442 unsigned SrcScale = SrcFPSema.getScale(); 1443 unsigned DstScale = DstFPSema.getScale(); 1444 bool SrcIsSigned = SrcFPSema.isSigned(); 1445 bool DstIsSigned = DstFPSema.isSigned(); 1446 1447 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1448 1449 Value *Result = Src; 1450 unsigned ResultWidth = SrcWidth; 1451 1452 // Downscale. 1453 if (DstScale < SrcScale) { 1454 // When converting to integers, we round towards zero. For negative numbers, 1455 // right shifting rounds towards negative infinity. In this case, we can 1456 // just round up before shifting. 1457 if (DstIsInteger && SrcIsSigned) { 1458 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1459 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1460 Value *LowBits = ConstantInt::get( 1461 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1462 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1463 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1464 } 1465 1466 Result = SrcIsSigned 1467 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1468 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1469 } 1470 1471 if (!DstFPSema.isSaturated()) { 1472 // Resize. 1473 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1474 1475 // Upscale. 1476 if (DstScale > SrcScale) 1477 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1478 } else { 1479 // Adjust the number of fractional bits. 1480 if (DstScale > SrcScale) { 1481 // Compare to DstWidth to prevent resizing twice. 1482 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1483 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1484 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1485 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1486 } 1487 1488 // Handle saturation. 1489 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1490 if (LessIntBits) { 1491 Value *Max = ConstantInt::get( 1492 CGF.getLLVMContext(), 1493 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1494 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1495 : Builder.CreateICmpUGT(Result, Max); 1496 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1497 } 1498 // Cannot overflow min to dest type if src is unsigned since all fixed 1499 // point types can cover the unsigned min of 0. 1500 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1501 Value *Min = ConstantInt::get( 1502 CGF.getLLVMContext(), 1503 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1504 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1505 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1506 } 1507 1508 // Resize the integer part to get the final destination size. 1509 if (ResultWidth != DstWidth) 1510 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1511 } 1512 return Result; 1513 } 1514 1515 /// Emit a conversion from the specified complex type to the specified 1516 /// destination type, where the destination type is an LLVM scalar type. 1517 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1518 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1519 SourceLocation Loc) { 1520 // Get the source element type. 1521 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1522 1523 // Handle conversions to bool first, they are special: comparisons against 0. 1524 if (DstTy->isBooleanType()) { 1525 // Complex != 0 -> (Real != 0) | (Imag != 0) 1526 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1527 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1528 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1529 } 1530 1531 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1532 // the imaginary part of the complex value is discarded and the value of the 1533 // real part is converted according to the conversion rules for the 1534 // corresponding real type. 1535 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1536 } 1537 1538 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1539 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1540 } 1541 1542 /// Emit a sanitization check for the given "binary" operation (which 1543 /// might actually be a unary increment which has been lowered to a binary 1544 /// operation). The check passes if all values in \p Checks (which are \c i1), 1545 /// are \c true. 1546 void ScalarExprEmitter::EmitBinOpCheck( 1547 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1548 assert(CGF.IsSanitizerScope); 1549 SanitizerHandler Check; 1550 SmallVector<llvm::Constant *, 4> StaticData; 1551 SmallVector<llvm::Value *, 2> DynamicData; 1552 1553 BinaryOperatorKind Opcode = Info.Opcode; 1554 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1555 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1556 1557 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1558 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1559 if (UO && UO->getOpcode() == UO_Minus) { 1560 Check = SanitizerHandler::NegateOverflow; 1561 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1562 DynamicData.push_back(Info.RHS); 1563 } else { 1564 if (BinaryOperator::isShiftOp(Opcode)) { 1565 // Shift LHS negative or too large, or RHS out of bounds. 1566 Check = SanitizerHandler::ShiftOutOfBounds; 1567 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1568 StaticData.push_back( 1569 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1570 StaticData.push_back( 1571 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1572 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1573 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1574 Check = SanitizerHandler::DivremOverflow; 1575 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1576 } else { 1577 // Arithmetic overflow (+, -, *). 1578 switch (Opcode) { 1579 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1580 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1581 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1582 default: llvm_unreachable("unexpected opcode for bin op check"); 1583 } 1584 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1585 } 1586 DynamicData.push_back(Info.LHS); 1587 DynamicData.push_back(Info.RHS); 1588 } 1589 1590 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1591 } 1592 1593 //===----------------------------------------------------------------------===// 1594 // Visitor Methods 1595 //===----------------------------------------------------------------------===// 1596 1597 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1598 CGF.ErrorUnsupported(E, "scalar expression"); 1599 if (E->getType()->isVoidType()) 1600 return nullptr; 1601 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1602 } 1603 1604 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1605 // Vector Mask Case 1606 if (E->getNumSubExprs() == 2) { 1607 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1608 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1609 Value *Mask; 1610 1611 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1612 unsigned LHSElts = LTy->getNumElements(); 1613 1614 Mask = RHS; 1615 1616 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1617 1618 // Mask off the high bits of each shuffle index. 1619 Value *MaskBits = 1620 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1621 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1622 1623 // newv = undef 1624 // mask = mask & maskbits 1625 // for each elt 1626 // n = extract mask i 1627 // x = extract val n 1628 // newv = insert newv, x, i 1629 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1630 MTy->getNumElements()); 1631 Value* NewV = llvm::UndefValue::get(RTy); 1632 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1633 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1634 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1635 1636 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1637 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1638 } 1639 return NewV; 1640 } 1641 1642 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1643 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1644 1645 SmallVector<llvm::Constant*, 32> indices; 1646 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1647 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1648 // Check for -1 and output it as undef in the IR. 1649 if (Idx.isSigned() && Idx.isAllOnesValue()) 1650 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1651 else 1652 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1653 } 1654 1655 Value *SV = llvm::ConstantVector::get(indices); 1656 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1657 } 1658 1659 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1660 QualType SrcType = E->getSrcExpr()->getType(), 1661 DstType = E->getType(); 1662 1663 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1664 1665 SrcType = CGF.getContext().getCanonicalType(SrcType); 1666 DstType = CGF.getContext().getCanonicalType(DstType); 1667 if (SrcType == DstType) return Src; 1668 1669 assert(SrcType->isVectorType() && 1670 "ConvertVector source type must be a vector"); 1671 assert(DstType->isVectorType() && 1672 "ConvertVector destination type must be a vector"); 1673 1674 llvm::Type *SrcTy = Src->getType(); 1675 llvm::Type *DstTy = ConvertType(DstType); 1676 1677 // Ignore conversions like int -> uint. 1678 if (SrcTy == DstTy) 1679 return Src; 1680 1681 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1682 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1683 1684 assert(SrcTy->isVectorTy() && 1685 "ConvertVector source IR type must be a vector"); 1686 assert(DstTy->isVectorTy() && 1687 "ConvertVector destination IR type must be a vector"); 1688 1689 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1690 *DstEltTy = DstTy->getVectorElementType(); 1691 1692 if (DstEltType->isBooleanType()) { 1693 assert((SrcEltTy->isFloatingPointTy() || 1694 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1695 1696 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1697 if (SrcEltTy->isFloatingPointTy()) { 1698 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1699 } else { 1700 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1701 } 1702 } 1703 1704 // We have the arithmetic types: real int/float. 1705 Value *Res = nullptr; 1706 1707 if (isa<llvm::IntegerType>(SrcEltTy)) { 1708 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1709 if (isa<llvm::IntegerType>(DstEltTy)) 1710 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1711 else if (InputSigned) 1712 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1713 else 1714 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1715 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1716 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1717 if (DstEltType->isSignedIntegerOrEnumerationType()) 1718 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1719 else 1720 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1721 } else { 1722 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1723 "Unknown real conversion"); 1724 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1725 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1726 else 1727 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1728 } 1729 1730 return Res; 1731 } 1732 1733 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1734 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1735 CGF.EmitIgnoredExpr(E->getBase()); 1736 return CGF.emitScalarConstant(Constant, E); 1737 } else { 1738 Expr::EvalResult Result; 1739 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1740 llvm::APSInt Value = Result.Val.getInt(); 1741 CGF.EmitIgnoredExpr(E->getBase()); 1742 return Builder.getInt(Value); 1743 } 1744 } 1745 1746 return EmitLoadOfLValue(E); 1747 } 1748 1749 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1750 TestAndClearIgnoreResultAssign(); 1751 1752 // Emit subscript expressions in rvalue context's. For most cases, this just 1753 // loads the lvalue formed by the subscript expr. However, we have to be 1754 // careful, because the base of a vector subscript is occasionally an rvalue, 1755 // so we can't get it as an lvalue. 1756 if (!E->getBase()->getType()->isVectorType()) 1757 return EmitLoadOfLValue(E); 1758 1759 // Handle the vector case. The base must be a vector, the index must be an 1760 // integer value. 1761 Value *Base = Visit(E->getBase()); 1762 Value *Idx = Visit(E->getIdx()); 1763 QualType IdxTy = E->getIdx()->getType(); 1764 1765 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1766 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1767 1768 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1769 } 1770 1771 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1772 unsigned Off, llvm::Type *I32Ty) { 1773 int MV = SVI->getMaskValue(Idx); 1774 if (MV == -1) 1775 return llvm::UndefValue::get(I32Ty); 1776 return llvm::ConstantInt::get(I32Ty, Off+MV); 1777 } 1778 1779 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1780 if (C->getBitWidth() != 32) { 1781 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1782 C->getZExtValue()) && 1783 "Index operand too large for shufflevector mask!"); 1784 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1785 } 1786 return C; 1787 } 1788 1789 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1790 bool Ignore = TestAndClearIgnoreResultAssign(); 1791 (void)Ignore; 1792 assert (Ignore == false && "init list ignored"); 1793 unsigned NumInitElements = E->getNumInits(); 1794 1795 if (E->hadArrayRangeDesignator()) 1796 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1797 1798 llvm::VectorType *VType = 1799 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1800 1801 if (!VType) { 1802 if (NumInitElements == 0) { 1803 // C++11 value-initialization for the scalar. 1804 return EmitNullValue(E->getType()); 1805 } 1806 // We have a scalar in braces. Just use the first element. 1807 return Visit(E->getInit(0)); 1808 } 1809 1810 unsigned ResElts = VType->getNumElements(); 1811 1812 // Loop over initializers collecting the Value for each, and remembering 1813 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1814 // us to fold the shuffle for the swizzle into the shuffle for the vector 1815 // initializer, since LLVM optimizers generally do not want to touch 1816 // shuffles. 1817 unsigned CurIdx = 0; 1818 bool VIsUndefShuffle = false; 1819 llvm::Value *V = llvm::UndefValue::get(VType); 1820 for (unsigned i = 0; i != NumInitElements; ++i) { 1821 Expr *IE = E->getInit(i); 1822 Value *Init = Visit(IE); 1823 SmallVector<llvm::Constant*, 16> Args; 1824 1825 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1826 1827 // Handle scalar elements. If the scalar initializer is actually one 1828 // element of a different vector of the same width, use shuffle instead of 1829 // extract+insert. 1830 if (!VVT) { 1831 if (isa<ExtVectorElementExpr>(IE)) { 1832 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1833 1834 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1835 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1836 Value *LHS = nullptr, *RHS = nullptr; 1837 if (CurIdx == 0) { 1838 // insert into undef -> shuffle (src, undef) 1839 // shufflemask must use an i32 1840 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1841 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1842 1843 LHS = EI->getVectorOperand(); 1844 RHS = V; 1845 VIsUndefShuffle = true; 1846 } else if (VIsUndefShuffle) { 1847 // insert into undefshuffle && size match -> shuffle (v, src) 1848 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1849 for (unsigned j = 0; j != CurIdx; ++j) 1850 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1851 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1852 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1853 1854 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1855 RHS = EI->getVectorOperand(); 1856 VIsUndefShuffle = false; 1857 } 1858 if (!Args.empty()) { 1859 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1860 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1861 ++CurIdx; 1862 continue; 1863 } 1864 } 1865 } 1866 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1867 "vecinit"); 1868 VIsUndefShuffle = false; 1869 ++CurIdx; 1870 continue; 1871 } 1872 1873 unsigned InitElts = VVT->getNumElements(); 1874 1875 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1876 // input is the same width as the vector being constructed, generate an 1877 // optimized shuffle of the swizzle input into the result. 1878 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1879 if (isa<ExtVectorElementExpr>(IE)) { 1880 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1881 Value *SVOp = SVI->getOperand(0); 1882 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1883 1884 if (OpTy->getNumElements() == ResElts) { 1885 for (unsigned j = 0; j != CurIdx; ++j) { 1886 // If the current vector initializer is a shuffle with undef, merge 1887 // this shuffle directly into it. 1888 if (VIsUndefShuffle) { 1889 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1890 CGF.Int32Ty)); 1891 } else { 1892 Args.push_back(Builder.getInt32(j)); 1893 } 1894 } 1895 for (unsigned j = 0, je = InitElts; j != je; ++j) 1896 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1897 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1898 1899 if (VIsUndefShuffle) 1900 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1901 1902 Init = SVOp; 1903 } 1904 } 1905 1906 // Extend init to result vector length, and then shuffle its contribution 1907 // to the vector initializer into V. 1908 if (Args.empty()) { 1909 for (unsigned j = 0; j != InitElts; ++j) 1910 Args.push_back(Builder.getInt32(j)); 1911 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1912 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1913 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1914 Mask, "vext"); 1915 1916 Args.clear(); 1917 for (unsigned j = 0; j != CurIdx; ++j) 1918 Args.push_back(Builder.getInt32(j)); 1919 for (unsigned j = 0; j != InitElts; ++j) 1920 Args.push_back(Builder.getInt32(j+Offset)); 1921 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1922 } 1923 1924 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1925 // merging subsequent shuffles into this one. 1926 if (CurIdx == 0) 1927 std::swap(V, Init); 1928 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1929 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1930 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1931 CurIdx += InitElts; 1932 } 1933 1934 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1935 // Emit remaining default initializers. 1936 llvm::Type *EltTy = VType->getElementType(); 1937 1938 // Emit remaining default initializers 1939 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1940 Value *Idx = Builder.getInt32(CurIdx); 1941 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1942 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1943 } 1944 return V; 1945 } 1946 1947 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1948 const Expr *E = CE->getSubExpr(); 1949 1950 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1951 return false; 1952 1953 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1954 // We always assume that 'this' is never null. 1955 return false; 1956 } 1957 1958 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1959 // And that glvalue casts are never null. 1960 if (ICE->getValueKind() != VK_RValue) 1961 return false; 1962 } 1963 1964 return true; 1965 } 1966 1967 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1968 // have to handle a more broad range of conversions than explicit casts, as they 1969 // handle things like function to ptr-to-function decay etc. 1970 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1971 Expr *E = CE->getSubExpr(); 1972 QualType DestTy = CE->getType(); 1973 CastKind Kind = CE->getCastKind(); 1974 1975 // These cases are generally not written to ignore the result of 1976 // evaluating their sub-expressions, so we clear this now. 1977 bool Ignored = TestAndClearIgnoreResultAssign(); 1978 1979 // Since almost all cast kinds apply to scalars, this switch doesn't have 1980 // a default case, so the compiler will warn on a missing case. The cases 1981 // are in the same order as in the CastKind enum. 1982 switch (Kind) { 1983 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1984 case CK_BuiltinFnToFnPtr: 1985 llvm_unreachable("builtin functions are handled elsewhere"); 1986 1987 case CK_LValueBitCast: 1988 case CK_ObjCObjectLValueCast: { 1989 Address Addr = EmitLValue(E).getAddress(CGF); 1990 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1991 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1992 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1993 } 1994 1995 case CK_LValueToRValueBitCast: { 1996 LValue SourceLVal = CGF.EmitLValue(E); 1997 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 1998 CGF.ConvertTypeForMem(DestTy)); 1999 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2000 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2001 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2002 } 2003 2004 case CK_CPointerToObjCPointerCast: 2005 case CK_BlockPointerToObjCPointerCast: 2006 case CK_AnyPointerToBlockPointerCast: 2007 case CK_BitCast: { 2008 Value *Src = Visit(const_cast<Expr*>(E)); 2009 llvm::Type *SrcTy = Src->getType(); 2010 llvm::Type *DstTy = ConvertType(DestTy); 2011 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2012 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2013 llvm_unreachable("wrong cast for pointers in different address spaces" 2014 "(must be an address space cast)!"); 2015 } 2016 2017 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2018 if (auto PT = DestTy->getAs<PointerType>()) 2019 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2020 /*MayBeNull=*/true, 2021 CodeGenFunction::CFITCK_UnrelatedCast, 2022 CE->getBeginLoc()); 2023 } 2024 2025 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2026 const QualType SrcType = E->getType(); 2027 2028 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2029 // Casting to pointer that could carry dynamic information (provided by 2030 // invariant.group) requires launder. 2031 Src = Builder.CreateLaunderInvariantGroup(Src); 2032 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2033 // Casting to pointer that does not carry dynamic information (provided 2034 // by invariant.group) requires stripping it. Note that we don't do it 2035 // if the source could not be dynamic type and destination could be 2036 // dynamic because dynamic information is already laundered. It is 2037 // because launder(strip(src)) == launder(src), so there is no need to 2038 // add extra strip before launder. 2039 Src = Builder.CreateStripInvariantGroup(Src); 2040 } 2041 } 2042 2043 // Update heapallocsite metadata when there is an explicit cast. 2044 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2045 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2046 CGF.getDebugInfo()-> 2047 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2048 2049 return Builder.CreateBitCast(Src, DstTy); 2050 } 2051 case CK_AddressSpaceConversion: { 2052 Expr::EvalResult Result; 2053 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2054 Result.Val.isNullPointer()) { 2055 // If E has side effect, it is emitted even if its final result is a 2056 // null pointer. In that case, a DCE pass should be able to 2057 // eliminate the useless instructions emitted during translating E. 2058 if (Result.HasSideEffects) 2059 Visit(E); 2060 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2061 ConvertType(DestTy)), DestTy); 2062 } 2063 // Since target may map different address spaces in AST to the same address 2064 // space, an address space conversion may end up as a bitcast. 2065 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2066 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2067 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2068 } 2069 case CK_AtomicToNonAtomic: 2070 case CK_NonAtomicToAtomic: 2071 case CK_NoOp: 2072 case CK_UserDefinedConversion: 2073 return Visit(const_cast<Expr*>(E)); 2074 2075 case CK_BaseToDerived: { 2076 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2077 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2078 2079 Address Base = CGF.EmitPointerWithAlignment(E); 2080 Address Derived = 2081 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2082 CE->path_begin(), CE->path_end(), 2083 CGF.ShouldNullCheckClassCastValue(CE)); 2084 2085 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2086 // performed and the object is not of the derived type. 2087 if (CGF.sanitizePerformTypeCheck()) 2088 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2089 Derived.getPointer(), DestTy->getPointeeType()); 2090 2091 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2092 CGF.EmitVTablePtrCheckForCast( 2093 DestTy->getPointeeType(), Derived.getPointer(), 2094 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2095 CE->getBeginLoc()); 2096 2097 return Derived.getPointer(); 2098 } 2099 case CK_UncheckedDerivedToBase: 2100 case CK_DerivedToBase: { 2101 // The EmitPointerWithAlignment path does this fine; just discard 2102 // the alignment. 2103 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2104 } 2105 2106 case CK_Dynamic: { 2107 Address V = CGF.EmitPointerWithAlignment(E); 2108 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2109 return CGF.EmitDynamicCast(V, DCE); 2110 } 2111 2112 case CK_ArrayToPointerDecay: 2113 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2114 case CK_FunctionToPointerDecay: 2115 return EmitLValue(E).getPointer(CGF); 2116 2117 case CK_NullToPointer: 2118 if (MustVisitNullValue(E)) 2119 CGF.EmitIgnoredExpr(E); 2120 2121 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2122 DestTy); 2123 2124 case CK_NullToMemberPointer: { 2125 if (MustVisitNullValue(E)) 2126 CGF.EmitIgnoredExpr(E); 2127 2128 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2129 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2130 } 2131 2132 case CK_ReinterpretMemberPointer: 2133 case CK_BaseToDerivedMemberPointer: 2134 case CK_DerivedToBaseMemberPointer: { 2135 Value *Src = Visit(E); 2136 2137 // Note that the AST doesn't distinguish between checked and 2138 // unchecked member pointer conversions, so we always have to 2139 // implement checked conversions here. This is inefficient when 2140 // actual control flow may be required in order to perform the 2141 // check, which it is for data member pointers (but not member 2142 // function pointers on Itanium and ARM). 2143 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2144 } 2145 2146 case CK_ARCProduceObject: 2147 return CGF.EmitARCRetainScalarExpr(E); 2148 case CK_ARCConsumeObject: 2149 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2150 case CK_ARCReclaimReturnedObject: 2151 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2152 case CK_ARCExtendBlockObject: 2153 return CGF.EmitARCExtendBlockObject(E); 2154 2155 case CK_CopyAndAutoreleaseBlockObject: 2156 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2157 2158 case CK_FloatingRealToComplex: 2159 case CK_FloatingComplexCast: 2160 case CK_IntegralRealToComplex: 2161 case CK_IntegralComplexCast: 2162 case CK_IntegralComplexToFloatingComplex: 2163 case CK_FloatingComplexToIntegralComplex: 2164 case CK_ConstructorConversion: 2165 case CK_ToUnion: 2166 llvm_unreachable("scalar cast to non-scalar value"); 2167 2168 case CK_LValueToRValue: 2169 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2170 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2171 return Visit(const_cast<Expr*>(E)); 2172 2173 case CK_IntegralToPointer: { 2174 Value *Src = Visit(const_cast<Expr*>(E)); 2175 2176 // First, convert to the correct width so that we control the kind of 2177 // extension. 2178 auto DestLLVMTy = ConvertType(DestTy); 2179 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2180 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2181 llvm::Value* IntResult = 2182 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2183 2184 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2185 2186 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2187 // Going from integer to pointer that could be dynamic requires reloading 2188 // dynamic information from invariant.group. 2189 if (DestTy.mayBeDynamicClass()) 2190 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2191 } 2192 return IntToPtr; 2193 } 2194 case CK_PointerToIntegral: { 2195 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2196 auto *PtrExpr = Visit(E); 2197 2198 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2199 const QualType SrcType = E->getType(); 2200 2201 // Casting to integer requires stripping dynamic information as it does 2202 // not carries it. 2203 if (SrcType.mayBeDynamicClass()) 2204 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2205 } 2206 2207 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2208 } 2209 case CK_ToVoid: { 2210 CGF.EmitIgnoredExpr(E); 2211 return nullptr; 2212 } 2213 case CK_VectorSplat: { 2214 llvm::Type *DstTy = ConvertType(DestTy); 2215 Value *Elt = Visit(const_cast<Expr*>(E)); 2216 // Splat the element across to all elements 2217 unsigned NumElements = DstTy->getVectorNumElements(); 2218 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2219 } 2220 2221 case CK_FixedPointCast: 2222 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2223 CE->getExprLoc()); 2224 2225 case CK_FixedPointToBoolean: 2226 assert(E->getType()->isFixedPointType() && 2227 "Expected src type to be fixed point type"); 2228 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2229 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2230 CE->getExprLoc()); 2231 2232 case CK_FixedPointToIntegral: 2233 assert(E->getType()->isFixedPointType() && 2234 "Expected src type to be fixed point type"); 2235 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2236 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2237 CE->getExprLoc()); 2238 2239 case CK_IntegralToFixedPoint: 2240 assert(E->getType()->isIntegerType() && 2241 "Expected src type to be an integer"); 2242 assert(DestTy->isFixedPointType() && 2243 "Expected dest type to be fixed point type"); 2244 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2245 CE->getExprLoc()); 2246 2247 case CK_IntegralCast: { 2248 ScalarConversionOpts Opts; 2249 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2250 if (!ICE->isPartOfExplicitCast()) 2251 Opts = ScalarConversionOpts(CGF.SanOpts); 2252 } 2253 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2254 CE->getExprLoc(), Opts); 2255 } 2256 case CK_IntegralToFloating: 2257 case CK_FloatingToIntegral: 2258 case CK_FloatingCast: 2259 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2260 CE->getExprLoc()); 2261 case CK_BooleanToSignedIntegral: { 2262 ScalarConversionOpts Opts; 2263 Opts.TreatBooleanAsSigned = true; 2264 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2265 CE->getExprLoc(), Opts); 2266 } 2267 case CK_IntegralToBoolean: 2268 return EmitIntToBoolConversion(Visit(E)); 2269 case CK_PointerToBoolean: 2270 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2271 case CK_FloatingToBoolean: 2272 return EmitFloatToBoolConversion(Visit(E)); 2273 case CK_MemberPointerToBoolean: { 2274 llvm::Value *MemPtr = Visit(E); 2275 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2276 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2277 } 2278 2279 case CK_FloatingComplexToReal: 2280 case CK_IntegralComplexToReal: 2281 return CGF.EmitComplexExpr(E, false, true).first; 2282 2283 case CK_FloatingComplexToBoolean: 2284 case CK_IntegralComplexToBoolean: { 2285 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2286 2287 // TODO: kill this function off, inline appropriate case here 2288 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2289 CE->getExprLoc()); 2290 } 2291 2292 case CK_ZeroToOCLOpaqueType: { 2293 assert((DestTy->isEventT() || DestTy->isQueueT() || 2294 DestTy->isOCLIntelSubgroupAVCType()) && 2295 "CK_ZeroToOCLEvent cast on non-event type"); 2296 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2297 } 2298 2299 case CK_IntToOCLSampler: 2300 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2301 2302 } // end of switch 2303 2304 llvm_unreachable("unknown scalar cast"); 2305 } 2306 2307 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2308 CodeGenFunction::StmtExprEvaluation eval(CGF); 2309 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2310 !E->getType()->isVoidType()); 2311 if (!RetAlloca.isValid()) 2312 return nullptr; 2313 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2314 E->getExprLoc()); 2315 } 2316 2317 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2318 CGF.enterFullExpression(E); 2319 CodeGenFunction::RunCleanupsScope Scope(CGF); 2320 Value *V = Visit(E->getSubExpr()); 2321 // Defend against dominance problems caused by jumps out of expression 2322 // evaluation through the shared cleanup block. 2323 Scope.ForceCleanup({&V}); 2324 return V; 2325 } 2326 2327 //===----------------------------------------------------------------------===// 2328 // Unary Operators 2329 //===----------------------------------------------------------------------===// 2330 2331 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2332 llvm::Value *InVal, bool IsInc) { 2333 BinOpInfo BinOp; 2334 BinOp.LHS = InVal; 2335 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2336 BinOp.Ty = E->getType(); 2337 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2338 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2339 BinOp.E = E; 2340 return BinOp; 2341 } 2342 2343 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2344 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2345 llvm::Value *Amount = 2346 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2347 StringRef Name = IsInc ? "inc" : "dec"; 2348 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2349 case LangOptions::SOB_Defined: 2350 return Builder.CreateAdd(InVal, Amount, Name); 2351 case LangOptions::SOB_Undefined: 2352 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2353 return Builder.CreateNSWAdd(InVal, Amount, Name); 2354 LLVM_FALLTHROUGH; 2355 case LangOptions::SOB_Trapping: 2356 if (!E->canOverflow()) 2357 return Builder.CreateNSWAdd(InVal, Amount, Name); 2358 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2359 } 2360 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2361 } 2362 2363 namespace { 2364 /// Handles check and update for lastprivate conditional variables. 2365 class OMPLastprivateConditionalUpdateRAII { 2366 private: 2367 CodeGenFunction &CGF; 2368 const UnaryOperator *E; 2369 2370 public: 2371 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2372 const UnaryOperator *E) 2373 : CGF(CGF), E(E) {} 2374 ~OMPLastprivateConditionalUpdateRAII() { 2375 if (CGF.getLangOpts().OpenMP) 2376 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2377 CGF, E->getSubExpr()); 2378 } 2379 }; 2380 } // namespace 2381 2382 llvm::Value * 2383 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2384 bool isInc, bool isPre) { 2385 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2386 QualType type = E->getSubExpr()->getType(); 2387 llvm::PHINode *atomicPHI = nullptr; 2388 llvm::Value *value; 2389 llvm::Value *input; 2390 2391 int amount = (isInc ? 1 : -1); 2392 bool isSubtraction = !isInc; 2393 2394 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2395 type = atomicTy->getValueType(); 2396 if (isInc && type->isBooleanType()) { 2397 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2398 if (isPre) { 2399 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2400 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2401 return Builder.getTrue(); 2402 } 2403 // For atomic bool increment, we just store true and return it for 2404 // preincrement, do an atomic swap with true for postincrement 2405 return Builder.CreateAtomicRMW( 2406 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2407 llvm::AtomicOrdering::SequentiallyConsistent); 2408 } 2409 // Special case for atomic increment / decrement on integers, emit 2410 // atomicrmw instructions. We skip this if we want to be doing overflow 2411 // checking, and fall into the slow path with the atomic cmpxchg loop. 2412 if (!type->isBooleanType() && type->isIntegerType() && 2413 !(type->isUnsignedIntegerType() && 2414 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2415 CGF.getLangOpts().getSignedOverflowBehavior() != 2416 LangOptions::SOB_Trapping) { 2417 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2418 llvm::AtomicRMWInst::Sub; 2419 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2420 llvm::Instruction::Sub; 2421 llvm::Value *amt = CGF.EmitToMemory( 2422 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2423 llvm::Value *old = 2424 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2425 llvm::AtomicOrdering::SequentiallyConsistent); 2426 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2427 } 2428 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2429 input = value; 2430 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2431 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2432 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2433 value = CGF.EmitToMemory(value, type); 2434 Builder.CreateBr(opBB); 2435 Builder.SetInsertPoint(opBB); 2436 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2437 atomicPHI->addIncoming(value, startBB); 2438 value = atomicPHI; 2439 } else { 2440 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2441 input = value; 2442 } 2443 2444 // Special case of integer increment that we have to check first: bool++. 2445 // Due to promotion rules, we get: 2446 // bool++ -> bool = bool + 1 2447 // -> bool = (int)bool + 1 2448 // -> bool = ((int)bool + 1 != 0) 2449 // An interesting aspect of this is that increment is always true. 2450 // Decrement does not have this property. 2451 if (isInc && type->isBooleanType()) { 2452 value = Builder.getTrue(); 2453 2454 // Most common case by far: integer increment. 2455 } else if (type->isIntegerType()) { 2456 QualType promotedType; 2457 bool canPerformLossyDemotionCheck = false; 2458 if (type->isPromotableIntegerType()) { 2459 promotedType = CGF.getContext().getPromotedIntegerType(type); 2460 assert(promotedType != type && "Shouldn't promote to the same type."); 2461 canPerformLossyDemotionCheck = true; 2462 canPerformLossyDemotionCheck &= 2463 CGF.getContext().getCanonicalType(type) != 2464 CGF.getContext().getCanonicalType(promotedType); 2465 canPerformLossyDemotionCheck &= 2466 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2467 type, promotedType); 2468 assert((!canPerformLossyDemotionCheck || 2469 type->isSignedIntegerOrEnumerationType() || 2470 promotedType->isSignedIntegerOrEnumerationType() || 2471 ConvertType(type)->getScalarSizeInBits() == 2472 ConvertType(promotedType)->getScalarSizeInBits()) && 2473 "The following check expects that if we do promotion to different " 2474 "underlying canonical type, at least one of the types (either " 2475 "base or promoted) will be signed, or the bitwidths will match."); 2476 } 2477 if (CGF.SanOpts.hasOneOf( 2478 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2479 canPerformLossyDemotionCheck) { 2480 // While `x += 1` (for `x` with width less than int) is modeled as 2481 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2482 // ease; inc/dec with width less than int can't overflow because of 2483 // promotion rules, so we omit promotion+demotion, which means that we can 2484 // not catch lossy "demotion". Because we still want to catch these cases 2485 // when the sanitizer is enabled, we perform the promotion, then perform 2486 // the increment/decrement in the wider type, and finally 2487 // perform the demotion. This will catch lossy demotions. 2488 2489 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2490 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2491 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2492 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2493 // emitted. 2494 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2495 ScalarConversionOpts(CGF.SanOpts)); 2496 2497 // Note that signed integer inc/dec with width less than int can't 2498 // overflow because of promotion rules; we're just eliding a few steps 2499 // here. 2500 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2501 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2502 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2503 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2504 value = 2505 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2506 } else { 2507 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2508 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2509 } 2510 2511 // Next most common: pointer increment. 2512 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2513 QualType type = ptr->getPointeeType(); 2514 2515 // VLA types don't have constant size. 2516 if (const VariableArrayType *vla 2517 = CGF.getContext().getAsVariableArrayType(type)) { 2518 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2519 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2520 if (CGF.getLangOpts().isSignedOverflowDefined()) 2521 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2522 else 2523 value = CGF.EmitCheckedInBoundsGEP( 2524 value, numElts, /*SignedIndices=*/false, isSubtraction, 2525 E->getExprLoc(), "vla.inc"); 2526 2527 // Arithmetic on function pointers (!) is just +-1. 2528 } else if (type->isFunctionType()) { 2529 llvm::Value *amt = Builder.getInt32(amount); 2530 2531 value = CGF.EmitCastToVoidPtr(value); 2532 if (CGF.getLangOpts().isSignedOverflowDefined()) 2533 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2534 else 2535 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2536 isSubtraction, E->getExprLoc(), 2537 "incdec.funcptr"); 2538 value = Builder.CreateBitCast(value, input->getType()); 2539 2540 // For everything else, we can just do a simple increment. 2541 } else { 2542 llvm::Value *amt = Builder.getInt32(amount); 2543 if (CGF.getLangOpts().isSignedOverflowDefined()) 2544 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2545 else 2546 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2547 isSubtraction, E->getExprLoc(), 2548 "incdec.ptr"); 2549 } 2550 2551 // Vector increment/decrement. 2552 } else if (type->isVectorType()) { 2553 if (type->hasIntegerRepresentation()) { 2554 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2555 2556 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2557 } else { 2558 value = Builder.CreateFAdd( 2559 value, 2560 llvm::ConstantFP::get(value->getType(), amount), 2561 isInc ? "inc" : "dec"); 2562 } 2563 2564 // Floating point. 2565 } else if (type->isRealFloatingType()) { 2566 // Add the inc/dec to the real part. 2567 llvm::Value *amt; 2568 2569 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2570 // Another special case: half FP increment should be done via float 2571 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2572 value = Builder.CreateCall( 2573 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2574 CGF.CGM.FloatTy), 2575 input, "incdec.conv"); 2576 } else { 2577 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2578 } 2579 } 2580 2581 if (value->getType()->isFloatTy()) 2582 amt = llvm::ConstantFP::get(VMContext, 2583 llvm::APFloat(static_cast<float>(amount))); 2584 else if (value->getType()->isDoubleTy()) 2585 amt = llvm::ConstantFP::get(VMContext, 2586 llvm::APFloat(static_cast<double>(amount))); 2587 else { 2588 // Remaining types are Half, LongDouble or __float128. Convert from float. 2589 llvm::APFloat F(static_cast<float>(amount)); 2590 bool ignored; 2591 const llvm::fltSemantics *FS; 2592 // Don't use getFloatTypeSemantics because Half isn't 2593 // necessarily represented using the "half" LLVM type. 2594 if (value->getType()->isFP128Ty()) 2595 FS = &CGF.getTarget().getFloat128Format(); 2596 else if (value->getType()->isHalfTy()) 2597 FS = &CGF.getTarget().getHalfFormat(); 2598 else 2599 FS = &CGF.getTarget().getLongDoubleFormat(); 2600 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2601 amt = llvm::ConstantFP::get(VMContext, F); 2602 } 2603 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2604 2605 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2606 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2607 value = Builder.CreateCall( 2608 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2609 CGF.CGM.FloatTy), 2610 value, "incdec.conv"); 2611 } else { 2612 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2613 } 2614 } 2615 2616 // Objective-C pointer types. 2617 } else { 2618 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2619 value = CGF.EmitCastToVoidPtr(value); 2620 2621 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2622 if (!isInc) size = -size; 2623 llvm::Value *sizeValue = 2624 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2625 2626 if (CGF.getLangOpts().isSignedOverflowDefined()) 2627 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2628 else 2629 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2630 /*SignedIndices=*/false, isSubtraction, 2631 E->getExprLoc(), "incdec.objptr"); 2632 value = Builder.CreateBitCast(value, input->getType()); 2633 } 2634 2635 if (atomicPHI) { 2636 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2637 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2638 auto Pair = CGF.EmitAtomicCompareExchange( 2639 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2640 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2641 llvm::Value *success = Pair.second; 2642 atomicPHI->addIncoming(old, curBlock); 2643 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2644 Builder.SetInsertPoint(contBB); 2645 return isPre ? value : input; 2646 } 2647 2648 // Store the updated result through the lvalue. 2649 if (LV.isBitField()) 2650 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2651 else 2652 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2653 2654 // If this is a postinc, return the value read from memory, otherwise use the 2655 // updated value. 2656 return isPre ? value : input; 2657 } 2658 2659 2660 2661 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2662 TestAndClearIgnoreResultAssign(); 2663 Value *Op = Visit(E->getSubExpr()); 2664 2665 // Generate a unary FNeg for FP ops. 2666 if (Op->getType()->isFPOrFPVectorTy()) 2667 return Builder.CreateFNeg(Op, "fneg"); 2668 2669 // Emit unary minus with EmitSub so we handle overflow cases etc. 2670 BinOpInfo BinOp; 2671 BinOp.RHS = Op; 2672 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2673 BinOp.Ty = E->getType(); 2674 BinOp.Opcode = BO_Sub; 2675 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2676 BinOp.E = E; 2677 return EmitSub(BinOp); 2678 } 2679 2680 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2681 TestAndClearIgnoreResultAssign(); 2682 Value *Op = Visit(E->getSubExpr()); 2683 return Builder.CreateNot(Op, "neg"); 2684 } 2685 2686 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2687 // Perform vector logical not on comparison with zero vector. 2688 if (E->getType()->isExtVectorType()) { 2689 Value *Oper = Visit(E->getSubExpr()); 2690 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2691 Value *Result; 2692 if (Oper->getType()->isFPOrFPVectorTy()) 2693 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2694 else 2695 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2696 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2697 } 2698 2699 // Compare operand to zero. 2700 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2701 2702 // Invert value. 2703 // TODO: Could dynamically modify easy computations here. For example, if 2704 // the operand is an icmp ne, turn into icmp eq. 2705 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2706 2707 // ZExt result to the expr type. 2708 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2709 } 2710 2711 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2712 // Try folding the offsetof to a constant. 2713 Expr::EvalResult EVResult; 2714 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2715 llvm::APSInt Value = EVResult.Val.getInt(); 2716 return Builder.getInt(Value); 2717 } 2718 2719 // Loop over the components of the offsetof to compute the value. 2720 unsigned n = E->getNumComponents(); 2721 llvm::Type* ResultType = ConvertType(E->getType()); 2722 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2723 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2724 for (unsigned i = 0; i != n; ++i) { 2725 OffsetOfNode ON = E->getComponent(i); 2726 llvm::Value *Offset = nullptr; 2727 switch (ON.getKind()) { 2728 case OffsetOfNode::Array: { 2729 // Compute the index 2730 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2731 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2732 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2733 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2734 2735 // Save the element type 2736 CurrentType = 2737 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2738 2739 // Compute the element size 2740 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2741 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2742 2743 // Multiply out to compute the result 2744 Offset = Builder.CreateMul(Idx, ElemSize); 2745 break; 2746 } 2747 2748 case OffsetOfNode::Field: { 2749 FieldDecl *MemberDecl = ON.getField(); 2750 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2751 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2752 2753 // Compute the index of the field in its parent. 2754 unsigned i = 0; 2755 // FIXME: It would be nice if we didn't have to loop here! 2756 for (RecordDecl::field_iterator Field = RD->field_begin(), 2757 FieldEnd = RD->field_end(); 2758 Field != FieldEnd; ++Field, ++i) { 2759 if (*Field == MemberDecl) 2760 break; 2761 } 2762 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2763 2764 // Compute the offset to the field 2765 int64_t OffsetInt = RL.getFieldOffset(i) / 2766 CGF.getContext().getCharWidth(); 2767 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2768 2769 // Save the element type. 2770 CurrentType = MemberDecl->getType(); 2771 break; 2772 } 2773 2774 case OffsetOfNode::Identifier: 2775 llvm_unreachable("dependent __builtin_offsetof"); 2776 2777 case OffsetOfNode::Base: { 2778 if (ON.getBase()->isVirtual()) { 2779 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2780 continue; 2781 } 2782 2783 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2784 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2785 2786 // Save the element type. 2787 CurrentType = ON.getBase()->getType(); 2788 2789 // Compute the offset to the base. 2790 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2791 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2792 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2793 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2794 break; 2795 } 2796 } 2797 Result = Builder.CreateAdd(Result, Offset); 2798 } 2799 return Result; 2800 } 2801 2802 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2803 /// argument of the sizeof expression as an integer. 2804 Value * 2805 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2806 const UnaryExprOrTypeTraitExpr *E) { 2807 QualType TypeToSize = E->getTypeOfArgument(); 2808 if (E->getKind() == UETT_SizeOf) { 2809 if (const VariableArrayType *VAT = 2810 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2811 if (E->isArgumentType()) { 2812 // sizeof(type) - make sure to emit the VLA size. 2813 CGF.EmitVariablyModifiedType(TypeToSize); 2814 } else { 2815 // C99 6.5.3.4p2: If the argument is an expression of type 2816 // VLA, it is evaluated. 2817 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2818 } 2819 2820 auto VlaSize = CGF.getVLASize(VAT); 2821 llvm::Value *size = VlaSize.NumElts; 2822 2823 // Scale the number of non-VLA elements by the non-VLA element size. 2824 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2825 if (!eltSize.isOne()) 2826 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2827 2828 return size; 2829 } 2830 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2831 auto Alignment = 2832 CGF.getContext() 2833 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2834 E->getTypeOfArgument()->getPointeeType())) 2835 .getQuantity(); 2836 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2837 } 2838 2839 // If this isn't sizeof(vla), the result must be constant; use the constant 2840 // folding logic so we don't have to duplicate it here. 2841 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2842 } 2843 2844 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2845 Expr *Op = E->getSubExpr(); 2846 if (Op->getType()->isAnyComplexType()) { 2847 // If it's an l-value, load through the appropriate subobject l-value. 2848 // Note that we have to ask E because Op might be an l-value that 2849 // this won't work for, e.g. an Obj-C property. 2850 if (E->isGLValue()) 2851 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2852 E->getExprLoc()).getScalarVal(); 2853 2854 // Otherwise, calculate and project. 2855 return CGF.EmitComplexExpr(Op, false, true).first; 2856 } 2857 2858 return Visit(Op); 2859 } 2860 2861 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2862 Expr *Op = E->getSubExpr(); 2863 if (Op->getType()->isAnyComplexType()) { 2864 // If it's an l-value, load through the appropriate subobject l-value. 2865 // Note that we have to ask E because Op might be an l-value that 2866 // this won't work for, e.g. an Obj-C property. 2867 if (Op->isGLValue()) 2868 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2869 E->getExprLoc()).getScalarVal(); 2870 2871 // Otherwise, calculate and project. 2872 return CGF.EmitComplexExpr(Op, true, false).second; 2873 } 2874 2875 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2876 // effects are evaluated, but not the actual value. 2877 if (Op->isGLValue()) 2878 CGF.EmitLValue(Op); 2879 else 2880 CGF.EmitScalarExpr(Op, true); 2881 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2882 } 2883 2884 //===----------------------------------------------------------------------===// 2885 // Binary Operators 2886 //===----------------------------------------------------------------------===// 2887 2888 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2889 TestAndClearIgnoreResultAssign(); 2890 BinOpInfo Result; 2891 Result.LHS = Visit(E->getLHS()); 2892 Result.RHS = Visit(E->getRHS()); 2893 Result.Ty = E->getType(); 2894 Result.Opcode = E->getOpcode(); 2895 Result.FPFeatures = E->getFPFeatures(); 2896 Result.E = E; 2897 return Result; 2898 } 2899 2900 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2901 const CompoundAssignOperator *E, 2902 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2903 Value *&Result) { 2904 QualType LHSTy = E->getLHS()->getType(); 2905 BinOpInfo OpInfo; 2906 2907 if (E->getComputationResultType()->isAnyComplexType()) 2908 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2909 2910 // Emit the RHS first. __block variables need to have the rhs evaluated 2911 // first, plus this should improve codegen a little. 2912 OpInfo.RHS = Visit(E->getRHS()); 2913 OpInfo.Ty = E->getComputationResultType(); 2914 OpInfo.Opcode = E->getOpcode(); 2915 OpInfo.FPFeatures = E->getFPFeatures(); 2916 OpInfo.E = E; 2917 // Load/convert the LHS. 2918 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2919 2920 llvm::PHINode *atomicPHI = nullptr; 2921 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2922 QualType type = atomicTy->getValueType(); 2923 if (!type->isBooleanType() && type->isIntegerType() && 2924 !(type->isUnsignedIntegerType() && 2925 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2926 CGF.getLangOpts().getSignedOverflowBehavior() != 2927 LangOptions::SOB_Trapping) { 2928 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 2929 llvm::Instruction::BinaryOps Op; 2930 switch (OpInfo.Opcode) { 2931 // We don't have atomicrmw operands for *, %, /, <<, >> 2932 case BO_MulAssign: case BO_DivAssign: 2933 case BO_RemAssign: 2934 case BO_ShlAssign: 2935 case BO_ShrAssign: 2936 break; 2937 case BO_AddAssign: 2938 AtomicOp = llvm::AtomicRMWInst::Add; 2939 Op = llvm::Instruction::Add; 2940 break; 2941 case BO_SubAssign: 2942 AtomicOp = llvm::AtomicRMWInst::Sub; 2943 Op = llvm::Instruction::Sub; 2944 break; 2945 case BO_AndAssign: 2946 AtomicOp = llvm::AtomicRMWInst::And; 2947 Op = llvm::Instruction::And; 2948 break; 2949 case BO_XorAssign: 2950 AtomicOp = llvm::AtomicRMWInst::Xor; 2951 Op = llvm::Instruction::Xor; 2952 break; 2953 case BO_OrAssign: 2954 AtomicOp = llvm::AtomicRMWInst::Or; 2955 Op = llvm::Instruction::Or; 2956 break; 2957 default: 2958 llvm_unreachable("Invalid compound assignment type"); 2959 } 2960 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 2961 llvm::Value *Amt = CGF.EmitToMemory( 2962 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2963 E->getExprLoc()), 2964 LHSTy); 2965 Value *OldVal = Builder.CreateAtomicRMW( 2966 AtomicOp, LHSLV.getPointer(CGF), Amt, 2967 llvm::AtomicOrdering::SequentiallyConsistent); 2968 2969 // Since operation is atomic, the result type is guaranteed to be the 2970 // same as the input in LLVM terms. 2971 Result = Builder.CreateBinOp(Op, OldVal, Amt); 2972 return LHSLV; 2973 } 2974 } 2975 // FIXME: For floating point types, we should be saving and restoring the 2976 // floating point environment in the loop. 2977 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2978 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2979 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2980 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2981 Builder.CreateBr(opBB); 2982 Builder.SetInsertPoint(opBB); 2983 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2984 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2985 OpInfo.LHS = atomicPHI; 2986 } 2987 else 2988 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2989 2990 SourceLocation Loc = E->getExprLoc(); 2991 OpInfo.LHS = 2992 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2993 2994 // Expand the binary operator. 2995 Result = (this->*Func)(OpInfo); 2996 2997 // Convert the result back to the LHS type, 2998 // potentially with Implicit Conversion sanitizer check. 2999 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3000 Loc, ScalarConversionOpts(CGF.SanOpts)); 3001 3002 if (atomicPHI) { 3003 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3004 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3005 auto Pair = CGF.EmitAtomicCompareExchange( 3006 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3007 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3008 llvm::Value *success = Pair.second; 3009 atomicPHI->addIncoming(old, curBlock); 3010 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3011 Builder.SetInsertPoint(contBB); 3012 return LHSLV; 3013 } 3014 3015 // Store the result value into the LHS lvalue. Bit-fields are handled 3016 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3017 // 'An assignment expression has the value of the left operand after the 3018 // assignment...'. 3019 if (LHSLV.isBitField()) 3020 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3021 else 3022 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3023 3024 if (CGF.getLangOpts().OpenMP) 3025 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3026 E->getLHS()); 3027 return LHSLV; 3028 } 3029 3030 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3031 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3032 bool Ignore = TestAndClearIgnoreResultAssign(); 3033 Value *RHS = nullptr; 3034 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3035 3036 // If the result is clearly ignored, return now. 3037 if (Ignore) 3038 return nullptr; 3039 3040 // The result of an assignment in C is the assigned r-value. 3041 if (!CGF.getLangOpts().CPlusPlus) 3042 return RHS; 3043 3044 // If the lvalue is non-volatile, return the computed value of the assignment. 3045 if (!LHS.isVolatileQualified()) 3046 return RHS; 3047 3048 // Otherwise, reload the value. 3049 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3050 } 3051 3052 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3053 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3054 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3055 3056 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3057 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3058 SanitizerKind::IntegerDivideByZero)); 3059 } 3060 3061 const auto *BO = cast<BinaryOperator>(Ops.E); 3062 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3063 Ops.Ty->hasSignedIntegerRepresentation() && 3064 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3065 Ops.mayHaveIntegerOverflow()) { 3066 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3067 3068 llvm::Value *IntMin = 3069 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3070 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3071 3072 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3073 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3074 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3075 Checks.push_back( 3076 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3077 } 3078 3079 if (Checks.size() > 0) 3080 EmitBinOpCheck(Checks, Ops); 3081 } 3082 3083 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3084 { 3085 CodeGenFunction::SanitizerScope SanScope(&CGF); 3086 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3087 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3088 Ops.Ty->isIntegerType() && 3089 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3090 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3091 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3092 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3093 Ops.Ty->isRealFloatingType() && 3094 Ops.mayHaveFloatDivisionByZero()) { 3095 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3096 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3097 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3098 Ops); 3099 } 3100 } 3101 3102 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3103 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3104 if (CGF.getLangOpts().OpenCL && 3105 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3106 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3107 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3108 // build option allows an application to specify that single precision 3109 // floating-point divide (x/y and 1/x) and sqrt used in the program 3110 // source are correctly rounded. 3111 llvm::Type *ValTy = Val->getType(); 3112 if (ValTy->isFloatTy() || 3113 (isa<llvm::VectorType>(ValTy) && 3114 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3115 CGF.SetFPAccuracy(Val, 2.5); 3116 } 3117 return Val; 3118 } 3119 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3120 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3121 else 3122 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3123 } 3124 3125 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3126 // Rem in C can't be a floating point type: C99 6.5.5p2. 3127 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3128 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3129 Ops.Ty->isIntegerType() && 3130 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3131 CodeGenFunction::SanitizerScope SanScope(&CGF); 3132 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3133 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3134 } 3135 3136 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3137 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3138 else 3139 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3140 } 3141 3142 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3143 unsigned IID; 3144 unsigned OpID = 0; 3145 3146 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3147 switch (Ops.Opcode) { 3148 case BO_Add: 3149 case BO_AddAssign: 3150 OpID = 1; 3151 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3152 llvm::Intrinsic::uadd_with_overflow; 3153 break; 3154 case BO_Sub: 3155 case BO_SubAssign: 3156 OpID = 2; 3157 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3158 llvm::Intrinsic::usub_with_overflow; 3159 break; 3160 case BO_Mul: 3161 case BO_MulAssign: 3162 OpID = 3; 3163 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3164 llvm::Intrinsic::umul_with_overflow; 3165 break; 3166 default: 3167 llvm_unreachable("Unsupported operation for overflow detection"); 3168 } 3169 OpID <<= 1; 3170 if (isSigned) 3171 OpID |= 1; 3172 3173 CodeGenFunction::SanitizerScope SanScope(&CGF); 3174 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3175 3176 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3177 3178 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3179 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3180 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3181 3182 // Handle overflow with llvm.trap if no custom handler has been specified. 3183 const std::string *handlerName = 3184 &CGF.getLangOpts().OverflowHandler; 3185 if (handlerName->empty()) { 3186 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3187 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3188 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3189 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3190 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3191 : SanitizerKind::UnsignedIntegerOverflow; 3192 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3193 } else 3194 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3195 return result; 3196 } 3197 3198 // Branch in case of overflow. 3199 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3200 llvm::BasicBlock *continueBB = 3201 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3202 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3203 3204 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3205 3206 // If an overflow handler is set, then we want to call it and then use its 3207 // result, if it returns. 3208 Builder.SetInsertPoint(overflowBB); 3209 3210 // Get the overflow handler. 3211 llvm::Type *Int8Ty = CGF.Int8Ty; 3212 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3213 llvm::FunctionType *handlerTy = 3214 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3215 llvm::FunctionCallee handler = 3216 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3217 3218 // Sign extend the args to 64-bit, so that we can use the same handler for 3219 // all types of overflow. 3220 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3221 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3222 3223 // Call the handler with the two arguments, the operation, and the size of 3224 // the result. 3225 llvm::Value *handlerArgs[] = { 3226 lhs, 3227 rhs, 3228 Builder.getInt8(OpID), 3229 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3230 }; 3231 llvm::Value *handlerResult = 3232 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3233 3234 // Truncate the result back to the desired size. 3235 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3236 Builder.CreateBr(continueBB); 3237 3238 Builder.SetInsertPoint(continueBB); 3239 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3240 phi->addIncoming(result, initialBB); 3241 phi->addIncoming(handlerResult, overflowBB); 3242 3243 return phi; 3244 } 3245 3246 /// Emit pointer + index arithmetic. 3247 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3248 const BinOpInfo &op, 3249 bool isSubtraction) { 3250 // Must have binary (not unary) expr here. Unary pointer 3251 // increment/decrement doesn't use this path. 3252 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3253 3254 Value *pointer = op.LHS; 3255 Expr *pointerOperand = expr->getLHS(); 3256 Value *index = op.RHS; 3257 Expr *indexOperand = expr->getRHS(); 3258 3259 // In a subtraction, the LHS is always the pointer. 3260 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3261 std::swap(pointer, index); 3262 std::swap(pointerOperand, indexOperand); 3263 } 3264 3265 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3266 3267 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3268 auto &DL = CGF.CGM.getDataLayout(); 3269 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3270 3271 // Some versions of glibc and gcc use idioms (particularly in their malloc 3272 // routines) that add a pointer-sized integer (known to be a pointer value) 3273 // to a null pointer in order to cast the value back to an integer or as 3274 // part of a pointer alignment algorithm. This is undefined behavior, but 3275 // we'd like to be able to compile programs that use it. 3276 // 3277 // Normally, we'd generate a GEP with a null-pointer base here in response 3278 // to that code, but it's also UB to dereference a pointer created that 3279 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3280 // generate a direct cast of the integer value to a pointer. 3281 // 3282 // The idiom (p = nullptr + N) is not met if any of the following are true: 3283 // 3284 // The operation is subtraction. 3285 // The index is not pointer-sized. 3286 // The pointer type is not byte-sized. 3287 // 3288 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3289 op.Opcode, 3290 expr->getLHS(), 3291 expr->getRHS())) 3292 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3293 3294 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3295 // Zero-extend or sign-extend the pointer value according to 3296 // whether the index is signed or not. 3297 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3298 "idx.ext"); 3299 } 3300 3301 // If this is subtraction, negate the index. 3302 if (isSubtraction) 3303 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3304 3305 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3306 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3307 /*Accessed*/ false); 3308 3309 const PointerType *pointerType 3310 = pointerOperand->getType()->getAs<PointerType>(); 3311 if (!pointerType) { 3312 QualType objectType = pointerOperand->getType() 3313 ->castAs<ObjCObjectPointerType>() 3314 ->getPointeeType(); 3315 llvm::Value *objectSize 3316 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3317 3318 index = CGF.Builder.CreateMul(index, objectSize); 3319 3320 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3321 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3322 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3323 } 3324 3325 QualType elementType = pointerType->getPointeeType(); 3326 if (const VariableArrayType *vla 3327 = CGF.getContext().getAsVariableArrayType(elementType)) { 3328 // The element count here is the total number of non-VLA elements. 3329 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3330 3331 // Effectively, the multiply by the VLA size is part of the GEP. 3332 // GEP indexes are signed, and scaling an index isn't permitted to 3333 // signed-overflow, so we use the same semantics for our explicit 3334 // multiply. We suppress this if overflow is not undefined behavior. 3335 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3336 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3337 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3338 } else { 3339 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3340 pointer = 3341 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3342 op.E->getExprLoc(), "add.ptr"); 3343 } 3344 return pointer; 3345 } 3346 3347 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3348 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3349 // future proof. 3350 if (elementType->isVoidType() || elementType->isFunctionType()) { 3351 Value *result = CGF.EmitCastToVoidPtr(pointer); 3352 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3353 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3354 } 3355 3356 if (CGF.getLangOpts().isSignedOverflowDefined()) 3357 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3358 3359 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3360 op.E->getExprLoc(), "add.ptr"); 3361 } 3362 3363 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3364 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3365 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3366 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3367 // efficient operations. 3368 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3369 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3370 bool negMul, bool negAdd) { 3371 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3372 3373 Value *MulOp0 = MulOp->getOperand(0); 3374 Value *MulOp1 = MulOp->getOperand(1); 3375 if (negMul) 3376 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3377 if (negAdd) 3378 Addend = Builder.CreateFNeg(Addend, "neg"); 3379 3380 Value *FMulAdd = Builder.CreateCall( 3381 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3382 {MulOp0, MulOp1, Addend}); 3383 MulOp->eraseFromParent(); 3384 3385 return FMulAdd; 3386 } 3387 3388 // Check whether it would be legal to emit an fmuladd intrinsic call to 3389 // represent op and if so, build the fmuladd. 3390 // 3391 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3392 // Does NOT check the type of the operation - it's assumed that this function 3393 // will be called from contexts where it's known that the type is contractable. 3394 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3395 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3396 bool isSub=false) { 3397 3398 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3399 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3400 "Only fadd/fsub can be the root of an fmuladd."); 3401 3402 // Check whether this op is marked as fusable. 3403 if (!op.FPFeatures.allowFPContractWithinStatement()) 3404 return nullptr; 3405 3406 // We have a potentially fusable op. Look for a mul on one of the operands. 3407 // Also, make sure that the mul result isn't used directly. In that case, 3408 // there's no point creating a muladd operation. 3409 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3410 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3411 LHSBinOp->use_empty()) 3412 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3413 } 3414 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3415 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3416 RHSBinOp->use_empty()) 3417 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3418 } 3419 3420 return nullptr; 3421 } 3422 3423 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3424 if (op.LHS->getType()->isPointerTy() || 3425 op.RHS->getType()->isPointerTy()) 3426 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3427 3428 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3429 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3430 case LangOptions::SOB_Defined: 3431 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3432 case LangOptions::SOB_Undefined: 3433 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3434 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3435 LLVM_FALLTHROUGH; 3436 case LangOptions::SOB_Trapping: 3437 if (CanElideOverflowCheck(CGF.getContext(), op)) 3438 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3439 return EmitOverflowCheckedBinOp(op); 3440 } 3441 } 3442 3443 if (op.Ty->isUnsignedIntegerType() && 3444 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3445 !CanElideOverflowCheck(CGF.getContext(), op)) 3446 return EmitOverflowCheckedBinOp(op); 3447 3448 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3449 // Try to form an fmuladd. 3450 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3451 return FMulAdd; 3452 3453 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3454 return propagateFMFlags(V, op); 3455 } 3456 3457 if (op.isFixedPointBinOp()) 3458 return EmitFixedPointBinOp(op); 3459 3460 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3461 } 3462 3463 /// The resulting value must be calculated with exact precision, so the operands 3464 /// may not be the same type. 3465 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3466 using llvm::APSInt; 3467 using llvm::ConstantInt; 3468 3469 const auto *BinOp = cast<BinaryOperator>(op.E); 3470 3471 // The result is a fixed point type and at least one of the operands is fixed 3472 // point while the other is either fixed point or an int. This resulting type 3473 // should be determined by Sema::handleFixedPointConversions(). 3474 QualType ResultTy = op.Ty; 3475 QualType LHSTy = BinOp->getLHS()->getType(); 3476 QualType RHSTy = BinOp->getRHS()->getType(); 3477 ASTContext &Ctx = CGF.getContext(); 3478 Value *LHS = op.LHS; 3479 Value *RHS = op.RHS; 3480 3481 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3482 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3483 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3484 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3485 3486 // Convert the operands to the full precision type. 3487 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3488 BinOp->getExprLoc()); 3489 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3490 BinOp->getExprLoc()); 3491 3492 // Perform the actual addition. 3493 Value *Result; 3494 switch (BinOp->getOpcode()) { 3495 case BO_Add: { 3496 if (ResultFixedSema.isSaturated()) { 3497 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3498 ? llvm::Intrinsic::sadd_sat 3499 : llvm::Intrinsic::uadd_sat; 3500 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3501 } else { 3502 Result = Builder.CreateAdd(FullLHS, FullRHS); 3503 } 3504 break; 3505 } 3506 case BO_Sub: { 3507 if (ResultFixedSema.isSaturated()) { 3508 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3509 ? llvm::Intrinsic::ssub_sat 3510 : llvm::Intrinsic::usub_sat; 3511 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3512 } else { 3513 Result = Builder.CreateSub(FullLHS, FullRHS); 3514 } 3515 break; 3516 } 3517 case BO_LT: 3518 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3519 : Builder.CreateICmpULT(FullLHS, FullRHS); 3520 case BO_GT: 3521 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3522 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3523 case BO_LE: 3524 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3525 : Builder.CreateICmpULE(FullLHS, FullRHS); 3526 case BO_GE: 3527 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3528 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3529 case BO_EQ: 3530 // For equality operations, we assume any padding bits on unsigned types are 3531 // zero'd out. They could be overwritten through non-saturating operations 3532 // that cause overflow, but this leads to undefined behavior. 3533 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3534 case BO_NE: 3535 return Builder.CreateICmpNE(FullLHS, FullRHS); 3536 case BO_Mul: 3537 case BO_Div: 3538 case BO_Shl: 3539 case BO_Shr: 3540 case BO_Cmp: 3541 case BO_LAnd: 3542 case BO_LOr: 3543 case BO_MulAssign: 3544 case BO_DivAssign: 3545 case BO_AddAssign: 3546 case BO_SubAssign: 3547 case BO_ShlAssign: 3548 case BO_ShrAssign: 3549 llvm_unreachable("Found unimplemented fixed point binary operation"); 3550 case BO_PtrMemD: 3551 case BO_PtrMemI: 3552 case BO_Rem: 3553 case BO_Xor: 3554 case BO_And: 3555 case BO_Or: 3556 case BO_Assign: 3557 case BO_RemAssign: 3558 case BO_AndAssign: 3559 case BO_XorAssign: 3560 case BO_OrAssign: 3561 case BO_Comma: 3562 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3563 } 3564 3565 // Convert to the result type. 3566 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3567 BinOp->getExprLoc()); 3568 } 3569 3570 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3571 // The LHS is always a pointer if either side is. 3572 if (!op.LHS->getType()->isPointerTy()) { 3573 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3574 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3575 case LangOptions::SOB_Defined: 3576 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3577 case LangOptions::SOB_Undefined: 3578 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3579 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3580 LLVM_FALLTHROUGH; 3581 case LangOptions::SOB_Trapping: 3582 if (CanElideOverflowCheck(CGF.getContext(), op)) 3583 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3584 return EmitOverflowCheckedBinOp(op); 3585 } 3586 } 3587 3588 if (op.Ty->isUnsignedIntegerType() && 3589 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3590 !CanElideOverflowCheck(CGF.getContext(), op)) 3591 return EmitOverflowCheckedBinOp(op); 3592 3593 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3594 // Try to form an fmuladd. 3595 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3596 return FMulAdd; 3597 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3598 return propagateFMFlags(V, op); 3599 } 3600 3601 if (op.isFixedPointBinOp()) 3602 return EmitFixedPointBinOp(op); 3603 3604 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3605 } 3606 3607 // If the RHS is not a pointer, then we have normal pointer 3608 // arithmetic. 3609 if (!op.RHS->getType()->isPointerTy()) 3610 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3611 3612 // Otherwise, this is a pointer subtraction. 3613 3614 // Do the raw subtraction part. 3615 llvm::Value *LHS 3616 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3617 llvm::Value *RHS 3618 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3619 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3620 3621 // Okay, figure out the element size. 3622 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3623 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3624 3625 llvm::Value *divisor = nullptr; 3626 3627 // For a variable-length array, this is going to be non-constant. 3628 if (const VariableArrayType *vla 3629 = CGF.getContext().getAsVariableArrayType(elementType)) { 3630 auto VlaSize = CGF.getVLASize(vla); 3631 elementType = VlaSize.Type; 3632 divisor = VlaSize.NumElts; 3633 3634 // Scale the number of non-VLA elements by the non-VLA element size. 3635 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3636 if (!eltSize.isOne()) 3637 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3638 3639 // For everything elese, we can just compute it, safe in the 3640 // assumption that Sema won't let anything through that we can't 3641 // safely compute the size of. 3642 } else { 3643 CharUnits elementSize; 3644 // Handle GCC extension for pointer arithmetic on void* and 3645 // function pointer types. 3646 if (elementType->isVoidType() || elementType->isFunctionType()) 3647 elementSize = CharUnits::One(); 3648 else 3649 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3650 3651 // Don't even emit the divide for element size of 1. 3652 if (elementSize.isOne()) 3653 return diffInChars; 3654 3655 divisor = CGF.CGM.getSize(elementSize); 3656 } 3657 3658 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3659 // pointer difference in C is only defined in the case where both operands 3660 // are pointing to elements of an array. 3661 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3662 } 3663 3664 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3665 llvm::IntegerType *Ty; 3666 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3667 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3668 else 3669 Ty = cast<llvm::IntegerType>(LHS->getType()); 3670 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3671 } 3672 3673 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3674 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3675 // RHS to the same size as the LHS. 3676 Value *RHS = Ops.RHS; 3677 if (Ops.LHS->getType() != RHS->getType()) 3678 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3679 3680 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3681 Ops.Ty->hasSignedIntegerRepresentation() && 3682 !CGF.getLangOpts().isSignedOverflowDefined() && 3683 !CGF.getLangOpts().CPlusPlus2a; 3684 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3685 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3686 if (CGF.getLangOpts().OpenCL) 3687 RHS = 3688 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3689 else if ((SanitizeBase || SanitizeExponent) && 3690 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3691 CodeGenFunction::SanitizerScope SanScope(&CGF); 3692 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3693 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3694 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3695 3696 if (SanitizeExponent) { 3697 Checks.push_back( 3698 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3699 } 3700 3701 if (SanitizeBase) { 3702 // Check whether we are shifting any non-zero bits off the top of the 3703 // integer. We only emit this check if exponent is valid - otherwise 3704 // instructions below will have undefined behavior themselves. 3705 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3706 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3707 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3708 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3709 llvm::Value *PromotedWidthMinusOne = 3710 (RHS == Ops.RHS) ? WidthMinusOne 3711 : GetWidthMinusOneValue(Ops.LHS, RHS); 3712 CGF.EmitBlock(CheckShiftBase); 3713 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3714 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3715 /*NUW*/ true, /*NSW*/ true), 3716 "shl.check"); 3717 if (CGF.getLangOpts().CPlusPlus) { 3718 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3719 // Under C++11's rules, shifting a 1 bit into the sign bit is 3720 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3721 // define signed left shifts, so we use the C99 and C++11 rules there). 3722 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3723 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3724 } 3725 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3726 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3727 CGF.EmitBlock(Cont); 3728 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3729 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3730 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3731 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3732 } 3733 3734 assert(!Checks.empty()); 3735 EmitBinOpCheck(Checks, Ops); 3736 } 3737 3738 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3739 } 3740 3741 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3742 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3743 // RHS to the same size as the LHS. 3744 Value *RHS = Ops.RHS; 3745 if (Ops.LHS->getType() != RHS->getType()) 3746 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3747 3748 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3749 if (CGF.getLangOpts().OpenCL) 3750 RHS = 3751 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3752 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3753 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3754 CodeGenFunction::SanitizerScope SanScope(&CGF); 3755 llvm::Value *Valid = 3756 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3757 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3758 } 3759 3760 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3761 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3762 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3763 } 3764 3765 enum IntrinsicType { VCMPEQ, VCMPGT }; 3766 // return corresponding comparison intrinsic for given vector type 3767 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3768 BuiltinType::Kind ElemKind) { 3769 switch (ElemKind) { 3770 default: llvm_unreachable("unexpected element type"); 3771 case BuiltinType::Char_U: 3772 case BuiltinType::UChar: 3773 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3774 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3775 case BuiltinType::Char_S: 3776 case BuiltinType::SChar: 3777 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3778 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3779 case BuiltinType::UShort: 3780 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3781 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3782 case BuiltinType::Short: 3783 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3784 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3785 case BuiltinType::UInt: 3786 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3787 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3788 case BuiltinType::Int: 3789 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3790 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3791 case BuiltinType::ULong: 3792 case BuiltinType::ULongLong: 3793 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3794 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3795 case BuiltinType::Long: 3796 case BuiltinType::LongLong: 3797 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3798 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3799 case BuiltinType::Float: 3800 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3801 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3802 case BuiltinType::Double: 3803 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3804 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3805 } 3806 } 3807 3808 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3809 llvm::CmpInst::Predicate UICmpOpc, 3810 llvm::CmpInst::Predicate SICmpOpc, 3811 llvm::CmpInst::Predicate FCmpOpc, 3812 bool IsSignaling) { 3813 TestAndClearIgnoreResultAssign(); 3814 Value *Result; 3815 QualType LHSTy = E->getLHS()->getType(); 3816 QualType RHSTy = E->getRHS()->getType(); 3817 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3818 assert(E->getOpcode() == BO_EQ || 3819 E->getOpcode() == BO_NE); 3820 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3821 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3822 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3823 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3824 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3825 BinOpInfo BOInfo = EmitBinOps(E); 3826 Value *LHS = BOInfo.LHS; 3827 Value *RHS = BOInfo.RHS; 3828 3829 // If AltiVec, the comparison results in a numeric type, so we use 3830 // intrinsics comparing vectors and giving 0 or 1 as a result 3831 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3832 // constants for mapping CR6 register bits to predicate result 3833 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3834 3835 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3836 3837 // in several cases vector arguments order will be reversed 3838 Value *FirstVecArg = LHS, 3839 *SecondVecArg = RHS; 3840 3841 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3842 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 3843 3844 switch(E->getOpcode()) { 3845 default: llvm_unreachable("is not a comparison operation"); 3846 case BO_EQ: 3847 CR6 = CR6_LT; 3848 ID = GetIntrinsic(VCMPEQ, ElementKind); 3849 break; 3850 case BO_NE: 3851 CR6 = CR6_EQ; 3852 ID = GetIntrinsic(VCMPEQ, ElementKind); 3853 break; 3854 case BO_LT: 3855 CR6 = CR6_LT; 3856 ID = GetIntrinsic(VCMPGT, ElementKind); 3857 std::swap(FirstVecArg, SecondVecArg); 3858 break; 3859 case BO_GT: 3860 CR6 = CR6_LT; 3861 ID = GetIntrinsic(VCMPGT, ElementKind); 3862 break; 3863 case BO_LE: 3864 if (ElementKind == BuiltinType::Float) { 3865 CR6 = CR6_LT; 3866 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3867 std::swap(FirstVecArg, SecondVecArg); 3868 } 3869 else { 3870 CR6 = CR6_EQ; 3871 ID = GetIntrinsic(VCMPGT, ElementKind); 3872 } 3873 break; 3874 case BO_GE: 3875 if (ElementKind == BuiltinType::Float) { 3876 CR6 = CR6_LT; 3877 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3878 } 3879 else { 3880 CR6 = CR6_EQ; 3881 ID = GetIntrinsic(VCMPGT, ElementKind); 3882 std::swap(FirstVecArg, SecondVecArg); 3883 } 3884 break; 3885 } 3886 3887 Value *CR6Param = Builder.getInt32(CR6); 3888 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3889 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3890 3891 // The result type of intrinsic may not be same as E->getType(). 3892 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3893 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3894 // do nothing, if ResultTy is not i1 at the same time, it will cause 3895 // crash later. 3896 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3897 if (ResultTy->getBitWidth() > 1 && 3898 E->getType() == CGF.getContext().BoolTy) 3899 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3900 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3901 E->getExprLoc()); 3902 } 3903 3904 if (BOInfo.isFixedPointBinOp()) { 3905 Result = EmitFixedPointBinOp(BOInfo); 3906 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3907 if (!IsSignaling) 3908 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3909 else 3910 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 3911 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3912 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3913 } else { 3914 // Unsigned integers and pointers. 3915 3916 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3917 !isa<llvm::ConstantPointerNull>(LHS) && 3918 !isa<llvm::ConstantPointerNull>(RHS)) { 3919 3920 // Dynamic information is required to be stripped for comparisons, 3921 // because it could leak the dynamic information. Based on comparisons 3922 // of pointers to dynamic objects, the optimizer can replace one pointer 3923 // with another, which might be incorrect in presence of invariant 3924 // groups. Comparison with null is safe because null does not carry any 3925 // dynamic information. 3926 if (LHSTy.mayBeDynamicClass()) 3927 LHS = Builder.CreateStripInvariantGroup(LHS); 3928 if (RHSTy.mayBeDynamicClass()) 3929 RHS = Builder.CreateStripInvariantGroup(RHS); 3930 } 3931 3932 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3933 } 3934 3935 // If this is a vector comparison, sign extend the result to the appropriate 3936 // vector integer type and return it (don't convert to bool). 3937 if (LHSTy->isVectorType()) 3938 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3939 3940 } else { 3941 // Complex Comparison: can only be an equality comparison. 3942 CodeGenFunction::ComplexPairTy LHS, RHS; 3943 QualType CETy; 3944 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3945 LHS = CGF.EmitComplexExpr(E->getLHS()); 3946 CETy = CTy->getElementType(); 3947 } else { 3948 LHS.first = Visit(E->getLHS()); 3949 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3950 CETy = LHSTy; 3951 } 3952 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3953 RHS = CGF.EmitComplexExpr(E->getRHS()); 3954 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3955 CTy->getElementType()) && 3956 "The element types must always match."); 3957 (void)CTy; 3958 } else { 3959 RHS.first = Visit(E->getRHS()); 3960 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3961 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3962 "The element types must always match."); 3963 } 3964 3965 Value *ResultR, *ResultI; 3966 if (CETy->isRealFloatingType()) { 3967 // As complex comparisons can only be equality comparisons, they 3968 // are never signaling comparisons. 3969 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3970 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3971 } else { 3972 // Complex comparisons can only be equality comparisons. As such, signed 3973 // and unsigned opcodes are the same. 3974 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3975 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3976 } 3977 3978 if (E->getOpcode() == BO_EQ) { 3979 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3980 } else { 3981 assert(E->getOpcode() == BO_NE && 3982 "Complex comparison other than == or != ?"); 3983 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3984 } 3985 } 3986 3987 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3988 E->getExprLoc()); 3989 } 3990 3991 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3992 bool Ignore = TestAndClearIgnoreResultAssign(); 3993 3994 Value *RHS; 3995 LValue LHS; 3996 3997 switch (E->getLHS()->getType().getObjCLifetime()) { 3998 case Qualifiers::OCL_Strong: 3999 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4000 break; 4001 4002 case Qualifiers::OCL_Autoreleasing: 4003 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4004 break; 4005 4006 case Qualifiers::OCL_ExplicitNone: 4007 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4008 break; 4009 4010 case Qualifiers::OCL_Weak: 4011 RHS = Visit(E->getRHS()); 4012 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4013 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4014 break; 4015 4016 case Qualifiers::OCL_None: 4017 // __block variables need to have the rhs evaluated first, plus 4018 // this should improve codegen just a little. 4019 RHS = Visit(E->getRHS()); 4020 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4021 4022 // Store the value into the LHS. Bit-fields are handled specially 4023 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4024 // 'An assignment expression has the value of the left operand after 4025 // the assignment...'. 4026 if (LHS.isBitField()) { 4027 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4028 } else { 4029 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4030 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4031 } 4032 } 4033 4034 // If the result is clearly ignored, return now. 4035 if (Ignore) 4036 return nullptr; 4037 4038 // The result of an assignment in C is the assigned r-value. 4039 if (!CGF.getLangOpts().CPlusPlus) 4040 return RHS; 4041 4042 // If the lvalue is non-volatile, return the computed value of the assignment. 4043 if (!LHS.isVolatileQualified()) 4044 return RHS; 4045 4046 // Otherwise, reload the value. 4047 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4048 } 4049 4050 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4051 // Perform vector logical and on comparisons with zero vectors. 4052 if (E->getType()->isVectorType()) { 4053 CGF.incrementProfileCounter(E); 4054 4055 Value *LHS = Visit(E->getLHS()); 4056 Value *RHS = Visit(E->getRHS()); 4057 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4058 if (LHS->getType()->isFPOrFPVectorTy()) { 4059 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4060 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4061 } else { 4062 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4063 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4064 } 4065 Value *And = Builder.CreateAnd(LHS, RHS); 4066 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4067 } 4068 4069 llvm::Type *ResTy = ConvertType(E->getType()); 4070 4071 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4072 // If we have 1 && X, just emit X without inserting the control flow. 4073 bool LHSCondVal; 4074 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4075 if (LHSCondVal) { // If we have 1 && X, just emit X. 4076 CGF.incrementProfileCounter(E); 4077 4078 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4079 // ZExt result to int or bool. 4080 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4081 } 4082 4083 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4084 if (!CGF.ContainsLabel(E->getRHS())) 4085 return llvm::Constant::getNullValue(ResTy); 4086 } 4087 4088 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4089 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4090 4091 CodeGenFunction::ConditionalEvaluation eval(CGF); 4092 4093 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4094 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4095 CGF.getProfileCount(E->getRHS())); 4096 4097 // Any edges into the ContBlock are now from an (indeterminate number of) 4098 // edges from this first condition. All of these values will be false. Start 4099 // setting up the PHI node in the Cont Block for this. 4100 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4101 "", ContBlock); 4102 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4103 PI != PE; ++PI) 4104 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4105 4106 eval.begin(CGF); 4107 CGF.EmitBlock(RHSBlock); 4108 CGF.incrementProfileCounter(E); 4109 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4110 eval.end(CGF); 4111 4112 // Reaquire the RHS block, as there may be subblocks inserted. 4113 RHSBlock = Builder.GetInsertBlock(); 4114 4115 // Emit an unconditional branch from this block to ContBlock. 4116 { 4117 // There is no need to emit line number for unconditional branch. 4118 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4119 CGF.EmitBlock(ContBlock); 4120 } 4121 // Insert an entry into the phi node for the edge with the value of RHSCond. 4122 PN->addIncoming(RHSCond, RHSBlock); 4123 4124 // Artificial location to preserve the scope information 4125 { 4126 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4127 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4128 } 4129 4130 // ZExt result to int. 4131 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4132 } 4133 4134 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4135 // Perform vector logical or on comparisons with zero vectors. 4136 if (E->getType()->isVectorType()) { 4137 CGF.incrementProfileCounter(E); 4138 4139 Value *LHS = Visit(E->getLHS()); 4140 Value *RHS = Visit(E->getRHS()); 4141 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4142 if (LHS->getType()->isFPOrFPVectorTy()) { 4143 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4144 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4145 } else { 4146 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4147 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4148 } 4149 Value *Or = Builder.CreateOr(LHS, RHS); 4150 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4151 } 4152 4153 llvm::Type *ResTy = ConvertType(E->getType()); 4154 4155 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4156 // If we have 0 || X, just emit X without inserting the control flow. 4157 bool LHSCondVal; 4158 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4159 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4160 CGF.incrementProfileCounter(E); 4161 4162 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4163 // ZExt result to int or bool. 4164 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4165 } 4166 4167 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4168 if (!CGF.ContainsLabel(E->getRHS())) 4169 return llvm::ConstantInt::get(ResTy, 1); 4170 } 4171 4172 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4173 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4174 4175 CodeGenFunction::ConditionalEvaluation eval(CGF); 4176 4177 // Branch on the LHS first. If it is true, go to the success (cont) block. 4178 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4179 CGF.getCurrentProfileCount() - 4180 CGF.getProfileCount(E->getRHS())); 4181 4182 // Any edges into the ContBlock are now from an (indeterminate number of) 4183 // edges from this first condition. All of these values will be true. Start 4184 // setting up the PHI node in the Cont Block for this. 4185 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4186 "", ContBlock); 4187 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4188 PI != PE; ++PI) 4189 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4190 4191 eval.begin(CGF); 4192 4193 // Emit the RHS condition as a bool value. 4194 CGF.EmitBlock(RHSBlock); 4195 CGF.incrementProfileCounter(E); 4196 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4197 4198 eval.end(CGF); 4199 4200 // Reaquire the RHS block, as there may be subblocks inserted. 4201 RHSBlock = Builder.GetInsertBlock(); 4202 4203 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4204 // into the phi node for the edge with the value of RHSCond. 4205 CGF.EmitBlock(ContBlock); 4206 PN->addIncoming(RHSCond, RHSBlock); 4207 4208 // ZExt result to int. 4209 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4210 } 4211 4212 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4213 CGF.EmitIgnoredExpr(E->getLHS()); 4214 CGF.EnsureInsertPoint(); 4215 return Visit(E->getRHS()); 4216 } 4217 4218 //===----------------------------------------------------------------------===// 4219 // Other Operators 4220 //===----------------------------------------------------------------------===// 4221 4222 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4223 /// expression is cheap enough and side-effect-free enough to evaluate 4224 /// unconditionally instead of conditionally. This is used to convert control 4225 /// flow into selects in some cases. 4226 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4227 CodeGenFunction &CGF) { 4228 // Anything that is an integer or floating point constant is fine. 4229 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4230 4231 // Even non-volatile automatic variables can't be evaluated unconditionally. 4232 // Referencing a thread_local may cause non-trivial initialization work to 4233 // occur. If we're inside a lambda and one of the variables is from the scope 4234 // outside the lambda, that function may have returned already. Reading its 4235 // locals is a bad idea. Also, these reads may introduce races there didn't 4236 // exist in the source-level program. 4237 } 4238 4239 4240 Value *ScalarExprEmitter:: 4241 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4242 TestAndClearIgnoreResultAssign(); 4243 4244 // Bind the common expression if necessary. 4245 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4246 4247 Expr *condExpr = E->getCond(); 4248 Expr *lhsExpr = E->getTrueExpr(); 4249 Expr *rhsExpr = E->getFalseExpr(); 4250 4251 // If the condition constant folds and can be elided, try to avoid emitting 4252 // the condition and the dead arm. 4253 bool CondExprBool; 4254 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4255 Expr *live = lhsExpr, *dead = rhsExpr; 4256 if (!CondExprBool) std::swap(live, dead); 4257 4258 // If the dead side doesn't have labels we need, just emit the Live part. 4259 if (!CGF.ContainsLabel(dead)) { 4260 if (CondExprBool) 4261 CGF.incrementProfileCounter(E); 4262 Value *Result = Visit(live); 4263 4264 // If the live part is a throw expression, it acts like it has a void 4265 // type, so evaluating it returns a null Value*. However, a conditional 4266 // with non-void type must return a non-null Value*. 4267 if (!Result && !E->getType()->isVoidType()) 4268 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4269 4270 return Result; 4271 } 4272 } 4273 4274 // OpenCL: If the condition is a vector, we can treat this condition like 4275 // the select function. 4276 if (CGF.getLangOpts().OpenCL 4277 && condExpr->getType()->isVectorType()) { 4278 CGF.incrementProfileCounter(E); 4279 4280 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4281 llvm::Value *LHS = Visit(lhsExpr); 4282 llvm::Value *RHS = Visit(rhsExpr); 4283 4284 llvm::Type *condType = ConvertType(condExpr->getType()); 4285 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4286 4287 unsigned numElem = vecTy->getNumElements(); 4288 llvm::Type *elemType = vecTy->getElementType(); 4289 4290 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4291 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4292 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4293 llvm::VectorType::get(elemType, 4294 numElem), 4295 "sext"); 4296 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4297 4298 // Cast float to int to perform ANDs if necessary. 4299 llvm::Value *RHSTmp = RHS; 4300 llvm::Value *LHSTmp = LHS; 4301 bool wasCast = false; 4302 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4303 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4304 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4305 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4306 wasCast = true; 4307 } 4308 4309 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4310 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4311 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4312 if (wasCast) 4313 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4314 4315 return tmp5; 4316 } 4317 4318 if (condExpr->getType()->isVectorType()) { 4319 CGF.incrementProfileCounter(E); 4320 4321 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4322 llvm::Value *LHS = Visit(lhsExpr); 4323 llvm::Value *RHS = Visit(rhsExpr); 4324 4325 llvm::Type *CondType = ConvertType(condExpr->getType()); 4326 auto *VecTy = cast<llvm::VectorType>(CondType); 4327 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4328 4329 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4330 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4331 } 4332 4333 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4334 // select instead of as control flow. We can only do this if it is cheap and 4335 // safe to evaluate the LHS and RHS unconditionally. 4336 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4337 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4338 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4339 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4340 4341 CGF.incrementProfileCounter(E, StepV); 4342 4343 llvm::Value *LHS = Visit(lhsExpr); 4344 llvm::Value *RHS = Visit(rhsExpr); 4345 if (!LHS) { 4346 // If the conditional has void type, make sure we return a null Value*. 4347 assert(!RHS && "LHS and RHS types must match"); 4348 return nullptr; 4349 } 4350 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4351 } 4352 4353 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4354 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4355 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4356 4357 CodeGenFunction::ConditionalEvaluation eval(CGF); 4358 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4359 CGF.getProfileCount(lhsExpr)); 4360 4361 CGF.EmitBlock(LHSBlock); 4362 CGF.incrementProfileCounter(E); 4363 eval.begin(CGF); 4364 Value *LHS = Visit(lhsExpr); 4365 eval.end(CGF); 4366 4367 LHSBlock = Builder.GetInsertBlock(); 4368 Builder.CreateBr(ContBlock); 4369 4370 CGF.EmitBlock(RHSBlock); 4371 eval.begin(CGF); 4372 Value *RHS = Visit(rhsExpr); 4373 eval.end(CGF); 4374 4375 RHSBlock = Builder.GetInsertBlock(); 4376 CGF.EmitBlock(ContBlock); 4377 4378 // If the LHS or RHS is a throw expression, it will be legitimately null. 4379 if (!LHS) 4380 return RHS; 4381 if (!RHS) 4382 return LHS; 4383 4384 // Create a PHI node for the real part. 4385 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4386 PN->addIncoming(LHS, LHSBlock); 4387 PN->addIncoming(RHS, RHSBlock); 4388 return PN; 4389 } 4390 4391 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4392 return Visit(E->getChosenSubExpr()); 4393 } 4394 4395 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4396 QualType Ty = VE->getType(); 4397 4398 if (Ty->isVariablyModifiedType()) 4399 CGF.EmitVariablyModifiedType(Ty); 4400 4401 Address ArgValue = Address::invalid(); 4402 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4403 4404 llvm::Type *ArgTy = ConvertType(VE->getType()); 4405 4406 // If EmitVAArg fails, emit an error. 4407 if (!ArgPtr.isValid()) { 4408 CGF.ErrorUnsupported(VE, "va_arg expression"); 4409 return llvm::UndefValue::get(ArgTy); 4410 } 4411 4412 // FIXME Volatility. 4413 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4414 4415 // If EmitVAArg promoted the type, we must truncate it. 4416 if (ArgTy != Val->getType()) { 4417 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4418 Val = Builder.CreateIntToPtr(Val, ArgTy); 4419 else 4420 Val = Builder.CreateTrunc(Val, ArgTy); 4421 } 4422 4423 return Val; 4424 } 4425 4426 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4427 return CGF.EmitBlockLiteral(block); 4428 } 4429 4430 // Convert a vec3 to vec4, or vice versa. 4431 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4432 Value *Src, unsigned NumElementsDst) { 4433 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4434 SmallVector<llvm::Constant*, 4> Args; 4435 Args.push_back(Builder.getInt32(0)); 4436 Args.push_back(Builder.getInt32(1)); 4437 Args.push_back(Builder.getInt32(2)); 4438 if (NumElementsDst == 4) 4439 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4440 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4441 return Builder.CreateShuffleVector(Src, UnV, Mask); 4442 } 4443 4444 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4445 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4446 // but could be scalar or vectors of different lengths, and either can be 4447 // pointer. 4448 // There are 4 cases: 4449 // 1. non-pointer -> non-pointer : needs 1 bitcast 4450 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4451 // 3. pointer -> non-pointer 4452 // a) pointer -> intptr_t : needs 1 ptrtoint 4453 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4454 // 4. non-pointer -> pointer 4455 // a) intptr_t -> pointer : needs 1 inttoptr 4456 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4457 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4458 // allow casting directly between pointer types and non-integer non-pointer 4459 // types. 4460 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4461 const llvm::DataLayout &DL, 4462 Value *Src, llvm::Type *DstTy, 4463 StringRef Name = "") { 4464 auto SrcTy = Src->getType(); 4465 4466 // Case 1. 4467 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4468 return Builder.CreateBitCast(Src, DstTy, Name); 4469 4470 // Case 2. 4471 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4472 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4473 4474 // Case 3. 4475 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4476 // Case 3b. 4477 if (!DstTy->isIntegerTy()) 4478 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4479 // Cases 3a and 3b. 4480 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4481 } 4482 4483 // Case 4b. 4484 if (!SrcTy->isIntegerTy()) 4485 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4486 // Cases 4a and 4b. 4487 return Builder.CreateIntToPtr(Src, DstTy, Name); 4488 } 4489 4490 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4491 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4492 llvm::Type *DstTy = ConvertType(E->getType()); 4493 4494 llvm::Type *SrcTy = Src->getType(); 4495 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4496 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4497 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4498 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4499 4500 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4501 // vector to get a vec4, then a bitcast if the target type is different. 4502 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4503 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4504 4505 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4506 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4507 DstTy); 4508 } 4509 4510 Src->setName("astype"); 4511 return Src; 4512 } 4513 4514 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4515 // to vec4 if the original type is not vec4, then a shuffle vector to 4516 // get a vec3. 4517 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4518 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4519 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4520 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4521 Vec4Ty); 4522 } 4523 4524 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4525 Src->setName("astype"); 4526 return Src; 4527 } 4528 4529 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4530 Src, DstTy, "astype"); 4531 } 4532 4533 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4534 return CGF.EmitAtomicExpr(E).getScalarVal(); 4535 } 4536 4537 //===----------------------------------------------------------------------===// 4538 // Entry Point into this File 4539 //===----------------------------------------------------------------------===// 4540 4541 /// Emit the computation of the specified expression of scalar type, ignoring 4542 /// the result. 4543 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4544 assert(E && hasScalarEvaluationKind(E->getType()) && 4545 "Invalid scalar expression to emit"); 4546 4547 return ScalarExprEmitter(*this, IgnoreResultAssign) 4548 .Visit(const_cast<Expr *>(E)); 4549 } 4550 4551 /// Emit a conversion from the specified type to the specified destination type, 4552 /// both of which are LLVM scalar types. 4553 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4554 QualType DstTy, 4555 SourceLocation Loc) { 4556 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4557 "Invalid scalar expression to emit"); 4558 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4559 } 4560 4561 /// Emit a conversion from the specified complex type to the specified 4562 /// destination type, where the destination type is an LLVM scalar type. 4563 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4564 QualType SrcTy, 4565 QualType DstTy, 4566 SourceLocation Loc) { 4567 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4568 "Invalid complex -> scalar conversion"); 4569 return ScalarExprEmitter(*this) 4570 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4571 } 4572 4573 4574 llvm::Value *CodeGenFunction:: 4575 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4576 bool isInc, bool isPre) { 4577 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4578 } 4579 4580 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4581 // object->isa or (*object).isa 4582 // Generate code as for: *(Class*)object 4583 4584 Expr *BaseExpr = E->getBase(); 4585 Address Addr = Address::invalid(); 4586 if (BaseExpr->isRValue()) { 4587 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4588 } else { 4589 Addr = EmitLValue(BaseExpr).getAddress(*this); 4590 } 4591 4592 // Cast the address to Class*. 4593 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4594 return MakeAddrLValue(Addr, E->getType()); 4595 } 4596 4597 4598 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4599 const CompoundAssignOperator *E) { 4600 ScalarExprEmitter Scalar(*this); 4601 Value *Result = nullptr; 4602 switch (E->getOpcode()) { 4603 #define COMPOUND_OP(Op) \ 4604 case BO_##Op##Assign: \ 4605 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4606 Result) 4607 COMPOUND_OP(Mul); 4608 COMPOUND_OP(Div); 4609 COMPOUND_OP(Rem); 4610 COMPOUND_OP(Add); 4611 COMPOUND_OP(Sub); 4612 COMPOUND_OP(Shl); 4613 COMPOUND_OP(Shr); 4614 COMPOUND_OP(And); 4615 COMPOUND_OP(Xor); 4616 COMPOUND_OP(Or); 4617 #undef COMPOUND_OP 4618 4619 case BO_PtrMemD: 4620 case BO_PtrMemI: 4621 case BO_Mul: 4622 case BO_Div: 4623 case BO_Rem: 4624 case BO_Add: 4625 case BO_Sub: 4626 case BO_Shl: 4627 case BO_Shr: 4628 case BO_LT: 4629 case BO_GT: 4630 case BO_LE: 4631 case BO_GE: 4632 case BO_EQ: 4633 case BO_NE: 4634 case BO_Cmp: 4635 case BO_And: 4636 case BO_Xor: 4637 case BO_Or: 4638 case BO_LAnd: 4639 case BO_LOr: 4640 case BO_Assign: 4641 case BO_Comma: 4642 llvm_unreachable("Not valid compound assignment operators"); 4643 } 4644 4645 llvm_unreachable("Unhandled compound assignment operator"); 4646 } 4647 4648 struct GEPOffsetAndOverflow { 4649 // The total (signed) byte offset for the GEP. 4650 llvm::Value *TotalOffset; 4651 // The offset overflow flag - true if the total offset overflows. 4652 llvm::Value *OffsetOverflows; 4653 }; 4654 4655 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4656 /// and compute the total offset it applies from it's base pointer BasePtr. 4657 /// Returns offset in bytes and a boolean flag whether an overflow happened 4658 /// during evaluation. 4659 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4660 llvm::LLVMContext &VMContext, 4661 CodeGenModule &CGM, 4662 CGBuilderTy Builder) { 4663 const auto &DL = CGM.getDataLayout(); 4664 4665 // The total (signed) byte offset for the GEP. 4666 llvm::Value *TotalOffset = nullptr; 4667 4668 // Was the GEP already reduced to a constant? 4669 if (isa<llvm::Constant>(GEPVal)) { 4670 // Compute the offset by casting both pointers to integers and subtracting: 4671 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4672 Value *BasePtr_int = 4673 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4674 Value *GEPVal_int = 4675 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4676 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4677 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4678 } 4679 4680 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4681 assert(GEP->getPointerOperand() == BasePtr && 4682 "BasePtr must be the the base of the GEP."); 4683 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4684 4685 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4686 4687 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4688 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4689 auto *SAddIntrinsic = 4690 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4691 auto *SMulIntrinsic = 4692 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4693 4694 // The offset overflow flag - true if the total offset overflows. 4695 llvm::Value *OffsetOverflows = Builder.getFalse(); 4696 4697 /// Return the result of the given binary operation. 4698 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4699 llvm::Value *RHS) -> llvm::Value * { 4700 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4701 4702 // If the operands are constants, return a constant result. 4703 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4704 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4705 llvm::APInt N; 4706 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4707 /*Signed=*/true, N); 4708 if (HasOverflow) 4709 OffsetOverflows = Builder.getTrue(); 4710 return llvm::ConstantInt::get(VMContext, N); 4711 } 4712 } 4713 4714 // Otherwise, compute the result with checked arithmetic. 4715 auto *ResultAndOverflow = Builder.CreateCall( 4716 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4717 OffsetOverflows = Builder.CreateOr( 4718 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4719 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4720 }; 4721 4722 // Determine the total byte offset by looking at each GEP operand. 4723 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4724 GTI != GTE; ++GTI) { 4725 llvm::Value *LocalOffset; 4726 auto *Index = GTI.getOperand(); 4727 // Compute the local offset contributed by this indexing step: 4728 if (auto *STy = GTI.getStructTypeOrNull()) { 4729 // For struct indexing, the local offset is the byte position of the 4730 // specified field. 4731 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4732 LocalOffset = llvm::ConstantInt::get( 4733 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4734 } else { 4735 // Otherwise this is array-like indexing. The local offset is the index 4736 // multiplied by the element size. 4737 auto *ElementSize = llvm::ConstantInt::get( 4738 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4739 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4740 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4741 } 4742 4743 // If this is the first offset, set it as the total offset. Otherwise, add 4744 // the local offset into the running total. 4745 if (!TotalOffset || TotalOffset == Zero) 4746 TotalOffset = LocalOffset; 4747 else 4748 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4749 } 4750 4751 return {TotalOffset, OffsetOverflows}; 4752 } 4753 4754 Value * 4755 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4756 bool SignedIndices, bool IsSubtraction, 4757 SourceLocation Loc, const Twine &Name) { 4758 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4759 4760 // If the pointer overflow sanitizer isn't enabled, do nothing. 4761 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4762 return GEPVal; 4763 4764 llvm::Type *PtrTy = Ptr->getType(); 4765 4766 // Perform nullptr-and-offset check unless the nullptr is defined. 4767 bool PerformNullCheck = !NullPointerIsDefined( 4768 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4769 // Check for overflows unless the GEP got constant-folded, 4770 // and only in the default address space 4771 bool PerformOverflowCheck = 4772 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4773 4774 if (!(PerformNullCheck || PerformOverflowCheck)) 4775 return GEPVal; 4776 4777 const auto &DL = CGM.getDataLayout(); 4778 4779 SanitizerScope SanScope(this); 4780 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4781 4782 GEPOffsetAndOverflow EvaluatedGEP = 4783 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4784 4785 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4786 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4787 "If the offset got constant-folded, we don't expect that there was an " 4788 "overflow."); 4789 4790 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4791 4792 // Common case: if the total offset is zero, and we are using C++ semantics, 4793 // where nullptr+0 is defined, don't emit a check. 4794 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4795 return GEPVal; 4796 4797 // Now that we've computed the total offset, add it to the base pointer (with 4798 // wrapping semantics). 4799 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4800 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4801 4802 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4803 4804 if (PerformNullCheck) { 4805 // In C++, if the base pointer evaluates to a null pointer value, 4806 // the only valid pointer this inbounds GEP can produce is also 4807 // a null pointer, so the offset must also evaluate to zero. 4808 // Likewise, if we have non-zero base pointer, we can not get null pointer 4809 // as a result, so the offset can not be -intptr_t(BasePtr). 4810 // In other words, both pointers are either null, or both are non-null, 4811 // or the behaviour is undefined. 4812 // 4813 // C, however, is more strict in this regard, and gives more 4814 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4815 // So both the input to the 'gep inbounds' AND the output must not be null. 4816 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4817 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4818 auto *Valid = 4819 CGM.getLangOpts().CPlusPlus 4820 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4821 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4822 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4823 } 4824 4825 if (PerformOverflowCheck) { 4826 // The GEP is valid if: 4827 // 1) The total offset doesn't overflow, and 4828 // 2) The sign of the difference between the computed address and the base 4829 // pointer matches the sign of the total offset. 4830 llvm::Value *ValidGEP; 4831 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4832 if (SignedIndices) { 4833 // GEP is computed as `unsigned base + signed offset`, therefore: 4834 // * If offset was positive, then the computed pointer can not be 4835 // [unsigned] less than the base pointer, unless it overflowed. 4836 // * If offset was negative, then the computed pointer can not be 4837 // [unsigned] greater than the bas pointere, unless it overflowed. 4838 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4839 auto *PosOrZeroOffset = 4840 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4841 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4842 ValidGEP = 4843 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4844 } else if (!IsSubtraction) { 4845 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4846 // computed pointer can not be [unsigned] less than base pointer, 4847 // unless there was an overflow. 4848 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4849 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4850 } else { 4851 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4852 // computed pointer can not be [unsigned] greater than base pointer, 4853 // unless there was an overflow. 4854 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4855 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4856 } 4857 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4858 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4859 } 4860 4861 assert(!Checks.empty() && "Should have produced some checks."); 4862 4863 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4864 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4865 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4866 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4867 4868 return GEPVal; 4869 } 4870