1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/FixedPoint.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 129 /// Check if either operand is a fixed point type or integer type, with at 130 /// least one being a fixed point type. In any case, this 131 /// operation did not follow usual arithmetic conversion and both operands may 132 /// not be the same. 133 bool isFixedPointBinOp() const { 134 // We cannot simply check the result type since comparison operations return 135 // an int. 136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 137 QualType LHSType = BinOp->getLHS()->getType(); 138 QualType RHSType = BinOp->getRHS()->getType(); 139 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 140 } 141 return false; 142 } 143 }; 144 145 static bool MustVisitNullValue(const Expr *E) { 146 // If a null pointer expression's type is the C++0x nullptr_t, then 147 // it's not necessarily a simple constant and it must be evaluated 148 // for its potential side effects. 149 return E->getType()->isNullPtrType(); 150 } 151 152 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 154 const Expr *E) { 155 const Expr *Base = E->IgnoreImpCasts(); 156 if (E == Base) 157 return llvm::None; 158 159 QualType BaseTy = Base->getType(); 160 if (!BaseTy->isPromotableIntegerType() || 161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 162 return llvm::None; 163 164 return BaseTy; 165 } 166 167 /// Check if \p E is a widened promoted integer. 168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 169 return getUnwidenedIntegerType(Ctx, E).hasValue(); 170 } 171 172 /// Check if we can skip the overflow check for \p Op. 173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 175 "Expected a unary or binary operator"); 176 177 // If the binop has constant inputs and we can prove there is no overflow, 178 // we can elide the overflow check. 179 if (!Op.mayHaveIntegerOverflow()) 180 return true; 181 182 // If a unary op has a widened operand, the op cannot overflow. 183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 184 return !UO->canOverflow(); 185 186 // We usually don't need overflow checks for binops with widened operands. 187 // Multiplication with promoted unsigned operands is a special case. 188 const auto *BO = cast<BinaryOperator>(Op.E); 189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 190 if (!OptionalLHSTy) 191 return false; 192 193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 194 if (!OptionalRHSTy) 195 return false; 196 197 QualType LHSTy = *OptionalLHSTy; 198 QualType RHSTy = *OptionalRHSTy; 199 200 // This is the simple case: binops without unsigned multiplication, and with 201 // widened operands. No overflow check is needed here. 202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 204 return true; 205 206 // For unsigned multiplication the overflow check can be elided if either one 207 // of the unpromoted types are less than half the size of the promoted type. 208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 211 } 212 213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 214 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 215 FPOptions FPFeatures) { 216 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 217 } 218 219 /// Propagate fast-math flags from \p Op to the instruction in \p V. 220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 221 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 222 llvm::FastMathFlags FMF = I->getFastMathFlags(); 223 updateFastMathFlags(FMF, Op.FPFeatures); 224 I->setFastMathFlags(FMF); 225 } 226 return V; 227 } 228 229 class ScalarExprEmitter 230 : public StmtVisitor<ScalarExprEmitter, Value*> { 231 CodeGenFunction &CGF; 232 CGBuilderTy &Builder; 233 bool IgnoreResultAssign; 234 llvm::LLVMContext &VMContext; 235 public: 236 237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 239 VMContext(cgf.getLLVMContext()) { 240 } 241 242 //===--------------------------------------------------------------------===// 243 // Utilities 244 //===--------------------------------------------------------------------===// 245 246 bool TestAndClearIgnoreResultAssign() { 247 bool I = IgnoreResultAssign; 248 IgnoreResultAssign = false; 249 return I; 250 } 251 252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 255 return CGF.EmitCheckedLValue(E, TCK); 256 } 257 258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 259 const BinOpInfo &Info); 260 261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 263 } 264 265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 266 const AlignValueAttr *AVAttr = nullptr; 267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 268 const ValueDecl *VD = DRE->getDecl(); 269 270 if (VD->getType()->isReferenceType()) { 271 if (const auto *TTy = 272 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 274 } else { 275 // Assumptions for function parameters are emitted at the start of the 276 // function, so there is no need to repeat that here, 277 // unless the alignment-assumption sanitizer is enabled, 278 // then we prefer the assumption over alignment attribute 279 // on IR function param. 280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 281 return; 282 283 AVAttr = VD->getAttr<AlignValueAttr>(); 284 } 285 } 286 287 if (!AVAttr) 288 if (const auto *TTy = 289 dyn_cast<TypedefType>(E->getType())) 290 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 291 292 if (!AVAttr) 293 return; 294 295 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 296 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 297 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), 298 AlignmentCI->getZExtValue()); 299 } 300 301 /// EmitLoadOfLValue - Given an expression with complex type that represents a 302 /// value l-value, this method emits the address of the l-value, then loads 303 /// and returns the result. 304 Value *EmitLoadOfLValue(const Expr *E) { 305 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 306 E->getExprLoc()); 307 308 EmitLValueAlignmentAssumption(E, V); 309 return V; 310 } 311 312 /// EmitConversionToBool - Convert the specified expression value to a 313 /// boolean (i1) truth value. This is equivalent to "Val != 0". 314 Value *EmitConversionToBool(Value *Src, QualType DstTy); 315 316 /// Emit a check that a conversion from a floating-point type does not 317 /// overflow. 318 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 319 Value *Src, QualType SrcType, QualType DstType, 320 llvm::Type *DstTy, SourceLocation Loc); 321 322 /// Known implicit conversion check kinds. 323 /// Keep in sync with the enum of the same name in ubsan_handlers.h 324 enum ImplicitConversionCheckKind : unsigned char { 325 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 326 ICCK_UnsignedIntegerTruncation = 1, 327 ICCK_SignedIntegerTruncation = 2, 328 ICCK_IntegerSignChange = 3, 329 ICCK_SignedIntegerTruncationOrSignChange = 4, 330 }; 331 332 /// Emit a check that an [implicit] truncation of an integer does not 333 /// discard any bits. It is not UB, so we use the value after truncation. 334 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 335 QualType DstType, SourceLocation Loc); 336 337 /// Emit a check that an [implicit] conversion of an integer does not change 338 /// the sign of the value. It is not UB, so we use the value after conversion. 339 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 340 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 341 QualType DstType, SourceLocation Loc); 342 343 /// Emit a conversion from the specified type to the specified destination 344 /// type, both of which are LLVM scalar types. 345 struct ScalarConversionOpts { 346 bool TreatBooleanAsSigned; 347 bool EmitImplicitIntegerTruncationChecks; 348 bool EmitImplicitIntegerSignChangeChecks; 349 350 ScalarConversionOpts() 351 : TreatBooleanAsSigned(false), 352 EmitImplicitIntegerTruncationChecks(false), 353 EmitImplicitIntegerSignChangeChecks(false) {} 354 355 ScalarConversionOpts(clang::SanitizerSet SanOpts) 356 : TreatBooleanAsSigned(false), 357 EmitImplicitIntegerTruncationChecks( 358 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 359 EmitImplicitIntegerSignChangeChecks( 360 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 361 }; 362 Value * 363 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 364 SourceLocation Loc, 365 ScalarConversionOpts Opts = ScalarConversionOpts()); 366 367 /// Convert between either a fixed point and other fixed point or fixed point 368 /// and an integer. 369 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 370 SourceLocation Loc); 371 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 372 FixedPointSemantics &DstFixedSema, 373 SourceLocation Loc, 374 bool DstIsInteger = false); 375 376 /// Emit a conversion from the specified complex type to the specified 377 /// destination type, where the destination type is an LLVM scalar type. 378 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 379 QualType SrcTy, QualType DstTy, 380 SourceLocation Loc); 381 382 /// EmitNullValue - Emit a value that corresponds to null for the given type. 383 Value *EmitNullValue(QualType Ty); 384 385 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 386 Value *EmitFloatToBoolConversion(Value *V) { 387 // Compare against 0.0 for fp scalars. 388 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 389 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 390 } 391 392 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 393 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 394 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 395 396 return Builder.CreateICmpNE(V, Zero, "tobool"); 397 } 398 399 Value *EmitIntToBoolConversion(Value *V) { 400 // Because of the type rules of C, we often end up computing a 401 // logical value, then zero extending it to int, then wanting it 402 // as a logical value again. Optimize this common case. 403 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 404 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 405 Value *Result = ZI->getOperand(0); 406 // If there aren't any more uses, zap the instruction to save space. 407 // Note that there can be more uses, for example if this 408 // is the result of an assignment. 409 if (ZI->use_empty()) 410 ZI->eraseFromParent(); 411 return Result; 412 } 413 } 414 415 return Builder.CreateIsNotNull(V, "tobool"); 416 } 417 418 //===--------------------------------------------------------------------===// 419 // Visitor Methods 420 //===--------------------------------------------------------------------===// 421 422 Value *Visit(Expr *E) { 423 ApplyDebugLocation DL(CGF, E); 424 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 425 } 426 427 Value *VisitStmt(Stmt *S) { 428 S->dump(CGF.getContext().getSourceManager()); 429 llvm_unreachable("Stmt can't have complex result type!"); 430 } 431 Value *VisitExpr(Expr *S); 432 433 Value *VisitConstantExpr(ConstantExpr *E) { 434 return Visit(E->getSubExpr()); 435 } 436 Value *VisitParenExpr(ParenExpr *PE) { 437 return Visit(PE->getSubExpr()); 438 } 439 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 440 return Visit(E->getReplacement()); 441 } 442 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 443 return Visit(GE->getResultExpr()); 444 } 445 Value *VisitCoawaitExpr(CoawaitExpr *S) { 446 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 447 } 448 Value *VisitCoyieldExpr(CoyieldExpr *S) { 449 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 450 } 451 Value *VisitUnaryCoawait(const UnaryOperator *E) { 452 return Visit(E->getSubExpr()); 453 } 454 455 // Leaves. 456 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 457 return Builder.getInt(E->getValue()); 458 } 459 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 460 return Builder.getInt(E->getValue()); 461 } 462 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 463 return llvm::ConstantFP::get(VMContext, E->getValue()); 464 } 465 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 466 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 467 } 468 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 469 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 470 } 471 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 472 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 473 } 474 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 475 return EmitNullValue(E->getType()); 476 } 477 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 478 return EmitNullValue(E->getType()); 479 } 480 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 481 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 482 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 483 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 484 return Builder.CreateBitCast(V, ConvertType(E->getType())); 485 } 486 487 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 488 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 489 } 490 491 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 492 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 493 } 494 495 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 496 if (E->isGLValue()) 497 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 498 E->getExprLoc()); 499 500 // Otherwise, assume the mapping is the scalar directly. 501 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 502 } 503 504 // l-values. 505 Value *VisitDeclRefExpr(DeclRefExpr *E) { 506 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 507 return CGF.emitScalarConstant(Constant, E); 508 return EmitLoadOfLValue(E); 509 } 510 511 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 512 return CGF.EmitObjCSelectorExpr(E); 513 } 514 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 515 return CGF.EmitObjCProtocolExpr(E); 516 } 517 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 518 return EmitLoadOfLValue(E); 519 } 520 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 521 if (E->getMethodDecl() && 522 E->getMethodDecl()->getReturnType()->isReferenceType()) 523 return EmitLoadOfLValue(E); 524 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 525 } 526 527 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 528 LValue LV = CGF.EmitObjCIsaExpr(E); 529 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 530 return V; 531 } 532 533 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 534 VersionTuple Version = E->getVersion(); 535 536 // If we're checking for a platform older than our minimum deployment 537 // target, we can fold the check away. 538 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 539 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 540 541 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 542 llvm::Value *Args[] = { 543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 545 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 546 }; 547 548 return CGF.EmitBuiltinAvailable(Args); 549 } 550 551 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 552 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 553 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 554 Value *VisitMemberExpr(MemberExpr *E); 555 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 556 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 557 return EmitLoadOfLValue(E); 558 } 559 560 Value *VisitInitListExpr(InitListExpr *E); 561 562 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 563 assert(CGF.getArrayInitIndex() && 564 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 565 return CGF.getArrayInitIndex(); 566 } 567 568 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 569 return EmitNullValue(E->getType()); 570 } 571 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 572 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 573 return VisitCastExpr(E); 574 } 575 Value *VisitCastExpr(CastExpr *E); 576 577 Value *VisitCallExpr(const CallExpr *E) { 578 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 579 return EmitLoadOfLValue(E); 580 581 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 582 583 EmitLValueAlignmentAssumption(E, V); 584 return V; 585 } 586 587 Value *VisitStmtExpr(const StmtExpr *E); 588 589 // Unary Operators. 590 Value *VisitUnaryPostDec(const UnaryOperator *E) { 591 LValue LV = EmitLValue(E->getSubExpr()); 592 return EmitScalarPrePostIncDec(E, LV, false, false); 593 } 594 Value *VisitUnaryPostInc(const UnaryOperator *E) { 595 LValue LV = EmitLValue(E->getSubExpr()); 596 return EmitScalarPrePostIncDec(E, LV, true, false); 597 } 598 Value *VisitUnaryPreDec(const UnaryOperator *E) { 599 LValue LV = EmitLValue(E->getSubExpr()); 600 return EmitScalarPrePostIncDec(E, LV, false, true); 601 } 602 Value *VisitUnaryPreInc(const UnaryOperator *E) { 603 LValue LV = EmitLValue(E->getSubExpr()); 604 return EmitScalarPrePostIncDec(E, LV, true, true); 605 } 606 607 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 608 llvm::Value *InVal, 609 bool IsInc); 610 611 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 612 bool isInc, bool isPre); 613 614 615 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 616 if (isa<MemberPointerType>(E->getType())) // never sugared 617 return CGF.CGM.getMemberPointerConstant(E); 618 619 return EmitLValue(E->getSubExpr()).getPointer(); 620 } 621 Value *VisitUnaryDeref(const UnaryOperator *E) { 622 if (E->getType()->isVoidType()) 623 return Visit(E->getSubExpr()); // the actual value should be unused 624 return EmitLoadOfLValue(E); 625 } 626 Value *VisitUnaryPlus(const UnaryOperator *E) { 627 // This differs from gcc, though, most likely due to a bug in gcc. 628 TestAndClearIgnoreResultAssign(); 629 return Visit(E->getSubExpr()); 630 } 631 Value *VisitUnaryMinus (const UnaryOperator *E); 632 Value *VisitUnaryNot (const UnaryOperator *E); 633 Value *VisitUnaryLNot (const UnaryOperator *E); 634 Value *VisitUnaryReal (const UnaryOperator *E); 635 Value *VisitUnaryImag (const UnaryOperator *E); 636 Value *VisitUnaryExtension(const UnaryOperator *E) { 637 return Visit(E->getSubExpr()); 638 } 639 640 // C++ 641 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 642 return EmitLoadOfLValue(E); 643 } 644 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 645 auto &Ctx = CGF.getContext(); 646 APValue Evaluated = 647 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 648 return ConstantEmitter(CGF.CGM, &CGF) 649 .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType()); 650 } 651 652 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 653 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 654 return Visit(DAE->getExpr()); 655 } 656 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 657 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 658 return Visit(DIE->getExpr()); 659 } 660 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 661 return CGF.LoadCXXThis(); 662 } 663 664 Value *VisitExprWithCleanups(ExprWithCleanups *E); 665 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 666 return CGF.EmitCXXNewExpr(E); 667 } 668 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 669 CGF.EmitCXXDeleteExpr(E); 670 return nullptr; 671 } 672 673 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 674 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 675 } 676 677 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 678 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 679 } 680 681 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 682 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 683 } 684 685 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 686 // C++ [expr.pseudo]p1: 687 // The result shall only be used as the operand for the function call 688 // operator (), and the result of such a call has type void. The only 689 // effect is the evaluation of the postfix-expression before the dot or 690 // arrow. 691 CGF.EmitScalarExpr(E->getBase()); 692 return nullptr; 693 } 694 695 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 696 return EmitNullValue(E->getType()); 697 } 698 699 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 700 CGF.EmitCXXThrowExpr(E); 701 return nullptr; 702 } 703 704 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 705 return Builder.getInt1(E->getValue()); 706 } 707 708 // Binary Operators. 709 Value *EmitMul(const BinOpInfo &Ops) { 710 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 711 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 712 case LangOptions::SOB_Defined: 713 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 714 case LangOptions::SOB_Undefined: 715 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 716 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 717 LLVM_FALLTHROUGH; 718 case LangOptions::SOB_Trapping: 719 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 720 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 721 return EmitOverflowCheckedBinOp(Ops); 722 } 723 } 724 725 if (Ops.Ty->isUnsignedIntegerType() && 726 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 727 !CanElideOverflowCheck(CGF.getContext(), Ops)) 728 return EmitOverflowCheckedBinOp(Ops); 729 730 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 731 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 732 return propagateFMFlags(V, Ops); 733 } 734 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 735 } 736 /// Create a binary op that checks for overflow. 737 /// Currently only supports +, - and *. 738 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 739 740 // Check for undefined division and modulus behaviors. 741 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 742 llvm::Value *Zero,bool isDiv); 743 // Common helper for getting how wide LHS of shift is. 744 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 745 Value *EmitDiv(const BinOpInfo &Ops); 746 Value *EmitRem(const BinOpInfo &Ops); 747 Value *EmitAdd(const BinOpInfo &Ops); 748 Value *EmitSub(const BinOpInfo &Ops); 749 Value *EmitShl(const BinOpInfo &Ops); 750 Value *EmitShr(const BinOpInfo &Ops); 751 Value *EmitAnd(const BinOpInfo &Ops) { 752 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 753 } 754 Value *EmitXor(const BinOpInfo &Ops) { 755 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 756 } 757 Value *EmitOr (const BinOpInfo &Ops) { 758 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 759 } 760 761 // Helper functions for fixed point binary operations. 762 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 763 764 BinOpInfo EmitBinOps(const BinaryOperator *E); 765 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 766 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 767 Value *&Result); 768 769 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 770 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 771 772 // Binary operators and binary compound assignment operators. 773 #define HANDLEBINOP(OP) \ 774 Value *VisitBin ## OP(const BinaryOperator *E) { \ 775 return Emit ## OP(EmitBinOps(E)); \ 776 } \ 777 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 778 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 779 } 780 HANDLEBINOP(Mul) 781 HANDLEBINOP(Div) 782 HANDLEBINOP(Rem) 783 HANDLEBINOP(Add) 784 HANDLEBINOP(Sub) 785 HANDLEBINOP(Shl) 786 HANDLEBINOP(Shr) 787 HANDLEBINOP(And) 788 HANDLEBINOP(Xor) 789 HANDLEBINOP(Or) 790 #undef HANDLEBINOP 791 792 // Comparisons. 793 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 794 llvm::CmpInst::Predicate SICmpOpc, 795 llvm::CmpInst::Predicate FCmpOpc); 796 #define VISITCOMP(CODE, UI, SI, FP) \ 797 Value *VisitBin##CODE(const BinaryOperator *E) { \ 798 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 799 llvm::FCmpInst::FP); } 800 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 801 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 802 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 803 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 804 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 805 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 806 #undef VISITCOMP 807 808 Value *VisitBinAssign (const BinaryOperator *E); 809 810 Value *VisitBinLAnd (const BinaryOperator *E); 811 Value *VisitBinLOr (const BinaryOperator *E); 812 Value *VisitBinComma (const BinaryOperator *E); 813 814 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 815 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 816 817 // Other Operators. 818 Value *VisitBlockExpr(const BlockExpr *BE); 819 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 820 Value *VisitChooseExpr(ChooseExpr *CE); 821 Value *VisitVAArgExpr(VAArgExpr *VE); 822 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 823 return CGF.EmitObjCStringLiteral(E); 824 } 825 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 826 return CGF.EmitObjCBoxedExpr(E); 827 } 828 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 829 return CGF.EmitObjCArrayLiteral(E); 830 } 831 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 832 return CGF.EmitObjCDictionaryLiteral(E); 833 } 834 Value *VisitAsTypeExpr(AsTypeExpr *CE); 835 Value *VisitAtomicExpr(AtomicExpr *AE); 836 }; 837 } // end anonymous namespace. 838 839 //===----------------------------------------------------------------------===// 840 // Utilities 841 //===----------------------------------------------------------------------===// 842 843 /// EmitConversionToBool - Convert the specified expression value to a 844 /// boolean (i1) truth value. This is equivalent to "Val != 0". 845 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 846 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 847 848 if (SrcType->isRealFloatingType()) 849 return EmitFloatToBoolConversion(Src); 850 851 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 852 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 853 854 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 855 "Unknown scalar type to convert"); 856 857 if (isa<llvm::IntegerType>(Src->getType())) 858 return EmitIntToBoolConversion(Src); 859 860 assert(isa<llvm::PointerType>(Src->getType())); 861 return EmitPointerToBoolConversion(Src, SrcType); 862 } 863 864 void ScalarExprEmitter::EmitFloatConversionCheck( 865 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 866 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 867 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 868 if (!isa<llvm::IntegerType>(DstTy)) 869 return; 870 871 CodeGenFunction::SanitizerScope SanScope(&CGF); 872 using llvm::APFloat; 873 using llvm::APSInt; 874 875 llvm::Value *Check = nullptr; 876 const llvm::fltSemantics &SrcSema = 877 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 878 879 // Floating-point to integer. This has undefined behavior if the source is 880 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 881 // to an integer). 882 unsigned Width = CGF.getContext().getIntWidth(DstType); 883 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 884 885 APSInt Min = APSInt::getMinValue(Width, Unsigned); 886 APFloat MinSrc(SrcSema, APFloat::uninitialized); 887 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 888 APFloat::opOverflow) 889 // Don't need an overflow check for lower bound. Just check for 890 // -Inf/NaN. 891 MinSrc = APFloat::getInf(SrcSema, true); 892 else 893 // Find the largest value which is too small to represent (before 894 // truncation toward zero). 895 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 896 897 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 898 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 899 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 900 APFloat::opOverflow) 901 // Don't need an overflow check for upper bound. Just check for 902 // +Inf/NaN. 903 MaxSrc = APFloat::getInf(SrcSema, false); 904 else 905 // Find the smallest value which is too large to represent (before 906 // truncation toward zero). 907 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 908 909 // If we're converting from __half, convert the range to float to match 910 // the type of src. 911 if (OrigSrcType->isHalfType()) { 912 const llvm::fltSemantics &Sema = 913 CGF.getContext().getFloatTypeSemantics(SrcType); 914 bool IsInexact; 915 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 916 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 917 } 918 919 llvm::Value *GE = 920 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 921 llvm::Value *LE = 922 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 923 Check = Builder.CreateAnd(GE, LE); 924 925 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 926 CGF.EmitCheckTypeDescriptor(OrigSrcType), 927 CGF.EmitCheckTypeDescriptor(DstType)}; 928 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 929 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 930 } 931 932 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 933 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 934 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 935 std::pair<llvm::Value *, SanitizerMask>> 936 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 937 QualType DstType, CGBuilderTy &Builder) { 938 llvm::Type *SrcTy = Src->getType(); 939 llvm::Type *DstTy = Dst->getType(); 940 (void)DstTy; // Only used in assert() 941 942 // This should be truncation of integral types. 943 assert(Src != Dst); 944 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 945 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 946 "non-integer llvm type"); 947 948 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 949 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 950 951 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 952 // Else, it is a signed truncation. 953 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 954 SanitizerMask Mask; 955 if (!SrcSigned && !DstSigned) { 956 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 957 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 958 } else { 959 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 960 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 961 } 962 963 llvm::Value *Check = nullptr; 964 // 1. Extend the truncated value back to the same width as the Src. 965 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 966 // 2. Equality-compare with the original source value 967 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 968 // If the comparison result is 'i1 false', then the truncation was lossy. 969 return std::make_pair(Kind, std::make_pair(Check, Mask)); 970 } 971 972 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 973 Value *Dst, QualType DstType, 974 SourceLocation Loc) { 975 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 976 return; 977 978 // We only care about int->int conversions here. 979 // We ignore conversions to/from pointer and/or bool. 980 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 981 return; 982 983 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 984 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 985 // This must be truncation. Else we do not care. 986 if (SrcBits <= DstBits) 987 return; 988 989 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 990 991 // If the integer sign change sanitizer is enabled, 992 // and we are truncating from larger unsigned type to smaller signed type, 993 // let that next sanitizer deal with it. 994 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 995 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 996 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 997 (!SrcSigned && DstSigned)) 998 return; 999 1000 CodeGenFunction::SanitizerScope SanScope(&CGF); 1001 1002 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1003 std::pair<llvm::Value *, SanitizerMask>> 1004 Check = 1005 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1006 // If the comparison result is 'i1 false', then the truncation was lossy. 1007 1008 // Do we care about this type of truncation? 1009 if (!CGF.SanOpts.has(Check.second.second)) 1010 return; 1011 1012 llvm::Constant *StaticArgs[] = { 1013 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1014 CGF.EmitCheckTypeDescriptor(DstType), 1015 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1016 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1017 {Src, Dst}); 1018 } 1019 1020 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1021 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1022 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1023 std::pair<llvm::Value *, SanitizerMask>> 1024 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1025 QualType DstType, CGBuilderTy &Builder) { 1026 llvm::Type *SrcTy = Src->getType(); 1027 llvm::Type *DstTy = Dst->getType(); 1028 1029 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1030 "non-integer llvm type"); 1031 1032 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1033 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1034 (void)SrcSigned; // Only used in assert() 1035 (void)DstSigned; // Only used in assert() 1036 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1037 unsigned DstBits = DstTy->getScalarSizeInBits(); 1038 (void)SrcBits; // Only used in assert() 1039 (void)DstBits; // Only used in assert() 1040 1041 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1042 "either the widths should be different, or the signednesses."); 1043 1044 // NOTE: zero value is considered to be non-negative. 1045 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1046 const char *Name) -> Value * { 1047 // Is this value a signed type? 1048 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1049 llvm::Type *VTy = V->getType(); 1050 if (!VSigned) { 1051 // If the value is unsigned, then it is never negative. 1052 // FIXME: can we encounter non-scalar VTy here? 1053 return llvm::ConstantInt::getFalse(VTy->getContext()); 1054 } 1055 // Get the zero of the same type with which we will be comparing. 1056 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1057 // %V.isnegative = icmp slt %V, 0 1058 // I.e is %V *strictly* less than zero, does it have negative value? 1059 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1060 llvm::Twine(Name) + "." + V->getName() + 1061 ".negativitycheck"); 1062 }; 1063 1064 // 1. Was the old Value negative? 1065 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1066 // 2. Is the new Value negative? 1067 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1068 // 3. Now, was the 'negativity status' preserved during the conversion? 1069 // NOTE: conversion from negative to zero is considered to change the sign. 1070 // (We want to get 'false' when the conversion changed the sign) 1071 // So we should just equality-compare the negativity statuses. 1072 llvm::Value *Check = nullptr; 1073 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1074 // If the comparison result is 'false', then the conversion changed the sign. 1075 return std::make_pair( 1076 ScalarExprEmitter::ICCK_IntegerSignChange, 1077 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1078 } 1079 1080 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1081 Value *Dst, QualType DstType, 1082 SourceLocation Loc) { 1083 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1084 return; 1085 1086 llvm::Type *SrcTy = Src->getType(); 1087 llvm::Type *DstTy = Dst->getType(); 1088 1089 // We only care about int->int conversions here. 1090 // We ignore conversions to/from pointer and/or bool. 1091 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1092 return; 1093 1094 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1095 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1096 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1097 unsigned DstBits = DstTy->getScalarSizeInBits(); 1098 1099 // Now, we do not need to emit the check in *all* of the cases. 1100 // We can avoid emitting it in some obvious cases where it would have been 1101 // dropped by the opt passes (instcombine) always anyways. 1102 // If it's a cast between effectively the same type, no check. 1103 // NOTE: this is *not* equivalent to checking the canonical types. 1104 if (SrcSigned == DstSigned && SrcBits == DstBits) 1105 return; 1106 // At least one of the values needs to have signed type. 1107 // If both are unsigned, then obviously, neither of them can be negative. 1108 if (!SrcSigned && !DstSigned) 1109 return; 1110 // If the conversion is to *larger* *signed* type, then no check is needed. 1111 // Because either sign-extension happens (so the sign will remain), 1112 // or zero-extension will happen (the sign bit will be zero.) 1113 if ((DstBits > SrcBits) && DstSigned) 1114 return; 1115 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1116 (SrcBits > DstBits) && SrcSigned) { 1117 // If the signed integer truncation sanitizer is enabled, 1118 // and this is a truncation from signed type, then no check is needed. 1119 // Because here sign change check is interchangeable with truncation check. 1120 return; 1121 } 1122 // That's it. We can't rule out any more cases with the data we have. 1123 1124 CodeGenFunction::SanitizerScope SanScope(&CGF); 1125 1126 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1127 std::pair<llvm::Value *, SanitizerMask>> 1128 Check; 1129 1130 // Each of these checks needs to return 'false' when an issue was detected. 1131 ImplicitConversionCheckKind CheckKind; 1132 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1133 // So we can 'and' all the checks together, and still get 'false', 1134 // if at least one of the checks detected an issue. 1135 1136 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1137 CheckKind = Check.first; 1138 Checks.emplace_back(Check.second); 1139 1140 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1141 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1142 // If the signed integer truncation sanitizer was enabled, 1143 // and we are truncating from larger unsigned type to smaller signed type, 1144 // let's handle the case we skipped in that check. 1145 Check = 1146 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1147 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1148 Checks.emplace_back(Check.second); 1149 // If the comparison result is 'i1 false', then the truncation was lossy. 1150 } 1151 1152 llvm::Constant *StaticArgs[] = { 1153 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1154 CGF.EmitCheckTypeDescriptor(DstType), 1155 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1156 // EmitCheck() will 'and' all the checks together. 1157 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1158 {Src, Dst}); 1159 } 1160 1161 /// Emit a conversion from the specified type to the specified destination type, 1162 /// both of which are LLVM scalar types. 1163 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1164 QualType DstType, 1165 SourceLocation Loc, 1166 ScalarConversionOpts Opts) { 1167 // All conversions involving fixed point types should be handled by the 1168 // EmitFixedPoint family functions. This is done to prevent bloating up this 1169 // function more, and although fixed point numbers are represented by 1170 // integers, we do not want to follow any logic that assumes they should be 1171 // treated as integers. 1172 // TODO(leonardchan): When necessary, add another if statement checking for 1173 // conversions to fixed point types from other types. 1174 if (SrcType->isFixedPointType()) { 1175 if (DstType->isBooleanType()) 1176 // It is important that we check this before checking if the dest type is 1177 // an integer because booleans are technically integer types. 1178 // We do not need to check the padding bit on unsigned types if unsigned 1179 // padding is enabled because overflow into this bit is undefined 1180 // behavior. 1181 return Builder.CreateIsNotNull(Src, "tobool"); 1182 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1183 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1184 1185 llvm_unreachable( 1186 "Unhandled scalar conversion from a fixed point type to another type."); 1187 } else if (DstType->isFixedPointType()) { 1188 if (SrcType->isIntegerType()) 1189 // This also includes converting booleans and enums to fixed point types. 1190 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1191 1192 llvm_unreachable( 1193 "Unhandled scalar conversion to a fixed point type from another type."); 1194 } 1195 1196 QualType NoncanonicalSrcType = SrcType; 1197 QualType NoncanonicalDstType = DstType; 1198 1199 SrcType = CGF.getContext().getCanonicalType(SrcType); 1200 DstType = CGF.getContext().getCanonicalType(DstType); 1201 if (SrcType == DstType) return Src; 1202 1203 if (DstType->isVoidType()) return nullptr; 1204 1205 llvm::Value *OrigSrc = Src; 1206 QualType OrigSrcType = SrcType; 1207 llvm::Type *SrcTy = Src->getType(); 1208 1209 // Handle conversions to bool first, they are special: comparisons against 0. 1210 if (DstType->isBooleanType()) 1211 return EmitConversionToBool(Src, SrcType); 1212 1213 llvm::Type *DstTy = ConvertType(DstType); 1214 1215 // Cast from half through float if half isn't a native type. 1216 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1217 // Cast to FP using the intrinsic if the half type itself isn't supported. 1218 if (DstTy->isFloatingPointTy()) { 1219 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1220 return Builder.CreateCall( 1221 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1222 Src); 1223 } else { 1224 // Cast to other types through float, using either the intrinsic or FPExt, 1225 // depending on whether the half type itself is supported 1226 // (as opposed to operations on half, available with NativeHalfType). 1227 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1228 Src = Builder.CreateCall( 1229 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1230 CGF.CGM.FloatTy), 1231 Src); 1232 } else { 1233 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1234 } 1235 SrcType = CGF.getContext().FloatTy; 1236 SrcTy = CGF.FloatTy; 1237 } 1238 } 1239 1240 // Ignore conversions like int -> uint. 1241 if (SrcTy == DstTy) { 1242 if (Opts.EmitImplicitIntegerSignChangeChecks) 1243 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1244 NoncanonicalDstType, Loc); 1245 1246 return Src; 1247 } 1248 1249 // Handle pointer conversions next: pointers can only be converted to/from 1250 // other pointers and integers. Check for pointer types in terms of LLVM, as 1251 // some native types (like Obj-C id) may map to a pointer type. 1252 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1253 // The source value may be an integer, or a pointer. 1254 if (isa<llvm::PointerType>(SrcTy)) 1255 return Builder.CreateBitCast(Src, DstTy, "conv"); 1256 1257 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1258 // First, convert to the correct width so that we control the kind of 1259 // extension. 1260 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1261 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1262 llvm::Value* IntResult = 1263 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1264 // Then, cast to pointer. 1265 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1266 } 1267 1268 if (isa<llvm::PointerType>(SrcTy)) { 1269 // Must be an ptr to int cast. 1270 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1271 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1272 } 1273 1274 // A scalar can be splatted to an extended vector of the same element type 1275 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1276 // Sema should add casts to make sure that the source expression's type is 1277 // the same as the vector's element type (sans qualifiers) 1278 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1279 SrcType.getTypePtr() && 1280 "Splatted expr doesn't match with vector element type?"); 1281 1282 // Splat the element across to all elements 1283 unsigned NumElements = DstTy->getVectorNumElements(); 1284 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1285 } 1286 1287 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1288 // Allow bitcast from vector to integer/fp of the same size. 1289 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1290 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1291 if (SrcSize == DstSize) 1292 return Builder.CreateBitCast(Src, DstTy, "conv"); 1293 1294 // Conversions between vectors of different sizes are not allowed except 1295 // when vectors of half are involved. Operations on storage-only half 1296 // vectors require promoting half vector operands to float vectors and 1297 // truncating the result, which is either an int or float vector, to a 1298 // short or half vector. 1299 1300 // Source and destination are both expected to be vectors. 1301 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1302 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1303 (void)DstElementTy; 1304 1305 assert(((SrcElementTy->isIntegerTy() && 1306 DstElementTy->isIntegerTy()) || 1307 (SrcElementTy->isFloatingPointTy() && 1308 DstElementTy->isFloatingPointTy())) && 1309 "unexpected conversion between a floating-point vector and an " 1310 "integer vector"); 1311 1312 // Truncate an i32 vector to an i16 vector. 1313 if (SrcElementTy->isIntegerTy()) 1314 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1315 1316 // Truncate a float vector to a half vector. 1317 if (SrcSize > DstSize) 1318 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1319 1320 // Promote a half vector to a float vector. 1321 return Builder.CreateFPExt(Src, DstTy, "conv"); 1322 } 1323 1324 // Finally, we have the arithmetic types: real int/float. 1325 Value *Res = nullptr; 1326 llvm::Type *ResTy = DstTy; 1327 1328 // An overflowing conversion has undefined behavior if either the source type 1329 // or the destination type is a floating-point type. However, we consider the 1330 // range of representable values for all floating-point types to be 1331 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1332 // floating-point type. 1333 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1334 OrigSrcType->isFloatingType()) 1335 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1336 Loc); 1337 1338 // Cast to half through float if half isn't a native type. 1339 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1340 // Make sure we cast in a single step if from another FP type. 1341 if (SrcTy->isFloatingPointTy()) { 1342 // Use the intrinsic if the half type itself isn't supported 1343 // (as opposed to operations on half, available with NativeHalfType). 1344 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1345 return Builder.CreateCall( 1346 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1347 // If the half type is supported, just use an fptrunc. 1348 return Builder.CreateFPTrunc(Src, DstTy); 1349 } 1350 DstTy = CGF.FloatTy; 1351 } 1352 1353 if (isa<llvm::IntegerType>(SrcTy)) { 1354 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1355 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1356 InputSigned = true; 1357 } 1358 if (isa<llvm::IntegerType>(DstTy)) 1359 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1360 else if (InputSigned) 1361 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1362 else 1363 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1364 } else if (isa<llvm::IntegerType>(DstTy)) { 1365 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1366 if (DstType->isSignedIntegerOrEnumerationType()) 1367 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1368 else 1369 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1370 } else { 1371 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1372 "Unknown real conversion"); 1373 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1374 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1375 else 1376 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1377 } 1378 1379 if (DstTy != ResTy) { 1380 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1381 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1382 Res = Builder.CreateCall( 1383 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1384 Res); 1385 } else { 1386 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1387 } 1388 } 1389 1390 if (Opts.EmitImplicitIntegerTruncationChecks) 1391 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1392 NoncanonicalDstType, Loc); 1393 1394 if (Opts.EmitImplicitIntegerSignChangeChecks) 1395 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1396 NoncanonicalDstType, Loc); 1397 1398 return Res; 1399 } 1400 1401 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1402 QualType DstTy, 1403 SourceLocation Loc) { 1404 FixedPointSemantics SrcFPSema = 1405 CGF.getContext().getFixedPointSemantics(SrcTy); 1406 FixedPointSemantics DstFPSema = 1407 CGF.getContext().getFixedPointSemantics(DstTy); 1408 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1409 DstTy->isIntegerType()); 1410 } 1411 1412 Value *ScalarExprEmitter::EmitFixedPointConversion( 1413 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1414 SourceLocation Loc, bool DstIsInteger) { 1415 using llvm::APInt; 1416 using llvm::ConstantInt; 1417 using llvm::Value; 1418 1419 unsigned SrcWidth = SrcFPSema.getWidth(); 1420 unsigned DstWidth = DstFPSema.getWidth(); 1421 unsigned SrcScale = SrcFPSema.getScale(); 1422 unsigned DstScale = DstFPSema.getScale(); 1423 bool SrcIsSigned = SrcFPSema.isSigned(); 1424 bool DstIsSigned = DstFPSema.isSigned(); 1425 1426 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1427 1428 Value *Result = Src; 1429 unsigned ResultWidth = SrcWidth; 1430 1431 // Downscale. 1432 if (DstScale < SrcScale) { 1433 // When converting to integers, we round towards zero. For negative numbers, 1434 // right shifting rounds towards negative infinity. In this case, we can 1435 // just round up before shifting. 1436 if (DstIsInteger && SrcIsSigned) { 1437 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1438 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1439 Value *LowBits = ConstantInt::get( 1440 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1441 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1442 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1443 } 1444 1445 Result = SrcIsSigned 1446 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1447 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1448 } 1449 1450 if (!DstFPSema.isSaturated()) { 1451 // Resize. 1452 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1453 1454 // Upscale. 1455 if (DstScale > SrcScale) 1456 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1457 } else { 1458 // Adjust the number of fractional bits. 1459 if (DstScale > SrcScale) { 1460 // Compare to DstWidth to prevent resizing twice. 1461 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1462 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1463 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1464 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1465 } 1466 1467 // Handle saturation. 1468 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1469 if (LessIntBits) { 1470 Value *Max = ConstantInt::get( 1471 CGF.getLLVMContext(), 1472 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1473 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1474 : Builder.CreateICmpUGT(Result, Max); 1475 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1476 } 1477 // Cannot overflow min to dest type if src is unsigned since all fixed 1478 // point types can cover the unsigned min of 0. 1479 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1480 Value *Min = ConstantInt::get( 1481 CGF.getLLVMContext(), 1482 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1483 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1484 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1485 } 1486 1487 // Resize the integer part to get the final destination size. 1488 if (ResultWidth != DstWidth) 1489 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1490 } 1491 return Result; 1492 } 1493 1494 /// Emit a conversion from the specified complex type to the specified 1495 /// destination type, where the destination type is an LLVM scalar type. 1496 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1497 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1498 SourceLocation Loc) { 1499 // Get the source element type. 1500 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1501 1502 // Handle conversions to bool first, they are special: comparisons against 0. 1503 if (DstTy->isBooleanType()) { 1504 // Complex != 0 -> (Real != 0) | (Imag != 0) 1505 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1506 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1507 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1508 } 1509 1510 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1511 // the imaginary part of the complex value is discarded and the value of the 1512 // real part is converted according to the conversion rules for the 1513 // corresponding real type. 1514 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1515 } 1516 1517 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1518 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1519 } 1520 1521 /// Emit a sanitization check for the given "binary" operation (which 1522 /// might actually be a unary increment which has been lowered to a binary 1523 /// operation). The check passes if all values in \p Checks (which are \c i1), 1524 /// are \c true. 1525 void ScalarExprEmitter::EmitBinOpCheck( 1526 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1527 assert(CGF.IsSanitizerScope); 1528 SanitizerHandler Check; 1529 SmallVector<llvm::Constant *, 4> StaticData; 1530 SmallVector<llvm::Value *, 2> DynamicData; 1531 1532 BinaryOperatorKind Opcode = Info.Opcode; 1533 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1534 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1535 1536 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1537 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1538 if (UO && UO->getOpcode() == UO_Minus) { 1539 Check = SanitizerHandler::NegateOverflow; 1540 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1541 DynamicData.push_back(Info.RHS); 1542 } else { 1543 if (BinaryOperator::isShiftOp(Opcode)) { 1544 // Shift LHS negative or too large, or RHS out of bounds. 1545 Check = SanitizerHandler::ShiftOutOfBounds; 1546 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1547 StaticData.push_back( 1548 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1549 StaticData.push_back( 1550 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1551 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1552 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1553 Check = SanitizerHandler::DivremOverflow; 1554 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1555 } else { 1556 // Arithmetic overflow (+, -, *). 1557 switch (Opcode) { 1558 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1559 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1560 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1561 default: llvm_unreachable("unexpected opcode for bin op check"); 1562 } 1563 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1564 } 1565 DynamicData.push_back(Info.LHS); 1566 DynamicData.push_back(Info.RHS); 1567 } 1568 1569 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1570 } 1571 1572 //===----------------------------------------------------------------------===// 1573 // Visitor Methods 1574 //===----------------------------------------------------------------------===// 1575 1576 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1577 CGF.ErrorUnsupported(E, "scalar expression"); 1578 if (E->getType()->isVoidType()) 1579 return nullptr; 1580 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1581 } 1582 1583 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1584 // Vector Mask Case 1585 if (E->getNumSubExprs() == 2) { 1586 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1587 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1588 Value *Mask; 1589 1590 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1591 unsigned LHSElts = LTy->getNumElements(); 1592 1593 Mask = RHS; 1594 1595 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1596 1597 // Mask off the high bits of each shuffle index. 1598 Value *MaskBits = 1599 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1600 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1601 1602 // newv = undef 1603 // mask = mask & maskbits 1604 // for each elt 1605 // n = extract mask i 1606 // x = extract val n 1607 // newv = insert newv, x, i 1608 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1609 MTy->getNumElements()); 1610 Value* NewV = llvm::UndefValue::get(RTy); 1611 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1612 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1613 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1614 1615 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1616 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1617 } 1618 return NewV; 1619 } 1620 1621 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1622 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1623 1624 SmallVector<llvm::Constant*, 32> indices; 1625 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1626 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1627 // Check for -1 and output it as undef in the IR. 1628 if (Idx.isSigned() && Idx.isAllOnesValue()) 1629 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1630 else 1631 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1632 } 1633 1634 Value *SV = llvm::ConstantVector::get(indices); 1635 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1636 } 1637 1638 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1639 QualType SrcType = E->getSrcExpr()->getType(), 1640 DstType = E->getType(); 1641 1642 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1643 1644 SrcType = CGF.getContext().getCanonicalType(SrcType); 1645 DstType = CGF.getContext().getCanonicalType(DstType); 1646 if (SrcType == DstType) return Src; 1647 1648 assert(SrcType->isVectorType() && 1649 "ConvertVector source type must be a vector"); 1650 assert(DstType->isVectorType() && 1651 "ConvertVector destination type must be a vector"); 1652 1653 llvm::Type *SrcTy = Src->getType(); 1654 llvm::Type *DstTy = ConvertType(DstType); 1655 1656 // Ignore conversions like int -> uint. 1657 if (SrcTy == DstTy) 1658 return Src; 1659 1660 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1661 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1662 1663 assert(SrcTy->isVectorTy() && 1664 "ConvertVector source IR type must be a vector"); 1665 assert(DstTy->isVectorTy() && 1666 "ConvertVector destination IR type must be a vector"); 1667 1668 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1669 *DstEltTy = DstTy->getVectorElementType(); 1670 1671 if (DstEltType->isBooleanType()) { 1672 assert((SrcEltTy->isFloatingPointTy() || 1673 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1674 1675 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1676 if (SrcEltTy->isFloatingPointTy()) { 1677 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1678 } else { 1679 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1680 } 1681 } 1682 1683 // We have the arithmetic types: real int/float. 1684 Value *Res = nullptr; 1685 1686 if (isa<llvm::IntegerType>(SrcEltTy)) { 1687 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1688 if (isa<llvm::IntegerType>(DstEltTy)) 1689 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1690 else if (InputSigned) 1691 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1692 else 1693 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1694 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1695 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1696 if (DstEltType->isSignedIntegerOrEnumerationType()) 1697 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1698 else 1699 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1700 } else { 1701 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1702 "Unknown real conversion"); 1703 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1704 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1705 else 1706 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1707 } 1708 1709 return Res; 1710 } 1711 1712 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1713 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1714 CGF.EmitIgnoredExpr(E->getBase()); 1715 return CGF.emitScalarConstant(Constant, E); 1716 } else { 1717 Expr::EvalResult Result; 1718 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1719 llvm::APSInt Value = Result.Val.getInt(); 1720 CGF.EmitIgnoredExpr(E->getBase()); 1721 return Builder.getInt(Value); 1722 } 1723 } 1724 1725 return EmitLoadOfLValue(E); 1726 } 1727 1728 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1729 TestAndClearIgnoreResultAssign(); 1730 1731 // Emit subscript expressions in rvalue context's. For most cases, this just 1732 // loads the lvalue formed by the subscript expr. However, we have to be 1733 // careful, because the base of a vector subscript is occasionally an rvalue, 1734 // so we can't get it as an lvalue. 1735 if (!E->getBase()->getType()->isVectorType()) 1736 return EmitLoadOfLValue(E); 1737 1738 // Handle the vector case. The base must be a vector, the index must be an 1739 // integer value. 1740 Value *Base = Visit(E->getBase()); 1741 Value *Idx = Visit(E->getIdx()); 1742 QualType IdxTy = E->getIdx()->getType(); 1743 1744 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1745 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1746 1747 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1748 } 1749 1750 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1751 unsigned Off, llvm::Type *I32Ty) { 1752 int MV = SVI->getMaskValue(Idx); 1753 if (MV == -1) 1754 return llvm::UndefValue::get(I32Ty); 1755 return llvm::ConstantInt::get(I32Ty, Off+MV); 1756 } 1757 1758 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1759 if (C->getBitWidth() != 32) { 1760 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1761 C->getZExtValue()) && 1762 "Index operand too large for shufflevector mask!"); 1763 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1764 } 1765 return C; 1766 } 1767 1768 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1769 bool Ignore = TestAndClearIgnoreResultAssign(); 1770 (void)Ignore; 1771 assert (Ignore == false && "init list ignored"); 1772 unsigned NumInitElements = E->getNumInits(); 1773 1774 if (E->hadArrayRangeDesignator()) 1775 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1776 1777 llvm::VectorType *VType = 1778 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1779 1780 if (!VType) { 1781 if (NumInitElements == 0) { 1782 // C++11 value-initialization for the scalar. 1783 return EmitNullValue(E->getType()); 1784 } 1785 // We have a scalar in braces. Just use the first element. 1786 return Visit(E->getInit(0)); 1787 } 1788 1789 unsigned ResElts = VType->getNumElements(); 1790 1791 // Loop over initializers collecting the Value for each, and remembering 1792 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1793 // us to fold the shuffle for the swizzle into the shuffle for the vector 1794 // initializer, since LLVM optimizers generally do not want to touch 1795 // shuffles. 1796 unsigned CurIdx = 0; 1797 bool VIsUndefShuffle = false; 1798 llvm::Value *V = llvm::UndefValue::get(VType); 1799 for (unsigned i = 0; i != NumInitElements; ++i) { 1800 Expr *IE = E->getInit(i); 1801 Value *Init = Visit(IE); 1802 SmallVector<llvm::Constant*, 16> Args; 1803 1804 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1805 1806 // Handle scalar elements. If the scalar initializer is actually one 1807 // element of a different vector of the same width, use shuffle instead of 1808 // extract+insert. 1809 if (!VVT) { 1810 if (isa<ExtVectorElementExpr>(IE)) { 1811 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1812 1813 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1814 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1815 Value *LHS = nullptr, *RHS = nullptr; 1816 if (CurIdx == 0) { 1817 // insert into undef -> shuffle (src, undef) 1818 // shufflemask must use an i32 1819 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1820 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1821 1822 LHS = EI->getVectorOperand(); 1823 RHS = V; 1824 VIsUndefShuffle = true; 1825 } else if (VIsUndefShuffle) { 1826 // insert into undefshuffle && size match -> shuffle (v, src) 1827 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1828 for (unsigned j = 0; j != CurIdx; ++j) 1829 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1830 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1831 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1832 1833 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1834 RHS = EI->getVectorOperand(); 1835 VIsUndefShuffle = false; 1836 } 1837 if (!Args.empty()) { 1838 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1839 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1840 ++CurIdx; 1841 continue; 1842 } 1843 } 1844 } 1845 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1846 "vecinit"); 1847 VIsUndefShuffle = false; 1848 ++CurIdx; 1849 continue; 1850 } 1851 1852 unsigned InitElts = VVT->getNumElements(); 1853 1854 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1855 // input is the same width as the vector being constructed, generate an 1856 // optimized shuffle of the swizzle input into the result. 1857 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1858 if (isa<ExtVectorElementExpr>(IE)) { 1859 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1860 Value *SVOp = SVI->getOperand(0); 1861 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1862 1863 if (OpTy->getNumElements() == ResElts) { 1864 for (unsigned j = 0; j != CurIdx; ++j) { 1865 // If the current vector initializer is a shuffle with undef, merge 1866 // this shuffle directly into it. 1867 if (VIsUndefShuffle) { 1868 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1869 CGF.Int32Ty)); 1870 } else { 1871 Args.push_back(Builder.getInt32(j)); 1872 } 1873 } 1874 for (unsigned j = 0, je = InitElts; j != je; ++j) 1875 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1876 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1877 1878 if (VIsUndefShuffle) 1879 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1880 1881 Init = SVOp; 1882 } 1883 } 1884 1885 // Extend init to result vector length, and then shuffle its contribution 1886 // to the vector initializer into V. 1887 if (Args.empty()) { 1888 for (unsigned j = 0; j != InitElts; ++j) 1889 Args.push_back(Builder.getInt32(j)); 1890 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1891 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1892 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1893 Mask, "vext"); 1894 1895 Args.clear(); 1896 for (unsigned j = 0; j != CurIdx; ++j) 1897 Args.push_back(Builder.getInt32(j)); 1898 for (unsigned j = 0; j != InitElts; ++j) 1899 Args.push_back(Builder.getInt32(j+Offset)); 1900 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1901 } 1902 1903 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1904 // merging subsequent shuffles into this one. 1905 if (CurIdx == 0) 1906 std::swap(V, Init); 1907 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1908 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1909 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1910 CurIdx += InitElts; 1911 } 1912 1913 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1914 // Emit remaining default initializers. 1915 llvm::Type *EltTy = VType->getElementType(); 1916 1917 // Emit remaining default initializers 1918 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1919 Value *Idx = Builder.getInt32(CurIdx); 1920 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1921 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1922 } 1923 return V; 1924 } 1925 1926 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1927 const Expr *E = CE->getSubExpr(); 1928 1929 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1930 return false; 1931 1932 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1933 // We always assume that 'this' is never null. 1934 return false; 1935 } 1936 1937 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1938 // And that glvalue casts are never null. 1939 if (ICE->getValueKind() != VK_RValue) 1940 return false; 1941 } 1942 1943 return true; 1944 } 1945 1946 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1947 // have to handle a more broad range of conversions than explicit casts, as they 1948 // handle things like function to ptr-to-function decay etc. 1949 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1950 Expr *E = CE->getSubExpr(); 1951 QualType DestTy = CE->getType(); 1952 CastKind Kind = CE->getCastKind(); 1953 1954 // These cases are generally not written to ignore the result of 1955 // evaluating their sub-expressions, so we clear this now. 1956 bool Ignored = TestAndClearIgnoreResultAssign(); 1957 1958 // Since almost all cast kinds apply to scalars, this switch doesn't have 1959 // a default case, so the compiler will warn on a missing case. The cases 1960 // are in the same order as in the CastKind enum. 1961 switch (Kind) { 1962 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1963 case CK_BuiltinFnToFnPtr: 1964 llvm_unreachable("builtin functions are handled elsewhere"); 1965 1966 case CK_LValueBitCast: 1967 case CK_ObjCObjectLValueCast: { 1968 Address Addr = EmitLValue(E).getAddress(); 1969 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1970 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1971 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1972 } 1973 1974 case CK_LValueToRValueBitCast: { 1975 LValue SourceLVal = CGF.EmitLValue(E); 1976 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(), 1977 CGF.ConvertTypeForMem(DestTy)); 1978 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1979 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1980 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1981 } 1982 1983 case CK_CPointerToObjCPointerCast: 1984 case CK_BlockPointerToObjCPointerCast: 1985 case CK_AnyPointerToBlockPointerCast: 1986 case CK_BitCast: { 1987 Value *Src = Visit(const_cast<Expr*>(E)); 1988 llvm::Type *SrcTy = Src->getType(); 1989 llvm::Type *DstTy = ConvertType(DestTy); 1990 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1991 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1992 llvm_unreachable("wrong cast for pointers in different address spaces" 1993 "(must be an address space cast)!"); 1994 } 1995 1996 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1997 if (auto PT = DestTy->getAs<PointerType>()) 1998 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1999 /*MayBeNull=*/true, 2000 CodeGenFunction::CFITCK_UnrelatedCast, 2001 CE->getBeginLoc()); 2002 } 2003 2004 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2005 const QualType SrcType = E->getType(); 2006 2007 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2008 // Casting to pointer that could carry dynamic information (provided by 2009 // invariant.group) requires launder. 2010 Src = Builder.CreateLaunderInvariantGroup(Src); 2011 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2012 // Casting to pointer that does not carry dynamic information (provided 2013 // by invariant.group) requires stripping it. Note that we don't do it 2014 // if the source could not be dynamic type and destination could be 2015 // dynamic because dynamic information is already laundered. It is 2016 // because launder(strip(src)) == launder(src), so there is no need to 2017 // add extra strip before launder. 2018 Src = Builder.CreateStripInvariantGroup(Src); 2019 } 2020 } 2021 2022 // Update heapallocsite metadata when there is an explicit cast. 2023 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2024 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2025 CGF.getDebugInfo()-> 2026 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2027 2028 return Builder.CreateBitCast(Src, DstTy); 2029 } 2030 case CK_AddressSpaceConversion: { 2031 Expr::EvalResult Result; 2032 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2033 Result.Val.isNullPointer()) { 2034 // If E has side effect, it is emitted even if its final result is a 2035 // null pointer. In that case, a DCE pass should be able to 2036 // eliminate the useless instructions emitted during translating E. 2037 if (Result.HasSideEffects) 2038 Visit(E); 2039 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2040 ConvertType(DestTy)), DestTy); 2041 } 2042 // Since target may map different address spaces in AST to the same address 2043 // space, an address space conversion may end up as a bitcast. 2044 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2045 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2046 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2047 } 2048 case CK_AtomicToNonAtomic: 2049 case CK_NonAtomicToAtomic: 2050 case CK_NoOp: 2051 case CK_UserDefinedConversion: 2052 return Visit(const_cast<Expr*>(E)); 2053 2054 case CK_BaseToDerived: { 2055 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2056 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2057 2058 Address Base = CGF.EmitPointerWithAlignment(E); 2059 Address Derived = 2060 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2061 CE->path_begin(), CE->path_end(), 2062 CGF.ShouldNullCheckClassCastValue(CE)); 2063 2064 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2065 // performed and the object is not of the derived type. 2066 if (CGF.sanitizePerformTypeCheck()) 2067 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2068 Derived.getPointer(), DestTy->getPointeeType()); 2069 2070 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2071 CGF.EmitVTablePtrCheckForCast( 2072 DestTy->getPointeeType(), Derived.getPointer(), 2073 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2074 CE->getBeginLoc()); 2075 2076 return Derived.getPointer(); 2077 } 2078 case CK_UncheckedDerivedToBase: 2079 case CK_DerivedToBase: { 2080 // The EmitPointerWithAlignment path does this fine; just discard 2081 // the alignment. 2082 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2083 } 2084 2085 case CK_Dynamic: { 2086 Address V = CGF.EmitPointerWithAlignment(E); 2087 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2088 return CGF.EmitDynamicCast(V, DCE); 2089 } 2090 2091 case CK_ArrayToPointerDecay: 2092 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2093 case CK_FunctionToPointerDecay: 2094 return EmitLValue(E).getPointer(); 2095 2096 case CK_NullToPointer: 2097 if (MustVisitNullValue(E)) 2098 CGF.EmitIgnoredExpr(E); 2099 2100 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2101 DestTy); 2102 2103 case CK_NullToMemberPointer: { 2104 if (MustVisitNullValue(E)) 2105 CGF.EmitIgnoredExpr(E); 2106 2107 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2108 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2109 } 2110 2111 case CK_ReinterpretMemberPointer: 2112 case CK_BaseToDerivedMemberPointer: 2113 case CK_DerivedToBaseMemberPointer: { 2114 Value *Src = Visit(E); 2115 2116 // Note that the AST doesn't distinguish between checked and 2117 // unchecked member pointer conversions, so we always have to 2118 // implement checked conversions here. This is inefficient when 2119 // actual control flow may be required in order to perform the 2120 // check, which it is for data member pointers (but not member 2121 // function pointers on Itanium and ARM). 2122 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2123 } 2124 2125 case CK_ARCProduceObject: 2126 return CGF.EmitARCRetainScalarExpr(E); 2127 case CK_ARCConsumeObject: 2128 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2129 case CK_ARCReclaimReturnedObject: 2130 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2131 case CK_ARCExtendBlockObject: 2132 return CGF.EmitARCExtendBlockObject(E); 2133 2134 case CK_CopyAndAutoreleaseBlockObject: 2135 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2136 2137 case CK_FloatingRealToComplex: 2138 case CK_FloatingComplexCast: 2139 case CK_IntegralRealToComplex: 2140 case CK_IntegralComplexCast: 2141 case CK_IntegralComplexToFloatingComplex: 2142 case CK_FloatingComplexToIntegralComplex: 2143 case CK_ConstructorConversion: 2144 case CK_ToUnion: 2145 llvm_unreachable("scalar cast to non-scalar value"); 2146 2147 case CK_LValueToRValue: 2148 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2149 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2150 return Visit(const_cast<Expr*>(E)); 2151 2152 case CK_IntegralToPointer: { 2153 Value *Src = Visit(const_cast<Expr*>(E)); 2154 2155 // First, convert to the correct width so that we control the kind of 2156 // extension. 2157 auto DestLLVMTy = ConvertType(DestTy); 2158 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2159 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2160 llvm::Value* IntResult = 2161 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2162 2163 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2164 2165 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2166 // Going from integer to pointer that could be dynamic requires reloading 2167 // dynamic information from invariant.group. 2168 if (DestTy.mayBeDynamicClass()) 2169 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2170 } 2171 return IntToPtr; 2172 } 2173 case CK_PointerToIntegral: { 2174 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2175 auto *PtrExpr = Visit(E); 2176 2177 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2178 const QualType SrcType = E->getType(); 2179 2180 // Casting to integer requires stripping dynamic information as it does 2181 // not carries it. 2182 if (SrcType.mayBeDynamicClass()) 2183 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2184 } 2185 2186 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2187 } 2188 case CK_ToVoid: { 2189 CGF.EmitIgnoredExpr(E); 2190 return nullptr; 2191 } 2192 case CK_VectorSplat: { 2193 llvm::Type *DstTy = ConvertType(DestTy); 2194 Value *Elt = Visit(const_cast<Expr*>(E)); 2195 // Splat the element across to all elements 2196 unsigned NumElements = DstTy->getVectorNumElements(); 2197 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2198 } 2199 2200 case CK_FixedPointCast: 2201 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2202 CE->getExprLoc()); 2203 2204 case CK_FixedPointToBoolean: 2205 assert(E->getType()->isFixedPointType() && 2206 "Expected src type to be fixed point type"); 2207 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2208 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2209 CE->getExprLoc()); 2210 2211 case CK_FixedPointToIntegral: 2212 assert(E->getType()->isFixedPointType() && 2213 "Expected src type to be fixed point type"); 2214 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2215 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2216 CE->getExprLoc()); 2217 2218 case CK_IntegralToFixedPoint: 2219 assert(E->getType()->isIntegerType() && 2220 "Expected src type to be an integer"); 2221 assert(DestTy->isFixedPointType() && 2222 "Expected dest type to be fixed point type"); 2223 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2224 CE->getExprLoc()); 2225 2226 case CK_IntegralCast: { 2227 ScalarConversionOpts Opts; 2228 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2229 if (!ICE->isPartOfExplicitCast()) 2230 Opts = ScalarConversionOpts(CGF.SanOpts); 2231 } 2232 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2233 CE->getExprLoc(), Opts); 2234 } 2235 case CK_IntegralToFloating: 2236 case CK_FloatingToIntegral: 2237 case CK_FloatingCast: 2238 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2239 CE->getExprLoc()); 2240 case CK_BooleanToSignedIntegral: { 2241 ScalarConversionOpts Opts; 2242 Opts.TreatBooleanAsSigned = true; 2243 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2244 CE->getExprLoc(), Opts); 2245 } 2246 case CK_IntegralToBoolean: 2247 return EmitIntToBoolConversion(Visit(E)); 2248 case CK_PointerToBoolean: 2249 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2250 case CK_FloatingToBoolean: 2251 return EmitFloatToBoolConversion(Visit(E)); 2252 case CK_MemberPointerToBoolean: { 2253 llvm::Value *MemPtr = Visit(E); 2254 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2255 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2256 } 2257 2258 case CK_FloatingComplexToReal: 2259 case CK_IntegralComplexToReal: 2260 return CGF.EmitComplexExpr(E, false, true).first; 2261 2262 case CK_FloatingComplexToBoolean: 2263 case CK_IntegralComplexToBoolean: { 2264 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2265 2266 // TODO: kill this function off, inline appropriate case here 2267 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2268 CE->getExprLoc()); 2269 } 2270 2271 case CK_ZeroToOCLOpaqueType: { 2272 assert((DestTy->isEventT() || DestTy->isQueueT() || 2273 DestTy->isOCLIntelSubgroupAVCType()) && 2274 "CK_ZeroToOCLEvent cast on non-event type"); 2275 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2276 } 2277 2278 case CK_IntToOCLSampler: 2279 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2280 2281 } // end of switch 2282 2283 llvm_unreachable("unknown scalar cast"); 2284 } 2285 2286 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2287 CodeGenFunction::StmtExprEvaluation eval(CGF); 2288 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2289 !E->getType()->isVoidType()); 2290 if (!RetAlloca.isValid()) 2291 return nullptr; 2292 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2293 E->getExprLoc()); 2294 } 2295 2296 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2297 CGF.enterFullExpression(E); 2298 CodeGenFunction::RunCleanupsScope Scope(CGF); 2299 Value *V = Visit(E->getSubExpr()); 2300 // Defend against dominance problems caused by jumps out of expression 2301 // evaluation through the shared cleanup block. 2302 Scope.ForceCleanup({&V}); 2303 return V; 2304 } 2305 2306 //===----------------------------------------------------------------------===// 2307 // Unary Operators 2308 //===----------------------------------------------------------------------===// 2309 2310 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2311 llvm::Value *InVal, bool IsInc) { 2312 BinOpInfo BinOp; 2313 BinOp.LHS = InVal; 2314 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2315 BinOp.Ty = E->getType(); 2316 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2317 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2318 BinOp.E = E; 2319 return BinOp; 2320 } 2321 2322 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2323 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2324 llvm::Value *Amount = 2325 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2326 StringRef Name = IsInc ? "inc" : "dec"; 2327 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2328 case LangOptions::SOB_Defined: 2329 return Builder.CreateAdd(InVal, Amount, Name); 2330 case LangOptions::SOB_Undefined: 2331 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2332 return Builder.CreateNSWAdd(InVal, Amount, Name); 2333 LLVM_FALLTHROUGH; 2334 case LangOptions::SOB_Trapping: 2335 if (!E->canOverflow()) 2336 return Builder.CreateNSWAdd(InVal, Amount, Name); 2337 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2338 } 2339 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2340 } 2341 2342 llvm::Value * 2343 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2344 bool isInc, bool isPre) { 2345 2346 QualType type = E->getSubExpr()->getType(); 2347 llvm::PHINode *atomicPHI = nullptr; 2348 llvm::Value *value; 2349 llvm::Value *input; 2350 2351 int amount = (isInc ? 1 : -1); 2352 bool isSubtraction = !isInc; 2353 2354 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2355 type = atomicTy->getValueType(); 2356 if (isInc && type->isBooleanType()) { 2357 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2358 if (isPre) { 2359 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2360 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2361 return Builder.getTrue(); 2362 } 2363 // For atomic bool increment, we just store true and return it for 2364 // preincrement, do an atomic swap with true for postincrement 2365 return Builder.CreateAtomicRMW( 2366 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2367 llvm::AtomicOrdering::SequentiallyConsistent); 2368 } 2369 // Special case for atomic increment / decrement on integers, emit 2370 // atomicrmw instructions. We skip this if we want to be doing overflow 2371 // checking, and fall into the slow path with the atomic cmpxchg loop. 2372 if (!type->isBooleanType() && type->isIntegerType() && 2373 !(type->isUnsignedIntegerType() && 2374 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2375 CGF.getLangOpts().getSignedOverflowBehavior() != 2376 LangOptions::SOB_Trapping) { 2377 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2378 llvm::AtomicRMWInst::Sub; 2379 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2380 llvm::Instruction::Sub; 2381 llvm::Value *amt = CGF.EmitToMemory( 2382 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2383 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2384 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2385 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2386 } 2387 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2388 input = value; 2389 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2390 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2391 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2392 value = CGF.EmitToMemory(value, type); 2393 Builder.CreateBr(opBB); 2394 Builder.SetInsertPoint(opBB); 2395 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2396 atomicPHI->addIncoming(value, startBB); 2397 value = atomicPHI; 2398 } else { 2399 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2400 input = value; 2401 } 2402 2403 // Special case of integer increment that we have to check first: bool++. 2404 // Due to promotion rules, we get: 2405 // bool++ -> bool = bool + 1 2406 // -> bool = (int)bool + 1 2407 // -> bool = ((int)bool + 1 != 0) 2408 // An interesting aspect of this is that increment is always true. 2409 // Decrement does not have this property. 2410 if (isInc && type->isBooleanType()) { 2411 value = Builder.getTrue(); 2412 2413 // Most common case by far: integer increment. 2414 } else if (type->isIntegerType()) { 2415 // Note that signed integer inc/dec with width less than int can't 2416 // overflow because of promotion rules; we're just eliding a few steps here. 2417 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2418 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2419 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2420 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2421 value = 2422 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2423 } else { 2424 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2425 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2426 } 2427 2428 // Next most common: pointer increment. 2429 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2430 QualType type = ptr->getPointeeType(); 2431 2432 // VLA types don't have constant size. 2433 if (const VariableArrayType *vla 2434 = CGF.getContext().getAsVariableArrayType(type)) { 2435 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2436 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2437 if (CGF.getLangOpts().isSignedOverflowDefined()) 2438 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2439 else 2440 value = CGF.EmitCheckedInBoundsGEP( 2441 value, numElts, /*SignedIndices=*/false, isSubtraction, 2442 E->getExprLoc(), "vla.inc"); 2443 2444 // Arithmetic on function pointers (!) is just +-1. 2445 } else if (type->isFunctionType()) { 2446 llvm::Value *amt = Builder.getInt32(amount); 2447 2448 value = CGF.EmitCastToVoidPtr(value); 2449 if (CGF.getLangOpts().isSignedOverflowDefined()) 2450 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2451 else 2452 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2453 isSubtraction, E->getExprLoc(), 2454 "incdec.funcptr"); 2455 value = Builder.CreateBitCast(value, input->getType()); 2456 2457 // For everything else, we can just do a simple increment. 2458 } else { 2459 llvm::Value *amt = Builder.getInt32(amount); 2460 if (CGF.getLangOpts().isSignedOverflowDefined()) 2461 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2462 else 2463 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2464 isSubtraction, E->getExprLoc(), 2465 "incdec.ptr"); 2466 } 2467 2468 // Vector increment/decrement. 2469 } else if (type->isVectorType()) { 2470 if (type->hasIntegerRepresentation()) { 2471 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2472 2473 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2474 } else { 2475 value = Builder.CreateFAdd( 2476 value, 2477 llvm::ConstantFP::get(value->getType(), amount), 2478 isInc ? "inc" : "dec"); 2479 } 2480 2481 // Floating point. 2482 } else if (type->isRealFloatingType()) { 2483 // Add the inc/dec to the real part. 2484 llvm::Value *amt; 2485 2486 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2487 // Another special case: half FP increment should be done via float 2488 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2489 value = Builder.CreateCall( 2490 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2491 CGF.CGM.FloatTy), 2492 input, "incdec.conv"); 2493 } else { 2494 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2495 } 2496 } 2497 2498 if (value->getType()->isFloatTy()) 2499 amt = llvm::ConstantFP::get(VMContext, 2500 llvm::APFloat(static_cast<float>(amount))); 2501 else if (value->getType()->isDoubleTy()) 2502 amt = llvm::ConstantFP::get(VMContext, 2503 llvm::APFloat(static_cast<double>(amount))); 2504 else { 2505 // Remaining types are Half, LongDouble or __float128. Convert from float. 2506 llvm::APFloat F(static_cast<float>(amount)); 2507 bool ignored; 2508 const llvm::fltSemantics *FS; 2509 // Don't use getFloatTypeSemantics because Half isn't 2510 // necessarily represented using the "half" LLVM type. 2511 if (value->getType()->isFP128Ty()) 2512 FS = &CGF.getTarget().getFloat128Format(); 2513 else if (value->getType()->isHalfTy()) 2514 FS = &CGF.getTarget().getHalfFormat(); 2515 else 2516 FS = &CGF.getTarget().getLongDoubleFormat(); 2517 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2518 amt = llvm::ConstantFP::get(VMContext, F); 2519 } 2520 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2521 2522 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2523 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2524 value = Builder.CreateCall( 2525 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2526 CGF.CGM.FloatTy), 2527 value, "incdec.conv"); 2528 } else { 2529 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2530 } 2531 } 2532 2533 // Objective-C pointer types. 2534 } else { 2535 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2536 value = CGF.EmitCastToVoidPtr(value); 2537 2538 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2539 if (!isInc) size = -size; 2540 llvm::Value *sizeValue = 2541 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2542 2543 if (CGF.getLangOpts().isSignedOverflowDefined()) 2544 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2545 else 2546 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2547 /*SignedIndices=*/false, isSubtraction, 2548 E->getExprLoc(), "incdec.objptr"); 2549 value = Builder.CreateBitCast(value, input->getType()); 2550 } 2551 2552 if (atomicPHI) { 2553 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2554 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2555 auto Pair = CGF.EmitAtomicCompareExchange( 2556 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2557 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2558 llvm::Value *success = Pair.second; 2559 atomicPHI->addIncoming(old, curBlock); 2560 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2561 Builder.SetInsertPoint(contBB); 2562 return isPre ? value : input; 2563 } 2564 2565 // Store the updated result through the lvalue. 2566 if (LV.isBitField()) 2567 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2568 else 2569 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2570 2571 // If this is a postinc, return the value read from memory, otherwise use the 2572 // updated value. 2573 return isPre ? value : input; 2574 } 2575 2576 2577 2578 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2579 TestAndClearIgnoreResultAssign(); 2580 // Emit unary minus with EmitSub so we handle overflow cases etc. 2581 BinOpInfo BinOp; 2582 BinOp.RHS = Visit(E->getSubExpr()); 2583 2584 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2585 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2586 else 2587 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2588 BinOp.Ty = E->getType(); 2589 BinOp.Opcode = BO_Sub; 2590 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2591 BinOp.E = E; 2592 return EmitSub(BinOp); 2593 } 2594 2595 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2596 TestAndClearIgnoreResultAssign(); 2597 Value *Op = Visit(E->getSubExpr()); 2598 return Builder.CreateNot(Op, "neg"); 2599 } 2600 2601 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2602 // Perform vector logical not on comparison with zero vector. 2603 if (E->getType()->isExtVectorType()) { 2604 Value *Oper = Visit(E->getSubExpr()); 2605 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2606 Value *Result; 2607 if (Oper->getType()->isFPOrFPVectorTy()) 2608 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2609 else 2610 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2611 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2612 } 2613 2614 // Compare operand to zero. 2615 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2616 2617 // Invert value. 2618 // TODO: Could dynamically modify easy computations here. For example, if 2619 // the operand is an icmp ne, turn into icmp eq. 2620 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2621 2622 // ZExt result to the expr type. 2623 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2624 } 2625 2626 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2627 // Try folding the offsetof to a constant. 2628 Expr::EvalResult EVResult; 2629 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2630 llvm::APSInt Value = EVResult.Val.getInt(); 2631 return Builder.getInt(Value); 2632 } 2633 2634 // Loop over the components of the offsetof to compute the value. 2635 unsigned n = E->getNumComponents(); 2636 llvm::Type* ResultType = ConvertType(E->getType()); 2637 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2638 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2639 for (unsigned i = 0; i != n; ++i) { 2640 OffsetOfNode ON = E->getComponent(i); 2641 llvm::Value *Offset = nullptr; 2642 switch (ON.getKind()) { 2643 case OffsetOfNode::Array: { 2644 // Compute the index 2645 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2646 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2647 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2648 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2649 2650 // Save the element type 2651 CurrentType = 2652 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2653 2654 // Compute the element size 2655 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2656 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2657 2658 // Multiply out to compute the result 2659 Offset = Builder.CreateMul(Idx, ElemSize); 2660 break; 2661 } 2662 2663 case OffsetOfNode::Field: { 2664 FieldDecl *MemberDecl = ON.getField(); 2665 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2666 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2667 2668 // Compute the index of the field in its parent. 2669 unsigned i = 0; 2670 // FIXME: It would be nice if we didn't have to loop here! 2671 for (RecordDecl::field_iterator Field = RD->field_begin(), 2672 FieldEnd = RD->field_end(); 2673 Field != FieldEnd; ++Field, ++i) { 2674 if (*Field == MemberDecl) 2675 break; 2676 } 2677 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2678 2679 // Compute the offset to the field 2680 int64_t OffsetInt = RL.getFieldOffset(i) / 2681 CGF.getContext().getCharWidth(); 2682 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2683 2684 // Save the element type. 2685 CurrentType = MemberDecl->getType(); 2686 break; 2687 } 2688 2689 case OffsetOfNode::Identifier: 2690 llvm_unreachable("dependent __builtin_offsetof"); 2691 2692 case OffsetOfNode::Base: { 2693 if (ON.getBase()->isVirtual()) { 2694 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2695 continue; 2696 } 2697 2698 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2699 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2700 2701 // Save the element type. 2702 CurrentType = ON.getBase()->getType(); 2703 2704 // Compute the offset to the base. 2705 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2706 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2707 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2708 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2709 break; 2710 } 2711 } 2712 Result = Builder.CreateAdd(Result, Offset); 2713 } 2714 return Result; 2715 } 2716 2717 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2718 /// argument of the sizeof expression as an integer. 2719 Value * 2720 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2721 const UnaryExprOrTypeTraitExpr *E) { 2722 QualType TypeToSize = E->getTypeOfArgument(); 2723 if (E->getKind() == UETT_SizeOf) { 2724 if (const VariableArrayType *VAT = 2725 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2726 if (E->isArgumentType()) { 2727 // sizeof(type) - make sure to emit the VLA size. 2728 CGF.EmitVariablyModifiedType(TypeToSize); 2729 } else { 2730 // C99 6.5.3.4p2: If the argument is an expression of type 2731 // VLA, it is evaluated. 2732 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2733 } 2734 2735 auto VlaSize = CGF.getVLASize(VAT); 2736 llvm::Value *size = VlaSize.NumElts; 2737 2738 // Scale the number of non-VLA elements by the non-VLA element size. 2739 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2740 if (!eltSize.isOne()) 2741 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2742 2743 return size; 2744 } 2745 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2746 auto Alignment = 2747 CGF.getContext() 2748 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2749 E->getTypeOfArgument()->getPointeeType())) 2750 .getQuantity(); 2751 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2752 } 2753 2754 // If this isn't sizeof(vla), the result must be constant; use the constant 2755 // folding logic so we don't have to duplicate it here. 2756 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2757 } 2758 2759 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2760 Expr *Op = E->getSubExpr(); 2761 if (Op->getType()->isAnyComplexType()) { 2762 // If it's an l-value, load through the appropriate subobject l-value. 2763 // Note that we have to ask E because Op might be an l-value that 2764 // this won't work for, e.g. an Obj-C property. 2765 if (E->isGLValue()) 2766 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2767 E->getExprLoc()).getScalarVal(); 2768 2769 // Otherwise, calculate and project. 2770 return CGF.EmitComplexExpr(Op, false, true).first; 2771 } 2772 2773 return Visit(Op); 2774 } 2775 2776 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2777 Expr *Op = E->getSubExpr(); 2778 if (Op->getType()->isAnyComplexType()) { 2779 // If it's an l-value, load through the appropriate subobject l-value. 2780 // Note that we have to ask E because Op might be an l-value that 2781 // this won't work for, e.g. an Obj-C property. 2782 if (Op->isGLValue()) 2783 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2784 E->getExprLoc()).getScalarVal(); 2785 2786 // Otherwise, calculate and project. 2787 return CGF.EmitComplexExpr(Op, true, false).second; 2788 } 2789 2790 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2791 // effects are evaluated, but not the actual value. 2792 if (Op->isGLValue()) 2793 CGF.EmitLValue(Op); 2794 else 2795 CGF.EmitScalarExpr(Op, true); 2796 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2797 } 2798 2799 //===----------------------------------------------------------------------===// 2800 // Binary Operators 2801 //===----------------------------------------------------------------------===// 2802 2803 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2804 TestAndClearIgnoreResultAssign(); 2805 BinOpInfo Result; 2806 Result.LHS = Visit(E->getLHS()); 2807 Result.RHS = Visit(E->getRHS()); 2808 Result.Ty = E->getType(); 2809 Result.Opcode = E->getOpcode(); 2810 Result.FPFeatures = E->getFPFeatures(); 2811 Result.E = E; 2812 return Result; 2813 } 2814 2815 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2816 const CompoundAssignOperator *E, 2817 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2818 Value *&Result) { 2819 QualType LHSTy = E->getLHS()->getType(); 2820 BinOpInfo OpInfo; 2821 2822 if (E->getComputationResultType()->isAnyComplexType()) 2823 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2824 2825 // Emit the RHS first. __block variables need to have the rhs evaluated 2826 // first, plus this should improve codegen a little. 2827 OpInfo.RHS = Visit(E->getRHS()); 2828 OpInfo.Ty = E->getComputationResultType(); 2829 OpInfo.Opcode = E->getOpcode(); 2830 OpInfo.FPFeatures = E->getFPFeatures(); 2831 OpInfo.E = E; 2832 // Load/convert the LHS. 2833 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2834 2835 llvm::PHINode *atomicPHI = nullptr; 2836 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2837 QualType type = atomicTy->getValueType(); 2838 if (!type->isBooleanType() && type->isIntegerType() && 2839 !(type->isUnsignedIntegerType() && 2840 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2841 CGF.getLangOpts().getSignedOverflowBehavior() != 2842 LangOptions::SOB_Trapping) { 2843 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2844 switch (OpInfo.Opcode) { 2845 // We don't have atomicrmw operands for *, %, /, <<, >> 2846 case BO_MulAssign: case BO_DivAssign: 2847 case BO_RemAssign: 2848 case BO_ShlAssign: 2849 case BO_ShrAssign: 2850 break; 2851 case BO_AddAssign: 2852 aop = llvm::AtomicRMWInst::Add; 2853 break; 2854 case BO_SubAssign: 2855 aop = llvm::AtomicRMWInst::Sub; 2856 break; 2857 case BO_AndAssign: 2858 aop = llvm::AtomicRMWInst::And; 2859 break; 2860 case BO_XorAssign: 2861 aop = llvm::AtomicRMWInst::Xor; 2862 break; 2863 case BO_OrAssign: 2864 aop = llvm::AtomicRMWInst::Or; 2865 break; 2866 default: 2867 llvm_unreachable("Invalid compound assignment type"); 2868 } 2869 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2870 llvm::Value *amt = CGF.EmitToMemory( 2871 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2872 E->getExprLoc()), 2873 LHSTy); 2874 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2875 llvm::AtomicOrdering::SequentiallyConsistent); 2876 return LHSLV; 2877 } 2878 } 2879 // FIXME: For floating point types, we should be saving and restoring the 2880 // floating point environment in the loop. 2881 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2882 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2883 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2884 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2885 Builder.CreateBr(opBB); 2886 Builder.SetInsertPoint(opBB); 2887 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2888 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2889 OpInfo.LHS = atomicPHI; 2890 } 2891 else 2892 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2893 2894 SourceLocation Loc = E->getExprLoc(); 2895 OpInfo.LHS = 2896 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2897 2898 // Expand the binary operator. 2899 Result = (this->*Func)(OpInfo); 2900 2901 // Convert the result back to the LHS type, 2902 // potentially with Implicit Conversion sanitizer check. 2903 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2904 Loc, ScalarConversionOpts(CGF.SanOpts)); 2905 2906 if (atomicPHI) { 2907 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2908 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2909 auto Pair = CGF.EmitAtomicCompareExchange( 2910 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2911 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2912 llvm::Value *success = Pair.second; 2913 atomicPHI->addIncoming(old, curBlock); 2914 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2915 Builder.SetInsertPoint(contBB); 2916 return LHSLV; 2917 } 2918 2919 // Store the result value into the LHS lvalue. Bit-fields are handled 2920 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2921 // 'An assignment expression has the value of the left operand after the 2922 // assignment...'. 2923 if (LHSLV.isBitField()) 2924 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2925 else 2926 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2927 2928 return LHSLV; 2929 } 2930 2931 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2932 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2933 bool Ignore = TestAndClearIgnoreResultAssign(); 2934 Value *RHS = nullptr; 2935 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2936 2937 // If the result is clearly ignored, return now. 2938 if (Ignore) 2939 return nullptr; 2940 2941 // The result of an assignment in C is the assigned r-value. 2942 if (!CGF.getLangOpts().CPlusPlus) 2943 return RHS; 2944 2945 // If the lvalue is non-volatile, return the computed value of the assignment. 2946 if (!LHS.isVolatileQualified()) 2947 return RHS; 2948 2949 // Otherwise, reload the value. 2950 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2951 } 2952 2953 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2954 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2955 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2956 2957 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2958 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2959 SanitizerKind::IntegerDivideByZero)); 2960 } 2961 2962 const auto *BO = cast<BinaryOperator>(Ops.E); 2963 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2964 Ops.Ty->hasSignedIntegerRepresentation() && 2965 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2966 Ops.mayHaveIntegerOverflow()) { 2967 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2968 2969 llvm::Value *IntMin = 2970 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2971 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2972 2973 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2974 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2975 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2976 Checks.push_back( 2977 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2978 } 2979 2980 if (Checks.size() > 0) 2981 EmitBinOpCheck(Checks, Ops); 2982 } 2983 2984 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2985 { 2986 CodeGenFunction::SanitizerScope SanScope(&CGF); 2987 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2988 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2989 Ops.Ty->isIntegerType() && 2990 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2991 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2992 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2993 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2994 Ops.Ty->isRealFloatingType() && 2995 Ops.mayHaveFloatDivisionByZero()) { 2996 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2997 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2998 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2999 Ops); 3000 } 3001 } 3002 3003 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3004 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3005 if (CGF.getLangOpts().OpenCL && 3006 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3007 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3008 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3009 // build option allows an application to specify that single precision 3010 // floating-point divide (x/y and 1/x) and sqrt used in the program 3011 // source are correctly rounded. 3012 llvm::Type *ValTy = Val->getType(); 3013 if (ValTy->isFloatTy() || 3014 (isa<llvm::VectorType>(ValTy) && 3015 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3016 CGF.SetFPAccuracy(Val, 2.5); 3017 } 3018 return Val; 3019 } 3020 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3021 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3022 else 3023 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3024 } 3025 3026 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3027 // Rem in C can't be a floating point type: C99 6.5.5p2. 3028 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3029 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3030 Ops.Ty->isIntegerType() && 3031 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3032 CodeGenFunction::SanitizerScope SanScope(&CGF); 3033 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3034 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3035 } 3036 3037 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3038 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3039 else 3040 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3041 } 3042 3043 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3044 unsigned IID; 3045 unsigned OpID = 0; 3046 3047 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3048 switch (Ops.Opcode) { 3049 case BO_Add: 3050 case BO_AddAssign: 3051 OpID = 1; 3052 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3053 llvm::Intrinsic::uadd_with_overflow; 3054 break; 3055 case BO_Sub: 3056 case BO_SubAssign: 3057 OpID = 2; 3058 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3059 llvm::Intrinsic::usub_with_overflow; 3060 break; 3061 case BO_Mul: 3062 case BO_MulAssign: 3063 OpID = 3; 3064 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3065 llvm::Intrinsic::umul_with_overflow; 3066 break; 3067 default: 3068 llvm_unreachable("Unsupported operation for overflow detection"); 3069 } 3070 OpID <<= 1; 3071 if (isSigned) 3072 OpID |= 1; 3073 3074 CodeGenFunction::SanitizerScope SanScope(&CGF); 3075 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3076 3077 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3078 3079 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3080 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3081 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3082 3083 // Handle overflow with llvm.trap if no custom handler has been specified. 3084 const std::string *handlerName = 3085 &CGF.getLangOpts().OverflowHandler; 3086 if (handlerName->empty()) { 3087 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3088 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3089 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3090 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3091 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3092 : SanitizerKind::UnsignedIntegerOverflow; 3093 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3094 } else 3095 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3096 return result; 3097 } 3098 3099 // Branch in case of overflow. 3100 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3101 llvm::BasicBlock *continueBB = 3102 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3103 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3104 3105 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3106 3107 // If an overflow handler is set, then we want to call it and then use its 3108 // result, if it returns. 3109 Builder.SetInsertPoint(overflowBB); 3110 3111 // Get the overflow handler. 3112 llvm::Type *Int8Ty = CGF.Int8Ty; 3113 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3114 llvm::FunctionType *handlerTy = 3115 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3116 llvm::FunctionCallee handler = 3117 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3118 3119 // Sign extend the args to 64-bit, so that we can use the same handler for 3120 // all types of overflow. 3121 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3122 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3123 3124 // Call the handler with the two arguments, the operation, and the size of 3125 // the result. 3126 llvm::Value *handlerArgs[] = { 3127 lhs, 3128 rhs, 3129 Builder.getInt8(OpID), 3130 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3131 }; 3132 llvm::Value *handlerResult = 3133 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3134 3135 // Truncate the result back to the desired size. 3136 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3137 Builder.CreateBr(continueBB); 3138 3139 Builder.SetInsertPoint(continueBB); 3140 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3141 phi->addIncoming(result, initialBB); 3142 phi->addIncoming(handlerResult, overflowBB); 3143 3144 return phi; 3145 } 3146 3147 /// Emit pointer + index arithmetic. 3148 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3149 const BinOpInfo &op, 3150 bool isSubtraction) { 3151 // Must have binary (not unary) expr here. Unary pointer 3152 // increment/decrement doesn't use this path. 3153 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3154 3155 Value *pointer = op.LHS; 3156 Expr *pointerOperand = expr->getLHS(); 3157 Value *index = op.RHS; 3158 Expr *indexOperand = expr->getRHS(); 3159 3160 // In a subtraction, the LHS is always the pointer. 3161 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3162 std::swap(pointer, index); 3163 std::swap(pointerOperand, indexOperand); 3164 } 3165 3166 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3167 3168 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3169 auto &DL = CGF.CGM.getDataLayout(); 3170 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3171 3172 // Some versions of glibc and gcc use idioms (particularly in their malloc 3173 // routines) that add a pointer-sized integer (known to be a pointer value) 3174 // to a null pointer in order to cast the value back to an integer or as 3175 // part of a pointer alignment algorithm. This is undefined behavior, but 3176 // we'd like to be able to compile programs that use it. 3177 // 3178 // Normally, we'd generate a GEP with a null-pointer base here in response 3179 // to that code, but it's also UB to dereference a pointer created that 3180 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3181 // generate a direct cast of the integer value to a pointer. 3182 // 3183 // The idiom (p = nullptr + N) is not met if any of the following are true: 3184 // 3185 // The operation is subtraction. 3186 // The index is not pointer-sized. 3187 // The pointer type is not byte-sized. 3188 // 3189 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3190 op.Opcode, 3191 expr->getLHS(), 3192 expr->getRHS())) 3193 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3194 3195 if (width != DL.getTypeSizeInBits(PtrTy)) { 3196 // Zero-extend or sign-extend the pointer value according to 3197 // whether the index is signed or not. 3198 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3199 "idx.ext"); 3200 } 3201 3202 // If this is subtraction, negate the index. 3203 if (isSubtraction) 3204 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3205 3206 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3207 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3208 /*Accessed*/ false); 3209 3210 const PointerType *pointerType 3211 = pointerOperand->getType()->getAs<PointerType>(); 3212 if (!pointerType) { 3213 QualType objectType = pointerOperand->getType() 3214 ->castAs<ObjCObjectPointerType>() 3215 ->getPointeeType(); 3216 llvm::Value *objectSize 3217 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3218 3219 index = CGF.Builder.CreateMul(index, objectSize); 3220 3221 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3222 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3223 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3224 } 3225 3226 QualType elementType = pointerType->getPointeeType(); 3227 if (const VariableArrayType *vla 3228 = CGF.getContext().getAsVariableArrayType(elementType)) { 3229 // The element count here is the total number of non-VLA elements. 3230 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3231 3232 // Effectively, the multiply by the VLA size is part of the GEP. 3233 // GEP indexes are signed, and scaling an index isn't permitted to 3234 // signed-overflow, so we use the same semantics for our explicit 3235 // multiply. We suppress this if overflow is not undefined behavior. 3236 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3237 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3238 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3239 } else { 3240 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3241 pointer = 3242 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3243 op.E->getExprLoc(), "add.ptr"); 3244 } 3245 return pointer; 3246 } 3247 3248 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3249 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3250 // future proof. 3251 if (elementType->isVoidType() || elementType->isFunctionType()) { 3252 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3253 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3254 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3255 } 3256 3257 if (CGF.getLangOpts().isSignedOverflowDefined()) 3258 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3259 3260 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3261 op.E->getExprLoc(), "add.ptr"); 3262 } 3263 3264 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3265 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3266 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3267 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3268 // efficient operations. 3269 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3270 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3271 bool negMul, bool negAdd) { 3272 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3273 3274 Value *MulOp0 = MulOp->getOperand(0); 3275 Value *MulOp1 = MulOp->getOperand(1); 3276 if (negMul) { 3277 MulOp0 = 3278 Builder.CreateFSub( 3279 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3280 "neg"); 3281 } else if (negAdd) { 3282 Addend = 3283 Builder.CreateFSub( 3284 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3285 "neg"); 3286 } 3287 3288 Value *FMulAdd = Builder.CreateCall( 3289 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3290 {MulOp0, MulOp1, Addend}); 3291 MulOp->eraseFromParent(); 3292 3293 return FMulAdd; 3294 } 3295 3296 // Check whether it would be legal to emit an fmuladd intrinsic call to 3297 // represent op and if so, build the fmuladd. 3298 // 3299 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3300 // Does NOT check the type of the operation - it's assumed that this function 3301 // will be called from contexts where it's known that the type is contractable. 3302 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3303 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3304 bool isSub=false) { 3305 3306 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3307 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3308 "Only fadd/fsub can be the root of an fmuladd."); 3309 3310 // Check whether this op is marked as fusable. 3311 if (!op.FPFeatures.allowFPContractWithinStatement()) 3312 return nullptr; 3313 3314 // We have a potentially fusable op. Look for a mul on one of the operands. 3315 // Also, make sure that the mul result isn't used directly. In that case, 3316 // there's no point creating a muladd operation. 3317 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3318 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3319 LHSBinOp->use_empty()) 3320 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3321 } 3322 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3323 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3324 RHSBinOp->use_empty()) 3325 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3326 } 3327 3328 return nullptr; 3329 } 3330 3331 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3332 if (op.LHS->getType()->isPointerTy() || 3333 op.RHS->getType()->isPointerTy()) 3334 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3335 3336 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3337 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3338 case LangOptions::SOB_Defined: 3339 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3340 case LangOptions::SOB_Undefined: 3341 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3342 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3343 LLVM_FALLTHROUGH; 3344 case LangOptions::SOB_Trapping: 3345 if (CanElideOverflowCheck(CGF.getContext(), op)) 3346 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3347 return EmitOverflowCheckedBinOp(op); 3348 } 3349 } 3350 3351 if (op.Ty->isUnsignedIntegerType() && 3352 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3353 !CanElideOverflowCheck(CGF.getContext(), op)) 3354 return EmitOverflowCheckedBinOp(op); 3355 3356 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3357 // Try to form an fmuladd. 3358 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3359 return FMulAdd; 3360 3361 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3362 return propagateFMFlags(V, op); 3363 } 3364 3365 if (op.isFixedPointBinOp()) 3366 return EmitFixedPointBinOp(op); 3367 3368 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3369 } 3370 3371 /// The resulting value must be calculated with exact precision, so the operands 3372 /// may not be the same type. 3373 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3374 using llvm::APSInt; 3375 using llvm::ConstantInt; 3376 3377 const auto *BinOp = cast<BinaryOperator>(op.E); 3378 3379 // The result is a fixed point type and at least one of the operands is fixed 3380 // point while the other is either fixed point or an int. This resulting type 3381 // should be determined by Sema::handleFixedPointConversions(). 3382 QualType ResultTy = op.Ty; 3383 QualType LHSTy = BinOp->getLHS()->getType(); 3384 QualType RHSTy = BinOp->getRHS()->getType(); 3385 ASTContext &Ctx = CGF.getContext(); 3386 Value *LHS = op.LHS; 3387 Value *RHS = op.RHS; 3388 3389 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3390 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3391 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3392 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3393 3394 // Convert the operands to the full precision type. 3395 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3396 BinOp->getExprLoc()); 3397 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3398 BinOp->getExprLoc()); 3399 3400 // Perform the actual addition. 3401 Value *Result; 3402 switch (BinOp->getOpcode()) { 3403 case BO_Add: { 3404 if (ResultFixedSema.isSaturated()) { 3405 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3406 ? llvm::Intrinsic::sadd_sat 3407 : llvm::Intrinsic::uadd_sat; 3408 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3409 } else { 3410 Result = Builder.CreateAdd(FullLHS, FullRHS); 3411 } 3412 break; 3413 } 3414 case BO_Sub: { 3415 if (ResultFixedSema.isSaturated()) { 3416 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3417 ? llvm::Intrinsic::ssub_sat 3418 : llvm::Intrinsic::usub_sat; 3419 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3420 } else { 3421 Result = Builder.CreateSub(FullLHS, FullRHS); 3422 } 3423 break; 3424 } 3425 case BO_LT: 3426 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3427 : Builder.CreateICmpULT(FullLHS, FullRHS); 3428 case BO_GT: 3429 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3430 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3431 case BO_LE: 3432 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3433 : Builder.CreateICmpULE(FullLHS, FullRHS); 3434 case BO_GE: 3435 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3436 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3437 case BO_EQ: 3438 // For equality operations, we assume any padding bits on unsigned types are 3439 // zero'd out. They could be overwritten through non-saturating operations 3440 // that cause overflow, but this leads to undefined behavior. 3441 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3442 case BO_NE: 3443 return Builder.CreateICmpNE(FullLHS, FullRHS); 3444 case BO_Mul: 3445 case BO_Div: 3446 case BO_Shl: 3447 case BO_Shr: 3448 case BO_Cmp: 3449 case BO_LAnd: 3450 case BO_LOr: 3451 case BO_MulAssign: 3452 case BO_DivAssign: 3453 case BO_AddAssign: 3454 case BO_SubAssign: 3455 case BO_ShlAssign: 3456 case BO_ShrAssign: 3457 llvm_unreachable("Found unimplemented fixed point binary operation"); 3458 case BO_PtrMemD: 3459 case BO_PtrMemI: 3460 case BO_Rem: 3461 case BO_Xor: 3462 case BO_And: 3463 case BO_Or: 3464 case BO_Assign: 3465 case BO_RemAssign: 3466 case BO_AndAssign: 3467 case BO_XorAssign: 3468 case BO_OrAssign: 3469 case BO_Comma: 3470 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3471 } 3472 3473 // Convert to the result type. 3474 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3475 BinOp->getExprLoc()); 3476 } 3477 3478 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3479 // The LHS is always a pointer if either side is. 3480 if (!op.LHS->getType()->isPointerTy()) { 3481 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3482 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3483 case LangOptions::SOB_Defined: 3484 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3485 case LangOptions::SOB_Undefined: 3486 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3487 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3488 LLVM_FALLTHROUGH; 3489 case LangOptions::SOB_Trapping: 3490 if (CanElideOverflowCheck(CGF.getContext(), op)) 3491 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3492 return EmitOverflowCheckedBinOp(op); 3493 } 3494 } 3495 3496 if (op.Ty->isUnsignedIntegerType() && 3497 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3498 !CanElideOverflowCheck(CGF.getContext(), op)) 3499 return EmitOverflowCheckedBinOp(op); 3500 3501 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3502 // Try to form an fmuladd. 3503 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3504 return FMulAdd; 3505 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3506 return propagateFMFlags(V, op); 3507 } 3508 3509 if (op.isFixedPointBinOp()) 3510 return EmitFixedPointBinOp(op); 3511 3512 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3513 } 3514 3515 // If the RHS is not a pointer, then we have normal pointer 3516 // arithmetic. 3517 if (!op.RHS->getType()->isPointerTy()) 3518 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3519 3520 // Otherwise, this is a pointer subtraction. 3521 3522 // Do the raw subtraction part. 3523 llvm::Value *LHS 3524 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3525 llvm::Value *RHS 3526 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3527 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3528 3529 // Okay, figure out the element size. 3530 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3531 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3532 3533 llvm::Value *divisor = nullptr; 3534 3535 // For a variable-length array, this is going to be non-constant. 3536 if (const VariableArrayType *vla 3537 = CGF.getContext().getAsVariableArrayType(elementType)) { 3538 auto VlaSize = CGF.getVLASize(vla); 3539 elementType = VlaSize.Type; 3540 divisor = VlaSize.NumElts; 3541 3542 // Scale the number of non-VLA elements by the non-VLA element size. 3543 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3544 if (!eltSize.isOne()) 3545 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3546 3547 // For everything elese, we can just compute it, safe in the 3548 // assumption that Sema won't let anything through that we can't 3549 // safely compute the size of. 3550 } else { 3551 CharUnits elementSize; 3552 // Handle GCC extension for pointer arithmetic on void* and 3553 // function pointer types. 3554 if (elementType->isVoidType() || elementType->isFunctionType()) 3555 elementSize = CharUnits::One(); 3556 else 3557 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3558 3559 // Don't even emit the divide for element size of 1. 3560 if (elementSize.isOne()) 3561 return diffInChars; 3562 3563 divisor = CGF.CGM.getSize(elementSize); 3564 } 3565 3566 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3567 // pointer difference in C is only defined in the case where both operands 3568 // are pointing to elements of an array. 3569 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3570 } 3571 3572 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3573 llvm::IntegerType *Ty; 3574 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3575 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3576 else 3577 Ty = cast<llvm::IntegerType>(LHS->getType()); 3578 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3579 } 3580 3581 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3582 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3583 // RHS to the same size as the LHS. 3584 Value *RHS = Ops.RHS; 3585 if (Ops.LHS->getType() != RHS->getType()) 3586 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3587 3588 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3589 Ops.Ty->hasSignedIntegerRepresentation() && 3590 !CGF.getLangOpts().isSignedOverflowDefined() && 3591 !CGF.getLangOpts().CPlusPlus2a; 3592 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3593 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3594 if (CGF.getLangOpts().OpenCL) 3595 RHS = 3596 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3597 else if ((SanitizeBase || SanitizeExponent) && 3598 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3599 CodeGenFunction::SanitizerScope SanScope(&CGF); 3600 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3601 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3602 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3603 3604 if (SanitizeExponent) { 3605 Checks.push_back( 3606 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3607 } 3608 3609 if (SanitizeBase) { 3610 // Check whether we are shifting any non-zero bits off the top of the 3611 // integer. We only emit this check if exponent is valid - otherwise 3612 // instructions below will have undefined behavior themselves. 3613 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3614 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3615 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3616 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3617 llvm::Value *PromotedWidthMinusOne = 3618 (RHS == Ops.RHS) ? WidthMinusOne 3619 : GetWidthMinusOneValue(Ops.LHS, RHS); 3620 CGF.EmitBlock(CheckShiftBase); 3621 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3622 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3623 /*NUW*/ true, /*NSW*/ true), 3624 "shl.check"); 3625 if (CGF.getLangOpts().CPlusPlus) { 3626 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3627 // Under C++11's rules, shifting a 1 bit into the sign bit is 3628 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3629 // define signed left shifts, so we use the C99 and C++11 rules there). 3630 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3631 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3632 } 3633 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3634 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3635 CGF.EmitBlock(Cont); 3636 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3637 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3638 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3639 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3640 } 3641 3642 assert(!Checks.empty()); 3643 EmitBinOpCheck(Checks, Ops); 3644 } 3645 3646 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3647 } 3648 3649 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3650 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3651 // RHS to the same size as the LHS. 3652 Value *RHS = Ops.RHS; 3653 if (Ops.LHS->getType() != RHS->getType()) 3654 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3655 3656 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3657 if (CGF.getLangOpts().OpenCL) 3658 RHS = 3659 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3660 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3661 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3662 CodeGenFunction::SanitizerScope SanScope(&CGF); 3663 llvm::Value *Valid = 3664 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3665 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3666 } 3667 3668 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3669 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3670 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3671 } 3672 3673 enum IntrinsicType { VCMPEQ, VCMPGT }; 3674 // return corresponding comparison intrinsic for given vector type 3675 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3676 BuiltinType::Kind ElemKind) { 3677 switch (ElemKind) { 3678 default: llvm_unreachable("unexpected element type"); 3679 case BuiltinType::Char_U: 3680 case BuiltinType::UChar: 3681 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3682 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3683 case BuiltinType::Char_S: 3684 case BuiltinType::SChar: 3685 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3686 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3687 case BuiltinType::UShort: 3688 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3689 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3690 case BuiltinType::Short: 3691 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3692 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3693 case BuiltinType::UInt: 3694 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3695 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3696 case BuiltinType::Int: 3697 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3698 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3699 case BuiltinType::ULong: 3700 case BuiltinType::ULongLong: 3701 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3702 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3703 case BuiltinType::Long: 3704 case BuiltinType::LongLong: 3705 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3706 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3707 case BuiltinType::Float: 3708 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3709 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3710 case BuiltinType::Double: 3711 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3712 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3713 } 3714 } 3715 3716 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3717 llvm::CmpInst::Predicate UICmpOpc, 3718 llvm::CmpInst::Predicate SICmpOpc, 3719 llvm::CmpInst::Predicate FCmpOpc) { 3720 TestAndClearIgnoreResultAssign(); 3721 Value *Result; 3722 QualType LHSTy = E->getLHS()->getType(); 3723 QualType RHSTy = E->getRHS()->getType(); 3724 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3725 assert(E->getOpcode() == BO_EQ || 3726 E->getOpcode() == BO_NE); 3727 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3728 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3729 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3730 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3731 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3732 BinOpInfo BOInfo = EmitBinOps(E); 3733 Value *LHS = BOInfo.LHS; 3734 Value *RHS = BOInfo.RHS; 3735 3736 // If AltiVec, the comparison results in a numeric type, so we use 3737 // intrinsics comparing vectors and giving 0 or 1 as a result 3738 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3739 // constants for mapping CR6 register bits to predicate result 3740 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3741 3742 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3743 3744 // in several cases vector arguments order will be reversed 3745 Value *FirstVecArg = LHS, 3746 *SecondVecArg = RHS; 3747 3748 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3749 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3750 BuiltinType::Kind ElementKind = BTy->getKind(); 3751 3752 switch(E->getOpcode()) { 3753 default: llvm_unreachable("is not a comparison operation"); 3754 case BO_EQ: 3755 CR6 = CR6_LT; 3756 ID = GetIntrinsic(VCMPEQ, ElementKind); 3757 break; 3758 case BO_NE: 3759 CR6 = CR6_EQ; 3760 ID = GetIntrinsic(VCMPEQ, ElementKind); 3761 break; 3762 case BO_LT: 3763 CR6 = CR6_LT; 3764 ID = GetIntrinsic(VCMPGT, ElementKind); 3765 std::swap(FirstVecArg, SecondVecArg); 3766 break; 3767 case BO_GT: 3768 CR6 = CR6_LT; 3769 ID = GetIntrinsic(VCMPGT, ElementKind); 3770 break; 3771 case BO_LE: 3772 if (ElementKind == BuiltinType::Float) { 3773 CR6 = CR6_LT; 3774 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3775 std::swap(FirstVecArg, SecondVecArg); 3776 } 3777 else { 3778 CR6 = CR6_EQ; 3779 ID = GetIntrinsic(VCMPGT, ElementKind); 3780 } 3781 break; 3782 case BO_GE: 3783 if (ElementKind == BuiltinType::Float) { 3784 CR6 = CR6_LT; 3785 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3786 } 3787 else { 3788 CR6 = CR6_EQ; 3789 ID = GetIntrinsic(VCMPGT, ElementKind); 3790 std::swap(FirstVecArg, SecondVecArg); 3791 } 3792 break; 3793 } 3794 3795 Value *CR6Param = Builder.getInt32(CR6); 3796 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3797 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3798 3799 // The result type of intrinsic may not be same as E->getType(). 3800 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3801 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3802 // do nothing, if ResultTy is not i1 at the same time, it will cause 3803 // crash later. 3804 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3805 if (ResultTy->getBitWidth() > 1 && 3806 E->getType() == CGF.getContext().BoolTy) 3807 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3808 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3809 E->getExprLoc()); 3810 } 3811 3812 if (BOInfo.isFixedPointBinOp()) { 3813 Result = EmitFixedPointBinOp(BOInfo); 3814 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3815 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3816 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3817 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3818 } else { 3819 // Unsigned integers and pointers. 3820 3821 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3822 !isa<llvm::ConstantPointerNull>(LHS) && 3823 !isa<llvm::ConstantPointerNull>(RHS)) { 3824 3825 // Dynamic information is required to be stripped for comparisons, 3826 // because it could leak the dynamic information. Based on comparisons 3827 // of pointers to dynamic objects, the optimizer can replace one pointer 3828 // with another, which might be incorrect in presence of invariant 3829 // groups. Comparison with null is safe because null does not carry any 3830 // dynamic information. 3831 if (LHSTy.mayBeDynamicClass()) 3832 LHS = Builder.CreateStripInvariantGroup(LHS); 3833 if (RHSTy.mayBeDynamicClass()) 3834 RHS = Builder.CreateStripInvariantGroup(RHS); 3835 } 3836 3837 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3838 } 3839 3840 // If this is a vector comparison, sign extend the result to the appropriate 3841 // vector integer type and return it (don't convert to bool). 3842 if (LHSTy->isVectorType()) 3843 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3844 3845 } else { 3846 // Complex Comparison: can only be an equality comparison. 3847 CodeGenFunction::ComplexPairTy LHS, RHS; 3848 QualType CETy; 3849 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3850 LHS = CGF.EmitComplexExpr(E->getLHS()); 3851 CETy = CTy->getElementType(); 3852 } else { 3853 LHS.first = Visit(E->getLHS()); 3854 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3855 CETy = LHSTy; 3856 } 3857 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3858 RHS = CGF.EmitComplexExpr(E->getRHS()); 3859 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3860 CTy->getElementType()) && 3861 "The element types must always match."); 3862 (void)CTy; 3863 } else { 3864 RHS.first = Visit(E->getRHS()); 3865 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3866 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3867 "The element types must always match."); 3868 } 3869 3870 Value *ResultR, *ResultI; 3871 if (CETy->isRealFloatingType()) { 3872 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3873 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3874 } else { 3875 // Complex comparisons can only be equality comparisons. As such, signed 3876 // and unsigned opcodes are the same. 3877 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3878 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3879 } 3880 3881 if (E->getOpcode() == BO_EQ) { 3882 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3883 } else { 3884 assert(E->getOpcode() == BO_NE && 3885 "Complex comparison other than == or != ?"); 3886 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3887 } 3888 } 3889 3890 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3891 E->getExprLoc()); 3892 } 3893 3894 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3895 bool Ignore = TestAndClearIgnoreResultAssign(); 3896 3897 Value *RHS; 3898 LValue LHS; 3899 3900 switch (E->getLHS()->getType().getObjCLifetime()) { 3901 case Qualifiers::OCL_Strong: 3902 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3903 break; 3904 3905 case Qualifiers::OCL_Autoreleasing: 3906 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3907 break; 3908 3909 case Qualifiers::OCL_ExplicitNone: 3910 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3911 break; 3912 3913 case Qualifiers::OCL_Weak: 3914 RHS = Visit(E->getRHS()); 3915 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3916 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3917 break; 3918 3919 case Qualifiers::OCL_None: 3920 // __block variables need to have the rhs evaluated first, plus 3921 // this should improve codegen just a little. 3922 RHS = Visit(E->getRHS()); 3923 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3924 3925 // Store the value into the LHS. Bit-fields are handled specially 3926 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3927 // 'An assignment expression has the value of the left operand after 3928 // the assignment...'. 3929 if (LHS.isBitField()) { 3930 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3931 } else { 3932 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3933 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3934 } 3935 } 3936 3937 // If the result is clearly ignored, return now. 3938 if (Ignore) 3939 return nullptr; 3940 3941 // The result of an assignment in C is the assigned r-value. 3942 if (!CGF.getLangOpts().CPlusPlus) 3943 return RHS; 3944 3945 // If the lvalue is non-volatile, return the computed value of the assignment. 3946 if (!LHS.isVolatileQualified()) 3947 return RHS; 3948 3949 // Otherwise, reload the value. 3950 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3951 } 3952 3953 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3954 // Perform vector logical and on comparisons with zero vectors. 3955 if (E->getType()->isVectorType()) { 3956 CGF.incrementProfileCounter(E); 3957 3958 Value *LHS = Visit(E->getLHS()); 3959 Value *RHS = Visit(E->getRHS()); 3960 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3961 if (LHS->getType()->isFPOrFPVectorTy()) { 3962 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3963 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3964 } else { 3965 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3966 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3967 } 3968 Value *And = Builder.CreateAnd(LHS, RHS); 3969 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3970 } 3971 3972 llvm::Type *ResTy = ConvertType(E->getType()); 3973 3974 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3975 // If we have 1 && X, just emit X without inserting the control flow. 3976 bool LHSCondVal; 3977 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3978 if (LHSCondVal) { // If we have 1 && X, just emit X. 3979 CGF.incrementProfileCounter(E); 3980 3981 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3982 // ZExt result to int or bool. 3983 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3984 } 3985 3986 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3987 if (!CGF.ContainsLabel(E->getRHS())) 3988 return llvm::Constant::getNullValue(ResTy); 3989 } 3990 3991 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3992 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3993 3994 CodeGenFunction::ConditionalEvaluation eval(CGF); 3995 3996 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3997 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3998 CGF.getProfileCount(E->getRHS())); 3999 4000 // Any edges into the ContBlock are now from an (indeterminate number of) 4001 // edges from this first condition. All of these values will be false. Start 4002 // setting up the PHI node in the Cont Block for this. 4003 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4004 "", ContBlock); 4005 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4006 PI != PE; ++PI) 4007 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4008 4009 eval.begin(CGF); 4010 CGF.EmitBlock(RHSBlock); 4011 CGF.incrementProfileCounter(E); 4012 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4013 eval.end(CGF); 4014 4015 // Reaquire the RHS block, as there may be subblocks inserted. 4016 RHSBlock = Builder.GetInsertBlock(); 4017 4018 // Emit an unconditional branch from this block to ContBlock. 4019 { 4020 // There is no need to emit line number for unconditional branch. 4021 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4022 CGF.EmitBlock(ContBlock); 4023 } 4024 // Insert an entry into the phi node for the edge with the value of RHSCond. 4025 PN->addIncoming(RHSCond, RHSBlock); 4026 4027 // Artificial location to preserve the scope information 4028 { 4029 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4030 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4031 } 4032 4033 // ZExt result to int. 4034 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4035 } 4036 4037 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4038 // Perform vector logical or on comparisons with zero vectors. 4039 if (E->getType()->isVectorType()) { 4040 CGF.incrementProfileCounter(E); 4041 4042 Value *LHS = Visit(E->getLHS()); 4043 Value *RHS = Visit(E->getRHS()); 4044 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4045 if (LHS->getType()->isFPOrFPVectorTy()) { 4046 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4047 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4048 } else { 4049 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4050 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4051 } 4052 Value *Or = Builder.CreateOr(LHS, RHS); 4053 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4054 } 4055 4056 llvm::Type *ResTy = ConvertType(E->getType()); 4057 4058 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4059 // If we have 0 || X, just emit X without inserting the control flow. 4060 bool LHSCondVal; 4061 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4062 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4063 CGF.incrementProfileCounter(E); 4064 4065 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4066 // ZExt result to int or bool. 4067 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4068 } 4069 4070 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4071 if (!CGF.ContainsLabel(E->getRHS())) 4072 return llvm::ConstantInt::get(ResTy, 1); 4073 } 4074 4075 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4076 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4077 4078 CodeGenFunction::ConditionalEvaluation eval(CGF); 4079 4080 // Branch on the LHS first. If it is true, go to the success (cont) block. 4081 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4082 CGF.getCurrentProfileCount() - 4083 CGF.getProfileCount(E->getRHS())); 4084 4085 // Any edges into the ContBlock are now from an (indeterminate number of) 4086 // edges from this first condition. All of these values will be true. Start 4087 // setting up the PHI node in the Cont Block for this. 4088 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4089 "", ContBlock); 4090 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4091 PI != PE; ++PI) 4092 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4093 4094 eval.begin(CGF); 4095 4096 // Emit the RHS condition as a bool value. 4097 CGF.EmitBlock(RHSBlock); 4098 CGF.incrementProfileCounter(E); 4099 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4100 4101 eval.end(CGF); 4102 4103 // Reaquire the RHS block, as there may be subblocks inserted. 4104 RHSBlock = Builder.GetInsertBlock(); 4105 4106 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4107 // into the phi node for the edge with the value of RHSCond. 4108 CGF.EmitBlock(ContBlock); 4109 PN->addIncoming(RHSCond, RHSBlock); 4110 4111 // ZExt result to int. 4112 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4113 } 4114 4115 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4116 CGF.EmitIgnoredExpr(E->getLHS()); 4117 CGF.EnsureInsertPoint(); 4118 return Visit(E->getRHS()); 4119 } 4120 4121 //===----------------------------------------------------------------------===// 4122 // Other Operators 4123 //===----------------------------------------------------------------------===// 4124 4125 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4126 /// expression is cheap enough and side-effect-free enough to evaluate 4127 /// unconditionally instead of conditionally. This is used to convert control 4128 /// flow into selects in some cases. 4129 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4130 CodeGenFunction &CGF) { 4131 // Anything that is an integer or floating point constant is fine. 4132 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4133 4134 // Even non-volatile automatic variables can't be evaluated unconditionally. 4135 // Referencing a thread_local may cause non-trivial initialization work to 4136 // occur. If we're inside a lambda and one of the variables is from the scope 4137 // outside the lambda, that function may have returned already. Reading its 4138 // locals is a bad idea. Also, these reads may introduce races there didn't 4139 // exist in the source-level program. 4140 } 4141 4142 4143 Value *ScalarExprEmitter:: 4144 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4145 TestAndClearIgnoreResultAssign(); 4146 4147 // Bind the common expression if necessary. 4148 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4149 4150 Expr *condExpr = E->getCond(); 4151 Expr *lhsExpr = E->getTrueExpr(); 4152 Expr *rhsExpr = E->getFalseExpr(); 4153 4154 // If the condition constant folds and can be elided, try to avoid emitting 4155 // the condition and the dead arm. 4156 bool CondExprBool; 4157 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4158 Expr *live = lhsExpr, *dead = rhsExpr; 4159 if (!CondExprBool) std::swap(live, dead); 4160 4161 // If the dead side doesn't have labels we need, just emit the Live part. 4162 if (!CGF.ContainsLabel(dead)) { 4163 if (CondExprBool) 4164 CGF.incrementProfileCounter(E); 4165 Value *Result = Visit(live); 4166 4167 // If the live part is a throw expression, it acts like it has a void 4168 // type, so evaluating it returns a null Value*. However, a conditional 4169 // with non-void type must return a non-null Value*. 4170 if (!Result && !E->getType()->isVoidType()) 4171 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4172 4173 return Result; 4174 } 4175 } 4176 4177 // OpenCL: If the condition is a vector, we can treat this condition like 4178 // the select function. 4179 if (CGF.getLangOpts().OpenCL 4180 && condExpr->getType()->isVectorType()) { 4181 CGF.incrementProfileCounter(E); 4182 4183 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4184 llvm::Value *LHS = Visit(lhsExpr); 4185 llvm::Value *RHS = Visit(rhsExpr); 4186 4187 llvm::Type *condType = ConvertType(condExpr->getType()); 4188 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4189 4190 unsigned numElem = vecTy->getNumElements(); 4191 llvm::Type *elemType = vecTy->getElementType(); 4192 4193 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4194 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4195 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4196 llvm::VectorType::get(elemType, 4197 numElem), 4198 "sext"); 4199 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4200 4201 // Cast float to int to perform ANDs if necessary. 4202 llvm::Value *RHSTmp = RHS; 4203 llvm::Value *LHSTmp = LHS; 4204 bool wasCast = false; 4205 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4206 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4207 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4208 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4209 wasCast = true; 4210 } 4211 4212 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4213 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4214 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4215 if (wasCast) 4216 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4217 4218 return tmp5; 4219 } 4220 4221 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4222 // select instead of as control flow. We can only do this if it is cheap and 4223 // safe to evaluate the LHS and RHS unconditionally. 4224 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4225 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4226 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4227 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4228 4229 CGF.incrementProfileCounter(E, StepV); 4230 4231 llvm::Value *LHS = Visit(lhsExpr); 4232 llvm::Value *RHS = Visit(rhsExpr); 4233 if (!LHS) { 4234 // If the conditional has void type, make sure we return a null Value*. 4235 assert(!RHS && "LHS and RHS types must match"); 4236 return nullptr; 4237 } 4238 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4239 } 4240 4241 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4242 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4243 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4244 4245 CodeGenFunction::ConditionalEvaluation eval(CGF); 4246 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4247 CGF.getProfileCount(lhsExpr)); 4248 4249 CGF.EmitBlock(LHSBlock); 4250 CGF.incrementProfileCounter(E); 4251 eval.begin(CGF); 4252 Value *LHS = Visit(lhsExpr); 4253 eval.end(CGF); 4254 4255 LHSBlock = Builder.GetInsertBlock(); 4256 Builder.CreateBr(ContBlock); 4257 4258 CGF.EmitBlock(RHSBlock); 4259 eval.begin(CGF); 4260 Value *RHS = Visit(rhsExpr); 4261 eval.end(CGF); 4262 4263 RHSBlock = Builder.GetInsertBlock(); 4264 CGF.EmitBlock(ContBlock); 4265 4266 // If the LHS or RHS is a throw expression, it will be legitimately null. 4267 if (!LHS) 4268 return RHS; 4269 if (!RHS) 4270 return LHS; 4271 4272 // Create a PHI node for the real part. 4273 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4274 PN->addIncoming(LHS, LHSBlock); 4275 PN->addIncoming(RHS, RHSBlock); 4276 return PN; 4277 } 4278 4279 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4280 return Visit(E->getChosenSubExpr()); 4281 } 4282 4283 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4284 QualType Ty = VE->getType(); 4285 4286 if (Ty->isVariablyModifiedType()) 4287 CGF.EmitVariablyModifiedType(Ty); 4288 4289 Address ArgValue = Address::invalid(); 4290 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4291 4292 llvm::Type *ArgTy = ConvertType(VE->getType()); 4293 4294 // If EmitVAArg fails, emit an error. 4295 if (!ArgPtr.isValid()) { 4296 CGF.ErrorUnsupported(VE, "va_arg expression"); 4297 return llvm::UndefValue::get(ArgTy); 4298 } 4299 4300 // FIXME Volatility. 4301 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4302 4303 // If EmitVAArg promoted the type, we must truncate it. 4304 if (ArgTy != Val->getType()) { 4305 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4306 Val = Builder.CreateIntToPtr(Val, ArgTy); 4307 else 4308 Val = Builder.CreateTrunc(Val, ArgTy); 4309 } 4310 4311 return Val; 4312 } 4313 4314 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4315 return CGF.EmitBlockLiteral(block); 4316 } 4317 4318 // Convert a vec3 to vec4, or vice versa. 4319 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4320 Value *Src, unsigned NumElementsDst) { 4321 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4322 SmallVector<llvm::Constant*, 4> Args; 4323 Args.push_back(Builder.getInt32(0)); 4324 Args.push_back(Builder.getInt32(1)); 4325 Args.push_back(Builder.getInt32(2)); 4326 if (NumElementsDst == 4) 4327 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4328 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4329 return Builder.CreateShuffleVector(Src, UnV, Mask); 4330 } 4331 4332 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4333 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4334 // but could be scalar or vectors of different lengths, and either can be 4335 // pointer. 4336 // There are 4 cases: 4337 // 1. non-pointer -> non-pointer : needs 1 bitcast 4338 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4339 // 3. pointer -> non-pointer 4340 // a) pointer -> intptr_t : needs 1 ptrtoint 4341 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4342 // 4. non-pointer -> pointer 4343 // a) intptr_t -> pointer : needs 1 inttoptr 4344 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4345 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4346 // allow casting directly between pointer types and non-integer non-pointer 4347 // types. 4348 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4349 const llvm::DataLayout &DL, 4350 Value *Src, llvm::Type *DstTy, 4351 StringRef Name = "") { 4352 auto SrcTy = Src->getType(); 4353 4354 // Case 1. 4355 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4356 return Builder.CreateBitCast(Src, DstTy, Name); 4357 4358 // Case 2. 4359 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4360 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4361 4362 // Case 3. 4363 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4364 // Case 3b. 4365 if (!DstTy->isIntegerTy()) 4366 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4367 // Cases 3a and 3b. 4368 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4369 } 4370 4371 // Case 4b. 4372 if (!SrcTy->isIntegerTy()) 4373 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4374 // Cases 4a and 4b. 4375 return Builder.CreateIntToPtr(Src, DstTy, Name); 4376 } 4377 4378 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4379 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4380 llvm::Type *DstTy = ConvertType(E->getType()); 4381 4382 llvm::Type *SrcTy = Src->getType(); 4383 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4384 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4385 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4386 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4387 4388 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4389 // vector to get a vec4, then a bitcast if the target type is different. 4390 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4391 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4392 4393 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4394 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4395 DstTy); 4396 } 4397 4398 Src->setName("astype"); 4399 return Src; 4400 } 4401 4402 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4403 // to vec4 if the original type is not vec4, then a shuffle vector to 4404 // get a vec3. 4405 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4406 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4407 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4408 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4409 Vec4Ty); 4410 } 4411 4412 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4413 Src->setName("astype"); 4414 return Src; 4415 } 4416 4417 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4418 Src, DstTy, "astype"); 4419 } 4420 4421 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4422 return CGF.EmitAtomicExpr(E).getScalarVal(); 4423 } 4424 4425 //===----------------------------------------------------------------------===// 4426 // Entry Point into this File 4427 //===----------------------------------------------------------------------===// 4428 4429 /// Emit the computation of the specified expression of scalar type, ignoring 4430 /// the result. 4431 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4432 assert(E && hasScalarEvaluationKind(E->getType()) && 4433 "Invalid scalar expression to emit"); 4434 4435 return ScalarExprEmitter(*this, IgnoreResultAssign) 4436 .Visit(const_cast<Expr *>(E)); 4437 } 4438 4439 /// Emit a conversion from the specified type to the specified destination type, 4440 /// both of which are LLVM scalar types. 4441 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4442 QualType DstTy, 4443 SourceLocation Loc) { 4444 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4445 "Invalid scalar expression to emit"); 4446 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4447 } 4448 4449 /// Emit a conversion from the specified complex type to the specified 4450 /// destination type, where the destination type is an LLVM scalar type. 4451 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4452 QualType SrcTy, 4453 QualType DstTy, 4454 SourceLocation Loc) { 4455 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4456 "Invalid complex -> scalar conversion"); 4457 return ScalarExprEmitter(*this) 4458 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4459 } 4460 4461 4462 llvm::Value *CodeGenFunction:: 4463 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4464 bool isInc, bool isPre) { 4465 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4466 } 4467 4468 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4469 // object->isa or (*object).isa 4470 // Generate code as for: *(Class*)object 4471 4472 Expr *BaseExpr = E->getBase(); 4473 Address Addr = Address::invalid(); 4474 if (BaseExpr->isRValue()) { 4475 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4476 } else { 4477 Addr = EmitLValue(BaseExpr).getAddress(); 4478 } 4479 4480 // Cast the address to Class*. 4481 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4482 return MakeAddrLValue(Addr, E->getType()); 4483 } 4484 4485 4486 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4487 const CompoundAssignOperator *E) { 4488 ScalarExprEmitter Scalar(*this); 4489 Value *Result = nullptr; 4490 switch (E->getOpcode()) { 4491 #define COMPOUND_OP(Op) \ 4492 case BO_##Op##Assign: \ 4493 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4494 Result) 4495 COMPOUND_OP(Mul); 4496 COMPOUND_OP(Div); 4497 COMPOUND_OP(Rem); 4498 COMPOUND_OP(Add); 4499 COMPOUND_OP(Sub); 4500 COMPOUND_OP(Shl); 4501 COMPOUND_OP(Shr); 4502 COMPOUND_OP(And); 4503 COMPOUND_OP(Xor); 4504 COMPOUND_OP(Or); 4505 #undef COMPOUND_OP 4506 4507 case BO_PtrMemD: 4508 case BO_PtrMemI: 4509 case BO_Mul: 4510 case BO_Div: 4511 case BO_Rem: 4512 case BO_Add: 4513 case BO_Sub: 4514 case BO_Shl: 4515 case BO_Shr: 4516 case BO_LT: 4517 case BO_GT: 4518 case BO_LE: 4519 case BO_GE: 4520 case BO_EQ: 4521 case BO_NE: 4522 case BO_Cmp: 4523 case BO_And: 4524 case BO_Xor: 4525 case BO_Or: 4526 case BO_LAnd: 4527 case BO_LOr: 4528 case BO_Assign: 4529 case BO_Comma: 4530 llvm_unreachable("Not valid compound assignment operators"); 4531 } 4532 4533 llvm_unreachable("Unhandled compound assignment operator"); 4534 } 4535 4536 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4537 ArrayRef<Value *> IdxList, 4538 bool SignedIndices, 4539 bool IsSubtraction, 4540 SourceLocation Loc, 4541 const Twine &Name) { 4542 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4543 4544 // If the pointer overflow sanitizer isn't enabled, do nothing. 4545 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4546 return GEPVal; 4547 4548 // If the GEP has already been reduced to a constant, leave it be. 4549 if (isa<llvm::Constant>(GEPVal)) 4550 return GEPVal; 4551 4552 // Only check for overflows in the default address space. 4553 if (GEPVal->getType()->getPointerAddressSpace()) 4554 return GEPVal; 4555 4556 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4557 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4558 4559 SanitizerScope SanScope(this); 4560 auto &VMContext = getLLVMContext(); 4561 const auto &DL = CGM.getDataLayout(); 4562 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4563 4564 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4565 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4566 auto *SAddIntrinsic = 4567 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4568 auto *SMulIntrinsic = 4569 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4570 4571 // The total (signed) byte offset for the GEP. 4572 llvm::Value *TotalOffset = nullptr; 4573 // The offset overflow flag - true if the total offset overflows. 4574 llvm::Value *OffsetOverflows = Builder.getFalse(); 4575 4576 /// Return the result of the given binary operation. 4577 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4578 llvm::Value *RHS) -> llvm::Value * { 4579 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4580 4581 // If the operands are constants, return a constant result. 4582 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4583 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4584 llvm::APInt N; 4585 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4586 /*Signed=*/true, N); 4587 if (HasOverflow) 4588 OffsetOverflows = Builder.getTrue(); 4589 return llvm::ConstantInt::get(VMContext, N); 4590 } 4591 } 4592 4593 // Otherwise, compute the result with checked arithmetic. 4594 auto *ResultAndOverflow = Builder.CreateCall( 4595 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4596 OffsetOverflows = Builder.CreateOr( 4597 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4598 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4599 }; 4600 4601 // Determine the total byte offset by looking at each GEP operand. 4602 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4603 GTI != GTE; ++GTI) { 4604 llvm::Value *LocalOffset; 4605 auto *Index = GTI.getOperand(); 4606 // Compute the local offset contributed by this indexing step: 4607 if (auto *STy = GTI.getStructTypeOrNull()) { 4608 // For struct indexing, the local offset is the byte position of the 4609 // specified field. 4610 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4611 LocalOffset = llvm::ConstantInt::get( 4612 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4613 } else { 4614 // Otherwise this is array-like indexing. The local offset is the index 4615 // multiplied by the element size. 4616 auto *ElementSize = llvm::ConstantInt::get( 4617 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4618 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4619 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4620 } 4621 4622 // If this is the first offset, set it as the total offset. Otherwise, add 4623 // the local offset into the running total. 4624 if (!TotalOffset || TotalOffset == Zero) 4625 TotalOffset = LocalOffset; 4626 else 4627 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4628 } 4629 4630 // Common case: if the total offset is zero, don't emit a check. 4631 if (TotalOffset == Zero) 4632 return GEPVal; 4633 4634 // Now that we've computed the total offset, add it to the base pointer (with 4635 // wrapping semantics). 4636 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4637 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4638 4639 // The GEP is valid if: 4640 // 1) The total offset doesn't overflow, and 4641 // 2) The sign of the difference between the computed address and the base 4642 // pointer matches the sign of the total offset. 4643 llvm::Value *ValidGEP; 4644 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4645 if (SignedIndices) { 4646 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4647 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4648 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4649 ValidGEP = Builder.CreateAnd( 4650 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4651 NoOffsetOverflow); 4652 } else if (!SignedIndices && !IsSubtraction) { 4653 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4654 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4655 } else { 4656 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4657 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4658 } 4659 4660 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4661 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4662 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4663 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4664 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4665 4666 return GEPVal; 4667 } 4668