xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/AST/StmtVisitor.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/APFixedPoint.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/FixedPointBuilder.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/IntrinsicsPowerPC.h"
42 #include "llvm/IR/MatrixBuilder.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/Support/TypeSize.h"
45 #include <cstdarg>
46 #include <optional>
47 
48 using namespace clang;
49 using namespace CodeGen;
50 using llvm::Value;
51 
52 //===----------------------------------------------------------------------===//
53 //                         Scalar Expression Emitter
54 //===----------------------------------------------------------------------===//
55 
56 namespace llvm {
57 extern cl::opt<bool> EnableSingleByteCoverage;
58 } // namespace llvm
59 
60 namespace {
61 
62 /// Determine whether the given binary operation may overflow.
63 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
64 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
65 /// the returned overflow check is precise. The returned value is 'true' for
66 /// all other opcodes, to be conservative.
67 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
68                              BinaryOperator::Opcode Opcode, bool Signed,
69                              llvm::APInt &Result) {
70   // Assume overflow is possible, unless we can prove otherwise.
71   bool Overflow = true;
72   const auto &LHSAP = LHS->getValue();
73   const auto &RHSAP = RHS->getValue();
74   if (Opcode == BO_Add) {
75     Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
76                     : LHSAP.uadd_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Sub) {
78     Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
79                     : LHSAP.usub_ov(RHSAP, Overflow);
80   } else if (Opcode == BO_Mul) {
81     Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
82                     : LHSAP.umul_ov(RHSAP, Overflow);
83   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
84     if (Signed && !RHS->isZero())
85       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
86     else
87       return false;
88   }
89   return Overflow;
90 }
91 
92 struct BinOpInfo {
93   Value *LHS;
94   Value *RHS;
95   QualType Ty;  // Computation Type.
96   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
97   FPOptions FPFeatures;
98   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
99 
100   /// Check if the binop can result in integer overflow.
101   bool mayHaveIntegerOverflow() const {
102     // Without constant input, we can't rule out overflow.
103     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
104     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
105     if (!LHSCI || !RHSCI)
106       return true;
107 
108     llvm::APInt Result;
109     return ::mayHaveIntegerOverflow(
110         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
111   }
112 
113   /// Check if the binop computes a division or a remainder.
114   bool isDivremOp() const {
115     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
116            Opcode == BO_RemAssign;
117   }
118 
119   /// Check if the binop can result in an integer division by zero.
120   bool mayHaveIntegerDivisionByZero() const {
121     if (isDivremOp())
122       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
123         return CI->isZero();
124     return true;
125   }
126 
127   /// Check if the binop can result in a float division by zero.
128   bool mayHaveFloatDivisionByZero() const {
129     if (isDivremOp())
130       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
131         return CFP->isZero();
132     return true;
133   }
134 
135   /// Check if at least one operand is a fixed point type. In such cases, this
136   /// operation did not follow usual arithmetic conversion and both operands
137   /// might not be of the same type.
138   bool isFixedPointOp() const {
139     // We cannot simply check the result type since comparison operations return
140     // an int.
141     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
142       QualType LHSType = BinOp->getLHS()->getType();
143       QualType RHSType = BinOp->getRHS()->getType();
144       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
145     }
146     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
147       return UnOp->getSubExpr()->getType()->isFixedPointType();
148     return false;
149   }
150 
151   /// Check if the RHS has a signed integer representation.
152   bool rhsHasSignedIntegerRepresentation() const {
153     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
154       QualType RHSType = BinOp->getRHS()->getType();
155       return RHSType->hasSignedIntegerRepresentation();
156     }
157     return false;
158   }
159 };
160 
161 static bool MustVisitNullValue(const Expr *E) {
162   // If a null pointer expression's type is the C++0x nullptr_t, then
163   // it's not necessarily a simple constant and it must be evaluated
164   // for its potential side effects.
165   return E->getType()->isNullPtrType();
166 }
167 
168 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
169 static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
170                                                        const Expr *E) {
171   const Expr *Base = E->IgnoreImpCasts();
172   if (E == Base)
173     return std::nullopt;
174 
175   QualType BaseTy = Base->getType();
176   if (!Ctx.isPromotableIntegerType(BaseTy) ||
177       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
178     return std::nullopt;
179 
180   return BaseTy;
181 }
182 
183 /// Check if \p E is a widened promoted integer.
184 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
185   return getUnwidenedIntegerType(Ctx, E).has_value();
186 }
187 
188 /// Check if we can skip the overflow check for \p Op.
189 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
190   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
191          "Expected a unary or binary operator");
192 
193   // If the binop has constant inputs and we can prove there is no overflow,
194   // we can elide the overflow check.
195   if (!Op.mayHaveIntegerOverflow())
196     return true;
197 
198   // If a unary op has a widened operand, the op cannot overflow.
199   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
200     return !UO->canOverflow();
201 
202   // We usually don't need overflow checks for binops with widened operands.
203   // Multiplication with promoted unsigned operands is a special case.
204   const auto *BO = cast<BinaryOperator>(Op.E);
205   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
206   if (!OptionalLHSTy)
207     return false;
208 
209   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
210   if (!OptionalRHSTy)
211     return false;
212 
213   QualType LHSTy = *OptionalLHSTy;
214   QualType RHSTy = *OptionalRHSTy;
215 
216   // This is the simple case: binops without unsigned multiplication, and with
217   // widened operands. No overflow check is needed here.
218   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
219       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
220     return true;
221 
222   // For unsigned multiplication the overflow check can be elided if either one
223   // of the unpromoted types are less than half the size of the promoted type.
224   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
225   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
226          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
227 }
228 
229 class ScalarExprEmitter
230   : public StmtVisitor<ScalarExprEmitter, Value*> {
231   CodeGenFunction &CGF;
232   CGBuilderTy &Builder;
233   bool IgnoreResultAssign;
234   llvm::LLVMContext &VMContext;
235 public:
236 
237   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239       VMContext(cgf.getLLVMContext()) {
240   }
241 
242   //===--------------------------------------------------------------------===//
243   //                               Utilities
244   //===--------------------------------------------------------------------===//
245 
246   bool TestAndClearIgnoreResultAssign() {
247     bool I = IgnoreResultAssign;
248     IgnoreResultAssign = false;
249     return I;
250   }
251 
252   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255     return CGF.EmitCheckedLValue(E, TCK);
256   }
257 
258   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259                       const BinOpInfo &Info);
260 
261   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263   }
264 
265   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266     const AlignValueAttr *AVAttr = nullptr;
267     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268       const ValueDecl *VD = DRE->getDecl();
269 
270       if (VD->getType()->isReferenceType()) {
271         if (const auto *TTy =
272                 VD->getType().getNonReferenceType()->getAs<TypedefType>())
273           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274       } else {
275         // Assumptions for function parameters are emitted at the start of the
276         // function, so there is no need to repeat that here,
277         // unless the alignment-assumption sanitizer is enabled,
278         // then we prefer the assumption over alignment attribute
279         // on IR function param.
280         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281           return;
282 
283         AVAttr = VD->getAttr<AlignValueAttr>();
284       }
285     }
286 
287     if (!AVAttr)
288       if (const auto *TTy = E->getType()->getAs<TypedefType>())
289         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
290 
291     if (!AVAttr)
292       return;
293 
294     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
295     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
296     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
297   }
298 
299   /// EmitLoadOfLValue - Given an expression with complex type that represents a
300   /// value l-value, this method emits the address of the l-value, then loads
301   /// and returns the result.
302   Value *EmitLoadOfLValue(const Expr *E) {
303     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
304                                 E->getExprLoc());
305 
306     EmitLValueAlignmentAssumption(E, V);
307     return V;
308   }
309 
310   /// EmitConversionToBool - Convert the specified expression value to a
311   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
312   Value *EmitConversionToBool(Value *Src, QualType DstTy);
313 
314   /// Emit a check that a conversion from a floating-point type does not
315   /// overflow.
316   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
317                                 Value *Src, QualType SrcType, QualType DstType,
318                                 llvm::Type *DstTy, SourceLocation Loc);
319 
320   /// Known implicit conversion check kinds.
321   /// This is used for bitfield conversion checks as well.
322   /// Keep in sync with the enum of the same name in ubsan_handlers.h
323   enum ImplicitConversionCheckKind : unsigned char {
324     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
325     ICCK_UnsignedIntegerTruncation = 1,
326     ICCK_SignedIntegerTruncation = 2,
327     ICCK_IntegerSignChange = 3,
328     ICCK_SignedIntegerTruncationOrSignChange = 4,
329   };
330 
331   /// Emit a check that an [implicit] truncation of an integer  does not
332   /// discard any bits. It is not UB, so we use the value after truncation.
333   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
334                                   QualType DstType, SourceLocation Loc);
335 
336   /// Emit a check that an [implicit] conversion of an integer does not change
337   /// the sign of the value. It is not UB, so we use the value after conversion.
338   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
339   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
340                                   QualType DstType, SourceLocation Loc);
341 
342   /// Emit a conversion from the specified type to the specified destination
343   /// type, both of which are LLVM scalar types.
344   struct ScalarConversionOpts {
345     bool TreatBooleanAsSigned;
346     bool EmitImplicitIntegerTruncationChecks;
347     bool EmitImplicitIntegerSignChangeChecks;
348 
349     ScalarConversionOpts()
350         : TreatBooleanAsSigned(false),
351           EmitImplicitIntegerTruncationChecks(false),
352           EmitImplicitIntegerSignChangeChecks(false) {}
353 
354     ScalarConversionOpts(clang::SanitizerSet SanOpts)
355         : TreatBooleanAsSigned(false),
356           EmitImplicitIntegerTruncationChecks(
357               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
358           EmitImplicitIntegerSignChangeChecks(
359               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
360   };
361   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
362                         llvm::Type *SrcTy, llvm::Type *DstTy,
363                         ScalarConversionOpts Opts);
364   Value *
365   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
366                        SourceLocation Loc,
367                        ScalarConversionOpts Opts = ScalarConversionOpts());
368 
369   /// Convert between either a fixed point and other fixed point or fixed point
370   /// and an integer.
371   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
372                                   SourceLocation Loc);
373 
374   /// Emit a conversion from the specified complex type to the specified
375   /// destination type, where the destination type is an LLVM scalar type.
376   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
377                                        QualType SrcTy, QualType DstTy,
378                                        SourceLocation Loc);
379 
380   /// EmitNullValue - Emit a value that corresponds to null for the given type.
381   Value *EmitNullValue(QualType Ty);
382 
383   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
384   Value *EmitFloatToBoolConversion(Value *V) {
385     // Compare against 0.0 for fp scalars.
386     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
387     return Builder.CreateFCmpUNE(V, Zero, "tobool");
388   }
389 
390   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
391   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
392     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
393 
394     return Builder.CreateICmpNE(V, Zero, "tobool");
395   }
396 
397   Value *EmitIntToBoolConversion(Value *V) {
398     // Because of the type rules of C, we often end up computing a
399     // logical value, then zero extending it to int, then wanting it
400     // as a logical value again.  Optimize this common case.
401     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
402       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
403         Value *Result = ZI->getOperand(0);
404         // If there aren't any more uses, zap the instruction to save space.
405         // Note that there can be more uses, for example if this
406         // is the result of an assignment.
407         if (ZI->use_empty())
408           ZI->eraseFromParent();
409         return Result;
410       }
411     }
412 
413     return Builder.CreateIsNotNull(V, "tobool");
414   }
415 
416   //===--------------------------------------------------------------------===//
417   //                            Visitor Methods
418   //===--------------------------------------------------------------------===//
419 
420   Value *Visit(Expr *E) {
421     ApplyDebugLocation DL(CGF, E);
422     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
423   }
424 
425   Value *VisitStmt(Stmt *S) {
426     S->dump(llvm::errs(), CGF.getContext());
427     llvm_unreachable("Stmt can't have complex result type!");
428   }
429   Value *VisitExpr(Expr *S);
430 
431   Value *VisitConstantExpr(ConstantExpr *E) {
432     // A constant expression of type 'void' generates no code and produces no
433     // value.
434     if (E->getType()->isVoidType())
435       return nullptr;
436 
437     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
438       if (E->isGLValue())
439         return CGF.EmitLoadOfScalar(
440             Address(Result, CGF.convertTypeForLoadStore(E->getType()),
441                     CGF.getContext().getTypeAlignInChars(E->getType())),
442             /*Volatile*/ false, E->getType(), E->getExprLoc());
443       return Result;
444     }
445     return Visit(E->getSubExpr());
446   }
447   Value *VisitParenExpr(ParenExpr *PE) {
448     return Visit(PE->getSubExpr());
449   }
450   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
451     return Visit(E->getReplacement());
452   }
453   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
454     return Visit(GE->getResultExpr());
455   }
456   Value *VisitCoawaitExpr(CoawaitExpr *S) {
457     return CGF.EmitCoawaitExpr(*S).getScalarVal();
458   }
459   Value *VisitCoyieldExpr(CoyieldExpr *S) {
460     return CGF.EmitCoyieldExpr(*S).getScalarVal();
461   }
462   Value *VisitUnaryCoawait(const UnaryOperator *E) {
463     return Visit(E->getSubExpr());
464   }
465 
466   // Leaves.
467   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
468     return Builder.getInt(E->getValue());
469   }
470   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
471     return Builder.getInt(E->getValue());
472   }
473   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
474     return llvm::ConstantFP::get(VMContext, E->getValue());
475   }
476   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
477     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
478   }
479   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
480     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
481   }
482   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
483     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
484   }
485   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
486     if (E->getType()->isVoidType())
487       return nullptr;
488 
489     return EmitNullValue(E->getType());
490   }
491   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
492     return EmitNullValue(E->getType());
493   }
494   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
495   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
496   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
497     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
498     return Builder.CreateBitCast(V, ConvertType(E->getType()));
499   }
500 
501   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
502     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
503   }
504 
505   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
506     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
507   }
508 
509   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
510   Value *VisitEmbedExpr(EmbedExpr *E);
511 
512   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
513     if (E->isGLValue())
514       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
515                               E->getExprLoc());
516 
517     // Otherwise, assume the mapping is the scalar directly.
518     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
519   }
520 
521   // l-values.
522   Value *VisitDeclRefExpr(DeclRefExpr *E) {
523     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
524       return CGF.emitScalarConstant(Constant, E);
525     return EmitLoadOfLValue(E);
526   }
527 
528   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
529     return CGF.EmitObjCSelectorExpr(E);
530   }
531   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
532     return CGF.EmitObjCProtocolExpr(E);
533   }
534   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
535     return EmitLoadOfLValue(E);
536   }
537   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
538     if (E->getMethodDecl() &&
539         E->getMethodDecl()->getReturnType()->isReferenceType())
540       return EmitLoadOfLValue(E);
541     return CGF.EmitObjCMessageExpr(E).getScalarVal();
542   }
543 
544   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
545     LValue LV = CGF.EmitObjCIsaExpr(E);
546     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
547     return V;
548   }
549 
550   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
551     VersionTuple Version = E->getVersion();
552 
553     // If we're checking for a platform older than our minimum deployment
554     // target, we can fold the check away.
555     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
556       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
557 
558     return CGF.EmitBuiltinAvailable(Version);
559   }
560 
561   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
562   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
563   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
564   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
565   Value *VisitMemberExpr(MemberExpr *E);
566   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
567   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
568     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
569     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
570     // literals aren't l-values in C++. We do so simply because that's the
571     // cleanest way to handle compound literals in C++.
572     // See the discussion here: https://reviews.llvm.org/D64464
573     return EmitLoadOfLValue(E);
574   }
575 
576   Value *VisitInitListExpr(InitListExpr *E);
577 
578   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
579     assert(CGF.getArrayInitIndex() &&
580            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
581     return CGF.getArrayInitIndex();
582   }
583 
584   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
585     return EmitNullValue(E->getType());
586   }
587   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
588     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
589     return VisitCastExpr(E);
590   }
591   Value *VisitCastExpr(CastExpr *E);
592 
593   Value *VisitCallExpr(const CallExpr *E) {
594     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
595       return EmitLoadOfLValue(E);
596 
597     Value *V = CGF.EmitCallExpr(E).getScalarVal();
598 
599     EmitLValueAlignmentAssumption(E, V);
600     return V;
601   }
602 
603   Value *VisitStmtExpr(const StmtExpr *E);
604 
605   // Unary Operators.
606   Value *VisitUnaryPostDec(const UnaryOperator *E) {
607     LValue LV = EmitLValue(E->getSubExpr());
608     return EmitScalarPrePostIncDec(E, LV, false, false);
609   }
610   Value *VisitUnaryPostInc(const UnaryOperator *E) {
611     LValue LV = EmitLValue(E->getSubExpr());
612     return EmitScalarPrePostIncDec(E, LV, true, false);
613   }
614   Value *VisitUnaryPreDec(const UnaryOperator *E) {
615     LValue LV = EmitLValue(E->getSubExpr());
616     return EmitScalarPrePostIncDec(E, LV, false, true);
617   }
618   Value *VisitUnaryPreInc(const UnaryOperator *E) {
619     LValue LV = EmitLValue(E->getSubExpr());
620     return EmitScalarPrePostIncDec(E, LV, true, true);
621   }
622 
623   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
624                                                   llvm::Value *InVal,
625                                                   bool IsInc);
626 
627   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
628                                        bool isInc, bool isPre);
629 
630 
631   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
632     if (isa<MemberPointerType>(E->getType())) // never sugared
633       return CGF.CGM.getMemberPointerConstant(E);
634 
635     return EmitLValue(E->getSubExpr()).getPointer(CGF);
636   }
637   Value *VisitUnaryDeref(const UnaryOperator *E) {
638     if (E->getType()->isVoidType())
639       return Visit(E->getSubExpr()); // the actual value should be unused
640     return EmitLoadOfLValue(E);
641   }
642 
643   Value *VisitUnaryPlus(const UnaryOperator *E,
644                         QualType PromotionType = QualType());
645   Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
646   Value *VisitUnaryMinus(const UnaryOperator *E,
647                          QualType PromotionType = QualType());
648   Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
649 
650   Value *VisitUnaryNot      (const UnaryOperator *E);
651   Value *VisitUnaryLNot     (const UnaryOperator *E);
652   Value *VisitUnaryReal(const UnaryOperator *E,
653                         QualType PromotionType = QualType());
654   Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
655   Value *VisitUnaryImag(const UnaryOperator *E,
656                         QualType PromotionType = QualType());
657   Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
658   Value *VisitUnaryExtension(const UnaryOperator *E) {
659     return Visit(E->getSubExpr());
660   }
661 
662   // C++
663   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
664     return EmitLoadOfLValue(E);
665   }
666   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
667     auto &Ctx = CGF.getContext();
668     APValue Evaluated =
669         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
670     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
671                                              SLE->getType());
672   }
673 
674   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
675     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
676     return Visit(DAE->getExpr());
677   }
678   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
679     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
680     return Visit(DIE->getExpr());
681   }
682   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
683     return CGF.LoadCXXThis();
684   }
685 
686   Value *VisitExprWithCleanups(ExprWithCleanups *E);
687   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
688     return CGF.EmitCXXNewExpr(E);
689   }
690   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
691     CGF.EmitCXXDeleteExpr(E);
692     return nullptr;
693   }
694 
695   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
696     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
697   }
698 
699   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
700     return Builder.getInt1(E->isSatisfied());
701   }
702 
703   Value *VisitRequiresExpr(const RequiresExpr *E) {
704     return Builder.getInt1(E->isSatisfied());
705   }
706 
707   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
708     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
709   }
710 
711   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
712     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
713   }
714 
715   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
716     // C++ [expr.pseudo]p1:
717     //   The result shall only be used as the operand for the function call
718     //   operator (), and the result of such a call has type void. The only
719     //   effect is the evaluation of the postfix-expression before the dot or
720     //   arrow.
721     CGF.EmitScalarExpr(E->getBase());
722     return nullptr;
723   }
724 
725   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
726     return EmitNullValue(E->getType());
727   }
728 
729   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
730     CGF.EmitCXXThrowExpr(E);
731     return nullptr;
732   }
733 
734   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
735     return Builder.getInt1(E->getValue());
736   }
737 
738   // Binary Operators.
739   Value *EmitMul(const BinOpInfo &Ops) {
740     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
741       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
742       case LangOptions::SOB_Defined:
743         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
744           return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
745         [[fallthrough]];
746       case LangOptions::SOB_Undefined:
747         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
748           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
749         [[fallthrough]];
750       case LangOptions::SOB_Trapping:
751         if (CanElideOverflowCheck(CGF.getContext(), Ops))
752           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
753         return EmitOverflowCheckedBinOp(Ops);
754       }
755     }
756 
757     if (Ops.Ty->isConstantMatrixType()) {
758       llvm::MatrixBuilder MB(Builder);
759       // We need to check the types of the operands of the operator to get the
760       // correct matrix dimensions.
761       auto *BO = cast<BinaryOperator>(Ops.E);
762       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
763           BO->getLHS()->getType().getCanonicalType());
764       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
765           BO->getRHS()->getType().getCanonicalType());
766       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
767       if (LHSMatTy && RHSMatTy)
768         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
769                                        LHSMatTy->getNumColumns(),
770                                        RHSMatTy->getNumColumns());
771       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
772     }
773 
774     if (Ops.Ty->isUnsignedIntegerType() &&
775         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
776         !CanElideOverflowCheck(CGF.getContext(), Ops))
777       return EmitOverflowCheckedBinOp(Ops);
778 
779     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
780       //  Preserve the old values
781       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
782       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
783     }
784     if (Ops.isFixedPointOp())
785       return EmitFixedPointBinOp(Ops);
786     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
787   }
788   /// Create a binary op that checks for overflow.
789   /// Currently only supports +, - and *.
790   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
791 
792   // Check for undefined division and modulus behaviors.
793   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
794                                                   llvm::Value *Zero,bool isDiv);
795   // Common helper for getting how wide LHS of shift is.
796   static Value *GetMaximumShiftAmount(Value *LHS, Value *RHS, bool RHSIsSigned);
797 
798   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
799   // non powers of two.
800   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
801 
802   Value *EmitDiv(const BinOpInfo &Ops);
803   Value *EmitRem(const BinOpInfo &Ops);
804   Value *EmitAdd(const BinOpInfo &Ops);
805   Value *EmitSub(const BinOpInfo &Ops);
806   Value *EmitShl(const BinOpInfo &Ops);
807   Value *EmitShr(const BinOpInfo &Ops);
808   Value *EmitAnd(const BinOpInfo &Ops) {
809     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
810   }
811   Value *EmitXor(const BinOpInfo &Ops) {
812     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
813   }
814   Value *EmitOr (const BinOpInfo &Ops) {
815     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
816   }
817 
818   // Helper functions for fixed point binary operations.
819   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
820 
821   BinOpInfo EmitBinOps(const BinaryOperator *E,
822                        QualType PromotionTy = QualType());
823 
824   Value *EmitPromotedValue(Value *result, QualType PromotionType);
825   Value *EmitUnPromotedValue(Value *result, QualType ExprType);
826   Value *EmitPromoted(const Expr *E, QualType PromotionType);
827 
828   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
829                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
830                                   Value *&Result);
831 
832   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
833                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
834 
835   QualType getPromotionType(QualType Ty) {
836     const auto &Ctx = CGF.getContext();
837     if (auto *CT = Ty->getAs<ComplexType>()) {
838       QualType ElementType = CT->getElementType();
839       if (ElementType.UseExcessPrecision(Ctx))
840         return Ctx.getComplexType(Ctx.FloatTy);
841     }
842 
843     if (Ty.UseExcessPrecision(Ctx)) {
844       if (auto *VT = Ty->getAs<VectorType>()) {
845         unsigned NumElements = VT->getNumElements();
846         return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind());
847       }
848       return Ctx.FloatTy;
849     }
850 
851     return QualType();
852   }
853 
854   // Binary operators and binary compound assignment operators.
855 #define HANDLEBINOP(OP)                                                        \
856   Value *VisitBin##OP(const BinaryOperator *E) {                               \
857     QualType promotionTy = getPromotionType(E->getType());                     \
858     auto result = Emit##OP(EmitBinOps(E, promotionTy));                        \
859     if (result && !promotionTy.isNull())                                       \
860       result = EmitUnPromotedValue(result, E->getType());                      \
861     return result;                                                             \
862   }                                                                            \
863   Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) {               \
864     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP);                \
865   }
866   HANDLEBINOP(Mul)
867   HANDLEBINOP(Div)
868   HANDLEBINOP(Rem)
869   HANDLEBINOP(Add)
870   HANDLEBINOP(Sub)
871   HANDLEBINOP(Shl)
872   HANDLEBINOP(Shr)
873   HANDLEBINOP(And)
874   HANDLEBINOP(Xor)
875   HANDLEBINOP(Or)
876 #undef HANDLEBINOP
877 
878   // Comparisons.
879   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
880                      llvm::CmpInst::Predicate SICmpOpc,
881                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
882 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
883     Value *VisitBin##CODE(const BinaryOperator *E) { \
884       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
885                          llvm::FCmpInst::FP, SIG); }
886   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
887   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
888   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
889   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
890   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
891   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
892 #undef VISITCOMP
893 
894   Value *VisitBinAssign     (const BinaryOperator *E);
895 
896   Value *VisitBinLAnd       (const BinaryOperator *E);
897   Value *VisitBinLOr        (const BinaryOperator *E);
898   Value *VisitBinComma      (const BinaryOperator *E);
899 
900   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
901   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
902 
903   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
904     return Visit(E->getSemanticForm());
905   }
906 
907   // Other Operators.
908   Value *VisitBlockExpr(const BlockExpr *BE);
909   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
910   Value *VisitChooseExpr(ChooseExpr *CE);
911   Value *VisitVAArgExpr(VAArgExpr *VE);
912   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
913     return CGF.EmitObjCStringLiteral(E);
914   }
915   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
916     return CGF.EmitObjCBoxedExpr(E);
917   }
918   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
919     return CGF.EmitObjCArrayLiteral(E);
920   }
921   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
922     return CGF.EmitObjCDictionaryLiteral(E);
923   }
924   Value *VisitAsTypeExpr(AsTypeExpr *CE);
925   Value *VisitAtomicExpr(AtomicExpr *AE);
926   Value *VisitPackIndexingExpr(PackIndexingExpr *E) {
927     return Visit(E->getSelectedExpr());
928   }
929 };
930 }  // end anonymous namespace.
931 
932 //===----------------------------------------------------------------------===//
933 //                                Utilities
934 //===----------------------------------------------------------------------===//
935 
936 /// EmitConversionToBool - Convert the specified expression value to a
937 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
938 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
939   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
940 
941   if (SrcType->isRealFloatingType())
942     return EmitFloatToBoolConversion(Src);
943 
944   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
945     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
946 
947   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
948          "Unknown scalar type to convert");
949 
950   if (isa<llvm::IntegerType>(Src->getType()))
951     return EmitIntToBoolConversion(Src);
952 
953   assert(isa<llvm::PointerType>(Src->getType()));
954   return EmitPointerToBoolConversion(Src, SrcType);
955 }
956 
957 void ScalarExprEmitter::EmitFloatConversionCheck(
958     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
959     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
960   assert(SrcType->isFloatingType() && "not a conversion from floating point");
961   if (!isa<llvm::IntegerType>(DstTy))
962     return;
963 
964   CodeGenFunction::SanitizerScope SanScope(&CGF);
965   using llvm::APFloat;
966   using llvm::APSInt;
967 
968   llvm::Value *Check = nullptr;
969   const llvm::fltSemantics &SrcSema =
970     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
971 
972   // Floating-point to integer. This has undefined behavior if the source is
973   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
974   // to an integer).
975   unsigned Width = CGF.getContext().getIntWidth(DstType);
976   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
977 
978   APSInt Min = APSInt::getMinValue(Width, Unsigned);
979   APFloat MinSrc(SrcSema, APFloat::uninitialized);
980   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
981       APFloat::opOverflow)
982     // Don't need an overflow check for lower bound. Just check for
983     // -Inf/NaN.
984     MinSrc = APFloat::getInf(SrcSema, true);
985   else
986     // Find the largest value which is too small to represent (before
987     // truncation toward zero).
988     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
989 
990   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
991   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
992   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
993       APFloat::opOverflow)
994     // Don't need an overflow check for upper bound. Just check for
995     // +Inf/NaN.
996     MaxSrc = APFloat::getInf(SrcSema, false);
997   else
998     // Find the smallest value which is too large to represent (before
999     // truncation toward zero).
1000     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
1001 
1002   // If we're converting from __half, convert the range to float to match
1003   // the type of src.
1004   if (OrigSrcType->isHalfType()) {
1005     const llvm::fltSemantics &Sema =
1006       CGF.getContext().getFloatTypeSemantics(SrcType);
1007     bool IsInexact;
1008     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1009     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1010   }
1011 
1012   llvm::Value *GE =
1013     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
1014   llvm::Value *LE =
1015     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
1016   Check = Builder.CreateAnd(GE, LE);
1017 
1018   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
1019                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
1020                                   CGF.EmitCheckTypeDescriptor(DstType)};
1021   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
1022                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
1023 }
1024 
1025 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1026 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
1027 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1028                  std::pair<llvm::Value *, SanitizerMask>>
1029 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1030                                  QualType DstType, CGBuilderTy &Builder) {
1031   llvm::Type *SrcTy = Src->getType();
1032   llvm::Type *DstTy = Dst->getType();
1033   (void)DstTy; // Only used in assert()
1034 
1035   // This should be truncation of integral types.
1036   assert(Src != Dst);
1037   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1038   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1039          "non-integer llvm type");
1040 
1041   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1042   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1043 
1044   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1045   // Else, it is a signed truncation.
1046   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1047   SanitizerMask Mask;
1048   if (!SrcSigned && !DstSigned) {
1049     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1050     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1051   } else {
1052     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1053     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1054   }
1055 
1056   llvm::Value *Check = nullptr;
1057   // 1. Extend the truncated value back to the same width as the Src.
1058   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1059   // 2. Equality-compare with the original source value
1060   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1061   // If the comparison result is 'i1 false', then the truncation was lossy.
1062   return std::make_pair(Kind, std::make_pair(Check, Mask));
1063 }
1064 
1065 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1066     QualType SrcType, QualType DstType) {
1067   return SrcType->isIntegerType() && DstType->isIntegerType();
1068 }
1069 
1070 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1071                                                    Value *Dst, QualType DstType,
1072                                                    SourceLocation Loc) {
1073   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1074     return;
1075 
1076   // We only care about int->int conversions here.
1077   // We ignore conversions to/from pointer and/or bool.
1078   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1079                                                                        DstType))
1080     return;
1081 
1082   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1083   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1084   // This must be truncation. Else we do not care.
1085   if (SrcBits <= DstBits)
1086     return;
1087 
1088   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1089 
1090   // If the integer sign change sanitizer is enabled,
1091   // and we are truncating from larger unsigned type to smaller signed type,
1092   // let that next sanitizer deal with it.
1093   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1094   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1095   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1096       (!SrcSigned && DstSigned))
1097     return;
1098 
1099   CodeGenFunction::SanitizerScope SanScope(&CGF);
1100 
1101   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1102             std::pair<llvm::Value *, SanitizerMask>>
1103       Check =
1104           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1105   // If the comparison result is 'i1 false', then the truncation was lossy.
1106 
1107   // Do we care about this type of truncation?
1108   if (!CGF.SanOpts.has(Check.second.second))
1109     return;
1110 
1111   llvm::Constant *StaticArgs[] = {
1112       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1113       CGF.EmitCheckTypeDescriptor(DstType),
1114       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first),
1115       llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1116 
1117   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1118                 {Src, Dst});
1119 }
1120 
1121 static llvm::Value *EmitIsNegativeTestHelper(Value *V, QualType VType,
1122                                              const char *Name,
1123                                              CGBuilderTy &Builder) {
1124   bool VSigned = VType->isSignedIntegerOrEnumerationType();
1125   llvm::Type *VTy = V->getType();
1126   if (!VSigned) {
1127     // If the value is unsigned, then it is never negative.
1128     return llvm::ConstantInt::getFalse(VTy->getContext());
1129   }
1130   llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1131   return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1132                             llvm::Twine(Name) + "." + V->getName() +
1133                                 ".negativitycheck");
1134 }
1135 
1136 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1137 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1138 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1139                  std::pair<llvm::Value *, SanitizerMask>>
1140 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1141                                  QualType DstType, CGBuilderTy &Builder) {
1142   llvm::Type *SrcTy = Src->getType();
1143   llvm::Type *DstTy = Dst->getType();
1144 
1145   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1146          "non-integer llvm type");
1147 
1148   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1149   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1150   (void)SrcSigned; // Only used in assert()
1151   (void)DstSigned; // Only used in assert()
1152   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1153   unsigned DstBits = DstTy->getScalarSizeInBits();
1154   (void)SrcBits; // Only used in assert()
1155   (void)DstBits; // Only used in assert()
1156 
1157   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1158          "either the widths should be different, or the signednesses.");
1159 
1160   // 1. Was the old Value negative?
1161   llvm::Value *SrcIsNegative =
1162       EmitIsNegativeTestHelper(Src, SrcType, "src", Builder);
1163   // 2. Is the new Value negative?
1164   llvm::Value *DstIsNegative =
1165       EmitIsNegativeTestHelper(Dst, DstType, "dst", Builder);
1166   // 3. Now, was the 'negativity status' preserved during the conversion?
1167   //    NOTE: conversion from negative to zero is considered to change the sign.
1168   //    (We want to get 'false' when the conversion changed the sign)
1169   //    So we should just equality-compare the negativity statuses.
1170   llvm::Value *Check = nullptr;
1171   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1172   // If the comparison result is 'false', then the conversion changed the sign.
1173   return std::make_pair(
1174       ScalarExprEmitter::ICCK_IntegerSignChange,
1175       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1176 }
1177 
1178 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1179                                                    Value *Dst, QualType DstType,
1180                                                    SourceLocation Loc) {
1181   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1182     return;
1183 
1184   llvm::Type *SrcTy = Src->getType();
1185   llvm::Type *DstTy = Dst->getType();
1186 
1187   // We only care about int->int conversions here.
1188   // We ignore conversions to/from pointer and/or bool.
1189   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1190                                                                        DstType))
1191     return;
1192 
1193   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1194   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1195   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1196   unsigned DstBits = DstTy->getScalarSizeInBits();
1197 
1198   // Now, we do not need to emit the check in *all* of the cases.
1199   // We can avoid emitting it in some obvious cases where it would have been
1200   // dropped by the opt passes (instcombine) always anyways.
1201   // If it's a cast between effectively the same type, no check.
1202   // NOTE: this is *not* equivalent to checking the canonical types.
1203   if (SrcSigned == DstSigned && SrcBits == DstBits)
1204     return;
1205   // At least one of the values needs to have signed type.
1206   // If both are unsigned, then obviously, neither of them can be negative.
1207   if (!SrcSigned && !DstSigned)
1208     return;
1209   // If the conversion is to *larger* *signed* type, then no check is needed.
1210   // Because either sign-extension happens (so the sign will remain),
1211   // or zero-extension will happen (the sign bit will be zero.)
1212   if ((DstBits > SrcBits) && DstSigned)
1213     return;
1214   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1215       (SrcBits > DstBits) && SrcSigned) {
1216     // If the signed integer truncation sanitizer is enabled,
1217     // and this is a truncation from signed type, then no check is needed.
1218     // Because here sign change check is interchangeable with truncation check.
1219     return;
1220   }
1221   // That's it. We can't rule out any more cases with the data we have.
1222 
1223   CodeGenFunction::SanitizerScope SanScope(&CGF);
1224 
1225   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1226             std::pair<llvm::Value *, SanitizerMask>>
1227       Check;
1228 
1229   // Each of these checks needs to return 'false' when an issue was detected.
1230   ImplicitConversionCheckKind CheckKind;
1231   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1232   // So we can 'and' all the checks together, and still get 'false',
1233   // if at least one of the checks detected an issue.
1234 
1235   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1236   CheckKind = Check.first;
1237   Checks.emplace_back(Check.second);
1238 
1239   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1240       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1241     // If the signed integer truncation sanitizer was enabled,
1242     // and we are truncating from larger unsigned type to smaller signed type,
1243     // let's handle the case we skipped in that check.
1244     Check =
1245         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1246     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1247     Checks.emplace_back(Check.second);
1248     // If the comparison result is 'i1 false', then the truncation was lossy.
1249   }
1250 
1251   llvm::Constant *StaticArgs[] = {
1252       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1253       CGF.EmitCheckTypeDescriptor(DstType),
1254       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1255       llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1256   // EmitCheck() will 'and' all the checks together.
1257   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1258                 {Src, Dst});
1259 }
1260 
1261 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1262 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
1263 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1264                  std::pair<llvm::Value *, SanitizerMask>>
1265 EmitBitfieldTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1266                                   QualType DstType, CGBuilderTy &Builder) {
1267   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1268   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1269 
1270   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1271   if (!SrcSigned && !DstSigned)
1272     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1273   else
1274     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1275 
1276   llvm::Value *Check = nullptr;
1277   // 1. Extend the truncated value back to the same width as the Src.
1278   Check = Builder.CreateIntCast(Dst, Src->getType(), DstSigned, "bf.anyext");
1279   // 2. Equality-compare with the original source value
1280   Check = Builder.CreateICmpEQ(Check, Src, "bf.truncheck");
1281   // If the comparison result is 'i1 false', then the truncation was lossy.
1282 
1283   return std::make_pair(
1284       Kind, std::make_pair(Check, SanitizerKind::ImplicitBitfieldConversion));
1285 }
1286 
1287 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1288 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1289 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1290                  std::pair<llvm::Value *, SanitizerMask>>
1291 EmitBitfieldSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1292                                   QualType DstType, CGBuilderTy &Builder) {
1293   // 1. Was the old Value negative?
1294   llvm::Value *SrcIsNegative =
1295       EmitIsNegativeTestHelper(Src, SrcType, "bf.src", Builder);
1296   // 2. Is the new Value negative?
1297   llvm::Value *DstIsNegative =
1298       EmitIsNegativeTestHelper(Dst, DstType, "bf.dst", Builder);
1299   // 3. Now, was the 'negativity status' preserved during the conversion?
1300   //    NOTE: conversion from negative to zero is considered to change the sign.
1301   //    (We want to get 'false' when the conversion changed the sign)
1302   //    So we should just equality-compare the negativity statuses.
1303   llvm::Value *Check = nullptr;
1304   Check =
1305       Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "bf.signchangecheck");
1306   // If the comparison result is 'false', then the conversion changed the sign.
1307   return std::make_pair(
1308       ScalarExprEmitter::ICCK_IntegerSignChange,
1309       std::make_pair(Check, SanitizerKind::ImplicitBitfieldConversion));
1310 }
1311 
1312 void CodeGenFunction::EmitBitfieldConversionCheck(Value *Src, QualType SrcType,
1313                                                   Value *Dst, QualType DstType,
1314                                                   const CGBitFieldInfo &Info,
1315                                                   SourceLocation Loc) {
1316 
1317   if (!SanOpts.has(SanitizerKind::ImplicitBitfieldConversion))
1318     return;
1319 
1320   // We only care about int->int conversions here.
1321   // We ignore conversions to/from pointer and/or bool.
1322   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1323                                                                        DstType))
1324     return;
1325 
1326   if (DstType->isBooleanType() || SrcType->isBooleanType())
1327     return;
1328 
1329   // This should be truncation of integral types.
1330   assert(isa<llvm::IntegerType>(Src->getType()) &&
1331          isa<llvm::IntegerType>(Dst->getType()) && "non-integer llvm type");
1332 
1333   // TODO: Calculate src width to avoid emitting code
1334   // for unecessary cases.
1335   unsigned SrcBits = ConvertType(SrcType)->getScalarSizeInBits();
1336   unsigned DstBits = Info.Size;
1337 
1338   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1339   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1340 
1341   CodeGenFunction::SanitizerScope SanScope(this);
1342 
1343   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1344             std::pair<llvm::Value *, SanitizerMask>>
1345       Check;
1346 
1347   // Truncation
1348   bool EmitTruncation = DstBits < SrcBits;
1349   // If Dst is signed and Src unsigned, we want to be more specific
1350   // about the CheckKind we emit, in this case we want to emit
1351   // ICCK_SignedIntegerTruncationOrSignChange.
1352   bool EmitTruncationFromUnsignedToSigned =
1353       EmitTruncation && DstSigned && !SrcSigned;
1354   // Sign change
1355   bool SameTypeSameSize = SrcSigned == DstSigned && SrcBits == DstBits;
1356   bool BothUnsigned = !SrcSigned && !DstSigned;
1357   bool LargerSigned = (DstBits > SrcBits) && DstSigned;
1358   // We can avoid emitting sign change checks in some obvious cases
1359   //   1. If Src and Dst have the same signedness and size
1360   //   2. If both are unsigned sign check is unecessary!
1361   //   3. If Dst is signed and bigger than Src, either
1362   //      sign-extension or zero-extension will make sure
1363   //      the sign remains.
1364   bool EmitSignChange = !SameTypeSameSize && !BothUnsigned && !LargerSigned;
1365 
1366   if (EmitTruncation)
1367     Check =
1368         EmitBitfieldTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1369   else if (EmitSignChange) {
1370     assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1371            "either the widths should be different, or the signednesses.");
1372     Check =
1373         EmitBitfieldSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1374   } else
1375     return;
1376 
1377   ScalarExprEmitter::ImplicitConversionCheckKind CheckKind = Check.first;
1378   if (EmitTruncationFromUnsignedToSigned)
1379     CheckKind = ScalarExprEmitter::ICCK_SignedIntegerTruncationOrSignChange;
1380 
1381   llvm::Constant *StaticArgs[] = {
1382       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(SrcType),
1383       EmitCheckTypeDescriptor(DstType),
1384       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1385       llvm::ConstantInt::get(Builder.getInt32Ty(), Info.Size)};
1386 
1387   EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1388             {Src, Dst});
1389 }
1390 
1391 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1392                                          QualType DstType, llvm::Type *SrcTy,
1393                                          llvm::Type *DstTy,
1394                                          ScalarConversionOpts Opts) {
1395   // The Element types determine the type of cast to perform.
1396   llvm::Type *SrcElementTy;
1397   llvm::Type *DstElementTy;
1398   QualType SrcElementType;
1399   QualType DstElementType;
1400   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1401     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1402     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1403     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1404     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1405   } else {
1406     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1407            "cannot cast between matrix and non-matrix types");
1408     SrcElementTy = SrcTy;
1409     DstElementTy = DstTy;
1410     SrcElementType = SrcType;
1411     DstElementType = DstType;
1412   }
1413 
1414   if (isa<llvm::IntegerType>(SrcElementTy)) {
1415     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1416     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1417       InputSigned = true;
1418     }
1419 
1420     if (isa<llvm::IntegerType>(DstElementTy))
1421       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1422     if (InputSigned)
1423       return Builder.CreateSIToFP(Src, DstTy, "conv");
1424     return Builder.CreateUIToFP(Src, DstTy, "conv");
1425   }
1426 
1427   if (isa<llvm::IntegerType>(DstElementTy)) {
1428     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1429     bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1430 
1431     // If we can't recognize overflow as undefined behavior, assume that
1432     // overflow saturates. This protects against normal optimizations if we are
1433     // compiling with non-standard FP semantics.
1434     if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1435       llvm::Intrinsic::ID IID =
1436           IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1437       return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1438     }
1439 
1440     if (IsSigned)
1441       return Builder.CreateFPToSI(Src, DstTy, "conv");
1442     return Builder.CreateFPToUI(Src, DstTy, "conv");
1443   }
1444 
1445   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1446     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1447   return Builder.CreateFPExt(Src, DstTy, "conv");
1448 }
1449 
1450 /// Emit a conversion from the specified type to the specified destination type,
1451 /// both of which are LLVM scalar types.
1452 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1453                                                QualType DstType,
1454                                                SourceLocation Loc,
1455                                                ScalarConversionOpts Opts) {
1456   // All conversions involving fixed point types should be handled by the
1457   // EmitFixedPoint family functions. This is done to prevent bloating up this
1458   // function more, and although fixed point numbers are represented by
1459   // integers, we do not want to follow any logic that assumes they should be
1460   // treated as integers.
1461   // TODO(leonardchan): When necessary, add another if statement checking for
1462   // conversions to fixed point types from other types.
1463   if (SrcType->isFixedPointType()) {
1464     if (DstType->isBooleanType())
1465       // It is important that we check this before checking if the dest type is
1466       // an integer because booleans are technically integer types.
1467       // We do not need to check the padding bit on unsigned types if unsigned
1468       // padding is enabled because overflow into this bit is undefined
1469       // behavior.
1470       return Builder.CreateIsNotNull(Src, "tobool");
1471     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1472         DstType->isRealFloatingType())
1473       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1474 
1475     llvm_unreachable(
1476         "Unhandled scalar conversion from a fixed point type to another type.");
1477   } else if (DstType->isFixedPointType()) {
1478     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1479       // This also includes converting booleans and enums to fixed point types.
1480       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1481 
1482     llvm_unreachable(
1483         "Unhandled scalar conversion to a fixed point type from another type.");
1484   }
1485 
1486   QualType NoncanonicalSrcType = SrcType;
1487   QualType NoncanonicalDstType = DstType;
1488 
1489   SrcType = CGF.getContext().getCanonicalType(SrcType);
1490   DstType = CGF.getContext().getCanonicalType(DstType);
1491   if (SrcType == DstType) return Src;
1492 
1493   if (DstType->isVoidType()) return nullptr;
1494 
1495   llvm::Value *OrigSrc = Src;
1496   QualType OrigSrcType = SrcType;
1497   llvm::Type *SrcTy = Src->getType();
1498 
1499   // Handle conversions to bool first, they are special: comparisons against 0.
1500   if (DstType->isBooleanType())
1501     return EmitConversionToBool(Src, SrcType);
1502 
1503   llvm::Type *DstTy = ConvertType(DstType);
1504 
1505   // Cast from half through float if half isn't a native type.
1506   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1507     // Cast to FP using the intrinsic if the half type itself isn't supported.
1508     if (DstTy->isFloatingPointTy()) {
1509       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1510         return Builder.CreateCall(
1511             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1512             Src);
1513     } else {
1514       // Cast to other types through float, using either the intrinsic or FPExt,
1515       // depending on whether the half type itself is supported
1516       // (as opposed to operations on half, available with NativeHalfType).
1517       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1518         Src = Builder.CreateCall(
1519             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1520                                  CGF.CGM.FloatTy),
1521             Src);
1522       } else {
1523         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1524       }
1525       SrcType = CGF.getContext().FloatTy;
1526       SrcTy = CGF.FloatTy;
1527     }
1528   }
1529 
1530   // Ignore conversions like int -> uint.
1531   if (SrcTy == DstTy) {
1532     if (Opts.EmitImplicitIntegerSignChangeChecks)
1533       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1534                                  NoncanonicalDstType, Loc);
1535 
1536     return Src;
1537   }
1538 
1539   // Handle pointer conversions next: pointers can only be converted to/from
1540   // other pointers and integers. Check for pointer types in terms of LLVM, as
1541   // some native types (like Obj-C id) may map to a pointer type.
1542   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1543     // The source value may be an integer, or a pointer.
1544     if (isa<llvm::PointerType>(SrcTy))
1545       return Src;
1546 
1547     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1548     // First, convert to the correct width so that we control the kind of
1549     // extension.
1550     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1551     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1552     llvm::Value* IntResult =
1553         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1554     // Then, cast to pointer.
1555     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1556   }
1557 
1558   if (isa<llvm::PointerType>(SrcTy)) {
1559     // Must be an ptr to int cast.
1560     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1561     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1562   }
1563 
1564   // A scalar can be splatted to an extended vector of the same element type
1565   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1566     // Sema should add casts to make sure that the source expression's type is
1567     // the same as the vector's element type (sans qualifiers)
1568     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1569                SrcType.getTypePtr() &&
1570            "Splatted expr doesn't match with vector element type?");
1571 
1572     // Splat the element across to all elements
1573     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1574     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1575   }
1576 
1577   if (SrcType->isMatrixType() && DstType->isMatrixType())
1578     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1579 
1580   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1581     // Allow bitcast from vector to integer/fp of the same size.
1582     llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1583     llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1584     if (SrcSize == DstSize)
1585       return Builder.CreateBitCast(Src, DstTy, "conv");
1586 
1587     // Conversions between vectors of different sizes are not allowed except
1588     // when vectors of half are involved. Operations on storage-only half
1589     // vectors require promoting half vector operands to float vectors and
1590     // truncating the result, which is either an int or float vector, to a
1591     // short or half vector.
1592 
1593     // Source and destination are both expected to be vectors.
1594     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1595     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1596     (void)DstElementTy;
1597 
1598     assert(((SrcElementTy->isIntegerTy() &&
1599              DstElementTy->isIntegerTy()) ||
1600             (SrcElementTy->isFloatingPointTy() &&
1601              DstElementTy->isFloatingPointTy())) &&
1602            "unexpected conversion between a floating-point vector and an "
1603            "integer vector");
1604 
1605     // Truncate an i32 vector to an i16 vector.
1606     if (SrcElementTy->isIntegerTy())
1607       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1608 
1609     // Truncate a float vector to a half vector.
1610     if (SrcSize > DstSize)
1611       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1612 
1613     // Promote a half vector to a float vector.
1614     return Builder.CreateFPExt(Src, DstTy, "conv");
1615   }
1616 
1617   // Finally, we have the arithmetic types: real int/float.
1618   Value *Res = nullptr;
1619   llvm::Type *ResTy = DstTy;
1620 
1621   // An overflowing conversion has undefined behavior if either the source type
1622   // or the destination type is a floating-point type. However, we consider the
1623   // range of representable values for all floating-point types to be
1624   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1625   // floating-point type.
1626   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1627       OrigSrcType->isFloatingType())
1628     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1629                              Loc);
1630 
1631   // Cast to half through float if half isn't a native type.
1632   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1633     // Make sure we cast in a single step if from another FP type.
1634     if (SrcTy->isFloatingPointTy()) {
1635       // Use the intrinsic if the half type itself isn't supported
1636       // (as opposed to operations on half, available with NativeHalfType).
1637       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1638         return Builder.CreateCall(
1639             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1640       // If the half type is supported, just use an fptrunc.
1641       return Builder.CreateFPTrunc(Src, DstTy);
1642     }
1643     DstTy = CGF.FloatTy;
1644   }
1645 
1646   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1647 
1648   if (DstTy != ResTy) {
1649     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1650       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1651       Res = Builder.CreateCall(
1652         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1653         Res);
1654     } else {
1655       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1656     }
1657   }
1658 
1659   if (Opts.EmitImplicitIntegerTruncationChecks)
1660     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1661                                NoncanonicalDstType, Loc);
1662 
1663   if (Opts.EmitImplicitIntegerSignChangeChecks)
1664     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1665                                NoncanonicalDstType, Loc);
1666 
1667   return Res;
1668 }
1669 
1670 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1671                                                    QualType DstTy,
1672                                                    SourceLocation Loc) {
1673   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1674   llvm::Value *Result;
1675   if (SrcTy->isRealFloatingType())
1676     Result = FPBuilder.CreateFloatingToFixed(Src,
1677         CGF.getContext().getFixedPointSemantics(DstTy));
1678   else if (DstTy->isRealFloatingType())
1679     Result = FPBuilder.CreateFixedToFloating(Src,
1680         CGF.getContext().getFixedPointSemantics(SrcTy),
1681         ConvertType(DstTy));
1682   else {
1683     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1684     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1685 
1686     if (DstTy->isIntegerType())
1687       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1688                                               DstFPSema.getWidth(),
1689                                               DstFPSema.isSigned());
1690     else if (SrcTy->isIntegerType())
1691       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1692                                                DstFPSema);
1693     else
1694       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1695   }
1696   return Result;
1697 }
1698 
1699 /// Emit a conversion from the specified complex type to the specified
1700 /// destination type, where the destination type is an LLVM scalar type.
1701 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1702     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1703     SourceLocation Loc) {
1704   // Get the source element type.
1705   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1706 
1707   // Handle conversions to bool first, they are special: comparisons against 0.
1708   if (DstTy->isBooleanType()) {
1709     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1710     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1711     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1712     return Builder.CreateOr(Src.first, Src.second, "tobool");
1713   }
1714 
1715   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1716   // the imaginary part of the complex value is discarded and the value of the
1717   // real part is converted according to the conversion rules for the
1718   // corresponding real type.
1719   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1720 }
1721 
1722 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1723   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1724 }
1725 
1726 /// Emit a sanitization check for the given "binary" operation (which
1727 /// might actually be a unary increment which has been lowered to a binary
1728 /// operation). The check passes if all values in \p Checks (which are \c i1),
1729 /// are \c true.
1730 void ScalarExprEmitter::EmitBinOpCheck(
1731     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1732   assert(CGF.IsSanitizerScope);
1733   SanitizerHandler Check;
1734   SmallVector<llvm::Constant *, 4> StaticData;
1735   SmallVector<llvm::Value *, 2> DynamicData;
1736 
1737   BinaryOperatorKind Opcode = Info.Opcode;
1738   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1739     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1740 
1741   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1742   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1743   if (UO && UO->getOpcode() == UO_Minus) {
1744     Check = SanitizerHandler::NegateOverflow;
1745     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1746     DynamicData.push_back(Info.RHS);
1747   } else {
1748     if (BinaryOperator::isShiftOp(Opcode)) {
1749       // Shift LHS negative or too large, or RHS out of bounds.
1750       Check = SanitizerHandler::ShiftOutOfBounds;
1751       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1752       StaticData.push_back(
1753         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1754       StaticData.push_back(
1755         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1756     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1757       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1758       Check = SanitizerHandler::DivremOverflow;
1759       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1760     } else {
1761       // Arithmetic overflow (+, -, *).
1762       switch (Opcode) {
1763       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1764       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1765       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1766       default: llvm_unreachable("unexpected opcode for bin op check");
1767       }
1768       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1769     }
1770     DynamicData.push_back(Info.LHS);
1771     DynamicData.push_back(Info.RHS);
1772   }
1773 
1774   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1775 }
1776 
1777 //===----------------------------------------------------------------------===//
1778 //                            Visitor Methods
1779 //===----------------------------------------------------------------------===//
1780 
1781 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1782   CGF.ErrorUnsupported(E, "scalar expression");
1783   if (E->getType()->isVoidType())
1784     return nullptr;
1785   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1786 }
1787 
1788 Value *
1789 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1790   ASTContext &Context = CGF.getContext();
1791   unsigned AddrSpace =
1792       Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
1793   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1794       E->ComputeName(Context), "__usn_str", AddrSpace);
1795 
1796   llvm::Type *ExprTy = ConvertType(E->getType());
1797   return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1798                                                      "usn_addr_cast");
1799 }
1800 
1801 Value *ScalarExprEmitter::VisitEmbedExpr(EmbedExpr *E) {
1802   assert(E->getDataElementCount() == 1);
1803   auto It = E->begin();
1804   return Builder.getInt((*It)->getValue());
1805 }
1806 
1807 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1808   // Vector Mask Case
1809   if (E->getNumSubExprs() == 2) {
1810     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1811     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1812     Value *Mask;
1813 
1814     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1815     unsigned LHSElts = LTy->getNumElements();
1816 
1817     Mask = RHS;
1818 
1819     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1820 
1821     // Mask off the high bits of each shuffle index.
1822     Value *MaskBits =
1823         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1824     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1825 
1826     // newv = undef
1827     // mask = mask & maskbits
1828     // for each elt
1829     //   n = extract mask i
1830     //   x = extract val n
1831     //   newv = insert newv, x, i
1832     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1833                                            MTy->getNumElements());
1834     Value* NewV = llvm::PoisonValue::get(RTy);
1835     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1836       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1837       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1838 
1839       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1840       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1841     }
1842     return NewV;
1843   }
1844 
1845   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1846   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1847 
1848   SmallVector<int, 32> Indices;
1849   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1850     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1851     // Check for -1 and output it as undef in the IR.
1852     if (Idx.isSigned() && Idx.isAllOnes())
1853       Indices.push_back(-1);
1854     else
1855       Indices.push_back(Idx.getZExtValue());
1856   }
1857 
1858   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1859 }
1860 
1861 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1862   QualType SrcType = E->getSrcExpr()->getType(),
1863            DstType = E->getType();
1864 
1865   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1866 
1867   SrcType = CGF.getContext().getCanonicalType(SrcType);
1868   DstType = CGF.getContext().getCanonicalType(DstType);
1869   if (SrcType == DstType) return Src;
1870 
1871   assert(SrcType->isVectorType() &&
1872          "ConvertVector source type must be a vector");
1873   assert(DstType->isVectorType() &&
1874          "ConvertVector destination type must be a vector");
1875 
1876   llvm::Type *SrcTy = Src->getType();
1877   llvm::Type *DstTy = ConvertType(DstType);
1878 
1879   // Ignore conversions like int -> uint.
1880   if (SrcTy == DstTy)
1881     return Src;
1882 
1883   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1884            DstEltType = DstType->castAs<VectorType>()->getElementType();
1885 
1886   assert(SrcTy->isVectorTy() &&
1887          "ConvertVector source IR type must be a vector");
1888   assert(DstTy->isVectorTy() &&
1889          "ConvertVector destination IR type must be a vector");
1890 
1891   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1892              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1893 
1894   if (DstEltType->isBooleanType()) {
1895     assert((SrcEltTy->isFloatingPointTy() ||
1896             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1897 
1898     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1899     if (SrcEltTy->isFloatingPointTy()) {
1900       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1901     } else {
1902       return Builder.CreateICmpNE(Src, Zero, "tobool");
1903     }
1904   }
1905 
1906   // We have the arithmetic types: real int/float.
1907   Value *Res = nullptr;
1908 
1909   if (isa<llvm::IntegerType>(SrcEltTy)) {
1910     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1911     if (isa<llvm::IntegerType>(DstEltTy))
1912       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1913     else if (InputSigned)
1914       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1915     else
1916       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1917   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1918     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1919     if (DstEltType->isSignedIntegerOrEnumerationType())
1920       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1921     else
1922       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1923   } else {
1924     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1925            "Unknown real conversion");
1926     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1927       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1928     else
1929       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1930   }
1931 
1932   return Res;
1933 }
1934 
1935 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1936   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1937     CGF.EmitIgnoredExpr(E->getBase());
1938     return CGF.emitScalarConstant(Constant, E);
1939   } else {
1940     Expr::EvalResult Result;
1941     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1942       llvm::APSInt Value = Result.Val.getInt();
1943       CGF.EmitIgnoredExpr(E->getBase());
1944       return Builder.getInt(Value);
1945     }
1946   }
1947 
1948   llvm::Value *Result = EmitLoadOfLValue(E);
1949 
1950   // If -fdebug-info-for-profiling is specified, emit a pseudo variable and its
1951   // debug info for the pointer, even if there is no variable associated with
1952   // the pointer's expression.
1953   if (CGF.CGM.getCodeGenOpts().DebugInfoForProfiling && CGF.getDebugInfo()) {
1954     if (llvm::LoadInst *Load = dyn_cast<llvm::LoadInst>(Result)) {
1955       if (llvm::GetElementPtrInst *GEP =
1956               dyn_cast<llvm::GetElementPtrInst>(Load->getPointerOperand())) {
1957         if (llvm::Instruction *Pointer =
1958                 dyn_cast<llvm::Instruction>(GEP->getPointerOperand())) {
1959           QualType Ty = E->getBase()->getType();
1960           if (!E->isArrow())
1961             Ty = CGF.getContext().getPointerType(Ty);
1962           CGF.getDebugInfo()->EmitPseudoVariable(Builder, Pointer, Ty);
1963         }
1964       }
1965     }
1966   }
1967   return Result;
1968 }
1969 
1970 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1971   TestAndClearIgnoreResultAssign();
1972 
1973   // Emit subscript expressions in rvalue context's.  For most cases, this just
1974   // loads the lvalue formed by the subscript expr.  However, we have to be
1975   // careful, because the base of a vector subscript is occasionally an rvalue,
1976   // so we can't get it as an lvalue.
1977   if (!E->getBase()->getType()->isVectorType() &&
1978       !E->getBase()->getType()->isSveVLSBuiltinType())
1979     return EmitLoadOfLValue(E);
1980 
1981   // Handle the vector case.  The base must be a vector, the index must be an
1982   // integer value.
1983   Value *Base = Visit(E->getBase());
1984   Value *Idx  = Visit(E->getIdx());
1985   QualType IdxTy = E->getIdx()->getType();
1986 
1987   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1988     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1989 
1990   return Builder.CreateExtractElement(Base, Idx, "vecext");
1991 }
1992 
1993 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1994   TestAndClearIgnoreResultAssign();
1995 
1996   // Handle the vector case.  The base must be a vector, the index must be an
1997   // integer value.
1998   Value *RowIdx = Visit(E->getRowIdx());
1999   Value *ColumnIdx = Visit(E->getColumnIdx());
2000 
2001   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
2002   unsigned NumRows = MatrixTy->getNumRows();
2003   llvm::MatrixBuilder MB(Builder);
2004   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
2005   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
2006     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
2007 
2008   Value *Matrix = Visit(E->getBase());
2009 
2010   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
2011   return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
2012 }
2013 
2014 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
2015                       unsigned Off) {
2016   int MV = SVI->getMaskValue(Idx);
2017   if (MV == -1)
2018     return -1;
2019   return Off + MV;
2020 }
2021 
2022 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
2023   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
2024          "Index operand too large for shufflevector mask!");
2025   return C->getZExtValue();
2026 }
2027 
2028 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
2029   bool Ignore = TestAndClearIgnoreResultAssign();
2030   (void)Ignore;
2031   assert (Ignore == false && "init list ignored");
2032   unsigned NumInitElements = E->getNumInits();
2033 
2034   if (E->hadArrayRangeDesignator())
2035     CGF.ErrorUnsupported(E, "GNU array range designator extension");
2036 
2037   llvm::VectorType *VType =
2038     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
2039 
2040   if (!VType) {
2041     if (NumInitElements == 0) {
2042       // C++11 value-initialization for the scalar.
2043       return EmitNullValue(E->getType());
2044     }
2045     // We have a scalar in braces. Just use the first element.
2046     return Visit(E->getInit(0));
2047   }
2048 
2049   if (isa<llvm::ScalableVectorType>(VType)) {
2050     if (NumInitElements == 0) {
2051       // C++11 value-initialization for the vector.
2052       return EmitNullValue(E->getType());
2053     }
2054 
2055     if (NumInitElements == 1) {
2056       Expr *InitVector = E->getInit(0);
2057 
2058       // Initialize from another scalable vector of the same type.
2059       if (InitVector->getType() == E->getType())
2060         return Visit(InitVector);
2061     }
2062 
2063     llvm_unreachable("Unexpected initialization of a scalable vector!");
2064   }
2065 
2066   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
2067 
2068   // Loop over initializers collecting the Value for each, and remembering
2069   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
2070   // us to fold the shuffle for the swizzle into the shuffle for the vector
2071   // initializer, since LLVM optimizers generally do not want to touch
2072   // shuffles.
2073   unsigned CurIdx = 0;
2074   bool VIsPoisonShuffle = false;
2075   llvm::Value *V = llvm::PoisonValue::get(VType);
2076   for (unsigned i = 0; i != NumInitElements; ++i) {
2077     Expr *IE = E->getInit(i);
2078     Value *Init = Visit(IE);
2079     SmallVector<int, 16> Args;
2080 
2081     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
2082 
2083     // Handle scalar elements.  If the scalar initializer is actually one
2084     // element of a different vector of the same width, use shuffle instead of
2085     // extract+insert.
2086     if (!VVT) {
2087       if (isa<ExtVectorElementExpr>(IE)) {
2088         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
2089 
2090         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
2091                 ->getNumElements() == ResElts) {
2092           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
2093           Value *LHS = nullptr, *RHS = nullptr;
2094           if (CurIdx == 0) {
2095             // insert into poison -> shuffle (src, poison)
2096             // shufflemask must use an i32
2097             Args.push_back(getAsInt32(C, CGF.Int32Ty));
2098             Args.resize(ResElts, -1);
2099 
2100             LHS = EI->getVectorOperand();
2101             RHS = V;
2102             VIsPoisonShuffle = true;
2103           } else if (VIsPoisonShuffle) {
2104             // insert into poison shuffle && size match -> shuffle (v, src)
2105             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
2106             for (unsigned j = 0; j != CurIdx; ++j)
2107               Args.push_back(getMaskElt(SVV, j, 0));
2108             Args.push_back(ResElts + C->getZExtValue());
2109             Args.resize(ResElts, -1);
2110 
2111             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2112             RHS = EI->getVectorOperand();
2113             VIsPoisonShuffle = false;
2114           }
2115           if (!Args.empty()) {
2116             V = Builder.CreateShuffleVector(LHS, RHS, Args);
2117             ++CurIdx;
2118             continue;
2119           }
2120         }
2121       }
2122       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
2123                                       "vecinit");
2124       VIsPoisonShuffle = false;
2125       ++CurIdx;
2126       continue;
2127     }
2128 
2129     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
2130 
2131     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
2132     // input is the same width as the vector being constructed, generate an
2133     // optimized shuffle of the swizzle input into the result.
2134     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
2135     if (isa<ExtVectorElementExpr>(IE)) {
2136       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
2137       Value *SVOp = SVI->getOperand(0);
2138       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
2139 
2140       if (OpTy->getNumElements() == ResElts) {
2141         for (unsigned j = 0; j != CurIdx; ++j) {
2142           // If the current vector initializer is a shuffle with poison, merge
2143           // this shuffle directly into it.
2144           if (VIsPoisonShuffle) {
2145             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
2146           } else {
2147             Args.push_back(j);
2148           }
2149         }
2150         for (unsigned j = 0, je = InitElts; j != je; ++j)
2151           Args.push_back(getMaskElt(SVI, j, Offset));
2152         Args.resize(ResElts, -1);
2153 
2154         if (VIsPoisonShuffle)
2155           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2156 
2157         Init = SVOp;
2158       }
2159     }
2160 
2161     // Extend init to result vector length, and then shuffle its contribution
2162     // to the vector initializer into V.
2163     if (Args.empty()) {
2164       for (unsigned j = 0; j != InitElts; ++j)
2165         Args.push_back(j);
2166       Args.resize(ResElts, -1);
2167       Init = Builder.CreateShuffleVector(Init, Args, "vext");
2168 
2169       Args.clear();
2170       for (unsigned j = 0; j != CurIdx; ++j)
2171         Args.push_back(j);
2172       for (unsigned j = 0; j != InitElts; ++j)
2173         Args.push_back(j + Offset);
2174       Args.resize(ResElts, -1);
2175     }
2176 
2177     // If V is poison, make sure it ends up on the RHS of the shuffle to aid
2178     // merging subsequent shuffles into this one.
2179     if (CurIdx == 0)
2180       std::swap(V, Init);
2181     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
2182     VIsPoisonShuffle = isa<llvm::PoisonValue>(Init);
2183     CurIdx += InitElts;
2184   }
2185 
2186   // FIXME: evaluate codegen vs. shuffling against constant null vector.
2187   // Emit remaining default initializers.
2188   llvm::Type *EltTy = VType->getElementType();
2189 
2190   // Emit remaining default initializers
2191   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
2192     Value *Idx = Builder.getInt32(CurIdx);
2193     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
2194     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
2195   }
2196   return V;
2197 }
2198 
2199 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
2200   const Expr *E = CE->getSubExpr();
2201 
2202   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2203     return false;
2204 
2205   if (isa<CXXThisExpr>(E->IgnoreParens())) {
2206     // We always assume that 'this' is never null.
2207     return false;
2208   }
2209 
2210   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2211     // And that glvalue casts are never null.
2212     if (ICE->isGLValue())
2213       return false;
2214   }
2215 
2216   return true;
2217 }
2218 
2219 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
2220 // have to handle a more broad range of conversions than explicit casts, as they
2221 // handle things like function to ptr-to-function decay etc.
2222 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2223   Expr *E = CE->getSubExpr();
2224   QualType DestTy = CE->getType();
2225   CastKind Kind = CE->getCastKind();
2226   CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2227 
2228   // These cases are generally not written to ignore the result of
2229   // evaluating their sub-expressions, so we clear this now.
2230   bool Ignored = TestAndClearIgnoreResultAssign();
2231 
2232   // Since almost all cast kinds apply to scalars, this switch doesn't have
2233   // a default case, so the compiler will warn on a missing case.  The cases
2234   // are in the same order as in the CastKind enum.
2235   switch (Kind) {
2236   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2237   case CK_BuiltinFnToFnPtr:
2238     llvm_unreachable("builtin functions are handled elsewhere");
2239 
2240   case CK_LValueBitCast:
2241   case CK_ObjCObjectLValueCast: {
2242     Address Addr = EmitLValue(E).getAddress();
2243     Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2244     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2245     return EmitLoadOfLValue(LV, CE->getExprLoc());
2246   }
2247 
2248   case CK_LValueToRValueBitCast: {
2249     LValue SourceLVal = CGF.EmitLValue(E);
2250     Address Addr =
2251         SourceLVal.getAddress().withElementType(CGF.ConvertTypeForMem(DestTy));
2252     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2253     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2254     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2255   }
2256 
2257   case CK_CPointerToObjCPointerCast:
2258   case CK_BlockPointerToObjCPointerCast:
2259   case CK_AnyPointerToBlockPointerCast:
2260   case CK_BitCast: {
2261     Value *Src = Visit(const_cast<Expr*>(E));
2262     llvm::Type *SrcTy = Src->getType();
2263     llvm::Type *DstTy = ConvertType(DestTy);
2264     assert(
2265         (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() ||
2266          SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) &&
2267         "Address-space cast must be used to convert address spaces");
2268 
2269     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2270       if (auto *PT = DestTy->getAs<PointerType>()) {
2271         CGF.EmitVTablePtrCheckForCast(
2272             PT->getPointeeType(),
2273             Address(Src,
2274                     CGF.ConvertTypeForMem(
2275                         E->getType()->castAs<PointerType>()->getPointeeType()),
2276                     CGF.getPointerAlign()),
2277             /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2278             CE->getBeginLoc());
2279       }
2280     }
2281 
2282     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2283       const QualType SrcType = E->getType();
2284 
2285       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2286         // Casting to pointer that could carry dynamic information (provided by
2287         // invariant.group) requires launder.
2288         Src = Builder.CreateLaunderInvariantGroup(Src);
2289       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2290         // Casting to pointer that does not carry dynamic information (provided
2291         // by invariant.group) requires stripping it.  Note that we don't do it
2292         // if the source could not be dynamic type and destination could be
2293         // dynamic because dynamic information is already laundered.  It is
2294         // because launder(strip(src)) == launder(src), so there is no need to
2295         // add extra strip before launder.
2296         Src = Builder.CreateStripInvariantGroup(Src);
2297       }
2298     }
2299 
2300     // Update heapallocsite metadata when there is an explicit pointer cast.
2301     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2302       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) &&
2303           !isa<CastExpr>(E)) {
2304         QualType PointeeType = DestTy->getPointeeType();
2305         if (!PointeeType.isNull())
2306           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2307                                                        CE->getExprLoc());
2308       }
2309     }
2310 
2311     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2312     // same element type, use the llvm.vector.insert intrinsic to perform the
2313     // bitcast.
2314     if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2315       if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2316         // If we are casting a fixed i8 vector to a scalable i1 predicate
2317         // vector, use a vector insert and bitcast the result.
2318         if (ScalableDstTy->getElementType()->isIntegerTy(1) &&
2319             ScalableDstTy->getElementCount().isKnownMultipleOf(8) &&
2320             FixedSrcTy->getElementType()->isIntegerTy(8)) {
2321           ScalableDstTy = llvm::ScalableVectorType::get(
2322               FixedSrcTy->getElementType(),
2323               ScalableDstTy->getElementCount().getKnownMinValue() / 8);
2324         }
2325         if (FixedSrcTy->getElementType() == ScalableDstTy->getElementType()) {
2326           llvm::Value *UndefVec = llvm::UndefValue::get(ScalableDstTy);
2327           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2328           llvm::Value *Result = Builder.CreateInsertVector(
2329               ScalableDstTy, UndefVec, Src, Zero, "cast.scalable");
2330           if (Result->getType() != DstTy)
2331             Result = Builder.CreateBitCast(Result, DstTy);
2332           return Result;
2333         }
2334       }
2335     }
2336 
2337     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2338     // same element type, use the llvm.vector.extract intrinsic to perform the
2339     // bitcast.
2340     if (auto *ScalableSrcTy = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2341       if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2342         // If we are casting a scalable i1 predicate vector to a fixed i8
2343         // vector, bitcast the source and use a vector extract.
2344         if (ScalableSrcTy->getElementType()->isIntegerTy(1) &&
2345             ScalableSrcTy->getElementCount().isKnownMultipleOf(8) &&
2346             FixedDstTy->getElementType()->isIntegerTy(8)) {
2347           ScalableSrcTy = llvm::ScalableVectorType::get(
2348               FixedDstTy->getElementType(),
2349               ScalableSrcTy->getElementCount().getKnownMinValue() / 8);
2350           Src = Builder.CreateBitCast(Src, ScalableSrcTy);
2351         }
2352         if (ScalableSrcTy->getElementType() == FixedDstTy->getElementType()) {
2353           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2354           return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed");
2355         }
2356       }
2357     }
2358 
2359     // Perform VLAT <-> VLST bitcast through memory.
2360     // TODO: since the llvm.vector.{insert,extract} intrinsics
2361     //       require the element types of the vectors to be the same, we
2362     //       need to keep this around for bitcasts between VLAT <-> VLST where
2363     //       the element types of the vectors are not the same, until we figure
2364     //       out a better way of doing these casts.
2365     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2366          isa<llvm::ScalableVectorType>(DstTy)) ||
2367         (isa<llvm::ScalableVectorType>(SrcTy) &&
2368          isa<llvm::FixedVectorType>(DstTy))) {
2369       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2370       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2371       CGF.EmitStoreOfScalar(Src, LV);
2372       Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2373       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2374       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2375       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2376     }
2377 
2378     llvm::Value *Result = Builder.CreateBitCast(Src, DstTy);
2379     return CGF.authPointerToPointerCast(Result, E->getType(), DestTy);
2380   }
2381   case CK_AddressSpaceConversion: {
2382     Expr::EvalResult Result;
2383     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2384         Result.Val.isNullPointer()) {
2385       // If E has side effect, it is emitted even if its final result is a
2386       // null pointer. In that case, a DCE pass should be able to
2387       // eliminate the useless instructions emitted during translating E.
2388       if (Result.HasSideEffects)
2389         Visit(E);
2390       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2391           ConvertType(DestTy)), DestTy);
2392     }
2393     // Since target may map different address spaces in AST to the same address
2394     // space, an address space conversion may end up as a bitcast.
2395     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2396         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2397         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2398   }
2399   case CK_AtomicToNonAtomic:
2400   case CK_NonAtomicToAtomic:
2401   case CK_UserDefinedConversion:
2402     return Visit(const_cast<Expr*>(E));
2403 
2404   case CK_NoOp: {
2405     return CE->changesVolatileQualification() ? EmitLoadOfLValue(CE)
2406                                               : Visit(const_cast<Expr *>(E));
2407   }
2408 
2409   case CK_BaseToDerived: {
2410     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2411     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2412 
2413     Address Base = CGF.EmitPointerWithAlignment(E);
2414     Address Derived =
2415       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2416                                    CE->path_begin(), CE->path_end(),
2417                                    CGF.ShouldNullCheckClassCastValue(CE));
2418 
2419     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2420     // performed and the object is not of the derived type.
2421     if (CGF.sanitizePerformTypeCheck())
2422       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2423                         Derived, DestTy->getPointeeType());
2424 
2425     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2426       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2427                                     /*MayBeNull=*/true,
2428                                     CodeGenFunction::CFITCK_DerivedCast,
2429                                     CE->getBeginLoc());
2430 
2431     return CGF.getAsNaturalPointerTo(Derived, CE->getType()->getPointeeType());
2432   }
2433   case CK_UncheckedDerivedToBase:
2434   case CK_DerivedToBase: {
2435     // The EmitPointerWithAlignment path does this fine; just discard
2436     // the alignment.
2437     return CGF.getAsNaturalPointerTo(CGF.EmitPointerWithAlignment(CE),
2438                                      CE->getType()->getPointeeType());
2439   }
2440 
2441   case CK_Dynamic: {
2442     Address V = CGF.EmitPointerWithAlignment(E);
2443     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2444     return CGF.EmitDynamicCast(V, DCE);
2445   }
2446 
2447   case CK_ArrayToPointerDecay:
2448     return CGF.getAsNaturalPointerTo(CGF.EmitArrayToPointerDecay(E),
2449                                      CE->getType()->getPointeeType());
2450   case CK_FunctionToPointerDecay:
2451     return EmitLValue(E).getPointer(CGF);
2452 
2453   case CK_NullToPointer:
2454     if (MustVisitNullValue(E))
2455       CGF.EmitIgnoredExpr(E);
2456 
2457     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2458                               DestTy);
2459 
2460   case CK_NullToMemberPointer: {
2461     if (MustVisitNullValue(E))
2462       CGF.EmitIgnoredExpr(E);
2463 
2464     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2465     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2466   }
2467 
2468   case CK_ReinterpretMemberPointer:
2469   case CK_BaseToDerivedMemberPointer:
2470   case CK_DerivedToBaseMemberPointer: {
2471     Value *Src = Visit(E);
2472 
2473     // Note that the AST doesn't distinguish between checked and
2474     // unchecked member pointer conversions, so we always have to
2475     // implement checked conversions here.  This is inefficient when
2476     // actual control flow may be required in order to perform the
2477     // check, which it is for data member pointers (but not member
2478     // function pointers on Itanium and ARM).
2479     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2480   }
2481 
2482   case CK_ARCProduceObject:
2483     return CGF.EmitARCRetainScalarExpr(E);
2484   case CK_ARCConsumeObject:
2485     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2486   case CK_ARCReclaimReturnedObject:
2487     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2488   case CK_ARCExtendBlockObject:
2489     return CGF.EmitARCExtendBlockObject(E);
2490 
2491   case CK_CopyAndAutoreleaseBlockObject:
2492     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2493 
2494   case CK_FloatingRealToComplex:
2495   case CK_FloatingComplexCast:
2496   case CK_IntegralRealToComplex:
2497   case CK_IntegralComplexCast:
2498   case CK_IntegralComplexToFloatingComplex:
2499   case CK_FloatingComplexToIntegralComplex:
2500   case CK_ConstructorConversion:
2501   case CK_ToUnion:
2502   case CK_HLSLArrayRValue:
2503     llvm_unreachable("scalar cast to non-scalar value");
2504 
2505   case CK_LValueToRValue:
2506     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2507     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2508     return Visit(const_cast<Expr*>(E));
2509 
2510   case CK_IntegralToPointer: {
2511     Value *Src = Visit(const_cast<Expr*>(E));
2512 
2513     // First, convert to the correct width so that we control the kind of
2514     // extension.
2515     auto DestLLVMTy = ConvertType(DestTy);
2516     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2517     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2518     llvm::Value* IntResult =
2519       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2520 
2521     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2522 
2523     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2524       // Going from integer to pointer that could be dynamic requires reloading
2525       // dynamic information from invariant.group.
2526       if (DestTy.mayBeDynamicClass())
2527         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2528     }
2529 
2530     IntToPtr = CGF.authPointerToPointerCast(IntToPtr, E->getType(), DestTy);
2531     return IntToPtr;
2532   }
2533   case CK_PointerToIntegral: {
2534     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2535     auto *PtrExpr = Visit(E);
2536 
2537     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2538       const QualType SrcType = E->getType();
2539 
2540       // Casting to integer requires stripping dynamic information as it does
2541       // not carries it.
2542       if (SrcType.mayBeDynamicClass())
2543         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2544     }
2545 
2546     PtrExpr = CGF.authPointerToPointerCast(PtrExpr, E->getType(), DestTy);
2547     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2548   }
2549   case CK_ToVoid: {
2550     CGF.EmitIgnoredExpr(E);
2551     return nullptr;
2552   }
2553   case CK_MatrixCast: {
2554     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2555                                 CE->getExprLoc());
2556   }
2557   case CK_VectorSplat: {
2558     llvm::Type *DstTy = ConvertType(DestTy);
2559     Value *Elt = Visit(const_cast<Expr *>(E));
2560     // Splat the element across to all elements
2561     llvm::ElementCount NumElements =
2562         cast<llvm::VectorType>(DstTy)->getElementCount();
2563     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2564   }
2565 
2566   case CK_FixedPointCast:
2567     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2568                                 CE->getExprLoc());
2569 
2570   case CK_FixedPointToBoolean:
2571     assert(E->getType()->isFixedPointType() &&
2572            "Expected src type to be fixed point type");
2573     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2574     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2575                                 CE->getExprLoc());
2576 
2577   case CK_FixedPointToIntegral:
2578     assert(E->getType()->isFixedPointType() &&
2579            "Expected src type to be fixed point type");
2580     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2581     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2582                                 CE->getExprLoc());
2583 
2584   case CK_IntegralToFixedPoint:
2585     assert(E->getType()->isIntegerType() &&
2586            "Expected src type to be an integer");
2587     assert(DestTy->isFixedPointType() &&
2588            "Expected dest type to be fixed point type");
2589     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2590                                 CE->getExprLoc());
2591 
2592   case CK_IntegralCast: {
2593     if (E->getType()->isExtVectorType() && DestTy->isExtVectorType()) {
2594       QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2595       return Builder.CreateIntCast(Visit(E), ConvertType(DestTy),
2596                                    SrcElTy->isSignedIntegerOrEnumerationType(),
2597                                    "conv");
2598     }
2599     ScalarConversionOpts Opts;
2600     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2601       if (!ICE->isPartOfExplicitCast())
2602         Opts = ScalarConversionOpts(CGF.SanOpts);
2603     }
2604     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2605                                 CE->getExprLoc(), Opts);
2606   }
2607   case CK_IntegralToFloating: {
2608     if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2609       // TODO: Support constrained FP intrinsics.
2610       QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2611       if (SrcElTy->isSignedIntegerOrEnumerationType())
2612         return Builder.CreateSIToFP(Visit(E), ConvertType(DestTy), "conv");
2613       return Builder.CreateUIToFP(Visit(E), ConvertType(DestTy), "conv");
2614     }
2615     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2616     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2617                                 CE->getExprLoc());
2618   }
2619   case CK_FloatingToIntegral: {
2620     if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2621       // TODO: Support constrained FP intrinsics.
2622       QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2623       if (DstElTy->isSignedIntegerOrEnumerationType())
2624         return Builder.CreateFPToSI(Visit(E), ConvertType(DestTy), "conv");
2625       return Builder.CreateFPToUI(Visit(E), ConvertType(DestTy), "conv");
2626     }
2627     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2628     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2629                                 CE->getExprLoc());
2630   }
2631   case CK_FloatingCast: {
2632     if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2633       // TODO: Support constrained FP intrinsics.
2634       QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2635       QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2636       if (DstElTy->castAs<BuiltinType>()->getKind() <
2637           SrcElTy->castAs<BuiltinType>()->getKind())
2638         return Builder.CreateFPTrunc(Visit(E), ConvertType(DestTy), "conv");
2639       return Builder.CreateFPExt(Visit(E), ConvertType(DestTy), "conv");
2640     }
2641     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2642     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2643                                 CE->getExprLoc());
2644   }
2645   case CK_FixedPointToFloating:
2646   case CK_FloatingToFixedPoint: {
2647     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2648     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2649                                 CE->getExprLoc());
2650   }
2651   case CK_BooleanToSignedIntegral: {
2652     ScalarConversionOpts Opts;
2653     Opts.TreatBooleanAsSigned = true;
2654     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2655                                 CE->getExprLoc(), Opts);
2656   }
2657   case CK_IntegralToBoolean:
2658     return EmitIntToBoolConversion(Visit(E));
2659   case CK_PointerToBoolean:
2660     return EmitPointerToBoolConversion(Visit(E), E->getType());
2661   case CK_FloatingToBoolean: {
2662     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2663     return EmitFloatToBoolConversion(Visit(E));
2664   }
2665   case CK_MemberPointerToBoolean: {
2666     llvm::Value *MemPtr = Visit(E);
2667     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2668     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2669   }
2670 
2671   case CK_FloatingComplexToReal:
2672   case CK_IntegralComplexToReal:
2673     return CGF.EmitComplexExpr(E, false, true).first;
2674 
2675   case CK_FloatingComplexToBoolean:
2676   case CK_IntegralComplexToBoolean: {
2677     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2678 
2679     // TODO: kill this function off, inline appropriate case here
2680     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2681                                          CE->getExprLoc());
2682   }
2683 
2684   case CK_ZeroToOCLOpaqueType: {
2685     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2686             DestTy->isOCLIntelSubgroupAVCType()) &&
2687            "CK_ZeroToOCLEvent cast on non-event type");
2688     return llvm::Constant::getNullValue(ConvertType(DestTy));
2689   }
2690 
2691   case CK_IntToOCLSampler:
2692     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2693 
2694   case CK_HLSLVectorTruncation: {
2695     assert(DestTy->isVectorType() && "Expected dest type to be vector type");
2696     Value *Vec = Visit(const_cast<Expr *>(E));
2697     SmallVector<int, 16> Mask;
2698     unsigned NumElts = DestTy->castAs<VectorType>()->getNumElements();
2699     for (unsigned I = 0; I != NumElts; ++I)
2700       Mask.push_back(I);
2701 
2702     return Builder.CreateShuffleVector(Vec, Mask, "trunc");
2703   }
2704 
2705   } // end of switch
2706 
2707   llvm_unreachable("unknown scalar cast");
2708 }
2709 
2710 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2711   CodeGenFunction::StmtExprEvaluation eval(CGF);
2712   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2713                                            !E->getType()->isVoidType());
2714   if (!RetAlloca.isValid())
2715     return nullptr;
2716   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2717                               E->getExprLoc());
2718 }
2719 
2720 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2721   CodeGenFunction::RunCleanupsScope Scope(CGF);
2722   Value *V = Visit(E->getSubExpr());
2723   // Defend against dominance problems caused by jumps out of expression
2724   // evaluation through the shared cleanup block.
2725   Scope.ForceCleanup({&V});
2726   return V;
2727 }
2728 
2729 //===----------------------------------------------------------------------===//
2730 //                             Unary Operators
2731 //===----------------------------------------------------------------------===//
2732 
2733 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2734                                            llvm::Value *InVal, bool IsInc,
2735                                            FPOptions FPFeatures) {
2736   BinOpInfo BinOp;
2737   BinOp.LHS = InVal;
2738   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2739   BinOp.Ty = E->getType();
2740   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2741   BinOp.FPFeatures = FPFeatures;
2742   BinOp.E = E;
2743   return BinOp;
2744 }
2745 
2746 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2747     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2748   llvm::Value *Amount =
2749       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2750   StringRef Name = IsInc ? "inc" : "dec";
2751   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2752   case LangOptions::SOB_Defined:
2753     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2754       return Builder.CreateAdd(InVal, Amount, Name);
2755     [[fallthrough]];
2756   case LangOptions::SOB_Undefined:
2757     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2758       return Builder.CreateNSWAdd(InVal, Amount, Name);
2759     [[fallthrough]];
2760   case LangOptions::SOB_Trapping:
2761     if (!E->canOverflow())
2762       return Builder.CreateNSWAdd(InVal, Amount, Name);
2763     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2764         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2765   }
2766   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2767 }
2768 
2769 namespace {
2770 /// Handles check and update for lastprivate conditional variables.
2771 class OMPLastprivateConditionalUpdateRAII {
2772 private:
2773   CodeGenFunction &CGF;
2774   const UnaryOperator *E;
2775 
2776 public:
2777   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2778                                       const UnaryOperator *E)
2779       : CGF(CGF), E(E) {}
2780   ~OMPLastprivateConditionalUpdateRAII() {
2781     if (CGF.getLangOpts().OpenMP)
2782       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2783           CGF, E->getSubExpr());
2784   }
2785 };
2786 } // namespace
2787 
2788 llvm::Value *
2789 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2790                                            bool isInc, bool isPre) {
2791   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2792   QualType type = E->getSubExpr()->getType();
2793   llvm::PHINode *atomicPHI = nullptr;
2794   llvm::Value *value;
2795   llvm::Value *input;
2796   llvm::Value *Previous = nullptr;
2797   QualType SrcType = E->getType();
2798 
2799   int amount = (isInc ? 1 : -1);
2800   bool isSubtraction = !isInc;
2801 
2802   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2803     type = atomicTy->getValueType();
2804     if (isInc && type->isBooleanType()) {
2805       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2806       if (isPre) {
2807         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2808             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2809         return Builder.getTrue();
2810       }
2811       // For atomic bool increment, we just store true and return it for
2812       // preincrement, do an atomic swap with true for postincrement
2813       return Builder.CreateAtomicRMW(
2814           llvm::AtomicRMWInst::Xchg, LV.getAddress(), True,
2815           llvm::AtomicOrdering::SequentiallyConsistent);
2816     }
2817     // Special case for atomic increment / decrement on integers, emit
2818     // atomicrmw instructions.  We skip this if we want to be doing overflow
2819     // checking, and fall into the slow path with the atomic cmpxchg loop.
2820     if (!type->isBooleanType() && type->isIntegerType() &&
2821         !(type->isUnsignedIntegerType() &&
2822           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2823         CGF.getLangOpts().getSignedOverflowBehavior() !=
2824             LangOptions::SOB_Trapping) {
2825       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2826         llvm::AtomicRMWInst::Sub;
2827       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2828         llvm::Instruction::Sub;
2829       llvm::Value *amt = CGF.EmitToMemory(
2830           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2831       llvm::Value *old =
2832           Builder.CreateAtomicRMW(aop, LV.getAddress(), amt,
2833                                   llvm::AtomicOrdering::SequentiallyConsistent);
2834       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2835     }
2836     // Special case for atomic increment/decrement on floats.
2837     // Bail out non-power-of-2-sized floating point types (e.g., x86_fp80).
2838     if (type->isFloatingType()) {
2839       llvm::Type *Ty = ConvertType(type);
2840       if (llvm::has_single_bit(Ty->getScalarSizeInBits())) {
2841         llvm::AtomicRMWInst::BinOp aop =
2842             isInc ? llvm::AtomicRMWInst::FAdd : llvm::AtomicRMWInst::FSub;
2843         llvm::Instruction::BinaryOps op =
2844             isInc ? llvm::Instruction::FAdd : llvm::Instruction::FSub;
2845         llvm::Value *amt = llvm::ConstantFP::get(Ty, 1.0);
2846         llvm::AtomicRMWInst *old = Builder.CreateAtomicRMW(
2847             aop, LV.getAddress(), amt,
2848             llvm::AtomicOrdering::SequentiallyConsistent);
2849 
2850         return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2851       }
2852     }
2853     value = EmitLoadOfLValue(LV, E->getExprLoc());
2854     input = value;
2855     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2856     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2857     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2858     value = CGF.EmitToMemory(value, type);
2859     Builder.CreateBr(opBB);
2860     Builder.SetInsertPoint(opBB);
2861     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2862     atomicPHI->addIncoming(value, startBB);
2863     value = atomicPHI;
2864   } else {
2865     value = EmitLoadOfLValue(LV, E->getExprLoc());
2866     input = value;
2867   }
2868 
2869   // Special case of integer increment that we have to check first: bool++.
2870   // Due to promotion rules, we get:
2871   //   bool++ -> bool = bool + 1
2872   //          -> bool = (int)bool + 1
2873   //          -> bool = ((int)bool + 1 != 0)
2874   // An interesting aspect of this is that increment is always true.
2875   // Decrement does not have this property.
2876   if (isInc && type->isBooleanType()) {
2877     value = Builder.getTrue();
2878 
2879   // Most common case by far: integer increment.
2880   } else if (type->isIntegerType()) {
2881     QualType promotedType;
2882     bool canPerformLossyDemotionCheck = false;
2883     if (CGF.getContext().isPromotableIntegerType(type)) {
2884       promotedType = CGF.getContext().getPromotedIntegerType(type);
2885       assert(promotedType != type && "Shouldn't promote to the same type.");
2886       canPerformLossyDemotionCheck = true;
2887       canPerformLossyDemotionCheck &=
2888           CGF.getContext().getCanonicalType(type) !=
2889           CGF.getContext().getCanonicalType(promotedType);
2890       canPerformLossyDemotionCheck &=
2891           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2892               type, promotedType);
2893       assert((!canPerformLossyDemotionCheck ||
2894               type->isSignedIntegerOrEnumerationType() ||
2895               promotedType->isSignedIntegerOrEnumerationType() ||
2896               ConvertType(type)->getScalarSizeInBits() ==
2897                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2898              "The following check expects that if we do promotion to different "
2899              "underlying canonical type, at least one of the types (either "
2900              "base or promoted) will be signed, or the bitwidths will match.");
2901     }
2902     if (CGF.SanOpts.hasOneOf(
2903             SanitizerKind::ImplicitIntegerArithmeticValueChange |
2904             SanitizerKind::ImplicitBitfieldConversion) &&
2905         canPerformLossyDemotionCheck) {
2906       // While `x += 1` (for `x` with width less than int) is modeled as
2907       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2908       // ease; inc/dec with width less than int can't overflow because of
2909       // promotion rules, so we omit promotion+demotion, which means that we can
2910       // not catch lossy "demotion". Because we still want to catch these cases
2911       // when the sanitizer is enabled, we perform the promotion, then perform
2912       // the increment/decrement in the wider type, and finally
2913       // perform the demotion. This will catch lossy demotions.
2914 
2915       // We have a special case for bitfields defined using all the bits of the
2916       // type. In this case we need to do the same trick as for the integer
2917       // sanitizer checks, i.e., promotion -> increment/decrement -> demotion.
2918 
2919       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2920       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2921       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2922       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2923       // emitted if LV is not a bitfield, otherwise the bitfield sanitizer
2924       // checks will take care of the conversion.
2925       ScalarConversionOpts Opts;
2926       if (!LV.isBitField())
2927         Opts = ScalarConversionOpts(CGF.SanOpts);
2928       else if (CGF.SanOpts.has(SanitizerKind::ImplicitBitfieldConversion)) {
2929         Previous = value;
2930         SrcType = promotedType;
2931       }
2932 
2933       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2934                                    Opts);
2935 
2936       // Note that signed integer inc/dec with width less than int can't
2937       // overflow because of promotion rules; we're just eliding a few steps
2938       // here.
2939     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2940       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2941     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2942                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2943       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2944           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2945     } else {
2946       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2947       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2948     }
2949 
2950   // Next most common: pointer increment.
2951   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2952     QualType type = ptr->getPointeeType();
2953 
2954     // VLA types don't have constant size.
2955     if (const VariableArrayType *vla
2956           = CGF.getContext().getAsVariableArrayType(type)) {
2957       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2958       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2959       llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2960       if (CGF.getLangOpts().isSignedOverflowDefined())
2961         value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2962       else
2963         value = CGF.EmitCheckedInBoundsGEP(
2964             elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2965             E->getExprLoc(), "vla.inc");
2966 
2967     // Arithmetic on function pointers (!) is just +-1.
2968     } else if (type->isFunctionType()) {
2969       llvm::Value *amt = Builder.getInt32(amount);
2970 
2971       if (CGF.getLangOpts().isSignedOverflowDefined())
2972         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2973       else
2974         value =
2975             CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2976                                        /*SignedIndices=*/false, isSubtraction,
2977                                        E->getExprLoc(), "incdec.funcptr");
2978 
2979     // For everything else, we can just do a simple increment.
2980     } else {
2981       llvm::Value *amt = Builder.getInt32(amount);
2982       llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2983       if (CGF.getLangOpts().isSignedOverflowDefined())
2984         value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2985       else
2986         value = CGF.EmitCheckedInBoundsGEP(
2987             elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2988             E->getExprLoc(), "incdec.ptr");
2989     }
2990 
2991   // Vector increment/decrement.
2992   } else if (type->isVectorType()) {
2993     if (type->hasIntegerRepresentation()) {
2994       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2995 
2996       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2997     } else {
2998       value = Builder.CreateFAdd(
2999                   value,
3000                   llvm::ConstantFP::get(value->getType(), amount),
3001                   isInc ? "inc" : "dec");
3002     }
3003 
3004   // Floating point.
3005   } else if (type->isRealFloatingType()) {
3006     // Add the inc/dec to the real part.
3007     llvm::Value *amt;
3008     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
3009 
3010     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3011       // Another special case: half FP increment should be done via float
3012       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3013         value = Builder.CreateCall(
3014             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
3015                                  CGF.CGM.FloatTy),
3016             input, "incdec.conv");
3017       } else {
3018         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
3019       }
3020     }
3021 
3022     if (value->getType()->isFloatTy())
3023       amt = llvm::ConstantFP::get(VMContext,
3024                                   llvm::APFloat(static_cast<float>(amount)));
3025     else if (value->getType()->isDoubleTy())
3026       amt = llvm::ConstantFP::get(VMContext,
3027                                   llvm::APFloat(static_cast<double>(amount)));
3028     else {
3029       // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128.
3030       // Convert from float.
3031       llvm::APFloat F(static_cast<float>(amount));
3032       bool ignored;
3033       const llvm::fltSemantics *FS;
3034       // Don't use getFloatTypeSemantics because Half isn't
3035       // necessarily represented using the "half" LLVM type.
3036       if (value->getType()->isFP128Ty())
3037         FS = &CGF.getTarget().getFloat128Format();
3038       else if (value->getType()->isHalfTy())
3039         FS = &CGF.getTarget().getHalfFormat();
3040       else if (value->getType()->isBFloatTy())
3041         FS = &CGF.getTarget().getBFloat16Format();
3042       else if (value->getType()->isPPC_FP128Ty())
3043         FS = &CGF.getTarget().getIbm128Format();
3044       else
3045         FS = &CGF.getTarget().getLongDoubleFormat();
3046       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
3047       amt = llvm::ConstantFP::get(VMContext, F);
3048     }
3049     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
3050 
3051     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3052       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3053         value = Builder.CreateCall(
3054             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
3055                                  CGF.CGM.FloatTy),
3056             value, "incdec.conv");
3057       } else {
3058         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
3059       }
3060     }
3061 
3062   // Fixed-point types.
3063   } else if (type->isFixedPointType()) {
3064     // Fixed-point types are tricky. In some cases, it isn't possible to
3065     // represent a 1 or a -1 in the type at all. Piggyback off of
3066     // EmitFixedPointBinOp to avoid having to reimplement saturation.
3067     BinOpInfo Info;
3068     Info.E = E;
3069     Info.Ty = E->getType();
3070     Info.Opcode = isInc ? BO_Add : BO_Sub;
3071     Info.LHS = value;
3072     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
3073     // If the type is signed, it's better to represent this as +(-1) or -(-1),
3074     // since -1 is guaranteed to be representable.
3075     if (type->isSignedFixedPointType()) {
3076       Info.Opcode = isInc ? BO_Sub : BO_Add;
3077       Info.RHS = Builder.CreateNeg(Info.RHS);
3078     }
3079     // Now, convert from our invented integer literal to the type of the unary
3080     // op. This will upscale and saturate if necessary. This value can become
3081     // undef in some cases.
3082     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3083     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
3084     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
3085     value = EmitFixedPointBinOp(Info);
3086 
3087   // Objective-C pointer types.
3088   } else {
3089     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
3090 
3091     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
3092     if (!isInc) size = -size;
3093     llvm::Value *sizeValue =
3094       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
3095 
3096     if (CGF.getLangOpts().isSignedOverflowDefined())
3097       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
3098     else
3099       value = CGF.EmitCheckedInBoundsGEP(
3100           CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
3101           E->getExprLoc(), "incdec.objptr");
3102     value = Builder.CreateBitCast(value, input->getType());
3103   }
3104 
3105   if (atomicPHI) {
3106     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3107     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3108     auto Pair = CGF.EmitAtomicCompareExchange(
3109         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
3110     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
3111     llvm::Value *success = Pair.second;
3112     atomicPHI->addIncoming(old, curBlock);
3113     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3114     Builder.SetInsertPoint(contBB);
3115     return isPre ? value : input;
3116   }
3117 
3118   // Store the updated result through the lvalue.
3119   if (LV.isBitField()) {
3120     Value *Src = Previous ? Previous : value;
3121     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
3122     CGF.EmitBitfieldConversionCheck(Src, SrcType, value, E->getType(),
3123                                     LV.getBitFieldInfo(), E->getExprLoc());
3124   } else
3125     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
3126 
3127   // If this is a postinc, return the value read from memory, otherwise use the
3128   // updated value.
3129   return isPre ? value : input;
3130 }
3131 
3132 
3133 Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
3134                                          QualType PromotionType) {
3135   QualType promotionTy = PromotionType.isNull()
3136                              ? getPromotionType(E->getSubExpr()->getType())
3137                              : PromotionType;
3138   Value *result = VisitPlus(E, promotionTy);
3139   if (result && !promotionTy.isNull())
3140     result = EmitUnPromotedValue(result, E->getType());
3141   return result;
3142 }
3143 
3144 Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
3145                                     QualType PromotionType) {
3146   // This differs from gcc, though, most likely due to a bug in gcc.
3147   TestAndClearIgnoreResultAssign();
3148   if (!PromotionType.isNull())
3149     return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3150   return Visit(E->getSubExpr());
3151 }
3152 
3153 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
3154                                           QualType PromotionType) {
3155   QualType promotionTy = PromotionType.isNull()
3156                              ? getPromotionType(E->getSubExpr()->getType())
3157                              : PromotionType;
3158   Value *result = VisitMinus(E, promotionTy);
3159   if (result && !promotionTy.isNull())
3160     result = EmitUnPromotedValue(result, E->getType());
3161   return result;
3162 }
3163 
3164 Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
3165                                      QualType PromotionType) {
3166   TestAndClearIgnoreResultAssign();
3167   Value *Op;
3168   if (!PromotionType.isNull())
3169     Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3170   else
3171     Op = Visit(E->getSubExpr());
3172 
3173   // Generate a unary FNeg for FP ops.
3174   if (Op->getType()->isFPOrFPVectorTy())
3175     return Builder.CreateFNeg(Op, "fneg");
3176 
3177   // Emit unary minus with EmitSub so we handle overflow cases etc.
3178   BinOpInfo BinOp;
3179   BinOp.RHS = Op;
3180   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
3181   BinOp.Ty = E->getType();
3182   BinOp.Opcode = BO_Sub;
3183   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3184   BinOp.E = E;
3185   return EmitSub(BinOp);
3186 }
3187 
3188 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
3189   TestAndClearIgnoreResultAssign();
3190   Value *Op = Visit(E->getSubExpr());
3191   return Builder.CreateNot(Op, "not");
3192 }
3193 
3194 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
3195   // Perform vector logical not on comparison with zero vector.
3196   if (E->getType()->isVectorType() &&
3197       E->getType()->castAs<VectorType>()->getVectorKind() ==
3198           VectorKind::Generic) {
3199     Value *Oper = Visit(E->getSubExpr());
3200     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
3201     Value *Result;
3202     if (Oper->getType()->isFPOrFPVectorTy()) {
3203       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
3204           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
3205       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
3206     } else
3207       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
3208     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3209   }
3210 
3211   // Compare operand to zero.
3212   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
3213 
3214   // Invert value.
3215   // TODO: Could dynamically modify easy computations here.  For example, if
3216   // the operand is an icmp ne, turn into icmp eq.
3217   BoolVal = Builder.CreateNot(BoolVal, "lnot");
3218 
3219   // ZExt result to the expr type.
3220   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
3221 }
3222 
3223 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
3224   // Try folding the offsetof to a constant.
3225   Expr::EvalResult EVResult;
3226   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
3227     llvm::APSInt Value = EVResult.Val.getInt();
3228     return Builder.getInt(Value);
3229   }
3230 
3231   // Loop over the components of the offsetof to compute the value.
3232   unsigned n = E->getNumComponents();
3233   llvm::Type* ResultType = ConvertType(E->getType());
3234   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
3235   QualType CurrentType = E->getTypeSourceInfo()->getType();
3236   for (unsigned i = 0; i != n; ++i) {
3237     OffsetOfNode ON = E->getComponent(i);
3238     llvm::Value *Offset = nullptr;
3239     switch (ON.getKind()) {
3240     case OffsetOfNode::Array: {
3241       // Compute the index
3242       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
3243       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
3244       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
3245       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
3246 
3247       // Save the element type
3248       CurrentType =
3249           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
3250 
3251       // Compute the element size
3252       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
3253           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
3254 
3255       // Multiply out to compute the result
3256       Offset = Builder.CreateMul(Idx, ElemSize);
3257       break;
3258     }
3259 
3260     case OffsetOfNode::Field: {
3261       FieldDecl *MemberDecl = ON.getField();
3262       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3263       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3264 
3265       // Compute the index of the field in its parent.
3266       unsigned i = 0;
3267       // FIXME: It would be nice if we didn't have to loop here!
3268       for (RecordDecl::field_iterator Field = RD->field_begin(),
3269                                       FieldEnd = RD->field_end();
3270            Field != FieldEnd; ++Field, ++i) {
3271         if (*Field == MemberDecl)
3272           break;
3273       }
3274       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
3275 
3276       // Compute the offset to the field
3277       int64_t OffsetInt = RL.getFieldOffset(i) /
3278                           CGF.getContext().getCharWidth();
3279       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
3280 
3281       // Save the element type.
3282       CurrentType = MemberDecl->getType();
3283       break;
3284     }
3285 
3286     case OffsetOfNode::Identifier:
3287       llvm_unreachable("dependent __builtin_offsetof");
3288 
3289     case OffsetOfNode::Base: {
3290       if (ON.getBase()->isVirtual()) {
3291         CGF.ErrorUnsupported(E, "virtual base in offsetof");
3292         continue;
3293       }
3294 
3295       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3296       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3297 
3298       // Save the element type.
3299       CurrentType = ON.getBase()->getType();
3300 
3301       // Compute the offset to the base.
3302       auto *BaseRT = CurrentType->castAs<RecordType>();
3303       auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3304       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3305       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3306       break;
3307     }
3308     }
3309     Result = Builder.CreateAdd(Result, Offset);
3310   }
3311   return Result;
3312 }
3313 
3314 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3315 /// argument of the sizeof expression as an integer.
3316 Value *
3317 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3318                               const UnaryExprOrTypeTraitExpr *E) {
3319   QualType TypeToSize = E->getTypeOfArgument();
3320   if (auto Kind = E->getKind();
3321       Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
3322     if (const VariableArrayType *VAT =
3323             CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3324       if (E->isArgumentType()) {
3325         // sizeof(type) - make sure to emit the VLA size.
3326         CGF.EmitVariablyModifiedType(TypeToSize);
3327       } else {
3328         // C99 6.5.3.4p2: If the argument is an expression of type
3329         // VLA, it is evaluated.
3330         CGF.EmitIgnoredExpr(E->getArgumentExpr());
3331       }
3332 
3333       auto VlaSize = CGF.getVLASize(VAT);
3334       llvm::Value *size = VlaSize.NumElts;
3335 
3336       // Scale the number of non-VLA elements by the non-VLA element size.
3337       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3338       if (!eltSize.isOne())
3339         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3340 
3341       return size;
3342     }
3343   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3344     auto Alignment =
3345         CGF.getContext()
3346             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
3347                 E->getTypeOfArgument()->getPointeeType()))
3348             .getQuantity();
3349     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3350   } else if (E->getKind() == UETT_VectorElements) {
3351     auto *VecTy = cast<llvm::VectorType>(ConvertType(E->getTypeOfArgument()));
3352     return Builder.CreateElementCount(CGF.SizeTy, VecTy->getElementCount());
3353   }
3354 
3355   // If this isn't sizeof(vla), the result must be constant; use the constant
3356   // folding logic so we don't have to duplicate it here.
3357   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3358 }
3359 
3360 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3361                                          QualType PromotionType) {
3362   QualType promotionTy = PromotionType.isNull()
3363                              ? getPromotionType(E->getSubExpr()->getType())
3364                              : PromotionType;
3365   Value *result = VisitReal(E, promotionTy);
3366   if (result && !promotionTy.isNull())
3367     result = EmitUnPromotedValue(result, E->getType());
3368   return result;
3369 }
3370 
3371 Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3372                                     QualType PromotionType) {
3373   Expr *Op = E->getSubExpr();
3374   if (Op->getType()->isAnyComplexType()) {
3375     // If it's an l-value, load through the appropriate subobject l-value.
3376     // Note that we have to ask E because Op might be an l-value that
3377     // this won't work for, e.g. an Obj-C property.
3378     if (E->isGLValue())  {
3379       if (!PromotionType.isNull()) {
3380         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3381             Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3382         if (result.first)
3383           result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3384         return result.first;
3385       } else {
3386         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3387             .getScalarVal();
3388       }
3389     }
3390     // Otherwise, calculate and project.
3391     return CGF.EmitComplexExpr(Op, false, true).first;
3392   }
3393 
3394   if (!PromotionType.isNull())
3395     return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3396   return Visit(Op);
3397 }
3398 
3399 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3400                                          QualType PromotionType) {
3401   QualType promotionTy = PromotionType.isNull()
3402                              ? getPromotionType(E->getSubExpr()->getType())
3403                              : PromotionType;
3404   Value *result = VisitImag(E, promotionTy);
3405   if (result && !promotionTy.isNull())
3406     result = EmitUnPromotedValue(result, E->getType());
3407   return result;
3408 }
3409 
3410 Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3411                                     QualType PromotionType) {
3412   Expr *Op = E->getSubExpr();
3413   if (Op->getType()->isAnyComplexType()) {
3414     // If it's an l-value, load through the appropriate subobject l-value.
3415     // Note that we have to ask E because Op might be an l-value that
3416     // this won't work for, e.g. an Obj-C property.
3417     if (Op->isGLValue()) {
3418       if (!PromotionType.isNull()) {
3419         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3420             Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3421         if (result.second)
3422           result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3423         return result.second;
3424       } else {
3425         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3426             .getScalarVal();
3427       }
3428     }
3429     // Otherwise, calculate and project.
3430     return CGF.EmitComplexExpr(Op, true, false).second;
3431   }
3432 
3433   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3434   // effects are evaluated, but not the actual value.
3435   if (Op->isGLValue())
3436     CGF.EmitLValue(Op);
3437   else if (!PromotionType.isNull())
3438     CGF.EmitPromotedScalarExpr(Op, PromotionType);
3439   else
3440     CGF.EmitScalarExpr(Op, true);
3441   if (!PromotionType.isNull())
3442     return llvm::Constant::getNullValue(ConvertType(PromotionType));
3443   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3444 }
3445 
3446 //===----------------------------------------------------------------------===//
3447 //                           Binary Operators
3448 //===----------------------------------------------------------------------===//
3449 
3450 Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3451                                             QualType PromotionType) {
3452   return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3453 }
3454 
3455 Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3456                                               QualType ExprType) {
3457   return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3458 }
3459 
3460 Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3461   E = E->IgnoreParens();
3462   if (auto BO = dyn_cast<BinaryOperator>(E)) {
3463     switch (BO->getOpcode()) {
3464 #define HANDLE_BINOP(OP)                                                       \
3465   case BO_##OP:                                                                \
3466     return Emit##OP(EmitBinOps(BO, PromotionType));
3467       HANDLE_BINOP(Add)
3468       HANDLE_BINOP(Sub)
3469       HANDLE_BINOP(Mul)
3470       HANDLE_BINOP(Div)
3471 #undef HANDLE_BINOP
3472     default:
3473       break;
3474     }
3475   } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3476     switch (UO->getOpcode()) {
3477     case UO_Imag:
3478       return VisitImag(UO, PromotionType);
3479     case UO_Real:
3480       return VisitReal(UO, PromotionType);
3481     case UO_Minus:
3482       return VisitMinus(UO, PromotionType);
3483     case UO_Plus:
3484       return VisitPlus(UO, PromotionType);
3485     default:
3486       break;
3487     }
3488   }
3489   auto result = Visit(const_cast<Expr *>(E));
3490   if (result) {
3491     if (!PromotionType.isNull())
3492       return EmitPromotedValue(result, PromotionType);
3493     else
3494       return EmitUnPromotedValue(result, E->getType());
3495   }
3496   return result;
3497 }
3498 
3499 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3500                                         QualType PromotionType) {
3501   TestAndClearIgnoreResultAssign();
3502   BinOpInfo Result;
3503   Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3504   Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3505   if (!PromotionType.isNull())
3506     Result.Ty = PromotionType;
3507   else
3508     Result.Ty  = E->getType();
3509   Result.Opcode = E->getOpcode();
3510   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3511   Result.E = E;
3512   return Result;
3513 }
3514 
3515 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3516                                               const CompoundAssignOperator *E,
3517                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3518                                                    Value *&Result) {
3519   QualType LHSTy = E->getLHS()->getType();
3520   BinOpInfo OpInfo;
3521 
3522   if (E->getComputationResultType()->isAnyComplexType())
3523     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3524 
3525   // Emit the RHS first.  __block variables need to have the rhs evaluated
3526   // first, plus this should improve codegen a little.
3527 
3528   QualType PromotionTypeCR;
3529   PromotionTypeCR = getPromotionType(E->getComputationResultType());
3530   if (PromotionTypeCR.isNull())
3531       PromotionTypeCR = E->getComputationResultType();
3532   QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3533   QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3534   if (!PromotionTypeRHS.isNull())
3535     OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3536   else
3537     OpInfo.RHS = Visit(E->getRHS());
3538   OpInfo.Ty = PromotionTypeCR;
3539   OpInfo.Opcode = E->getOpcode();
3540   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3541   OpInfo.E = E;
3542   // Load/convert the LHS.
3543   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3544 
3545   llvm::PHINode *atomicPHI = nullptr;
3546   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3547     QualType type = atomicTy->getValueType();
3548     if (!type->isBooleanType() && type->isIntegerType() &&
3549         !(type->isUnsignedIntegerType() &&
3550           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3551         CGF.getLangOpts().getSignedOverflowBehavior() !=
3552             LangOptions::SOB_Trapping) {
3553       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3554       llvm::Instruction::BinaryOps Op;
3555       switch (OpInfo.Opcode) {
3556         // We don't have atomicrmw operands for *, %, /, <<, >>
3557         case BO_MulAssign: case BO_DivAssign:
3558         case BO_RemAssign:
3559         case BO_ShlAssign:
3560         case BO_ShrAssign:
3561           break;
3562         case BO_AddAssign:
3563           AtomicOp = llvm::AtomicRMWInst::Add;
3564           Op = llvm::Instruction::Add;
3565           break;
3566         case BO_SubAssign:
3567           AtomicOp = llvm::AtomicRMWInst::Sub;
3568           Op = llvm::Instruction::Sub;
3569           break;
3570         case BO_AndAssign:
3571           AtomicOp = llvm::AtomicRMWInst::And;
3572           Op = llvm::Instruction::And;
3573           break;
3574         case BO_XorAssign:
3575           AtomicOp = llvm::AtomicRMWInst::Xor;
3576           Op = llvm::Instruction::Xor;
3577           break;
3578         case BO_OrAssign:
3579           AtomicOp = llvm::AtomicRMWInst::Or;
3580           Op = llvm::Instruction::Or;
3581           break;
3582         default:
3583           llvm_unreachable("Invalid compound assignment type");
3584       }
3585       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3586         llvm::Value *Amt = CGF.EmitToMemory(
3587             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3588                                  E->getExprLoc()),
3589             LHSTy);
3590         Value *OldVal = Builder.CreateAtomicRMW(
3591             AtomicOp, LHSLV.getAddress(), Amt,
3592             llvm::AtomicOrdering::SequentiallyConsistent);
3593 
3594         // Since operation is atomic, the result type is guaranteed to be the
3595         // same as the input in LLVM terms.
3596         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3597         return LHSLV;
3598       }
3599     }
3600     // FIXME: For floating point types, we should be saving and restoring the
3601     // floating point environment in the loop.
3602     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3603     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3604     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3605     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3606     Builder.CreateBr(opBB);
3607     Builder.SetInsertPoint(opBB);
3608     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3609     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3610     OpInfo.LHS = atomicPHI;
3611   }
3612   else
3613     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3614 
3615   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3616   SourceLocation Loc = E->getExprLoc();
3617   if (!PromotionTypeLHS.isNull())
3618     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3619                                       E->getExprLoc());
3620   else
3621     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3622                                       E->getComputationLHSType(), Loc);
3623 
3624   // Expand the binary operator.
3625   Result = (this->*Func)(OpInfo);
3626 
3627   // Convert the result back to the LHS type,
3628   // potentially with Implicit Conversion sanitizer check.
3629   // If LHSLV is a bitfield, use default ScalarConversionOpts
3630   // to avoid emit any implicit integer checks.
3631   Value *Previous = nullptr;
3632   if (LHSLV.isBitField()) {
3633     Previous = Result;
3634     Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc);
3635   } else
3636     Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3637                                   ScalarConversionOpts(CGF.SanOpts));
3638 
3639   if (atomicPHI) {
3640     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3641     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3642     auto Pair = CGF.EmitAtomicCompareExchange(
3643         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3644     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3645     llvm::Value *success = Pair.second;
3646     atomicPHI->addIncoming(old, curBlock);
3647     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3648     Builder.SetInsertPoint(contBB);
3649     return LHSLV;
3650   }
3651 
3652   // Store the result value into the LHS lvalue. Bit-fields are handled
3653   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3654   // 'An assignment expression has the value of the left operand after the
3655   // assignment...'.
3656   if (LHSLV.isBitField()) {
3657     Value *Src = Previous ? Previous : Result;
3658     QualType SrcType = E->getRHS()->getType();
3659     QualType DstType = E->getLHS()->getType();
3660     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3661     CGF.EmitBitfieldConversionCheck(Src, SrcType, Result, DstType,
3662                                     LHSLV.getBitFieldInfo(), E->getExprLoc());
3663   } else
3664     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3665 
3666   if (CGF.getLangOpts().OpenMP)
3667     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3668                                                                   E->getLHS());
3669   return LHSLV;
3670 }
3671 
3672 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3673                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3674   bool Ignore = TestAndClearIgnoreResultAssign();
3675   Value *RHS = nullptr;
3676   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3677 
3678   // If the result is clearly ignored, return now.
3679   if (Ignore)
3680     return nullptr;
3681 
3682   // The result of an assignment in C is the assigned r-value.
3683   if (!CGF.getLangOpts().CPlusPlus)
3684     return RHS;
3685 
3686   // If the lvalue is non-volatile, return the computed value of the assignment.
3687   if (!LHS.isVolatileQualified())
3688     return RHS;
3689 
3690   // Otherwise, reload the value.
3691   return EmitLoadOfLValue(LHS, E->getExprLoc());
3692 }
3693 
3694 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3695     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3696   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3697 
3698   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3699     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3700                                     SanitizerKind::IntegerDivideByZero));
3701   }
3702 
3703   const auto *BO = cast<BinaryOperator>(Ops.E);
3704   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3705       Ops.Ty->hasSignedIntegerRepresentation() &&
3706       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3707       Ops.mayHaveIntegerOverflow()) {
3708     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3709 
3710     llvm::Value *IntMin =
3711       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3712     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3713 
3714     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3715     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3716     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3717     Checks.push_back(
3718         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3719   }
3720 
3721   if (Checks.size() > 0)
3722     EmitBinOpCheck(Checks, Ops);
3723 }
3724 
3725 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3726   {
3727     CodeGenFunction::SanitizerScope SanScope(&CGF);
3728     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3729          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3730         Ops.Ty->isIntegerType() &&
3731         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3732       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3733       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3734     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3735                Ops.Ty->isRealFloatingType() &&
3736                Ops.mayHaveFloatDivisionByZero()) {
3737       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3738       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3739       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3740                      Ops);
3741     }
3742   }
3743 
3744   if (Ops.Ty->isConstantMatrixType()) {
3745     llvm::MatrixBuilder MB(Builder);
3746     // We need to check the types of the operands of the operator to get the
3747     // correct matrix dimensions.
3748     auto *BO = cast<BinaryOperator>(Ops.E);
3749     (void)BO;
3750     assert(
3751         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3752         "first operand must be a matrix");
3753     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3754            "second operand must be an arithmetic type");
3755     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3756     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3757                               Ops.Ty->hasUnsignedIntegerRepresentation());
3758   }
3759 
3760   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3761     llvm::Value *Val;
3762     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3763     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3764     CGF.SetDivFPAccuracy(Val);
3765     return Val;
3766   }
3767   else if (Ops.isFixedPointOp())
3768     return EmitFixedPointBinOp(Ops);
3769   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3770     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3771   else
3772     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3773 }
3774 
3775 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3776   // Rem in C can't be a floating point type: C99 6.5.5p2.
3777   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3778        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3779       Ops.Ty->isIntegerType() &&
3780       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3781     CodeGenFunction::SanitizerScope SanScope(&CGF);
3782     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3783     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3784   }
3785 
3786   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3787     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3788   else
3789     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3790 }
3791 
3792 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3793   unsigned IID;
3794   unsigned OpID = 0;
3795   SanitizerHandler OverflowKind;
3796 
3797   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3798   switch (Ops.Opcode) {
3799   case BO_Add:
3800   case BO_AddAssign:
3801     OpID = 1;
3802     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3803                      llvm::Intrinsic::uadd_with_overflow;
3804     OverflowKind = SanitizerHandler::AddOverflow;
3805     break;
3806   case BO_Sub:
3807   case BO_SubAssign:
3808     OpID = 2;
3809     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3810                      llvm::Intrinsic::usub_with_overflow;
3811     OverflowKind = SanitizerHandler::SubOverflow;
3812     break;
3813   case BO_Mul:
3814   case BO_MulAssign:
3815     OpID = 3;
3816     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3817                      llvm::Intrinsic::umul_with_overflow;
3818     OverflowKind = SanitizerHandler::MulOverflow;
3819     break;
3820   default:
3821     llvm_unreachable("Unsupported operation for overflow detection");
3822   }
3823   OpID <<= 1;
3824   if (isSigned)
3825     OpID |= 1;
3826 
3827   CodeGenFunction::SanitizerScope SanScope(&CGF);
3828   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3829 
3830   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3831 
3832   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3833   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3834   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3835 
3836   // Handle overflow with llvm.trap if no custom handler has been specified.
3837   const std::string *handlerName =
3838     &CGF.getLangOpts().OverflowHandler;
3839   if (handlerName->empty()) {
3840     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3841     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3842     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3843       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3844       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3845                               : SanitizerKind::UnsignedIntegerOverflow;
3846       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3847     } else
3848       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3849     return result;
3850   }
3851 
3852   // Branch in case of overflow.
3853   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3854   llvm::BasicBlock *continueBB =
3855       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3856   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3857 
3858   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3859 
3860   // If an overflow handler is set, then we want to call it and then use its
3861   // result, if it returns.
3862   Builder.SetInsertPoint(overflowBB);
3863 
3864   // Get the overflow handler.
3865   llvm::Type *Int8Ty = CGF.Int8Ty;
3866   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3867   llvm::FunctionType *handlerTy =
3868       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3869   llvm::FunctionCallee handler =
3870       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3871 
3872   // Sign extend the args to 64-bit, so that we can use the same handler for
3873   // all types of overflow.
3874   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3875   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3876 
3877   // Call the handler with the two arguments, the operation, and the size of
3878   // the result.
3879   llvm::Value *handlerArgs[] = {
3880     lhs,
3881     rhs,
3882     Builder.getInt8(OpID),
3883     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3884   };
3885   llvm::Value *handlerResult =
3886     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3887 
3888   // Truncate the result back to the desired size.
3889   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3890   Builder.CreateBr(continueBB);
3891 
3892   Builder.SetInsertPoint(continueBB);
3893   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3894   phi->addIncoming(result, initialBB);
3895   phi->addIncoming(handlerResult, overflowBB);
3896 
3897   return phi;
3898 }
3899 
3900 /// Emit pointer + index arithmetic.
3901 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3902                                     const BinOpInfo &op,
3903                                     bool isSubtraction) {
3904   // Must have binary (not unary) expr here.  Unary pointer
3905   // increment/decrement doesn't use this path.
3906   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3907 
3908   Value *pointer = op.LHS;
3909   Expr *pointerOperand = expr->getLHS();
3910   Value *index = op.RHS;
3911   Expr *indexOperand = expr->getRHS();
3912 
3913   // In a subtraction, the LHS is always the pointer.
3914   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3915     std::swap(pointer, index);
3916     std::swap(pointerOperand, indexOperand);
3917   }
3918 
3919   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3920 
3921   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3922   auto &DL = CGF.CGM.getDataLayout();
3923   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3924 
3925   // Some versions of glibc and gcc use idioms (particularly in their malloc
3926   // routines) that add a pointer-sized integer (known to be a pointer value)
3927   // to a null pointer in order to cast the value back to an integer or as
3928   // part of a pointer alignment algorithm.  This is undefined behavior, but
3929   // we'd like to be able to compile programs that use it.
3930   //
3931   // Normally, we'd generate a GEP with a null-pointer base here in response
3932   // to that code, but it's also UB to dereference a pointer created that
3933   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3934   // generate a direct cast of the integer value to a pointer.
3935   //
3936   // The idiom (p = nullptr + N) is not met if any of the following are true:
3937   //
3938   //   The operation is subtraction.
3939   //   The index is not pointer-sized.
3940   //   The pointer type is not byte-sized.
3941   //
3942   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3943                                                        op.Opcode,
3944                                                        expr->getLHS(),
3945                                                        expr->getRHS()))
3946     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3947 
3948   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3949     // Zero-extend or sign-extend the pointer value according to
3950     // whether the index is signed or not.
3951     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3952                                       "idx.ext");
3953   }
3954 
3955   // If this is subtraction, negate the index.
3956   if (isSubtraction)
3957     index = CGF.Builder.CreateNeg(index, "idx.neg");
3958 
3959   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3960     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3961                         /*Accessed*/ false);
3962 
3963   const PointerType *pointerType
3964     = pointerOperand->getType()->getAs<PointerType>();
3965   if (!pointerType) {
3966     QualType objectType = pointerOperand->getType()
3967                                         ->castAs<ObjCObjectPointerType>()
3968                                         ->getPointeeType();
3969     llvm::Value *objectSize
3970       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3971 
3972     index = CGF.Builder.CreateMul(index, objectSize);
3973 
3974     Value *result =
3975         CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr");
3976     return CGF.Builder.CreateBitCast(result, pointer->getType());
3977   }
3978 
3979   QualType elementType = pointerType->getPointeeType();
3980   if (const VariableArrayType *vla
3981         = CGF.getContext().getAsVariableArrayType(elementType)) {
3982     // The element count here is the total number of non-VLA elements.
3983     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3984 
3985     // Effectively, the multiply by the VLA size is part of the GEP.
3986     // GEP indexes are signed, and scaling an index isn't permitted to
3987     // signed-overflow, so we use the same semantics for our explicit
3988     // multiply.  We suppress this if overflow is not undefined behavior.
3989     llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3990     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3991       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3992       pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3993     } else {
3994       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3995       pointer = CGF.EmitCheckedInBoundsGEP(
3996           elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3997           "add.ptr");
3998     }
3999     return pointer;
4000   }
4001 
4002   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
4003   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
4004   // future proof.
4005   llvm::Type *elemTy;
4006   if (elementType->isVoidType() || elementType->isFunctionType())
4007     elemTy = CGF.Int8Ty;
4008   else
4009     elemTy = CGF.ConvertTypeForMem(elementType);
4010 
4011   if (CGF.getLangOpts().isSignedOverflowDefined())
4012     return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
4013 
4014   return CGF.EmitCheckedInBoundsGEP(
4015       elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
4016       "add.ptr");
4017 }
4018 
4019 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
4020 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
4021 // the add operand respectively. This allows fmuladd to represent a*b-c, or
4022 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
4023 // efficient operations.
4024 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
4025                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
4026                            bool negMul, bool negAdd) {
4027   Value *MulOp0 = MulOp->getOperand(0);
4028   Value *MulOp1 = MulOp->getOperand(1);
4029   if (negMul)
4030     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
4031   if (negAdd)
4032     Addend = Builder.CreateFNeg(Addend, "neg");
4033 
4034   Value *FMulAdd = nullptr;
4035   if (Builder.getIsFPConstrained()) {
4036     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
4037            "Only constrained operation should be created when Builder is in FP "
4038            "constrained mode");
4039     FMulAdd = Builder.CreateConstrainedFPCall(
4040         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
4041                              Addend->getType()),
4042         {MulOp0, MulOp1, Addend});
4043   } else {
4044     FMulAdd = Builder.CreateCall(
4045         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
4046         {MulOp0, MulOp1, Addend});
4047   }
4048   MulOp->eraseFromParent();
4049 
4050   return FMulAdd;
4051 }
4052 
4053 // Check whether it would be legal to emit an fmuladd intrinsic call to
4054 // represent op and if so, build the fmuladd.
4055 //
4056 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
4057 // Does NOT check the type of the operation - it's assumed that this function
4058 // will be called from contexts where it's known that the type is contractable.
4059 static Value* tryEmitFMulAdd(const BinOpInfo &op,
4060                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
4061                          bool isSub=false) {
4062 
4063   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
4064           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
4065          "Only fadd/fsub can be the root of an fmuladd.");
4066 
4067   // Check whether this op is marked as fusable.
4068   if (!op.FPFeatures.allowFPContractWithinStatement())
4069     return nullptr;
4070 
4071   Value *LHS = op.LHS;
4072   Value *RHS = op.RHS;
4073 
4074   // Peek through fneg to look for fmul. Make sure fneg has no users, and that
4075   // it is the only use of its operand.
4076   bool NegLHS = false;
4077   if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) {
4078     if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4079         LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) {
4080       LHS = LHSUnOp->getOperand(0);
4081       NegLHS = true;
4082     }
4083   }
4084 
4085   bool NegRHS = false;
4086   if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) {
4087     if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4088         RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) {
4089       RHS = RHSUnOp->getOperand(0);
4090       NegRHS = true;
4091     }
4092   }
4093 
4094   // We have a potentially fusable op. Look for a mul on one of the operands.
4095   // Also, make sure that the mul result isn't used directly. In that case,
4096   // there's no point creating a muladd operation.
4097   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) {
4098     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4099         (LHSBinOp->use_empty() || NegLHS)) {
4100       // If we looked through fneg, erase it.
4101       if (NegLHS)
4102         cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4103       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4104     }
4105   }
4106   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) {
4107     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4108         (RHSBinOp->use_empty() || NegRHS)) {
4109       // If we looked through fneg, erase it.
4110       if (NegRHS)
4111         cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4112       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4113     }
4114   }
4115 
4116   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) {
4117     if (LHSBinOp->getIntrinsicID() ==
4118             llvm::Intrinsic::experimental_constrained_fmul &&
4119         (LHSBinOp->use_empty() || NegLHS)) {
4120       // If we looked through fneg, erase it.
4121       if (NegLHS)
4122         cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4123       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4124     }
4125   }
4126   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) {
4127     if (RHSBinOp->getIntrinsicID() ==
4128             llvm::Intrinsic::experimental_constrained_fmul &&
4129         (RHSBinOp->use_empty() || NegRHS)) {
4130       // If we looked through fneg, erase it.
4131       if (NegRHS)
4132         cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4133       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4134     }
4135   }
4136 
4137   return nullptr;
4138 }
4139 
4140 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
4141   if (op.LHS->getType()->isPointerTy() ||
4142       op.RHS->getType()->isPointerTy())
4143     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
4144 
4145   if (op.Ty->isSignedIntegerOrEnumerationType()) {
4146     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4147     case LangOptions::SOB_Defined:
4148       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4149         return Builder.CreateAdd(op.LHS, op.RHS, "add");
4150       [[fallthrough]];
4151     case LangOptions::SOB_Undefined:
4152       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4153         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4154       [[fallthrough]];
4155     case LangOptions::SOB_Trapping:
4156       if (CanElideOverflowCheck(CGF.getContext(), op))
4157         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4158       return EmitOverflowCheckedBinOp(op);
4159     }
4160   }
4161 
4162   // For vector and matrix adds, try to fold into a fmuladd.
4163   if (op.LHS->getType()->isFPOrFPVectorTy()) {
4164     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4165     // Try to form an fmuladd.
4166     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
4167       return FMulAdd;
4168   }
4169 
4170   if (op.Ty->isConstantMatrixType()) {
4171     llvm::MatrixBuilder MB(Builder);
4172     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4173     return MB.CreateAdd(op.LHS, op.RHS);
4174   }
4175 
4176   if (op.Ty->isUnsignedIntegerType() &&
4177       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4178       !CanElideOverflowCheck(CGF.getContext(), op))
4179     return EmitOverflowCheckedBinOp(op);
4180 
4181   if (op.LHS->getType()->isFPOrFPVectorTy()) {
4182     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4183     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
4184   }
4185 
4186   if (op.isFixedPointOp())
4187     return EmitFixedPointBinOp(op);
4188 
4189   return Builder.CreateAdd(op.LHS, op.RHS, "add");
4190 }
4191 
4192 /// The resulting value must be calculated with exact precision, so the operands
4193 /// may not be the same type.
4194 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
4195   using llvm::APSInt;
4196   using llvm::ConstantInt;
4197 
4198   // This is either a binary operation where at least one of the operands is
4199   // a fixed-point type, or a unary operation where the operand is a fixed-point
4200   // type. The result type of a binary operation is determined by
4201   // Sema::handleFixedPointConversions().
4202   QualType ResultTy = op.Ty;
4203   QualType LHSTy, RHSTy;
4204   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
4205     RHSTy = BinOp->getRHS()->getType();
4206     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
4207       // For compound assignment, the effective type of the LHS at this point
4208       // is the computation LHS type, not the actual LHS type, and the final
4209       // result type is not the type of the expression but rather the
4210       // computation result type.
4211       LHSTy = CAO->getComputationLHSType();
4212       ResultTy = CAO->getComputationResultType();
4213     } else
4214       LHSTy = BinOp->getLHS()->getType();
4215   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
4216     LHSTy = UnOp->getSubExpr()->getType();
4217     RHSTy = UnOp->getSubExpr()->getType();
4218   }
4219   ASTContext &Ctx = CGF.getContext();
4220   Value *LHS = op.LHS;
4221   Value *RHS = op.RHS;
4222 
4223   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
4224   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
4225   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
4226   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
4227 
4228   // Perform the actual operation.
4229   Value *Result;
4230   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
4231   switch (op.Opcode) {
4232   case BO_AddAssign:
4233   case BO_Add:
4234     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
4235     break;
4236   case BO_SubAssign:
4237   case BO_Sub:
4238     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
4239     break;
4240   case BO_MulAssign:
4241   case BO_Mul:
4242     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
4243     break;
4244   case BO_DivAssign:
4245   case BO_Div:
4246     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
4247     break;
4248   case BO_ShlAssign:
4249   case BO_Shl:
4250     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
4251     break;
4252   case BO_ShrAssign:
4253   case BO_Shr:
4254     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
4255     break;
4256   case BO_LT:
4257     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4258   case BO_GT:
4259     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4260   case BO_LE:
4261     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4262   case BO_GE:
4263     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4264   case BO_EQ:
4265     // For equality operations, we assume any padding bits on unsigned types are
4266     // zero'd out. They could be overwritten through non-saturating operations
4267     // that cause overflow, but this leads to undefined behavior.
4268     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
4269   case BO_NE:
4270     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4271   case BO_Cmp:
4272   case BO_LAnd:
4273   case BO_LOr:
4274     llvm_unreachable("Found unimplemented fixed point binary operation");
4275   case BO_PtrMemD:
4276   case BO_PtrMemI:
4277   case BO_Rem:
4278   case BO_Xor:
4279   case BO_And:
4280   case BO_Or:
4281   case BO_Assign:
4282   case BO_RemAssign:
4283   case BO_AndAssign:
4284   case BO_XorAssign:
4285   case BO_OrAssign:
4286   case BO_Comma:
4287     llvm_unreachable("Found unsupported binary operation for fixed point types.");
4288   }
4289 
4290   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
4291                  BinaryOperator::isShiftAssignOp(op.Opcode);
4292   // Convert to the result type.
4293   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
4294                                                       : CommonFixedSema,
4295                                       ResultFixedSema);
4296 }
4297 
4298 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4299   // The LHS is always a pointer if either side is.
4300   if (!op.LHS->getType()->isPointerTy()) {
4301     if (op.Ty->isSignedIntegerOrEnumerationType()) {
4302       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4303       case LangOptions::SOB_Defined:
4304         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4305           return Builder.CreateSub(op.LHS, op.RHS, "sub");
4306         [[fallthrough]];
4307       case LangOptions::SOB_Undefined:
4308         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4309           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4310         [[fallthrough]];
4311       case LangOptions::SOB_Trapping:
4312         if (CanElideOverflowCheck(CGF.getContext(), op))
4313           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4314         return EmitOverflowCheckedBinOp(op);
4315       }
4316     }
4317 
4318     // For vector and matrix subs, try to fold into a fmuladd.
4319     if (op.LHS->getType()->isFPOrFPVectorTy()) {
4320       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4321       // Try to form an fmuladd.
4322       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
4323         return FMulAdd;
4324     }
4325 
4326     if (op.Ty->isConstantMatrixType()) {
4327       llvm::MatrixBuilder MB(Builder);
4328       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4329       return MB.CreateSub(op.LHS, op.RHS);
4330     }
4331 
4332     if (op.Ty->isUnsignedIntegerType() &&
4333         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4334         !CanElideOverflowCheck(CGF.getContext(), op))
4335       return EmitOverflowCheckedBinOp(op);
4336 
4337     if (op.LHS->getType()->isFPOrFPVectorTy()) {
4338       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4339       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4340     }
4341 
4342     if (op.isFixedPointOp())
4343       return EmitFixedPointBinOp(op);
4344 
4345     return Builder.CreateSub(op.LHS, op.RHS, "sub");
4346   }
4347 
4348   // If the RHS is not a pointer, then we have normal pointer
4349   // arithmetic.
4350   if (!op.RHS->getType()->isPointerTy())
4351     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
4352 
4353   // Otherwise, this is a pointer subtraction.
4354 
4355   // Do the raw subtraction part.
4356   llvm::Value *LHS
4357     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4358   llvm::Value *RHS
4359     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4360   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4361 
4362   // Okay, figure out the element size.
4363   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4364   QualType elementType = expr->getLHS()->getType()->getPointeeType();
4365 
4366   llvm::Value *divisor = nullptr;
4367 
4368   // For a variable-length array, this is going to be non-constant.
4369   if (const VariableArrayType *vla
4370         = CGF.getContext().getAsVariableArrayType(elementType)) {
4371     auto VlaSize = CGF.getVLASize(vla);
4372     elementType = VlaSize.Type;
4373     divisor = VlaSize.NumElts;
4374 
4375     // Scale the number of non-VLA elements by the non-VLA element size.
4376     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4377     if (!eltSize.isOne())
4378       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4379 
4380   // For everything elese, we can just compute it, safe in the
4381   // assumption that Sema won't let anything through that we can't
4382   // safely compute the size of.
4383   } else {
4384     CharUnits elementSize;
4385     // Handle GCC extension for pointer arithmetic on void* and
4386     // function pointer types.
4387     if (elementType->isVoidType() || elementType->isFunctionType())
4388       elementSize = CharUnits::One();
4389     else
4390       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4391 
4392     // Don't even emit the divide for element size of 1.
4393     if (elementSize.isOne())
4394       return diffInChars;
4395 
4396     divisor = CGF.CGM.getSize(elementSize);
4397   }
4398 
4399   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4400   // pointer difference in C is only defined in the case where both operands
4401   // are pointing to elements of an array.
4402   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4403 }
4404 
4405 Value *ScalarExprEmitter::GetMaximumShiftAmount(Value *LHS, Value *RHS,
4406                                                 bool RHSIsSigned) {
4407   llvm::IntegerType *Ty;
4408   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4409     Ty = cast<llvm::IntegerType>(VT->getElementType());
4410   else
4411     Ty = cast<llvm::IntegerType>(LHS->getType());
4412   // For a given type of LHS the maximum shift amount is width(LHS)-1, however
4413   // it can occur that width(LHS)-1 > range(RHS). Since there is no check for
4414   // this in ConstantInt::get, this results in the value getting truncated.
4415   // Constrain the return value to be max(RHS) in this case.
4416   llvm::Type *RHSTy = RHS->getType();
4417   llvm::APInt RHSMax =
4418       RHSIsSigned ? llvm::APInt::getSignedMaxValue(RHSTy->getScalarSizeInBits())
4419                   : llvm::APInt::getMaxValue(RHSTy->getScalarSizeInBits());
4420   if (RHSMax.ult(Ty->getBitWidth()))
4421     return llvm::ConstantInt::get(RHSTy, RHSMax);
4422   return llvm::ConstantInt::get(RHSTy, Ty->getBitWidth() - 1);
4423 }
4424 
4425 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4426                                               const Twine &Name) {
4427   llvm::IntegerType *Ty;
4428   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4429     Ty = cast<llvm::IntegerType>(VT->getElementType());
4430   else
4431     Ty = cast<llvm::IntegerType>(LHS->getType());
4432 
4433   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4434     return Builder.CreateAnd(RHS, GetMaximumShiftAmount(LHS, RHS, false), Name);
4435 
4436   return Builder.CreateURem(
4437       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4438 }
4439 
4440 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4441   // TODO: This misses out on the sanitizer check below.
4442   if (Ops.isFixedPointOp())
4443     return EmitFixedPointBinOp(Ops);
4444 
4445   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4446   // RHS to the same size as the LHS.
4447   Value *RHS = Ops.RHS;
4448   if (Ops.LHS->getType() != RHS->getType())
4449     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4450 
4451   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4452                             Ops.Ty->hasSignedIntegerRepresentation() &&
4453                             !CGF.getLangOpts().isSignedOverflowDefined() &&
4454                             !CGF.getLangOpts().CPlusPlus20;
4455   bool SanitizeUnsignedBase =
4456       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4457       Ops.Ty->hasUnsignedIntegerRepresentation();
4458   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4459   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4460   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4461   if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4462     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4463   else if ((SanitizeBase || SanitizeExponent) &&
4464            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4465     CodeGenFunction::SanitizerScope SanScope(&CGF);
4466     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
4467     bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4468     llvm::Value *WidthMinusOne =
4469         GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned);
4470     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4471 
4472     if (SanitizeExponent) {
4473       Checks.push_back(
4474           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4475     }
4476 
4477     if (SanitizeBase) {
4478       // Check whether we are shifting any non-zero bits off the top of the
4479       // integer. We only emit this check if exponent is valid - otherwise
4480       // instructions below will have undefined behavior themselves.
4481       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4482       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4483       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4484       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4485       llvm::Value *PromotedWidthMinusOne =
4486           (RHS == Ops.RHS) ? WidthMinusOne
4487                            : GetMaximumShiftAmount(Ops.LHS, RHS, RHSIsSigned);
4488       CGF.EmitBlock(CheckShiftBase);
4489       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4490           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4491                                      /*NUW*/ true, /*NSW*/ true),
4492           "shl.check");
4493       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4494         // In C99, we are not permitted to shift a 1 bit into the sign bit.
4495         // Under C++11's rules, shifting a 1 bit into the sign bit is
4496         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4497         // define signed left shifts, so we use the C99 and C++11 rules there).
4498         // Unsigned shifts can always shift into the top bit.
4499         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4500         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4501       }
4502       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4503       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4504       CGF.EmitBlock(Cont);
4505       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4506       BaseCheck->addIncoming(Builder.getTrue(), Orig);
4507       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4508       Checks.push_back(std::make_pair(
4509           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4510                                         : SanitizerKind::UnsignedShiftBase));
4511     }
4512 
4513     assert(!Checks.empty());
4514     EmitBinOpCheck(Checks, Ops);
4515   }
4516 
4517   return Builder.CreateShl(Ops.LHS, RHS, "shl");
4518 }
4519 
4520 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4521   // TODO: This misses out on the sanitizer check below.
4522   if (Ops.isFixedPointOp())
4523     return EmitFixedPointBinOp(Ops);
4524 
4525   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4526   // RHS to the same size as the LHS.
4527   Value *RHS = Ops.RHS;
4528   if (Ops.LHS->getType() != RHS->getType())
4529     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4530 
4531   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4532   if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4533     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4534   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4535            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4536     CodeGenFunction::SanitizerScope SanScope(&CGF);
4537     bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4538     llvm::Value *Valid = Builder.CreateICmpULE(
4539         Ops.RHS, GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned));
4540     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4541   }
4542 
4543   if (Ops.Ty->hasUnsignedIntegerRepresentation())
4544     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4545   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4546 }
4547 
4548 enum IntrinsicType { VCMPEQ, VCMPGT };
4549 // return corresponding comparison intrinsic for given vector type
4550 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4551                                         BuiltinType::Kind ElemKind) {
4552   switch (ElemKind) {
4553   default: llvm_unreachable("unexpected element type");
4554   case BuiltinType::Char_U:
4555   case BuiltinType::UChar:
4556     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4557                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4558   case BuiltinType::Char_S:
4559   case BuiltinType::SChar:
4560     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4561                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4562   case BuiltinType::UShort:
4563     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4564                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4565   case BuiltinType::Short:
4566     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4567                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4568   case BuiltinType::UInt:
4569     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4570                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4571   case BuiltinType::Int:
4572     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4573                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4574   case BuiltinType::ULong:
4575   case BuiltinType::ULongLong:
4576     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4577                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4578   case BuiltinType::Long:
4579   case BuiltinType::LongLong:
4580     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4581                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4582   case BuiltinType::Float:
4583     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4584                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4585   case BuiltinType::Double:
4586     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4587                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4588   case BuiltinType::UInt128:
4589     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4590                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4591   case BuiltinType::Int128:
4592     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4593                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4594   }
4595 }
4596 
4597 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4598                                       llvm::CmpInst::Predicate UICmpOpc,
4599                                       llvm::CmpInst::Predicate SICmpOpc,
4600                                       llvm::CmpInst::Predicate FCmpOpc,
4601                                       bool IsSignaling) {
4602   TestAndClearIgnoreResultAssign();
4603   Value *Result;
4604   QualType LHSTy = E->getLHS()->getType();
4605   QualType RHSTy = E->getRHS()->getType();
4606   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4607     assert(E->getOpcode() == BO_EQ ||
4608            E->getOpcode() == BO_NE);
4609     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4610     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4611     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4612                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4613   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4614     BinOpInfo BOInfo = EmitBinOps(E);
4615     Value *LHS = BOInfo.LHS;
4616     Value *RHS = BOInfo.RHS;
4617 
4618     // If AltiVec, the comparison results in a numeric type, so we use
4619     // intrinsics comparing vectors and giving 0 or 1 as a result
4620     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4621       // constants for mapping CR6 register bits to predicate result
4622       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4623 
4624       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4625 
4626       // in several cases vector arguments order will be reversed
4627       Value *FirstVecArg = LHS,
4628             *SecondVecArg = RHS;
4629 
4630       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4631       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4632 
4633       switch(E->getOpcode()) {
4634       default: llvm_unreachable("is not a comparison operation");
4635       case BO_EQ:
4636         CR6 = CR6_LT;
4637         ID = GetIntrinsic(VCMPEQ, ElementKind);
4638         break;
4639       case BO_NE:
4640         CR6 = CR6_EQ;
4641         ID = GetIntrinsic(VCMPEQ, ElementKind);
4642         break;
4643       case BO_LT:
4644         CR6 = CR6_LT;
4645         ID = GetIntrinsic(VCMPGT, ElementKind);
4646         std::swap(FirstVecArg, SecondVecArg);
4647         break;
4648       case BO_GT:
4649         CR6 = CR6_LT;
4650         ID = GetIntrinsic(VCMPGT, ElementKind);
4651         break;
4652       case BO_LE:
4653         if (ElementKind == BuiltinType::Float) {
4654           CR6 = CR6_LT;
4655           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4656           std::swap(FirstVecArg, SecondVecArg);
4657         }
4658         else {
4659           CR6 = CR6_EQ;
4660           ID = GetIntrinsic(VCMPGT, ElementKind);
4661         }
4662         break;
4663       case BO_GE:
4664         if (ElementKind == BuiltinType::Float) {
4665           CR6 = CR6_LT;
4666           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4667         }
4668         else {
4669           CR6 = CR6_EQ;
4670           ID = GetIntrinsic(VCMPGT, ElementKind);
4671           std::swap(FirstVecArg, SecondVecArg);
4672         }
4673         break;
4674       }
4675 
4676       Value *CR6Param = Builder.getInt32(CR6);
4677       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4678       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4679 
4680       // The result type of intrinsic may not be same as E->getType().
4681       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4682       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4683       // do nothing, if ResultTy is not i1 at the same time, it will cause
4684       // crash later.
4685       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4686       if (ResultTy->getBitWidth() > 1 &&
4687           E->getType() == CGF.getContext().BoolTy)
4688         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4689       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4690                                   E->getExprLoc());
4691     }
4692 
4693     if (BOInfo.isFixedPointOp()) {
4694       Result = EmitFixedPointBinOp(BOInfo);
4695     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4696       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4697       if (!IsSignaling)
4698         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4699       else
4700         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4701     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4702       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4703     } else {
4704       // Unsigned integers and pointers.
4705 
4706       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4707           !isa<llvm::ConstantPointerNull>(LHS) &&
4708           !isa<llvm::ConstantPointerNull>(RHS)) {
4709 
4710         // Dynamic information is required to be stripped for comparisons,
4711         // because it could leak the dynamic information.  Based on comparisons
4712         // of pointers to dynamic objects, the optimizer can replace one pointer
4713         // with another, which might be incorrect in presence of invariant
4714         // groups. Comparison with null is safe because null does not carry any
4715         // dynamic information.
4716         if (LHSTy.mayBeDynamicClass())
4717           LHS = Builder.CreateStripInvariantGroup(LHS);
4718         if (RHSTy.mayBeDynamicClass())
4719           RHS = Builder.CreateStripInvariantGroup(RHS);
4720       }
4721 
4722       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4723     }
4724 
4725     // If this is a vector comparison, sign extend the result to the appropriate
4726     // vector integer type and return it (don't convert to bool).
4727     if (LHSTy->isVectorType())
4728       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4729 
4730   } else {
4731     // Complex Comparison: can only be an equality comparison.
4732     CodeGenFunction::ComplexPairTy LHS, RHS;
4733     QualType CETy;
4734     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4735       LHS = CGF.EmitComplexExpr(E->getLHS());
4736       CETy = CTy->getElementType();
4737     } else {
4738       LHS.first = Visit(E->getLHS());
4739       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4740       CETy = LHSTy;
4741     }
4742     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4743       RHS = CGF.EmitComplexExpr(E->getRHS());
4744       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4745                                                      CTy->getElementType()) &&
4746              "The element types must always match.");
4747       (void)CTy;
4748     } else {
4749       RHS.first = Visit(E->getRHS());
4750       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4751       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4752              "The element types must always match.");
4753     }
4754 
4755     Value *ResultR, *ResultI;
4756     if (CETy->isRealFloatingType()) {
4757       // As complex comparisons can only be equality comparisons, they
4758       // are never signaling comparisons.
4759       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4760       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4761     } else {
4762       // Complex comparisons can only be equality comparisons.  As such, signed
4763       // and unsigned opcodes are the same.
4764       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4765       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4766     }
4767 
4768     if (E->getOpcode() == BO_EQ) {
4769       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4770     } else {
4771       assert(E->getOpcode() == BO_NE &&
4772              "Complex comparison other than == or != ?");
4773       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4774     }
4775   }
4776 
4777   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4778                               E->getExprLoc());
4779 }
4780 
4781 llvm::Value *CodeGenFunction::EmitWithOriginalRHSBitfieldAssignment(
4782     const BinaryOperator *E, Value **Previous, QualType *SrcType) {
4783   // In case we have the integer or bitfield sanitizer checks enabled
4784   // we want to get the expression before scalar conversion.
4785   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E->getRHS())) {
4786     CastKind Kind = ICE->getCastKind();
4787     if (Kind == CK_IntegralCast || Kind == CK_LValueToRValue) {
4788       *SrcType = ICE->getSubExpr()->getType();
4789       *Previous = EmitScalarExpr(ICE->getSubExpr());
4790       // Pass default ScalarConversionOpts to avoid emitting
4791       // integer sanitizer checks as E refers to bitfield.
4792       return EmitScalarConversion(*Previous, *SrcType, ICE->getType(),
4793                                   ICE->getExprLoc());
4794     }
4795   }
4796   return EmitScalarExpr(E->getRHS());
4797 }
4798 
4799 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4800   bool Ignore = TestAndClearIgnoreResultAssign();
4801 
4802   Value *RHS;
4803   LValue LHS;
4804 
4805   switch (E->getLHS()->getType().getObjCLifetime()) {
4806   case Qualifiers::OCL_Strong:
4807     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4808     break;
4809 
4810   case Qualifiers::OCL_Autoreleasing:
4811     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4812     break;
4813 
4814   case Qualifiers::OCL_ExplicitNone:
4815     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4816     break;
4817 
4818   case Qualifiers::OCL_Weak:
4819     RHS = Visit(E->getRHS());
4820     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4821     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
4822     break;
4823 
4824   case Qualifiers::OCL_None:
4825     // __block variables need to have the rhs evaluated first, plus
4826     // this should improve codegen just a little.
4827     Value *Previous = nullptr;
4828     QualType SrcType = E->getRHS()->getType();
4829     // Check if LHS is a bitfield, if RHS contains an implicit cast expression
4830     // we want to extract that value and potentially (if the bitfield sanitizer
4831     // is enabled) use it to check for an implicit conversion.
4832     if (E->getLHS()->refersToBitField())
4833       RHS = CGF.EmitWithOriginalRHSBitfieldAssignment(E, &Previous, &SrcType);
4834     else
4835       RHS = Visit(E->getRHS());
4836 
4837     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4838 
4839     // Store the value into the LHS.  Bit-fields are handled specially
4840     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4841     // 'An assignment expression has the value of the left operand after
4842     // the assignment...'.
4843     if (LHS.isBitField()) {
4844       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4845       // If the expression contained an implicit conversion, make sure
4846       // to use the value before the scalar conversion.
4847       Value *Src = Previous ? Previous : RHS;
4848       QualType DstType = E->getLHS()->getType();
4849       CGF.EmitBitfieldConversionCheck(Src, SrcType, RHS, DstType,
4850                                       LHS.getBitFieldInfo(), E->getExprLoc());
4851     } else {
4852       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4853       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4854     }
4855   }
4856 
4857   // If the result is clearly ignored, return now.
4858   if (Ignore)
4859     return nullptr;
4860 
4861   // The result of an assignment in C is the assigned r-value.
4862   if (!CGF.getLangOpts().CPlusPlus)
4863     return RHS;
4864 
4865   // If the lvalue is non-volatile, return the computed value of the assignment.
4866   if (!LHS.isVolatileQualified())
4867     return RHS;
4868 
4869   // Otherwise, reload the value.
4870   return EmitLoadOfLValue(LHS, E->getExprLoc());
4871 }
4872 
4873 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4874   // Perform vector logical and on comparisons with zero vectors.
4875   if (E->getType()->isVectorType()) {
4876     CGF.incrementProfileCounter(E);
4877 
4878     Value *LHS = Visit(E->getLHS());
4879     Value *RHS = Visit(E->getRHS());
4880     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4881     if (LHS->getType()->isFPOrFPVectorTy()) {
4882       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4883           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4884       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4885       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4886     } else {
4887       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4888       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4889     }
4890     Value *And = Builder.CreateAnd(LHS, RHS);
4891     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4892   }
4893 
4894   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4895   llvm::Type *ResTy = ConvertType(E->getType());
4896 
4897   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4898   // If we have 1 && X, just emit X without inserting the control flow.
4899   bool LHSCondVal;
4900   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4901     if (LHSCondVal) { // If we have 1 && X, just emit X.
4902       CGF.incrementProfileCounter(E);
4903 
4904       // If the top of the logical operator nest, reset the MCDC temp to 0.
4905       if (CGF.MCDCLogOpStack.empty())
4906         CGF.maybeResetMCDCCondBitmap(E);
4907 
4908       CGF.MCDCLogOpStack.push_back(E);
4909 
4910       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4911 
4912       // If we're generating for profiling or coverage, generate a branch to a
4913       // block that increments the RHS counter needed to track branch condition
4914       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4915       // "FalseBlock" after the increment is done.
4916       if (InstrumentRegions &&
4917           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4918         CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
4919         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4920         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4921         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4922         CGF.EmitBlock(RHSBlockCnt);
4923         CGF.incrementProfileCounter(E->getRHS());
4924         CGF.EmitBranch(FBlock);
4925         CGF.EmitBlock(FBlock);
4926       }
4927 
4928       CGF.MCDCLogOpStack.pop_back();
4929       // If the top of the logical operator nest, update the MCDC bitmap.
4930       if (CGF.MCDCLogOpStack.empty())
4931         CGF.maybeUpdateMCDCTestVectorBitmap(E);
4932 
4933       // ZExt result to int or bool.
4934       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4935     }
4936 
4937     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4938     if (!CGF.ContainsLabel(E->getRHS()))
4939       return llvm::Constant::getNullValue(ResTy);
4940   }
4941 
4942   // If the top of the logical operator nest, reset the MCDC temp to 0.
4943   if (CGF.MCDCLogOpStack.empty())
4944     CGF.maybeResetMCDCCondBitmap(E);
4945 
4946   CGF.MCDCLogOpStack.push_back(E);
4947 
4948   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4949   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4950 
4951   CodeGenFunction::ConditionalEvaluation eval(CGF);
4952 
4953   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4954   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4955                            CGF.getProfileCount(E->getRHS()));
4956 
4957   // Any edges into the ContBlock are now from an (indeterminate number of)
4958   // edges from this first condition.  All of these values will be false.  Start
4959   // setting up the PHI node in the Cont Block for this.
4960   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4961                                             "", ContBlock);
4962   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4963        PI != PE; ++PI)
4964     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4965 
4966   eval.begin(CGF);
4967   CGF.EmitBlock(RHSBlock);
4968   CGF.incrementProfileCounter(E);
4969   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4970   eval.end(CGF);
4971 
4972   // Reaquire the RHS block, as there may be subblocks inserted.
4973   RHSBlock = Builder.GetInsertBlock();
4974 
4975   // If we're generating for profiling or coverage, generate a branch on the
4976   // RHS to a block that increments the RHS true counter needed to track branch
4977   // condition coverage.
4978   if (InstrumentRegions &&
4979       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4980     CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
4981     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4982     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4983     CGF.EmitBlock(RHSBlockCnt);
4984     CGF.incrementProfileCounter(E->getRHS());
4985     CGF.EmitBranch(ContBlock);
4986     PN->addIncoming(RHSCond, RHSBlockCnt);
4987   }
4988 
4989   // Emit an unconditional branch from this block to ContBlock.
4990   {
4991     // There is no need to emit line number for unconditional branch.
4992     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4993     CGF.EmitBlock(ContBlock);
4994   }
4995   // Insert an entry into the phi node for the edge with the value of RHSCond.
4996   PN->addIncoming(RHSCond, RHSBlock);
4997 
4998   CGF.MCDCLogOpStack.pop_back();
4999   // If the top of the logical operator nest, update the MCDC bitmap.
5000   if (CGF.MCDCLogOpStack.empty())
5001     CGF.maybeUpdateMCDCTestVectorBitmap(E);
5002 
5003   // Artificial location to preserve the scope information
5004   {
5005     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
5006     PN->setDebugLoc(Builder.getCurrentDebugLocation());
5007   }
5008 
5009   // ZExt result to int.
5010   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
5011 }
5012 
5013 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
5014   // Perform vector logical or on comparisons with zero vectors.
5015   if (E->getType()->isVectorType()) {
5016     CGF.incrementProfileCounter(E);
5017 
5018     Value *LHS = Visit(E->getLHS());
5019     Value *RHS = Visit(E->getRHS());
5020     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
5021     if (LHS->getType()->isFPOrFPVectorTy()) {
5022       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
5023           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
5024       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
5025       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
5026     } else {
5027       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
5028       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
5029     }
5030     Value *Or = Builder.CreateOr(LHS, RHS);
5031     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
5032   }
5033 
5034   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
5035   llvm::Type *ResTy = ConvertType(E->getType());
5036 
5037   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
5038   // If we have 0 || X, just emit X without inserting the control flow.
5039   bool LHSCondVal;
5040   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
5041     if (!LHSCondVal) { // If we have 0 || X, just emit X.
5042       CGF.incrementProfileCounter(E);
5043 
5044       // If the top of the logical operator nest, reset the MCDC temp to 0.
5045       if (CGF.MCDCLogOpStack.empty())
5046         CGF.maybeResetMCDCCondBitmap(E);
5047 
5048       CGF.MCDCLogOpStack.push_back(E);
5049 
5050       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5051 
5052       // If we're generating for profiling or coverage, generate a branch to a
5053       // block that increments the RHS counter need to track branch condition
5054       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
5055       // "FalseBlock" after the increment is done.
5056       if (InstrumentRegions &&
5057           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5058         CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5059         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
5060         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5061         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
5062         CGF.EmitBlock(RHSBlockCnt);
5063         CGF.incrementProfileCounter(E->getRHS());
5064         CGF.EmitBranch(FBlock);
5065         CGF.EmitBlock(FBlock);
5066       }
5067 
5068       CGF.MCDCLogOpStack.pop_back();
5069       // If the top of the logical operator nest, update the MCDC bitmap.
5070       if (CGF.MCDCLogOpStack.empty())
5071         CGF.maybeUpdateMCDCTestVectorBitmap(E);
5072 
5073       // ZExt result to int or bool.
5074       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
5075     }
5076 
5077     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
5078     if (!CGF.ContainsLabel(E->getRHS()))
5079       return llvm::ConstantInt::get(ResTy, 1);
5080   }
5081 
5082   // If the top of the logical operator nest, reset the MCDC temp to 0.
5083   if (CGF.MCDCLogOpStack.empty())
5084     CGF.maybeResetMCDCCondBitmap(E);
5085 
5086   CGF.MCDCLogOpStack.push_back(E);
5087 
5088   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
5089   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
5090 
5091   CodeGenFunction::ConditionalEvaluation eval(CGF);
5092 
5093   // Branch on the LHS first.  If it is true, go to the success (cont) block.
5094   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
5095                            CGF.getCurrentProfileCount() -
5096                                CGF.getProfileCount(E->getRHS()));
5097 
5098   // Any edges into the ContBlock are now from an (indeterminate number of)
5099   // edges from this first condition.  All of these values will be true.  Start
5100   // setting up the PHI node in the Cont Block for this.
5101   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
5102                                             "", ContBlock);
5103   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
5104        PI != PE; ++PI)
5105     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
5106 
5107   eval.begin(CGF);
5108 
5109   // Emit the RHS condition as a bool value.
5110   CGF.EmitBlock(RHSBlock);
5111   CGF.incrementProfileCounter(E);
5112   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5113 
5114   eval.end(CGF);
5115 
5116   // Reaquire the RHS block, as there may be subblocks inserted.
5117   RHSBlock = Builder.GetInsertBlock();
5118 
5119   // If we're generating for profiling or coverage, generate a branch on the
5120   // RHS to a block that increments the RHS true counter needed to track branch
5121   // condition coverage.
5122   if (InstrumentRegions &&
5123       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5124     CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5125     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5126     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
5127     CGF.EmitBlock(RHSBlockCnt);
5128     CGF.incrementProfileCounter(E->getRHS());
5129     CGF.EmitBranch(ContBlock);
5130     PN->addIncoming(RHSCond, RHSBlockCnt);
5131   }
5132 
5133   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
5134   // into the phi node for the edge with the value of RHSCond.
5135   CGF.EmitBlock(ContBlock);
5136   PN->addIncoming(RHSCond, RHSBlock);
5137 
5138   CGF.MCDCLogOpStack.pop_back();
5139   // If the top of the logical operator nest, update the MCDC bitmap.
5140   if (CGF.MCDCLogOpStack.empty())
5141     CGF.maybeUpdateMCDCTestVectorBitmap(E);
5142 
5143   // ZExt result to int.
5144   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
5145 }
5146 
5147 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
5148   CGF.EmitIgnoredExpr(E->getLHS());
5149   CGF.EnsureInsertPoint();
5150   return Visit(E->getRHS());
5151 }
5152 
5153 //===----------------------------------------------------------------------===//
5154 //                             Other Operators
5155 //===----------------------------------------------------------------------===//
5156 
5157 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
5158 /// expression is cheap enough and side-effect-free enough to evaluate
5159 /// unconditionally instead of conditionally.  This is used to convert control
5160 /// flow into selects in some cases.
5161 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
5162                                                    CodeGenFunction &CGF) {
5163   // Anything that is an integer or floating point constant is fine.
5164   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
5165 
5166   // Even non-volatile automatic variables can't be evaluated unconditionally.
5167   // Referencing a thread_local may cause non-trivial initialization work to
5168   // occur. If we're inside a lambda and one of the variables is from the scope
5169   // outside the lambda, that function may have returned already. Reading its
5170   // locals is a bad idea. Also, these reads may introduce races there didn't
5171   // exist in the source-level program.
5172 }
5173 
5174 
5175 Value *ScalarExprEmitter::
5176 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
5177   TestAndClearIgnoreResultAssign();
5178 
5179   // Bind the common expression if necessary.
5180   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
5181 
5182   Expr *condExpr = E->getCond();
5183   Expr *lhsExpr = E->getTrueExpr();
5184   Expr *rhsExpr = E->getFalseExpr();
5185 
5186   // If the condition constant folds and can be elided, try to avoid emitting
5187   // the condition and the dead arm.
5188   bool CondExprBool;
5189   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
5190     Expr *live = lhsExpr, *dead = rhsExpr;
5191     if (!CondExprBool) std::swap(live, dead);
5192 
5193     // If the dead side doesn't have labels we need, just emit the Live part.
5194     if (!CGF.ContainsLabel(dead)) {
5195       if (CondExprBool) {
5196         if (llvm::EnableSingleByteCoverage) {
5197           CGF.incrementProfileCounter(lhsExpr);
5198           CGF.incrementProfileCounter(rhsExpr);
5199         }
5200         CGF.incrementProfileCounter(E);
5201       }
5202       Value *Result = Visit(live);
5203 
5204       // If the live part is a throw expression, it acts like it has a void
5205       // type, so evaluating it returns a null Value*.  However, a conditional
5206       // with non-void type must return a non-null Value*.
5207       if (!Result && !E->getType()->isVoidType())
5208         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
5209 
5210       return Result;
5211     }
5212   }
5213 
5214   // OpenCL: If the condition is a vector, we can treat this condition like
5215   // the select function.
5216   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
5217       condExpr->getType()->isExtVectorType()) {
5218     CGF.incrementProfileCounter(E);
5219 
5220     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5221     llvm::Value *LHS = Visit(lhsExpr);
5222     llvm::Value *RHS = Visit(rhsExpr);
5223 
5224     llvm::Type *condType = ConvertType(condExpr->getType());
5225     auto *vecTy = cast<llvm::FixedVectorType>(condType);
5226 
5227     unsigned numElem = vecTy->getNumElements();
5228     llvm::Type *elemType = vecTy->getElementType();
5229 
5230     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
5231     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
5232     llvm::Value *tmp = Builder.CreateSExt(
5233         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
5234     llvm::Value *tmp2 = Builder.CreateNot(tmp);
5235 
5236     // Cast float to int to perform ANDs if necessary.
5237     llvm::Value *RHSTmp = RHS;
5238     llvm::Value *LHSTmp = LHS;
5239     bool wasCast = false;
5240     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
5241     if (rhsVTy->getElementType()->isFloatingPointTy()) {
5242       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
5243       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
5244       wasCast = true;
5245     }
5246 
5247     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
5248     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
5249     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
5250     if (wasCast)
5251       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
5252 
5253     return tmp5;
5254   }
5255 
5256   if (condExpr->getType()->isVectorType() ||
5257       condExpr->getType()->isSveVLSBuiltinType()) {
5258     CGF.incrementProfileCounter(E);
5259 
5260     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5261     llvm::Value *LHS = Visit(lhsExpr);
5262     llvm::Value *RHS = Visit(rhsExpr);
5263 
5264     llvm::Type *CondType = ConvertType(condExpr->getType());
5265     auto *VecTy = cast<llvm::VectorType>(CondType);
5266     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
5267 
5268     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
5269     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
5270   }
5271 
5272   // If this is a really simple expression (like x ? 4 : 5), emit this as a
5273   // select instead of as control flow.  We can only do this if it is cheap and
5274   // safe to evaluate the LHS and RHS unconditionally.
5275   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
5276       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
5277     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
5278     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
5279 
5280     if (llvm::EnableSingleByteCoverage) {
5281       CGF.incrementProfileCounter(lhsExpr);
5282       CGF.incrementProfileCounter(rhsExpr);
5283       CGF.incrementProfileCounter(E);
5284     } else
5285       CGF.incrementProfileCounter(E, StepV);
5286 
5287     llvm::Value *LHS = Visit(lhsExpr);
5288     llvm::Value *RHS = Visit(rhsExpr);
5289     if (!LHS) {
5290       // If the conditional has void type, make sure we return a null Value*.
5291       assert(!RHS && "LHS and RHS types must match");
5292       return nullptr;
5293     }
5294     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
5295   }
5296 
5297   // If the top of the logical operator nest, reset the MCDC temp to 0.
5298   if (CGF.MCDCLogOpStack.empty())
5299     CGF.maybeResetMCDCCondBitmap(condExpr);
5300 
5301   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
5302   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
5303   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
5304 
5305   CodeGenFunction::ConditionalEvaluation eval(CGF);
5306   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
5307                            CGF.getProfileCount(lhsExpr));
5308 
5309   CGF.EmitBlock(LHSBlock);
5310 
5311   // If the top of the logical operator nest, update the MCDC bitmap for the
5312   // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5313   // may also contain a boolean expression.
5314   if (CGF.MCDCLogOpStack.empty())
5315     CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5316 
5317   if (llvm::EnableSingleByteCoverage)
5318     CGF.incrementProfileCounter(lhsExpr);
5319   else
5320     CGF.incrementProfileCounter(E);
5321 
5322   eval.begin(CGF);
5323   Value *LHS = Visit(lhsExpr);
5324   eval.end(CGF);
5325 
5326   LHSBlock = Builder.GetInsertBlock();
5327   Builder.CreateBr(ContBlock);
5328 
5329   CGF.EmitBlock(RHSBlock);
5330 
5331   // If the top of the logical operator nest, update the MCDC bitmap for the
5332   // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5333   // may also contain a boolean expression.
5334   if (CGF.MCDCLogOpStack.empty())
5335     CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5336 
5337   if (llvm::EnableSingleByteCoverage)
5338     CGF.incrementProfileCounter(rhsExpr);
5339 
5340   eval.begin(CGF);
5341   Value *RHS = Visit(rhsExpr);
5342   eval.end(CGF);
5343 
5344   RHSBlock = Builder.GetInsertBlock();
5345   CGF.EmitBlock(ContBlock);
5346 
5347   // If the LHS or RHS is a throw expression, it will be legitimately null.
5348   if (!LHS)
5349     return RHS;
5350   if (!RHS)
5351     return LHS;
5352 
5353   // Create a PHI node for the real part.
5354   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
5355   PN->addIncoming(LHS, LHSBlock);
5356   PN->addIncoming(RHS, RHSBlock);
5357 
5358   // When single byte coverage mode is enabled, add a counter to continuation
5359   // block.
5360   if (llvm::EnableSingleByteCoverage)
5361     CGF.incrementProfileCounter(E);
5362 
5363   return PN;
5364 }
5365 
5366 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
5367   return Visit(E->getChosenSubExpr());
5368 }
5369 
5370 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
5371   QualType Ty = VE->getType();
5372 
5373   if (Ty->isVariablyModifiedType())
5374     CGF.EmitVariablyModifiedType(Ty);
5375 
5376   Address ArgValue = Address::invalid();
5377   RValue ArgPtr = CGF.EmitVAArg(VE, ArgValue);
5378 
5379   return ArgPtr.getScalarVal();
5380 }
5381 
5382 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
5383   return CGF.EmitBlockLiteral(block);
5384 }
5385 
5386 // Convert a vec3 to vec4, or vice versa.
5387 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
5388                                  Value *Src, unsigned NumElementsDst) {
5389   static constexpr int Mask[] = {0, 1, 2, -1};
5390   return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
5391 }
5392 
5393 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
5394 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
5395 // but could be scalar or vectors of different lengths, and either can be
5396 // pointer.
5397 // There are 4 cases:
5398 // 1. non-pointer -> non-pointer  : needs 1 bitcast
5399 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
5400 // 3. pointer -> non-pointer
5401 //   a) pointer -> intptr_t       : needs 1 ptrtoint
5402 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
5403 // 4. non-pointer -> pointer
5404 //   a) intptr_t -> pointer       : needs 1 inttoptr
5405 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
5406 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
5407 // allow casting directly between pointer types and non-integer non-pointer
5408 // types.
5409 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
5410                                            const llvm::DataLayout &DL,
5411                                            Value *Src, llvm::Type *DstTy,
5412                                            StringRef Name = "") {
5413   auto SrcTy = Src->getType();
5414 
5415   // Case 1.
5416   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
5417     return Builder.CreateBitCast(Src, DstTy, Name);
5418 
5419   // Case 2.
5420   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
5421     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
5422 
5423   // Case 3.
5424   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
5425     // Case 3b.
5426     if (!DstTy->isIntegerTy())
5427       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
5428     // Cases 3a and 3b.
5429     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
5430   }
5431 
5432   // Case 4b.
5433   if (!SrcTy->isIntegerTy())
5434     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
5435   // Cases 4a and 4b.
5436   return Builder.CreateIntToPtr(Src, DstTy, Name);
5437 }
5438 
5439 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
5440   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
5441   llvm::Type *DstTy = ConvertType(E->getType());
5442 
5443   llvm::Type *SrcTy = Src->getType();
5444   unsigned NumElementsSrc =
5445       isa<llvm::VectorType>(SrcTy)
5446           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
5447           : 0;
5448   unsigned NumElementsDst =
5449       isa<llvm::VectorType>(DstTy)
5450           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
5451           : 0;
5452 
5453   // Use bit vector expansion for ext_vector_type boolean vectors.
5454   if (E->getType()->isExtVectorBoolType())
5455     return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
5456 
5457   // Going from vec3 to non-vec3 is a special case and requires a shuffle
5458   // vector to get a vec4, then a bitcast if the target type is different.
5459   if (NumElementsSrc == 3 && NumElementsDst != 3) {
5460     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5461     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5462                                        DstTy);
5463 
5464     Src->setName("astype");
5465     return Src;
5466   }
5467 
5468   // Going from non-vec3 to vec3 is a special case and requires a bitcast
5469   // to vec4 if the original type is not vec4, then a shuffle vector to
5470   // get a vec3.
5471   if (NumElementsSrc != 3 && NumElementsDst == 3) {
5472     auto *Vec4Ty = llvm::FixedVectorType::get(
5473         cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5474     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5475                                        Vec4Ty);
5476 
5477     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5478     Src->setName("astype");
5479     return Src;
5480   }
5481 
5482   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5483                                       Src, DstTy, "astype");
5484 }
5485 
5486 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5487   return CGF.EmitAtomicExpr(E).getScalarVal();
5488 }
5489 
5490 //===----------------------------------------------------------------------===//
5491 //                         Entry Point into this File
5492 //===----------------------------------------------------------------------===//
5493 
5494 /// Emit the computation of the specified expression of scalar type, ignoring
5495 /// the result.
5496 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5497   assert(E && hasScalarEvaluationKind(E->getType()) &&
5498          "Invalid scalar expression to emit");
5499 
5500   return ScalarExprEmitter(*this, IgnoreResultAssign)
5501       .Visit(const_cast<Expr *>(E));
5502 }
5503 
5504 /// Emit a conversion from the specified type to the specified destination type,
5505 /// both of which are LLVM scalar types.
5506 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5507                                              QualType DstTy,
5508                                              SourceLocation Loc) {
5509   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5510          "Invalid scalar expression to emit");
5511   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5512 }
5513 
5514 /// Emit a conversion from the specified complex type to the specified
5515 /// destination type, where the destination type is an LLVM scalar type.
5516 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5517                                                       QualType SrcTy,
5518                                                       QualType DstTy,
5519                                                       SourceLocation Loc) {
5520   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5521          "Invalid complex -> scalar conversion");
5522   return ScalarExprEmitter(*this)
5523       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5524 }
5525 
5526 
5527 Value *
5528 CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5529                                         QualType PromotionType) {
5530   if (!PromotionType.isNull())
5531     return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5532   else
5533     return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5534 }
5535 
5536 
5537 llvm::Value *CodeGenFunction::
5538 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5539                         bool isInc, bool isPre) {
5540   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5541 }
5542 
5543 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5544   // object->isa or (*object).isa
5545   // Generate code as for: *(Class*)object
5546 
5547   Expr *BaseExpr = E->getBase();
5548   Address Addr = Address::invalid();
5549   if (BaseExpr->isPRValue()) {
5550     llvm::Type *BaseTy =
5551         ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
5552     Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5553   } else {
5554     Addr = EmitLValue(BaseExpr).getAddress();
5555   }
5556 
5557   // Cast the address to Class*.
5558   Addr = Addr.withElementType(ConvertType(E->getType()));
5559   return MakeAddrLValue(Addr, E->getType());
5560 }
5561 
5562 
5563 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5564                                             const CompoundAssignOperator *E) {
5565   ScalarExprEmitter Scalar(*this);
5566   Value *Result = nullptr;
5567   switch (E->getOpcode()) {
5568 #define COMPOUND_OP(Op)                                                       \
5569     case BO_##Op##Assign:                                                     \
5570       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5571                                              Result)
5572   COMPOUND_OP(Mul);
5573   COMPOUND_OP(Div);
5574   COMPOUND_OP(Rem);
5575   COMPOUND_OP(Add);
5576   COMPOUND_OP(Sub);
5577   COMPOUND_OP(Shl);
5578   COMPOUND_OP(Shr);
5579   COMPOUND_OP(And);
5580   COMPOUND_OP(Xor);
5581   COMPOUND_OP(Or);
5582 #undef COMPOUND_OP
5583 
5584   case BO_PtrMemD:
5585   case BO_PtrMemI:
5586   case BO_Mul:
5587   case BO_Div:
5588   case BO_Rem:
5589   case BO_Add:
5590   case BO_Sub:
5591   case BO_Shl:
5592   case BO_Shr:
5593   case BO_LT:
5594   case BO_GT:
5595   case BO_LE:
5596   case BO_GE:
5597   case BO_EQ:
5598   case BO_NE:
5599   case BO_Cmp:
5600   case BO_And:
5601   case BO_Xor:
5602   case BO_Or:
5603   case BO_LAnd:
5604   case BO_LOr:
5605   case BO_Assign:
5606   case BO_Comma:
5607     llvm_unreachable("Not valid compound assignment operators");
5608   }
5609 
5610   llvm_unreachable("Unhandled compound assignment operator");
5611 }
5612 
5613 struct GEPOffsetAndOverflow {
5614   // The total (signed) byte offset for the GEP.
5615   llvm::Value *TotalOffset;
5616   // The offset overflow flag - true if the total offset overflows.
5617   llvm::Value *OffsetOverflows;
5618 };
5619 
5620 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5621 /// and compute the total offset it applies from it's base pointer BasePtr.
5622 /// Returns offset in bytes and a boolean flag whether an overflow happened
5623 /// during evaluation.
5624 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5625                                                  llvm::LLVMContext &VMContext,
5626                                                  CodeGenModule &CGM,
5627                                                  CGBuilderTy &Builder) {
5628   const auto &DL = CGM.getDataLayout();
5629 
5630   // The total (signed) byte offset for the GEP.
5631   llvm::Value *TotalOffset = nullptr;
5632 
5633   // Was the GEP already reduced to a constant?
5634   if (isa<llvm::Constant>(GEPVal)) {
5635     // Compute the offset by casting both pointers to integers and subtracting:
5636     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5637     Value *BasePtr_int =
5638         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5639     Value *GEPVal_int =
5640         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5641     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5642     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5643   }
5644 
5645   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5646   assert(GEP->getPointerOperand() == BasePtr &&
5647          "BasePtr must be the base of the GEP.");
5648   assert(GEP->isInBounds() && "Expected inbounds GEP");
5649 
5650   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5651 
5652   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5653   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5654   auto *SAddIntrinsic =
5655       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5656   auto *SMulIntrinsic =
5657       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5658 
5659   // The offset overflow flag - true if the total offset overflows.
5660   llvm::Value *OffsetOverflows = Builder.getFalse();
5661 
5662   /// Return the result of the given binary operation.
5663   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5664                   llvm::Value *RHS) -> llvm::Value * {
5665     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5666 
5667     // If the operands are constants, return a constant result.
5668     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5669       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5670         llvm::APInt N;
5671         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5672                                                   /*Signed=*/true, N);
5673         if (HasOverflow)
5674           OffsetOverflows = Builder.getTrue();
5675         return llvm::ConstantInt::get(VMContext, N);
5676       }
5677     }
5678 
5679     // Otherwise, compute the result with checked arithmetic.
5680     auto *ResultAndOverflow = Builder.CreateCall(
5681         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5682     OffsetOverflows = Builder.CreateOr(
5683         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5684     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5685   };
5686 
5687   // Determine the total byte offset by looking at each GEP operand.
5688   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5689        GTI != GTE; ++GTI) {
5690     llvm::Value *LocalOffset;
5691     auto *Index = GTI.getOperand();
5692     // Compute the local offset contributed by this indexing step:
5693     if (auto *STy = GTI.getStructTypeOrNull()) {
5694       // For struct indexing, the local offset is the byte position of the
5695       // specified field.
5696       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5697       LocalOffset = llvm::ConstantInt::get(
5698           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5699     } else {
5700       // Otherwise this is array-like indexing. The local offset is the index
5701       // multiplied by the element size.
5702       auto *ElementSize =
5703           llvm::ConstantInt::get(IntPtrTy, GTI.getSequentialElementStride(DL));
5704       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5705       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5706     }
5707 
5708     // If this is the first offset, set it as the total offset. Otherwise, add
5709     // the local offset into the running total.
5710     if (!TotalOffset || TotalOffset == Zero)
5711       TotalOffset = LocalOffset;
5712     else
5713       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5714   }
5715 
5716   return {TotalOffset, OffsetOverflows};
5717 }
5718 
5719 Value *
5720 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5721                                         ArrayRef<Value *> IdxList,
5722                                         bool SignedIndices, bool IsSubtraction,
5723                                         SourceLocation Loc, const Twine &Name) {
5724   llvm::Type *PtrTy = Ptr->getType();
5725   Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5726 
5727   // If the pointer overflow sanitizer isn't enabled, do nothing.
5728   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5729     return GEPVal;
5730 
5731   // Perform nullptr-and-offset check unless the nullptr is defined.
5732   bool PerformNullCheck = !NullPointerIsDefined(
5733       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5734   // Check for overflows unless the GEP got constant-folded,
5735   // and only in the default address space
5736   bool PerformOverflowCheck =
5737       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5738 
5739   if (!(PerformNullCheck || PerformOverflowCheck))
5740     return GEPVal;
5741 
5742   const auto &DL = CGM.getDataLayout();
5743 
5744   SanitizerScope SanScope(this);
5745   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5746 
5747   GEPOffsetAndOverflow EvaluatedGEP =
5748       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5749 
5750   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5751           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5752          "If the offset got constant-folded, we don't expect that there was an "
5753          "overflow.");
5754 
5755   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5756 
5757   // Common case: if the total offset is zero, and we are using C++ semantics,
5758   // where nullptr+0 is defined, don't emit a check.
5759   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5760     return GEPVal;
5761 
5762   // Now that we've computed the total offset, add it to the base pointer (with
5763   // wrapping semantics).
5764   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5765   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5766 
5767   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5768 
5769   if (PerformNullCheck) {
5770     // In C++, if the base pointer evaluates to a null pointer value,
5771     // the only valid  pointer this inbounds GEP can produce is also
5772     // a null pointer, so the offset must also evaluate to zero.
5773     // Likewise, if we have non-zero base pointer, we can not get null pointer
5774     // as a result, so the offset can not be -intptr_t(BasePtr).
5775     // In other words, both pointers are either null, or both are non-null,
5776     // or the behaviour is undefined.
5777     //
5778     // C, however, is more strict in this regard, and gives more
5779     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5780     // So both the input to the 'gep inbounds' AND the output must not be null.
5781     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5782     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5783     auto *Valid =
5784         CGM.getLangOpts().CPlusPlus
5785             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5786             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5787     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5788   }
5789 
5790   if (PerformOverflowCheck) {
5791     // The GEP is valid if:
5792     // 1) The total offset doesn't overflow, and
5793     // 2) The sign of the difference between the computed address and the base
5794     // pointer matches the sign of the total offset.
5795     llvm::Value *ValidGEP;
5796     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5797     if (SignedIndices) {
5798       // GEP is computed as `unsigned base + signed offset`, therefore:
5799       // * If offset was positive, then the computed pointer can not be
5800       //   [unsigned] less than the base pointer, unless it overflowed.
5801       // * If offset was negative, then the computed pointer can not be
5802       //   [unsigned] greater than the bas pointere, unless it overflowed.
5803       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5804       auto *PosOrZeroOffset =
5805           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5806       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5807       ValidGEP =
5808           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5809     } else if (!IsSubtraction) {
5810       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5811       // computed pointer can not be [unsigned] less than base pointer,
5812       // unless there was an overflow.
5813       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5814       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5815     } else {
5816       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5817       // computed pointer can not be [unsigned] greater than base pointer,
5818       // unless there was an overflow.
5819       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5820       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5821     }
5822     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5823     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5824   }
5825 
5826   assert(!Checks.empty() && "Should have produced some checks.");
5827 
5828   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5829   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5830   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5831   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5832 
5833   return GEPVal;
5834 }
5835 
5836 Address CodeGenFunction::EmitCheckedInBoundsGEP(
5837     Address Addr, ArrayRef<Value *> IdxList, llvm::Type *elementType,
5838     bool SignedIndices, bool IsSubtraction, SourceLocation Loc, CharUnits Align,
5839     const Twine &Name) {
5840   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5841     return Builder.CreateInBoundsGEP(Addr, IdxList, elementType, Align, Name);
5842 
5843   return RawAddress(
5844       EmitCheckedInBoundsGEP(Addr.getElementType(), Addr.emitRawPointer(*this),
5845                              IdxList, SignedIndices, IsSubtraction, Loc, Name),
5846       elementType, Align);
5847 }
5848