xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *
352   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
353                        SourceLocation Loc,
354                        ScalarConversionOpts Opts = ScalarConversionOpts());
355 
356   /// Convert between either a fixed point and other fixed point or fixed point
357   /// and an integer.
358   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
359                                   SourceLocation Loc);
360 
361   /// Emit a conversion from the specified complex type to the specified
362   /// destination type, where the destination type is an LLVM scalar type.
363   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
364                                        QualType SrcTy, QualType DstTy,
365                                        SourceLocation Loc);
366 
367   /// EmitNullValue - Emit a value that corresponds to null for the given type.
368   Value *EmitNullValue(QualType Ty);
369 
370   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
371   Value *EmitFloatToBoolConversion(Value *V) {
372     // Compare against 0.0 for fp scalars.
373     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
374     return Builder.CreateFCmpUNE(V, Zero, "tobool");
375   }
376 
377   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
378   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
379     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
380 
381     return Builder.CreateICmpNE(V, Zero, "tobool");
382   }
383 
384   Value *EmitIntToBoolConversion(Value *V) {
385     // Because of the type rules of C, we often end up computing a
386     // logical value, then zero extending it to int, then wanting it
387     // as a logical value again.  Optimize this common case.
388     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
389       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
390         Value *Result = ZI->getOperand(0);
391         // If there aren't any more uses, zap the instruction to save space.
392         // Note that there can be more uses, for example if this
393         // is the result of an assignment.
394         if (ZI->use_empty())
395           ZI->eraseFromParent();
396         return Result;
397       }
398     }
399 
400     return Builder.CreateIsNotNull(V, "tobool");
401   }
402 
403   //===--------------------------------------------------------------------===//
404   //                            Visitor Methods
405   //===--------------------------------------------------------------------===//
406 
407   Value *Visit(Expr *E) {
408     ApplyDebugLocation DL(CGF, E);
409     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
410   }
411 
412   Value *VisitStmt(Stmt *S) {
413     S->dump(llvm::errs(), CGF.getContext());
414     llvm_unreachable("Stmt can't have complex result type!");
415   }
416   Value *VisitExpr(Expr *S);
417 
418   Value *VisitConstantExpr(ConstantExpr *E) {
419     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
420       if (E->isGLValue())
421         return CGF.Builder.CreateLoad(Address(
422             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
423       return Result;
424     }
425     return Visit(E->getSubExpr());
426   }
427   Value *VisitParenExpr(ParenExpr *PE) {
428     return Visit(PE->getSubExpr());
429   }
430   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
431     return Visit(E->getReplacement());
432   }
433   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
434     return Visit(GE->getResultExpr());
435   }
436   Value *VisitCoawaitExpr(CoawaitExpr *S) {
437     return CGF.EmitCoawaitExpr(*S).getScalarVal();
438   }
439   Value *VisitCoyieldExpr(CoyieldExpr *S) {
440     return CGF.EmitCoyieldExpr(*S).getScalarVal();
441   }
442   Value *VisitUnaryCoawait(const UnaryOperator *E) {
443     return Visit(E->getSubExpr());
444   }
445 
446   // Leaves.
447   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
448     return Builder.getInt(E->getValue());
449   }
450   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
454     return llvm::ConstantFP::get(VMContext, E->getValue());
455   }
456   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
457     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
458   }
459   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
466     return EmitNullValue(E->getType());
467   }
468   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
472   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
473   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
474     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
475     return Builder.CreateBitCast(V, ConvertType(E->getType()));
476   }
477 
478   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
479     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
480   }
481 
482   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
483     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
484   }
485 
486   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
487     if (E->isGLValue())
488       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
489                               E->getExprLoc());
490 
491     // Otherwise, assume the mapping is the scalar directly.
492     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
493   }
494 
495   // l-values.
496   Value *VisitDeclRefExpr(DeclRefExpr *E) {
497     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
498       return CGF.emitScalarConstant(Constant, E);
499     return EmitLoadOfLValue(E);
500   }
501 
502   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
503     return CGF.EmitObjCSelectorExpr(E);
504   }
505   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
506     return CGF.EmitObjCProtocolExpr(E);
507   }
508   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
509     return EmitLoadOfLValue(E);
510   }
511   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
512     if (E->getMethodDecl() &&
513         E->getMethodDecl()->getReturnType()->isReferenceType())
514       return EmitLoadOfLValue(E);
515     return CGF.EmitObjCMessageExpr(E).getScalarVal();
516   }
517 
518   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
519     LValue LV = CGF.EmitObjCIsaExpr(E);
520     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
521     return V;
522   }
523 
524   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
525     VersionTuple Version = E->getVersion();
526 
527     // If we're checking for a platform older than our minimum deployment
528     // target, we can fold the check away.
529     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
530       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
531 
532     return CGF.EmitBuiltinAvailable(Version);
533   }
534 
535   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
536   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
537   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
538   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
539   Value *VisitMemberExpr(MemberExpr *E);
540   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
541   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
542     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
543     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
544     // literals aren't l-values in C++. We do so simply because that's the
545     // cleanest way to handle compound literals in C++.
546     // See the discussion here: https://reviews.llvm.org/D64464
547     return EmitLoadOfLValue(E);
548   }
549 
550   Value *VisitInitListExpr(InitListExpr *E);
551 
552   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
553     assert(CGF.getArrayInitIndex() &&
554            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
555     return CGF.getArrayInitIndex();
556   }
557 
558   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
559     return EmitNullValue(E->getType());
560   }
561   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
562     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
563     return VisitCastExpr(E);
564   }
565   Value *VisitCastExpr(CastExpr *E);
566 
567   Value *VisitCallExpr(const CallExpr *E) {
568     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
569       return EmitLoadOfLValue(E);
570 
571     Value *V = CGF.EmitCallExpr(E).getScalarVal();
572 
573     EmitLValueAlignmentAssumption(E, V);
574     return V;
575   }
576 
577   Value *VisitStmtExpr(const StmtExpr *E);
578 
579   // Unary Operators.
580   Value *VisitUnaryPostDec(const UnaryOperator *E) {
581     LValue LV = EmitLValue(E->getSubExpr());
582     return EmitScalarPrePostIncDec(E, LV, false, false);
583   }
584   Value *VisitUnaryPostInc(const UnaryOperator *E) {
585     LValue LV = EmitLValue(E->getSubExpr());
586     return EmitScalarPrePostIncDec(E, LV, true, false);
587   }
588   Value *VisitUnaryPreDec(const UnaryOperator *E) {
589     LValue LV = EmitLValue(E->getSubExpr());
590     return EmitScalarPrePostIncDec(E, LV, false, true);
591   }
592   Value *VisitUnaryPreInc(const UnaryOperator *E) {
593     LValue LV = EmitLValue(E->getSubExpr());
594     return EmitScalarPrePostIncDec(E, LV, true, true);
595   }
596 
597   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
598                                                   llvm::Value *InVal,
599                                                   bool IsInc);
600 
601   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
602                                        bool isInc, bool isPre);
603 
604 
605   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
606     if (isa<MemberPointerType>(E->getType())) // never sugared
607       return CGF.CGM.getMemberPointerConstant(E);
608 
609     return EmitLValue(E->getSubExpr()).getPointer(CGF);
610   }
611   Value *VisitUnaryDeref(const UnaryOperator *E) {
612     if (E->getType()->isVoidType())
613       return Visit(E->getSubExpr()); // the actual value should be unused
614     return EmitLoadOfLValue(E);
615   }
616   Value *VisitUnaryPlus(const UnaryOperator *E) {
617     // This differs from gcc, though, most likely due to a bug in gcc.
618     TestAndClearIgnoreResultAssign();
619     return Visit(E->getSubExpr());
620   }
621   Value *VisitUnaryMinus    (const UnaryOperator *E);
622   Value *VisitUnaryNot      (const UnaryOperator *E);
623   Value *VisitUnaryLNot     (const UnaryOperator *E);
624   Value *VisitUnaryReal     (const UnaryOperator *E);
625   Value *VisitUnaryImag     (const UnaryOperator *E);
626   Value *VisitUnaryExtension(const UnaryOperator *E) {
627     return Visit(E->getSubExpr());
628   }
629 
630   // C++
631   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
632     return EmitLoadOfLValue(E);
633   }
634   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
635     auto &Ctx = CGF.getContext();
636     APValue Evaluated =
637         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
638     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
639                                              SLE->getType());
640   }
641 
642   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
643     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
644     return Visit(DAE->getExpr());
645   }
646   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
647     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
648     return Visit(DIE->getExpr());
649   }
650   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
651     return CGF.LoadCXXThis();
652   }
653 
654   Value *VisitExprWithCleanups(ExprWithCleanups *E);
655   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
656     return CGF.EmitCXXNewExpr(E);
657   }
658   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
659     CGF.EmitCXXDeleteExpr(E);
660     return nullptr;
661   }
662 
663   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
664     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
665   }
666 
667   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
668     return Builder.getInt1(E->isSatisfied());
669   }
670 
671   Value *VisitRequiresExpr(const RequiresExpr *E) {
672     return Builder.getInt1(E->isSatisfied());
673   }
674 
675   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
676     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
677   }
678 
679   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
680     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
681   }
682 
683   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
684     // C++ [expr.pseudo]p1:
685     //   The result shall only be used as the operand for the function call
686     //   operator (), and the result of such a call has type void. The only
687     //   effect is the evaluation of the postfix-expression before the dot or
688     //   arrow.
689     CGF.EmitScalarExpr(E->getBase());
690     return nullptr;
691   }
692 
693   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
694     return EmitNullValue(E->getType());
695   }
696 
697   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
698     CGF.EmitCXXThrowExpr(E);
699     return nullptr;
700   }
701 
702   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
703     return Builder.getInt1(E->getValue());
704   }
705 
706   // Binary Operators.
707   Value *EmitMul(const BinOpInfo &Ops) {
708     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
709       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
710       case LangOptions::SOB_Defined:
711         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
712       case LangOptions::SOB_Undefined:
713         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
714           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
715         LLVM_FALLTHROUGH;
716       case LangOptions::SOB_Trapping:
717         if (CanElideOverflowCheck(CGF.getContext(), Ops))
718           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
719         return EmitOverflowCheckedBinOp(Ops);
720       }
721     }
722 
723     if (Ops.Ty->isConstantMatrixType()) {
724       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
725       // We need to check the types of the operands of the operator to get the
726       // correct matrix dimensions.
727       auto *BO = cast<BinaryOperator>(Ops.E);
728       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
729           BO->getLHS()->getType().getCanonicalType());
730       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
731           BO->getRHS()->getType().getCanonicalType());
732       if (LHSMatTy && RHSMatTy)
733         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
734                                        LHSMatTy->getNumColumns(),
735                                        RHSMatTy->getNumColumns());
736       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
737     }
738 
739     if (Ops.Ty->isUnsignedIntegerType() &&
740         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
741         !CanElideOverflowCheck(CGF.getContext(), Ops))
742       return EmitOverflowCheckedBinOp(Ops);
743 
744     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
745       //  Preserve the old values
746       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
747       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
748     }
749     if (Ops.isFixedPointOp())
750       return EmitFixedPointBinOp(Ops);
751     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
752   }
753   /// Create a binary op that checks for overflow.
754   /// Currently only supports +, - and *.
755   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
756 
757   // Check for undefined division and modulus behaviors.
758   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
759                                                   llvm::Value *Zero,bool isDiv);
760   // Common helper for getting how wide LHS of shift is.
761   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
762 
763   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
764   // non powers of two.
765   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
766 
767   Value *EmitDiv(const BinOpInfo &Ops);
768   Value *EmitRem(const BinOpInfo &Ops);
769   Value *EmitAdd(const BinOpInfo &Ops);
770   Value *EmitSub(const BinOpInfo &Ops);
771   Value *EmitShl(const BinOpInfo &Ops);
772   Value *EmitShr(const BinOpInfo &Ops);
773   Value *EmitAnd(const BinOpInfo &Ops) {
774     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
775   }
776   Value *EmitXor(const BinOpInfo &Ops) {
777     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
778   }
779   Value *EmitOr (const BinOpInfo &Ops) {
780     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
781   }
782 
783   // Helper functions for fixed point binary operations.
784   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
785 
786   BinOpInfo EmitBinOps(const BinaryOperator *E);
787   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
788                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
789                                   Value *&Result);
790 
791   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
792                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
793 
794   // Binary operators and binary compound assignment operators.
795 #define HANDLEBINOP(OP) \
796   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
797     return Emit ## OP(EmitBinOps(E));                                      \
798   }                                                                        \
799   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
800     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
801   }
802   HANDLEBINOP(Mul)
803   HANDLEBINOP(Div)
804   HANDLEBINOP(Rem)
805   HANDLEBINOP(Add)
806   HANDLEBINOP(Sub)
807   HANDLEBINOP(Shl)
808   HANDLEBINOP(Shr)
809   HANDLEBINOP(And)
810   HANDLEBINOP(Xor)
811   HANDLEBINOP(Or)
812 #undef HANDLEBINOP
813 
814   // Comparisons.
815   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
816                      llvm::CmpInst::Predicate SICmpOpc,
817                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
818 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
819     Value *VisitBin##CODE(const BinaryOperator *E) { \
820       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
821                          llvm::FCmpInst::FP, SIG); }
822   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
823   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
824   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
825   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
826   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
827   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
828 #undef VISITCOMP
829 
830   Value *VisitBinAssign     (const BinaryOperator *E);
831 
832   Value *VisitBinLAnd       (const BinaryOperator *E);
833   Value *VisitBinLOr        (const BinaryOperator *E);
834   Value *VisitBinComma      (const BinaryOperator *E);
835 
836   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
837   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
838 
839   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
840     return Visit(E->getSemanticForm());
841   }
842 
843   // Other Operators.
844   Value *VisitBlockExpr(const BlockExpr *BE);
845   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
846   Value *VisitChooseExpr(ChooseExpr *CE);
847   Value *VisitVAArgExpr(VAArgExpr *VE);
848   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
849     return CGF.EmitObjCStringLiteral(E);
850   }
851   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
852     return CGF.EmitObjCBoxedExpr(E);
853   }
854   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
855     return CGF.EmitObjCArrayLiteral(E);
856   }
857   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
858     return CGF.EmitObjCDictionaryLiteral(E);
859   }
860   Value *VisitAsTypeExpr(AsTypeExpr *CE);
861   Value *VisitAtomicExpr(AtomicExpr *AE);
862 };
863 }  // end anonymous namespace.
864 
865 //===----------------------------------------------------------------------===//
866 //                                Utilities
867 //===----------------------------------------------------------------------===//
868 
869 /// EmitConversionToBool - Convert the specified expression value to a
870 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
871 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
872   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
873 
874   if (SrcType->isRealFloatingType())
875     return EmitFloatToBoolConversion(Src);
876 
877   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
878     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
879 
880   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
881          "Unknown scalar type to convert");
882 
883   if (isa<llvm::IntegerType>(Src->getType()))
884     return EmitIntToBoolConversion(Src);
885 
886   assert(isa<llvm::PointerType>(Src->getType()));
887   return EmitPointerToBoolConversion(Src, SrcType);
888 }
889 
890 void ScalarExprEmitter::EmitFloatConversionCheck(
891     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
892     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
893   assert(SrcType->isFloatingType() && "not a conversion from floating point");
894   if (!isa<llvm::IntegerType>(DstTy))
895     return;
896 
897   CodeGenFunction::SanitizerScope SanScope(&CGF);
898   using llvm::APFloat;
899   using llvm::APSInt;
900 
901   llvm::Value *Check = nullptr;
902   const llvm::fltSemantics &SrcSema =
903     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
904 
905   // Floating-point to integer. This has undefined behavior if the source is
906   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
907   // to an integer).
908   unsigned Width = CGF.getContext().getIntWidth(DstType);
909   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
910 
911   APSInt Min = APSInt::getMinValue(Width, Unsigned);
912   APFloat MinSrc(SrcSema, APFloat::uninitialized);
913   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
914       APFloat::opOverflow)
915     // Don't need an overflow check for lower bound. Just check for
916     // -Inf/NaN.
917     MinSrc = APFloat::getInf(SrcSema, true);
918   else
919     // Find the largest value which is too small to represent (before
920     // truncation toward zero).
921     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
922 
923   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
924   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
925   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
926       APFloat::opOverflow)
927     // Don't need an overflow check for upper bound. Just check for
928     // +Inf/NaN.
929     MaxSrc = APFloat::getInf(SrcSema, false);
930   else
931     // Find the smallest value which is too large to represent (before
932     // truncation toward zero).
933     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
934 
935   // If we're converting from __half, convert the range to float to match
936   // the type of src.
937   if (OrigSrcType->isHalfType()) {
938     const llvm::fltSemantics &Sema =
939       CGF.getContext().getFloatTypeSemantics(SrcType);
940     bool IsInexact;
941     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
942     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
943   }
944 
945   llvm::Value *GE =
946     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
947   llvm::Value *LE =
948     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
949   Check = Builder.CreateAnd(GE, LE);
950 
951   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
952                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
953                                   CGF.EmitCheckTypeDescriptor(DstType)};
954   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
955                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
956 }
957 
958 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
959 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
960 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
961                  std::pair<llvm::Value *, SanitizerMask>>
962 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
963                                  QualType DstType, CGBuilderTy &Builder) {
964   llvm::Type *SrcTy = Src->getType();
965   llvm::Type *DstTy = Dst->getType();
966   (void)DstTy; // Only used in assert()
967 
968   // This should be truncation of integral types.
969   assert(Src != Dst);
970   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
971   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
972          "non-integer llvm type");
973 
974   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
975   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
976 
977   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
978   // Else, it is a signed truncation.
979   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
980   SanitizerMask Mask;
981   if (!SrcSigned && !DstSigned) {
982     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
983     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
984   } else {
985     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
986     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
987   }
988 
989   llvm::Value *Check = nullptr;
990   // 1. Extend the truncated value back to the same width as the Src.
991   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
992   // 2. Equality-compare with the original source value
993   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
994   // If the comparison result is 'i1 false', then the truncation was lossy.
995   return std::make_pair(Kind, std::make_pair(Check, Mask));
996 }
997 
998 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
999     QualType SrcType, QualType DstType) {
1000   return SrcType->isIntegerType() && DstType->isIntegerType();
1001 }
1002 
1003 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1004                                                    Value *Dst, QualType DstType,
1005                                                    SourceLocation Loc) {
1006   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1007     return;
1008 
1009   // We only care about int->int conversions here.
1010   // We ignore conversions to/from pointer and/or bool.
1011   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1012                                                                        DstType))
1013     return;
1014 
1015   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1016   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1017   // This must be truncation. Else we do not care.
1018   if (SrcBits <= DstBits)
1019     return;
1020 
1021   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1022 
1023   // If the integer sign change sanitizer is enabled,
1024   // and we are truncating from larger unsigned type to smaller signed type,
1025   // let that next sanitizer deal with it.
1026   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1027   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1028   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1029       (!SrcSigned && DstSigned))
1030     return;
1031 
1032   CodeGenFunction::SanitizerScope SanScope(&CGF);
1033 
1034   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1035             std::pair<llvm::Value *, SanitizerMask>>
1036       Check =
1037           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1038   // If the comparison result is 'i1 false', then the truncation was lossy.
1039 
1040   // Do we care about this type of truncation?
1041   if (!CGF.SanOpts.has(Check.second.second))
1042     return;
1043 
1044   llvm::Constant *StaticArgs[] = {
1045       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1046       CGF.EmitCheckTypeDescriptor(DstType),
1047       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1048   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1049                 {Src, Dst});
1050 }
1051 
1052 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1053 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1054 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1055                  std::pair<llvm::Value *, SanitizerMask>>
1056 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1057                                  QualType DstType, CGBuilderTy &Builder) {
1058   llvm::Type *SrcTy = Src->getType();
1059   llvm::Type *DstTy = Dst->getType();
1060 
1061   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1062          "non-integer llvm type");
1063 
1064   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1065   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1066   (void)SrcSigned; // Only used in assert()
1067   (void)DstSigned; // Only used in assert()
1068   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1069   unsigned DstBits = DstTy->getScalarSizeInBits();
1070   (void)SrcBits; // Only used in assert()
1071   (void)DstBits; // Only used in assert()
1072 
1073   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1074          "either the widths should be different, or the signednesses.");
1075 
1076   // NOTE: zero value is considered to be non-negative.
1077   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1078                                        const char *Name) -> Value * {
1079     // Is this value a signed type?
1080     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1081     llvm::Type *VTy = V->getType();
1082     if (!VSigned) {
1083       // If the value is unsigned, then it is never negative.
1084       // FIXME: can we encounter non-scalar VTy here?
1085       return llvm::ConstantInt::getFalse(VTy->getContext());
1086     }
1087     // Get the zero of the same type with which we will be comparing.
1088     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1089     // %V.isnegative = icmp slt %V, 0
1090     // I.e is %V *strictly* less than zero, does it have negative value?
1091     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1092                               llvm::Twine(Name) + "." + V->getName() +
1093                                   ".negativitycheck");
1094   };
1095 
1096   // 1. Was the old Value negative?
1097   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1098   // 2. Is the new Value negative?
1099   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1100   // 3. Now, was the 'negativity status' preserved during the conversion?
1101   //    NOTE: conversion from negative to zero is considered to change the sign.
1102   //    (We want to get 'false' when the conversion changed the sign)
1103   //    So we should just equality-compare the negativity statuses.
1104   llvm::Value *Check = nullptr;
1105   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1106   // If the comparison result is 'false', then the conversion changed the sign.
1107   return std::make_pair(
1108       ScalarExprEmitter::ICCK_IntegerSignChange,
1109       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1110 }
1111 
1112 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1113                                                    Value *Dst, QualType DstType,
1114                                                    SourceLocation Loc) {
1115   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1116     return;
1117 
1118   llvm::Type *SrcTy = Src->getType();
1119   llvm::Type *DstTy = Dst->getType();
1120 
1121   // We only care about int->int conversions here.
1122   // We ignore conversions to/from pointer and/or bool.
1123   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1124                                                                        DstType))
1125     return;
1126 
1127   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1128   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1129   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1130   unsigned DstBits = DstTy->getScalarSizeInBits();
1131 
1132   // Now, we do not need to emit the check in *all* of the cases.
1133   // We can avoid emitting it in some obvious cases where it would have been
1134   // dropped by the opt passes (instcombine) always anyways.
1135   // If it's a cast between effectively the same type, no check.
1136   // NOTE: this is *not* equivalent to checking the canonical types.
1137   if (SrcSigned == DstSigned && SrcBits == DstBits)
1138     return;
1139   // At least one of the values needs to have signed type.
1140   // If both are unsigned, then obviously, neither of them can be negative.
1141   if (!SrcSigned && !DstSigned)
1142     return;
1143   // If the conversion is to *larger* *signed* type, then no check is needed.
1144   // Because either sign-extension happens (so the sign will remain),
1145   // or zero-extension will happen (the sign bit will be zero.)
1146   if ((DstBits > SrcBits) && DstSigned)
1147     return;
1148   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1149       (SrcBits > DstBits) && SrcSigned) {
1150     // If the signed integer truncation sanitizer is enabled,
1151     // and this is a truncation from signed type, then no check is needed.
1152     // Because here sign change check is interchangeable with truncation check.
1153     return;
1154   }
1155   // That's it. We can't rule out any more cases with the data we have.
1156 
1157   CodeGenFunction::SanitizerScope SanScope(&CGF);
1158 
1159   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1160             std::pair<llvm::Value *, SanitizerMask>>
1161       Check;
1162 
1163   // Each of these checks needs to return 'false' when an issue was detected.
1164   ImplicitConversionCheckKind CheckKind;
1165   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1166   // So we can 'and' all the checks together, and still get 'false',
1167   // if at least one of the checks detected an issue.
1168 
1169   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1170   CheckKind = Check.first;
1171   Checks.emplace_back(Check.second);
1172 
1173   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1174       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1175     // If the signed integer truncation sanitizer was enabled,
1176     // and we are truncating from larger unsigned type to smaller signed type,
1177     // let's handle the case we skipped in that check.
1178     Check =
1179         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1180     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1181     Checks.emplace_back(Check.second);
1182     // If the comparison result is 'i1 false', then the truncation was lossy.
1183   }
1184 
1185   llvm::Constant *StaticArgs[] = {
1186       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1187       CGF.EmitCheckTypeDescriptor(DstType),
1188       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1189   // EmitCheck() will 'and' all the checks together.
1190   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1191                 {Src, Dst});
1192 }
1193 
1194 /// Emit a conversion from the specified type to the specified destination type,
1195 /// both of which are LLVM scalar types.
1196 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1197                                                QualType DstType,
1198                                                SourceLocation Loc,
1199                                                ScalarConversionOpts Opts) {
1200   // All conversions involving fixed point types should be handled by the
1201   // EmitFixedPoint family functions. This is done to prevent bloating up this
1202   // function more, and although fixed point numbers are represented by
1203   // integers, we do not want to follow any logic that assumes they should be
1204   // treated as integers.
1205   // TODO(leonardchan): When necessary, add another if statement checking for
1206   // conversions to fixed point types from other types.
1207   if (SrcType->isFixedPointType()) {
1208     if (DstType->isBooleanType())
1209       // It is important that we check this before checking if the dest type is
1210       // an integer because booleans are technically integer types.
1211       // We do not need to check the padding bit on unsigned types if unsigned
1212       // padding is enabled because overflow into this bit is undefined
1213       // behavior.
1214       return Builder.CreateIsNotNull(Src, "tobool");
1215     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1216         DstType->isRealFloatingType())
1217       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1218 
1219     llvm_unreachable(
1220         "Unhandled scalar conversion from a fixed point type to another type.");
1221   } else if (DstType->isFixedPointType()) {
1222     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1223       // This also includes converting booleans and enums to fixed point types.
1224       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1225 
1226     llvm_unreachable(
1227         "Unhandled scalar conversion to a fixed point type from another type.");
1228   }
1229 
1230   QualType NoncanonicalSrcType = SrcType;
1231   QualType NoncanonicalDstType = DstType;
1232 
1233   SrcType = CGF.getContext().getCanonicalType(SrcType);
1234   DstType = CGF.getContext().getCanonicalType(DstType);
1235   if (SrcType == DstType) return Src;
1236 
1237   if (DstType->isVoidType()) return nullptr;
1238 
1239   llvm::Value *OrigSrc = Src;
1240   QualType OrigSrcType = SrcType;
1241   llvm::Type *SrcTy = Src->getType();
1242 
1243   // Handle conversions to bool first, they are special: comparisons against 0.
1244   if (DstType->isBooleanType())
1245     return EmitConversionToBool(Src, SrcType);
1246 
1247   llvm::Type *DstTy = ConvertType(DstType);
1248 
1249   // Cast from half through float if half isn't a native type.
1250   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1251     // Cast to FP using the intrinsic if the half type itself isn't supported.
1252     if (DstTy->isFloatingPointTy()) {
1253       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1254         return Builder.CreateCall(
1255             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1256             Src);
1257     } else {
1258       // Cast to other types through float, using either the intrinsic or FPExt,
1259       // depending on whether the half type itself is supported
1260       // (as opposed to operations on half, available with NativeHalfType).
1261       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1262         Src = Builder.CreateCall(
1263             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1264                                  CGF.CGM.FloatTy),
1265             Src);
1266       } else {
1267         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1268       }
1269       SrcType = CGF.getContext().FloatTy;
1270       SrcTy = CGF.FloatTy;
1271     }
1272   }
1273 
1274   // Ignore conversions like int -> uint.
1275   if (SrcTy == DstTy) {
1276     if (Opts.EmitImplicitIntegerSignChangeChecks)
1277       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1278                                  NoncanonicalDstType, Loc);
1279 
1280     return Src;
1281   }
1282 
1283   // Handle pointer conversions next: pointers can only be converted to/from
1284   // other pointers and integers. Check for pointer types in terms of LLVM, as
1285   // some native types (like Obj-C id) may map to a pointer type.
1286   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1287     // The source value may be an integer, or a pointer.
1288     if (isa<llvm::PointerType>(SrcTy))
1289       return Builder.CreateBitCast(Src, DstTy, "conv");
1290 
1291     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1292     // First, convert to the correct width so that we control the kind of
1293     // extension.
1294     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1295     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1296     llvm::Value* IntResult =
1297         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1298     // Then, cast to pointer.
1299     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1300   }
1301 
1302   if (isa<llvm::PointerType>(SrcTy)) {
1303     // Must be an ptr to int cast.
1304     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1305     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1306   }
1307 
1308   // A scalar can be splatted to an extended vector of the same element type
1309   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1310     // Sema should add casts to make sure that the source expression's type is
1311     // the same as the vector's element type (sans qualifiers)
1312     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1313                SrcType.getTypePtr() &&
1314            "Splatted expr doesn't match with vector element type?");
1315 
1316     // Splat the element across to all elements
1317     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1318     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1319   }
1320 
1321   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1322     // Allow bitcast from vector to integer/fp of the same size.
1323     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1324     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1325     if (SrcSize == DstSize)
1326       return Builder.CreateBitCast(Src, DstTy, "conv");
1327 
1328     // Conversions between vectors of different sizes are not allowed except
1329     // when vectors of half are involved. Operations on storage-only half
1330     // vectors require promoting half vector operands to float vectors and
1331     // truncating the result, which is either an int or float vector, to a
1332     // short or half vector.
1333 
1334     // Source and destination are both expected to be vectors.
1335     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1336     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1337     (void)DstElementTy;
1338 
1339     assert(((SrcElementTy->isIntegerTy() &&
1340              DstElementTy->isIntegerTy()) ||
1341             (SrcElementTy->isFloatingPointTy() &&
1342              DstElementTy->isFloatingPointTy())) &&
1343            "unexpected conversion between a floating-point vector and an "
1344            "integer vector");
1345 
1346     // Truncate an i32 vector to an i16 vector.
1347     if (SrcElementTy->isIntegerTy())
1348       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1349 
1350     // Truncate a float vector to a half vector.
1351     if (SrcSize > DstSize)
1352       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1353 
1354     // Promote a half vector to a float vector.
1355     return Builder.CreateFPExt(Src, DstTy, "conv");
1356   }
1357 
1358   // Finally, we have the arithmetic types: real int/float.
1359   Value *Res = nullptr;
1360   llvm::Type *ResTy = DstTy;
1361 
1362   // An overflowing conversion has undefined behavior if either the source type
1363   // or the destination type is a floating-point type. However, we consider the
1364   // range of representable values for all floating-point types to be
1365   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1366   // floating-point type.
1367   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1368       OrigSrcType->isFloatingType())
1369     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1370                              Loc);
1371 
1372   // Cast to half through float if half isn't a native type.
1373   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1374     // Make sure we cast in a single step if from another FP type.
1375     if (SrcTy->isFloatingPointTy()) {
1376       // Use the intrinsic if the half type itself isn't supported
1377       // (as opposed to operations on half, available with NativeHalfType).
1378       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1379         return Builder.CreateCall(
1380             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1381       // If the half type is supported, just use an fptrunc.
1382       return Builder.CreateFPTrunc(Src, DstTy);
1383     }
1384     DstTy = CGF.FloatTy;
1385   }
1386 
1387   if (isa<llvm::IntegerType>(SrcTy)) {
1388     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1389     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1390       InputSigned = true;
1391     }
1392     if (isa<llvm::IntegerType>(DstTy))
1393       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1394     else if (InputSigned)
1395       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1396     else
1397       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1398   } else if (isa<llvm::IntegerType>(DstTy)) {
1399     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1400     if (DstType->isSignedIntegerOrEnumerationType())
1401       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1402     else
1403       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1404   } else {
1405     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1406            "Unknown real conversion");
1407     if (DstTy->getTypeID() < SrcTy->getTypeID())
1408       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1409     else
1410       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1411   }
1412 
1413   if (DstTy != ResTy) {
1414     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1415       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1416       Res = Builder.CreateCall(
1417         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1418         Res);
1419     } else {
1420       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1421     }
1422   }
1423 
1424   if (Opts.EmitImplicitIntegerTruncationChecks)
1425     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1426                                NoncanonicalDstType, Loc);
1427 
1428   if (Opts.EmitImplicitIntegerSignChangeChecks)
1429     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1430                                NoncanonicalDstType, Loc);
1431 
1432   return Res;
1433 }
1434 
1435 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1436                                                    QualType DstTy,
1437                                                    SourceLocation Loc) {
1438   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1439   llvm::Value *Result;
1440   if (SrcTy->isRealFloatingType())
1441     Result = FPBuilder.CreateFloatingToFixed(Src,
1442         CGF.getContext().getFixedPointSemantics(DstTy));
1443   else if (DstTy->isRealFloatingType())
1444     Result = FPBuilder.CreateFixedToFloating(Src,
1445         CGF.getContext().getFixedPointSemantics(SrcTy),
1446         ConvertType(DstTy));
1447   else {
1448     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1449     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1450 
1451     if (DstTy->isIntegerType())
1452       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1453                                               DstFPSema.getWidth(),
1454                                               DstFPSema.isSigned());
1455     else if (SrcTy->isIntegerType())
1456       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1457                                                DstFPSema);
1458     else
1459       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1460   }
1461   return Result;
1462 }
1463 
1464 /// Emit a conversion from the specified complex type to the specified
1465 /// destination type, where the destination type is an LLVM scalar type.
1466 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1467     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1468     SourceLocation Loc) {
1469   // Get the source element type.
1470   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1471 
1472   // Handle conversions to bool first, they are special: comparisons against 0.
1473   if (DstTy->isBooleanType()) {
1474     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1475     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1476     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1477     return Builder.CreateOr(Src.first, Src.second, "tobool");
1478   }
1479 
1480   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1481   // the imaginary part of the complex value is discarded and the value of the
1482   // real part is converted according to the conversion rules for the
1483   // corresponding real type.
1484   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1485 }
1486 
1487 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1488   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1489 }
1490 
1491 /// Emit a sanitization check for the given "binary" operation (which
1492 /// might actually be a unary increment which has been lowered to a binary
1493 /// operation). The check passes if all values in \p Checks (which are \c i1),
1494 /// are \c true.
1495 void ScalarExprEmitter::EmitBinOpCheck(
1496     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1497   assert(CGF.IsSanitizerScope);
1498   SanitizerHandler Check;
1499   SmallVector<llvm::Constant *, 4> StaticData;
1500   SmallVector<llvm::Value *, 2> DynamicData;
1501 
1502   BinaryOperatorKind Opcode = Info.Opcode;
1503   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1504     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1505 
1506   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1507   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1508   if (UO && UO->getOpcode() == UO_Minus) {
1509     Check = SanitizerHandler::NegateOverflow;
1510     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1511     DynamicData.push_back(Info.RHS);
1512   } else {
1513     if (BinaryOperator::isShiftOp(Opcode)) {
1514       // Shift LHS negative or too large, or RHS out of bounds.
1515       Check = SanitizerHandler::ShiftOutOfBounds;
1516       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1517       StaticData.push_back(
1518         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1519       StaticData.push_back(
1520         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1521     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1522       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1523       Check = SanitizerHandler::DivremOverflow;
1524       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1525     } else {
1526       // Arithmetic overflow (+, -, *).
1527       switch (Opcode) {
1528       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1529       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1530       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1531       default: llvm_unreachable("unexpected opcode for bin op check");
1532       }
1533       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1534     }
1535     DynamicData.push_back(Info.LHS);
1536     DynamicData.push_back(Info.RHS);
1537   }
1538 
1539   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1540 }
1541 
1542 //===----------------------------------------------------------------------===//
1543 //                            Visitor Methods
1544 //===----------------------------------------------------------------------===//
1545 
1546 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1547   CGF.ErrorUnsupported(E, "scalar expression");
1548   if (E->getType()->isVoidType())
1549     return nullptr;
1550   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1551 }
1552 
1553 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1554   // Vector Mask Case
1555   if (E->getNumSubExprs() == 2) {
1556     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1557     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1558     Value *Mask;
1559 
1560     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1561     unsigned LHSElts = LTy->getNumElements();
1562 
1563     Mask = RHS;
1564 
1565     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1566 
1567     // Mask off the high bits of each shuffle index.
1568     Value *MaskBits =
1569         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1570     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1571 
1572     // newv = undef
1573     // mask = mask & maskbits
1574     // for each elt
1575     //   n = extract mask i
1576     //   x = extract val n
1577     //   newv = insert newv, x, i
1578     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1579                                            MTy->getNumElements());
1580     Value* NewV = llvm::UndefValue::get(RTy);
1581     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1582       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1583       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1584 
1585       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1586       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1587     }
1588     return NewV;
1589   }
1590 
1591   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1592   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1593 
1594   SmallVector<int, 32> Indices;
1595   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1596     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1597     // Check for -1 and output it as undef in the IR.
1598     if (Idx.isSigned() && Idx.isAllOnesValue())
1599       Indices.push_back(-1);
1600     else
1601       Indices.push_back(Idx.getZExtValue());
1602   }
1603 
1604   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1605 }
1606 
1607 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1608   QualType SrcType = E->getSrcExpr()->getType(),
1609            DstType = E->getType();
1610 
1611   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1612 
1613   SrcType = CGF.getContext().getCanonicalType(SrcType);
1614   DstType = CGF.getContext().getCanonicalType(DstType);
1615   if (SrcType == DstType) return Src;
1616 
1617   assert(SrcType->isVectorType() &&
1618          "ConvertVector source type must be a vector");
1619   assert(DstType->isVectorType() &&
1620          "ConvertVector destination type must be a vector");
1621 
1622   llvm::Type *SrcTy = Src->getType();
1623   llvm::Type *DstTy = ConvertType(DstType);
1624 
1625   // Ignore conversions like int -> uint.
1626   if (SrcTy == DstTy)
1627     return Src;
1628 
1629   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1630            DstEltType = DstType->castAs<VectorType>()->getElementType();
1631 
1632   assert(SrcTy->isVectorTy() &&
1633          "ConvertVector source IR type must be a vector");
1634   assert(DstTy->isVectorTy() &&
1635          "ConvertVector destination IR type must be a vector");
1636 
1637   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1638              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1639 
1640   if (DstEltType->isBooleanType()) {
1641     assert((SrcEltTy->isFloatingPointTy() ||
1642             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1643 
1644     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1645     if (SrcEltTy->isFloatingPointTy()) {
1646       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1647     } else {
1648       return Builder.CreateICmpNE(Src, Zero, "tobool");
1649     }
1650   }
1651 
1652   // We have the arithmetic types: real int/float.
1653   Value *Res = nullptr;
1654 
1655   if (isa<llvm::IntegerType>(SrcEltTy)) {
1656     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1657     if (isa<llvm::IntegerType>(DstEltTy))
1658       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1659     else if (InputSigned)
1660       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1661     else
1662       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1663   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1664     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1665     if (DstEltType->isSignedIntegerOrEnumerationType())
1666       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1667     else
1668       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1669   } else {
1670     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1671            "Unknown real conversion");
1672     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1673       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1674     else
1675       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1676   }
1677 
1678   return Res;
1679 }
1680 
1681 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1682   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1683     CGF.EmitIgnoredExpr(E->getBase());
1684     return CGF.emitScalarConstant(Constant, E);
1685   } else {
1686     Expr::EvalResult Result;
1687     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1688       llvm::APSInt Value = Result.Val.getInt();
1689       CGF.EmitIgnoredExpr(E->getBase());
1690       return Builder.getInt(Value);
1691     }
1692   }
1693 
1694   return EmitLoadOfLValue(E);
1695 }
1696 
1697 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1698   TestAndClearIgnoreResultAssign();
1699 
1700   // Emit subscript expressions in rvalue context's.  For most cases, this just
1701   // loads the lvalue formed by the subscript expr.  However, we have to be
1702   // careful, because the base of a vector subscript is occasionally an rvalue,
1703   // so we can't get it as an lvalue.
1704   if (!E->getBase()->getType()->isVectorType())
1705     return EmitLoadOfLValue(E);
1706 
1707   // Handle the vector case.  The base must be a vector, the index must be an
1708   // integer value.
1709   Value *Base = Visit(E->getBase());
1710   Value *Idx  = Visit(E->getIdx());
1711   QualType IdxTy = E->getIdx()->getType();
1712 
1713   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1714     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1715 
1716   return Builder.CreateExtractElement(Base, Idx, "vecext");
1717 }
1718 
1719 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1720   TestAndClearIgnoreResultAssign();
1721 
1722   // Handle the vector case.  The base must be a vector, the index must be an
1723   // integer value.
1724   Value *RowIdx = Visit(E->getRowIdx());
1725   Value *ColumnIdx = Visit(E->getColumnIdx());
1726   Value *Matrix = Visit(E->getBase());
1727 
1728   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1729   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1730   return MB.CreateExtractElement(
1731       Matrix, RowIdx, ColumnIdx,
1732       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
1733 }
1734 
1735 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1736                       unsigned Off) {
1737   int MV = SVI->getMaskValue(Idx);
1738   if (MV == -1)
1739     return -1;
1740   return Off + MV;
1741 }
1742 
1743 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1744   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1745          "Index operand too large for shufflevector mask!");
1746   return C->getZExtValue();
1747 }
1748 
1749 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1750   bool Ignore = TestAndClearIgnoreResultAssign();
1751   (void)Ignore;
1752   assert (Ignore == false && "init list ignored");
1753   unsigned NumInitElements = E->getNumInits();
1754 
1755   if (E->hadArrayRangeDesignator())
1756     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1757 
1758   llvm::VectorType *VType =
1759     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1760 
1761   if (!VType) {
1762     if (NumInitElements == 0) {
1763       // C++11 value-initialization for the scalar.
1764       return EmitNullValue(E->getType());
1765     }
1766     // We have a scalar in braces. Just use the first element.
1767     return Visit(E->getInit(0));
1768   }
1769 
1770   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1771 
1772   // Loop over initializers collecting the Value for each, and remembering
1773   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1774   // us to fold the shuffle for the swizzle into the shuffle for the vector
1775   // initializer, since LLVM optimizers generally do not want to touch
1776   // shuffles.
1777   unsigned CurIdx = 0;
1778   bool VIsUndefShuffle = false;
1779   llvm::Value *V = llvm::UndefValue::get(VType);
1780   for (unsigned i = 0; i != NumInitElements; ++i) {
1781     Expr *IE = E->getInit(i);
1782     Value *Init = Visit(IE);
1783     SmallVector<int, 16> Args;
1784 
1785     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1786 
1787     // Handle scalar elements.  If the scalar initializer is actually one
1788     // element of a different vector of the same width, use shuffle instead of
1789     // extract+insert.
1790     if (!VVT) {
1791       if (isa<ExtVectorElementExpr>(IE)) {
1792         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1793 
1794         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1795                 ->getNumElements() == ResElts) {
1796           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1797           Value *LHS = nullptr, *RHS = nullptr;
1798           if (CurIdx == 0) {
1799             // insert into undef -> shuffle (src, undef)
1800             // shufflemask must use an i32
1801             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1802             Args.resize(ResElts, -1);
1803 
1804             LHS = EI->getVectorOperand();
1805             RHS = V;
1806             VIsUndefShuffle = true;
1807           } else if (VIsUndefShuffle) {
1808             // insert into undefshuffle && size match -> shuffle (v, src)
1809             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1810             for (unsigned j = 0; j != CurIdx; ++j)
1811               Args.push_back(getMaskElt(SVV, j, 0));
1812             Args.push_back(ResElts + C->getZExtValue());
1813             Args.resize(ResElts, -1);
1814 
1815             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1816             RHS = EI->getVectorOperand();
1817             VIsUndefShuffle = false;
1818           }
1819           if (!Args.empty()) {
1820             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1821             ++CurIdx;
1822             continue;
1823           }
1824         }
1825       }
1826       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1827                                       "vecinit");
1828       VIsUndefShuffle = false;
1829       ++CurIdx;
1830       continue;
1831     }
1832 
1833     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1834 
1835     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1836     // input is the same width as the vector being constructed, generate an
1837     // optimized shuffle of the swizzle input into the result.
1838     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1839     if (isa<ExtVectorElementExpr>(IE)) {
1840       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1841       Value *SVOp = SVI->getOperand(0);
1842       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1843 
1844       if (OpTy->getNumElements() == ResElts) {
1845         for (unsigned j = 0; j != CurIdx; ++j) {
1846           // If the current vector initializer is a shuffle with undef, merge
1847           // this shuffle directly into it.
1848           if (VIsUndefShuffle) {
1849             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1850           } else {
1851             Args.push_back(j);
1852           }
1853         }
1854         for (unsigned j = 0, je = InitElts; j != je; ++j)
1855           Args.push_back(getMaskElt(SVI, j, Offset));
1856         Args.resize(ResElts, -1);
1857 
1858         if (VIsUndefShuffle)
1859           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1860 
1861         Init = SVOp;
1862       }
1863     }
1864 
1865     // Extend init to result vector length, and then shuffle its contribution
1866     // to the vector initializer into V.
1867     if (Args.empty()) {
1868       for (unsigned j = 0; j != InitElts; ++j)
1869         Args.push_back(j);
1870       Args.resize(ResElts, -1);
1871       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1872 
1873       Args.clear();
1874       for (unsigned j = 0; j != CurIdx; ++j)
1875         Args.push_back(j);
1876       for (unsigned j = 0; j != InitElts; ++j)
1877         Args.push_back(j + Offset);
1878       Args.resize(ResElts, -1);
1879     }
1880 
1881     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1882     // merging subsequent shuffles into this one.
1883     if (CurIdx == 0)
1884       std::swap(V, Init);
1885     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1886     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1887     CurIdx += InitElts;
1888   }
1889 
1890   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1891   // Emit remaining default initializers.
1892   llvm::Type *EltTy = VType->getElementType();
1893 
1894   // Emit remaining default initializers
1895   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1896     Value *Idx = Builder.getInt32(CurIdx);
1897     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1898     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1899   }
1900   return V;
1901 }
1902 
1903 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1904   const Expr *E = CE->getSubExpr();
1905 
1906   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1907     return false;
1908 
1909   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1910     // We always assume that 'this' is never null.
1911     return false;
1912   }
1913 
1914   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1915     // And that glvalue casts are never null.
1916     if (ICE->getValueKind() != VK_RValue)
1917       return false;
1918   }
1919 
1920   return true;
1921 }
1922 
1923 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1924 // have to handle a more broad range of conversions than explicit casts, as they
1925 // handle things like function to ptr-to-function decay etc.
1926 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1927   Expr *E = CE->getSubExpr();
1928   QualType DestTy = CE->getType();
1929   CastKind Kind = CE->getCastKind();
1930 
1931   // These cases are generally not written to ignore the result of
1932   // evaluating their sub-expressions, so we clear this now.
1933   bool Ignored = TestAndClearIgnoreResultAssign();
1934 
1935   // Since almost all cast kinds apply to scalars, this switch doesn't have
1936   // a default case, so the compiler will warn on a missing case.  The cases
1937   // are in the same order as in the CastKind enum.
1938   switch (Kind) {
1939   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1940   case CK_BuiltinFnToFnPtr:
1941     llvm_unreachable("builtin functions are handled elsewhere");
1942 
1943   case CK_LValueBitCast:
1944   case CK_ObjCObjectLValueCast: {
1945     Address Addr = EmitLValue(E).getAddress(CGF);
1946     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1947     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1948     return EmitLoadOfLValue(LV, CE->getExprLoc());
1949   }
1950 
1951   case CK_LValueToRValueBitCast: {
1952     LValue SourceLVal = CGF.EmitLValue(E);
1953     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1954                                                 CGF.ConvertTypeForMem(DestTy));
1955     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1956     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1957     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1958   }
1959 
1960   case CK_CPointerToObjCPointerCast:
1961   case CK_BlockPointerToObjCPointerCast:
1962   case CK_AnyPointerToBlockPointerCast:
1963   case CK_BitCast: {
1964     Value *Src = Visit(const_cast<Expr*>(E));
1965     llvm::Type *SrcTy = Src->getType();
1966     llvm::Type *DstTy = ConvertType(DestTy);
1967     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1968         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1969       llvm_unreachable("wrong cast for pointers in different address spaces"
1970                        "(must be an address space cast)!");
1971     }
1972 
1973     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1974       if (auto PT = DestTy->getAs<PointerType>())
1975         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1976                                       /*MayBeNull=*/true,
1977                                       CodeGenFunction::CFITCK_UnrelatedCast,
1978                                       CE->getBeginLoc());
1979     }
1980 
1981     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1982       const QualType SrcType = E->getType();
1983 
1984       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1985         // Casting to pointer that could carry dynamic information (provided by
1986         // invariant.group) requires launder.
1987         Src = Builder.CreateLaunderInvariantGroup(Src);
1988       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1989         // Casting to pointer that does not carry dynamic information (provided
1990         // by invariant.group) requires stripping it.  Note that we don't do it
1991         // if the source could not be dynamic type and destination could be
1992         // dynamic because dynamic information is already laundered.  It is
1993         // because launder(strip(src)) == launder(src), so there is no need to
1994         // add extra strip before launder.
1995         Src = Builder.CreateStripInvariantGroup(Src);
1996       }
1997     }
1998 
1999     // Update heapallocsite metadata when there is an explicit pointer cast.
2000     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2001       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2002         QualType PointeeType = DestTy->getPointeeType();
2003         if (!PointeeType.isNull())
2004           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2005                                                        CE->getExprLoc());
2006       }
2007     }
2008 
2009     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2010     // same element type, use the llvm.experimental.vector.insert intrinsic to
2011     // perform the bitcast.
2012     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2013       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2014         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2015           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2016           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2017           return Builder.CreateInsertVector(DstTy, UndefVec, Src, Zero,
2018                                             "castScalableSve");
2019         }
2020       }
2021     }
2022 
2023     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2024     // same element type, use the llvm.experimental.vector.extract intrinsic to
2025     // perform the bitcast.
2026     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2027       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2028         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2029           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2030           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2031         }
2032       }
2033     }
2034 
2035     // Perform VLAT <-> VLST bitcast through memory.
2036     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2037     //       require the element types of the vectors to be the same, we
2038     //       need to keep this around for casting between predicates, or more
2039     //       generally for bitcasts between VLAT <-> VLST where the element
2040     //       types of the vectors are not the same, until we figure out a better
2041     //       way of doing these casts.
2042     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2043          isa<llvm::ScalableVectorType>(DstTy)) ||
2044         (isa<llvm::ScalableVectorType>(SrcTy) &&
2045          isa<llvm::FixedVectorType>(DstTy))) {
2046       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2047         // Call expressions can't have a scalar return unless the return type
2048         // is a reference type so an lvalue can't be emitted. Create a temp
2049         // alloca to store the call, bitcast the address then load.
2050         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2051         Address Addr =
2052             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2053         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2054         CGF.EmitStoreOfScalar(Src, LV);
2055         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2056                                             "castFixedSve");
2057         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2058         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2059         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2060       }
2061 
2062       Address Addr = EmitLValue(E).getAddress(CGF);
2063       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2064       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2065       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2066       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2067     }
2068 
2069     return Builder.CreateBitCast(Src, DstTy);
2070   }
2071   case CK_AddressSpaceConversion: {
2072     Expr::EvalResult Result;
2073     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2074         Result.Val.isNullPointer()) {
2075       // If E has side effect, it is emitted even if its final result is a
2076       // null pointer. In that case, a DCE pass should be able to
2077       // eliminate the useless instructions emitted during translating E.
2078       if (Result.HasSideEffects)
2079         Visit(E);
2080       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2081           ConvertType(DestTy)), DestTy);
2082     }
2083     // Since target may map different address spaces in AST to the same address
2084     // space, an address space conversion may end up as a bitcast.
2085     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2086         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2087         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2088   }
2089   case CK_AtomicToNonAtomic:
2090   case CK_NonAtomicToAtomic:
2091   case CK_NoOp:
2092   case CK_UserDefinedConversion:
2093     return Visit(const_cast<Expr*>(E));
2094 
2095   case CK_BaseToDerived: {
2096     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2097     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2098 
2099     Address Base = CGF.EmitPointerWithAlignment(E);
2100     Address Derived =
2101       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2102                                    CE->path_begin(), CE->path_end(),
2103                                    CGF.ShouldNullCheckClassCastValue(CE));
2104 
2105     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2106     // performed and the object is not of the derived type.
2107     if (CGF.sanitizePerformTypeCheck())
2108       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2109                         Derived.getPointer(), DestTy->getPointeeType());
2110 
2111     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2112       CGF.EmitVTablePtrCheckForCast(
2113           DestTy->getPointeeType(), Derived.getPointer(),
2114           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2115           CE->getBeginLoc());
2116 
2117     return Derived.getPointer();
2118   }
2119   case CK_UncheckedDerivedToBase:
2120   case CK_DerivedToBase: {
2121     // The EmitPointerWithAlignment path does this fine; just discard
2122     // the alignment.
2123     return CGF.EmitPointerWithAlignment(CE).getPointer();
2124   }
2125 
2126   case CK_Dynamic: {
2127     Address V = CGF.EmitPointerWithAlignment(E);
2128     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2129     return CGF.EmitDynamicCast(V, DCE);
2130   }
2131 
2132   case CK_ArrayToPointerDecay:
2133     return CGF.EmitArrayToPointerDecay(E).getPointer();
2134   case CK_FunctionToPointerDecay:
2135     return EmitLValue(E).getPointer(CGF);
2136 
2137   case CK_NullToPointer:
2138     if (MustVisitNullValue(E))
2139       CGF.EmitIgnoredExpr(E);
2140 
2141     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2142                               DestTy);
2143 
2144   case CK_NullToMemberPointer: {
2145     if (MustVisitNullValue(E))
2146       CGF.EmitIgnoredExpr(E);
2147 
2148     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2149     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2150   }
2151 
2152   case CK_ReinterpretMemberPointer:
2153   case CK_BaseToDerivedMemberPointer:
2154   case CK_DerivedToBaseMemberPointer: {
2155     Value *Src = Visit(E);
2156 
2157     // Note that the AST doesn't distinguish between checked and
2158     // unchecked member pointer conversions, so we always have to
2159     // implement checked conversions here.  This is inefficient when
2160     // actual control flow may be required in order to perform the
2161     // check, which it is for data member pointers (but not member
2162     // function pointers on Itanium and ARM).
2163     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2164   }
2165 
2166   case CK_ARCProduceObject:
2167     return CGF.EmitARCRetainScalarExpr(E);
2168   case CK_ARCConsumeObject:
2169     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2170   case CK_ARCReclaimReturnedObject:
2171     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2172   case CK_ARCExtendBlockObject:
2173     return CGF.EmitARCExtendBlockObject(E);
2174 
2175   case CK_CopyAndAutoreleaseBlockObject:
2176     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2177 
2178   case CK_FloatingRealToComplex:
2179   case CK_FloatingComplexCast:
2180   case CK_IntegralRealToComplex:
2181   case CK_IntegralComplexCast:
2182   case CK_IntegralComplexToFloatingComplex:
2183   case CK_FloatingComplexToIntegralComplex:
2184   case CK_ConstructorConversion:
2185   case CK_ToUnion:
2186     llvm_unreachable("scalar cast to non-scalar value");
2187 
2188   case CK_LValueToRValue:
2189     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2190     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2191     return Visit(const_cast<Expr*>(E));
2192 
2193   case CK_IntegralToPointer: {
2194     Value *Src = Visit(const_cast<Expr*>(E));
2195 
2196     // First, convert to the correct width so that we control the kind of
2197     // extension.
2198     auto DestLLVMTy = ConvertType(DestTy);
2199     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2200     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2201     llvm::Value* IntResult =
2202       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2203 
2204     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2205 
2206     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2207       // Going from integer to pointer that could be dynamic requires reloading
2208       // dynamic information from invariant.group.
2209       if (DestTy.mayBeDynamicClass())
2210         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2211     }
2212     return IntToPtr;
2213   }
2214   case CK_PointerToIntegral: {
2215     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2216     auto *PtrExpr = Visit(E);
2217 
2218     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2219       const QualType SrcType = E->getType();
2220 
2221       // Casting to integer requires stripping dynamic information as it does
2222       // not carries it.
2223       if (SrcType.mayBeDynamicClass())
2224         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2225     }
2226 
2227     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2228   }
2229   case CK_ToVoid: {
2230     CGF.EmitIgnoredExpr(E);
2231     return nullptr;
2232   }
2233   case CK_VectorSplat: {
2234     llvm::Type *DstTy = ConvertType(DestTy);
2235     Value *Elt = Visit(const_cast<Expr*>(E));
2236     // Splat the element across to all elements
2237     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2238     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2239   }
2240 
2241   case CK_FixedPointCast:
2242     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2243                                 CE->getExprLoc());
2244 
2245   case CK_FixedPointToBoolean:
2246     assert(E->getType()->isFixedPointType() &&
2247            "Expected src type to be fixed point type");
2248     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2249     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2250                                 CE->getExprLoc());
2251 
2252   case CK_FixedPointToIntegral:
2253     assert(E->getType()->isFixedPointType() &&
2254            "Expected src type to be fixed point type");
2255     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2256     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2257                                 CE->getExprLoc());
2258 
2259   case CK_IntegralToFixedPoint:
2260     assert(E->getType()->isIntegerType() &&
2261            "Expected src type to be an integer");
2262     assert(DestTy->isFixedPointType() &&
2263            "Expected dest type to be fixed point type");
2264     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2265                                 CE->getExprLoc());
2266 
2267   case CK_IntegralCast: {
2268     ScalarConversionOpts Opts;
2269     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2270       if (!ICE->isPartOfExplicitCast())
2271         Opts = ScalarConversionOpts(CGF.SanOpts);
2272     }
2273     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2274                                 CE->getExprLoc(), Opts);
2275   }
2276   case CK_IntegralToFloating:
2277   case CK_FloatingToIntegral:
2278   case CK_FloatingCast:
2279   case CK_FixedPointToFloating:
2280   case CK_FloatingToFixedPoint: {
2281     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2282     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2283                                 CE->getExprLoc());
2284   }
2285   case CK_BooleanToSignedIntegral: {
2286     ScalarConversionOpts Opts;
2287     Opts.TreatBooleanAsSigned = true;
2288     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2289                                 CE->getExprLoc(), Opts);
2290   }
2291   case CK_IntegralToBoolean:
2292     return EmitIntToBoolConversion(Visit(E));
2293   case CK_PointerToBoolean:
2294     return EmitPointerToBoolConversion(Visit(E), E->getType());
2295   case CK_FloatingToBoolean: {
2296     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2297     return EmitFloatToBoolConversion(Visit(E));
2298   }
2299   case CK_MemberPointerToBoolean: {
2300     llvm::Value *MemPtr = Visit(E);
2301     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2302     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2303   }
2304 
2305   case CK_FloatingComplexToReal:
2306   case CK_IntegralComplexToReal:
2307     return CGF.EmitComplexExpr(E, false, true).first;
2308 
2309   case CK_FloatingComplexToBoolean:
2310   case CK_IntegralComplexToBoolean: {
2311     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2312 
2313     // TODO: kill this function off, inline appropriate case here
2314     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2315                                          CE->getExprLoc());
2316   }
2317 
2318   case CK_ZeroToOCLOpaqueType: {
2319     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2320             DestTy->isOCLIntelSubgroupAVCType()) &&
2321            "CK_ZeroToOCLEvent cast on non-event type");
2322     return llvm::Constant::getNullValue(ConvertType(DestTy));
2323   }
2324 
2325   case CK_IntToOCLSampler:
2326     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2327 
2328   } // end of switch
2329 
2330   llvm_unreachable("unknown scalar cast");
2331 }
2332 
2333 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2334   CodeGenFunction::StmtExprEvaluation eval(CGF);
2335   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2336                                            !E->getType()->isVoidType());
2337   if (!RetAlloca.isValid())
2338     return nullptr;
2339   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2340                               E->getExprLoc());
2341 }
2342 
2343 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2344   CodeGenFunction::RunCleanupsScope Scope(CGF);
2345   Value *V = Visit(E->getSubExpr());
2346   // Defend against dominance problems caused by jumps out of expression
2347   // evaluation through the shared cleanup block.
2348   Scope.ForceCleanup({&V});
2349   return V;
2350 }
2351 
2352 //===----------------------------------------------------------------------===//
2353 //                             Unary Operators
2354 //===----------------------------------------------------------------------===//
2355 
2356 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2357                                            llvm::Value *InVal, bool IsInc,
2358                                            FPOptions FPFeatures) {
2359   BinOpInfo BinOp;
2360   BinOp.LHS = InVal;
2361   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2362   BinOp.Ty = E->getType();
2363   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2364   BinOp.FPFeatures = FPFeatures;
2365   BinOp.E = E;
2366   return BinOp;
2367 }
2368 
2369 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2370     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2371   llvm::Value *Amount =
2372       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2373   StringRef Name = IsInc ? "inc" : "dec";
2374   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2375   case LangOptions::SOB_Defined:
2376     return Builder.CreateAdd(InVal, Amount, Name);
2377   case LangOptions::SOB_Undefined:
2378     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2379       return Builder.CreateNSWAdd(InVal, Amount, Name);
2380     LLVM_FALLTHROUGH;
2381   case LangOptions::SOB_Trapping:
2382     if (!E->canOverflow())
2383       return Builder.CreateNSWAdd(InVal, Amount, Name);
2384     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2385         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2386   }
2387   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2388 }
2389 
2390 namespace {
2391 /// Handles check and update for lastprivate conditional variables.
2392 class OMPLastprivateConditionalUpdateRAII {
2393 private:
2394   CodeGenFunction &CGF;
2395   const UnaryOperator *E;
2396 
2397 public:
2398   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2399                                       const UnaryOperator *E)
2400       : CGF(CGF), E(E) {}
2401   ~OMPLastprivateConditionalUpdateRAII() {
2402     if (CGF.getLangOpts().OpenMP)
2403       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2404           CGF, E->getSubExpr());
2405   }
2406 };
2407 } // namespace
2408 
2409 llvm::Value *
2410 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2411                                            bool isInc, bool isPre) {
2412   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2413   QualType type = E->getSubExpr()->getType();
2414   llvm::PHINode *atomicPHI = nullptr;
2415   llvm::Value *value;
2416   llvm::Value *input;
2417 
2418   int amount = (isInc ? 1 : -1);
2419   bool isSubtraction = !isInc;
2420 
2421   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2422     type = atomicTy->getValueType();
2423     if (isInc && type->isBooleanType()) {
2424       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2425       if (isPre) {
2426         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2427             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2428         return Builder.getTrue();
2429       }
2430       // For atomic bool increment, we just store true and return it for
2431       // preincrement, do an atomic swap with true for postincrement
2432       return Builder.CreateAtomicRMW(
2433           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2434           llvm::AtomicOrdering::SequentiallyConsistent);
2435     }
2436     // Special case for atomic increment / decrement on integers, emit
2437     // atomicrmw instructions.  We skip this if we want to be doing overflow
2438     // checking, and fall into the slow path with the atomic cmpxchg loop.
2439     if (!type->isBooleanType() && type->isIntegerType() &&
2440         !(type->isUnsignedIntegerType() &&
2441           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2442         CGF.getLangOpts().getSignedOverflowBehavior() !=
2443             LangOptions::SOB_Trapping) {
2444       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2445         llvm::AtomicRMWInst::Sub;
2446       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2447         llvm::Instruction::Sub;
2448       llvm::Value *amt = CGF.EmitToMemory(
2449           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2450       llvm::Value *old =
2451           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2452                                   llvm::AtomicOrdering::SequentiallyConsistent);
2453       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2454     }
2455     value = EmitLoadOfLValue(LV, E->getExprLoc());
2456     input = value;
2457     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2458     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2459     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2460     value = CGF.EmitToMemory(value, type);
2461     Builder.CreateBr(opBB);
2462     Builder.SetInsertPoint(opBB);
2463     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2464     atomicPHI->addIncoming(value, startBB);
2465     value = atomicPHI;
2466   } else {
2467     value = EmitLoadOfLValue(LV, E->getExprLoc());
2468     input = value;
2469   }
2470 
2471   // Special case of integer increment that we have to check first: bool++.
2472   // Due to promotion rules, we get:
2473   //   bool++ -> bool = bool + 1
2474   //          -> bool = (int)bool + 1
2475   //          -> bool = ((int)bool + 1 != 0)
2476   // An interesting aspect of this is that increment is always true.
2477   // Decrement does not have this property.
2478   if (isInc && type->isBooleanType()) {
2479     value = Builder.getTrue();
2480 
2481   // Most common case by far: integer increment.
2482   } else if (type->isIntegerType()) {
2483     QualType promotedType;
2484     bool canPerformLossyDemotionCheck = false;
2485     if (type->isPromotableIntegerType()) {
2486       promotedType = CGF.getContext().getPromotedIntegerType(type);
2487       assert(promotedType != type && "Shouldn't promote to the same type.");
2488       canPerformLossyDemotionCheck = true;
2489       canPerformLossyDemotionCheck &=
2490           CGF.getContext().getCanonicalType(type) !=
2491           CGF.getContext().getCanonicalType(promotedType);
2492       canPerformLossyDemotionCheck &=
2493           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2494               type, promotedType);
2495       assert((!canPerformLossyDemotionCheck ||
2496               type->isSignedIntegerOrEnumerationType() ||
2497               promotedType->isSignedIntegerOrEnumerationType() ||
2498               ConvertType(type)->getScalarSizeInBits() ==
2499                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2500              "The following check expects that if we do promotion to different "
2501              "underlying canonical type, at least one of the types (either "
2502              "base or promoted) will be signed, or the bitwidths will match.");
2503     }
2504     if (CGF.SanOpts.hasOneOf(
2505             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2506         canPerformLossyDemotionCheck) {
2507       // While `x += 1` (for `x` with width less than int) is modeled as
2508       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2509       // ease; inc/dec with width less than int can't overflow because of
2510       // promotion rules, so we omit promotion+demotion, which means that we can
2511       // not catch lossy "demotion". Because we still want to catch these cases
2512       // when the sanitizer is enabled, we perform the promotion, then perform
2513       // the increment/decrement in the wider type, and finally
2514       // perform the demotion. This will catch lossy demotions.
2515 
2516       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2517       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2518       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2519       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2520       // emitted.
2521       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2522                                    ScalarConversionOpts(CGF.SanOpts));
2523 
2524       // Note that signed integer inc/dec with width less than int can't
2525       // overflow because of promotion rules; we're just eliding a few steps
2526       // here.
2527     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2528       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2529     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2530                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2531       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2532           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2533     } else {
2534       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2535       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2536     }
2537 
2538   // Next most common: pointer increment.
2539   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2540     QualType type = ptr->getPointeeType();
2541 
2542     // VLA types don't have constant size.
2543     if (const VariableArrayType *vla
2544           = CGF.getContext().getAsVariableArrayType(type)) {
2545       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2546       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2547       if (CGF.getLangOpts().isSignedOverflowDefined())
2548         value = Builder.CreateGEP(value, numElts, "vla.inc");
2549       else
2550         value = CGF.EmitCheckedInBoundsGEP(
2551             value, numElts, /*SignedIndices=*/false, isSubtraction,
2552             E->getExprLoc(), "vla.inc");
2553 
2554     // Arithmetic on function pointers (!) is just +-1.
2555     } else if (type->isFunctionType()) {
2556       llvm::Value *amt = Builder.getInt32(amount);
2557 
2558       value = CGF.EmitCastToVoidPtr(value);
2559       if (CGF.getLangOpts().isSignedOverflowDefined())
2560         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2561       else
2562         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2563                                            isSubtraction, E->getExprLoc(),
2564                                            "incdec.funcptr");
2565       value = Builder.CreateBitCast(value, input->getType());
2566 
2567     // For everything else, we can just do a simple increment.
2568     } else {
2569       llvm::Value *amt = Builder.getInt32(amount);
2570       if (CGF.getLangOpts().isSignedOverflowDefined())
2571         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2572       else
2573         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2574                                            isSubtraction, E->getExprLoc(),
2575                                            "incdec.ptr");
2576     }
2577 
2578   // Vector increment/decrement.
2579   } else if (type->isVectorType()) {
2580     if (type->hasIntegerRepresentation()) {
2581       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2582 
2583       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2584     } else {
2585       value = Builder.CreateFAdd(
2586                   value,
2587                   llvm::ConstantFP::get(value->getType(), amount),
2588                   isInc ? "inc" : "dec");
2589     }
2590 
2591   // Floating point.
2592   } else if (type->isRealFloatingType()) {
2593     // Add the inc/dec to the real part.
2594     llvm::Value *amt;
2595     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2596 
2597     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2598       // Another special case: half FP increment should be done via float
2599       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2600         value = Builder.CreateCall(
2601             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2602                                  CGF.CGM.FloatTy),
2603             input, "incdec.conv");
2604       } else {
2605         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2606       }
2607     }
2608 
2609     if (value->getType()->isFloatTy())
2610       amt = llvm::ConstantFP::get(VMContext,
2611                                   llvm::APFloat(static_cast<float>(amount)));
2612     else if (value->getType()->isDoubleTy())
2613       amt = llvm::ConstantFP::get(VMContext,
2614                                   llvm::APFloat(static_cast<double>(amount)));
2615     else {
2616       // Remaining types are Half, LongDouble or __float128. Convert from float.
2617       llvm::APFloat F(static_cast<float>(amount));
2618       bool ignored;
2619       const llvm::fltSemantics *FS;
2620       // Don't use getFloatTypeSemantics because Half isn't
2621       // necessarily represented using the "half" LLVM type.
2622       if (value->getType()->isFP128Ty())
2623         FS = &CGF.getTarget().getFloat128Format();
2624       else if (value->getType()->isHalfTy())
2625         FS = &CGF.getTarget().getHalfFormat();
2626       else
2627         FS = &CGF.getTarget().getLongDoubleFormat();
2628       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2629       amt = llvm::ConstantFP::get(VMContext, F);
2630     }
2631     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2632 
2633     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2634       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2635         value = Builder.CreateCall(
2636             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2637                                  CGF.CGM.FloatTy),
2638             value, "incdec.conv");
2639       } else {
2640         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2641       }
2642     }
2643 
2644   // Fixed-point types.
2645   } else if (type->isFixedPointType()) {
2646     // Fixed-point types are tricky. In some cases, it isn't possible to
2647     // represent a 1 or a -1 in the type at all. Piggyback off of
2648     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2649     BinOpInfo Info;
2650     Info.E = E;
2651     Info.Ty = E->getType();
2652     Info.Opcode = isInc ? BO_Add : BO_Sub;
2653     Info.LHS = value;
2654     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2655     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2656     // since -1 is guaranteed to be representable.
2657     if (type->isSignedFixedPointType()) {
2658       Info.Opcode = isInc ? BO_Sub : BO_Add;
2659       Info.RHS = Builder.CreateNeg(Info.RHS);
2660     }
2661     // Now, convert from our invented integer literal to the type of the unary
2662     // op. This will upscale and saturate if necessary. This value can become
2663     // undef in some cases.
2664     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2665     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2666     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2667     value = EmitFixedPointBinOp(Info);
2668 
2669   // Objective-C pointer types.
2670   } else {
2671     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2672     value = CGF.EmitCastToVoidPtr(value);
2673 
2674     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2675     if (!isInc) size = -size;
2676     llvm::Value *sizeValue =
2677       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2678 
2679     if (CGF.getLangOpts().isSignedOverflowDefined())
2680       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2681     else
2682       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2683                                          /*SignedIndices=*/false, isSubtraction,
2684                                          E->getExprLoc(), "incdec.objptr");
2685     value = Builder.CreateBitCast(value, input->getType());
2686   }
2687 
2688   if (atomicPHI) {
2689     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2690     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2691     auto Pair = CGF.EmitAtomicCompareExchange(
2692         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2693     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2694     llvm::Value *success = Pair.second;
2695     atomicPHI->addIncoming(old, curBlock);
2696     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2697     Builder.SetInsertPoint(contBB);
2698     return isPre ? value : input;
2699   }
2700 
2701   // Store the updated result through the lvalue.
2702   if (LV.isBitField())
2703     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2704   else
2705     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2706 
2707   // If this is a postinc, return the value read from memory, otherwise use the
2708   // updated value.
2709   return isPre ? value : input;
2710 }
2711 
2712 
2713 
2714 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2715   TestAndClearIgnoreResultAssign();
2716   Value *Op = Visit(E->getSubExpr());
2717 
2718   // Generate a unary FNeg for FP ops.
2719   if (Op->getType()->isFPOrFPVectorTy())
2720     return Builder.CreateFNeg(Op, "fneg");
2721 
2722   // Emit unary minus with EmitSub so we handle overflow cases etc.
2723   BinOpInfo BinOp;
2724   BinOp.RHS = Op;
2725   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2726   BinOp.Ty = E->getType();
2727   BinOp.Opcode = BO_Sub;
2728   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2729   BinOp.E = E;
2730   return EmitSub(BinOp);
2731 }
2732 
2733 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2734   TestAndClearIgnoreResultAssign();
2735   Value *Op = Visit(E->getSubExpr());
2736   return Builder.CreateNot(Op, "neg");
2737 }
2738 
2739 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2740   // Perform vector logical not on comparison with zero vector.
2741   if (E->getType()->isVectorType() &&
2742       E->getType()->castAs<VectorType>()->getVectorKind() ==
2743           VectorType::GenericVector) {
2744     Value *Oper = Visit(E->getSubExpr());
2745     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2746     Value *Result;
2747     if (Oper->getType()->isFPOrFPVectorTy()) {
2748       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2749           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2750       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2751     } else
2752       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2753     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2754   }
2755 
2756   // Compare operand to zero.
2757   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2758 
2759   // Invert value.
2760   // TODO: Could dynamically modify easy computations here.  For example, if
2761   // the operand is an icmp ne, turn into icmp eq.
2762   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2763 
2764   // ZExt result to the expr type.
2765   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2766 }
2767 
2768 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2769   // Try folding the offsetof to a constant.
2770   Expr::EvalResult EVResult;
2771   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2772     llvm::APSInt Value = EVResult.Val.getInt();
2773     return Builder.getInt(Value);
2774   }
2775 
2776   // Loop over the components of the offsetof to compute the value.
2777   unsigned n = E->getNumComponents();
2778   llvm::Type* ResultType = ConvertType(E->getType());
2779   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2780   QualType CurrentType = E->getTypeSourceInfo()->getType();
2781   for (unsigned i = 0; i != n; ++i) {
2782     OffsetOfNode ON = E->getComponent(i);
2783     llvm::Value *Offset = nullptr;
2784     switch (ON.getKind()) {
2785     case OffsetOfNode::Array: {
2786       // Compute the index
2787       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2788       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2789       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2790       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2791 
2792       // Save the element type
2793       CurrentType =
2794           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2795 
2796       // Compute the element size
2797       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2798           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2799 
2800       // Multiply out to compute the result
2801       Offset = Builder.CreateMul(Idx, ElemSize);
2802       break;
2803     }
2804 
2805     case OffsetOfNode::Field: {
2806       FieldDecl *MemberDecl = ON.getField();
2807       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2808       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2809 
2810       // Compute the index of the field in its parent.
2811       unsigned i = 0;
2812       // FIXME: It would be nice if we didn't have to loop here!
2813       for (RecordDecl::field_iterator Field = RD->field_begin(),
2814                                       FieldEnd = RD->field_end();
2815            Field != FieldEnd; ++Field, ++i) {
2816         if (*Field == MemberDecl)
2817           break;
2818       }
2819       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2820 
2821       // Compute the offset to the field
2822       int64_t OffsetInt = RL.getFieldOffset(i) /
2823                           CGF.getContext().getCharWidth();
2824       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2825 
2826       // Save the element type.
2827       CurrentType = MemberDecl->getType();
2828       break;
2829     }
2830 
2831     case OffsetOfNode::Identifier:
2832       llvm_unreachable("dependent __builtin_offsetof");
2833 
2834     case OffsetOfNode::Base: {
2835       if (ON.getBase()->isVirtual()) {
2836         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2837         continue;
2838       }
2839 
2840       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2841       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2842 
2843       // Save the element type.
2844       CurrentType = ON.getBase()->getType();
2845 
2846       // Compute the offset to the base.
2847       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2848       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2849       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2850       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2851       break;
2852     }
2853     }
2854     Result = Builder.CreateAdd(Result, Offset);
2855   }
2856   return Result;
2857 }
2858 
2859 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2860 /// argument of the sizeof expression as an integer.
2861 Value *
2862 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2863                               const UnaryExprOrTypeTraitExpr *E) {
2864   QualType TypeToSize = E->getTypeOfArgument();
2865   if (E->getKind() == UETT_SizeOf) {
2866     if (const VariableArrayType *VAT =
2867           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2868       if (E->isArgumentType()) {
2869         // sizeof(type) - make sure to emit the VLA size.
2870         CGF.EmitVariablyModifiedType(TypeToSize);
2871       } else {
2872         // C99 6.5.3.4p2: If the argument is an expression of type
2873         // VLA, it is evaluated.
2874         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2875       }
2876 
2877       auto VlaSize = CGF.getVLASize(VAT);
2878       llvm::Value *size = VlaSize.NumElts;
2879 
2880       // Scale the number of non-VLA elements by the non-VLA element size.
2881       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2882       if (!eltSize.isOne())
2883         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2884 
2885       return size;
2886     }
2887   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2888     auto Alignment =
2889         CGF.getContext()
2890             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2891                 E->getTypeOfArgument()->getPointeeType()))
2892             .getQuantity();
2893     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2894   }
2895 
2896   // If this isn't sizeof(vla), the result must be constant; use the constant
2897   // folding logic so we don't have to duplicate it here.
2898   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2899 }
2900 
2901 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2902   Expr *Op = E->getSubExpr();
2903   if (Op->getType()->isAnyComplexType()) {
2904     // If it's an l-value, load through the appropriate subobject l-value.
2905     // Note that we have to ask E because Op might be an l-value that
2906     // this won't work for, e.g. an Obj-C property.
2907     if (E->isGLValue())
2908       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2909                                   E->getExprLoc()).getScalarVal();
2910 
2911     // Otherwise, calculate and project.
2912     return CGF.EmitComplexExpr(Op, false, true).first;
2913   }
2914 
2915   return Visit(Op);
2916 }
2917 
2918 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2919   Expr *Op = E->getSubExpr();
2920   if (Op->getType()->isAnyComplexType()) {
2921     // If it's an l-value, load through the appropriate subobject l-value.
2922     // Note that we have to ask E because Op might be an l-value that
2923     // this won't work for, e.g. an Obj-C property.
2924     if (Op->isGLValue())
2925       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2926                                   E->getExprLoc()).getScalarVal();
2927 
2928     // Otherwise, calculate and project.
2929     return CGF.EmitComplexExpr(Op, true, false).second;
2930   }
2931 
2932   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2933   // effects are evaluated, but not the actual value.
2934   if (Op->isGLValue())
2935     CGF.EmitLValue(Op);
2936   else
2937     CGF.EmitScalarExpr(Op, true);
2938   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2939 }
2940 
2941 //===----------------------------------------------------------------------===//
2942 //                           Binary Operators
2943 //===----------------------------------------------------------------------===//
2944 
2945 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2946   TestAndClearIgnoreResultAssign();
2947   BinOpInfo Result;
2948   Result.LHS = Visit(E->getLHS());
2949   Result.RHS = Visit(E->getRHS());
2950   Result.Ty  = E->getType();
2951   Result.Opcode = E->getOpcode();
2952   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2953   Result.E = E;
2954   return Result;
2955 }
2956 
2957 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2958                                               const CompoundAssignOperator *E,
2959                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2960                                                    Value *&Result) {
2961   QualType LHSTy = E->getLHS()->getType();
2962   BinOpInfo OpInfo;
2963 
2964   if (E->getComputationResultType()->isAnyComplexType())
2965     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2966 
2967   // Emit the RHS first.  __block variables need to have the rhs evaluated
2968   // first, plus this should improve codegen a little.
2969   OpInfo.RHS = Visit(E->getRHS());
2970   OpInfo.Ty = E->getComputationResultType();
2971   OpInfo.Opcode = E->getOpcode();
2972   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2973   OpInfo.E = E;
2974   // Load/convert the LHS.
2975   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2976 
2977   llvm::PHINode *atomicPHI = nullptr;
2978   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2979     QualType type = atomicTy->getValueType();
2980     if (!type->isBooleanType() && type->isIntegerType() &&
2981         !(type->isUnsignedIntegerType() &&
2982           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2983         CGF.getLangOpts().getSignedOverflowBehavior() !=
2984             LangOptions::SOB_Trapping) {
2985       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2986       llvm::Instruction::BinaryOps Op;
2987       switch (OpInfo.Opcode) {
2988         // We don't have atomicrmw operands for *, %, /, <<, >>
2989         case BO_MulAssign: case BO_DivAssign:
2990         case BO_RemAssign:
2991         case BO_ShlAssign:
2992         case BO_ShrAssign:
2993           break;
2994         case BO_AddAssign:
2995           AtomicOp = llvm::AtomicRMWInst::Add;
2996           Op = llvm::Instruction::Add;
2997           break;
2998         case BO_SubAssign:
2999           AtomicOp = llvm::AtomicRMWInst::Sub;
3000           Op = llvm::Instruction::Sub;
3001           break;
3002         case BO_AndAssign:
3003           AtomicOp = llvm::AtomicRMWInst::And;
3004           Op = llvm::Instruction::And;
3005           break;
3006         case BO_XorAssign:
3007           AtomicOp = llvm::AtomicRMWInst::Xor;
3008           Op = llvm::Instruction::Xor;
3009           break;
3010         case BO_OrAssign:
3011           AtomicOp = llvm::AtomicRMWInst::Or;
3012           Op = llvm::Instruction::Or;
3013           break;
3014         default:
3015           llvm_unreachable("Invalid compound assignment type");
3016       }
3017       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3018         llvm::Value *Amt = CGF.EmitToMemory(
3019             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3020                                  E->getExprLoc()),
3021             LHSTy);
3022         Value *OldVal = Builder.CreateAtomicRMW(
3023             AtomicOp, LHSLV.getPointer(CGF), Amt,
3024             llvm::AtomicOrdering::SequentiallyConsistent);
3025 
3026         // Since operation is atomic, the result type is guaranteed to be the
3027         // same as the input in LLVM terms.
3028         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3029         return LHSLV;
3030       }
3031     }
3032     // FIXME: For floating point types, we should be saving and restoring the
3033     // floating point environment in the loop.
3034     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3035     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3036     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3037     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3038     Builder.CreateBr(opBB);
3039     Builder.SetInsertPoint(opBB);
3040     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3041     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3042     OpInfo.LHS = atomicPHI;
3043   }
3044   else
3045     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3046 
3047   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3048   SourceLocation Loc = E->getExprLoc();
3049   OpInfo.LHS =
3050       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3051 
3052   // Expand the binary operator.
3053   Result = (this->*Func)(OpInfo);
3054 
3055   // Convert the result back to the LHS type,
3056   // potentially with Implicit Conversion sanitizer check.
3057   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3058                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3059 
3060   if (atomicPHI) {
3061     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3062     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3063     auto Pair = CGF.EmitAtomicCompareExchange(
3064         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3065     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3066     llvm::Value *success = Pair.second;
3067     atomicPHI->addIncoming(old, curBlock);
3068     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3069     Builder.SetInsertPoint(contBB);
3070     return LHSLV;
3071   }
3072 
3073   // Store the result value into the LHS lvalue. Bit-fields are handled
3074   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3075   // 'An assignment expression has the value of the left operand after the
3076   // assignment...'.
3077   if (LHSLV.isBitField())
3078     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3079   else
3080     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3081 
3082   if (CGF.getLangOpts().OpenMP)
3083     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3084                                                                   E->getLHS());
3085   return LHSLV;
3086 }
3087 
3088 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3089                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3090   bool Ignore = TestAndClearIgnoreResultAssign();
3091   Value *RHS = nullptr;
3092   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3093 
3094   // If the result is clearly ignored, return now.
3095   if (Ignore)
3096     return nullptr;
3097 
3098   // The result of an assignment in C is the assigned r-value.
3099   if (!CGF.getLangOpts().CPlusPlus)
3100     return RHS;
3101 
3102   // If the lvalue is non-volatile, return the computed value of the assignment.
3103   if (!LHS.isVolatileQualified())
3104     return RHS;
3105 
3106   // Otherwise, reload the value.
3107   return EmitLoadOfLValue(LHS, E->getExprLoc());
3108 }
3109 
3110 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3111     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3112   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3113 
3114   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3115     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3116                                     SanitizerKind::IntegerDivideByZero));
3117   }
3118 
3119   const auto *BO = cast<BinaryOperator>(Ops.E);
3120   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3121       Ops.Ty->hasSignedIntegerRepresentation() &&
3122       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3123       Ops.mayHaveIntegerOverflow()) {
3124     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3125 
3126     llvm::Value *IntMin =
3127       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3128     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3129 
3130     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3131     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3132     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3133     Checks.push_back(
3134         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3135   }
3136 
3137   if (Checks.size() > 0)
3138     EmitBinOpCheck(Checks, Ops);
3139 }
3140 
3141 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3142   {
3143     CodeGenFunction::SanitizerScope SanScope(&CGF);
3144     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3145          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3146         Ops.Ty->isIntegerType() &&
3147         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3148       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3149       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3150     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3151                Ops.Ty->isRealFloatingType() &&
3152                Ops.mayHaveFloatDivisionByZero()) {
3153       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3154       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3155       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3156                      Ops);
3157     }
3158   }
3159 
3160   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3161     llvm::Value *Val;
3162     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3163     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3164     if (CGF.getLangOpts().OpenCL &&
3165         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3166       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3167       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3168       // build option allows an application to specify that single precision
3169       // floating-point divide (x/y and 1/x) and sqrt used in the program
3170       // source are correctly rounded.
3171       llvm::Type *ValTy = Val->getType();
3172       if (ValTy->isFloatTy() ||
3173           (isa<llvm::VectorType>(ValTy) &&
3174            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3175         CGF.SetFPAccuracy(Val, 2.5);
3176     }
3177     return Val;
3178   }
3179   else if (Ops.isFixedPointOp())
3180     return EmitFixedPointBinOp(Ops);
3181   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3182     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3183   else
3184     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3185 }
3186 
3187 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3188   // Rem in C can't be a floating point type: C99 6.5.5p2.
3189   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3190        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3191       Ops.Ty->isIntegerType() &&
3192       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3193     CodeGenFunction::SanitizerScope SanScope(&CGF);
3194     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3195     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3196   }
3197 
3198   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3199     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3200   else
3201     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3202 }
3203 
3204 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3205   unsigned IID;
3206   unsigned OpID = 0;
3207   SanitizerHandler OverflowKind;
3208 
3209   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3210   switch (Ops.Opcode) {
3211   case BO_Add:
3212   case BO_AddAssign:
3213     OpID = 1;
3214     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3215                      llvm::Intrinsic::uadd_with_overflow;
3216     OverflowKind = SanitizerHandler::AddOverflow;
3217     break;
3218   case BO_Sub:
3219   case BO_SubAssign:
3220     OpID = 2;
3221     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3222                      llvm::Intrinsic::usub_with_overflow;
3223     OverflowKind = SanitizerHandler::SubOverflow;
3224     break;
3225   case BO_Mul:
3226   case BO_MulAssign:
3227     OpID = 3;
3228     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3229                      llvm::Intrinsic::umul_with_overflow;
3230     OverflowKind = SanitizerHandler::MulOverflow;
3231     break;
3232   default:
3233     llvm_unreachable("Unsupported operation for overflow detection");
3234   }
3235   OpID <<= 1;
3236   if (isSigned)
3237     OpID |= 1;
3238 
3239   CodeGenFunction::SanitizerScope SanScope(&CGF);
3240   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3241 
3242   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3243 
3244   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3245   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3246   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3247 
3248   // Handle overflow with llvm.trap if no custom handler has been specified.
3249   const std::string *handlerName =
3250     &CGF.getLangOpts().OverflowHandler;
3251   if (handlerName->empty()) {
3252     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3253     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3254     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3255       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3256       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3257                               : SanitizerKind::UnsignedIntegerOverflow;
3258       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3259     } else
3260       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3261     return result;
3262   }
3263 
3264   // Branch in case of overflow.
3265   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3266   llvm::BasicBlock *continueBB =
3267       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3268   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3269 
3270   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3271 
3272   // If an overflow handler is set, then we want to call it and then use its
3273   // result, if it returns.
3274   Builder.SetInsertPoint(overflowBB);
3275 
3276   // Get the overflow handler.
3277   llvm::Type *Int8Ty = CGF.Int8Ty;
3278   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3279   llvm::FunctionType *handlerTy =
3280       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3281   llvm::FunctionCallee handler =
3282       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3283 
3284   // Sign extend the args to 64-bit, so that we can use the same handler for
3285   // all types of overflow.
3286   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3287   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3288 
3289   // Call the handler with the two arguments, the operation, and the size of
3290   // the result.
3291   llvm::Value *handlerArgs[] = {
3292     lhs,
3293     rhs,
3294     Builder.getInt8(OpID),
3295     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3296   };
3297   llvm::Value *handlerResult =
3298     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3299 
3300   // Truncate the result back to the desired size.
3301   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3302   Builder.CreateBr(continueBB);
3303 
3304   Builder.SetInsertPoint(continueBB);
3305   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3306   phi->addIncoming(result, initialBB);
3307   phi->addIncoming(handlerResult, overflowBB);
3308 
3309   return phi;
3310 }
3311 
3312 /// Emit pointer + index arithmetic.
3313 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3314                                     const BinOpInfo &op,
3315                                     bool isSubtraction) {
3316   // Must have binary (not unary) expr here.  Unary pointer
3317   // increment/decrement doesn't use this path.
3318   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3319 
3320   Value *pointer = op.LHS;
3321   Expr *pointerOperand = expr->getLHS();
3322   Value *index = op.RHS;
3323   Expr *indexOperand = expr->getRHS();
3324 
3325   // In a subtraction, the LHS is always the pointer.
3326   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3327     std::swap(pointer, index);
3328     std::swap(pointerOperand, indexOperand);
3329   }
3330 
3331   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3332 
3333   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3334   auto &DL = CGF.CGM.getDataLayout();
3335   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3336 
3337   // Some versions of glibc and gcc use idioms (particularly in their malloc
3338   // routines) that add a pointer-sized integer (known to be a pointer value)
3339   // to a null pointer in order to cast the value back to an integer or as
3340   // part of a pointer alignment algorithm.  This is undefined behavior, but
3341   // we'd like to be able to compile programs that use it.
3342   //
3343   // Normally, we'd generate a GEP with a null-pointer base here in response
3344   // to that code, but it's also UB to dereference a pointer created that
3345   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3346   // generate a direct cast of the integer value to a pointer.
3347   //
3348   // The idiom (p = nullptr + N) is not met if any of the following are true:
3349   //
3350   //   The operation is subtraction.
3351   //   The index is not pointer-sized.
3352   //   The pointer type is not byte-sized.
3353   //
3354   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3355                                                        op.Opcode,
3356                                                        expr->getLHS(),
3357                                                        expr->getRHS()))
3358     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3359 
3360   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3361     // Zero-extend or sign-extend the pointer value according to
3362     // whether the index is signed or not.
3363     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3364                                       "idx.ext");
3365   }
3366 
3367   // If this is subtraction, negate the index.
3368   if (isSubtraction)
3369     index = CGF.Builder.CreateNeg(index, "idx.neg");
3370 
3371   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3372     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3373                         /*Accessed*/ false);
3374 
3375   const PointerType *pointerType
3376     = pointerOperand->getType()->getAs<PointerType>();
3377   if (!pointerType) {
3378     QualType objectType = pointerOperand->getType()
3379                                         ->castAs<ObjCObjectPointerType>()
3380                                         ->getPointeeType();
3381     llvm::Value *objectSize
3382       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3383 
3384     index = CGF.Builder.CreateMul(index, objectSize);
3385 
3386     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3387     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3388     return CGF.Builder.CreateBitCast(result, pointer->getType());
3389   }
3390 
3391   QualType elementType = pointerType->getPointeeType();
3392   if (const VariableArrayType *vla
3393         = CGF.getContext().getAsVariableArrayType(elementType)) {
3394     // The element count here is the total number of non-VLA elements.
3395     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3396 
3397     // Effectively, the multiply by the VLA size is part of the GEP.
3398     // GEP indexes are signed, and scaling an index isn't permitted to
3399     // signed-overflow, so we use the same semantics for our explicit
3400     // multiply.  We suppress this if overflow is not undefined behavior.
3401     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3402       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3403       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3404     } else {
3405       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3406       pointer =
3407           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3408                                      op.E->getExprLoc(), "add.ptr");
3409     }
3410     return pointer;
3411   }
3412 
3413   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3414   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3415   // future proof.
3416   if (elementType->isVoidType() || elementType->isFunctionType()) {
3417     Value *result = CGF.EmitCastToVoidPtr(pointer);
3418     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3419     return CGF.Builder.CreateBitCast(result, pointer->getType());
3420   }
3421 
3422   if (CGF.getLangOpts().isSignedOverflowDefined())
3423     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3424 
3425   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3426                                     op.E->getExprLoc(), "add.ptr");
3427 }
3428 
3429 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3430 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3431 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3432 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3433 // efficient operations.
3434 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3435                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3436                            bool negMul, bool negAdd) {
3437   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3438 
3439   Value *MulOp0 = MulOp->getOperand(0);
3440   Value *MulOp1 = MulOp->getOperand(1);
3441   if (negMul)
3442     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3443   if (negAdd)
3444     Addend = Builder.CreateFNeg(Addend, "neg");
3445 
3446   Value *FMulAdd = nullptr;
3447   if (Builder.getIsFPConstrained()) {
3448     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3449            "Only constrained operation should be created when Builder is in FP "
3450            "constrained mode");
3451     FMulAdd = Builder.CreateConstrainedFPCall(
3452         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3453                              Addend->getType()),
3454         {MulOp0, MulOp1, Addend});
3455   } else {
3456     FMulAdd = Builder.CreateCall(
3457         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3458         {MulOp0, MulOp1, Addend});
3459   }
3460   MulOp->eraseFromParent();
3461 
3462   return FMulAdd;
3463 }
3464 
3465 // Check whether it would be legal to emit an fmuladd intrinsic call to
3466 // represent op and if so, build the fmuladd.
3467 //
3468 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3469 // Does NOT check the type of the operation - it's assumed that this function
3470 // will be called from contexts where it's known that the type is contractable.
3471 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3472                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3473                          bool isSub=false) {
3474 
3475   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3476           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3477          "Only fadd/fsub can be the root of an fmuladd.");
3478 
3479   // Check whether this op is marked as fusable.
3480   if (!op.FPFeatures.allowFPContractWithinStatement())
3481     return nullptr;
3482 
3483   // We have a potentially fusable op. Look for a mul on one of the operands.
3484   // Also, make sure that the mul result isn't used directly. In that case,
3485   // there's no point creating a muladd operation.
3486   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3487     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3488         LHSBinOp->use_empty())
3489       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3490   }
3491   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3492     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3493         RHSBinOp->use_empty())
3494       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3495   }
3496 
3497   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3498     if (LHSBinOp->getIntrinsicID() ==
3499             llvm::Intrinsic::experimental_constrained_fmul &&
3500         LHSBinOp->use_empty())
3501       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3502   }
3503   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3504     if (RHSBinOp->getIntrinsicID() ==
3505             llvm::Intrinsic::experimental_constrained_fmul &&
3506         RHSBinOp->use_empty())
3507       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3508   }
3509 
3510   return nullptr;
3511 }
3512 
3513 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3514   if (op.LHS->getType()->isPointerTy() ||
3515       op.RHS->getType()->isPointerTy())
3516     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3517 
3518   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3519     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3520     case LangOptions::SOB_Defined:
3521       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3522     case LangOptions::SOB_Undefined:
3523       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3524         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3525       LLVM_FALLTHROUGH;
3526     case LangOptions::SOB_Trapping:
3527       if (CanElideOverflowCheck(CGF.getContext(), op))
3528         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3529       return EmitOverflowCheckedBinOp(op);
3530     }
3531   }
3532 
3533   if (op.Ty->isConstantMatrixType()) {
3534     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3535     return MB.CreateAdd(op.LHS, op.RHS);
3536   }
3537 
3538   if (op.Ty->isUnsignedIntegerType() &&
3539       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3540       !CanElideOverflowCheck(CGF.getContext(), op))
3541     return EmitOverflowCheckedBinOp(op);
3542 
3543   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3544     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3545     // Try to form an fmuladd.
3546     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3547       return FMulAdd;
3548 
3549     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3550   }
3551 
3552   if (op.isFixedPointOp())
3553     return EmitFixedPointBinOp(op);
3554 
3555   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3556 }
3557 
3558 /// The resulting value must be calculated with exact precision, so the operands
3559 /// may not be the same type.
3560 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3561   using llvm::APSInt;
3562   using llvm::ConstantInt;
3563 
3564   // This is either a binary operation where at least one of the operands is
3565   // a fixed-point type, or a unary operation where the operand is a fixed-point
3566   // type. The result type of a binary operation is determined by
3567   // Sema::handleFixedPointConversions().
3568   QualType ResultTy = op.Ty;
3569   QualType LHSTy, RHSTy;
3570   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3571     RHSTy = BinOp->getRHS()->getType();
3572     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3573       // For compound assignment, the effective type of the LHS at this point
3574       // is the computation LHS type, not the actual LHS type, and the final
3575       // result type is not the type of the expression but rather the
3576       // computation result type.
3577       LHSTy = CAO->getComputationLHSType();
3578       ResultTy = CAO->getComputationResultType();
3579     } else
3580       LHSTy = BinOp->getLHS()->getType();
3581   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3582     LHSTy = UnOp->getSubExpr()->getType();
3583     RHSTy = UnOp->getSubExpr()->getType();
3584   }
3585   ASTContext &Ctx = CGF.getContext();
3586   Value *LHS = op.LHS;
3587   Value *RHS = op.RHS;
3588 
3589   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3590   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3591   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3592   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3593 
3594   // Perform the actual operation.
3595   Value *Result;
3596   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3597   switch (op.Opcode) {
3598   case BO_AddAssign:
3599   case BO_Add:
3600     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3601     break;
3602   case BO_SubAssign:
3603   case BO_Sub:
3604     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3605     break;
3606   case BO_MulAssign:
3607   case BO_Mul:
3608     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3609     break;
3610   case BO_DivAssign:
3611   case BO_Div:
3612     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3613     break;
3614   case BO_ShlAssign:
3615   case BO_Shl:
3616     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3617     break;
3618   case BO_ShrAssign:
3619   case BO_Shr:
3620     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3621     break;
3622   case BO_LT:
3623     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3624   case BO_GT:
3625     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3626   case BO_LE:
3627     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3628   case BO_GE:
3629     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3630   case BO_EQ:
3631     // For equality operations, we assume any padding bits on unsigned types are
3632     // zero'd out. They could be overwritten through non-saturating operations
3633     // that cause overflow, but this leads to undefined behavior.
3634     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3635   case BO_NE:
3636     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3637   case BO_Cmp:
3638   case BO_LAnd:
3639   case BO_LOr:
3640     llvm_unreachable("Found unimplemented fixed point binary operation");
3641   case BO_PtrMemD:
3642   case BO_PtrMemI:
3643   case BO_Rem:
3644   case BO_Xor:
3645   case BO_And:
3646   case BO_Or:
3647   case BO_Assign:
3648   case BO_RemAssign:
3649   case BO_AndAssign:
3650   case BO_XorAssign:
3651   case BO_OrAssign:
3652   case BO_Comma:
3653     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3654   }
3655 
3656   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3657                  BinaryOperator::isShiftAssignOp(op.Opcode);
3658   // Convert to the result type.
3659   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3660                                                       : CommonFixedSema,
3661                                       ResultFixedSema);
3662 }
3663 
3664 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3665   // The LHS is always a pointer if either side is.
3666   if (!op.LHS->getType()->isPointerTy()) {
3667     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3668       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3669       case LangOptions::SOB_Defined:
3670         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3671       case LangOptions::SOB_Undefined:
3672         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3673           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3674         LLVM_FALLTHROUGH;
3675       case LangOptions::SOB_Trapping:
3676         if (CanElideOverflowCheck(CGF.getContext(), op))
3677           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3678         return EmitOverflowCheckedBinOp(op);
3679       }
3680     }
3681 
3682     if (op.Ty->isConstantMatrixType()) {
3683       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3684       return MB.CreateSub(op.LHS, op.RHS);
3685     }
3686 
3687     if (op.Ty->isUnsignedIntegerType() &&
3688         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3689         !CanElideOverflowCheck(CGF.getContext(), op))
3690       return EmitOverflowCheckedBinOp(op);
3691 
3692     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3693       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3694       // Try to form an fmuladd.
3695       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3696         return FMulAdd;
3697       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3698     }
3699 
3700     if (op.isFixedPointOp())
3701       return EmitFixedPointBinOp(op);
3702 
3703     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3704   }
3705 
3706   // If the RHS is not a pointer, then we have normal pointer
3707   // arithmetic.
3708   if (!op.RHS->getType()->isPointerTy())
3709     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3710 
3711   // Otherwise, this is a pointer subtraction.
3712 
3713   // Do the raw subtraction part.
3714   llvm::Value *LHS
3715     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3716   llvm::Value *RHS
3717     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3718   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3719 
3720   // Okay, figure out the element size.
3721   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3722   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3723 
3724   llvm::Value *divisor = nullptr;
3725 
3726   // For a variable-length array, this is going to be non-constant.
3727   if (const VariableArrayType *vla
3728         = CGF.getContext().getAsVariableArrayType(elementType)) {
3729     auto VlaSize = CGF.getVLASize(vla);
3730     elementType = VlaSize.Type;
3731     divisor = VlaSize.NumElts;
3732 
3733     // Scale the number of non-VLA elements by the non-VLA element size.
3734     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3735     if (!eltSize.isOne())
3736       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3737 
3738   // For everything elese, we can just compute it, safe in the
3739   // assumption that Sema won't let anything through that we can't
3740   // safely compute the size of.
3741   } else {
3742     CharUnits elementSize;
3743     // Handle GCC extension for pointer arithmetic on void* and
3744     // function pointer types.
3745     if (elementType->isVoidType() || elementType->isFunctionType())
3746       elementSize = CharUnits::One();
3747     else
3748       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3749 
3750     // Don't even emit the divide for element size of 1.
3751     if (elementSize.isOne())
3752       return diffInChars;
3753 
3754     divisor = CGF.CGM.getSize(elementSize);
3755   }
3756 
3757   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3758   // pointer difference in C is only defined in the case where both operands
3759   // are pointing to elements of an array.
3760   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3761 }
3762 
3763 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3764   llvm::IntegerType *Ty;
3765   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3766     Ty = cast<llvm::IntegerType>(VT->getElementType());
3767   else
3768     Ty = cast<llvm::IntegerType>(LHS->getType());
3769   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3770 }
3771 
3772 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3773                                               const Twine &Name) {
3774   llvm::IntegerType *Ty;
3775   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3776     Ty = cast<llvm::IntegerType>(VT->getElementType());
3777   else
3778     Ty = cast<llvm::IntegerType>(LHS->getType());
3779 
3780   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3781         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3782 
3783   return Builder.CreateURem(
3784       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3785 }
3786 
3787 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3788   // TODO: This misses out on the sanitizer check below.
3789   if (Ops.isFixedPointOp())
3790     return EmitFixedPointBinOp(Ops);
3791 
3792   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3793   // RHS to the same size as the LHS.
3794   Value *RHS = Ops.RHS;
3795   if (Ops.LHS->getType() != RHS->getType())
3796     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3797 
3798   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3799                             Ops.Ty->hasSignedIntegerRepresentation() &&
3800                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3801                             !CGF.getLangOpts().CPlusPlus20;
3802   bool SanitizeUnsignedBase =
3803       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3804       Ops.Ty->hasUnsignedIntegerRepresentation();
3805   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3806   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3807   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3808   if (CGF.getLangOpts().OpenCL)
3809     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3810   else if ((SanitizeBase || SanitizeExponent) &&
3811            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3812     CodeGenFunction::SanitizerScope SanScope(&CGF);
3813     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3814     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3815     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3816 
3817     if (SanitizeExponent) {
3818       Checks.push_back(
3819           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3820     }
3821 
3822     if (SanitizeBase) {
3823       // Check whether we are shifting any non-zero bits off the top of the
3824       // integer. We only emit this check if exponent is valid - otherwise
3825       // instructions below will have undefined behavior themselves.
3826       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3827       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3828       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3829       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3830       llvm::Value *PromotedWidthMinusOne =
3831           (RHS == Ops.RHS) ? WidthMinusOne
3832                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3833       CGF.EmitBlock(CheckShiftBase);
3834       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3835           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3836                                      /*NUW*/ true, /*NSW*/ true),
3837           "shl.check");
3838       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3839         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3840         // Under C++11's rules, shifting a 1 bit into the sign bit is
3841         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3842         // define signed left shifts, so we use the C99 and C++11 rules there).
3843         // Unsigned shifts can always shift into the top bit.
3844         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3845         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3846       }
3847       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3848       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3849       CGF.EmitBlock(Cont);
3850       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3851       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3852       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3853       Checks.push_back(std::make_pair(
3854           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3855                                         : SanitizerKind::UnsignedShiftBase));
3856     }
3857 
3858     assert(!Checks.empty());
3859     EmitBinOpCheck(Checks, Ops);
3860   }
3861 
3862   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3863 }
3864 
3865 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3866   // TODO: This misses out on the sanitizer check below.
3867   if (Ops.isFixedPointOp())
3868     return EmitFixedPointBinOp(Ops);
3869 
3870   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3871   // RHS to the same size as the LHS.
3872   Value *RHS = Ops.RHS;
3873   if (Ops.LHS->getType() != RHS->getType())
3874     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3875 
3876   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3877   if (CGF.getLangOpts().OpenCL)
3878     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3879   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3880            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3881     CodeGenFunction::SanitizerScope SanScope(&CGF);
3882     llvm::Value *Valid =
3883         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3884     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3885   }
3886 
3887   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3888     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3889   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3890 }
3891 
3892 enum IntrinsicType { VCMPEQ, VCMPGT };
3893 // return corresponding comparison intrinsic for given vector type
3894 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3895                                         BuiltinType::Kind ElemKind) {
3896   switch (ElemKind) {
3897   default: llvm_unreachable("unexpected element type");
3898   case BuiltinType::Char_U:
3899   case BuiltinType::UChar:
3900     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3901                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3902   case BuiltinType::Char_S:
3903   case BuiltinType::SChar:
3904     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3905                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3906   case BuiltinType::UShort:
3907     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3908                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3909   case BuiltinType::Short:
3910     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3911                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3912   case BuiltinType::UInt:
3913     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3914                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3915   case BuiltinType::Int:
3916     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3917                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3918   case BuiltinType::ULong:
3919   case BuiltinType::ULongLong:
3920     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3921                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3922   case BuiltinType::Long:
3923   case BuiltinType::LongLong:
3924     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3925                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3926   case BuiltinType::Float:
3927     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3928                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3929   case BuiltinType::Double:
3930     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3931                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3932   case BuiltinType::UInt128:
3933     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3934                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
3935   case BuiltinType::Int128:
3936     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3937                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
3938   }
3939 }
3940 
3941 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3942                                       llvm::CmpInst::Predicate UICmpOpc,
3943                                       llvm::CmpInst::Predicate SICmpOpc,
3944                                       llvm::CmpInst::Predicate FCmpOpc,
3945                                       bool IsSignaling) {
3946   TestAndClearIgnoreResultAssign();
3947   Value *Result;
3948   QualType LHSTy = E->getLHS()->getType();
3949   QualType RHSTy = E->getRHS()->getType();
3950   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3951     assert(E->getOpcode() == BO_EQ ||
3952            E->getOpcode() == BO_NE);
3953     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3954     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3955     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3956                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3957   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3958     BinOpInfo BOInfo = EmitBinOps(E);
3959     Value *LHS = BOInfo.LHS;
3960     Value *RHS = BOInfo.RHS;
3961 
3962     // If AltiVec, the comparison results in a numeric type, so we use
3963     // intrinsics comparing vectors and giving 0 or 1 as a result
3964     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3965       // constants for mapping CR6 register bits to predicate result
3966       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3967 
3968       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3969 
3970       // in several cases vector arguments order will be reversed
3971       Value *FirstVecArg = LHS,
3972             *SecondVecArg = RHS;
3973 
3974       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3975       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3976 
3977       switch(E->getOpcode()) {
3978       default: llvm_unreachable("is not a comparison operation");
3979       case BO_EQ:
3980         CR6 = CR6_LT;
3981         ID = GetIntrinsic(VCMPEQ, ElementKind);
3982         break;
3983       case BO_NE:
3984         CR6 = CR6_EQ;
3985         ID = GetIntrinsic(VCMPEQ, ElementKind);
3986         break;
3987       case BO_LT:
3988         CR6 = CR6_LT;
3989         ID = GetIntrinsic(VCMPGT, ElementKind);
3990         std::swap(FirstVecArg, SecondVecArg);
3991         break;
3992       case BO_GT:
3993         CR6 = CR6_LT;
3994         ID = GetIntrinsic(VCMPGT, ElementKind);
3995         break;
3996       case BO_LE:
3997         if (ElementKind == BuiltinType::Float) {
3998           CR6 = CR6_LT;
3999           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4000           std::swap(FirstVecArg, SecondVecArg);
4001         }
4002         else {
4003           CR6 = CR6_EQ;
4004           ID = GetIntrinsic(VCMPGT, ElementKind);
4005         }
4006         break;
4007       case BO_GE:
4008         if (ElementKind == BuiltinType::Float) {
4009           CR6 = CR6_LT;
4010           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4011         }
4012         else {
4013           CR6 = CR6_EQ;
4014           ID = GetIntrinsic(VCMPGT, ElementKind);
4015           std::swap(FirstVecArg, SecondVecArg);
4016         }
4017         break;
4018       }
4019 
4020       Value *CR6Param = Builder.getInt32(CR6);
4021       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4022       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4023 
4024       // The result type of intrinsic may not be same as E->getType().
4025       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4026       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4027       // do nothing, if ResultTy is not i1 at the same time, it will cause
4028       // crash later.
4029       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4030       if (ResultTy->getBitWidth() > 1 &&
4031           E->getType() == CGF.getContext().BoolTy)
4032         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4033       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4034                                   E->getExprLoc());
4035     }
4036 
4037     if (BOInfo.isFixedPointOp()) {
4038       Result = EmitFixedPointBinOp(BOInfo);
4039     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4040       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4041       if (!IsSignaling)
4042         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4043       else
4044         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4045     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4046       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4047     } else {
4048       // Unsigned integers and pointers.
4049 
4050       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4051           !isa<llvm::ConstantPointerNull>(LHS) &&
4052           !isa<llvm::ConstantPointerNull>(RHS)) {
4053 
4054         // Dynamic information is required to be stripped for comparisons,
4055         // because it could leak the dynamic information.  Based on comparisons
4056         // of pointers to dynamic objects, the optimizer can replace one pointer
4057         // with another, which might be incorrect in presence of invariant
4058         // groups. Comparison with null is safe because null does not carry any
4059         // dynamic information.
4060         if (LHSTy.mayBeDynamicClass())
4061           LHS = Builder.CreateStripInvariantGroup(LHS);
4062         if (RHSTy.mayBeDynamicClass())
4063           RHS = Builder.CreateStripInvariantGroup(RHS);
4064       }
4065 
4066       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4067     }
4068 
4069     // If this is a vector comparison, sign extend the result to the appropriate
4070     // vector integer type and return it (don't convert to bool).
4071     if (LHSTy->isVectorType())
4072       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4073 
4074   } else {
4075     // Complex Comparison: can only be an equality comparison.
4076     CodeGenFunction::ComplexPairTy LHS, RHS;
4077     QualType CETy;
4078     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4079       LHS = CGF.EmitComplexExpr(E->getLHS());
4080       CETy = CTy->getElementType();
4081     } else {
4082       LHS.first = Visit(E->getLHS());
4083       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4084       CETy = LHSTy;
4085     }
4086     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4087       RHS = CGF.EmitComplexExpr(E->getRHS());
4088       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4089                                                      CTy->getElementType()) &&
4090              "The element types must always match.");
4091       (void)CTy;
4092     } else {
4093       RHS.first = Visit(E->getRHS());
4094       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4095       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4096              "The element types must always match.");
4097     }
4098 
4099     Value *ResultR, *ResultI;
4100     if (CETy->isRealFloatingType()) {
4101       // As complex comparisons can only be equality comparisons, they
4102       // are never signaling comparisons.
4103       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4104       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4105     } else {
4106       // Complex comparisons can only be equality comparisons.  As such, signed
4107       // and unsigned opcodes are the same.
4108       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4109       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4110     }
4111 
4112     if (E->getOpcode() == BO_EQ) {
4113       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4114     } else {
4115       assert(E->getOpcode() == BO_NE &&
4116              "Complex comparison other than == or != ?");
4117       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4118     }
4119   }
4120 
4121   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4122                               E->getExprLoc());
4123 }
4124 
4125 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4126   bool Ignore = TestAndClearIgnoreResultAssign();
4127 
4128   Value *RHS;
4129   LValue LHS;
4130 
4131   switch (E->getLHS()->getType().getObjCLifetime()) {
4132   case Qualifiers::OCL_Strong:
4133     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4134     break;
4135 
4136   case Qualifiers::OCL_Autoreleasing:
4137     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4138     break;
4139 
4140   case Qualifiers::OCL_ExplicitNone:
4141     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4142     break;
4143 
4144   case Qualifiers::OCL_Weak:
4145     RHS = Visit(E->getRHS());
4146     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4147     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4148     break;
4149 
4150   case Qualifiers::OCL_None:
4151     // __block variables need to have the rhs evaluated first, plus
4152     // this should improve codegen just a little.
4153     RHS = Visit(E->getRHS());
4154     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4155 
4156     // Store the value into the LHS.  Bit-fields are handled specially
4157     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4158     // 'An assignment expression has the value of the left operand after
4159     // the assignment...'.
4160     if (LHS.isBitField()) {
4161       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4162     } else {
4163       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4164       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4165     }
4166   }
4167 
4168   // If the result is clearly ignored, return now.
4169   if (Ignore)
4170     return nullptr;
4171 
4172   // The result of an assignment in C is the assigned r-value.
4173   if (!CGF.getLangOpts().CPlusPlus)
4174     return RHS;
4175 
4176   // If the lvalue is non-volatile, return the computed value of the assignment.
4177   if (!LHS.isVolatileQualified())
4178     return RHS;
4179 
4180   // Otherwise, reload the value.
4181   return EmitLoadOfLValue(LHS, E->getExprLoc());
4182 }
4183 
4184 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4185   // Perform vector logical and on comparisons with zero vectors.
4186   if (E->getType()->isVectorType()) {
4187     CGF.incrementProfileCounter(E);
4188 
4189     Value *LHS = Visit(E->getLHS());
4190     Value *RHS = Visit(E->getRHS());
4191     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4192     if (LHS->getType()->isFPOrFPVectorTy()) {
4193       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4194           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4195       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4196       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4197     } else {
4198       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4199       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4200     }
4201     Value *And = Builder.CreateAnd(LHS, RHS);
4202     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4203   }
4204 
4205   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4206   llvm::Type *ResTy = ConvertType(E->getType());
4207 
4208   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4209   // If we have 1 && X, just emit X without inserting the control flow.
4210   bool LHSCondVal;
4211   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4212     if (LHSCondVal) { // If we have 1 && X, just emit X.
4213       CGF.incrementProfileCounter(E);
4214 
4215       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4216 
4217       // If we're generating for profiling or coverage, generate a branch to a
4218       // block that increments the RHS counter needed to track branch condition
4219       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4220       // "FalseBlock" after the increment is done.
4221       if (InstrumentRegions &&
4222           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4223         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4224         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4225         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4226         CGF.EmitBlock(RHSBlockCnt);
4227         CGF.incrementProfileCounter(E->getRHS());
4228         CGF.EmitBranch(FBlock);
4229         CGF.EmitBlock(FBlock);
4230       }
4231 
4232       // ZExt result to int or bool.
4233       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4234     }
4235 
4236     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4237     if (!CGF.ContainsLabel(E->getRHS()))
4238       return llvm::Constant::getNullValue(ResTy);
4239   }
4240 
4241   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4242   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4243 
4244   CodeGenFunction::ConditionalEvaluation eval(CGF);
4245 
4246   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4247   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4248                            CGF.getProfileCount(E->getRHS()));
4249 
4250   // Any edges into the ContBlock are now from an (indeterminate number of)
4251   // edges from this first condition.  All of these values will be false.  Start
4252   // setting up the PHI node in the Cont Block for this.
4253   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4254                                             "", ContBlock);
4255   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4256        PI != PE; ++PI)
4257     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4258 
4259   eval.begin(CGF);
4260   CGF.EmitBlock(RHSBlock);
4261   CGF.incrementProfileCounter(E);
4262   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4263   eval.end(CGF);
4264 
4265   // Reaquire the RHS block, as there may be subblocks inserted.
4266   RHSBlock = Builder.GetInsertBlock();
4267 
4268   // If we're generating for profiling or coverage, generate a branch on the
4269   // RHS to a block that increments the RHS true counter needed to track branch
4270   // condition coverage.
4271   if (InstrumentRegions &&
4272       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4273     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4274     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4275     CGF.EmitBlock(RHSBlockCnt);
4276     CGF.incrementProfileCounter(E->getRHS());
4277     CGF.EmitBranch(ContBlock);
4278     PN->addIncoming(RHSCond, RHSBlockCnt);
4279   }
4280 
4281   // Emit an unconditional branch from this block to ContBlock.
4282   {
4283     // There is no need to emit line number for unconditional branch.
4284     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4285     CGF.EmitBlock(ContBlock);
4286   }
4287   // Insert an entry into the phi node for the edge with the value of RHSCond.
4288   PN->addIncoming(RHSCond, RHSBlock);
4289 
4290   // Artificial location to preserve the scope information
4291   {
4292     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4293     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4294   }
4295 
4296   // ZExt result to int.
4297   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4298 }
4299 
4300 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4301   // Perform vector logical or on comparisons with zero vectors.
4302   if (E->getType()->isVectorType()) {
4303     CGF.incrementProfileCounter(E);
4304 
4305     Value *LHS = Visit(E->getLHS());
4306     Value *RHS = Visit(E->getRHS());
4307     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4308     if (LHS->getType()->isFPOrFPVectorTy()) {
4309       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4310           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4311       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4312       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4313     } else {
4314       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4315       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4316     }
4317     Value *Or = Builder.CreateOr(LHS, RHS);
4318     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4319   }
4320 
4321   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4322   llvm::Type *ResTy = ConvertType(E->getType());
4323 
4324   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4325   // If we have 0 || X, just emit X without inserting the control flow.
4326   bool LHSCondVal;
4327   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4328     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4329       CGF.incrementProfileCounter(E);
4330 
4331       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4332 
4333       // If we're generating for profiling or coverage, generate a branch to a
4334       // block that increments the RHS counter need to track branch condition
4335       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4336       // "FalseBlock" after the increment is done.
4337       if (InstrumentRegions &&
4338           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4339         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4340         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4341         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4342         CGF.EmitBlock(RHSBlockCnt);
4343         CGF.incrementProfileCounter(E->getRHS());
4344         CGF.EmitBranch(FBlock);
4345         CGF.EmitBlock(FBlock);
4346       }
4347 
4348       // ZExt result to int or bool.
4349       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4350     }
4351 
4352     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4353     if (!CGF.ContainsLabel(E->getRHS()))
4354       return llvm::ConstantInt::get(ResTy, 1);
4355   }
4356 
4357   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4358   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4359 
4360   CodeGenFunction::ConditionalEvaluation eval(CGF);
4361 
4362   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4363   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4364                            CGF.getCurrentProfileCount() -
4365                                CGF.getProfileCount(E->getRHS()));
4366 
4367   // Any edges into the ContBlock are now from an (indeterminate number of)
4368   // edges from this first condition.  All of these values will be true.  Start
4369   // setting up the PHI node in the Cont Block for this.
4370   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4371                                             "", ContBlock);
4372   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4373        PI != PE; ++PI)
4374     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4375 
4376   eval.begin(CGF);
4377 
4378   // Emit the RHS condition as a bool value.
4379   CGF.EmitBlock(RHSBlock);
4380   CGF.incrementProfileCounter(E);
4381   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4382 
4383   eval.end(CGF);
4384 
4385   // Reaquire the RHS block, as there may be subblocks inserted.
4386   RHSBlock = Builder.GetInsertBlock();
4387 
4388   // If we're generating for profiling or coverage, generate a branch on the
4389   // RHS to a block that increments the RHS true counter needed to track branch
4390   // condition coverage.
4391   if (InstrumentRegions &&
4392       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4393     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4394     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4395     CGF.EmitBlock(RHSBlockCnt);
4396     CGF.incrementProfileCounter(E->getRHS());
4397     CGF.EmitBranch(ContBlock);
4398     PN->addIncoming(RHSCond, RHSBlockCnt);
4399   }
4400 
4401   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4402   // into the phi node for the edge with the value of RHSCond.
4403   CGF.EmitBlock(ContBlock);
4404   PN->addIncoming(RHSCond, RHSBlock);
4405 
4406   // ZExt result to int.
4407   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4408 }
4409 
4410 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4411   CGF.EmitIgnoredExpr(E->getLHS());
4412   CGF.EnsureInsertPoint();
4413   return Visit(E->getRHS());
4414 }
4415 
4416 //===----------------------------------------------------------------------===//
4417 //                             Other Operators
4418 //===----------------------------------------------------------------------===//
4419 
4420 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4421 /// expression is cheap enough and side-effect-free enough to evaluate
4422 /// unconditionally instead of conditionally.  This is used to convert control
4423 /// flow into selects in some cases.
4424 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4425                                                    CodeGenFunction &CGF) {
4426   // Anything that is an integer or floating point constant is fine.
4427   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4428 
4429   // Even non-volatile automatic variables can't be evaluated unconditionally.
4430   // Referencing a thread_local may cause non-trivial initialization work to
4431   // occur. If we're inside a lambda and one of the variables is from the scope
4432   // outside the lambda, that function may have returned already. Reading its
4433   // locals is a bad idea. Also, these reads may introduce races there didn't
4434   // exist in the source-level program.
4435 }
4436 
4437 
4438 Value *ScalarExprEmitter::
4439 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4440   TestAndClearIgnoreResultAssign();
4441 
4442   // Bind the common expression if necessary.
4443   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4444 
4445   Expr *condExpr = E->getCond();
4446   Expr *lhsExpr = E->getTrueExpr();
4447   Expr *rhsExpr = E->getFalseExpr();
4448 
4449   // If the condition constant folds and can be elided, try to avoid emitting
4450   // the condition and the dead arm.
4451   bool CondExprBool;
4452   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4453     Expr *live = lhsExpr, *dead = rhsExpr;
4454     if (!CondExprBool) std::swap(live, dead);
4455 
4456     // If the dead side doesn't have labels we need, just emit the Live part.
4457     if (!CGF.ContainsLabel(dead)) {
4458       if (CondExprBool)
4459         CGF.incrementProfileCounter(E);
4460       Value *Result = Visit(live);
4461 
4462       // If the live part is a throw expression, it acts like it has a void
4463       // type, so evaluating it returns a null Value*.  However, a conditional
4464       // with non-void type must return a non-null Value*.
4465       if (!Result && !E->getType()->isVoidType())
4466         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4467 
4468       return Result;
4469     }
4470   }
4471 
4472   // OpenCL: If the condition is a vector, we can treat this condition like
4473   // the select function.
4474   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4475       condExpr->getType()->isExtVectorType()) {
4476     CGF.incrementProfileCounter(E);
4477 
4478     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4479     llvm::Value *LHS = Visit(lhsExpr);
4480     llvm::Value *RHS = Visit(rhsExpr);
4481 
4482     llvm::Type *condType = ConvertType(condExpr->getType());
4483     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4484 
4485     unsigned numElem = vecTy->getNumElements();
4486     llvm::Type *elemType = vecTy->getElementType();
4487 
4488     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4489     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4490     llvm::Value *tmp = Builder.CreateSExt(
4491         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4492     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4493 
4494     // Cast float to int to perform ANDs if necessary.
4495     llvm::Value *RHSTmp = RHS;
4496     llvm::Value *LHSTmp = LHS;
4497     bool wasCast = false;
4498     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4499     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4500       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4501       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4502       wasCast = true;
4503     }
4504 
4505     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4506     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4507     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4508     if (wasCast)
4509       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4510 
4511     return tmp5;
4512   }
4513 
4514   if (condExpr->getType()->isVectorType()) {
4515     CGF.incrementProfileCounter(E);
4516 
4517     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4518     llvm::Value *LHS = Visit(lhsExpr);
4519     llvm::Value *RHS = Visit(rhsExpr);
4520 
4521     llvm::Type *CondType = ConvertType(condExpr->getType());
4522     auto *VecTy = cast<llvm::VectorType>(CondType);
4523     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4524 
4525     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4526     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4527   }
4528 
4529   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4530   // select instead of as control flow.  We can only do this if it is cheap and
4531   // safe to evaluate the LHS and RHS unconditionally.
4532   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4533       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4534     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4535     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4536 
4537     CGF.incrementProfileCounter(E, StepV);
4538 
4539     llvm::Value *LHS = Visit(lhsExpr);
4540     llvm::Value *RHS = Visit(rhsExpr);
4541     if (!LHS) {
4542       // If the conditional has void type, make sure we return a null Value*.
4543       assert(!RHS && "LHS and RHS types must match");
4544       return nullptr;
4545     }
4546     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4547   }
4548 
4549   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4550   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4551   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4552 
4553   CodeGenFunction::ConditionalEvaluation eval(CGF);
4554   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4555                            CGF.getProfileCount(lhsExpr));
4556 
4557   CGF.EmitBlock(LHSBlock);
4558   CGF.incrementProfileCounter(E);
4559   eval.begin(CGF);
4560   Value *LHS = Visit(lhsExpr);
4561   eval.end(CGF);
4562 
4563   LHSBlock = Builder.GetInsertBlock();
4564   Builder.CreateBr(ContBlock);
4565 
4566   CGF.EmitBlock(RHSBlock);
4567   eval.begin(CGF);
4568   Value *RHS = Visit(rhsExpr);
4569   eval.end(CGF);
4570 
4571   RHSBlock = Builder.GetInsertBlock();
4572   CGF.EmitBlock(ContBlock);
4573 
4574   // If the LHS or RHS is a throw expression, it will be legitimately null.
4575   if (!LHS)
4576     return RHS;
4577   if (!RHS)
4578     return LHS;
4579 
4580   // Create a PHI node for the real part.
4581   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4582   PN->addIncoming(LHS, LHSBlock);
4583   PN->addIncoming(RHS, RHSBlock);
4584   return PN;
4585 }
4586 
4587 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4588   return Visit(E->getChosenSubExpr());
4589 }
4590 
4591 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4592   QualType Ty = VE->getType();
4593 
4594   if (Ty->isVariablyModifiedType())
4595     CGF.EmitVariablyModifiedType(Ty);
4596 
4597   Address ArgValue = Address::invalid();
4598   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4599 
4600   llvm::Type *ArgTy = ConvertType(VE->getType());
4601 
4602   // If EmitVAArg fails, emit an error.
4603   if (!ArgPtr.isValid()) {
4604     CGF.ErrorUnsupported(VE, "va_arg expression");
4605     return llvm::UndefValue::get(ArgTy);
4606   }
4607 
4608   // FIXME Volatility.
4609   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4610 
4611   // If EmitVAArg promoted the type, we must truncate it.
4612   if (ArgTy != Val->getType()) {
4613     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4614       Val = Builder.CreateIntToPtr(Val, ArgTy);
4615     else
4616       Val = Builder.CreateTrunc(Val, ArgTy);
4617   }
4618 
4619   return Val;
4620 }
4621 
4622 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4623   return CGF.EmitBlockLiteral(block);
4624 }
4625 
4626 // Convert a vec3 to vec4, or vice versa.
4627 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4628                                  Value *Src, unsigned NumElementsDst) {
4629   static constexpr int Mask[] = {0, 1, 2, -1};
4630   return Builder.CreateShuffleVector(Src,
4631                                      llvm::makeArrayRef(Mask, NumElementsDst));
4632 }
4633 
4634 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4635 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4636 // but could be scalar or vectors of different lengths, and either can be
4637 // pointer.
4638 // There are 4 cases:
4639 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4640 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4641 // 3. pointer -> non-pointer
4642 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4643 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4644 // 4. non-pointer -> pointer
4645 //   a) intptr_t -> pointer       : needs 1 inttoptr
4646 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4647 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4648 // allow casting directly between pointer types and non-integer non-pointer
4649 // types.
4650 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4651                                            const llvm::DataLayout &DL,
4652                                            Value *Src, llvm::Type *DstTy,
4653                                            StringRef Name = "") {
4654   auto SrcTy = Src->getType();
4655 
4656   // Case 1.
4657   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4658     return Builder.CreateBitCast(Src, DstTy, Name);
4659 
4660   // Case 2.
4661   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4662     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4663 
4664   // Case 3.
4665   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4666     // Case 3b.
4667     if (!DstTy->isIntegerTy())
4668       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4669     // Cases 3a and 3b.
4670     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4671   }
4672 
4673   // Case 4b.
4674   if (!SrcTy->isIntegerTy())
4675     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4676   // Cases 4a and 4b.
4677   return Builder.CreateIntToPtr(Src, DstTy, Name);
4678 }
4679 
4680 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4681   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4682   llvm::Type *DstTy = ConvertType(E->getType());
4683 
4684   llvm::Type *SrcTy = Src->getType();
4685   unsigned NumElementsSrc =
4686       isa<llvm::VectorType>(SrcTy)
4687           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4688           : 0;
4689   unsigned NumElementsDst =
4690       isa<llvm::VectorType>(DstTy)
4691           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4692           : 0;
4693 
4694   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4695   // vector to get a vec4, then a bitcast if the target type is different.
4696   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4697     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4698 
4699     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4700       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4701                                          DstTy);
4702     }
4703 
4704     Src->setName("astype");
4705     return Src;
4706   }
4707 
4708   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4709   // to vec4 if the original type is not vec4, then a shuffle vector to
4710   // get a vec3.
4711   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4712     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4713       auto *Vec4Ty = llvm::FixedVectorType::get(
4714           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4715       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4716                                          Vec4Ty);
4717     }
4718 
4719     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4720     Src->setName("astype");
4721     return Src;
4722   }
4723 
4724   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4725                                       Src, DstTy, "astype");
4726 }
4727 
4728 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4729   return CGF.EmitAtomicExpr(E).getScalarVal();
4730 }
4731 
4732 //===----------------------------------------------------------------------===//
4733 //                         Entry Point into this File
4734 //===----------------------------------------------------------------------===//
4735 
4736 /// Emit the computation of the specified expression of scalar type, ignoring
4737 /// the result.
4738 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4739   assert(E && hasScalarEvaluationKind(E->getType()) &&
4740          "Invalid scalar expression to emit");
4741 
4742   return ScalarExprEmitter(*this, IgnoreResultAssign)
4743       .Visit(const_cast<Expr *>(E));
4744 }
4745 
4746 /// Emit a conversion from the specified type to the specified destination type,
4747 /// both of which are LLVM scalar types.
4748 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4749                                              QualType DstTy,
4750                                              SourceLocation Loc) {
4751   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4752          "Invalid scalar expression to emit");
4753   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4754 }
4755 
4756 /// Emit a conversion from the specified complex type to the specified
4757 /// destination type, where the destination type is an LLVM scalar type.
4758 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4759                                                       QualType SrcTy,
4760                                                       QualType DstTy,
4761                                                       SourceLocation Loc) {
4762   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4763          "Invalid complex -> scalar conversion");
4764   return ScalarExprEmitter(*this)
4765       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4766 }
4767 
4768 
4769 llvm::Value *CodeGenFunction::
4770 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4771                         bool isInc, bool isPre) {
4772   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4773 }
4774 
4775 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4776   // object->isa or (*object).isa
4777   // Generate code as for: *(Class*)object
4778 
4779   Expr *BaseExpr = E->getBase();
4780   Address Addr = Address::invalid();
4781   if (BaseExpr->isRValue()) {
4782     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4783   } else {
4784     Addr = EmitLValue(BaseExpr).getAddress(*this);
4785   }
4786 
4787   // Cast the address to Class*.
4788   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4789   return MakeAddrLValue(Addr, E->getType());
4790 }
4791 
4792 
4793 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4794                                             const CompoundAssignOperator *E) {
4795   ScalarExprEmitter Scalar(*this);
4796   Value *Result = nullptr;
4797   switch (E->getOpcode()) {
4798 #define COMPOUND_OP(Op)                                                       \
4799     case BO_##Op##Assign:                                                     \
4800       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4801                                              Result)
4802   COMPOUND_OP(Mul);
4803   COMPOUND_OP(Div);
4804   COMPOUND_OP(Rem);
4805   COMPOUND_OP(Add);
4806   COMPOUND_OP(Sub);
4807   COMPOUND_OP(Shl);
4808   COMPOUND_OP(Shr);
4809   COMPOUND_OP(And);
4810   COMPOUND_OP(Xor);
4811   COMPOUND_OP(Or);
4812 #undef COMPOUND_OP
4813 
4814   case BO_PtrMemD:
4815   case BO_PtrMemI:
4816   case BO_Mul:
4817   case BO_Div:
4818   case BO_Rem:
4819   case BO_Add:
4820   case BO_Sub:
4821   case BO_Shl:
4822   case BO_Shr:
4823   case BO_LT:
4824   case BO_GT:
4825   case BO_LE:
4826   case BO_GE:
4827   case BO_EQ:
4828   case BO_NE:
4829   case BO_Cmp:
4830   case BO_And:
4831   case BO_Xor:
4832   case BO_Or:
4833   case BO_LAnd:
4834   case BO_LOr:
4835   case BO_Assign:
4836   case BO_Comma:
4837     llvm_unreachable("Not valid compound assignment operators");
4838   }
4839 
4840   llvm_unreachable("Unhandled compound assignment operator");
4841 }
4842 
4843 struct GEPOffsetAndOverflow {
4844   // The total (signed) byte offset for the GEP.
4845   llvm::Value *TotalOffset;
4846   // The offset overflow flag - true if the total offset overflows.
4847   llvm::Value *OffsetOverflows;
4848 };
4849 
4850 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4851 /// and compute the total offset it applies from it's base pointer BasePtr.
4852 /// Returns offset in bytes and a boolean flag whether an overflow happened
4853 /// during evaluation.
4854 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4855                                                  llvm::LLVMContext &VMContext,
4856                                                  CodeGenModule &CGM,
4857                                                  CGBuilderTy &Builder) {
4858   const auto &DL = CGM.getDataLayout();
4859 
4860   // The total (signed) byte offset for the GEP.
4861   llvm::Value *TotalOffset = nullptr;
4862 
4863   // Was the GEP already reduced to a constant?
4864   if (isa<llvm::Constant>(GEPVal)) {
4865     // Compute the offset by casting both pointers to integers and subtracting:
4866     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4867     Value *BasePtr_int =
4868         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4869     Value *GEPVal_int =
4870         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4871     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4872     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4873   }
4874 
4875   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4876   assert(GEP->getPointerOperand() == BasePtr &&
4877          "BasePtr must be the the base of the GEP.");
4878   assert(GEP->isInBounds() && "Expected inbounds GEP");
4879 
4880   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4881 
4882   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4883   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4884   auto *SAddIntrinsic =
4885       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4886   auto *SMulIntrinsic =
4887       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4888 
4889   // The offset overflow flag - true if the total offset overflows.
4890   llvm::Value *OffsetOverflows = Builder.getFalse();
4891 
4892   /// Return the result of the given binary operation.
4893   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4894                   llvm::Value *RHS) -> llvm::Value * {
4895     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4896 
4897     // If the operands are constants, return a constant result.
4898     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4899       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4900         llvm::APInt N;
4901         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4902                                                   /*Signed=*/true, N);
4903         if (HasOverflow)
4904           OffsetOverflows = Builder.getTrue();
4905         return llvm::ConstantInt::get(VMContext, N);
4906       }
4907     }
4908 
4909     // Otherwise, compute the result with checked arithmetic.
4910     auto *ResultAndOverflow = Builder.CreateCall(
4911         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4912     OffsetOverflows = Builder.CreateOr(
4913         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4914     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4915   };
4916 
4917   // Determine the total byte offset by looking at each GEP operand.
4918   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4919        GTI != GTE; ++GTI) {
4920     llvm::Value *LocalOffset;
4921     auto *Index = GTI.getOperand();
4922     // Compute the local offset contributed by this indexing step:
4923     if (auto *STy = GTI.getStructTypeOrNull()) {
4924       // For struct indexing, the local offset is the byte position of the
4925       // specified field.
4926       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4927       LocalOffset = llvm::ConstantInt::get(
4928           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4929     } else {
4930       // Otherwise this is array-like indexing. The local offset is the index
4931       // multiplied by the element size.
4932       auto *ElementSize = llvm::ConstantInt::get(
4933           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4934       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4935       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4936     }
4937 
4938     // If this is the first offset, set it as the total offset. Otherwise, add
4939     // the local offset into the running total.
4940     if (!TotalOffset || TotalOffset == Zero)
4941       TotalOffset = LocalOffset;
4942     else
4943       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4944   }
4945 
4946   return {TotalOffset, OffsetOverflows};
4947 }
4948 
4949 Value *
4950 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4951                                         bool SignedIndices, bool IsSubtraction,
4952                                         SourceLocation Loc, const Twine &Name) {
4953   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4954 
4955   // If the pointer overflow sanitizer isn't enabled, do nothing.
4956   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4957     return GEPVal;
4958 
4959   llvm::Type *PtrTy = Ptr->getType();
4960 
4961   // Perform nullptr-and-offset check unless the nullptr is defined.
4962   bool PerformNullCheck = !NullPointerIsDefined(
4963       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4964   // Check for overflows unless the GEP got constant-folded,
4965   // and only in the default address space
4966   bool PerformOverflowCheck =
4967       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4968 
4969   if (!(PerformNullCheck || PerformOverflowCheck))
4970     return GEPVal;
4971 
4972   const auto &DL = CGM.getDataLayout();
4973 
4974   SanitizerScope SanScope(this);
4975   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4976 
4977   GEPOffsetAndOverflow EvaluatedGEP =
4978       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4979 
4980   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4981           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4982          "If the offset got constant-folded, we don't expect that there was an "
4983          "overflow.");
4984 
4985   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4986 
4987   // Common case: if the total offset is zero, and we are using C++ semantics,
4988   // where nullptr+0 is defined, don't emit a check.
4989   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4990     return GEPVal;
4991 
4992   // Now that we've computed the total offset, add it to the base pointer (with
4993   // wrapping semantics).
4994   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4995   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4996 
4997   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4998 
4999   if (PerformNullCheck) {
5000     // In C++, if the base pointer evaluates to a null pointer value,
5001     // the only valid  pointer this inbounds GEP can produce is also
5002     // a null pointer, so the offset must also evaluate to zero.
5003     // Likewise, if we have non-zero base pointer, we can not get null pointer
5004     // as a result, so the offset can not be -intptr_t(BasePtr).
5005     // In other words, both pointers are either null, or both are non-null,
5006     // or the behaviour is undefined.
5007     //
5008     // C, however, is more strict in this regard, and gives more
5009     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5010     // So both the input to the 'gep inbounds' AND the output must not be null.
5011     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5012     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5013     auto *Valid =
5014         CGM.getLangOpts().CPlusPlus
5015             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5016             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5017     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5018   }
5019 
5020   if (PerformOverflowCheck) {
5021     // The GEP is valid if:
5022     // 1) The total offset doesn't overflow, and
5023     // 2) The sign of the difference between the computed address and the base
5024     // pointer matches the sign of the total offset.
5025     llvm::Value *ValidGEP;
5026     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5027     if (SignedIndices) {
5028       // GEP is computed as `unsigned base + signed offset`, therefore:
5029       // * If offset was positive, then the computed pointer can not be
5030       //   [unsigned] less than the base pointer, unless it overflowed.
5031       // * If offset was negative, then the computed pointer can not be
5032       //   [unsigned] greater than the bas pointere, unless it overflowed.
5033       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5034       auto *PosOrZeroOffset =
5035           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5036       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5037       ValidGEP =
5038           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5039     } else if (!IsSubtraction) {
5040       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5041       // computed pointer can not be [unsigned] less than base pointer,
5042       // unless there was an overflow.
5043       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5044       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5045     } else {
5046       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5047       // computed pointer can not be [unsigned] greater than base pointer,
5048       // unless there was an overflow.
5049       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5050       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5051     }
5052     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5053     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5054   }
5055 
5056   assert(!Checks.empty() && "Should have produced some checks.");
5057 
5058   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5059   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5060   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5061   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5062 
5063   return GEPVal;
5064 }
5065