1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/Support/TypeSize.h" 44 #include <cstdarg> 45 #include <optional> 46 47 using namespace clang; 48 using namespace CodeGen; 49 using llvm::Value; 50 51 //===----------------------------------------------------------------------===// 52 // Scalar Expression Emitter 53 //===----------------------------------------------------------------------===// 54 55 namespace { 56 57 /// Determine whether the given binary operation may overflow. 58 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 59 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 60 /// the returned overflow check is precise. The returned value is 'true' for 61 /// all other opcodes, to be conservative. 62 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 63 BinaryOperator::Opcode Opcode, bool Signed, 64 llvm::APInt &Result) { 65 // Assume overflow is possible, unless we can prove otherwise. 66 bool Overflow = true; 67 const auto &LHSAP = LHS->getValue(); 68 const auto &RHSAP = RHS->getValue(); 69 if (Opcode == BO_Add) { 70 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow) 71 : LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow) 74 : LHSAP.usub_ov(RHSAP, Overflow); 75 } else if (Opcode == BO_Mul) { 76 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow) 77 : LHSAP.umul_ov(RHSAP, Overflow); 78 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 79 if (Signed && !RHS->isZero()) 80 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 81 else 82 return false; 83 } 84 return Overflow; 85 } 86 87 struct BinOpInfo { 88 Value *LHS; 89 Value *RHS; 90 QualType Ty; // Computation Type. 91 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 92 FPOptions FPFeatures; 93 const Expr *E; // Entire expr, for error unsupported. May not be binop. 94 95 /// Check if the binop can result in integer overflow. 96 bool mayHaveIntegerOverflow() const { 97 // Without constant input, we can't rule out overflow. 98 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 99 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 100 if (!LHSCI || !RHSCI) 101 return true; 102 103 llvm::APInt Result; 104 return ::mayHaveIntegerOverflow( 105 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 106 } 107 108 /// Check if the binop computes a division or a remainder. 109 bool isDivremOp() const { 110 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 111 Opcode == BO_RemAssign; 112 } 113 114 /// Check if the binop can result in an integer division by zero. 115 bool mayHaveIntegerDivisionByZero() const { 116 if (isDivremOp()) 117 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 118 return CI->isZero(); 119 return true; 120 } 121 122 /// Check if the binop can result in a float division by zero. 123 bool mayHaveFloatDivisionByZero() const { 124 if (isDivremOp()) 125 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 126 return CFP->isZero(); 127 return true; 128 } 129 130 /// Check if at least one operand is a fixed point type. In such cases, this 131 /// operation did not follow usual arithmetic conversion and both operands 132 /// might not be of the same type. 133 bool isFixedPointOp() const { 134 // We cannot simply check the result type since comparison operations return 135 // an int. 136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 137 QualType LHSType = BinOp->getLHS()->getType(); 138 QualType RHSType = BinOp->getRHS()->getType(); 139 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 140 } 141 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 142 return UnOp->getSubExpr()->getType()->isFixedPointType(); 143 return false; 144 } 145 }; 146 147 static bool MustVisitNullValue(const Expr *E) { 148 // If a null pointer expression's type is the C++0x nullptr_t, then 149 // it's not necessarily a simple constant and it must be evaluated 150 // for its potential side effects. 151 return E->getType()->isNullPtrType(); 152 } 153 154 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 155 static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 156 const Expr *E) { 157 const Expr *Base = E->IgnoreImpCasts(); 158 if (E == Base) 159 return std::nullopt; 160 161 QualType BaseTy = Base->getType(); 162 if (!Ctx.isPromotableIntegerType(BaseTy) || 163 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 164 return std::nullopt; 165 166 return BaseTy; 167 } 168 169 /// Check if \p E is a widened promoted integer. 170 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 171 return getUnwidenedIntegerType(Ctx, E).has_value(); 172 } 173 174 /// Check if we can skip the overflow check for \p Op. 175 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 176 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 177 "Expected a unary or binary operator"); 178 179 // If the binop has constant inputs and we can prove there is no overflow, 180 // we can elide the overflow check. 181 if (!Op.mayHaveIntegerOverflow()) 182 return true; 183 184 // If a unary op has a widened operand, the op cannot overflow. 185 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 186 return !UO->canOverflow(); 187 188 // We usually don't need overflow checks for binops with widened operands. 189 // Multiplication with promoted unsigned operands is a special case. 190 const auto *BO = cast<BinaryOperator>(Op.E); 191 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 192 if (!OptionalLHSTy) 193 return false; 194 195 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 196 if (!OptionalRHSTy) 197 return false; 198 199 QualType LHSTy = *OptionalLHSTy; 200 QualType RHSTy = *OptionalRHSTy; 201 202 // This is the simple case: binops without unsigned multiplication, and with 203 // widened operands. No overflow check is needed here. 204 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 205 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 206 return true; 207 208 // For unsigned multiplication the overflow check can be elided if either one 209 // of the unpromoted types are less than half the size of the promoted type. 210 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 211 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 212 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 213 } 214 215 class ScalarExprEmitter 216 : public StmtVisitor<ScalarExprEmitter, Value*> { 217 CodeGenFunction &CGF; 218 CGBuilderTy &Builder; 219 bool IgnoreResultAssign; 220 llvm::LLVMContext &VMContext; 221 public: 222 223 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 224 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 225 VMContext(cgf.getLLVMContext()) { 226 } 227 228 //===--------------------------------------------------------------------===// 229 // Utilities 230 //===--------------------------------------------------------------------===// 231 232 bool TestAndClearIgnoreResultAssign() { 233 bool I = IgnoreResultAssign; 234 IgnoreResultAssign = false; 235 return I; 236 } 237 238 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 239 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 240 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 241 return CGF.EmitCheckedLValue(E, TCK); 242 } 243 244 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 245 const BinOpInfo &Info); 246 247 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 248 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 249 } 250 251 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 252 const AlignValueAttr *AVAttr = nullptr; 253 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 254 const ValueDecl *VD = DRE->getDecl(); 255 256 if (VD->getType()->isReferenceType()) { 257 if (const auto *TTy = 258 VD->getType().getNonReferenceType()->getAs<TypedefType>()) 259 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 260 } else { 261 // Assumptions for function parameters are emitted at the start of the 262 // function, so there is no need to repeat that here, 263 // unless the alignment-assumption sanitizer is enabled, 264 // then we prefer the assumption over alignment attribute 265 // on IR function param. 266 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 267 return; 268 269 AVAttr = VD->getAttr<AlignValueAttr>(); 270 } 271 } 272 273 if (!AVAttr) 274 if (const auto *TTy = E->getType()->getAs<TypedefType>()) 275 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 276 277 if (!AVAttr) 278 return; 279 280 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 281 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 282 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 283 } 284 285 /// EmitLoadOfLValue - Given an expression with complex type that represents a 286 /// value l-value, this method emits the address of the l-value, then loads 287 /// and returns the result. 288 Value *EmitLoadOfLValue(const Expr *E) { 289 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 290 E->getExprLoc()); 291 292 EmitLValueAlignmentAssumption(E, V); 293 return V; 294 } 295 296 /// EmitConversionToBool - Convert the specified expression value to a 297 /// boolean (i1) truth value. This is equivalent to "Val != 0". 298 Value *EmitConversionToBool(Value *Src, QualType DstTy); 299 300 /// Emit a check that a conversion from a floating-point type does not 301 /// overflow. 302 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 303 Value *Src, QualType SrcType, QualType DstType, 304 llvm::Type *DstTy, SourceLocation Loc); 305 306 /// Known implicit conversion check kinds. 307 /// Keep in sync with the enum of the same name in ubsan_handlers.h 308 enum ImplicitConversionCheckKind : unsigned char { 309 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 310 ICCK_UnsignedIntegerTruncation = 1, 311 ICCK_SignedIntegerTruncation = 2, 312 ICCK_IntegerSignChange = 3, 313 ICCK_SignedIntegerTruncationOrSignChange = 4, 314 }; 315 316 /// Emit a check that an [implicit] truncation of an integer does not 317 /// discard any bits. It is not UB, so we use the value after truncation. 318 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 319 QualType DstType, SourceLocation Loc); 320 321 /// Emit a check that an [implicit] conversion of an integer does not change 322 /// the sign of the value. It is not UB, so we use the value after conversion. 323 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 324 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 325 QualType DstType, SourceLocation Loc); 326 327 /// Emit a conversion from the specified type to the specified destination 328 /// type, both of which are LLVM scalar types. 329 struct ScalarConversionOpts { 330 bool TreatBooleanAsSigned; 331 bool EmitImplicitIntegerTruncationChecks; 332 bool EmitImplicitIntegerSignChangeChecks; 333 334 ScalarConversionOpts() 335 : TreatBooleanAsSigned(false), 336 EmitImplicitIntegerTruncationChecks(false), 337 EmitImplicitIntegerSignChangeChecks(false) {} 338 339 ScalarConversionOpts(clang::SanitizerSet SanOpts) 340 : TreatBooleanAsSigned(false), 341 EmitImplicitIntegerTruncationChecks( 342 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 343 EmitImplicitIntegerSignChangeChecks( 344 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 345 }; 346 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, 347 llvm::Type *SrcTy, llvm::Type *DstTy, 348 ScalarConversionOpts Opts); 349 Value * 350 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 351 SourceLocation Loc, 352 ScalarConversionOpts Opts = ScalarConversionOpts()); 353 354 /// Convert between either a fixed point and other fixed point or fixed point 355 /// and an integer. 356 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 357 SourceLocation Loc); 358 359 /// Emit a conversion from the specified complex type to the specified 360 /// destination type, where the destination type is an LLVM scalar type. 361 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 362 QualType SrcTy, QualType DstTy, 363 SourceLocation Loc); 364 365 /// EmitNullValue - Emit a value that corresponds to null for the given type. 366 Value *EmitNullValue(QualType Ty); 367 368 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 369 Value *EmitFloatToBoolConversion(Value *V) { 370 // Compare against 0.0 for fp scalars. 371 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 372 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 373 } 374 375 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 376 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 377 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 378 379 return Builder.CreateICmpNE(V, Zero, "tobool"); 380 } 381 382 Value *EmitIntToBoolConversion(Value *V) { 383 // Because of the type rules of C, we often end up computing a 384 // logical value, then zero extending it to int, then wanting it 385 // as a logical value again. Optimize this common case. 386 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 387 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 388 Value *Result = ZI->getOperand(0); 389 // If there aren't any more uses, zap the instruction to save space. 390 // Note that there can be more uses, for example if this 391 // is the result of an assignment. 392 if (ZI->use_empty()) 393 ZI->eraseFromParent(); 394 return Result; 395 } 396 } 397 398 return Builder.CreateIsNotNull(V, "tobool"); 399 } 400 401 //===--------------------------------------------------------------------===// 402 // Visitor Methods 403 //===--------------------------------------------------------------------===// 404 405 Value *Visit(Expr *E) { 406 ApplyDebugLocation DL(CGF, E); 407 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 408 } 409 410 Value *VisitStmt(Stmt *S) { 411 S->dump(llvm::errs(), CGF.getContext()); 412 llvm_unreachable("Stmt can't have complex result type!"); 413 } 414 Value *VisitExpr(Expr *S); 415 416 Value *VisitConstantExpr(ConstantExpr *E) { 417 // A constant expression of type 'void' generates no code and produces no 418 // value. 419 if (E->getType()->isVoidType()) 420 return nullptr; 421 422 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 423 if (E->isGLValue()) 424 return CGF.Builder.CreateLoad(Address( 425 Result, CGF.ConvertTypeForMem(E->getType()), 426 CGF.getContext().getTypeAlignInChars(E->getType()))); 427 return Result; 428 } 429 return Visit(E->getSubExpr()); 430 } 431 Value *VisitParenExpr(ParenExpr *PE) { 432 return Visit(PE->getSubExpr()); 433 } 434 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 435 return Visit(E->getReplacement()); 436 } 437 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 438 return Visit(GE->getResultExpr()); 439 } 440 Value *VisitCoawaitExpr(CoawaitExpr *S) { 441 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 442 } 443 Value *VisitCoyieldExpr(CoyieldExpr *S) { 444 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 445 } 446 Value *VisitUnaryCoawait(const UnaryOperator *E) { 447 return Visit(E->getSubExpr()); 448 } 449 450 // Leaves. 451 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 452 return Builder.getInt(E->getValue()); 453 } 454 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 455 return Builder.getInt(E->getValue()); 456 } 457 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 458 return llvm::ConstantFP::get(VMContext, E->getValue()); 459 } 460 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 461 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 462 } 463 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 464 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 465 } 466 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 467 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 468 } 469 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 470 if (E->getType()->isVoidType()) 471 return nullptr; 472 473 return EmitNullValue(E->getType()); 474 } 475 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 476 return EmitNullValue(E->getType()); 477 } 478 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 479 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 480 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 481 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 482 return Builder.CreateBitCast(V, ConvertType(E->getType())); 483 } 484 485 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 486 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 487 } 488 489 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 490 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 491 } 492 493 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); 494 495 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 496 if (E->isGLValue()) 497 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 498 E->getExprLoc()); 499 500 // Otherwise, assume the mapping is the scalar directly. 501 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 502 } 503 504 // l-values. 505 Value *VisitDeclRefExpr(DeclRefExpr *E) { 506 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 507 return CGF.emitScalarConstant(Constant, E); 508 return EmitLoadOfLValue(E); 509 } 510 511 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 512 return CGF.EmitObjCSelectorExpr(E); 513 } 514 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 515 return CGF.EmitObjCProtocolExpr(E); 516 } 517 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 518 return EmitLoadOfLValue(E); 519 } 520 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 521 if (E->getMethodDecl() && 522 E->getMethodDecl()->getReturnType()->isReferenceType()) 523 return EmitLoadOfLValue(E); 524 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 525 } 526 527 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 528 LValue LV = CGF.EmitObjCIsaExpr(E); 529 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 530 return V; 531 } 532 533 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 534 VersionTuple Version = E->getVersion(); 535 536 // If we're checking for a platform older than our minimum deployment 537 // target, we can fold the check away. 538 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 539 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 540 541 return CGF.EmitBuiltinAvailable(Version); 542 } 543 544 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 545 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 546 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 547 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 548 Value *VisitMemberExpr(MemberExpr *E); 549 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 550 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 551 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 552 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 553 // literals aren't l-values in C++. We do so simply because that's the 554 // cleanest way to handle compound literals in C++. 555 // See the discussion here: https://reviews.llvm.org/D64464 556 return EmitLoadOfLValue(E); 557 } 558 559 Value *VisitInitListExpr(InitListExpr *E); 560 561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 562 assert(CGF.getArrayInitIndex() && 563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 564 return CGF.getArrayInitIndex(); 565 } 566 567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 568 return EmitNullValue(E->getType()); 569 } 570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 571 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 572 return VisitCastExpr(E); 573 } 574 Value *VisitCastExpr(CastExpr *E); 575 576 Value *VisitCallExpr(const CallExpr *E) { 577 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 578 return EmitLoadOfLValue(E); 579 580 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 581 582 EmitLValueAlignmentAssumption(E, V); 583 return V; 584 } 585 586 Value *VisitStmtExpr(const StmtExpr *E); 587 588 // Unary Operators. 589 Value *VisitUnaryPostDec(const UnaryOperator *E) { 590 LValue LV = EmitLValue(E->getSubExpr()); 591 return EmitScalarPrePostIncDec(E, LV, false, false); 592 } 593 Value *VisitUnaryPostInc(const UnaryOperator *E) { 594 LValue LV = EmitLValue(E->getSubExpr()); 595 return EmitScalarPrePostIncDec(E, LV, true, false); 596 } 597 Value *VisitUnaryPreDec(const UnaryOperator *E) { 598 LValue LV = EmitLValue(E->getSubExpr()); 599 return EmitScalarPrePostIncDec(E, LV, false, true); 600 } 601 Value *VisitUnaryPreInc(const UnaryOperator *E) { 602 LValue LV = EmitLValue(E->getSubExpr()); 603 return EmitScalarPrePostIncDec(E, LV, true, true); 604 } 605 606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 607 llvm::Value *InVal, 608 bool IsInc); 609 610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 611 bool isInc, bool isPre); 612 613 614 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 615 if (isa<MemberPointerType>(E->getType())) // never sugared 616 return CGF.CGM.getMemberPointerConstant(E); 617 618 return EmitLValue(E->getSubExpr()).getPointer(CGF); 619 } 620 Value *VisitUnaryDeref(const UnaryOperator *E) { 621 if (E->getType()->isVoidType()) 622 return Visit(E->getSubExpr()); // the actual value should be unused 623 return EmitLoadOfLValue(E); 624 } 625 626 Value *VisitUnaryPlus(const UnaryOperator *E, 627 QualType PromotionType = QualType()); 628 Value *VisitPlus(const UnaryOperator *E, QualType PromotionType); 629 Value *VisitUnaryMinus(const UnaryOperator *E, 630 QualType PromotionType = QualType()); 631 Value *VisitMinus(const UnaryOperator *E, QualType PromotionType); 632 633 Value *VisitUnaryNot (const UnaryOperator *E); 634 Value *VisitUnaryLNot (const UnaryOperator *E); 635 Value *VisitUnaryReal(const UnaryOperator *E, 636 QualType PromotionType = QualType()); 637 Value *VisitReal(const UnaryOperator *E, QualType PromotionType); 638 Value *VisitUnaryImag(const UnaryOperator *E, 639 QualType PromotionType = QualType()); 640 Value *VisitImag(const UnaryOperator *E, QualType PromotionType); 641 Value *VisitUnaryExtension(const UnaryOperator *E) { 642 return Visit(E->getSubExpr()); 643 } 644 645 // C++ 646 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 647 return EmitLoadOfLValue(E); 648 } 649 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 650 auto &Ctx = CGF.getContext(); 651 APValue Evaluated = 652 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 653 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 654 SLE->getType()); 655 } 656 657 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 658 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 659 return Visit(DAE->getExpr()); 660 } 661 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 662 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 663 return Visit(DIE->getExpr()); 664 } 665 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 666 return CGF.LoadCXXThis(); 667 } 668 669 Value *VisitExprWithCleanups(ExprWithCleanups *E); 670 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 671 return CGF.EmitCXXNewExpr(E); 672 } 673 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 674 CGF.EmitCXXDeleteExpr(E); 675 return nullptr; 676 } 677 678 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 679 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 680 } 681 682 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 683 return Builder.getInt1(E->isSatisfied()); 684 } 685 686 Value *VisitRequiresExpr(const RequiresExpr *E) { 687 return Builder.getInt1(E->isSatisfied()); 688 } 689 690 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 691 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 692 } 693 694 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 695 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 696 } 697 698 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 699 // C++ [expr.pseudo]p1: 700 // The result shall only be used as the operand for the function call 701 // operator (), and the result of such a call has type void. The only 702 // effect is the evaluation of the postfix-expression before the dot or 703 // arrow. 704 CGF.EmitScalarExpr(E->getBase()); 705 return nullptr; 706 } 707 708 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 709 return EmitNullValue(E->getType()); 710 } 711 712 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 713 CGF.EmitCXXThrowExpr(E); 714 return nullptr; 715 } 716 717 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 718 return Builder.getInt1(E->getValue()); 719 } 720 721 // Binary Operators. 722 Value *EmitMul(const BinOpInfo &Ops) { 723 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 724 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 725 case LangOptions::SOB_Defined: 726 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 727 case LangOptions::SOB_Undefined: 728 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 729 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 730 [[fallthrough]]; 731 case LangOptions::SOB_Trapping: 732 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 733 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 734 return EmitOverflowCheckedBinOp(Ops); 735 } 736 } 737 738 if (Ops.Ty->isConstantMatrixType()) { 739 llvm::MatrixBuilder MB(Builder); 740 // We need to check the types of the operands of the operator to get the 741 // correct matrix dimensions. 742 auto *BO = cast<BinaryOperator>(Ops.E); 743 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 744 BO->getLHS()->getType().getCanonicalType()); 745 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 746 BO->getRHS()->getType().getCanonicalType()); 747 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 748 if (LHSMatTy && RHSMatTy) 749 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 750 LHSMatTy->getNumColumns(), 751 RHSMatTy->getNumColumns()); 752 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 753 } 754 755 if (Ops.Ty->isUnsignedIntegerType() && 756 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 757 !CanElideOverflowCheck(CGF.getContext(), Ops)) 758 return EmitOverflowCheckedBinOp(Ops); 759 760 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 761 // Preserve the old values 762 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 763 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 764 } 765 if (Ops.isFixedPointOp()) 766 return EmitFixedPointBinOp(Ops); 767 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 768 } 769 /// Create a binary op that checks for overflow. 770 /// Currently only supports +, - and *. 771 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 772 773 // Check for undefined division and modulus behaviors. 774 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 775 llvm::Value *Zero,bool isDiv); 776 // Common helper for getting how wide LHS of shift is. 777 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 778 779 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 780 // non powers of two. 781 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 782 783 Value *EmitDiv(const BinOpInfo &Ops); 784 Value *EmitRem(const BinOpInfo &Ops); 785 Value *EmitAdd(const BinOpInfo &Ops); 786 Value *EmitSub(const BinOpInfo &Ops); 787 Value *EmitShl(const BinOpInfo &Ops); 788 Value *EmitShr(const BinOpInfo &Ops); 789 Value *EmitAnd(const BinOpInfo &Ops) { 790 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 791 } 792 Value *EmitXor(const BinOpInfo &Ops) { 793 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 794 } 795 Value *EmitOr (const BinOpInfo &Ops) { 796 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 797 } 798 799 // Helper functions for fixed point binary operations. 800 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 801 802 BinOpInfo EmitBinOps(const BinaryOperator *E, 803 QualType PromotionTy = QualType()); 804 805 Value *EmitPromotedValue(Value *result, QualType PromotionType); 806 Value *EmitUnPromotedValue(Value *result, QualType ExprType); 807 Value *EmitPromoted(const Expr *E, QualType PromotionType); 808 809 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 810 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 811 Value *&Result); 812 813 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 814 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 815 816 QualType getPromotionType(QualType Ty) { 817 const auto &Ctx = CGF.getContext(); 818 if (auto *CT = Ty->getAs<ComplexType>()) { 819 QualType ElementType = CT->getElementType(); 820 if (ElementType.UseExcessPrecision(Ctx)) 821 return Ctx.getComplexType(Ctx.FloatTy); 822 } 823 824 if (Ty.UseExcessPrecision(Ctx)) { 825 if (auto *VT = Ty->getAs<VectorType>()) { 826 unsigned NumElements = VT->getNumElements(); 827 return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind()); 828 } 829 return Ctx.FloatTy; 830 } 831 832 return QualType(); 833 } 834 835 // Binary operators and binary compound assignment operators. 836 #define HANDLEBINOP(OP) \ 837 Value *VisitBin##OP(const BinaryOperator *E) { \ 838 QualType promotionTy = getPromotionType(E->getType()); \ 839 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \ 840 if (result && !promotionTy.isNull()) \ 841 result = EmitUnPromotedValue(result, E->getType()); \ 842 return result; \ 843 } \ 844 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \ 845 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \ 846 } 847 HANDLEBINOP(Mul) 848 HANDLEBINOP(Div) 849 HANDLEBINOP(Rem) 850 HANDLEBINOP(Add) 851 HANDLEBINOP(Sub) 852 HANDLEBINOP(Shl) 853 HANDLEBINOP(Shr) 854 HANDLEBINOP(And) 855 HANDLEBINOP(Xor) 856 HANDLEBINOP(Or) 857 #undef HANDLEBINOP 858 859 // Comparisons. 860 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 861 llvm::CmpInst::Predicate SICmpOpc, 862 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 863 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 864 Value *VisitBin##CODE(const BinaryOperator *E) { \ 865 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 866 llvm::FCmpInst::FP, SIG); } 867 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 868 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 869 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 870 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 871 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 872 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 873 #undef VISITCOMP 874 875 Value *VisitBinAssign (const BinaryOperator *E); 876 877 Value *VisitBinLAnd (const BinaryOperator *E); 878 Value *VisitBinLOr (const BinaryOperator *E); 879 Value *VisitBinComma (const BinaryOperator *E); 880 881 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 882 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 883 884 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 885 return Visit(E->getSemanticForm()); 886 } 887 888 // Other Operators. 889 Value *VisitBlockExpr(const BlockExpr *BE); 890 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 891 Value *VisitChooseExpr(ChooseExpr *CE); 892 Value *VisitVAArgExpr(VAArgExpr *VE); 893 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 894 return CGF.EmitObjCStringLiteral(E); 895 } 896 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 897 return CGF.EmitObjCBoxedExpr(E); 898 } 899 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 900 return CGF.EmitObjCArrayLiteral(E); 901 } 902 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 903 return CGF.EmitObjCDictionaryLiteral(E); 904 } 905 Value *VisitAsTypeExpr(AsTypeExpr *CE); 906 Value *VisitAtomicExpr(AtomicExpr *AE); 907 }; 908 } // end anonymous namespace. 909 910 //===----------------------------------------------------------------------===// 911 // Utilities 912 //===----------------------------------------------------------------------===// 913 914 /// EmitConversionToBool - Convert the specified expression value to a 915 /// boolean (i1) truth value. This is equivalent to "Val != 0". 916 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 917 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 918 919 if (SrcType->isRealFloatingType()) 920 return EmitFloatToBoolConversion(Src); 921 922 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 923 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 924 925 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 926 "Unknown scalar type to convert"); 927 928 if (isa<llvm::IntegerType>(Src->getType())) 929 return EmitIntToBoolConversion(Src); 930 931 assert(isa<llvm::PointerType>(Src->getType())); 932 return EmitPointerToBoolConversion(Src, SrcType); 933 } 934 935 void ScalarExprEmitter::EmitFloatConversionCheck( 936 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 937 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 938 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 939 if (!isa<llvm::IntegerType>(DstTy)) 940 return; 941 942 CodeGenFunction::SanitizerScope SanScope(&CGF); 943 using llvm::APFloat; 944 using llvm::APSInt; 945 946 llvm::Value *Check = nullptr; 947 const llvm::fltSemantics &SrcSema = 948 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 949 950 // Floating-point to integer. This has undefined behavior if the source is 951 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 952 // to an integer). 953 unsigned Width = CGF.getContext().getIntWidth(DstType); 954 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 955 956 APSInt Min = APSInt::getMinValue(Width, Unsigned); 957 APFloat MinSrc(SrcSema, APFloat::uninitialized); 958 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 959 APFloat::opOverflow) 960 // Don't need an overflow check for lower bound. Just check for 961 // -Inf/NaN. 962 MinSrc = APFloat::getInf(SrcSema, true); 963 else 964 // Find the largest value which is too small to represent (before 965 // truncation toward zero). 966 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 967 968 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 969 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 970 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 971 APFloat::opOverflow) 972 // Don't need an overflow check for upper bound. Just check for 973 // +Inf/NaN. 974 MaxSrc = APFloat::getInf(SrcSema, false); 975 else 976 // Find the smallest value which is too large to represent (before 977 // truncation toward zero). 978 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 979 980 // If we're converting from __half, convert the range to float to match 981 // the type of src. 982 if (OrigSrcType->isHalfType()) { 983 const llvm::fltSemantics &Sema = 984 CGF.getContext().getFloatTypeSemantics(SrcType); 985 bool IsInexact; 986 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 987 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 988 } 989 990 llvm::Value *GE = 991 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 992 llvm::Value *LE = 993 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 994 Check = Builder.CreateAnd(GE, LE); 995 996 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 997 CGF.EmitCheckTypeDescriptor(OrigSrcType), 998 CGF.EmitCheckTypeDescriptor(DstType)}; 999 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 1000 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 1001 } 1002 1003 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1004 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 1005 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1006 std::pair<llvm::Value *, SanitizerMask>> 1007 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1008 QualType DstType, CGBuilderTy &Builder) { 1009 llvm::Type *SrcTy = Src->getType(); 1010 llvm::Type *DstTy = Dst->getType(); 1011 (void)DstTy; // Only used in assert() 1012 1013 // This should be truncation of integral types. 1014 assert(Src != Dst); 1015 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 1016 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1017 "non-integer llvm type"); 1018 1019 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1020 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1021 1022 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 1023 // Else, it is a signed truncation. 1024 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 1025 SanitizerMask Mask; 1026 if (!SrcSigned && !DstSigned) { 1027 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 1028 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 1029 } else { 1030 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 1031 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 1032 } 1033 1034 llvm::Value *Check = nullptr; 1035 // 1. Extend the truncated value back to the same width as the Src. 1036 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 1037 // 2. Equality-compare with the original source value 1038 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1039 // If the comparison result is 'i1 false', then the truncation was lossy. 1040 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1041 } 1042 1043 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1044 QualType SrcType, QualType DstType) { 1045 return SrcType->isIntegerType() && DstType->isIntegerType(); 1046 } 1047 1048 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1049 Value *Dst, QualType DstType, 1050 SourceLocation Loc) { 1051 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1052 return; 1053 1054 // We only care about int->int conversions here. 1055 // We ignore conversions to/from pointer and/or bool. 1056 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1057 DstType)) 1058 return; 1059 1060 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1061 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1062 // This must be truncation. Else we do not care. 1063 if (SrcBits <= DstBits) 1064 return; 1065 1066 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1067 1068 // If the integer sign change sanitizer is enabled, 1069 // and we are truncating from larger unsigned type to smaller signed type, 1070 // let that next sanitizer deal with it. 1071 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1072 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1073 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1074 (!SrcSigned && DstSigned)) 1075 return; 1076 1077 CodeGenFunction::SanitizerScope SanScope(&CGF); 1078 1079 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1080 std::pair<llvm::Value *, SanitizerMask>> 1081 Check = 1082 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1083 // If the comparison result is 'i1 false', then the truncation was lossy. 1084 1085 // Do we care about this type of truncation? 1086 if (!CGF.SanOpts.has(Check.second.second)) 1087 return; 1088 1089 llvm::Constant *StaticArgs[] = { 1090 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1091 CGF.EmitCheckTypeDescriptor(DstType), 1092 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1093 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1094 {Src, Dst}); 1095 } 1096 1097 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1098 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1099 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1100 std::pair<llvm::Value *, SanitizerMask>> 1101 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1102 QualType DstType, CGBuilderTy &Builder) { 1103 llvm::Type *SrcTy = Src->getType(); 1104 llvm::Type *DstTy = Dst->getType(); 1105 1106 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1107 "non-integer llvm type"); 1108 1109 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1110 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1111 (void)SrcSigned; // Only used in assert() 1112 (void)DstSigned; // Only used in assert() 1113 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1114 unsigned DstBits = DstTy->getScalarSizeInBits(); 1115 (void)SrcBits; // Only used in assert() 1116 (void)DstBits; // Only used in assert() 1117 1118 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1119 "either the widths should be different, or the signednesses."); 1120 1121 // NOTE: zero value is considered to be non-negative. 1122 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1123 const char *Name) -> Value * { 1124 // Is this value a signed type? 1125 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1126 llvm::Type *VTy = V->getType(); 1127 if (!VSigned) { 1128 // If the value is unsigned, then it is never negative. 1129 // FIXME: can we encounter non-scalar VTy here? 1130 return llvm::ConstantInt::getFalse(VTy->getContext()); 1131 } 1132 // Get the zero of the same type with which we will be comparing. 1133 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1134 // %V.isnegative = icmp slt %V, 0 1135 // I.e is %V *strictly* less than zero, does it have negative value? 1136 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1137 llvm::Twine(Name) + "." + V->getName() + 1138 ".negativitycheck"); 1139 }; 1140 1141 // 1. Was the old Value negative? 1142 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1143 // 2. Is the new Value negative? 1144 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1145 // 3. Now, was the 'negativity status' preserved during the conversion? 1146 // NOTE: conversion from negative to zero is considered to change the sign. 1147 // (We want to get 'false' when the conversion changed the sign) 1148 // So we should just equality-compare the negativity statuses. 1149 llvm::Value *Check = nullptr; 1150 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1151 // If the comparison result is 'false', then the conversion changed the sign. 1152 return std::make_pair( 1153 ScalarExprEmitter::ICCK_IntegerSignChange, 1154 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1155 } 1156 1157 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1158 Value *Dst, QualType DstType, 1159 SourceLocation Loc) { 1160 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1161 return; 1162 1163 llvm::Type *SrcTy = Src->getType(); 1164 llvm::Type *DstTy = Dst->getType(); 1165 1166 // We only care about int->int conversions here. 1167 // We ignore conversions to/from pointer and/or bool. 1168 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1169 DstType)) 1170 return; 1171 1172 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1173 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1174 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1175 unsigned DstBits = DstTy->getScalarSizeInBits(); 1176 1177 // Now, we do not need to emit the check in *all* of the cases. 1178 // We can avoid emitting it in some obvious cases where it would have been 1179 // dropped by the opt passes (instcombine) always anyways. 1180 // If it's a cast between effectively the same type, no check. 1181 // NOTE: this is *not* equivalent to checking the canonical types. 1182 if (SrcSigned == DstSigned && SrcBits == DstBits) 1183 return; 1184 // At least one of the values needs to have signed type. 1185 // If both are unsigned, then obviously, neither of them can be negative. 1186 if (!SrcSigned && !DstSigned) 1187 return; 1188 // If the conversion is to *larger* *signed* type, then no check is needed. 1189 // Because either sign-extension happens (so the sign will remain), 1190 // or zero-extension will happen (the sign bit will be zero.) 1191 if ((DstBits > SrcBits) && DstSigned) 1192 return; 1193 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1194 (SrcBits > DstBits) && SrcSigned) { 1195 // If the signed integer truncation sanitizer is enabled, 1196 // and this is a truncation from signed type, then no check is needed. 1197 // Because here sign change check is interchangeable with truncation check. 1198 return; 1199 } 1200 // That's it. We can't rule out any more cases with the data we have. 1201 1202 CodeGenFunction::SanitizerScope SanScope(&CGF); 1203 1204 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1205 std::pair<llvm::Value *, SanitizerMask>> 1206 Check; 1207 1208 // Each of these checks needs to return 'false' when an issue was detected. 1209 ImplicitConversionCheckKind CheckKind; 1210 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1211 // So we can 'and' all the checks together, and still get 'false', 1212 // if at least one of the checks detected an issue. 1213 1214 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1215 CheckKind = Check.first; 1216 Checks.emplace_back(Check.second); 1217 1218 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1219 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1220 // If the signed integer truncation sanitizer was enabled, 1221 // and we are truncating from larger unsigned type to smaller signed type, 1222 // let's handle the case we skipped in that check. 1223 Check = 1224 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1225 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1226 Checks.emplace_back(Check.second); 1227 // If the comparison result is 'i1 false', then the truncation was lossy. 1228 } 1229 1230 llvm::Constant *StaticArgs[] = { 1231 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1232 CGF.EmitCheckTypeDescriptor(DstType), 1233 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1234 // EmitCheck() will 'and' all the checks together. 1235 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1236 {Src, Dst}); 1237 } 1238 1239 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, 1240 QualType DstType, llvm::Type *SrcTy, 1241 llvm::Type *DstTy, 1242 ScalarConversionOpts Opts) { 1243 // The Element types determine the type of cast to perform. 1244 llvm::Type *SrcElementTy; 1245 llvm::Type *DstElementTy; 1246 QualType SrcElementType; 1247 QualType DstElementType; 1248 if (SrcType->isMatrixType() && DstType->isMatrixType()) { 1249 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1250 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1251 SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); 1252 DstElementType = DstType->castAs<MatrixType>()->getElementType(); 1253 } else { 1254 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && 1255 "cannot cast between matrix and non-matrix types"); 1256 SrcElementTy = SrcTy; 1257 DstElementTy = DstTy; 1258 SrcElementType = SrcType; 1259 DstElementType = DstType; 1260 } 1261 1262 if (isa<llvm::IntegerType>(SrcElementTy)) { 1263 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); 1264 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1265 InputSigned = true; 1266 } 1267 1268 if (isa<llvm::IntegerType>(DstElementTy)) 1269 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1270 if (InputSigned) 1271 return Builder.CreateSIToFP(Src, DstTy, "conv"); 1272 return Builder.CreateUIToFP(Src, DstTy, "conv"); 1273 } 1274 1275 if (isa<llvm::IntegerType>(DstElementTy)) { 1276 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); 1277 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType(); 1278 1279 // If we can't recognize overflow as undefined behavior, assume that 1280 // overflow saturates. This protects against normal optimizations if we are 1281 // compiling with non-standard FP semantics. 1282 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) { 1283 llvm::Intrinsic::ID IID = 1284 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat; 1285 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src); 1286 } 1287 1288 if (IsSigned) 1289 return Builder.CreateFPToSI(Src, DstTy, "conv"); 1290 return Builder.CreateFPToUI(Src, DstTy, "conv"); 1291 } 1292 1293 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) 1294 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1295 return Builder.CreateFPExt(Src, DstTy, "conv"); 1296 } 1297 1298 /// Emit a conversion from the specified type to the specified destination type, 1299 /// both of which are LLVM scalar types. 1300 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1301 QualType DstType, 1302 SourceLocation Loc, 1303 ScalarConversionOpts Opts) { 1304 // All conversions involving fixed point types should be handled by the 1305 // EmitFixedPoint family functions. This is done to prevent bloating up this 1306 // function more, and although fixed point numbers are represented by 1307 // integers, we do not want to follow any logic that assumes they should be 1308 // treated as integers. 1309 // TODO(leonardchan): When necessary, add another if statement checking for 1310 // conversions to fixed point types from other types. 1311 if (SrcType->isFixedPointType()) { 1312 if (DstType->isBooleanType()) 1313 // It is important that we check this before checking if the dest type is 1314 // an integer because booleans are technically integer types. 1315 // We do not need to check the padding bit on unsigned types if unsigned 1316 // padding is enabled because overflow into this bit is undefined 1317 // behavior. 1318 return Builder.CreateIsNotNull(Src, "tobool"); 1319 if (DstType->isFixedPointType() || DstType->isIntegerType() || 1320 DstType->isRealFloatingType()) 1321 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1322 1323 llvm_unreachable( 1324 "Unhandled scalar conversion from a fixed point type to another type."); 1325 } else if (DstType->isFixedPointType()) { 1326 if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) 1327 // This also includes converting booleans and enums to fixed point types. 1328 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1329 1330 llvm_unreachable( 1331 "Unhandled scalar conversion to a fixed point type from another type."); 1332 } 1333 1334 QualType NoncanonicalSrcType = SrcType; 1335 QualType NoncanonicalDstType = DstType; 1336 1337 SrcType = CGF.getContext().getCanonicalType(SrcType); 1338 DstType = CGF.getContext().getCanonicalType(DstType); 1339 if (SrcType == DstType) return Src; 1340 1341 if (DstType->isVoidType()) return nullptr; 1342 1343 llvm::Value *OrigSrc = Src; 1344 QualType OrigSrcType = SrcType; 1345 llvm::Type *SrcTy = Src->getType(); 1346 1347 // Handle conversions to bool first, they are special: comparisons against 0. 1348 if (DstType->isBooleanType()) 1349 return EmitConversionToBool(Src, SrcType); 1350 1351 llvm::Type *DstTy = ConvertType(DstType); 1352 1353 // Cast from half through float if half isn't a native type. 1354 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1355 // Cast to FP using the intrinsic if the half type itself isn't supported. 1356 if (DstTy->isFloatingPointTy()) { 1357 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1358 return Builder.CreateCall( 1359 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1360 Src); 1361 } else { 1362 // Cast to other types through float, using either the intrinsic or FPExt, 1363 // depending on whether the half type itself is supported 1364 // (as opposed to operations on half, available with NativeHalfType). 1365 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1366 Src = Builder.CreateCall( 1367 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1368 CGF.CGM.FloatTy), 1369 Src); 1370 } else { 1371 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1372 } 1373 SrcType = CGF.getContext().FloatTy; 1374 SrcTy = CGF.FloatTy; 1375 } 1376 } 1377 1378 // Ignore conversions like int -> uint. 1379 if (SrcTy == DstTy) { 1380 if (Opts.EmitImplicitIntegerSignChangeChecks) 1381 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1382 NoncanonicalDstType, Loc); 1383 1384 return Src; 1385 } 1386 1387 // Handle pointer conversions next: pointers can only be converted to/from 1388 // other pointers and integers. Check for pointer types in terms of LLVM, as 1389 // some native types (like Obj-C id) may map to a pointer type. 1390 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1391 // The source value may be an integer, or a pointer. 1392 if (isa<llvm::PointerType>(SrcTy)) 1393 return Builder.CreateBitCast(Src, DstTy, "conv"); 1394 1395 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1396 // First, convert to the correct width so that we control the kind of 1397 // extension. 1398 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1399 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1400 llvm::Value* IntResult = 1401 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1402 // Then, cast to pointer. 1403 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1404 } 1405 1406 if (isa<llvm::PointerType>(SrcTy)) { 1407 // Must be an ptr to int cast. 1408 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1409 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1410 } 1411 1412 // A scalar can be splatted to an extended vector of the same element type 1413 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1414 // Sema should add casts to make sure that the source expression's type is 1415 // the same as the vector's element type (sans qualifiers) 1416 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1417 SrcType.getTypePtr() && 1418 "Splatted expr doesn't match with vector element type?"); 1419 1420 // Splat the element across to all elements 1421 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1422 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1423 } 1424 1425 if (SrcType->isMatrixType() && DstType->isMatrixType()) 1426 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1427 1428 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1429 // Allow bitcast from vector to integer/fp of the same size. 1430 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits(); 1431 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits(); 1432 if (SrcSize == DstSize) 1433 return Builder.CreateBitCast(Src, DstTy, "conv"); 1434 1435 // Conversions between vectors of different sizes are not allowed except 1436 // when vectors of half are involved. Operations on storage-only half 1437 // vectors require promoting half vector operands to float vectors and 1438 // truncating the result, which is either an int or float vector, to a 1439 // short or half vector. 1440 1441 // Source and destination are both expected to be vectors. 1442 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1443 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1444 (void)DstElementTy; 1445 1446 assert(((SrcElementTy->isIntegerTy() && 1447 DstElementTy->isIntegerTy()) || 1448 (SrcElementTy->isFloatingPointTy() && 1449 DstElementTy->isFloatingPointTy())) && 1450 "unexpected conversion between a floating-point vector and an " 1451 "integer vector"); 1452 1453 // Truncate an i32 vector to an i16 vector. 1454 if (SrcElementTy->isIntegerTy()) 1455 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1456 1457 // Truncate a float vector to a half vector. 1458 if (SrcSize > DstSize) 1459 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1460 1461 // Promote a half vector to a float vector. 1462 return Builder.CreateFPExt(Src, DstTy, "conv"); 1463 } 1464 1465 // Finally, we have the arithmetic types: real int/float. 1466 Value *Res = nullptr; 1467 llvm::Type *ResTy = DstTy; 1468 1469 // An overflowing conversion has undefined behavior if either the source type 1470 // or the destination type is a floating-point type. However, we consider the 1471 // range of representable values for all floating-point types to be 1472 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1473 // floating-point type. 1474 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1475 OrigSrcType->isFloatingType()) 1476 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1477 Loc); 1478 1479 // Cast to half through float if half isn't a native type. 1480 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1481 // Make sure we cast in a single step if from another FP type. 1482 if (SrcTy->isFloatingPointTy()) { 1483 // Use the intrinsic if the half type itself isn't supported 1484 // (as opposed to operations on half, available with NativeHalfType). 1485 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1486 return Builder.CreateCall( 1487 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1488 // If the half type is supported, just use an fptrunc. 1489 return Builder.CreateFPTrunc(Src, DstTy); 1490 } 1491 DstTy = CGF.FloatTy; 1492 } 1493 1494 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1495 1496 if (DstTy != ResTy) { 1497 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1498 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1499 Res = Builder.CreateCall( 1500 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1501 Res); 1502 } else { 1503 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1504 } 1505 } 1506 1507 if (Opts.EmitImplicitIntegerTruncationChecks) 1508 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1509 NoncanonicalDstType, Loc); 1510 1511 if (Opts.EmitImplicitIntegerSignChangeChecks) 1512 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1513 NoncanonicalDstType, Loc); 1514 1515 return Res; 1516 } 1517 1518 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1519 QualType DstTy, 1520 SourceLocation Loc) { 1521 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1522 llvm::Value *Result; 1523 if (SrcTy->isRealFloatingType()) 1524 Result = FPBuilder.CreateFloatingToFixed(Src, 1525 CGF.getContext().getFixedPointSemantics(DstTy)); 1526 else if (DstTy->isRealFloatingType()) 1527 Result = FPBuilder.CreateFixedToFloating(Src, 1528 CGF.getContext().getFixedPointSemantics(SrcTy), 1529 ConvertType(DstTy)); 1530 else { 1531 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1532 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1533 1534 if (DstTy->isIntegerType()) 1535 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1536 DstFPSema.getWidth(), 1537 DstFPSema.isSigned()); 1538 else if (SrcTy->isIntegerType()) 1539 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1540 DstFPSema); 1541 else 1542 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1543 } 1544 return Result; 1545 } 1546 1547 /// Emit a conversion from the specified complex type to the specified 1548 /// destination type, where the destination type is an LLVM scalar type. 1549 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1550 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1551 SourceLocation Loc) { 1552 // Get the source element type. 1553 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1554 1555 // Handle conversions to bool first, they are special: comparisons against 0. 1556 if (DstTy->isBooleanType()) { 1557 // Complex != 0 -> (Real != 0) | (Imag != 0) 1558 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1559 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1560 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1561 } 1562 1563 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1564 // the imaginary part of the complex value is discarded and the value of the 1565 // real part is converted according to the conversion rules for the 1566 // corresponding real type. 1567 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1568 } 1569 1570 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1571 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1572 } 1573 1574 /// Emit a sanitization check for the given "binary" operation (which 1575 /// might actually be a unary increment which has been lowered to a binary 1576 /// operation). The check passes if all values in \p Checks (which are \c i1), 1577 /// are \c true. 1578 void ScalarExprEmitter::EmitBinOpCheck( 1579 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1580 assert(CGF.IsSanitizerScope); 1581 SanitizerHandler Check; 1582 SmallVector<llvm::Constant *, 4> StaticData; 1583 SmallVector<llvm::Value *, 2> DynamicData; 1584 1585 BinaryOperatorKind Opcode = Info.Opcode; 1586 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1587 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1588 1589 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1590 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1591 if (UO && UO->getOpcode() == UO_Minus) { 1592 Check = SanitizerHandler::NegateOverflow; 1593 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1594 DynamicData.push_back(Info.RHS); 1595 } else { 1596 if (BinaryOperator::isShiftOp(Opcode)) { 1597 // Shift LHS negative or too large, or RHS out of bounds. 1598 Check = SanitizerHandler::ShiftOutOfBounds; 1599 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1600 StaticData.push_back( 1601 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1602 StaticData.push_back( 1603 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1604 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1605 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1606 Check = SanitizerHandler::DivremOverflow; 1607 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1608 } else { 1609 // Arithmetic overflow (+, -, *). 1610 switch (Opcode) { 1611 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1612 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1613 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1614 default: llvm_unreachable("unexpected opcode for bin op check"); 1615 } 1616 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1617 } 1618 DynamicData.push_back(Info.LHS); 1619 DynamicData.push_back(Info.RHS); 1620 } 1621 1622 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1623 } 1624 1625 //===----------------------------------------------------------------------===// 1626 // Visitor Methods 1627 //===----------------------------------------------------------------------===// 1628 1629 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1630 CGF.ErrorUnsupported(E, "scalar expression"); 1631 if (E->getType()->isVoidType()) 1632 return nullptr; 1633 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1634 } 1635 1636 Value * 1637 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { 1638 ASTContext &Context = CGF.getContext(); 1639 unsigned AddrSpace = 1640 Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace()); 1641 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( 1642 E->ComputeName(Context), "__usn_str", AddrSpace); 1643 1644 llvm::Type *ExprTy = ConvertType(E->getType()); 1645 return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy, 1646 "usn_addr_cast"); 1647 } 1648 1649 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1650 // Vector Mask Case 1651 if (E->getNumSubExprs() == 2) { 1652 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1653 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1654 Value *Mask; 1655 1656 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1657 unsigned LHSElts = LTy->getNumElements(); 1658 1659 Mask = RHS; 1660 1661 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1662 1663 // Mask off the high bits of each shuffle index. 1664 Value *MaskBits = 1665 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1666 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1667 1668 // newv = undef 1669 // mask = mask & maskbits 1670 // for each elt 1671 // n = extract mask i 1672 // x = extract val n 1673 // newv = insert newv, x, i 1674 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1675 MTy->getNumElements()); 1676 Value* NewV = llvm::PoisonValue::get(RTy); 1677 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1678 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1679 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1680 1681 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1682 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1683 } 1684 return NewV; 1685 } 1686 1687 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1688 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1689 1690 SmallVector<int, 32> Indices; 1691 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1692 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1693 // Check for -1 and output it as undef in the IR. 1694 if (Idx.isSigned() && Idx.isAllOnes()) 1695 Indices.push_back(-1); 1696 else 1697 Indices.push_back(Idx.getZExtValue()); 1698 } 1699 1700 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1701 } 1702 1703 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1704 QualType SrcType = E->getSrcExpr()->getType(), 1705 DstType = E->getType(); 1706 1707 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1708 1709 SrcType = CGF.getContext().getCanonicalType(SrcType); 1710 DstType = CGF.getContext().getCanonicalType(DstType); 1711 if (SrcType == DstType) return Src; 1712 1713 assert(SrcType->isVectorType() && 1714 "ConvertVector source type must be a vector"); 1715 assert(DstType->isVectorType() && 1716 "ConvertVector destination type must be a vector"); 1717 1718 llvm::Type *SrcTy = Src->getType(); 1719 llvm::Type *DstTy = ConvertType(DstType); 1720 1721 // Ignore conversions like int -> uint. 1722 if (SrcTy == DstTy) 1723 return Src; 1724 1725 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1726 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1727 1728 assert(SrcTy->isVectorTy() && 1729 "ConvertVector source IR type must be a vector"); 1730 assert(DstTy->isVectorTy() && 1731 "ConvertVector destination IR type must be a vector"); 1732 1733 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1734 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1735 1736 if (DstEltType->isBooleanType()) { 1737 assert((SrcEltTy->isFloatingPointTy() || 1738 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1739 1740 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1741 if (SrcEltTy->isFloatingPointTy()) { 1742 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1743 } else { 1744 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1745 } 1746 } 1747 1748 // We have the arithmetic types: real int/float. 1749 Value *Res = nullptr; 1750 1751 if (isa<llvm::IntegerType>(SrcEltTy)) { 1752 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1753 if (isa<llvm::IntegerType>(DstEltTy)) 1754 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1755 else if (InputSigned) 1756 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1757 else 1758 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1759 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1760 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1761 if (DstEltType->isSignedIntegerOrEnumerationType()) 1762 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1763 else 1764 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1765 } else { 1766 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1767 "Unknown real conversion"); 1768 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1769 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1770 else 1771 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1772 } 1773 1774 return Res; 1775 } 1776 1777 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1778 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1779 CGF.EmitIgnoredExpr(E->getBase()); 1780 return CGF.emitScalarConstant(Constant, E); 1781 } else { 1782 Expr::EvalResult Result; 1783 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1784 llvm::APSInt Value = Result.Val.getInt(); 1785 CGF.EmitIgnoredExpr(E->getBase()); 1786 return Builder.getInt(Value); 1787 } 1788 } 1789 1790 return EmitLoadOfLValue(E); 1791 } 1792 1793 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1794 TestAndClearIgnoreResultAssign(); 1795 1796 // Emit subscript expressions in rvalue context's. For most cases, this just 1797 // loads the lvalue formed by the subscript expr. However, we have to be 1798 // careful, because the base of a vector subscript is occasionally an rvalue, 1799 // so we can't get it as an lvalue. 1800 if (!E->getBase()->getType()->isVectorType() && 1801 !E->getBase()->getType()->isVLSTBuiltinType()) 1802 return EmitLoadOfLValue(E); 1803 1804 // Handle the vector case. The base must be a vector, the index must be an 1805 // integer value. 1806 Value *Base = Visit(E->getBase()); 1807 Value *Idx = Visit(E->getIdx()); 1808 QualType IdxTy = E->getIdx()->getType(); 1809 1810 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1811 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1812 1813 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1814 } 1815 1816 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1817 TestAndClearIgnoreResultAssign(); 1818 1819 // Handle the vector case. The base must be a vector, the index must be an 1820 // integer value. 1821 Value *RowIdx = Visit(E->getRowIdx()); 1822 Value *ColumnIdx = Visit(E->getColumnIdx()); 1823 1824 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); 1825 unsigned NumRows = MatrixTy->getNumRows(); 1826 llvm::MatrixBuilder MB(Builder); 1827 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); 1828 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) 1829 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); 1830 1831 Value *Matrix = Visit(E->getBase()); 1832 1833 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1834 return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); 1835 } 1836 1837 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1838 unsigned Off) { 1839 int MV = SVI->getMaskValue(Idx); 1840 if (MV == -1) 1841 return -1; 1842 return Off + MV; 1843 } 1844 1845 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1846 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1847 "Index operand too large for shufflevector mask!"); 1848 return C->getZExtValue(); 1849 } 1850 1851 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1852 bool Ignore = TestAndClearIgnoreResultAssign(); 1853 (void)Ignore; 1854 assert (Ignore == false && "init list ignored"); 1855 unsigned NumInitElements = E->getNumInits(); 1856 1857 if (E->hadArrayRangeDesignator()) 1858 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1859 1860 llvm::VectorType *VType = 1861 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1862 1863 if (!VType) { 1864 if (NumInitElements == 0) { 1865 // C++11 value-initialization for the scalar. 1866 return EmitNullValue(E->getType()); 1867 } 1868 // We have a scalar in braces. Just use the first element. 1869 return Visit(E->getInit(0)); 1870 } 1871 1872 if (isa<llvm::ScalableVectorType>(VType)) { 1873 if (NumInitElements == 0) { 1874 // C++11 value-initialization for the vector. 1875 return EmitNullValue(E->getType()); 1876 } 1877 1878 if (NumInitElements == 1) { 1879 Expr *InitVector = E->getInit(0); 1880 1881 // Initialize from another scalable vector of the same type. 1882 if (InitVector->getType() == E->getType()) 1883 return Visit(InitVector); 1884 } 1885 1886 llvm_unreachable("Unexpected initialization of a scalable vector!"); 1887 } 1888 1889 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1890 1891 // Loop over initializers collecting the Value for each, and remembering 1892 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1893 // us to fold the shuffle for the swizzle into the shuffle for the vector 1894 // initializer, since LLVM optimizers generally do not want to touch 1895 // shuffles. 1896 unsigned CurIdx = 0; 1897 bool VIsUndefShuffle = false; 1898 llvm::Value *V = llvm::UndefValue::get(VType); 1899 for (unsigned i = 0; i != NumInitElements; ++i) { 1900 Expr *IE = E->getInit(i); 1901 Value *Init = Visit(IE); 1902 SmallVector<int, 16> Args; 1903 1904 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1905 1906 // Handle scalar elements. If the scalar initializer is actually one 1907 // element of a different vector of the same width, use shuffle instead of 1908 // extract+insert. 1909 if (!VVT) { 1910 if (isa<ExtVectorElementExpr>(IE)) { 1911 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1912 1913 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1914 ->getNumElements() == ResElts) { 1915 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1916 Value *LHS = nullptr, *RHS = nullptr; 1917 if (CurIdx == 0) { 1918 // insert into undef -> shuffle (src, undef) 1919 // shufflemask must use an i32 1920 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1921 Args.resize(ResElts, -1); 1922 1923 LHS = EI->getVectorOperand(); 1924 RHS = V; 1925 VIsUndefShuffle = true; 1926 } else if (VIsUndefShuffle) { 1927 // insert into undefshuffle && size match -> shuffle (v, src) 1928 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1929 for (unsigned j = 0; j != CurIdx; ++j) 1930 Args.push_back(getMaskElt(SVV, j, 0)); 1931 Args.push_back(ResElts + C->getZExtValue()); 1932 Args.resize(ResElts, -1); 1933 1934 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1935 RHS = EI->getVectorOperand(); 1936 VIsUndefShuffle = false; 1937 } 1938 if (!Args.empty()) { 1939 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1940 ++CurIdx; 1941 continue; 1942 } 1943 } 1944 } 1945 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1946 "vecinit"); 1947 VIsUndefShuffle = false; 1948 ++CurIdx; 1949 continue; 1950 } 1951 1952 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1953 1954 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1955 // input is the same width as the vector being constructed, generate an 1956 // optimized shuffle of the swizzle input into the result. 1957 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1958 if (isa<ExtVectorElementExpr>(IE)) { 1959 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1960 Value *SVOp = SVI->getOperand(0); 1961 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1962 1963 if (OpTy->getNumElements() == ResElts) { 1964 for (unsigned j = 0; j != CurIdx; ++j) { 1965 // If the current vector initializer is a shuffle with undef, merge 1966 // this shuffle directly into it. 1967 if (VIsUndefShuffle) { 1968 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1969 } else { 1970 Args.push_back(j); 1971 } 1972 } 1973 for (unsigned j = 0, je = InitElts; j != je; ++j) 1974 Args.push_back(getMaskElt(SVI, j, Offset)); 1975 Args.resize(ResElts, -1); 1976 1977 if (VIsUndefShuffle) 1978 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1979 1980 Init = SVOp; 1981 } 1982 } 1983 1984 // Extend init to result vector length, and then shuffle its contribution 1985 // to the vector initializer into V. 1986 if (Args.empty()) { 1987 for (unsigned j = 0; j != InitElts; ++j) 1988 Args.push_back(j); 1989 Args.resize(ResElts, -1); 1990 Init = Builder.CreateShuffleVector(Init, Args, "vext"); 1991 1992 Args.clear(); 1993 for (unsigned j = 0; j != CurIdx; ++j) 1994 Args.push_back(j); 1995 for (unsigned j = 0; j != InitElts; ++j) 1996 Args.push_back(j + Offset); 1997 Args.resize(ResElts, -1); 1998 } 1999 2000 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 2001 // merging subsequent shuffles into this one. 2002 if (CurIdx == 0) 2003 std::swap(V, Init); 2004 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 2005 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 2006 CurIdx += InitElts; 2007 } 2008 2009 // FIXME: evaluate codegen vs. shuffling against constant null vector. 2010 // Emit remaining default initializers. 2011 llvm::Type *EltTy = VType->getElementType(); 2012 2013 // Emit remaining default initializers 2014 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 2015 Value *Idx = Builder.getInt32(CurIdx); 2016 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 2017 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 2018 } 2019 return V; 2020 } 2021 2022 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 2023 const Expr *E = CE->getSubExpr(); 2024 2025 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 2026 return false; 2027 2028 if (isa<CXXThisExpr>(E->IgnoreParens())) { 2029 // We always assume that 'this' is never null. 2030 return false; 2031 } 2032 2033 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2034 // And that glvalue casts are never null. 2035 if (ICE->isGLValue()) 2036 return false; 2037 } 2038 2039 return true; 2040 } 2041 2042 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 2043 // have to handle a more broad range of conversions than explicit casts, as they 2044 // handle things like function to ptr-to-function decay etc. 2045 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 2046 Expr *E = CE->getSubExpr(); 2047 QualType DestTy = CE->getType(); 2048 CastKind Kind = CE->getCastKind(); 2049 CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE); 2050 2051 // These cases are generally not written to ignore the result of 2052 // evaluating their sub-expressions, so we clear this now. 2053 bool Ignored = TestAndClearIgnoreResultAssign(); 2054 2055 // Since almost all cast kinds apply to scalars, this switch doesn't have 2056 // a default case, so the compiler will warn on a missing case. The cases 2057 // are in the same order as in the CastKind enum. 2058 switch (Kind) { 2059 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 2060 case CK_BuiltinFnToFnPtr: 2061 llvm_unreachable("builtin functions are handled elsewhere"); 2062 2063 case CK_LValueBitCast: 2064 case CK_ObjCObjectLValueCast: { 2065 Address Addr = EmitLValue(E).getAddress(CGF); 2066 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy)); 2067 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 2068 return EmitLoadOfLValue(LV, CE->getExprLoc()); 2069 } 2070 2071 case CK_LValueToRValueBitCast: { 2072 LValue SourceLVal = CGF.EmitLValue(E); 2073 Address Addr = SourceLVal.getAddress(CGF).withElementType( 2074 CGF.ConvertTypeForMem(DestTy)); 2075 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2076 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2077 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2078 } 2079 2080 case CK_CPointerToObjCPointerCast: 2081 case CK_BlockPointerToObjCPointerCast: 2082 case CK_AnyPointerToBlockPointerCast: 2083 case CK_BitCast: { 2084 Value *Src = Visit(const_cast<Expr*>(E)); 2085 llvm::Type *SrcTy = Src->getType(); 2086 llvm::Type *DstTy = ConvertType(DestTy); 2087 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2088 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2089 llvm_unreachable("wrong cast for pointers in different address spaces" 2090 "(must be an address space cast)!"); 2091 } 2092 2093 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2094 if (auto *PT = DestTy->getAs<PointerType>()) { 2095 CGF.EmitVTablePtrCheckForCast( 2096 PT->getPointeeType(), 2097 Address(Src, 2098 CGF.ConvertTypeForMem( 2099 E->getType()->castAs<PointerType>()->getPointeeType()), 2100 CGF.getPointerAlign()), 2101 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast, 2102 CE->getBeginLoc()); 2103 } 2104 } 2105 2106 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2107 const QualType SrcType = E->getType(); 2108 2109 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2110 // Casting to pointer that could carry dynamic information (provided by 2111 // invariant.group) requires launder. 2112 Src = Builder.CreateLaunderInvariantGroup(Src); 2113 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2114 // Casting to pointer that does not carry dynamic information (provided 2115 // by invariant.group) requires stripping it. Note that we don't do it 2116 // if the source could not be dynamic type and destination could be 2117 // dynamic because dynamic information is already laundered. It is 2118 // because launder(strip(src)) == launder(src), so there is no need to 2119 // add extra strip before launder. 2120 Src = Builder.CreateStripInvariantGroup(Src); 2121 } 2122 } 2123 2124 // Update heapallocsite metadata when there is an explicit pointer cast. 2125 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 2126 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) && 2127 !isa<CastExpr>(E)) { 2128 QualType PointeeType = DestTy->getPointeeType(); 2129 if (!PointeeType.isNull()) 2130 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2131 CE->getExprLoc()); 2132 } 2133 } 2134 2135 // If Src is a fixed vector and Dst is a scalable vector, and both have the 2136 // same element type, use the llvm.vector.insert intrinsic to perform the 2137 // bitcast. 2138 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 2139 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { 2140 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 2141 // vector, use a vector insert and bitcast the result. 2142 bool NeedsBitCast = false; 2143 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2144 llvm::Type *OrigType = DstTy; 2145 if (ScalableDst == PredType && 2146 FixedSrc->getElementType() == Builder.getInt8Ty()) { 2147 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2148 ScalableDst = cast<llvm::ScalableVectorType>(DstTy); 2149 NeedsBitCast = true; 2150 } 2151 if (FixedSrc->getElementType() == ScalableDst->getElementType()) { 2152 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); 2153 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2154 llvm::Value *Result = Builder.CreateInsertVector( 2155 DstTy, UndefVec, Src, Zero, "cast.scalable"); 2156 if (NeedsBitCast) 2157 Result = Builder.CreateBitCast(Result, OrigType); 2158 return Result; 2159 } 2160 } 2161 } 2162 2163 // If Src is a scalable vector and Dst is a fixed vector, and both have the 2164 // same element type, use the llvm.vector.extract intrinsic to perform the 2165 // bitcast. 2166 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { 2167 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { 2168 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2169 // vector, bitcast the source and use a vector extract. 2170 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2171 if (ScalableSrc == PredType && 2172 FixedDst->getElementType() == Builder.getInt8Ty()) { 2173 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2174 ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy); 2175 Src = Builder.CreateBitCast(Src, SrcTy); 2176 } 2177 if (ScalableSrc->getElementType() == FixedDst->getElementType()) { 2178 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2179 return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed"); 2180 } 2181 } 2182 } 2183 2184 // Perform VLAT <-> VLST bitcast through memory. 2185 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics 2186 // require the element types of the vectors to be the same, we 2187 // need to keep this around for bitcasts between VLAT <-> VLST where 2188 // the element types of the vectors are not the same, until we figure 2189 // out a better way of doing these casts. 2190 if ((isa<llvm::FixedVectorType>(SrcTy) && 2191 isa<llvm::ScalableVectorType>(DstTy)) || 2192 (isa<llvm::ScalableVectorType>(SrcTy) && 2193 isa<llvm::FixedVectorType>(DstTy))) { 2194 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); 2195 LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); 2196 CGF.EmitStoreOfScalar(Src, LV); 2197 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy)); 2198 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2199 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2200 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2201 } 2202 return Builder.CreateBitCast(Src, DstTy); 2203 } 2204 case CK_AddressSpaceConversion: { 2205 Expr::EvalResult Result; 2206 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2207 Result.Val.isNullPointer()) { 2208 // If E has side effect, it is emitted even if its final result is a 2209 // null pointer. In that case, a DCE pass should be able to 2210 // eliminate the useless instructions emitted during translating E. 2211 if (Result.HasSideEffects) 2212 Visit(E); 2213 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2214 ConvertType(DestTy)), DestTy); 2215 } 2216 // Since target may map different address spaces in AST to the same address 2217 // space, an address space conversion may end up as a bitcast. 2218 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2219 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2220 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2221 } 2222 case CK_AtomicToNonAtomic: 2223 case CK_NonAtomicToAtomic: 2224 case CK_UserDefinedConversion: 2225 return Visit(const_cast<Expr*>(E)); 2226 2227 case CK_NoOp: { 2228 llvm::Value *V = Visit(const_cast<Expr *>(E)); 2229 if (V) { 2230 // CK_NoOp can model a pointer qualification conversion, which can remove 2231 // an array bound and change the IR type. 2232 // FIXME: Once pointee types are removed from IR, remove this. 2233 llvm::Type *T = ConvertType(DestTy); 2234 if (T != V->getType()) 2235 V = Builder.CreateBitCast(V, T); 2236 } 2237 return V; 2238 } 2239 2240 case CK_BaseToDerived: { 2241 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2242 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2243 2244 Address Base = CGF.EmitPointerWithAlignment(E); 2245 Address Derived = 2246 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2247 CE->path_begin(), CE->path_end(), 2248 CGF.ShouldNullCheckClassCastValue(CE)); 2249 2250 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2251 // performed and the object is not of the derived type. 2252 if (CGF.sanitizePerformTypeCheck()) 2253 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2254 Derived.getPointer(), DestTy->getPointeeType()); 2255 2256 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2257 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived, 2258 /*MayBeNull=*/true, 2259 CodeGenFunction::CFITCK_DerivedCast, 2260 CE->getBeginLoc()); 2261 2262 return Derived.getPointer(); 2263 } 2264 case CK_UncheckedDerivedToBase: 2265 case CK_DerivedToBase: { 2266 // The EmitPointerWithAlignment path does this fine; just discard 2267 // the alignment. 2268 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2269 } 2270 2271 case CK_Dynamic: { 2272 Address V = CGF.EmitPointerWithAlignment(E); 2273 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2274 return CGF.EmitDynamicCast(V, DCE); 2275 } 2276 2277 case CK_ArrayToPointerDecay: 2278 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2279 case CK_FunctionToPointerDecay: 2280 return EmitLValue(E).getPointer(CGF); 2281 2282 case CK_NullToPointer: 2283 if (MustVisitNullValue(E)) 2284 CGF.EmitIgnoredExpr(E); 2285 2286 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2287 DestTy); 2288 2289 case CK_NullToMemberPointer: { 2290 if (MustVisitNullValue(E)) 2291 CGF.EmitIgnoredExpr(E); 2292 2293 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2294 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2295 } 2296 2297 case CK_ReinterpretMemberPointer: 2298 case CK_BaseToDerivedMemberPointer: 2299 case CK_DerivedToBaseMemberPointer: { 2300 Value *Src = Visit(E); 2301 2302 // Note that the AST doesn't distinguish between checked and 2303 // unchecked member pointer conversions, so we always have to 2304 // implement checked conversions here. This is inefficient when 2305 // actual control flow may be required in order to perform the 2306 // check, which it is for data member pointers (but not member 2307 // function pointers on Itanium and ARM). 2308 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2309 } 2310 2311 case CK_ARCProduceObject: 2312 return CGF.EmitARCRetainScalarExpr(E); 2313 case CK_ARCConsumeObject: 2314 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2315 case CK_ARCReclaimReturnedObject: 2316 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2317 case CK_ARCExtendBlockObject: 2318 return CGF.EmitARCExtendBlockObject(E); 2319 2320 case CK_CopyAndAutoreleaseBlockObject: 2321 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2322 2323 case CK_FloatingRealToComplex: 2324 case CK_FloatingComplexCast: 2325 case CK_IntegralRealToComplex: 2326 case CK_IntegralComplexCast: 2327 case CK_IntegralComplexToFloatingComplex: 2328 case CK_FloatingComplexToIntegralComplex: 2329 case CK_ConstructorConversion: 2330 case CK_ToUnion: 2331 llvm_unreachable("scalar cast to non-scalar value"); 2332 2333 case CK_LValueToRValue: 2334 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2335 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2336 return Visit(const_cast<Expr*>(E)); 2337 2338 case CK_IntegralToPointer: { 2339 Value *Src = Visit(const_cast<Expr*>(E)); 2340 2341 // First, convert to the correct width so that we control the kind of 2342 // extension. 2343 auto DestLLVMTy = ConvertType(DestTy); 2344 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2345 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2346 llvm::Value* IntResult = 2347 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2348 2349 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2350 2351 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2352 // Going from integer to pointer that could be dynamic requires reloading 2353 // dynamic information from invariant.group. 2354 if (DestTy.mayBeDynamicClass()) 2355 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2356 } 2357 return IntToPtr; 2358 } 2359 case CK_PointerToIntegral: { 2360 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2361 auto *PtrExpr = Visit(E); 2362 2363 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2364 const QualType SrcType = E->getType(); 2365 2366 // Casting to integer requires stripping dynamic information as it does 2367 // not carries it. 2368 if (SrcType.mayBeDynamicClass()) 2369 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2370 } 2371 2372 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2373 } 2374 case CK_ToVoid: { 2375 CGF.EmitIgnoredExpr(E); 2376 return nullptr; 2377 } 2378 case CK_MatrixCast: { 2379 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2380 CE->getExprLoc()); 2381 } 2382 case CK_VectorSplat: { 2383 llvm::Type *DstTy = ConvertType(DestTy); 2384 Value *Elt = Visit(const_cast<Expr *>(E)); 2385 // Splat the element across to all elements 2386 llvm::ElementCount NumElements = 2387 cast<llvm::VectorType>(DstTy)->getElementCount(); 2388 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2389 } 2390 2391 case CK_FixedPointCast: 2392 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2393 CE->getExprLoc()); 2394 2395 case CK_FixedPointToBoolean: 2396 assert(E->getType()->isFixedPointType() && 2397 "Expected src type to be fixed point type"); 2398 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2399 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2400 CE->getExprLoc()); 2401 2402 case CK_FixedPointToIntegral: 2403 assert(E->getType()->isFixedPointType() && 2404 "Expected src type to be fixed point type"); 2405 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2406 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2407 CE->getExprLoc()); 2408 2409 case CK_IntegralToFixedPoint: 2410 assert(E->getType()->isIntegerType() && 2411 "Expected src type to be an integer"); 2412 assert(DestTy->isFixedPointType() && 2413 "Expected dest type to be fixed point type"); 2414 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2415 CE->getExprLoc()); 2416 2417 case CK_IntegralCast: { 2418 ScalarConversionOpts Opts; 2419 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2420 if (!ICE->isPartOfExplicitCast()) 2421 Opts = ScalarConversionOpts(CGF.SanOpts); 2422 } 2423 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2424 CE->getExprLoc(), Opts); 2425 } 2426 case CK_IntegralToFloating: 2427 case CK_FloatingToIntegral: 2428 case CK_FloatingCast: 2429 case CK_FixedPointToFloating: 2430 case CK_FloatingToFixedPoint: { 2431 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2432 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2433 CE->getExprLoc()); 2434 } 2435 case CK_BooleanToSignedIntegral: { 2436 ScalarConversionOpts Opts; 2437 Opts.TreatBooleanAsSigned = true; 2438 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2439 CE->getExprLoc(), Opts); 2440 } 2441 case CK_IntegralToBoolean: 2442 return EmitIntToBoolConversion(Visit(E)); 2443 case CK_PointerToBoolean: 2444 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2445 case CK_FloatingToBoolean: { 2446 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2447 return EmitFloatToBoolConversion(Visit(E)); 2448 } 2449 case CK_MemberPointerToBoolean: { 2450 llvm::Value *MemPtr = Visit(E); 2451 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2452 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2453 } 2454 2455 case CK_FloatingComplexToReal: 2456 case CK_IntegralComplexToReal: 2457 return CGF.EmitComplexExpr(E, false, true).first; 2458 2459 case CK_FloatingComplexToBoolean: 2460 case CK_IntegralComplexToBoolean: { 2461 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2462 2463 // TODO: kill this function off, inline appropriate case here 2464 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2465 CE->getExprLoc()); 2466 } 2467 2468 case CK_ZeroToOCLOpaqueType: { 2469 assert((DestTy->isEventT() || DestTy->isQueueT() || 2470 DestTy->isOCLIntelSubgroupAVCType()) && 2471 "CK_ZeroToOCLEvent cast on non-event type"); 2472 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2473 } 2474 2475 case CK_IntToOCLSampler: 2476 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2477 2478 } // end of switch 2479 2480 llvm_unreachable("unknown scalar cast"); 2481 } 2482 2483 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2484 CodeGenFunction::StmtExprEvaluation eval(CGF); 2485 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2486 !E->getType()->isVoidType()); 2487 if (!RetAlloca.isValid()) 2488 return nullptr; 2489 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2490 E->getExprLoc()); 2491 } 2492 2493 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2494 CodeGenFunction::RunCleanupsScope Scope(CGF); 2495 Value *V = Visit(E->getSubExpr()); 2496 // Defend against dominance problems caused by jumps out of expression 2497 // evaluation through the shared cleanup block. 2498 Scope.ForceCleanup({&V}); 2499 return V; 2500 } 2501 2502 //===----------------------------------------------------------------------===// 2503 // Unary Operators 2504 //===----------------------------------------------------------------------===// 2505 2506 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2507 llvm::Value *InVal, bool IsInc, 2508 FPOptions FPFeatures) { 2509 BinOpInfo BinOp; 2510 BinOp.LHS = InVal; 2511 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2512 BinOp.Ty = E->getType(); 2513 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2514 BinOp.FPFeatures = FPFeatures; 2515 BinOp.E = E; 2516 return BinOp; 2517 } 2518 2519 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2520 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2521 llvm::Value *Amount = 2522 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2523 StringRef Name = IsInc ? "inc" : "dec"; 2524 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2525 case LangOptions::SOB_Defined: 2526 return Builder.CreateAdd(InVal, Amount, Name); 2527 case LangOptions::SOB_Undefined: 2528 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2529 return Builder.CreateNSWAdd(InVal, Amount, Name); 2530 [[fallthrough]]; 2531 case LangOptions::SOB_Trapping: 2532 if (!E->canOverflow()) 2533 return Builder.CreateNSWAdd(InVal, Amount, Name); 2534 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2535 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2536 } 2537 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2538 } 2539 2540 namespace { 2541 /// Handles check and update for lastprivate conditional variables. 2542 class OMPLastprivateConditionalUpdateRAII { 2543 private: 2544 CodeGenFunction &CGF; 2545 const UnaryOperator *E; 2546 2547 public: 2548 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2549 const UnaryOperator *E) 2550 : CGF(CGF), E(E) {} 2551 ~OMPLastprivateConditionalUpdateRAII() { 2552 if (CGF.getLangOpts().OpenMP) 2553 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2554 CGF, E->getSubExpr()); 2555 } 2556 }; 2557 } // namespace 2558 2559 llvm::Value * 2560 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2561 bool isInc, bool isPre) { 2562 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2563 QualType type = E->getSubExpr()->getType(); 2564 llvm::PHINode *atomicPHI = nullptr; 2565 llvm::Value *value; 2566 llvm::Value *input; 2567 2568 int amount = (isInc ? 1 : -1); 2569 bool isSubtraction = !isInc; 2570 2571 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2572 type = atomicTy->getValueType(); 2573 if (isInc && type->isBooleanType()) { 2574 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2575 if (isPre) { 2576 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2577 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2578 return Builder.getTrue(); 2579 } 2580 // For atomic bool increment, we just store true and return it for 2581 // preincrement, do an atomic swap with true for postincrement 2582 return Builder.CreateAtomicRMW( 2583 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2584 llvm::AtomicOrdering::SequentiallyConsistent); 2585 } 2586 // Special case for atomic increment / decrement on integers, emit 2587 // atomicrmw instructions. We skip this if we want to be doing overflow 2588 // checking, and fall into the slow path with the atomic cmpxchg loop. 2589 if (!type->isBooleanType() && type->isIntegerType() && 2590 !(type->isUnsignedIntegerType() && 2591 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2592 CGF.getLangOpts().getSignedOverflowBehavior() != 2593 LangOptions::SOB_Trapping) { 2594 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2595 llvm::AtomicRMWInst::Sub; 2596 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2597 llvm::Instruction::Sub; 2598 llvm::Value *amt = CGF.EmitToMemory( 2599 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2600 llvm::Value *old = 2601 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2602 llvm::AtomicOrdering::SequentiallyConsistent); 2603 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2604 } 2605 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2606 input = value; 2607 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2608 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2609 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2610 value = CGF.EmitToMemory(value, type); 2611 Builder.CreateBr(opBB); 2612 Builder.SetInsertPoint(opBB); 2613 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2614 atomicPHI->addIncoming(value, startBB); 2615 value = atomicPHI; 2616 } else { 2617 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2618 input = value; 2619 } 2620 2621 // Special case of integer increment that we have to check first: bool++. 2622 // Due to promotion rules, we get: 2623 // bool++ -> bool = bool + 1 2624 // -> bool = (int)bool + 1 2625 // -> bool = ((int)bool + 1 != 0) 2626 // An interesting aspect of this is that increment is always true. 2627 // Decrement does not have this property. 2628 if (isInc && type->isBooleanType()) { 2629 value = Builder.getTrue(); 2630 2631 // Most common case by far: integer increment. 2632 } else if (type->isIntegerType()) { 2633 QualType promotedType; 2634 bool canPerformLossyDemotionCheck = false; 2635 if (CGF.getContext().isPromotableIntegerType(type)) { 2636 promotedType = CGF.getContext().getPromotedIntegerType(type); 2637 assert(promotedType != type && "Shouldn't promote to the same type."); 2638 canPerformLossyDemotionCheck = true; 2639 canPerformLossyDemotionCheck &= 2640 CGF.getContext().getCanonicalType(type) != 2641 CGF.getContext().getCanonicalType(promotedType); 2642 canPerformLossyDemotionCheck &= 2643 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2644 type, promotedType); 2645 assert((!canPerformLossyDemotionCheck || 2646 type->isSignedIntegerOrEnumerationType() || 2647 promotedType->isSignedIntegerOrEnumerationType() || 2648 ConvertType(type)->getScalarSizeInBits() == 2649 ConvertType(promotedType)->getScalarSizeInBits()) && 2650 "The following check expects that if we do promotion to different " 2651 "underlying canonical type, at least one of the types (either " 2652 "base or promoted) will be signed, or the bitwidths will match."); 2653 } 2654 if (CGF.SanOpts.hasOneOf( 2655 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2656 canPerformLossyDemotionCheck) { 2657 // While `x += 1` (for `x` with width less than int) is modeled as 2658 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2659 // ease; inc/dec with width less than int can't overflow because of 2660 // promotion rules, so we omit promotion+demotion, which means that we can 2661 // not catch lossy "demotion". Because we still want to catch these cases 2662 // when the sanitizer is enabled, we perform the promotion, then perform 2663 // the increment/decrement in the wider type, and finally 2664 // perform the demotion. This will catch lossy demotions. 2665 2666 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2667 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2668 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2669 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2670 // emitted. 2671 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2672 ScalarConversionOpts(CGF.SanOpts)); 2673 2674 // Note that signed integer inc/dec with width less than int can't 2675 // overflow because of promotion rules; we're just eliding a few steps 2676 // here. 2677 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2678 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2679 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2680 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2681 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2682 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2683 } else { 2684 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2685 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2686 } 2687 2688 // Next most common: pointer increment. 2689 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2690 QualType type = ptr->getPointeeType(); 2691 2692 // VLA types don't have constant size. 2693 if (const VariableArrayType *vla 2694 = CGF.getContext().getAsVariableArrayType(type)) { 2695 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2696 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2697 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType()); 2698 if (CGF.getLangOpts().isSignedOverflowDefined()) 2699 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc"); 2700 else 2701 value = CGF.EmitCheckedInBoundsGEP( 2702 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction, 2703 E->getExprLoc(), "vla.inc"); 2704 2705 // Arithmetic on function pointers (!) is just +-1. 2706 } else if (type->isFunctionType()) { 2707 llvm::Value *amt = Builder.getInt32(amount); 2708 2709 if (CGF.getLangOpts().isSignedOverflowDefined()) 2710 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); 2711 else 2712 value = 2713 CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt, 2714 /*SignedIndices=*/false, isSubtraction, 2715 E->getExprLoc(), "incdec.funcptr"); 2716 2717 // For everything else, we can just do a simple increment. 2718 } else { 2719 llvm::Value *amt = Builder.getInt32(amount); 2720 llvm::Type *elemTy = CGF.ConvertTypeForMem(type); 2721 if (CGF.getLangOpts().isSignedOverflowDefined()) 2722 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr"); 2723 else 2724 value = CGF.EmitCheckedInBoundsGEP( 2725 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction, 2726 E->getExprLoc(), "incdec.ptr"); 2727 } 2728 2729 // Vector increment/decrement. 2730 } else if (type->isVectorType()) { 2731 if (type->hasIntegerRepresentation()) { 2732 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2733 2734 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2735 } else { 2736 value = Builder.CreateFAdd( 2737 value, 2738 llvm::ConstantFP::get(value->getType(), amount), 2739 isInc ? "inc" : "dec"); 2740 } 2741 2742 // Floating point. 2743 } else if (type->isRealFloatingType()) { 2744 // Add the inc/dec to the real part. 2745 llvm::Value *amt; 2746 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 2747 2748 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2749 // Another special case: half FP increment should be done via float 2750 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2751 value = Builder.CreateCall( 2752 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2753 CGF.CGM.FloatTy), 2754 input, "incdec.conv"); 2755 } else { 2756 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2757 } 2758 } 2759 2760 if (value->getType()->isFloatTy()) 2761 amt = llvm::ConstantFP::get(VMContext, 2762 llvm::APFloat(static_cast<float>(amount))); 2763 else if (value->getType()->isDoubleTy()) 2764 amt = llvm::ConstantFP::get(VMContext, 2765 llvm::APFloat(static_cast<double>(amount))); 2766 else { 2767 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert 2768 // from float. 2769 llvm::APFloat F(static_cast<float>(amount)); 2770 bool ignored; 2771 const llvm::fltSemantics *FS; 2772 // Don't use getFloatTypeSemantics because Half isn't 2773 // necessarily represented using the "half" LLVM type. 2774 if (value->getType()->isFP128Ty()) 2775 FS = &CGF.getTarget().getFloat128Format(); 2776 else if (value->getType()->isHalfTy()) 2777 FS = &CGF.getTarget().getHalfFormat(); 2778 else if (value->getType()->isPPC_FP128Ty()) 2779 FS = &CGF.getTarget().getIbm128Format(); 2780 else 2781 FS = &CGF.getTarget().getLongDoubleFormat(); 2782 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2783 amt = llvm::ConstantFP::get(VMContext, F); 2784 } 2785 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2786 2787 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2788 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2789 value = Builder.CreateCall( 2790 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2791 CGF.CGM.FloatTy), 2792 value, "incdec.conv"); 2793 } else { 2794 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2795 } 2796 } 2797 2798 // Fixed-point types. 2799 } else if (type->isFixedPointType()) { 2800 // Fixed-point types are tricky. In some cases, it isn't possible to 2801 // represent a 1 or a -1 in the type at all. Piggyback off of 2802 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2803 BinOpInfo Info; 2804 Info.E = E; 2805 Info.Ty = E->getType(); 2806 Info.Opcode = isInc ? BO_Add : BO_Sub; 2807 Info.LHS = value; 2808 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2809 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2810 // since -1 is guaranteed to be representable. 2811 if (type->isSignedFixedPointType()) { 2812 Info.Opcode = isInc ? BO_Sub : BO_Add; 2813 Info.RHS = Builder.CreateNeg(Info.RHS); 2814 } 2815 // Now, convert from our invented integer literal to the type of the unary 2816 // op. This will upscale and saturate if necessary. This value can become 2817 // undef in some cases. 2818 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2819 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2820 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2821 value = EmitFixedPointBinOp(Info); 2822 2823 // Objective-C pointer types. 2824 } else { 2825 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2826 2827 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2828 if (!isInc) size = -size; 2829 llvm::Value *sizeValue = 2830 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2831 2832 if (CGF.getLangOpts().isSignedOverflowDefined()) 2833 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); 2834 else 2835 value = CGF.EmitCheckedInBoundsGEP( 2836 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction, 2837 E->getExprLoc(), "incdec.objptr"); 2838 value = Builder.CreateBitCast(value, input->getType()); 2839 } 2840 2841 if (atomicPHI) { 2842 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2843 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2844 auto Pair = CGF.EmitAtomicCompareExchange( 2845 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2846 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2847 llvm::Value *success = Pair.second; 2848 atomicPHI->addIncoming(old, curBlock); 2849 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2850 Builder.SetInsertPoint(contBB); 2851 return isPre ? value : input; 2852 } 2853 2854 // Store the updated result through the lvalue. 2855 if (LV.isBitField()) 2856 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2857 else 2858 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2859 2860 // If this is a postinc, return the value read from memory, otherwise use the 2861 // updated value. 2862 return isPre ? value : input; 2863 } 2864 2865 2866 Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E, 2867 QualType PromotionType) { 2868 QualType promotionTy = PromotionType.isNull() 2869 ? getPromotionType(E->getSubExpr()->getType()) 2870 : PromotionType; 2871 Value *result = VisitPlus(E, promotionTy); 2872 if (result && !promotionTy.isNull()) 2873 result = EmitUnPromotedValue(result, E->getType()); 2874 return result; 2875 } 2876 2877 Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E, 2878 QualType PromotionType) { 2879 // This differs from gcc, though, most likely due to a bug in gcc. 2880 TestAndClearIgnoreResultAssign(); 2881 if (!PromotionType.isNull()) 2882 return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType); 2883 return Visit(E->getSubExpr()); 2884 } 2885 2886 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E, 2887 QualType PromotionType) { 2888 QualType promotionTy = PromotionType.isNull() 2889 ? getPromotionType(E->getSubExpr()->getType()) 2890 : PromotionType; 2891 Value *result = VisitMinus(E, promotionTy); 2892 if (result && !promotionTy.isNull()) 2893 result = EmitUnPromotedValue(result, E->getType()); 2894 return result; 2895 } 2896 2897 Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E, 2898 QualType PromotionType) { 2899 TestAndClearIgnoreResultAssign(); 2900 Value *Op; 2901 if (!PromotionType.isNull()) 2902 Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType); 2903 else 2904 Op = Visit(E->getSubExpr()); 2905 2906 // Generate a unary FNeg for FP ops. 2907 if (Op->getType()->isFPOrFPVectorTy()) 2908 return Builder.CreateFNeg(Op, "fneg"); 2909 2910 // Emit unary minus with EmitSub so we handle overflow cases etc. 2911 BinOpInfo BinOp; 2912 BinOp.RHS = Op; 2913 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2914 BinOp.Ty = E->getType(); 2915 BinOp.Opcode = BO_Sub; 2916 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2917 BinOp.E = E; 2918 return EmitSub(BinOp); 2919 } 2920 2921 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2922 TestAndClearIgnoreResultAssign(); 2923 Value *Op = Visit(E->getSubExpr()); 2924 return Builder.CreateNot(Op, "not"); 2925 } 2926 2927 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2928 // Perform vector logical not on comparison with zero vector. 2929 if (E->getType()->isVectorType() && 2930 E->getType()->castAs<VectorType>()->getVectorKind() == 2931 VectorType::GenericVector) { 2932 Value *Oper = Visit(E->getSubExpr()); 2933 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2934 Value *Result; 2935 if (Oper->getType()->isFPOrFPVectorTy()) { 2936 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2937 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2938 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2939 } else 2940 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2941 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2942 } 2943 2944 // Compare operand to zero. 2945 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2946 2947 // Invert value. 2948 // TODO: Could dynamically modify easy computations here. For example, if 2949 // the operand is an icmp ne, turn into icmp eq. 2950 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2951 2952 // ZExt result to the expr type. 2953 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2954 } 2955 2956 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2957 // Try folding the offsetof to a constant. 2958 Expr::EvalResult EVResult; 2959 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2960 llvm::APSInt Value = EVResult.Val.getInt(); 2961 return Builder.getInt(Value); 2962 } 2963 2964 // Loop over the components of the offsetof to compute the value. 2965 unsigned n = E->getNumComponents(); 2966 llvm::Type* ResultType = ConvertType(E->getType()); 2967 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2968 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2969 for (unsigned i = 0; i != n; ++i) { 2970 OffsetOfNode ON = E->getComponent(i); 2971 llvm::Value *Offset = nullptr; 2972 switch (ON.getKind()) { 2973 case OffsetOfNode::Array: { 2974 // Compute the index 2975 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2976 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2977 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2978 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2979 2980 // Save the element type 2981 CurrentType = 2982 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2983 2984 // Compute the element size 2985 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2986 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2987 2988 // Multiply out to compute the result 2989 Offset = Builder.CreateMul(Idx, ElemSize); 2990 break; 2991 } 2992 2993 case OffsetOfNode::Field: { 2994 FieldDecl *MemberDecl = ON.getField(); 2995 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2996 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2997 2998 // Compute the index of the field in its parent. 2999 unsigned i = 0; 3000 // FIXME: It would be nice if we didn't have to loop here! 3001 for (RecordDecl::field_iterator Field = RD->field_begin(), 3002 FieldEnd = RD->field_end(); 3003 Field != FieldEnd; ++Field, ++i) { 3004 if (*Field == MemberDecl) 3005 break; 3006 } 3007 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 3008 3009 // Compute the offset to the field 3010 int64_t OffsetInt = RL.getFieldOffset(i) / 3011 CGF.getContext().getCharWidth(); 3012 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 3013 3014 // Save the element type. 3015 CurrentType = MemberDecl->getType(); 3016 break; 3017 } 3018 3019 case OffsetOfNode::Identifier: 3020 llvm_unreachable("dependent __builtin_offsetof"); 3021 3022 case OffsetOfNode::Base: { 3023 if (ON.getBase()->isVirtual()) { 3024 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 3025 continue; 3026 } 3027 3028 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 3029 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 3030 3031 // Save the element type. 3032 CurrentType = ON.getBase()->getType(); 3033 3034 // Compute the offset to the base. 3035 auto *BaseRT = CurrentType->castAs<RecordType>(); 3036 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 3037 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 3038 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 3039 break; 3040 } 3041 } 3042 Result = Builder.CreateAdd(Result, Offset); 3043 } 3044 return Result; 3045 } 3046 3047 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 3048 /// argument of the sizeof expression as an integer. 3049 Value * 3050 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 3051 const UnaryExprOrTypeTraitExpr *E) { 3052 QualType TypeToSize = E->getTypeOfArgument(); 3053 if (E->getKind() == UETT_SizeOf) { 3054 if (const VariableArrayType *VAT = 3055 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 3056 if (E->isArgumentType()) { 3057 // sizeof(type) - make sure to emit the VLA size. 3058 CGF.EmitVariablyModifiedType(TypeToSize); 3059 } else { 3060 // C99 6.5.3.4p2: If the argument is an expression of type 3061 // VLA, it is evaluated. 3062 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 3063 } 3064 3065 auto VlaSize = CGF.getVLASize(VAT); 3066 llvm::Value *size = VlaSize.NumElts; 3067 3068 // Scale the number of non-VLA elements by the non-VLA element size. 3069 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 3070 if (!eltSize.isOne()) 3071 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 3072 3073 return size; 3074 } 3075 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 3076 auto Alignment = 3077 CGF.getContext() 3078 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 3079 E->getTypeOfArgument()->getPointeeType())) 3080 .getQuantity(); 3081 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 3082 } 3083 3084 // If this isn't sizeof(vla), the result must be constant; use the constant 3085 // folding logic so we don't have to duplicate it here. 3086 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 3087 } 3088 3089 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E, 3090 QualType PromotionType) { 3091 QualType promotionTy = PromotionType.isNull() 3092 ? getPromotionType(E->getSubExpr()->getType()) 3093 : PromotionType; 3094 Value *result = VisitReal(E, promotionTy); 3095 if (result && !promotionTy.isNull()) 3096 result = EmitUnPromotedValue(result, E->getType()); 3097 return result; 3098 } 3099 3100 Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E, 3101 QualType PromotionType) { 3102 Expr *Op = E->getSubExpr(); 3103 if (Op->getType()->isAnyComplexType()) { 3104 // If it's an l-value, load through the appropriate subobject l-value. 3105 // Note that we have to ask E because Op might be an l-value that 3106 // this won't work for, e.g. an Obj-C property. 3107 if (E->isGLValue()) { 3108 if (!PromotionType.isNull()) { 3109 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr( 3110 Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true); 3111 if (result.first) 3112 result.first = CGF.EmitPromotedValue(result, PromotionType).first; 3113 return result.first; 3114 } else { 3115 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()) 3116 .getScalarVal(); 3117 } 3118 } 3119 // Otherwise, calculate and project. 3120 return CGF.EmitComplexExpr(Op, false, true).first; 3121 } 3122 3123 if (!PromotionType.isNull()) 3124 return CGF.EmitPromotedScalarExpr(Op, PromotionType); 3125 return Visit(Op); 3126 } 3127 3128 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E, 3129 QualType PromotionType) { 3130 QualType promotionTy = PromotionType.isNull() 3131 ? getPromotionType(E->getSubExpr()->getType()) 3132 : PromotionType; 3133 Value *result = VisitImag(E, promotionTy); 3134 if (result && !promotionTy.isNull()) 3135 result = EmitUnPromotedValue(result, E->getType()); 3136 return result; 3137 } 3138 3139 Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E, 3140 QualType PromotionType) { 3141 Expr *Op = E->getSubExpr(); 3142 if (Op->getType()->isAnyComplexType()) { 3143 // If it's an l-value, load through the appropriate subobject l-value. 3144 // Note that we have to ask E because Op might be an l-value that 3145 // this won't work for, e.g. an Obj-C property. 3146 if (Op->isGLValue()) { 3147 if (!PromotionType.isNull()) { 3148 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr( 3149 Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign); 3150 if (result.second) 3151 result.second = CGF.EmitPromotedValue(result, PromotionType).second; 3152 return result.second; 3153 } else { 3154 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()) 3155 .getScalarVal(); 3156 } 3157 } 3158 // Otherwise, calculate and project. 3159 return CGF.EmitComplexExpr(Op, true, false).second; 3160 } 3161 3162 // __imag on a scalar returns zero. Emit the subexpr to ensure side 3163 // effects are evaluated, but not the actual value. 3164 if (Op->isGLValue()) 3165 CGF.EmitLValue(Op); 3166 else if (!PromotionType.isNull()) 3167 CGF.EmitPromotedScalarExpr(Op, PromotionType); 3168 else 3169 CGF.EmitScalarExpr(Op, true); 3170 if (!PromotionType.isNull()) 3171 return llvm::Constant::getNullValue(ConvertType(PromotionType)); 3172 return llvm::Constant::getNullValue(ConvertType(E->getType())); 3173 } 3174 3175 //===----------------------------------------------------------------------===// 3176 // Binary Operators 3177 //===----------------------------------------------------------------------===// 3178 3179 Value *ScalarExprEmitter::EmitPromotedValue(Value *result, 3180 QualType PromotionType) { 3181 return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext"); 3182 } 3183 3184 Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result, 3185 QualType ExprType) { 3186 return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion"); 3187 } 3188 3189 Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) { 3190 E = E->IgnoreParens(); 3191 if (auto BO = dyn_cast<BinaryOperator>(E)) { 3192 switch (BO->getOpcode()) { 3193 #define HANDLE_BINOP(OP) \ 3194 case BO_##OP: \ 3195 return Emit##OP(EmitBinOps(BO, PromotionType)); 3196 HANDLE_BINOP(Add) 3197 HANDLE_BINOP(Sub) 3198 HANDLE_BINOP(Mul) 3199 HANDLE_BINOP(Div) 3200 #undef HANDLE_BINOP 3201 default: 3202 break; 3203 } 3204 } else if (auto UO = dyn_cast<UnaryOperator>(E)) { 3205 switch (UO->getOpcode()) { 3206 case UO_Imag: 3207 return VisitImag(UO, PromotionType); 3208 case UO_Real: 3209 return VisitReal(UO, PromotionType); 3210 case UO_Minus: 3211 return VisitMinus(UO, PromotionType); 3212 case UO_Plus: 3213 return VisitPlus(UO, PromotionType); 3214 default: 3215 break; 3216 } 3217 } 3218 auto result = Visit(const_cast<Expr *>(E)); 3219 if (result) { 3220 if (!PromotionType.isNull()) 3221 return EmitPromotedValue(result, PromotionType); 3222 else 3223 return EmitUnPromotedValue(result, E->getType()); 3224 } 3225 return result; 3226 } 3227 3228 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E, 3229 QualType PromotionType) { 3230 TestAndClearIgnoreResultAssign(); 3231 BinOpInfo Result; 3232 Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType); 3233 Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType); 3234 if (!PromotionType.isNull()) 3235 Result.Ty = PromotionType; 3236 else 3237 Result.Ty = E->getType(); 3238 Result.Opcode = E->getOpcode(); 3239 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3240 Result.E = E; 3241 return Result; 3242 } 3243 3244 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 3245 const CompoundAssignOperator *E, 3246 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 3247 Value *&Result) { 3248 QualType LHSTy = E->getLHS()->getType(); 3249 BinOpInfo OpInfo; 3250 3251 if (E->getComputationResultType()->isAnyComplexType()) 3252 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 3253 3254 // Emit the RHS first. __block variables need to have the rhs evaluated 3255 // first, plus this should improve codegen a little. 3256 3257 QualType PromotionTypeCR; 3258 PromotionTypeCR = getPromotionType(E->getComputationResultType()); 3259 if (PromotionTypeCR.isNull()) 3260 PromotionTypeCR = E->getComputationResultType(); 3261 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType()); 3262 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType()); 3263 if (!PromotionTypeRHS.isNull()) 3264 OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS); 3265 else 3266 OpInfo.RHS = Visit(E->getRHS()); 3267 OpInfo.Ty = PromotionTypeCR; 3268 OpInfo.Opcode = E->getOpcode(); 3269 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3270 OpInfo.E = E; 3271 // Load/convert the LHS. 3272 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3273 3274 llvm::PHINode *atomicPHI = nullptr; 3275 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 3276 QualType type = atomicTy->getValueType(); 3277 if (!type->isBooleanType() && type->isIntegerType() && 3278 !(type->isUnsignedIntegerType() && 3279 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 3280 CGF.getLangOpts().getSignedOverflowBehavior() != 3281 LangOptions::SOB_Trapping) { 3282 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 3283 llvm::Instruction::BinaryOps Op; 3284 switch (OpInfo.Opcode) { 3285 // We don't have atomicrmw operands for *, %, /, <<, >> 3286 case BO_MulAssign: case BO_DivAssign: 3287 case BO_RemAssign: 3288 case BO_ShlAssign: 3289 case BO_ShrAssign: 3290 break; 3291 case BO_AddAssign: 3292 AtomicOp = llvm::AtomicRMWInst::Add; 3293 Op = llvm::Instruction::Add; 3294 break; 3295 case BO_SubAssign: 3296 AtomicOp = llvm::AtomicRMWInst::Sub; 3297 Op = llvm::Instruction::Sub; 3298 break; 3299 case BO_AndAssign: 3300 AtomicOp = llvm::AtomicRMWInst::And; 3301 Op = llvm::Instruction::And; 3302 break; 3303 case BO_XorAssign: 3304 AtomicOp = llvm::AtomicRMWInst::Xor; 3305 Op = llvm::Instruction::Xor; 3306 break; 3307 case BO_OrAssign: 3308 AtomicOp = llvm::AtomicRMWInst::Or; 3309 Op = llvm::Instruction::Or; 3310 break; 3311 default: 3312 llvm_unreachable("Invalid compound assignment type"); 3313 } 3314 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3315 llvm::Value *Amt = CGF.EmitToMemory( 3316 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3317 E->getExprLoc()), 3318 LHSTy); 3319 Value *OldVal = Builder.CreateAtomicRMW( 3320 AtomicOp, LHSLV.getPointer(CGF), Amt, 3321 llvm::AtomicOrdering::SequentiallyConsistent); 3322 3323 // Since operation is atomic, the result type is guaranteed to be the 3324 // same as the input in LLVM terms. 3325 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3326 return LHSLV; 3327 } 3328 } 3329 // FIXME: For floating point types, we should be saving and restoring the 3330 // floating point environment in the loop. 3331 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3332 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3333 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3334 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3335 Builder.CreateBr(opBB); 3336 Builder.SetInsertPoint(opBB); 3337 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3338 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3339 OpInfo.LHS = atomicPHI; 3340 } 3341 else 3342 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3343 3344 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 3345 SourceLocation Loc = E->getExprLoc(); 3346 if (!PromotionTypeLHS.isNull()) 3347 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS, 3348 E->getExprLoc()); 3349 else 3350 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 3351 E->getComputationLHSType(), Loc); 3352 3353 // Expand the binary operator. 3354 Result = (this->*Func)(OpInfo); 3355 3356 // Convert the result back to the LHS type, 3357 // potentially with Implicit Conversion sanitizer check. 3358 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc, 3359 ScalarConversionOpts(CGF.SanOpts)); 3360 3361 if (atomicPHI) { 3362 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3363 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3364 auto Pair = CGF.EmitAtomicCompareExchange( 3365 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3366 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3367 llvm::Value *success = Pair.second; 3368 atomicPHI->addIncoming(old, curBlock); 3369 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3370 Builder.SetInsertPoint(contBB); 3371 return LHSLV; 3372 } 3373 3374 // Store the result value into the LHS lvalue. Bit-fields are handled 3375 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3376 // 'An assignment expression has the value of the left operand after the 3377 // assignment...'. 3378 if (LHSLV.isBitField()) 3379 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3380 else 3381 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3382 3383 if (CGF.getLangOpts().OpenMP) 3384 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3385 E->getLHS()); 3386 return LHSLV; 3387 } 3388 3389 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3390 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3391 bool Ignore = TestAndClearIgnoreResultAssign(); 3392 Value *RHS = nullptr; 3393 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3394 3395 // If the result is clearly ignored, return now. 3396 if (Ignore) 3397 return nullptr; 3398 3399 // The result of an assignment in C is the assigned r-value. 3400 if (!CGF.getLangOpts().CPlusPlus) 3401 return RHS; 3402 3403 // If the lvalue is non-volatile, return the computed value of the assignment. 3404 if (!LHS.isVolatileQualified()) 3405 return RHS; 3406 3407 // Otherwise, reload the value. 3408 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3409 } 3410 3411 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3412 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3413 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3414 3415 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3416 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3417 SanitizerKind::IntegerDivideByZero)); 3418 } 3419 3420 const auto *BO = cast<BinaryOperator>(Ops.E); 3421 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3422 Ops.Ty->hasSignedIntegerRepresentation() && 3423 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3424 Ops.mayHaveIntegerOverflow()) { 3425 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3426 3427 llvm::Value *IntMin = 3428 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3429 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); 3430 3431 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3432 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3433 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3434 Checks.push_back( 3435 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3436 } 3437 3438 if (Checks.size() > 0) 3439 EmitBinOpCheck(Checks, Ops); 3440 } 3441 3442 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3443 { 3444 CodeGenFunction::SanitizerScope SanScope(&CGF); 3445 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3446 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3447 Ops.Ty->isIntegerType() && 3448 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3449 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3450 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3451 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3452 Ops.Ty->isRealFloatingType() && 3453 Ops.mayHaveFloatDivisionByZero()) { 3454 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3455 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3456 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3457 Ops); 3458 } 3459 } 3460 3461 if (Ops.Ty->isConstantMatrixType()) { 3462 llvm::MatrixBuilder MB(Builder); 3463 // We need to check the types of the operands of the operator to get the 3464 // correct matrix dimensions. 3465 auto *BO = cast<BinaryOperator>(Ops.E); 3466 (void)BO; 3467 assert( 3468 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && 3469 "first operand must be a matrix"); 3470 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && 3471 "second operand must be an arithmetic type"); 3472 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3473 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, 3474 Ops.Ty->hasUnsignedIntegerRepresentation()); 3475 } 3476 3477 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3478 llvm::Value *Val; 3479 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3480 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3481 CGF.SetDivFPAccuracy(Val); 3482 return Val; 3483 } 3484 else if (Ops.isFixedPointOp()) 3485 return EmitFixedPointBinOp(Ops); 3486 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3487 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3488 else 3489 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3490 } 3491 3492 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3493 // Rem in C can't be a floating point type: C99 6.5.5p2. 3494 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3495 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3496 Ops.Ty->isIntegerType() && 3497 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3498 CodeGenFunction::SanitizerScope SanScope(&CGF); 3499 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3500 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3501 } 3502 3503 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3504 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3505 else 3506 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3507 } 3508 3509 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3510 unsigned IID; 3511 unsigned OpID = 0; 3512 SanitizerHandler OverflowKind; 3513 3514 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3515 switch (Ops.Opcode) { 3516 case BO_Add: 3517 case BO_AddAssign: 3518 OpID = 1; 3519 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3520 llvm::Intrinsic::uadd_with_overflow; 3521 OverflowKind = SanitizerHandler::AddOverflow; 3522 break; 3523 case BO_Sub: 3524 case BO_SubAssign: 3525 OpID = 2; 3526 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3527 llvm::Intrinsic::usub_with_overflow; 3528 OverflowKind = SanitizerHandler::SubOverflow; 3529 break; 3530 case BO_Mul: 3531 case BO_MulAssign: 3532 OpID = 3; 3533 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3534 llvm::Intrinsic::umul_with_overflow; 3535 OverflowKind = SanitizerHandler::MulOverflow; 3536 break; 3537 default: 3538 llvm_unreachable("Unsupported operation for overflow detection"); 3539 } 3540 OpID <<= 1; 3541 if (isSigned) 3542 OpID |= 1; 3543 3544 CodeGenFunction::SanitizerScope SanScope(&CGF); 3545 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3546 3547 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3548 3549 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3550 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3551 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3552 3553 // Handle overflow with llvm.trap if no custom handler has been specified. 3554 const std::string *handlerName = 3555 &CGF.getLangOpts().OverflowHandler; 3556 if (handlerName->empty()) { 3557 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3558 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3559 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3560 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3561 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3562 : SanitizerKind::UnsignedIntegerOverflow; 3563 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3564 } else 3565 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); 3566 return result; 3567 } 3568 3569 // Branch in case of overflow. 3570 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3571 llvm::BasicBlock *continueBB = 3572 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3573 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3574 3575 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3576 3577 // If an overflow handler is set, then we want to call it and then use its 3578 // result, if it returns. 3579 Builder.SetInsertPoint(overflowBB); 3580 3581 // Get the overflow handler. 3582 llvm::Type *Int8Ty = CGF.Int8Ty; 3583 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3584 llvm::FunctionType *handlerTy = 3585 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3586 llvm::FunctionCallee handler = 3587 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3588 3589 // Sign extend the args to 64-bit, so that we can use the same handler for 3590 // all types of overflow. 3591 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3592 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3593 3594 // Call the handler with the two arguments, the operation, and the size of 3595 // the result. 3596 llvm::Value *handlerArgs[] = { 3597 lhs, 3598 rhs, 3599 Builder.getInt8(OpID), 3600 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3601 }; 3602 llvm::Value *handlerResult = 3603 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3604 3605 // Truncate the result back to the desired size. 3606 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3607 Builder.CreateBr(continueBB); 3608 3609 Builder.SetInsertPoint(continueBB); 3610 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3611 phi->addIncoming(result, initialBB); 3612 phi->addIncoming(handlerResult, overflowBB); 3613 3614 return phi; 3615 } 3616 3617 /// Emit pointer + index arithmetic. 3618 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3619 const BinOpInfo &op, 3620 bool isSubtraction) { 3621 // Must have binary (not unary) expr here. Unary pointer 3622 // increment/decrement doesn't use this path. 3623 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3624 3625 Value *pointer = op.LHS; 3626 Expr *pointerOperand = expr->getLHS(); 3627 Value *index = op.RHS; 3628 Expr *indexOperand = expr->getRHS(); 3629 3630 // In a subtraction, the LHS is always the pointer. 3631 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3632 std::swap(pointer, index); 3633 std::swap(pointerOperand, indexOperand); 3634 } 3635 3636 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3637 3638 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3639 auto &DL = CGF.CGM.getDataLayout(); 3640 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3641 3642 // Some versions of glibc and gcc use idioms (particularly in their malloc 3643 // routines) that add a pointer-sized integer (known to be a pointer value) 3644 // to a null pointer in order to cast the value back to an integer or as 3645 // part of a pointer alignment algorithm. This is undefined behavior, but 3646 // we'd like to be able to compile programs that use it. 3647 // 3648 // Normally, we'd generate a GEP with a null-pointer base here in response 3649 // to that code, but it's also UB to dereference a pointer created that 3650 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3651 // generate a direct cast of the integer value to a pointer. 3652 // 3653 // The idiom (p = nullptr + N) is not met if any of the following are true: 3654 // 3655 // The operation is subtraction. 3656 // The index is not pointer-sized. 3657 // The pointer type is not byte-sized. 3658 // 3659 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3660 op.Opcode, 3661 expr->getLHS(), 3662 expr->getRHS())) 3663 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3664 3665 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3666 // Zero-extend or sign-extend the pointer value according to 3667 // whether the index is signed or not. 3668 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3669 "idx.ext"); 3670 } 3671 3672 // If this is subtraction, negate the index. 3673 if (isSubtraction) 3674 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3675 3676 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3677 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3678 /*Accessed*/ false); 3679 3680 const PointerType *pointerType 3681 = pointerOperand->getType()->getAs<PointerType>(); 3682 if (!pointerType) { 3683 QualType objectType = pointerOperand->getType() 3684 ->castAs<ObjCObjectPointerType>() 3685 ->getPointeeType(); 3686 llvm::Value *objectSize 3687 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3688 3689 index = CGF.Builder.CreateMul(index, objectSize); 3690 3691 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3692 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); 3693 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3694 } 3695 3696 QualType elementType = pointerType->getPointeeType(); 3697 if (const VariableArrayType *vla 3698 = CGF.getContext().getAsVariableArrayType(elementType)) { 3699 // The element count here is the total number of non-VLA elements. 3700 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3701 3702 // Effectively, the multiply by the VLA size is part of the GEP. 3703 // GEP indexes are signed, and scaling an index isn't permitted to 3704 // signed-overflow, so we use the same semantics for our explicit 3705 // multiply. We suppress this if overflow is not undefined behavior. 3706 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType()); 3707 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3708 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3709 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); 3710 } else { 3711 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3712 pointer = CGF.EmitCheckedInBoundsGEP( 3713 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), 3714 "add.ptr"); 3715 } 3716 return pointer; 3717 } 3718 3719 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3720 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3721 // future proof. 3722 if (elementType->isVoidType() || elementType->isFunctionType()) 3723 return CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr"); 3724 3725 llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType); 3726 if (CGF.getLangOpts().isSignedOverflowDefined()) 3727 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); 3728 3729 return CGF.EmitCheckedInBoundsGEP( 3730 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), 3731 "add.ptr"); 3732 } 3733 3734 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3735 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3736 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3737 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3738 // efficient operations. 3739 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3740 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3741 bool negMul, bool negAdd) { 3742 Value *MulOp0 = MulOp->getOperand(0); 3743 Value *MulOp1 = MulOp->getOperand(1); 3744 if (negMul) 3745 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3746 if (negAdd) 3747 Addend = Builder.CreateFNeg(Addend, "neg"); 3748 3749 Value *FMulAdd = nullptr; 3750 if (Builder.getIsFPConstrained()) { 3751 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3752 "Only constrained operation should be created when Builder is in FP " 3753 "constrained mode"); 3754 FMulAdd = Builder.CreateConstrainedFPCall( 3755 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3756 Addend->getType()), 3757 {MulOp0, MulOp1, Addend}); 3758 } else { 3759 FMulAdd = Builder.CreateCall( 3760 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3761 {MulOp0, MulOp1, Addend}); 3762 } 3763 MulOp->eraseFromParent(); 3764 3765 return FMulAdd; 3766 } 3767 3768 // Check whether it would be legal to emit an fmuladd intrinsic call to 3769 // represent op and if so, build the fmuladd. 3770 // 3771 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3772 // Does NOT check the type of the operation - it's assumed that this function 3773 // will be called from contexts where it's known that the type is contractable. 3774 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3775 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3776 bool isSub=false) { 3777 3778 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3779 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3780 "Only fadd/fsub can be the root of an fmuladd."); 3781 3782 // Check whether this op is marked as fusable. 3783 if (!op.FPFeatures.allowFPContractWithinStatement()) 3784 return nullptr; 3785 3786 Value *LHS = op.LHS; 3787 Value *RHS = op.RHS; 3788 3789 // Peek through fneg to look for fmul. Make sure fneg has no users, and that 3790 // it is the only use of its operand. 3791 bool NegLHS = false; 3792 if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) { 3793 if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg && 3794 LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) { 3795 LHS = LHSUnOp->getOperand(0); 3796 NegLHS = true; 3797 } 3798 } 3799 3800 bool NegRHS = false; 3801 if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) { 3802 if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg && 3803 RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) { 3804 RHS = RHSUnOp->getOperand(0); 3805 NegRHS = true; 3806 } 3807 } 3808 3809 // We have a potentially fusable op. Look for a mul on one of the operands. 3810 // Also, make sure that the mul result isn't used directly. In that case, 3811 // there's no point creating a muladd operation. 3812 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) { 3813 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3814 (LHSBinOp->use_empty() || NegLHS)) { 3815 // If we looked through fneg, erase it. 3816 if (NegLHS) 3817 cast<llvm::Instruction>(op.LHS)->eraseFromParent(); 3818 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub); 3819 } 3820 } 3821 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) { 3822 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3823 (RHSBinOp->use_empty() || NegRHS)) { 3824 // If we looked through fneg, erase it. 3825 if (NegRHS) 3826 cast<llvm::Instruction>(op.RHS)->eraseFromParent(); 3827 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false); 3828 } 3829 } 3830 3831 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) { 3832 if (LHSBinOp->getIntrinsicID() == 3833 llvm::Intrinsic::experimental_constrained_fmul && 3834 (LHSBinOp->use_empty() || NegLHS)) { 3835 // If we looked through fneg, erase it. 3836 if (NegLHS) 3837 cast<llvm::Instruction>(op.LHS)->eraseFromParent(); 3838 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub); 3839 } 3840 } 3841 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) { 3842 if (RHSBinOp->getIntrinsicID() == 3843 llvm::Intrinsic::experimental_constrained_fmul && 3844 (RHSBinOp->use_empty() || NegRHS)) { 3845 // If we looked through fneg, erase it. 3846 if (NegRHS) 3847 cast<llvm::Instruction>(op.RHS)->eraseFromParent(); 3848 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false); 3849 } 3850 } 3851 3852 return nullptr; 3853 } 3854 3855 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3856 if (op.LHS->getType()->isPointerTy() || 3857 op.RHS->getType()->isPointerTy()) 3858 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3859 3860 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3861 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3862 case LangOptions::SOB_Defined: 3863 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3864 case LangOptions::SOB_Undefined: 3865 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3866 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3867 [[fallthrough]]; 3868 case LangOptions::SOB_Trapping: 3869 if (CanElideOverflowCheck(CGF.getContext(), op)) 3870 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3871 return EmitOverflowCheckedBinOp(op); 3872 } 3873 } 3874 3875 if (op.Ty->isConstantMatrixType()) { 3876 llvm::MatrixBuilder MB(Builder); 3877 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3878 return MB.CreateAdd(op.LHS, op.RHS); 3879 } 3880 3881 if (op.Ty->isUnsignedIntegerType() && 3882 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3883 !CanElideOverflowCheck(CGF.getContext(), op)) 3884 return EmitOverflowCheckedBinOp(op); 3885 3886 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3887 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3888 // Try to form an fmuladd. 3889 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3890 return FMulAdd; 3891 3892 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3893 } 3894 3895 if (op.isFixedPointOp()) 3896 return EmitFixedPointBinOp(op); 3897 3898 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3899 } 3900 3901 /// The resulting value must be calculated with exact precision, so the operands 3902 /// may not be the same type. 3903 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3904 using llvm::APSInt; 3905 using llvm::ConstantInt; 3906 3907 // This is either a binary operation where at least one of the operands is 3908 // a fixed-point type, or a unary operation where the operand is a fixed-point 3909 // type. The result type of a binary operation is determined by 3910 // Sema::handleFixedPointConversions(). 3911 QualType ResultTy = op.Ty; 3912 QualType LHSTy, RHSTy; 3913 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3914 RHSTy = BinOp->getRHS()->getType(); 3915 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3916 // For compound assignment, the effective type of the LHS at this point 3917 // is the computation LHS type, not the actual LHS type, and the final 3918 // result type is not the type of the expression but rather the 3919 // computation result type. 3920 LHSTy = CAO->getComputationLHSType(); 3921 ResultTy = CAO->getComputationResultType(); 3922 } else 3923 LHSTy = BinOp->getLHS()->getType(); 3924 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3925 LHSTy = UnOp->getSubExpr()->getType(); 3926 RHSTy = UnOp->getSubExpr()->getType(); 3927 } 3928 ASTContext &Ctx = CGF.getContext(); 3929 Value *LHS = op.LHS; 3930 Value *RHS = op.RHS; 3931 3932 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3933 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3934 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3935 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3936 3937 // Perform the actual operation. 3938 Value *Result; 3939 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3940 switch (op.Opcode) { 3941 case BO_AddAssign: 3942 case BO_Add: 3943 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3944 break; 3945 case BO_SubAssign: 3946 case BO_Sub: 3947 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3948 break; 3949 case BO_MulAssign: 3950 case BO_Mul: 3951 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3952 break; 3953 case BO_DivAssign: 3954 case BO_Div: 3955 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3956 break; 3957 case BO_ShlAssign: 3958 case BO_Shl: 3959 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3960 break; 3961 case BO_ShrAssign: 3962 case BO_Shr: 3963 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3964 break; 3965 case BO_LT: 3966 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3967 case BO_GT: 3968 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3969 case BO_LE: 3970 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3971 case BO_GE: 3972 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3973 case BO_EQ: 3974 // For equality operations, we assume any padding bits on unsigned types are 3975 // zero'd out. They could be overwritten through non-saturating operations 3976 // that cause overflow, but this leads to undefined behavior. 3977 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3978 case BO_NE: 3979 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3980 case BO_Cmp: 3981 case BO_LAnd: 3982 case BO_LOr: 3983 llvm_unreachable("Found unimplemented fixed point binary operation"); 3984 case BO_PtrMemD: 3985 case BO_PtrMemI: 3986 case BO_Rem: 3987 case BO_Xor: 3988 case BO_And: 3989 case BO_Or: 3990 case BO_Assign: 3991 case BO_RemAssign: 3992 case BO_AndAssign: 3993 case BO_XorAssign: 3994 case BO_OrAssign: 3995 case BO_Comma: 3996 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3997 } 3998 3999 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 4000 BinaryOperator::isShiftAssignOp(op.Opcode); 4001 // Convert to the result type. 4002 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 4003 : CommonFixedSema, 4004 ResultFixedSema); 4005 } 4006 4007 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 4008 // The LHS is always a pointer if either side is. 4009 if (!op.LHS->getType()->isPointerTy()) { 4010 if (op.Ty->isSignedIntegerOrEnumerationType()) { 4011 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 4012 case LangOptions::SOB_Defined: 4013 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 4014 case LangOptions::SOB_Undefined: 4015 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 4016 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 4017 [[fallthrough]]; 4018 case LangOptions::SOB_Trapping: 4019 if (CanElideOverflowCheck(CGF.getContext(), op)) 4020 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 4021 return EmitOverflowCheckedBinOp(op); 4022 } 4023 } 4024 4025 if (op.Ty->isConstantMatrixType()) { 4026 llvm::MatrixBuilder MB(Builder); 4027 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 4028 return MB.CreateSub(op.LHS, op.RHS); 4029 } 4030 4031 if (op.Ty->isUnsignedIntegerType() && 4032 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 4033 !CanElideOverflowCheck(CGF.getContext(), op)) 4034 return EmitOverflowCheckedBinOp(op); 4035 4036 if (op.LHS->getType()->isFPOrFPVectorTy()) { 4037 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 4038 // Try to form an fmuladd. 4039 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 4040 return FMulAdd; 4041 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 4042 } 4043 4044 if (op.isFixedPointOp()) 4045 return EmitFixedPointBinOp(op); 4046 4047 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 4048 } 4049 4050 // If the RHS is not a pointer, then we have normal pointer 4051 // arithmetic. 4052 if (!op.RHS->getType()->isPointerTy()) 4053 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 4054 4055 // Otherwise, this is a pointer subtraction. 4056 4057 // Do the raw subtraction part. 4058 llvm::Value *LHS 4059 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 4060 llvm::Value *RHS 4061 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 4062 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 4063 4064 // Okay, figure out the element size. 4065 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 4066 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 4067 4068 llvm::Value *divisor = nullptr; 4069 4070 // For a variable-length array, this is going to be non-constant. 4071 if (const VariableArrayType *vla 4072 = CGF.getContext().getAsVariableArrayType(elementType)) { 4073 auto VlaSize = CGF.getVLASize(vla); 4074 elementType = VlaSize.Type; 4075 divisor = VlaSize.NumElts; 4076 4077 // Scale the number of non-VLA elements by the non-VLA element size. 4078 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 4079 if (!eltSize.isOne()) 4080 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 4081 4082 // For everything elese, we can just compute it, safe in the 4083 // assumption that Sema won't let anything through that we can't 4084 // safely compute the size of. 4085 } else { 4086 CharUnits elementSize; 4087 // Handle GCC extension for pointer arithmetic on void* and 4088 // function pointer types. 4089 if (elementType->isVoidType() || elementType->isFunctionType()) 4090 elementSize = CharUnits::One(); 4091 else 4092 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 4093 4094 // Don't even emit the divide for element size of 1. 4095 if (elementSize.isOne()) 4096 return diffInChars; 4097 4098 divisor = CGF.CGM.getSize(elementSize); 4099 } 4100 4101 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 4102 // pointer difference in C is only defined in the case where both operands 4103 // are pointing to elements of an array. 4104 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 4105 } 4106 4107 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 4108 llvm::IntegerType *Ty; 4109 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 4110 Ty = cast<llvm::IntegerType>(VT->getElementType()); 4111 else 4112 Ty = cast<llvm::IntegerType>(LHS->getType()); 4113 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 4114 } 4115 4116 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 4117 const Twine &Name) { 4118 llvm::IntegerType *Ty; 4119 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 4120 Ty = cast<llvm::IntegerType>(VT->getElementType()); 4121 else 4122 Ty = cast<llvm::IntegerType>(LHS->getType()); 4123 4124 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 4125 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 4126 4127 return Builder.CreateURem( 4128 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 4129 } 4130 4131 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 4132 // TODO: This misses out on the sanitizer check below. 4133 if (Ops.isFixedPointOp()) 4134 return EmitFixedPointBinOp(Ops); 4135 4136 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 4137 // RHS to the same size as the LHS. 4138 Value *RHS = Ops.RHS; 4139 if (Ops.LHS->getType() != RHS->getType()) 4140 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 4141 4142 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 4143 Ops.Ty->hasSignedIntegerRepresentation() && 4144 !CGF.getLangOpts().isSignedOverflowDefined() && 4145 !CGF.getLangOpts().CPlusPlus20; 4146 bool SanitizeUnsignedBase = 4147 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 4148 Ops.Ty->hasUnsignedIntegerRepresentation(); 4149 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 4150 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 4151 // OpenCL 6.3j: shift values are effectively % word size of LHS. 4152 if (CGF.getLangOpts().OpenCL) 4153 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 4154 else if ((SanitizeBase || SanitizeExponent) && 4155 isa<llvm::IntegerType>(Ops.LHS->getType())) { 4156 CodeGenFunction::SanitizerScope SanScope(&CGF); 4157 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 4158 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 4159 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 4160 4161 if (SanitizeExponent) { 4162 Checks.push_back( 4163 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 4164 } 4165 4166 if (SanitizeBase) { 4167 // Check whether we are shifting any non-zero bits off the top of the 4168 // integer. We only emit this check if exponent is valid - otherwise 4169 // instructions below will have undefined behavior themselves. 4170 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 4171 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4172 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 4173 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 4174 llvm::Value *PromotedWidthMinusOne = 4175 (RHS == Ops.RHS) ? WidthMinusOne 4176 : GetWidthMinusOneValue(Ops.LHS, RHS); 4177 CGF.EmitBlock(CheckShiftBase); 4178 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 4179 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 4180 /*NUW*/ true, /*NSW*/ true), 4181 "shl.check"); 4182 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 4183 // In C99, we are not permitted to shift a 1 bit into the sign bit. 4184 // Under C++11's rules, shifting a 1 bit into the sign bit is 4185 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 4186 // define signed left shifts, so we use the C99 and C++11 rules there). 4187 // Unsigned shifts can always shift into the top bit. 4188 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 4189 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 4190 } 4191 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 4192 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 4193 CGF.EmitBlock(Cont); 4194 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 4195 BaseCheck->addIncoming(Builder.getTrue(), Orig); 4196 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 4197 Checks.push_back(std::make_pair( 4198 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 4199 : SanitizerKind::UnsignedShiftBase)); 4200 } 4201 4202 assert(!Checks.empty()); 4203 EmitBinOpCheck(Checks, Ops); 4204 } 4205 4206 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 4207 } 4208 4209 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 4210 // TODO: This misses out on the sanitizer check below. 4211 if (Ops.isFixedPointOp()) 4212 return EmitFixedPointBinOp(Ops); 4213 4214 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 4215 // RHS to the same size as the LHS. 4216 Value *RHS = Ops.RHS; 4217 if (Ops.LHS->getType() != RHS->getType()) 4218 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 4219 4220 // OpenCL 6.3j: shift values are effectively % word size of LHS. 4221 if (CGF.getLangOpts().OpenCL) 4222 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 4223 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 4224 isa<llvm::IntegerType>(Ops.LHS->getType())) { 4225 CodeGenFunction::SanitizerScope SanScope(&CGF); 4226 llvm::Value *Valid = 4227 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 4228 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 4229 } 4230 4231 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 4232 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 4233 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 4234 } 4235 4236 enum IntrinsicType { VCMPEQ, VCMPGT }; 4237 // return corresponding comparison intrinsic for given vector type 4238 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 4239 BuiltinType::Kind ElemKind) { 4240 switch (ElemKind) { 4241 default: llvm_unreachable("unexpected element type"); 4242 case BuiltinType::Char_U: 4243 case BuiltinType::UChar: 4244 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4245 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 4246 case BuiltinType::Char_S: 4247 case BuiltinType::SChar: 4248 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 4249 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 4250 case BuiltinType::UShort: 4251 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4252 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 4253 case BuiltinType::Short: 4254 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 4255 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 4256 case BuiltinType::UInt: 4257 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4258 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 4259 case BuiltinType::Int: 4260 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 4261 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 4262 case BuiltinType::ULong: 4263 case BuiltinType::ULongLong: 4264 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4265 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 4266 case BuiltinType::Long: 4267 case BuiltinType::LongLong: 4268 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 4269 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 4270 case BuiltinType::Float: 4271 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 4272 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 4273 case BuiltinType::Double: 4274 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 4275 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 4276 case BuiltinType::UInt128: 4277 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4278 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 4279 case BuiltinType::Int128: 4280 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 4281 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 4282 } 4283 } 4284 4285 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 4286 llvm::CmpInst::Predicate UICmpOpc, 4287 llvm::CmpInst::Predicate SICmpOpc, 4288 llvm::CmpInst::Predicate FCmpOpc, 4289 bool IsSignaling) { 4290 TestAndClearIgnoreResultAssign(); 4291 Value *Result; 4292 QualType LHSTy = E->getLHS()->getType(); 4293 QualType RHSTy = E->getRHS()->getType(); 4294 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 4295 assert(E->getOpcode() == BO_EQ || 4296 E->getOpcode() == BO_NE); 4297 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 4298 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 4299 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 4300 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 4301 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 4302 BinOpInfo BOInfo = EmitBinOps(E); 4303 Value *LHS = BOInfo.LHS; 4304 Value *RHS = BOInfo.RHS; 4305 4306 // If AltiVec, the comparison results in a numeric type, so we use 4307 // intrinsics comparing vectors and giving 0 or 1 as a result 4308 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 4309 // constants for mapping CR6 register bits to predicate result 4310 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 4311 4312 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 4313 4314 // in several cases vector arguments order will be reversed 4315 Value *FirstVecArg = LHS, 4316 *SecondVecArg = RHS; 4317 4318 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 4319 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 4320 4321 switch(E->getOpcode()) { 4322 default: llvm_unreachable("is not a comparison operation"); 4323 case BO_EQ: 4324 CR6 = CR6_LT; 4325 ID = GetIntrinsic(VCMPEQ, ElementKind); 4326 break; 4327 case BO_NE: 4328 CR6 = CR6_EQ; 4329 ID = GetIntrinsic(VCMPEQ, ElementKind); 4330 break; 4331 case BO_LT: 4332 CR6 = CR6_LT; 4333 ID = GetIntrinsic(VCMPGT, ElementKind); 4334 std::swap(FirstVecArg, SecondVecArg); 4335 break; 4336 case BO_GT: 4337 CR6 = CR6_LT; 4338 ID = GetIntrinsic(VCMPGT, ElementKind); 4339 break; 4340 case BO_LE: 4341 if (ElementKind == BuiltinType::Float) { 4342 CR6 = CR6_LT; 4343 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4344 std::swap(FirstVecArg, SecondVecArg); 4345 } 4346 else { 4347 CR6 = CR6_EQ; 4348 ID = GetIntrinsic(VCMPGT, ElementKind); 4349 } 4350 break; 4351 case BO_GE: 4352 if (ElementKind == BuiltinType::Float) { 4353 CR6 = CR6_LT; 4354 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4355 } 4356 else { 4357 CR6 = CR6_EQ; 4358 ID = GetIntrinsic(VCMPGT, ElementKind); 4359 std::swap(FirstVecArg, SecondVecArg); 4360 } 4361 break; 4362 } 4363 4364 Value *CR6Param = Builder.getInt32(CR6); 4365 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4366 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4367 4368 // The result type of intrinsic may not be same as E->getType(). 4369 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4370 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4371 // do nothing, if ResultTy is not i1 at the same time, it will cause 4372 // crash later. 4373 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4374 if (ResultTy->getBitWidth() > 1 && 4375 E->getType() == CGF.getContext().BoolTy) 4376 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4377 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4378 E->getExprLoc()); 4379 } 4380 4381 if (BOInfo.isFixedPointOp()) { 4382 Result = EmitFixedPointBinOp(BOInfo); 4383 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4384 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4385 if (!IsSignaling) 4386 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4387 else 4388 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4389 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4390 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4391 } else { 4392 // Unsigned integers and pointers. 4393 4394 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4395 !isa<llvm::ConstantPointerNull>(LHS) && 4396 !isa<llvm::ConstantPointerNull>(RHS)) { 4397 4398 // Dynamic information is required to be stripped for comparisons, 4399 // because it could leak the dynamic information. Based on comparisons 4400 // of pointers to dynamic objects, the optimizer can replace one pointer 4401 // with another, which might be incorrect in presence of invariant 4402 // groups. Comparison with null is safe because null does not carry any 4403 // dynamic information. 4404 if (LHSTy.mayBeDynamicClass()) 4405 LHS = Builder.CreateStripInvariantGroup(LHS); 4406 if (RHSTy.mayBeDynamicClass()) 4407 RHS = Builder.CreateStripInvariantGroup(RHS); 4408 } 4409 4410 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4411 } 4412 4413 // If this is a vector comparison, sign extend the result to the appropriate 4414 // vector integer type and return it (don't convert to bool). 4415 if (LHSTy->isVectorType()) 4416 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4417 4418 } else { 4419 // Complex Comparison: can only be an equality comparison. 4420 CodeGenFunction::ComplexPairTy LHS, RHS; 4421 QualType CETy; 4422 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4423 LHS = CGF.EmitComplexExpr(E->getLHS()); 4424 CETy = CTy->getElementType(); 4425 } else { 4426 LHS.first = Visit(E->getLHS()); 4427 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4428 CETy = LHSTy; 4429 } 4430 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4431 RHS = CGF.EmitComplexExpr(E->getRHS()); 4432 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4433 CTy->getElementType()) && 4434 "The element types must always match."); 4435 (void)CTy; 4436 } else { 4437 RHS.first = Visit(E->getRHS()); 4438 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4439 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4440 "The element types must always match."); 4441 } 4442 4443 Value *ResultR, *ResultI; 4444 if (CETy->isRealFloatingType()) { 4445 // As complex comparisons can only be equality comparisons, they 4446 // are never signaling comparisons. 4447 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4448 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4449 } else { 4450 // Complex comparisons can only be equality comparisons. As such, signed 4451 // and unsigned opcodes are the same. 4452 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4453 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4454 } 4455 4456 if (E->getOpcode() == BO_EQ) { 4457 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4458 } else { 4459 assert(E->getOpcode() == BO_NE && 4460 "Complex comparison other than == or != ?"); 4461 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4462 } 4463 } 4464 4465 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4466 E->getExprLoc()); 4467 } 4468 4469 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4470 bool Ignore = TestAndClearIgnoreResultAssign(); 4471 4472 Value *RHS; 4473 LValue LHS; 4474 4475 switch (E->getLHS()->getType().getObjCLifetime()) { 4476 case Qualifiers::OCL_Strong: 4477 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4478 break; 4479 4480 case Qualifiers::OCL_Autoreleasing: 4481 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4482 break; 4483 4484 case Qualifiers::OCL_ExplicitNone: 4485 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4486 break; 4487 4488 case Qualifiers::OCL_Weak: 4489 RHS = Visit(E->getRHS()); 4490 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4491 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4492 break; 4493 4494 case Qualifiers::OCL_None: 4495 // __block variables need to have the rhs evaluated first, plus 4496 // this should improve codegen just a little. 4497 RHS = Visit(E->getRHS()); 4498 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4499 4500 // Store the value into the LHS. Bit-fields are handled specially 4501 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4502 // 'An assignment expression has the value of the left operand after 4503 // the assignment...'. 4504 if (LHS.isBitField()) { 4505 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4506 } else { 4507 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4508 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4509 } 4510 } 4511 4512 // If the result is clearly ignored, return now. 4513 if (Ignore) 4514 return nullptr; 4515 4516 // The result of an assignment in C is the assigned r-value. 4517 if (!CGF.getLangOpts().CPlusPlus) 4518 return RHS; 4519 4520 // If the lvalue is non-volatile, return the computed value of the assignment. 4521 if (!LHS.isVolatileQualified()) 4522 return RHS; 4523 4524 // Otherwise, reload the value. 4525 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4526 } 4527 4528 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4529 // Perform vector logical and on comparisons with zero vectors. 4530 if (E->getType()->isVectorType()) { 4531 CGF.incrementProfileCounter(E); 4532 4533 Value *LHS = Visit(E->getLHS()); 4534 Value *RHS = Visit(E->getRHS()); 4535 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4536 if (LHS->getType()->isFPOrFPVectorTy()) { 4537 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4538 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4539 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4540 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4541 } else { 4542 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4543 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4544 } 4545 Value *And = Builder.CreateAnd(LHS, RHS); 4546 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4547 } 4548 4549 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4550 llvm::Type *ResTy = ConvertType(E->getType()); 4551 4552 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4553 // If we have 1 && X, just emit X without inserting the control flow. 4554 bool LHSCondVal; 4555 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4556 if (LHSCondVal) { // If we have 1 && X, just emit X. 4557 CGF.incrementProfileCounter(E); 4558 4559 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4560 4561 // If we're generating for profiling or coverage, generate a branch to a 4562 // block that increments the RHS counter needed to track branch condition 4563 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4564 // "FalseBlock" after the increment is done. 4565 if (InstrumentRegions && 4566 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4567 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); 4568 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4569 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); 4570 CGF.EmitBlock(RHSBlockCnt); 4571 CGF.incrementProfileCounter(E->getRHS()); 4572 CGF.EmitBranch(FBlock); 4573 CGF.EmitBlock(FBlock); 4574 } 4575 4576 // ZExt result to int or bool. 4577 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4578 } 4579 4580 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4581 if (!CGF.ContainsLabel(E->getRHS())) 4582 return llvm::Constant::getNullValue(ResTy); 4583 } 4584 4585 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4586 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4587 4588 CodeGenFunction::ConditionalEvaluation eval(CGF); 4589 4590 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4591 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4592 CGF.getProfileCount(E->getRHS())); 4593 4594 // Any edges into the ContBlock are now from an (indeterminate number of) 4595 // edges from this first condition. All of these values will be false. Start 4596 // setting up the PHI node in the Cont Block for this. 4597 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4598 "", ContBlock); 4599 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4600 PI != PE; ++PI) 4601 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4602 4603 eval.begin(CGF); 4604 CGF.EmitBlock(RHSBlock); 4605 CGF.incrementProfileCounter(E); 4606 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4607 eval.end(CGF); 4608 4609 // Reaquire the RHS block, as there may be subblocks inserted. 4610 RHSBlock = Builder.GetInsertBlock(); 4611 4612 // If we're generating for profiling or coverage, generate a branch on the 4613 // RHS to a block that increments the RHS true counter needed to track branch 4614 // condition coverage. 4615 if (InstrumentRegions && 4616 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4617 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4618 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); 4619 CGF.EmitBlock(RHSBlockCnt); 4620 CGF.incrementProfileCounter(E->getRHS()); 4621 CGF.EmitBranch(ContBlock); 4622 PN->addIncoming(RHSCond, RHSBlockCnt); 4623 } 4624 4625 // Emit an unconditional branch from this block to ContBlock. 4626 { 4627 // There is no need to emit line number for unconditional branch. 4628 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4629 CGF.EmitBlock(ContBlock); 4630 } 4631 // Insert an entry into the phi node for the edge with the value of RHSCond. 4632 PN->addIncoming(RHSCond, RHSBlock); 4633 4634 // Artificial location to preserve the scope information 4635 { 4636 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4637 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4638 } 4639 4640 // ZExt result to int. 4641 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4642 } 4643 4644 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4645 // Perform vector logical or on comparisons with zero vectors. 4646 if (E->getType()->isVectorType()) { 4647 CGF.incrementProfileCounter(E); 4648 4649 Value *LHS = Visit(E->getLHS()); 4650 Value *RHS = Visit(E->getRHS()); 4651 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4652 if (LHS->getType()->isFPOrFPVectorTy()) { 4653 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4654 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4655 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4656 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4657 } else { 4658 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4659 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4660 } 4661 Value *Or = Builder.CreateOr(LHS, RHS); 4662 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4663 } 4664 4665 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4666 llvm::Type *ResTy = ConvertType(E->getType()); 4667 4668 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4669 // If we have 0 || X, just emit X without inserting the control flow. 4670 bool LHSCondVal; 4671 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4672 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4673 CGF.incrementProfileCounter(E); 4674 4675 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4676 4677 // If we're generating for profiling or coverage, generate a branch to a 4678 // block that increments the RHS counter need to track branch condition 4679 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4680 // "FalseBlock" after the increment is done. 4681 if (InstrumentRegions && 4682 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4683 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); 4684 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4685 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); 4686 CGF.EmitBlock(RHSBlockCnt); 4687 CGF.incrementProfileCounter(E->getRHS()); 4688 CGF.EmitBranch(FBlock); 4689 CGF.EmitBlock(FBlock); 4690 } 4691 4692 // ZExt result to int or bool. 4693 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4694 } 4695 4696 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4697 if (!CGF.ContainsLabel(E->getRHS())) 4698 return llvm::ConstantInt::get(ResTy, 1); 4699 } 4700 4701 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4702 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4703 4704 CodeGenFunction::ConditionalEvaluation eval(CGF); 4705 4706 // Branch on the LHS first. If it is true, go to the success (cont) block. 4707 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4708 CGF.getCurrentProfileCount() - 4709 CGF.getProfileCount(E->getRHS())); 4710 4711 // Any edges into the ContBlock are now from an (indeterminate number of) 4712 // edges from this first condition. All of these values will be true. Start 4713 // setting up the PHI node in the Cont Block for this. 4714 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4715 "", ContBlock); 4716 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4717 PI != PE; ++PI) 4718 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4719 4720 eval.begin(CGF); 4721 4722 // Emit the RHS condition as a bool value. 4723 CGF.EmitBlock(RHSBlock); 4724 CGF.incrementProfileCounter(E); 4725 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4726 4727 eval.end(CGF); 4728 4729 // Reaquire the RHS block, as there may be subblocks inserted. 4730 RHSBlock = Builder.GetInsertBlock(); 4731 4732 // If we're generating for profiling or coverage, generate a branch on the 4733 // RHS to a block that increments the RHS true counter needed to track branch 4734 // condition coverage. 4735 if (InstrumentRegions && 4736 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4737 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4738 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); 4739 CGF.EmitBlock(RHSBlockCnt); 4740 CGF.incrementProfileCounter(E->getRHS()); 4741 CGF.EmitBranch(ContBlock); 4742 PN->addIncoming(RHSCond, RHSBlockCnt); 4743 } 4744 4745 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4746 // into the phi node for the edge with the value of RHSCond. 4747 CGF.EmitBlock(ContBlock); 4748 PN->addIncoming(RHSCond, RHSBlock); 4749 4750 // ZExt result to int. 4751 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4752 } 4753 4754 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4755 CGF.EmitIgnoredExpr(E->getLHS()); 4756 CGF.EnsureInsertPoint(); 4757 return Visit(E->getRHS()); 4758 } 4759 4760 //===----------------------------------------------------------------------===// 4761 // Other Operators 4762 //===----------------------------------------------------------------------===// 4763 4764 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4765 /// expression is cheap enough and side-effect-free enough to evaluate 4766 /// unconditionally instead of conditionally. This is used to convert control 4767 /// flow into selects in some cases. 4768 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4769 CodeGenFunction &CGF) { 4770 // Anything that is an integer or floating point constant is fine. 4771 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4772 4773 // Even non-volatile automatic variables can't be evaluated unconditionally. 4774 // Referencing a thread_local may cause non-trivial initialization work to 4775 // occur. If we're inside a lambda and one of the variables is from the scope 4776 // outside the lambda, that function may have returned already. Reading its 4777 // locals is a bad idea. Also, these reads may introduce races there didn't 4778 // exist in the source-level program. 4779 } 4780 4781 4782 Value *ScalarExprEmitter:: 4783 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4784 TestAndClearIgnoreResultAssign(); 4785 4786 // Bind the common expression if necessary. 4787 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4788 4789 Expr *condExpr = E->getCond(); 4790 Expr *lhsExpr = E->getTrueExpr(); 4791 Expr *rhsExpr = E->getFalseExpr(); 4792 4793 // If the condition constant folds and can be elided, try to avoid emitting 4794 // the condition and the dead arm. 4795 bool CondExprBool; 4796 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4797 Expr *live = lhsExpr, *dead = rhsExpr; 4798 if (!CondExprBool) std::swap(live, dead); 4799 4800 // If the dead side doesn't have labels we need, just emit the Live part. 4801 if (!CGF.ContainsLabel(dead)) { 4802 if (CondExprBool) 4803 CGF.incrementProfileCounter(E); 4804 Value *Result = Visit(live); 4805 4806 // If the live part is a throw expression, it acts like it has a void 4807 // type, so evaluating it returns a null Value*. However, a conditional 4808 // with non-void type must return a non-null Value*. 4809 if (!Result && !E->getType()->isVoidType()) 4810 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4811 4812 return Result; 4813 } 4814 } 4815 4816 // OpenCL: If the condition is a vector, we can treat this condition like 4817 // the select function. 4818 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4819 condExpr->getType()->isExtVectorType()) { 4820 CGF.incrementProfileCounter(E); 4821 4822 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4823 llvm::Value *LHS = Visit(lhsExpr); 4824 llvm::Value *RHS = Visit(rhsExpr); 4825 4826 llvm::Type *condType = ConvertType(condExpr->getType()); 4827 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4828 4829 unsigned numElem = vecTy->getNumElements(); 4830 llvm::Type *elemType = vecTy->getElementType(); 4831 4832 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4833 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4834 llvm::Value *tmp = Builder.CreateSExt( 4835 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4836 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4837 4838 // Cast float to int to perform ANDs if necessary. 4839 llvm::Value *RHSTmp = RHS; 4840 llvm::Value *LHSTmp = LHS; 4841 bool wasCast = false; 4842 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4843 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4844 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4845 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4846 wasCast = true; 4847 } 4848 4849 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4850 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4851 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4852 if (wasCast) 4853 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4854 4855 return tmp5; 4856 } 4857 4858 if (condExpr->getType()->isVectorType() || 4859 condExpr->getType()->isVLSTBuiltinType()) { 4860 CGF.incrementProfileCounter(E); 4861 4862 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4863 llvm::Value *LHS = Visit(lhsExpr); 4864 llvm::Value *RHS = Visit(rhsExpr); 4865 4866 llvm::Type *CondType = ConvertType(condExpr->getType()); 4867 auto *VecTy = cast<llvm::VectorType>(CondType); 4868 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4869 4870 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4871 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4872 } 4873 4874 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4875 // select instead of as control flow. We can only do this if it is cheap and 4876 // safe to evaluate the LHS and RHS unconditionally. 4877 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4878 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4879 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4880 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4881 4882 CGF.incrementProfileCounter(E, StepV); 4883 4884 llvm::Value *LHS = Visit(lhsExpr); 4885 llvm::Value *RHS = Visit(rhsExpr); 4886 if (!LHS) { 4887 // If the conditional has void type, make sure we return a null Value*. 4888 assert(!RHS && "LHS and RHS types must match"); 4889 return nullptr; 4890 } 4891 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4892 } 4893 4894 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4895 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4896 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4897 4898 CodeGenFunction::ConditionalEvaluation eval(CGF); 4899 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4900 CGF.getProfileCount(lhsExpr)); 4901 4902 CGF.EmitBlock(LHSBlock); 4903 CGF.incrementProfileCounter(E); 4904 eval.begin(CGF); 4905 Value *LHS = Visit(lhsExpr); 4906 eval.end(CGF); 4907 4908 LHSBlock = Builder.GetInsertBlock(); 4909 Builder.CreateBr(ContBlock); 4910 4911 CGF.EmitBlock(RHSBlock); 4912 eval.begin(CGF); 4913 Value *RHS = Visit(rhsExpr); 4914 eval.end(CGF); 4915 4916 RHSBlock = Builder.GetInsertBlock(); 4917 CGF.EmitBlock(ContBlock); 4918 4919 // If the LHS or RHS is a throw expression, it will be legitimately null. 4920 if (!LHS) 4921 return RHS; 4922 if (!RHS) 4923 return LHS; 4924 4925 // Create a PHI node for the real part. 4926 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4927 PN->addIncoming(LHS, LHSBlock); 4928 PN->addIncoming(RHS, RHSBlock); 4929 return PN; 4930 } 4931 4932 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4933 return Visit(E->getChosenSubExpr()); 4934 } 4935 4936 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4937 QualType Ty = VE->getType(); 4938 4939 if (Ty->isVariablyModifiedType()) 4940 CGF.EmitVariablyModifiedType(Ty); 4941 4942 Address ArgValue = Address::invalid(); 4943 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4944 4945 llvm::Type *ArgTy = ConvertType(VE->getType()); 4946 4947 // If EmitVAArg fails, emit an error. 4948 if (!ArgPtr.isValid()) { 4949 CGF.ErrorUnsupported(VE, "va_arg expression"); 4950 return llvm::UndefValue::get(ArgTy); 4951 } 4952 4953 // FIXME Volatility. 4954 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4955 4956 // If EmitVAArg promoted the type, we must truncate it. 4957 if (ArgTy != Val->getType()) { 4958 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4959 Val = Builder.CreateIntToPtr(Val, ArgTy); 4960 else 4961 Val = Builder.CreateTrunc(Val, ArgTy); 4962 } 4963 4964 return Val; 4965 } 4966 4967 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4968 return CGF.EmitBlockLiteral(block); 4969 } 4970 4971 // Convert a vec3 to vec4, or vice versa. 4972 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4973 Value *Src, unsigned NumElementsDst) { 4974 static constexpr int Mask[] = {0, 1, 2, -1}; 4975 return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst)); 4976 } 4977 4978 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4979 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4980 // but could be scalar or vectors of different lengths, and either can be 4981 // pointer. 4982 // There are 4 cases: 4983 // 1. non-pointer -> non-pointer : needs 1 bitcast 4984 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4985 // 3. pointer -> non-pointer 4986 // a) pointer -> intptr_t : needs 1 ptrtoint 4987 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4988 // 4. non-pointer -> pointer 4989 // a) intptr_t -> pointer : needs 1 inttoptr 4990 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4991 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4992 // allow casting directly between pointer types and non-integer non-pointer 4993 // types. 4994 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4995 const llvm::DataLayout &DL, 4996 Value *Src, llvm::Type *DstTy, 4997 StringRef Name = "") { 4998 auto SrcTy = Src->getType(); 4999 5000 // Case 1. 5001 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 5002 return Builder.CreateBitCast(Src, DstTy, Name); 5003 5004 // Case 2. 5005 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 5006 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 5007 5008 // Case 3. 5009 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 5010 // Case 3b. 5011 if (!DstTy->isIntegerTy()) 5012 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 5013 // Cases 3a and 3b. 5014 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 5015 } 5016 5017 // Case 4b. 5018 if (!SrcTy->isIntegerTy()) 5019 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 5020 // Cases 4a and 4b. 5021 return Builder.CreateIntToPtr(Src, DstTy, Name); 5022 } 5023 5024 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 5025 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 5026 llvm::Type *DstTy = ConvertType(E->getType()); 5027 5028 llvm::Type *SrcTy = Src->getType(); 5029 unsigned NumElementsSrc = 5030 isa<llvm::VectorType>(SrcTy) 5031 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 5032 : 0; 5033 unsigned NumElementsDst = 5034 isa<llvm::VectorType>(DstTy) 5035 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 5036 : 0; 5037 5038 // Use bit vector expansion for ext_vector_type boolean vectors. 5039 if (E->getType()->isExtVectorBoolType()) 5040 return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype"); 5041 5042 // Going from vec3 to non-vec3 is a special case and requires a shuffle 5043 // vector to get a vec4, then a bitcast if the target type is different. 5044 if (NumElementsSrc == 3 && NumElementsDst != 3) { 5045 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 5046 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 5047 DstTy); 5048 5049 Src->setName("astype"); 5050 return Src; 5051 } 5052 5053 // Going from non-vec3 to vec3 is a special case and requires a bitcast 5054 // to vec4 if the original type is not vec4, then a shuffle vector to 5055 // get a vec3. 5056 if (NumElementsSrc != 3 && NumElementsDst == 3) { 5057 auto *Vec4Ty = llvm::FixedVectorType::get( 5058 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 5059 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 5060 Vec4Ty); 5061 5062 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 5063 Src->setName("astype"); 5064 return Src; 5065 } 5066 5067 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 5068 Src, DstTy, "astype"); 5069 } 5070 5071 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 5072 return CGF.EmitAtomicExpr(E).getScalarVal(); 5073 } 5074 5075 //===----------------------------------------------------------------------===// 5076 // Entry Point into this File 5077 //===----------------------------------------------------------------------===// 5078 5079 /// Emit the computation of the specified expression of scalar type, ignoring 5080 /// the result. 5081 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 5082 assert(E && hasScalarEvaluationKind(E->getType()) && 5083 "Invalid scalar expression to emit"); 5084 5085 return ScalarExprEmitter(*this, IgnoreResultAssign) 5086 .Visit(const_cast<Expr *>(E)); 5087 } 5088 5089 /// Emit a conversion from the specified type to the specified destination type, 5090 /// both of which are LLVM scalar types. 5091 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 5092 QualType DstTy, 5093 SourceLocation Loc) { 5094 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 5095 "Invalid scalar expression to emit"); 5096 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 5097 } 5098 5099 /// Emit a conversion from the specified complex type to the specified 5100 /// destination type, where the destination type is an LLVM scalar type. 5101 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 5102 QualType SrcTy, 5103 QualType DstTy, 5104 SourceLocation Loc) { 5105 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 5106 "Invalid complex -> scalar conversion"); 5107 return ScalarExprEmitter(*this) 5108 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 5109 } 5110 5111 5112 Value * 5113 CodeGenFunction::EmitPromotedScalarExpr(const Expr *E, 5114 QualType PromotionType) { 5115 if (!PromotionType.isNull()) 5116 return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType); 5117 else 5118 return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E)); 5119 } 5120 5121 5122 llvm::Value *CodeGenFunction:: 5123 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 5124 bool isInc, bool isPre) { 5125 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 5126 } 5127 5128 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 5129 // object->isa or (*object).isa 5130 // Generate code as for: *(Class*)object 5131 5132 Expr *BaseExpr = E->getBase(); 5133 Address Addr = Address::invalid(); 5134 if (BaseExpr->isPRValue()) { 5135 llvm::Type *BaseTy = 5136 ConvertTypeForMem(BaseExpr->getType()->getPointeeType()); 5137 Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign()); 5138 } else { 5139 Addr = EmitLValue(BaseExpr).getAddress(*this); 5140 } 5141 5142 // Cast the address to Class*. 5143 Addr = Addr.withElementType(ConvertType(E->getType())); 5144 return MakeAddrLValue(Addr, E->getType()); 5145 } 5146 5147 5148 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 5149 const CompoundAssignOperator *E) { 5150 ScalarExprEmitter Scalar(*this); 5151 Value *Result = nullptr; 5152 switch (E->getOpcode()) { 5153 #define COMPOUND_OP(Op) \ 5154 case BO_##Op##Assign: \ 5155 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 5156 Result) 5157 COMPOUND_OP(Mul); 5158 COMPOUND_OP(Div); 5159 COMPOUND_OP(Rem); 5160 COMPOUND_OP(Add); 5161 COMPOUND_OP(Sub); 5162 COMPOUND_OP(Shl); 5163 COMPOUND_OP(Shr); 5164 COMPOUND_OP(And); 5165 COMPOUND_OP(Xor); 5166 COMPOUND_OP(Or); 5167 #undef COMPOUND_OP 5168 5169 case BO_PtrMemD: 5170 case BO_PtrMemI: 5171 case BO_Mul: 5172 case BO_Div: 5173 case BO_Rem: 5174 case BO_Add: 5175 case BO_Sub: 5176 case BO_Shl: 5177 case BO_Shr: 5178 case BO_LT: 5179 case BO_GT: 5180 case BO_LE: 5181 case BO_GE: 5182 case BO_EQ: 5183 case BO_NE: 5184 case BO_Cmp: 5185 case BO_And: 5186 case BO_Xor: 5187 case BO_Or: 5188 case BO_LAnd: 5189 case BO_LOr: 5190 case BO_Assign: 5191 case BO_Comma: 5192 llvm_unreachable("Not valid compound assignment operators"); 5193 } 5194 5195 llvm_unreachable("Unhandled compound assignment operator"); 5196 } 5197 5198 struct GEPOffsetAndOverflow { 5199 // The total (signed) byte offset for the GEP. 5200 llvm::Value *TotalOffset; 5201 // The offset overflow flag - true if the total offset overflows. 5202 llvm::Value *OffsetOverflows; 5203 }; 5204 5205 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 5206 /// and compute the total offset it applies from it's base pointer BasePtr. 5207 /// Returns offset in bytes and a boolean flag whether an overflow happened 5208 /// during evaluation. 5209 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 5210 llvm::LLVMContext &VMContext, 5211 CodeGenModule &CGM, 5212 CGBuilderTy &Builder) { 5213 const auto &DL = CGM.getDataLayout(); 5214 5215 // The total (signed) byte offset for the GEP. 5216 llvm::Value *TotalOffset = nullptr; 5217 5218 // Was the GEP already reduced to a constant? 5219 if (isa<llvm::Constant>(GEPVal)) { 5220 // Compute the offset by casting both pointers to integers and subtracting: 5221 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 5222 Value *BasePtr_int = 5223 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 5224 Value *GEPVal_int = 5225 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 5226 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 5227 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 5228 } 5229 5230 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 5231 assert(GEP->getPointerOperand() == BasePtr && 5232 "BasePtr must be the base of the GEP."); 5233 assert(GEP->isInBounds() && "Expected inbounds GEP"); 5234 5235 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 5236 5237 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 5238 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5239 auto *SAddIntrinsic = 5240 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 5241 auto *SMulIntrinsic = 5242 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 5243 5244 // The offset overflow flag - true if the total offset overflows. 5245 llvm::Value *OffsetOverflows = Builder.getFalse(); 5246 5247 /// Return the result of the given binary operation. 5248 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 5249 llvm::Value *RHS) -> llvm::Value * { 5250 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 5251 5252 // If the operands are constants, return a constant result. 5253 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 5254 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 5255 llvm::APInt N; 5256 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 5257 /*Signed=*/true, N); 5258 if (HasOverflow) 5259 OffsetOverflows = Builder.getTrue(); 5260 return llvm::ConstantInt::get(VMContext, N); 5261 } 5262 } 5263 5264 // Otherwise, compute the result with checked arithmetic. 5265 auto *ResultAndOverflow = Builder.CreateCall( 5266 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 5267 OffsetOverflows = Builder.CreateOr( 5268 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 5269 return Builder.CreateExtractValue(ResultAndOverflow, 0); 5270 }; 5271 5272 // Determine the total byte offset by looking at each GEP operand. 5273 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 5274 GTI != GTE; ++GTI) { 5275 llvm::Value *LocalOffset; 5276 auto *Index = GTI.getOperand(); 5277 // Compute the local offset contributed by this indexing step: 5278 if (auto *STy = GTI.getStructTypeOrNull()) { 5279 // For struct indexing, the local offset is the byte position of the 5280 // specified field. 5281 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 5282 LocalOffset = llvm::ConstantInt::get( 5283 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 5284 } else { 5285 // Otherwise this is array-like indexing. The local offset is the index 5286 // multiplied by the element size. 5287 auto *ElementSize = llvm::ConstantInt::get( 5288 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 5289 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 5290 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 5291 } 5292 5293 // If this is the first offset, set it as the total offset. Otherwise, add 5294 // the local offset into the running total. 5295 if (!TotalOffset || TotalOffset == Zero) 5296 TotalOffset = LocalOffset; 5297 else 5298 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 5299 } 5300 5301 return {TotalOffset, OffsetOverflows}; 5302 } 5303 5304 Value * 5305 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr, 5306 ArrayRef<Value *> IdxList, 5307 bool SignedIndices, bool IsSubtraction, 5308 SourceLocation Loc, const Twine &Name) { 5309 llvm::Type *PtrTy = Ptr->getType(); 5310 Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name); 5311 5312 // If the pointer overflow sanitizer isn't enabled, do nothing. 5313 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 5314 return GEPVal; 5315 5316 // Perform nullptr-and-offset check unless the nullptr is defined. 5317 bool PerformNullCheck = !NullPointerIsDefined( 5318 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 5319 // Check for overflows unless the GEP got constant-folded, 5320 // and only in the default address space 5321 bool PerformOverflowCheck = 5322 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 5323 5324 if (!(PerformNullCheck || PerformOverflowCheck)) 5325 return GEPVal; 5326 5327 const auto &DL = CGM.getDataLayout(); 5328 5329 SanitizerScope SanScope(this); 5330 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 5331 5332 GEPOffsetAndOverflow EvaluatedGEP = 5333 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 5334 5335 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 5336 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 5337 "If the offset got constant-folded, we don't expect that there was an " 5338 "overflow."); 5339 5340 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5341 5342 // Common case: if the total offset is zero, and we are using C++ semantics, 5343 // where nullptr+0 is defined, don't emit a check. 5344 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 5345 return GEPVal; 5346 5347 // Now that we've computed the total offset, add it to the base pointer (with 5348 // wrapping semantics). 5349 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 5350 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 5351 5352 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 5353 5354 if (PerformNullCheck) { 5355 // In C++, if the base pointer evaluates to a null pointer value, 5356 // the only valid pointer this inbounds GEP can produce is also 5357 // a null pointer, so the offset must also evaluate to zero. 5358 // Likewise, if we have non-zero base pointer, we can not get null pointer 5359 // as a result, so the offset can not be -intptr_t(BasePtr). 5360 // In other words, both pointers are either null, or both are non-null, 5361 // or the behaviour is undefined. 5362 // 5363 // C, however, is more strict in this regard, and gives more 5364 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 5365 // So both the input to the 'gep inbounds' AND the output must not be null. 5366 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 5367 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 5368 auto *Valid = 5369 CGM.getLangOpts().CPlusPlus 5370 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 5371 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 5372 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 5373 } 5374 5375 if (PerformOverflowCheck) { 5376 // The GEP is valid if: 5377 // 1) The total offset doesn't overflow, and 5378 // 2) The sign of the difference between the computed address and the base 5379 // pointer matches the sign of the total offset. 5380 llvm::Value *ValidGEP; 5381 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 5382 if (SignedIndices) { 5383 // GEP is computed as `unsigned base + signed offset`, therefore: 5384 // * If offset was positive, then the computed pointer can not be 5385 // [unsigned] less than the base pointer, unless it overflowed. 5386 // * If offset was negative, then the computed pointer can not be 5387 // [unsigned] greater than the bas pointere, unless it overflowed. 5388 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5389 auto *PosOrZeroOffset = 5390 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 5391 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 5392 ValidGEP = 5393 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 5394 } else if (!IsSubtraction) { 5395 // GEP is computed as `unsigned base + unsigned offset`, therefore the 5396 // computed pointer can not be [unsigned] less than base pointer, 5397 // unless there was an overflow. 5398 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 5399 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5400 } else { 5401 // GEP is computed as `unsigned base - unsigned offset`, therefore the 5402 // computed pointer can not be [unsigned] greater than base pointer, 5403 // unless there was an overflow. 5404 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 5405 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 5406 } 5407 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 5408 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 5409 } 5410 5411 assert(!Checks.empty() && "Should have produced some checks."); 5412 5413 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 5414 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 5415 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 5416 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 5417 5418 return GEPVal; 5419 } 5420