1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ABIInfoImpl.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/APValue.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/Builtins.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/Sequence.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include <optional> 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===----------------------------------------------------------------------===// 39 // ConstantAggregateBuilder 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 class ConstExprEmitter; 44 45 struct ConstantAggregateBuilderUtils { 46 CodeGenModule &CGM; 47 48 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 49 50 CharUnits getAlignment(const llvm::Constant *C) const { 51 return CharUnits::fromQuantity( 52 CGM.getDataLayout().getABITypeAlign(C->getType())); 53 } 54 55 CharUnits getSize(llvm::Type *Ty) const { 56 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 57 } 58 59 CharUnits getSize(const llvm::Constant *C) const { 60 return getSize(C->getType()); 61 } 62 63 llvm::Constant *getPadding(CharUnits PadSize) const { 64 llvm::Type *Ty = CGM.CharTy; 65 if (PadSize > CharUnits::One()) 66 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 67 return llvm::UndefValue::get(Ty); 68 } 69 70 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 71 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity()); 72 return llvm::ConstantAggregateZero::get(Ty); 73 } 74 }; 75 76 /// Incremental builder for an llvm::Constant* holding a struct or array 77 /// constant. 78 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 79 /// The elements of the constant. These two arrays must have the same size; 80 /// Offsets[i] describes the offset of Elems[i] within the constant. The 81 /// elements are kept in increasing offset order, and we ensure that there 82 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 83 /// 84 /// This may contain explicit padding elements (in order to create a 85 /// natural layout), but need not. Gaps between elements are implicitly 86 /// considered to be filled with undef. 87 llvm::SmallVector<llvm::Constant*, 32> Elems; 88 llvm::SmallVector<CharUnits, 32> Offsets; 89 90 /// The size of the constant (the maximum end offset of any added element). 91 /// May be larger than the end of Elems.back() if we split the last element 92 /// and removed some trailing undefs. 93 CharUnits Size = CharUnits::Zero(); 94 95 /// This is true only if laying out Elems in order as the elements of a 96 /// non-packed LLVM struct will give the correct layout. 97 bool NaturalLayout = true; 98 99 bool split(size_t Index, CharUnits Hint); 100 std::optional<size_t> splitAt(CharUnits Pos); 101 102 static llvm::Constant *buildFrom(CodeGenModule &CGM, 103 ArrayRef<llvm::Constant *> Elems, 104 ArrayRef<CharUnits> Offsets, 105 CharUnits StartOffset, CharUnits Size, 106 bool NaturalLayout, llvm::Type *DesiredTy, 107 bool AllowOversized); 108 109 public: 110 ConstantAggregateBuilder(CodeGenModule &CGM) 111 : ConstantAggregateBuilderUtils(CGM) {} 112 113 /// Update or overwrite the value starting at \p Offset with \c C. 114 /// 115 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 116 /// a constant that has already been added. This flag is only used to 117 /// detect bugs. 118 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 119 120 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 121 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 122 123 /// Attempt to condense the value starting at \p Offset to a constant of type 124 /// \p DesiredTy. 125 void condense(CharUnits Offset, llvm::Type *DesiredTy); 126 127 /// Produce a constant representing the entire accumulated value, ideally of 128 /// the specified type. If \p AllowOversized, the constant might be larger 129 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 130 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 131 /// even if we can't represent it as that type. 132 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 133 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 134 NaturalLayout, DesiredTy, AllowOversized); 135 } 136 }; 137 138 template<typename Container, typename Range = std::initializer_list< 139 typename Container::value_type>> 140 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 141 assert(BeginOff <= EndOff && "invalid replacement range"); 142 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 143 } 144 145 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 146 bool AllowOverwrite) { 147 // Common case: appending to a layout. 148 if (Offset >= Size) { 149 CharUnits Align = getAlignment(C); 150 CharUnits AlignedSize = Size.alignTo(Align); 151 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 152 NaturalLayout = false; 153 else if (AlignedSize < Offset) { 154 Elems.push_back(getPadding(Offset - Size)); 155 Offsets.push_back(Size); 156 } 157 Elems.push_back(C); 158 Offsets.push_back(Offset); 159 Size = Offset + getSize(C); 160 return true; 161 } 162 163 // Uncommon case: constant overlaps what we've already created. 164 std::optional<size_t> FirstElemToReplace = splitAt(Offset); 165 if (!FirstElemToReplace) 166 return false; 167 168 CharUnits CSize = getSize(C); 169 std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 170 if (!LastElemToReplace) 171 return false; 172 173 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 174 "unexpectedly overwriting field"); 175 176 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 177 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 178 Size = std::max(Size, Offset + CSize); 179 NaturalLayout = false; 180 return true; 181 } 182 183 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 184 bool AllowOverwrite) { 185 const ASTContext &Context = CGM.getContext(); 186 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 187 188 // Offset of where we want the first bit to go within the bits of the 189 // current char. 190 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 191 192 // We split bit-fields up into individual bytes. Walk over the bytes and 193 // update them. 194 for (CharUnits OffsetInChars = 195 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); 196 /**/; ++OffsetInChars) { 197 // Number of bits we want to fill in this char. 198 unsigned WantedBits = 199 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 200 201 // Get a char containing the bits we want in the right places. The other 202 // bits have unspecified values. 203 llvm::APInt BitsThisChar = Bits; 204 if (BitsThisChar.getBitWidth() < CharWidth) 205 BitsThisChar = BitsThisChar.zext(CharWidth); 206 if (CGM.getDataLayout().isBigEndian()) { 207 // Figure out how much to shift by. We may need to left-shift if we have 208 // less than one byte of Bits left. 209 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 210 if (Shift > 0) 211 BitsThisChar.lshrInPlace(Shift); 212 else if (Shift < 0) 213 BitsThisChar = BitsThisChar.shl(-Shift); 214 } else { 215 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 216 } 217 if (BitsThisChar.getBitWidth() > CharWidth) 218 BitsThisChar = BitsThisChar.trunc(CharWidth); 219 220 if (WantedBits == CharWidth) { 221 // Got a full byte: just add it directly. 222 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 223 OffsetInChars, AllowOverwrite); 224 } else { 225 // Partial byte: update the existing integer if there is one. If we 226 // can't split out a 1-CharUnit range to update, then we can't add 227 // these bits and fail the entire constant emission. 228 std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 229 if (!FirstElemToUpdate) 230 return false; 231 std::optional<size_t> LastElemToUpdate = 232 splitAt(OffsetInChars + CharUnits::One()); 233 if (!LastElemToUpdate) 234 return false; 235 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 236 "should have at most one element covering one byte"); 237 238 // Figure out which bits we want and discard the rest. 239 llvm::APInt UpdateMask(CharWidth, 0); 240 if (CGM.getDataLayout().isBigEndian()) 241 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 242 CharWidth - OffsetWithinChar); 243 else 244 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 245 BitsThisChar &= UpdateMask; 246 247 if (*FirstElemToUpdate == *LastElemToUpdate || 248 Elems[*FirstElemToUpdate]->isNullValue() || 249 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 250 // All existing bits are either zero or undef. 251 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 252 OffsetInChars, /*AllowOverwrite*/ true); 253 } else { 254 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 255 // In order to perform a partial update, we need the existing bitwise 256 // value, which we can only extract for a constant int. 257 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 258 if (!CI) 259 return false; 260 // Because this is a 1-CharUnit range, the constant occupying it must 261 // be exactly one CharUnit wide. 262 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 263 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 264 "unexpectedly overwriting bitfield"); 265 BitsThisChar |= (CI->getValue() & ~UpdateMask); 266 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 267 } 268 } 269 270 // Stop if we've added all the bits. 271 if (WantedBits == Bits.getBitWidth()) 272 break; 273 274 // Remove the consumed bits from Bits. 275 if (!CGM.getDataLayout().isBigEndian()) 276 Bits.lshrInPlace(WantedBits); 277 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 278 279 // The remanining bits go at the start of the following bytes. 280 OffsetWithinChar = 0; 281 } 282 283 return true; 284 } 285 286 /// Returns a position within Elems and Offsets such that all elements 287 /// before the returned index end before Pos and all elements at or after 288 /// the returned index begin at or after Pos. Splits elements as necessary 289 /// to ensure this. Returns std::nullopt if we find something we can't split. 290 std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 291 if (Pos >= Size) 292 return Offsets.size(); 293 294 while (true) { 295 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); 296 if (FirstAfterPos == Offsets.begin()) 297 return 0; 298 299 // If we already have an element starting at Pos, we're done. 300 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 301 if (Offsets[LastAtOrBeforePosIndex] == Pos) 302 return LastAtOrBeforePosIndex; 303 304 // We found an element starting before Pos. Check for overlap. 305 if (Offsets[LastAtOrBeforePosIndex] + 306 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 307 return LastAtOrBeforePosIndex + 1; 308 309 // Try to decompose it into smaller constants. 310 if (!split(LastAtOrBeforePosIndex, Pos)) 311 return std::nullopt; 312 } 313 } 314 315 /// Split the constant at index Index, if possible. Return true if we did. 316 /// Hint indicates the location at which we'd like to split, but may be 317 /// ignored. 318 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 319 NaturalLayout = false; 320 llvm::Constant *C = Elems[Index]; 321 CharUnits Offset = Offsets[Index]; 322 323 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 324 // Expand the sequence into its contained elements. 325 // FIXME: This assumes vector elements are byte-sized. 326 replace(Elems, Index, Index + 1, 327 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 328 [&](unsigned Op) { return CA->getOperand(Op); })); 329 if (isa<llvm::ArrayType>(CA->getType()) || 330 isa<llvm::VectorType>(CA->getType())) { 331 // Array or vector. 332 llvm::Type *ElemTy = 333 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0); 334 CharUnits ElemSize = getSize(ElemTy); 335 replace( 336 Offsets, Index, Index + 1, 337 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 338 [&](unsigned Op) { return Offset + Op * ElemSize; })); 339 } else { 340 // Must be a struct. 341 auto *ST = cast<llvm::StructType>(CA->getType()); 342 const llvm::StructLayout *Layout = 343 CGM.getDataLayout().getStructLayout(ST); 344 replace(Offsets, Index, Index + 1, 345 llvm::map_range( 346 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 347 return Offset + CharUnits::fromQuantity( 348 Layout->getElementOffset(Op)); 349 })); 350 } 351 return true; 352 } 353 354 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 355 // Expand the sequence into its contained elements. 356 // FIXME: This assumes vector elements are byte-sized. 357 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 358 CharUnits ElemSize = getSize(CDS->getElementType()); 359 replace(Elems, Index, Index + 1, 360 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 361 [&](unsigned Elem) { 362 return CDS->getElementAsConstant(Elem); 363 })); 364 replace(Offsets, Index, Index + 1, 365 llvm::map_range( 366 llvm::seq(0u, CDS->getNumElements()), 367 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 368 return true; 369 } 370 371 if (isa<llvm::ConstantAggregateZero>(C)) { 372 // Split into two zeros at the hinted offset. 373 CharUnits ElemSize = getSize(C); 374 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 375 replace(Elems, Index, Index + 1, 376 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 377 replace(Offsets, Index, Index + 1, {Offset, Hint}); 378 return true; 379 } 380 381 if (isa<llvm::UndefValue>(C)) { 382 // Drop undef; it doesn't contribute to the final layout. 383 replace(Elems, Index, Index + 1, {}); 384 replace(Offsets, Index, Index + 1, {}); 385 return true; 386 } 387 388 // FIXME: We could split a ConstantInt if the need ever arose. 389 // We don't need to do this to handle bit-fields because we always eagerly 390 // split them into 1-byte chunks. 391 392 return false; 393 } 394 395 static llvm::Constant * 396 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 397 llvm::Type *CommonElementType, uint64_t ArrayBound, 398 SmallVectorImpl<llvm::Constant *> &Elements, 399 llvm::Constant *Filler); 400 401 llvm::Constant *ConstantAggregateBuilder::buildFrom( 402 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 403 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 404 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 405 ConstantAggregateBuilderUtils Utils(CGM); 406 407 if (Elems.empty()) 408 return llvm::UndefValue::get(DesiredTy); 409 410 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 411 412 // If we want an array type, see if all the elements are the same type and 413 // appropriately spaced. 414 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 415 assert(!AllowOversized && "oversized array emission not supported"); 416 417 bool CanEmitArray = true; 418 llvm::Type *CommonType = Elems[0]->getType(); 419 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 420 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 421 SmallVector<llvm::Constant*, 32> ArrayElements; 422 for (size_t I = 0; I != Elems.size(); ++I) { 423 // Skip zeroes; we'll use a zero value as our array filler. 424 if (Elems[I]->isNullValue()) 425 continue; 426 427 // All remaining elements must be the same type. 428 if (Elems[I]->getType() != CommonType || 429 Offset(I) % ElemSize != 0) { 430 CanEmitArray = false; 431 break; 432 } 433 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 434 ArrayElements.back() = Elems[I]; 435 } 436 437 if (CanEmitArray) { 438 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 439 ArrayElements, Filler); 440 } 441 442 // Can't emit as an array, carry on to emit as a struct. 443 } 444 445 // The size of the constant we plan to generate. This is usually just 446 // the size of the initialized type, but in AllowOversized mode (i.e. 447 // flexible array init), it can be larger. 448 CharUnits DesiredSize = Utils.getSize(DesiredTy); 449 if (Size > DesiredSize) { 450 assert(AllowOversized && "Elems are oversized"); 451 DesiredSize = Size; 452 } 453 454 // The natural alignment of an unpacked LLVM struct with the given elements. 455 CharUnits Align = CharUnits::One(); 456 for (llvm::Constant *C : Elems) 457 Align = std::max(Align, Utils.getAlignment(C)); 458 459 // The natural size of an unpacked LLVM struct with the given elements. 460 CharUnits AlignedSize = Size.alignTo(Align); 461 462 bool Packed = false; 463 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 464 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 465 if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) { 466 // The natural layout would be too big; force use of a packed layout. 467 NaturalLayout = false; 468 Packed = true; 469 } else if (DesiredSize > AlignedSize) { 470 // The natural layout would be too small. Add padding to fix it. (This 471 // is ignored if we choose a packed layout.) 472 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 473 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 474 UnpackedElems = UnpackedElemStorage; 475 } 476 477 // If we don't have a natural layout, insert padding as necessary. 478 // As we go, double-check to see if we can actually just emit Elems 479 // as a non-packed struct and do so opportunistically if possible. 480 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 481 if (!NaturalLayout) { 482 CharUnits SizeSoFar = CharUnits::Zero(); 483 for (size_t I = 0; I != Elems.size(); ++I) { 484 CharUnits Align = Utils.getAlignment(Elems[I]); 485 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 486 CharUnits DesiredOffset = Offset(I); 487 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 488 489 if (DesiredOffset != NaturalOffset) 490 Packed = true; 491 if (DesiredOffset != SizeSoFar) 492 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 493 PackedElems.push_back(Elems[I]); 494 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 495 } 496 // If we're using the packed layout, pad it out to the desired size if 497 // necessary. 498 if (Packed) { 499 assert(SizeSoFar <= DesiredSize && 500 "requested size is too small for contents"); 501 if (SizeSoFar < DesiredSize) 502 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 503 } 504 } 505 506 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 507 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 508 509 // Pick the type to use. If the type is layout identical to the desired 510 // type then use it, otherwise use whatever the builder produced for us. 511 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 512 if (DesiredSTy->isLayoutIdentical(STy)) 513 STy = DesiredSTy; 514 } 515 516 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 517 } 518 519 void ConstantAggregateBuilder::condense(CharUnits Offset, 520 llvm::Type *DesiredTy) { 521 CharUnits Size = getSize(DesiredTy); 522 523 std::optional<size_t> FirstElemToReplace = splitAt(Offset); 524 if (!FirstElemToReplace) 525 return; 526 size_t First = *FirstElemToReplace; 527 528 std::optional<size_t> LastElemToReplace = splitAt(Offset + Size); 529 if (!LastElemToReplace) 530 return; 531 size_t Last = *LastElemToReplace; 532 533 size_t Length = Last - First; 534 if (Length == 0) 535 return; 536 537 if (Length == 1 && Offsets[First] == Offset && 538 getSize(Elems[First]) == Size) { 539 // Re-wrap single element structs if necessary. Otherwise, leave any single 540 // element constant of the right size alone even if it has the wrong type. 541 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 542 if (STy && STy->getNumElements() == 1 && 543 STy->getElementType(0) == Elems[First]->getType()) 544 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 545 return; 546 } 547 548 llvm::Constant *Replacement = buildFrom( 549 CGM, ArrayRef(Elems).slice(First, Length), 550 ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 551 /*known to have natural layout=*/false, DesiredTy, false); 552 replace(Elems, First, Last, {Replacement}); 553 replace(Offsets, First, Last, {Offset}); 554 } 555 556 //===----------------------------------------------------------------------===// 557 // ConstStructBuilder 558 //===----------------------------------------------------------------------===// 559 560 class ConstStructBuilder { 561 CodeGenModule &CGM; 562 ConstantEmitter &Emitter; 563 ConstantAggregateBuilder &Builder; 564 CharUnits StartOffset; 565 566 public: 567 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 568 const InitListExpr *ILE, 569 QualType StructTy); 570 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 571 const APValue &Value, QualType ValTy); 572 static bool UpdateStruct(ConstantEmitter &Emitter, 573 ConstantAggregateBuilder &Const, CharUnits Offset, 574 const InitListExpr *Updater); 575 576 private: 577 ConstStructBuilder(ConstantEmitter &Emitter, 578 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 579 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 580 StartOffset(StartOffset) {} 581 582 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 583 llvm::Constant *InitExpr, bool AllowOverwrite = false); 584 585 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 586 bool AllowOverwrite = false); 587 588 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 589 llvm::Constant *InitExpr, bool AllowOverwrite = false); 590 591 bool Build(const InitListExpr *ILE, bool AllowOverwrite); 592 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 593 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 594 llvm::Constant *Finalize(QualType Ty); 595 }; 596 597 bool ConstStructBuilder::AppendField( 598 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 599 bool AllowOverwrite) { 600 const ASTContext &Context = CGM.getContext(); 601 602 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 603 604 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 605 } 606 607 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 608 llvm::Constant *InitCst, 609 bool AllowOverwrite) { 610 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 611 } 612 613 bool ConstStructBuilder::AppendBitField(const FieldDecl *Field, 614 uint64_t FieldOffset, llvm::Constant *C, 615 bool AllowOverwrite) { 616 617 llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C); 618 if (!CI) { 619 // Constants for long _BitInt types are sometimes split into individual 620 // bytes. Try to fold these back into an integer constant. If that doesn't 621 // work out, then we are trying to initialize a bitfield with a non-trivial 622 // constant, this must require run-time code. 623 llvm::Type *LoadType = 624 CGM.getTypes().convertTypeForLoadStore(Field->getType(), C->getType()); 625 llvm::Constant *FoldedConstant = llvm::ConstantFoldLoadFromConst( 626 C, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout()); 627 CI = dyn_cast_if_present<llvm::ConstantInt>(FoldedConstant); 628 if (!CI) 629 return false; 630 } 631 632 const CGRecordLayout &RL = 633 CGM.getTypes().getCGRecordLayout(Field->getParent()); 634 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 635 llvm::APInt FieldValue = CI->getValue(); 636 637 // Promote the size of FieldValue if necessary 638 // FIXME: This should never occur, but currently it can because initializer 639 // constants are cast to bool, and because clang is not enforcing bitfield 640 // width limits. 641 if (Info.Size > FieldValue.getBitWidth()) 642 FieldValue = FieldValue.zext(Info.Size); 643 644 // Truncate the size of FieldValue to the bit field size. 645 if (Info.Size < FieldValue.getBitWidth()) 646 FieldValue = FieldValue.trunc(Info.Size); 647 648 return Builder.addBits(FieldValue, 649 CGM.getContext().toBits(StartOffset) + FieldOffset, 650 AllowOverwrite); 651 } 652 653 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 654 ConstantAggregateBuilder &Const, 655 CharUnits Offset, QualType Type, 656 const InitListExpr *Updater) { 657 if (Type->isRecordType()) 658 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 659 660 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 661 if (!CAT) 662 return false; 663 QualType ElemType = CAT->getElementType(); 664 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 665 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 666 667 llvm::Constant *FillC = nullptr; 668 if (const Expr *Filler = Updater->getArrayFiller()) { 669 if (!isa<NoInitExpr>(Filler)) { 670 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 671 if (!FillC) 672 return false; 673 } 674 } 675 676 unsigned NumElementsToUpdate = 677 FillC ? CAT->getZExtSize() : Updater->getNumInits(); 678 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 679 const Expr *Init = nullptr; 680 if (I < Updater->getNumInits()) 681 Init = Updater->getInit(I); 682 683 if (!Init && FillC) { 684 if (!Const.add(FillC, Offset, true)) 685 return false; 686 } else if (!Init || isa<NoInitExpr>(Init)) { 687 continue; 688 } else if (const auto *ChildILE = dyn_cast<InitListExpr>(Init)) { 689 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 690 ChildILE)) 691 return false; 692 // Attempt to reduce the array element to a single constant if necessary. 693 Const.condense(Offset, ElemTy); 694 } else { 695 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 696 if (!Const.add(Val, Offset, true)) 697 return false; 698 } 699 } 700 701 return true; 702 } 703 704 bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) { 705 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 706 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 707 708 unsigned FieldNo = -1; 709 unsigned ElementNo = 0; 710 711 // Bail out if we have base classes. We could support these, but they only 712 // arise in C++1z where we will have already constant folded most interesting 713 // cases. FIXME: There are still a few more cases we can handle this way. 714 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 715 if (CXXRD->getNumBases()) 716 return false; 717 718 for (FieldDecl *Field : RD->fields()) { 719 ++FieldNo; 720 721 // If this is a union, skip all the fields that aren't being initialized. 722 if (RD->isUnion() && 723 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) 724 continue; 725 726 // Don't emit anonymous bitfields. 727 if (Field->isUnnamedBitField()) 728 continue; 729 730 // Get the initializer. A struct can include fields without initializers, 731 // we just use explicit null values for them. 732 const Expr *Init = nullptr; 733 if (ElementNo < ILE->getNumInits()) 734 Init = ILE->getInit(ElementNo++); 735 if (isa_and_nonnull<NoInitExpr>(Init)) 736 continue; 737 738 // Zero-sized fields are not emitted, but their initializers may still 739 // prevent emission of this struct as a constant. 740 if (isEmptyFieldForLayout(CGM.getContext(), Field)) { 741 if (Init->HasSideEffects(CGM.getContext())) 742 return false; 743 continue; 744 } 745 746 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 747 // represents additional overwriting of our current constant value, and not 748 // a new constant to emit independently. 749 if (AllowOverwrite && 750 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 751 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 752 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 753 Layout.getFieldOffset(FieldNo)); 754 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 755 Field->getType(), SubILE)) 756 return false; 757 // If we split apart the field's value, try to collapse it down to a 758 // single value now. 759 Builder.condense(StartOffset + Offset, 760 CGM.getTypes().ConvertTypeForMem(Field->getType())); 761 continue; 762 } 763 } 764 765 llvm::Constant *EltInit = 766 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 767 : Emitter.emitNullForMemory(Field->getType()); 768 if (!EltInit) 769 return false; 770 771 if (!Field->isBitField()) { 772 // Handle non-bitfield members. 773 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 774 AllowOverwrite)) 775 return false; 776 // After emitting a non-empty field with [[no_unique_address]], we may 777 // need to overwrite its tail padding. 778 if (Field->hasAttr<NoUniqueAddressAttr>()) 779 AllowOverwrite = true; 780 } else { 781 // Otherwise we have a bitfield. 782 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), EltInit, 783 AllowOverwrite)) 784 return false; 785 } 786 } 787 788 return true; 789 } 790 791 namespace { 792 struct BaseInfo { 793 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 794 : Decl(Decl), Offset(Offset), Index(Index) { 795 } 796 797 const CXXRecordDecl *Decl; 798 CharUnits Offset; 799 unsigned Index; 800 801 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 802 }; 803 } 804 805 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 806 bool IsPrimaryBase, 807 const CXXRecordDecl *VTableClass, 808 CharUnits Offset) { 809 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 810 811 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 812 // Add a vtable pointer, if we need one and it hasn't already been added. 813 if (Layout.hasOwnVFPtr()) { 814 llvm::Constant *VTableAddressPoint = 815 CGM.getCXXABI().getVTableAddressPoint(BaseSubobject(CD, Offset), 816 VTableClass); 817 if (auto Authentication = CGM.getVTablePointerAuthentication(CD)) { 818 VTableAddressPoint = Emitter.tryEmitConstantSignedPointer( 819 VTableAddressPoint, *Authentication); 820 if (!VTableAddressPoint) 821 return false; 822 } 823 if (!AppendBytes(Offset, VTableAddressPoint)) 824 return false; 825 } 826 827 // Accumulate and sort bases, in order to visit them in address order, which 828 // may not be the same as declaration order. 829 SmallVector<BaseInfo, 8> Bases; 830 Bases.reserve(CD->getNumBases()); 831 unsigned BaseNo = 0; 832 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 833 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 834 assert(!Base->isVirtual() && "should not have virtual bases here"); 835 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 836 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 837 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 838 } 839 llvm::stable_sort(Bases); 840 841 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 842 BaseInfo &Base = Bases[I]; 843 844 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 845 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 846 VTableClass, Offset + Base.Offset); 847 } 848 } 849 850 unsigned FieldNo = 0; 851 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 852 853 bool AllowOverwrite = false; 854 for (RecordDecl::field_iterator Field = RD->field_begin(), 855 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 856 // If this is a union, skip all the fields that aren't being initialized. 857 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 858 continue; 859 860 // Don't emit anonymous bitfields or zero-sized fields. 861 if (Field->isUnnamedBitField() || 862 isEmptyFieldForLayout(CGM.getContext(), *Field)) 863 continue; 864 865 // Emit the value of the initializer. 866 const APValue &FieldValue = 867 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 868 llvm::Constant *EltInit = 869 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 870 if (!EltInit) 871 return false; 872 873 if (!Field->isBitField()) { 874 // Handle non-bitfield members. 875 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 876 EltInit, AllowOverwrite)) 877 return false; 878 // After emitting a non-empty field with [[no_unique_address]], we may 879 // need to overwrite its tail padding. 880 if (Field->hasAttr<NoUniqueAddressAttr>()) 881 AllowOverwrite = true; 882 } else { 883 // Otherwise we have a bitfield. 884 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 885 EltInit, AllowOverwrite)) 886 return false; 887 } 888 } 889 890 return true; 891 } 892 893 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 894 Type = Type.getNonReferenceType(); 895 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 896 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 897 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 898 } 899 900 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 901 const InitListExpr *ILE, 902 QualType ValTy) { 903 ConstantAggregateBuilder Const(Emitter.CGM); 904 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 905 906 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 907 return nullptr; 908 909 return Builder.Finalize(ValTy); 910 } 911 912 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 913 const APValue &Val, 914 QualType ValTy) { 915 ConstantAggregateBuilder Const(Emitter.CGM); 916 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 917 918 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 919 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 920 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 921 return nullptr; 922 923 return Builder.Finalize(ValTy); 924 } 925 926 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 927 ConstantAggregateBuilder &Const, 928 CharUnits Offset, 929 const InitListExpr *Updater) { 930 return ConstStructBuilder(Emitter, Const, Offset) 931 .Build(Updater, /*AllowOverwrite*/ true); 932 } 933 934 //===----------------------------------------------------------------------===// 935 // ConstExprEmitter 936 //===----------------------------------------------------------------------===// 937 938 static ConstantAddress 939 tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter, 940 const CompoundLiteralExpr *E) { 941 CodeGenModule &CGM = emitter.CGM; 942 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 943 if (llvm::GlobalVariable *Addr = 944 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 945 return ConstantAddress(Addr, Addr->getValueType(), Align); 946 947 LangAS addressSpace = E->getType().getAddressSpace(); 948 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 949 addressSpace, E->getType()); 950 if (!C) { 951 assert(!E->isFileScope() && 952 "file-scope compound literal did not have constant initializer!"); 953 return ConstantAddress::invalid(); 954 } 955 956 auto GV = new llvm::GlobalVariable( 957 CGM.getModule(), C->getType(), 958 E->getType().isConstantStorage(CGM.getContext(), true, false), 959 llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr, 960 llvm::GlobalVariable::NotThreadLocal, 961 CGM.getContext().getTargetAddressSpace(addressSpace)); 962 emitter.finalize(GV); 963 GV->setAlignment(Align.getAsAlign()); 964 CGM.setAddrOfConstantCompoundLiteral(E, GV); 965 return ConstantAddress(GV, GV->getValueType(), Align); 966 } 967 968 static llvm::Constant * 969 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 970 llvm::Type *CommonElementType, uint64_t ArrayBound, 971 SmallVectorImpl<llvm::Constant *> &Elements, 972 llvm::Constant *Filler) { 973 // Figure out how long the initial prefix of non-zero elements is. 974 uint64_t NonzeroLength = ArrayBound; 975 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 976 NonzeroLength = Elements.size(); 977 if (NonzeroLength == Elements.size()) { 978 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 979 --NonzeroLength; 980 } 981 982 if (NonzeroLength == 0) 983 return llvm::ConstantAggregateZero::get(DesiredType); 984 985 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 986 uint64_t TrailingZeroes = ArrayBound - NonzeroLength; 987 if (TrailingZeroes >= 8) { 988 assert(Elements.size() >= NonzeroLength && 989 "missing initializer for non-zero element"); 990 991 // If all the elements had the same type up to the trailing zeroes, emit a 992 // struct of two arrays (the nonzero data and the zeroinitializer). 993 if (CommonElementType && NonzeroLength >= 8) { 994 llvm::Constant *Initial = llvm::ConstantArray::get( 995 llvm::ArrayType::get(CommonElementType, NonzeroLength), 996 ArrayRef(Elements).take_front(NonzeroLength)); 997 Elements.resize(2); 998 Elements[0] = Initial; 999 } else { 1000 Elements.resize(NonzeroLength + 1); 1001 } 1002 1003 auto *FillerType = 1004 CommonElementType ? CommonElementType : DesiredType->getElementType(); 1005 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 1006 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 1007 CommonElementType = nullptr; 1008 } else if (Elements.size() != ArrayBound) { 1009 // Otherwise pad to the right size with the filler if necessary. 1010 Elements.resize(ArrayBound, Filler); 1011 if (Filler->getType() != CommonElementType) 1012 CommonElementType = nullptr; 1013 } 1014 1015 // If all elements have the same type, just emit an array constant. 1016 if (CommonElementType) 1017 return llvm::ConstantArray::get( 1018 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 1019 1020 // We have mixed types. Use a packed struct. 1021 llvm::SmallVector<llvm::Type *, 16> Types; 1022 Types.reserve(Elements.size()); 1023 for (llvm::Constant *Elt : Elements) 1024 Types.push_back(Elt->getType()); 1025 llvm::StructType *SType = 1026 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 1027 return llvm::ConstantStruct::get(SType, Elements); 1028 } 1029 1030 // This class only needs to handle arrays, structs and unions. Outside C++11 1031 // mode, we don't currently constant fold those types. All other types are 1032 // handled by constant folding. 1033 // 1034 // Constant folding is currently missing support for a few features supported 1035 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 1036 class ConstExprEmitter 1037 : public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> { 1038 CodeGenModule &CGM; 1039 ConstantEmitter &Emitter; 1040 llvm::LLVMContext &VMContext; 1041 public: 1042 ConstExprEmitter(ConstantEmitter &emitter) 1043 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 1044 } 1045 1046 //===--------------------------------------------------------------------===// 1047 // Visitor Methods 1048 //===--------------------------------------------------------------------===// 1049 1050 llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; } 1051 1052 llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) { 1053 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE)) 1054 return Result; 1055 return Visit(CE->getSubExpr(), T); 1056 } 1057 1058 llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) { 1059 return Visit(PE->getSubExpr(), T); 1060 } 1061 1062 llvm::Constant * 1063 VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE, 1064 QualType T) { 1065 return Visit(PE->getReplacement(), T); 1066 } 1067 1068 llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE, 1069 QualType T) { 1070 return Visit(GE->getResultExpr(), T); 1071 } 1072 1073 llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) { 1074 return Visit(CE->getChosenSubExpr(), T); 1075 } 1076 1077 llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E, 1078 QualType T) { 1079 return Visit(E->getInitializer(), T); 1080 } 1081 1082 llvm::Constant *ProduceIntToIntCast(const Expr *E, QualType DestType) { 1083 QualType FromType = E->getType(); 1084 // See also HandleIntToIntCast in ExprConstant.cpp 1085 if (FromType->isIntegerType()) 1086 if (llvm::Constant *C = Visit(E, FromType)) 1087 if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) { 1088 unsigned SrcWidth = CGM.getContext().getIntWidth(FromType); 1089 unsigned DstWidth = CGM.getContext().getIntWidth(DestType); 1090 if (DstWidth == SrcWidth) 1091 return CI; 1092 llvm::APInt A = FromType->isSignedIntegerType() 1093 ? CI->getValue().sextOrTrunc(DstWidth) 1094 : CI->getValue().zextOrTrunc(DstWidth); 1095 return llvm::ConstantInt::get(CGM.getLLVMContext(), A); 1096 } 1097 return nullptr; 1098 } 1099 1100 llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) { 1101 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1102 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1103 const Expr *subExpr = E->getSubExpr(); 1104 1105 switch (E->getCastKind()) { 1106 case CK_ToUnion: { 1107 // GCC cast to union extension 1108 assert(E->getType()->isUnionType() && 1109 "Destination type is not union type!"); 1110 1111 auto field = E->getTargetUnionField(); 1112 1113 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1114 if (!C) return nullptr; 1115 1116 auto destTy = ConvertType(destType); 1117 if (C->getType() == destTy) return C; 1118 1119 // Build a struct with the union sub-element as the first member, 1120 // and padded to the appropriate size. 1121 SmallVector<llvm::Constant*, 2> Elts; 1122 SmallVector<llvm::Type*, 2> Types; 1123 Elts.push_back(C); 1124 Types.push_back(C->getType()); 1125 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1126 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1127 1128 assert(CurSize <= TotalSize && "Union size mismatch!"); 1129 if (unsigned NumPadBytes = TotalSize - CurSize) { 1130 llvm::Type *Ty = CGM.CharTy; 1131 if (NumPadBytes > 1) 1132 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 1133 1134 Elts.push_back(llvm::UndefValue::get(Ty)); 1135 Types.push_back(Ty); 1136 } 1137 1138 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1139 return llvm::ConstantStruct::get(STy, Elts); 1140 } 1141 1142 case CK_AddressSpaceConversion: { 1143 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1144 if (!C) return nullptr; 1145 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1146 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1147 llvm::Type *destTy = ConvertType(E->getType()); 1148 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1149 destAS, destTy); 1150 } 1151 1152 case CK_LValueToRValue: { 1153 // We don't really support doing lvalue-to-rvalue conversions here; any 1154 // interesting conversions should be done in Evaluate(). But as a 1155 // special case, allow compound literals to support the gcc extension 1156 // allowing "struct x {int x;} x = (struct x) {};". 1157 if (const auto *E = 1158 dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens())) 1159 return Visit(E->getInitializer(), destType); 1160 return nullptr; 1161 } 1162 1163 case CK_AtomicToNonAtomic: 1164 case CK_NonAtomicToAtomic: 1165 case CK_NoOp: 1166 case CK_ConstructorConversion: 1167 return Visit(subExpr, destType); 1168 1169 case CK_ArrayToPointerDecay: 1170 if (const auto *S = dyn_cast<StringLiteral>(subExpr)) 1171 return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer(); 1172 return nullptr; 1173 case CK_NullToPointer: 1174 if (Visit(subExpr, destType)) 1175 return CGM.EmitNullConstant(destType); 1176 return nullptr; 1177 1178 case CK_IntToOCLSampler: 1179 llvm_unreachable("global sampler variables are not generated"); 1180 1181 case CK_IntegralCast: 1182 return ProduceIntToIntCast(subExpr, destType); 1183 1184 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1185 1186 case CK_BuiltinFnToFnPtr: 1187 llvm_unreachable("builtin functions are handled elsewhere"); 1188 1189 case CK_ReinterpretMemberPointer: 1190 case CK_DerivedToBaseMemberPointer: 1191 case CK_BaseToDerivedMemberPointer: { 1192 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1193 if (!C) return nullptr; 1194 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1195 } 1196 1197 // These will never be supported. 1198 case CK_ObjCObjectLValueCast: 1199 case CK_ARCProduceObject: 1200 case CK_ARCConsumeObject: 1201 case CK_ARCReclaimReturnedObject: 1202 case CK_ARCExtendBlockObject: 1203 case CK_CopyAndAutoreleaseBlockObject: 1204 return nullptr; 1205 1206 // These don't need to be handled here because Evaluate knows how to 1207 // evaluate them in the cases where they can be folded. 1208 case CK_BitCast: 1209 case CK_ToVoid: 1210 case CK_Dynamic: 1211 case CK_LValueBitCast: 1212 case CK_LValueToRValueBitCast: 1213 case CK_NullToMemberPointer: 1214 case CK_UserDefinedConversion: 1215 case CK_CPointerToObjCPointerCast: 1216 case CK_BlockPointerToObjCPointerCast: 1217 case CK_AnyPointerToBlockPointerCast: 1218 case CK_FunctionToPointerDecay: 1219 case CK_BaseToDerived: 1220 case CK_DerivedToBase: 1221 case CK_UncheckedDerivedToBase: 1222 case CK_MemberPointerToBoolean: 1223 case CK_VectorSplat: 1224 case CK_FloatingRealToComplex: 1225 case CK_FloatingComplexToReal: 1226 case CK_FloatingComplexToBoolean: 1227 case CK_FloatingComplexCast: 1228 case CK_FloatingComplexToIntegralComplex: 1229 case CK_IntegralRealToComplex: 1230 case CK_IntegralComplexToReal: 1231 case CK_IntegralComplexToBoolean: 1232 case CK_IntegralComplexCast: 1233 case CK_IntegralComplexToFloatingComplex: 1234 case CK_PointerToIntegral: 1235 case CK_PointerToBoolean: 1236 case CK_BooleanToSignedIntegral: 1237 case CK_IntegralToPointer: 1238 case CK_IntegralToBoolean: 1239 case CK_IntegralToFloating: 1240 case CK_FloatingToIntegral: 1241 case CK_FloatingToBoolean: 1242 case CK_FloatingCast: 1243 case CK_FloatingToFixedPoint: 1244 case CK_FixedPointToFloating: 1245 case CK_FixedPointCast: 1246 case CK_FixedPointToBoolean: 1247 case CK_FixedPointToIntegral: 1248 case CK_IntegralToFixedPoint: 1249 case CK_ZeroToOCLOpaqueType: 1250 case CK_MatrixCast: 1251 case CK_HLSLVectorTruncation: 1252 case CK_HLSLArrayRValue: 1253 return nullptr; 1254 } 1255 llvm_unreachable("Invalid CastKind"); 1256 } 1257 1258 llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE, 1259 QualType T) { 1260 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1261 // constant expression. 1262 return Visit(DIE->getExpr(), T); 1263 } 1264 1265 llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) { 1266 return Visit(E->getSubExpr(), T); 1267 } 1268 1269 llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) { 1270 return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue()); 1271 } 1272 1273 static APValue withDestType(ASTContext &Ctx, const Expr *E, QualType SrcType, 1274 QualType DestType, const llvm::APSInt &Value) { 1275 if (!Ctx.hasSameType(SrcType, DestType)) { 1276 if (DestType->isFloatingType()) { 1277 llvm::APFloat Result = 1278 llvm::APFloat(Ctx.getFloatTypeSemantics(DestType), 1); 1279 llvm::RoundingMode RM = 1280 E->getFPFeaturesInEffect(Ctx.getLangOpts()).getRoundingMode(); 1281 if (RM == llvm::RoundingMode::Dynamic) 1282 RM = llvm::RoundingMode::NearestTiesToEven; 1283 Result.convertFromAPInt(Value, Value.isSigned(), RM); 1284 return APValue(Result); 1285 } 1286 } 1287 return APValue(Value); 1288 } 1289 1290 llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) { 1291 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1292 assert(CAT && "can't emit array init for non-constant-bound array"); 1293 uint64_t NumInitElements = ILE->getNumInits(); 1294 const uint64_t NumElements = CAT->getZExtSize(); 1295 for (const auto *Init : ILE->inits()) { 1296 if (const auto *Embed = 1297 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1298 NumInitElements += Embed->getDataElementCount() - 1; 1299 if (NumInitElements > NumElements) { 1300 NumInitElements = NumElements; 1301 break; 1302 } 1303 } 1304 } 1305 1306 // Initialising an array requires us to automatically 1307 // initialise any elements that have not been initialised explicitly 1308 uint64_t NumInitableElts = std::min<uint64_t>(NumInitElements, NumElements); 1309 1310 QualType EltType = CAT->getElementType(); 1311 1312 // Initialize remaining array elements. 1313 llvm::Constant *fillC = nullptr; 1314 if (const Expr *filler = ILE->getArrayFiller()) { 1315 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1316 if (!fillC) 1317 return nullptr; 1318 } 1319 1320 // Copy initializer elements. 1321 SmallVector<llvm::Constant *, 16> Elts; 1322 if (fillC && fillC->isNullValue()) 1323 Elts.reserve(NumInitableElts + 1); 1324 else 1325 Elts.reserve(NumElements); 1326 1327 llvm::Type *CommonElementType = nullptr; 1328 auto Emit = [&](const Expr *Init, unsigned ArrayIndex) { 1329 llvm::Constant *C = nullptr; 1330 C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1331 if (!C) 1332 return false; 1333 if (ArrayIndex == 0) 1334 CommonElementType = C->getType(); 1335 else if (C->getType() != CommonElementType) 1336 CommonElementType = nullptr; 1337 Elts.push_back(C); 1338 return true; 1339 }; 1340 1341 unsigned ArrayIndex = 0; 1342 QualType DestTy = CAT->getElementType(); 1343 for (unsigned i = 0; i < ILE->getNumInits(); ++i) { 1344 const Expr *Init = ILE->getInit(i); 1345 if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1346 StringLiteral *SL = EmbedS->getDataStringLiteral(); 1347 llvm::APSInt Value(CGM.getContext().getTypeSize(DestTy), 1348 DestTy->isUnsignedIntegerType()); 1349 llvm::Constant *C; 1350 for (unsigned I = EmbedS->getStartingElementPos(), 1351 N = EmbedS->getDataElementCount(); 1352 I != EmbedS->getStartingElementPos() + N; ++I) { 1353 Value = SL->getCodeUnit(I); 1354 if (DestTy->isIntegerType()) { 1355 C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value); 1356 } else { 1357 C = Emitter.tryEmitPrivateForMemory( 1358 withDestType(CGM.getContext(), Init, EmbedS->getType(), DestTy, 1359 Value), 1360 EltType); 1361 } 1362 if (!C) 1363 return nullptr; 1364 Elts.push_back(C); 1365 ArrayIndex++; 1366 } 1367 if ((ArrayIndex - EmbedS->getDataElementCount()) == 0) 1368 CommonElementType = C->getType(); 1369 else if (C->getType() != CommonElementType) 1370 CommonElementType = nullptr; 1371 } else { 1372 if (!Emit(Init, ArrayIndex)) 1373 return nullptr; 1374 ArrayIndex++; 1375 } 1376 } 1377 1378 llvm::ArrayType *Desired = 1379 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1380 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1381 fillC); 1382 } 1383 1384 llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE, 1385 QualType T) { 1386 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1387 } 1388 1389 llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E, 1390 QualType T) { 1391 return CGM.EmitNullConstant(T); 1392 } 1393 1394 llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) { 1395 if (ILE->isTransparent()) 1396 return Visit(ILE->getInit(0), T); 1397 1398 if (ILE->getType()->isArrayType()) 1399 return EmitArrayInitialization(ILE, T); 1400 1401 if (ILE->getType()->isRecordType()) 1402 return EmitRecordInitialization(ILE, T); 1403 1404 return nullptr; 1405 } 1406 1407 llvm::Constant * 1408 VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E, 1409 QualType destType) { 1410 auto C = Visit(E->getBase(), destType); 1411 if (!C) 1412 return nullptr; 1413 1414 ConstantAggregateBuilder Const(CGM); 1415 Const.add(C, CharUnits::Zero(), false); 1416 1417 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1418 E->getUpdater())) 1419 return nullptr; 1420 1421 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1422 bool HasFlexibleArray = false; 1423 if (const auto *RT = destType->getAs<RecordType>()) 1424 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1425 return Const.build(ValTy, HasFlexibleArray); 1426 } 1427 1428 llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E, 1429 QualType Ty) { 1430 if (!E->getConstructor()->isTrivial()) 1431 return nullptr; 1432 1433 // Only default and copy/move constructors can be trivial. 1434 if (E->getNumArgs()) { 1435 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1436 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1437 "trivial ctor has argument but isn't a copy/move ctor"); 1438 1439 const Expr *Arg = E->getArg(0); 1440 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1441 "argument to copy ctor is of wrong type"); 1442 1443 // Look through the temporary; it's just converting the value to an 1444 // lvalue to pass it to the constructor. 1445 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg)) 1446 return Visit(MTE->getSubExpr(), Ty); 1447 // Don't try to support arbitrary lvalue-to-rvalue conversions for now. 1448 return nullptr; 1449 } 1450 1451 return CGM.EmitNullConstant(Ty); 1452 } 1453 1454 llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) { 1455 // This is a string literal initializing an array in an initializer. 1456 return CGM.GetConstantArrayFromStringLiteral(E); 1457 } 1458 1459 llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) { 1460 // This must be an @encode initializing an array in a static initializer. 1461 // Don't emit it as the address of the string, emit the string data itself 1462 // as an inline array. 1463 std::string Str; 1464 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1465 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1466 assert(CAT && "String data not of constant array type!"); 1467 1468 // Resize the string to the right size, adding zeros at the end, or 1469 // truncating as needed. 1470 Str.resize(CAT->getZExtSize(), '\0'); 1471 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1472 } 1473 1474 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1475 return Visit(E->getSubExpr(), T); 1476 } 1477 1478 llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) { 1479 if (llvm::Constant *C = Visit(U->getSubExpr(), T)) 1480 if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) 1481 return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue()); 1482 return nullptr; 1483 } 1484 1485 llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) { 1486 return Visit(E->getSelectedExpr(), T); 1487 } 1488 1489 // Utility methods 1490 llvm::Type *ConvertType(QualType T) { 1491 return CGM.getTypes().ConvertType(T); 1492 } 1493 }; 1494 1495 } // end anonymous namespace. 1496 1497 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1498 AbstractState saved) { 1499 Abstract = saved.OldValue; 1500 1501 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1502 "created a placeholder while doing an abstract emission?"); 1503 1504 // No validation necessary for now. 1505 // No cleanup to do for now. 1506 return C; 1507 } 1508 1509 llvm::Constant * 1510 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1511 auto state = pushAbstract(); 1512 auto C = tryEmitPrivateForVarInit(D); 1513 return validateAndPopAbstract(C, state); 1514 } 1515 1516 llvm::Constant * 1517 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1518 auto state = pushAbstract(); 1519 auto C = tryEmitPrivate(E, destType); 1520 return validateAndPopAbstract(C, state); 1521 } 1522 1523 llvm::Constant * 1524 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1525 auto state = pushAbstract(); 1526 auto C = tryEmitPrivate(value, destType); 1527 return validateAndPopAbstract(C, state); 1528 } 1529 1530 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) { 1531 if (!CE->hasAPValueResult()) 1532 return nullptr; 1533 1534 QualType RetType = CE->getType(); 1535 if (CE->isGLValue()) 1536 RetType = CGM.getContext().getLValueReferenceType(RetType); 1537 1538 return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType); 1539 } 1540 1541 llvm::Constant * 1542 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1543 auto state = pushAbstract(); 1544 auto C = tryEmitPrivate(E, destType); 1545 C = validateAndPopAbstract(C, state); 1546 if (!C) { 1547 CGM.Error(E->getExprLoc(), 1548 "internal error: could not emit constant value \"abstractly\""); 1549 C = CGM.EmitNullConstant(destType); 1550 } 1551 return C; 1552 } 1553 1554 llvm::Constant * 1555 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1556 QualType destType, 1557 bool EnablePtrAuthFunctionTypeDiscrimination) { 1558 auto state = pushAbstract(); 1559 auto C = 1560 tryEmitPrivate(value, destType, EnablePtrAuthFunctionTypeDiscrimination); 1561 C = validateAndPopAbstract(C, state); 1562 if (!C) { 1563 CGM.Error(loc, 1564 "internal error: could not emit constant value \"abstractly\""); 1565 C = CGM.EmitNullConstant(destType); 1566 } 1567 return C; 1568 } 1569 1570 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1571 initializeNonAbstract(D.getType().getAddressSpace()); 1572 return markIfFailed(tryEmitPrivateForVarInit(D)); 1573 } 1574 1575 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1576 LangAS destAddrSpace, 1577 QualType destType) { 1578 initializeNonAbstract(destAddrSpace); 1579 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1580 } 1581 1582 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1583 LangAS destAddrSpace, 1584 QualType destType) { 1585 initializeNonAbstract(destAddrSpace); 1586 auto C = tryEmitPrivateForMemory(value, destType); 1587 assert(C && "couldn't emit constant value non-abstractly?"); 1588 return C; 1589 } 1590 1591 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1592 assert(!Abstract && "cannot get current address for abstract constant"); 1593 1594 1595 1596 // Make an obviously ill-formed global that should blow up compilation 1597 // if it survives. 1598 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1599 llvm::GlobalValue::PrivateLinkage, 1600 /*init*/ nullptr, 1601 /*name*/ "", 1602 /*before*/ nullptr, 1603 llvm::GlobalVariable::NotThreadLocal, 1604 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1605 1606 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1607 1608 return global; 1609 } 1610 1611 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1612 llvm::GlobalValue *placeholder) { 1613 assert(!PlaceholderAddresses.empty()); 1614 assert(PlaceholderAddresses.back().first == nullptr); 1615 assert(PlaceholderAddresses.back().second == placeholder); 1616 PlaceholderAddresses.back().first = signal; 1617 } 1618 1619 namespace { 1620 struct ReplacePlaceholders { 1621 CodeGenModule &CGM; 1622 1623 /// The base address of the global. 1624 llvm::Constant *Base; 1625 llvm::Type *BaseValueTy = nullptr; 1626 1627 /// The placeholder addresses that were registered during emission. 1628 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1629 1630 /// The locations of the placeholder signals. 1631 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1632 1633 /// The current index stack. We use a simple unsigned stack because 1634 /// we assume that placeholders will be relatively sparse in the 1635 /// initializer, but we cache the index values we find just in case. 1636 llvm::SmallVector<unsigned, 8> Indices; 1637 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1638 1639 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1640 ArrayRef<std::pair<llvm::Constant*, 1641 llvm::GlobalVariable*>> addresses) 1642 : CGM(CGM), Base(base), 1643 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1644 } 1645 1646 void replaceInInitializer(llvm::Constant *init) { 1647 // Remember the type of the top-most initializer. 1648 BaseValueTy = init->getType(); 1649 1650 // Initialize the stack. 1651 Indices.push_back(0); 1652 IndexValues.push_back(nullptr); 1653 1654 // Recurse into the initializer. 1655 findLocations(init); 1656 1657 // Check invariants. 1658 assert(IndexValues.size() == Indices.size() && "mismatch"); 1659 assert(Indices.size() == 1 && "didn't pop all indices"); 1660 1661 // Do the replacement; this basically invalidates 'init'. 1662 assert(Locations.size() == PlaceholderAddresses.size() && 1663 "missed a placeholder?"); 1664 1665 // We're iterating over a hashtable, so this would be a source of 1666 // non-determinism in compiler output *except* that we're just 1667 // messing around with llvm::Constant structures, which never itself 1668 // does anything that should be visible in compiler output. 1669 for (auto &entry : Locations) { 1670 assert(entry.first->getName() == "" && "not a placeholder!"); 1671 entry.first->replaceAllUsesWith(entry.second); 1672 entry.first->eraseFromParent(); 1673 } 1674 } 1675 1676 private: 1677 void findLocations(llvm::Constant *init) { 1678 // Recurse into aggregates. 1679 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1680 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1681 Indices.push_back(i); 1682 IndexValues.push_back(nullptr); 1683 1684 findLocations(agg->getOperand(i)); 1685 1686 IndexValues.pop_back(); 1687 Indices.pop_back(); 1688 } 1689 return; 1690 } 1691 1692 // Otherwise, check for registered constants. 1693 while (true) { 1694 auto it = PlaceholderAddresses.find(init); 1695 if (it != PlaceholderAddresses.end()) { 1696 setLocation(it->second); 1697 break; 1698 } 1699 1700 // Look through bitcasts or other expressions. 1701 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1702 init = expr->getOperand(0); 1703 } else { 1704 break; 1705 } 1706 } 1707 } 1708 1709 void setLocation(llvm::GlobalVariable *placeholder) { 1710 assert(!Locations.contains(placeholder) && 1711 "already found location for placeholder!"); 1712 1713 // Lazily fill in IndexValues with the values from Indices. 1714 // We do this in reverse because we should always have a strict 1715 // prefix of indices from the start. 1716 assert(Indices.size() == IndexValues.size()); 1717 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1718 if (IndexValues[i]) { 1719 #ifndef NDEBUG 1720 for (size_t j = 0; j != i + 1; ++j) { 1721 assert(IndexValues[j] && 1722 isa<llvm::ConstantInt>(IndexValues[j]) && 1723 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1724 == Indices[j]); 1725 } 1726 #endif 1727 break; 1728 } 1729 1730 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1731 } 1732 1733 llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr( 1734 BaseValueTy, Base, IndexValues); 1735 1736 Locations.insert({placeholder, location}); 1737 } 1738 }; 1739 } 1740 1741 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1742 assert(InitializedNonAbstract && 1743 "finalizing emitter that was used for abstract emission?"); 1744 assert(!Finalized && "finalizing emitter multiple times"); 1745 assert(global->getInitializer()); 1746 1747 // Note that we might also be Failed. 1748 Finalized = true; 1749 1750 if (!PlaceholderAddresses.empty()) { 1751 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1752 .replaceInInitializer(global->getInitializer()); 1753 PlaceholderAddresses.clear(); // satisfy 1754 } 1755 } 1756 1757 ConstantEmitter::~ConstantEmitter() { 1758 assert((!InitializedNonAbstract || Finalized || Failed) && 1759 "not finalized after being initialized for non-abstract emission"); 1760 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1761 } 1762 1763 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1764 if (auto AT = type->getAs<AtomicType>()) { 1765 return CGM.getContext().getQualifiedType(AT->getValueType(), 1766 type.getQualifiers()); 1767 } 1768 return type; 1769 } 1770 1771 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1772 // Make a quick check if variable can be default NULL initialized 1773 // and avoid going through rest of code which may do, for c++11, 1774 // initialization of memory to all NULLs. 1775 if (!D.hasLocalStorage()) { 1776 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1777 if (Ty->isRecordType()) 1778 if (const CXXConstructExpr *E = 1779 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1780 const CXXConstructorDecl *CD = E->getConstructor(); 1781 if (CD->isTrivial() && CD->isDefaultConstructor()) 1782 return CGM.EmitNullConstant(D.getType()); 1783 } 1784 } 1785 InConstantContext = D.hasConstantInitialization(); 1786 1787 QualType destType = D.getType(); 1788 const Expr *E = D.getInit(); 1789 assert(E && "No initializer to emit"); 1790 1791 if (!destType->isReferenceType()) { 1792 QualType nonMemoryDestType = getNonMemoryType(CGM, destType); 1793 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, nonMemoryDestType)) 1794 return emitForMemory(C, destType); 1795 } 1796 1797 // Try to emit the initializer. Note that this can allow some things that 1798 // are not allowed by tryEmitPrivateForMemory alone. 1799 if (APValue *value = D.evaluateValue()) 1800 return tryEmitPrivateForMemory(*value, destType); 1801 1802 return nullptr; 1803 } 1804 1805 llvm::Constant * 1806 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1807 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1808 auto C = tryEmitAbstract(E, nonMemoryDestType); 1809 return (C ? emitForMemory(C, destType) : nullptr); 1810 } 1811 1812 llvm::Constant * 1813 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1814 QualType destType) { 1815 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1816 auto C = tryEmitAbstract(value, nonMemoryDestType); 1817 return (C ? emitForMemory(C, destType) : nullptr); 1818 } 1819 1820 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1821 QualType destType) { 1822 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1823 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1824 return (C ? emitForMemory(C, destType) : nullptr); 1825 } 1826 1827 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1828 QualType destType) { 1829 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1830 auto C = tryEmitPrivate(value, nonMemoryDestType); 1831 return (C ? emitForMemory(C, destType) : nullptr); 1832 } 1833 1834 /// Try to emit a constant signed pointer, given a raw pointer and the 1835 /// destination ptrauth qualifier. 1836 /// 1837 /// This can fail if the qualifier needs address discrimination and the 1838 /// emitter is in an abstract mode. 1839 llvm::Constant * 1840 ConstantEmitter::tryEmitConstantSignedPointer(llvm::Constant *UnsignedPointer, 1841 PointerAuthQualifier Schema) { 1842 assert(Schema && "applying trivial ptrauth schema"); 1843 1844 if (Schema.hasKeyNone()) 1845 return UnsignedPointer; 1846 1847 unsigned Key = Schema.getKey(); 1848 1849 // Create an address placeholder if we're using address discrimination. 1850 llvm::GlobalValue *StorageAddress = nullptr; 1851 if (Schema.isAddressDiscriminated()) { 1852 // We can't do this if the emitter is in an abstract state. 1853 if (isAbstract()) 1854 return nullptr; 1855 1856 StorageAddress = getCurrentAddrPrivate(); 1857 } 1858 1859 llvm::ConstantInt *Discriminator = 1860 llvm::ConstantInt::get(CGM.IntPtrTy, Schema.getExtraDiscriminator()); 1861 1862 llvm::Constant *SignedPointer = CGM.getConstantSignedPointer( 1863 UnsignedPointer, Key, StorageAddress, Discriminator); 1864 1865 if (Schema.isAddressDiscriminated()) 1866 registerCurrentAddrPrivate(SignedPointer, StorageAddress); 1867 1868 return SignedPointer; 1869 } 1870 1871 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1872 llvm::Constant *C, 1873 QualType destType) { 1874 // For an _Atomic-qualified constant, we may need to add tail padding. 1875 if (auto AT = destType->getAs<AtomicType>()) { 1876 QualType destValueType = AT->getValueType(); 1877 C = emitForMemory(CGM, C, destValueType); 1878 1879 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1880 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1881 if (innerSize == outerSize) 1882 return C; 1883 1884 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1885 llvm::Constant *elts[] = { 1886 C, 1887 llvm::ConstantAggregateZero::get( 1888 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1889 }; 1890 return llvm::ConstantStruct::getAnon(elts); 1891 } 1892 1893 // Zero-extend bool. 1894 if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) { 1895 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1896 llvm::Constant *Res = llvm::ConstantFoldCastOperand( 1897 llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout()); 1898 assert(Res && "Constant folding must succeed"); 1899 return Res; 1900 } 1901 1902 if (destType->isBitIntType()) { 1903 ConstantAggregateBuilder Builder(CGM); 1904 llvm::Type *LoadStoreTy = CGM.getTypes().convertTypeForLoadStore(destType); 1905 // ptrtoint/inttoptr should not involve _BitInt in constant expressions, so 1906 // casting to ConstantInt is safe here. 1907 auto *CI = cast<llvm::ConstantInt>(C); 1908 llvm::Constant *Res = llvm::ConstantFoldCastOperand( 1909 destType->isSignedIntegerOrEnumerationType() ? llvm::Instruction::SExt 1910 : llvm::Instruction::ZExt, 1911 CI, LoadStoreTy, CGM.getDataLayout()); 1912 if (CGM.getTypes().typeRequiresSplitIntoByteArray(destType, C->getType())) { 1913 // Long _BitInt has array of bytes as in-memory type. 1914 // So, split constant into individual bytes. 1915 llvm::Type *DesiredTy = CGM.getTypes().ConvertTypeForMem(destType); 1916 llvm::APInt Value = cast<llvm::ConstantInt>(Res)->getValue(); 1917 Builder.addBits(Value, /*OffsetInBits=*/0, /*AllowOverwrite=*/false); 1918 return Builder.build(DesiredTy, /*AllowOversized*/ false); 1919 } 1920 return Res; 1921 } 1922 1923 return C; 1924 } 1925 1926 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1927 QualType destType) { 1928 assert(!destType->isVoidType() && "can't emit a void constant"); 1929 1930 if (!destType->isReferenceType()) 1931 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, destType)) 1932 return C; 1933 1934 Expr::EvalResult Result; 1935 1936 bool Success = false; 1937 1938 if (destType->isReferenceType()) 1939 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1940 else 1941 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1942 1943 if (Success && !Result.HasSideEffects) 1944 return tryEmitPrivate(Result.Val, destType); 1945 1946 return nullptr; 1947 } 1948 1949 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1950 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1951 } 1952 1953 namespace { 1954 /// A struct which can be used to peephole certain kinds of finalization 1955 /// that normally happen during l-value emission. 1956 struct ConstantLValue { 1957 llvm::Constant *Value; 1958 bool HasOffsetApplied; 1959 1960 /*implicit*/ ConstantLValue(llvm::Constant *value, 1961 bool hasOffsetApplied = false) 1962 : Value(value), HasOffsetApplied(hasOffsetApplied) {} 1963 1964 /*implicit*/ ConstantLValue(ConstantAddress address) 1965 : ConstantLValue(address.getPointer()) {} 1966 }; 1967 1968 /// A helper class for emitting constant l-values. 1969 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1970 ConstantLValue> { 1971 CodeGenModule &CGM; 1972 ConstantEmitter &Emitter; 1973 const APValue &Value; 1974 QualType DestType; 1975 bool EnablePtrAuthFunctionTypeDiscrimination; 1976 1977 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1978 friend StmtVisitorBase; 1979 1980 public: 1981 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1982 QualType destType, 1983 bool EnablePtrAuthFunctionTypeDiscrimination = true) 1984 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType), 1985 EnablePtrAuthFunctionTypeDiscrimination( 1986 EnablePtrAuthFunctionTypeDiscrimination) {} 1987 1988 llvm::Constant *tryEmit(); 1989 1990 private: 1991 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1992 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1993 1994 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1995 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1996 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1997 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1998 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 1999 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 2000 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 2001 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 2002 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 2003 ConstantLValue VisitCallExpr(const CallExpr *E); 2004 ConstantLValue VisitBlockExpr(const BlockExpr *E); 2005 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 2006 ConstantLValue VisitMaterializeTemporaryExpr( 2007 const MaterializeTemporaryExpr *E); 2008 2009 ConstantLValue emitPointerAuthSignConstant(const CallExpr *E); 2010 llvm::Constant *emitPointerAuthPointer(const Expr *E); 2011 unsigned emitPointerAuthKey(const Expr *E); 2012 std::pair<llvm::Constant *, llvm::ConstantInt *> 2013 emitPointerAuthDiscriminator(const Expr *E); 2014 2015 bool hasNonZeroOffset() const { 2016 return !Value.getLValueOffset().isZero(); 2017 } 2018 2019 /// Return the value offset. 2020 llvm::Constant *getOffset() { 2021 return llvm::ConstantInt::get(CGM.Int64Ty, 2022 Value.getLValueOffset().getQuantity()); 2023 } 2024 2025 /// Apply the value offset to the given constant. 2026 llvm::Constant *applyOffset(llvm::Constant *C) { 2027 if (!hasNonZeroOffset()) 2028 return C; 2029 2030 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 2031 } 2032 }; 2033 2034 } 2035 2036 llvm::Constant *ConstantLValueEmitter::tryEmit() { 2037 const APValue::LValueBase &base = Value.getLValueBase(); 2038 2039 // The destination type should be a pointer or reference 2040 // type, but it might also be a cast thereof. 2041 // 2042 // FIXME: the chain of casts required should be reflected in the APValue. 2043 // We need this in order to correctly handle things like a ptrtoint of a 2044 // non-zero null pointer and addrspace casts that aren't trivially 2045 // represented in LLVM IR. 2046 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 2047 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 2048 2049 // If there's no base at all, this is a null or absolute pointer, 2050 // possibly cast back to an integer type. 2051 if (!base) { 2052 return tryEmitAbsolute(destTy); 2053 } 2054 2055 // Otherwise, try to emit the base. 2056 ConstantLValue result = tryEmitBase(base); 2057 2058 // If that failed, we're done. 2059 llvm::Constant *value = result.Value; 2060 if (!value) return nullptr; 2061 2062 // Apply the offset if necessary and not already done. 2063 if (!result.HasOffsetApplied) { 2064 value = applyOffset(value); 2065 } 2066 2067 // Convert to the appropriate type; this could be an lvalue for 2068 // an integer. FIXME: performAddrSpaceCast 2069 if (isa<llvm::PointerType>(destTy)) 2070 return llvm::ConstantExpr::getPointerCast(value, destTy); 2071 2072 return llvm::ConstantExpr::getPtrToInt(value, destTy); 2073 } 2074 2075 /// Try to emit an absolute l-value, such as a null pointer or an integer 2076 /// bitcast to pointer type. 2077 llvm::Constant * 2078 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 2079 // If we're producing a pointer, this is easy. 2080 auto destPtrTy = cast<llvm::PointerType>(destTy); 2081 if (Value.isNullPointer()) { 2082 // FIXME: integer offsets from non-zero null pointers. 2083 return CGM.getNullPointer(destPtrTy, DestType); 2084 } 2085 2086 // Convert the integer to a pointer-sized integer before converting it 2087 // to a pointer. 2088 // FIXME: signedness depends on the original integer type. 2089 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 2090 llvm::Constant *C; 2091 C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false, 2092 CGM.getDataLayout()); 2093 assert(C && "Must have folded, as Offset is a ConstantInt"); 2094 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 2095 return C; 2096 } 2097 2098 ConstantLValue 2099 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 2100 // Handle values. 2101 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 2102 // The constant always points to the canonical declaration. We want to look 2103 // at properties of the most recent declaration at the point of emission. 2104 D = cast<ValueDecl>(D->getMostRecentDecl()); 2105 2106 if (D->hasAttr<WeakRefAttr>()) 2107 return CGM.GetWeakRefReference(D).getPointer(); 2108 2109 auto PtrAuthSign = [&](llvm::Constant *C) { 2110 CGPointerAuthInfo AuthInfo; 2111 2112 if (EnablePtrAuthFunctionTypeDiscrimination) 2113 AuthInfo = CGM.getFunctionPointerAuthInfo(DestType); 2114 2115 if (AuthInfo) { 2116 if (hasNonZeroOffset()) 2117 return ConstantLValue(nullptr); 2118 2119 C = applyOffset(C); 2120 C = CGM.getConstantSignedPointer( 2121 C, AuthInfo.getKey(), nullptr, 2122 cast_or_null<llvm::ConstantInt>(AuthInfo.getDiscriminator())); 2123 return ConstantLValue(C, /*applied offset*/ true); 2124 } 2125 2126 return ConstantLValue(C); 2127 }; 2128 2129 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 2130 return PtrAuthSign(CGM.getRawFunctionPointer(FD)); 2131 2132 if (const auto *VD = dyn_cast<VarDecl>(D)) { 2133 // We can never refer to a variable with local storage. 2134 if (!VD->hasLocalStorage()) { 2135 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 2136 return CGM.GetAddrOfGlobalVar(VD); 2137 2138 if (VD->isLocalVarDecl()) { 2139 return CGM.getOrCreateStaticVarDecl( 2140 *VD, CGM.getLLVMLinkageVarDefinition(VD)); 2141 } 2142 } 2143 } 2144 2145 if (const auto *GD = dyn_cast<MSGuidDecl>(D)) 2146 return CGM.GetAddrOfMSGuidDecl(GD); 2147 2148 if (const auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) 2149 return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD); 2150 2151 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) 2152 return CGM.GetAddrOfTemplateParamObject(TPO); 2153 2154 return nullptr; 2155 } 2156 2157 // Handle typeid(T). 2158 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) 2159 return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 2160 2161 // Otherwise, it must be an expression. 2162 return Visit(base.get<const Expr*>()); 2163 } 2164 2165 ConstantLValue 2166 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 2167 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E)) 2168 return Result; 2169 return Visit(E->getSubExpr()); 2170 } 2171 2172 ConstantLValue 2173 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2174 ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF); 2175 CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext()); 2176 return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E); 2177 } 2178 2179 ConstantLValue 2180 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 2181 return CGM.GetAddrOfConstantStringFromLiteral(E); 2182 } 2183 2184 ConstantLValue 2185 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 2186 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 2187 } 2188 2189 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 2190 QualType T, 2191 CodeGenModule &CGM) { 2192 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 2193 return C.withElementType(CGM.getTypes().ConvertTypeForMem(T)); 2194 } 2195 2196 ConstantLValue 2197 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 2198 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 2199 } 2200 2201 ConstantLValue 2202 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 2203 assert(E->isExpressibleAsConstantInitializer() && 2204 "this boxed expression can't be emitted as a compile-time constant"); 2205 const auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 2206 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 2207 } 2208 2209 ConstantLValue 2210 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 2211 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 2212 } 2213 2214 ConstantLValue 2215 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 2216 assert(Emitter.CGF && "Invalid address of label expression outside function"); 2217 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 2218 return Ptr; 2219 } 2220 2221 ConstantLValue 2222 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 2223 unsigned builtin = E->getBuiltinCallee(); 2224 if (builtin == Builtin::BI__builtin_function_start) 2225 return CGM.GetFunctionStart( 2226 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())); 2227 2228 if (builtin == Builtin::BI__builtin_ptrauth_sign_constant) 2229 return emitPointerAuthSignConstant(E); 2230 2231 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 2232 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 2233 return nullptr; 2234 2235 const auto *Literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 2236 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 2237 return CGM.getObjCRuntime().GenerateConstantString(Literal); 2238 } else { 2239 // FIXME: need to deal with UCN conversion issues. 2240 return CGM.GetAddrOfConstantCFString(Literal); 2241 } 2242 } 2243 2244 ConstantLValue 2245 ConstantLValueEmitter::emitPointerAuthSignConstant(const CallExpr *E) { 2246 llvm::Constant *UnsignedPointer = emitPointerAuthPointer(E->getArg(0)); 2247 unsigned Key = emitPointerAuthKey(E->getArg(1)); 2248 auto [StorageAddress, OtherDiscriminator] = 2249 emitPointerAuthDiscriminator(E->getArg(2)); 2250 2251 llvm::Constant *SignedPointer = CGM.getConstantSignedPointer( 2252 UnsignedPointer, Key, StorageAddress, OtherDiscriminator); 2253 return SignedPointer; 2254 } 2255 2256 llvm::Constant *ConstantLValueEmitter::emitPointerAuthPointer(const Expr *E) { 2257 Expr::EvalResult Result; 2258 bool Succeeded = E->EvaluateAsRValue(Result, CGM.getContext()); 2259 assert(Succeeded); 2260 (void)Succeeded; 2261 2262 // The assertions here are all checked by Sema. 2263 assert(Result.Val.isLValue()); 2264 if (isa<FunctionDecl>(Result.Val.getLValueBase().get<const ValueDecl *>())) 2265 assert(Result.Val.getLValueOffset().isZero()); 2266 return ConstantEmitter(CGM, Emitter.CGF) 2267 .emitAbstract(E->getExprLoc(), Result.Val, E->getType(), false); 2268 } 2269 2270 unsigned ConstantLValueEmitter::emitPointerAuthKey(const Expr *E) { 2271 return E->EvaluateKnownConstInt(CGM.getContext()).getZExtValue(); 2272 } 2273 2274 std::pair<llvm::Constant *, llvm::ConstantInt *> 2275 ConstantLValueEmitter::emitPointerAuthDiscriminator(const Expr *E) { 2276 E = E->IgnoreParens(); 2277 2278 if (const auto *Call = dyn_cast<CallExpr>(E)) { 2279 if (Call->getBuiltinCallee() == 2280 Builtin::BI__builtin_ptrauth_blend_discriminator) { 2281 llvm::Constant *Pointer = ConstantEmitter(CGM).emitAbstract( 2282 Call->getArg(0), Call->getArg(0)->getType()); 2283 auto *Extra = cast<llvm::ConstantInt>(ConstantEmitter(CGM).emitAbstract( 2284 Call->getArg(1), Call->getArg(1)->getType())); 2285 return {Pointer, Extra}; 2286 } 2287 } 2288 2289 llvm::Constant *Result = ConstantEmitter(CGM).emitAbstract(E, E->getType()); 2290 if (Result->getType()->isPointerTy()) 2291 return {Result, nullptr}; 2292 return {nullptr, cast<llvm::ConstantInt>(Result)}; 2293 } 2294 2295 ConstantLValue 2296 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 2297 StringRef functionName; 2298 if (auto CGF = Emitter.CGF) 2299 functionName = CGF->CurFn->getName(); 2300 else 2301 functionName = "global"; 2302 2303 return CGM.GetAddrOfGlobalBlock(E, functionName); 2304 } 2305 2306 ConstantLValue 2307 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 2308 QualType T; 2309 if (E->isTypeOperand()) 2310 T = E->getTypeOperand(CGM.getContext()); 2311 else 2312 T = E->getExprOperand()->getType(); 2313 return CGM.GetAddrOfRTTIDescriptor(T); 2314 } 2315 2316 ConstantLValue 2317 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 2318 const MaterializeTemporaryExpr *E) { 2319 assert(E->getStorageDuration() == SD_Static); 2320 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2321 return CGM.GetAddrOfGlobalTemporary(E, Inner); 2322 } 2323 2324 llvm::Constant * 2325 ConstantEmitter::tryEmitPrivate(const APValue &Value, QualType DestType, 2326 bool EnablePtrAuthFunctionTypeDiscrimination) { 2327 switch (Value.getKind()) { 2328 case APValue::None: 2329 case APValue::Indeterminate: 2330 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2331 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2332 case APValue::LValue: 2333 return ConstantLValueEmitter(*this, Value, DestType, 2334 EnablePtrAuthFunctionTypeDiscrimination) 2335 .tryEmit(); 2336 case APValue::Int: 2337 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2338 case APValue::FixedPoint: 2339 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2340 Value.getFixedPoint().getValue()); 2341 case APValue::ComplexInt: { 2342 llvm::Constant *Complex[2]; 2343 2344 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2345 Value.getComplexIntReal()); 2346 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2347 Value.getComplexIntImag()); 2348 2349 // FIXME: the target may want to specify that this is packed. 2350 llvm::StructType *STy = 2351 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2352 return llvm::ConstantStruct::get(STy, Complex); 2353 } 2354 case APValue::Float: { 2355 const llvm::APFloat &Init = Value.getFloat(); 2356 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2357 !CGM.getContext().getLangOpts().NativeHalfType && 2358 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2359 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2360 Init.bitcastToAPInt()); 2361 else 2362 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2363 } 2364 case APValue::ComplexFloat: { 2365 llvm::Constant *Complex[2]; 2366 2367 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2368 Value.getComplexFloatReal()); 2369 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2370 Value.getComplexFloatImag()); 2371 2372 // FIXME: the target may want to specify that this is packed. 2373 llvm::StructType *STy = 2374 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2375 return llvm::ConstantStruct::get(STy, Complex); 2376 } 2377 case APValue::Vector: { 2378 unsigned NumElts = Value.getVectorLength(); 2379 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2380 2381 for (unsigned I = 0; I != NumElts; ++I) { 2382 const APValue &Elt = Value.getVectorElt(I); 2383 if (Elt.isInt()) 2384 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2385 else if (Elt.isFloat()) 2386 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2387 else if (Elt.isIndeterminate()) 2388 Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType( 2389 DestType->castAs<VectorType>()->getElementType())); 2390 else 2391 llvm_unreachable("unsupported vector element type"); 2392 } 2393 return llvm::ConstantVector::get(Inits); 2394 } 2395 case APValue::AddrLabelDiff: { 2396 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2397 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2398 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2399 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2400 if (!LHS || !RHS) return nullptr; 2401 2402 // Compute difference 2403 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2404 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2405 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2406 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2407 2408 // LLVM is a bit sensitive about the exact format of the 2409 // address-of-label difference; make sure to truncate after 2410 // the subtraction. 2411 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2412 } 2413 case APValue::Struct: 2414 case APValue::Union: 2415 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2416 case APValue::Array: { 2417 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType); 2418 unsigned NumElements = Value.getArraySize(); 2419 unsigned NumInitElts = Value.getArrayInitializedElts(); 2420 2421 // Emit array filler, if there is one. 2422 llvm::Constant *Filler = nullptr; 2423 if (Value.hasArrayFiller()) { 2424 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2425 ArrayTy->getElementType()); 2426 if (!Filler) 2427 return nullptr; 2428 } 2429 2430 // Emit initializer elements. 2431 SmallVector<llvm::Constant*, 16> Elts; 2432 if (Filler && Filler->isNullValue()) 2433 Elts.reserve(NumInitElts + 1); 2434 else 2435 Elts.reserve(NumElements); 2436 2437 llvm::Type *CommonElementType = nullptr; 2438 for (unsigned I = 0; I < NumInitElts; ++I) { 2439 llvm::Constant *C = tryEmitPrivateForMemory( 2440 Value.getArrayInitializedElt(I), ArrayTy->getElementType()); 2441 if (!C) return nullptr; 2442 2443 if (I == 0) 2444 CommonElementType = C->getType(); 2445 else if (C->getType() != CommonElementType) 2446 CommonElementType = nullptr; 2447 Elts.push_back(C); 2448 } 2449 2450 llvm::ArrayType *Desired = 2451 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2452 2453 // Fix the type of incomplete arrays if the initializer isn't empty. 2454 if (DestType->isIncompleteArrayType() && !Elts.empty()) 2455 Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size()); 2456 2457 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2458 Filler); 2459 } 2460 case APValue::MemberPointer: 2461 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2462 } 2463 llvm_unreachable("Unknown APValue kind"); 2464 } 2465 2466 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2467 const CompoundLiteralExpr *E) { 2468 return EmittedCompoundLiterals.lookup(E); 2469 } 2470 2471 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2472 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2473 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2474 (void)Ok; 2475 assert(Ok && "CLE has already been emitted!"); 2476 } 2477 2478 ConstantAddress 2479 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2480 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2481 ConstantEmitter emitter(*this); 2482 return tryEmitGlobalCompoundLiteral(emitter, E); 2483 } 2484 2485 llvm::Constant * 2486 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2487 // Member pointer constants always have a very particular form. 2488 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2489 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2490 2491 // A member function pointer. 2492 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2493 return getCXXABI().EmitMemberFunctionPointer(method); 2494 2495 // Otherwise, a member data pointer. 2496 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2497 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2498 return getCXXABI().EmitMemberDataPointer(type, chars); 2499 } 2500 2501 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2502 llvm::Type *baseType, 2503 const CXXRecordDecl *base); 2504 2505 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2506 const RecordDecl *record, 2507 bool asCompleteObject) { 2508 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2509 llvm::StructType *structure = 2510 (asCompleteObject ? layout.getLLVMType() 2511 : layout.getBaseSubobjectLLVMType()); 2512 2513 unsigned numElements = structure->getNumElements(); 2514 std::vector<llvm::Constant *> elements(numElements); 2515 2516 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2517 // Fill in all the bases. 2518 if (CXXR) { 2519 for (const auto &I : CXXR->bases()) { 2520 if (I.isVirtual()) { 2521 // Ignore virtual bases; if we're laying out for a complete 2522 // object, we'll lay these out later. 2523 continue; 2524 } 2525 2526 const CXXRecordDecl *base = 2527 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2528 2529 // Ignore empty bases. 2530 if (isEmptyRecordForLayout(CGM.getContext(), I.getType()) || 2531 CGM.getContext() 2532 .getASTRecordLayout(base) 2533 .getNonVirtualSize() 2534 .isZero()) 2535 continue; 2536 2537 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2538 llvm::Type *baseType = structure->getElementType(fieldIndex); 2539 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2540 } 2541 } 2542 2543 // Fill in all the fields. 2544 for (const auto *Field : record->fields()) { 2545 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2546 // will fill in later.) 2547 if (!Field->isBitField() && 2548 !isEmptyFieldForLayout(CGM.getContext(), Field)) { 2549 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2550 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2551 } 2552 2553 // For unions, stop after the first named field. 2554 if (record->isUnion()) { 2555 if (Field->getIdentifier()) 2556 break; 2557 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2558 if (FieldRD->findFirstNamedDataMember()) 2559 break; 2560 } 2561 } 2562 2563 // Fill in the virtual bases, if we're working with the complete object. 2564 if (CXXR && asCompleteObject) { 2565 for (const auto &I : CXXR->vbases()) { 2566 const CXXRecordDecl *base = 2567 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2568 2569 // Ignore empty bases. 2570 if (isEmptyRecordForLayout(CGM.getContext(), I.getType())) 2571 continue; 2572 2573 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2574 2575 // We might have already laid this field out. 2576 if (elements[fieldIndex]) continue; 2577 2578 llvm::Type *baseType = structure->getElementType(fieldIndex); 2579 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2580 } 2581 } 2582 2583 // Now go through all other fields and zero them out. 2584 for (unsigned i = 0; i != numElements; ++i) { 2585 if (!elements[i]) 2586 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2587 } 2588 2589 return llvm::ConstantStruct::get(structure, elements); 2590 } 2591 2592 /// Emit the null constant for a base subobject. 2593 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2594 llvm::Type *baseType, 2595 const CXXRecordDecl *base) { 2596 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2597 2598 // Just zero out bases that don't have any pointer to data members. 2599 if (baseLayout.isZeroInitializableAsBase()) 2600 return llvm::Constant::getNullValue(baseType); 2601 2602 // Otherwise, we can just use its null constant. 2603 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2604 } 2605 2606 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2607 QualType T) { 2608 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2609 } 2610 2611 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2612 if (T->getAs<PointerType>()) 2613 return getNullPointer( 2614 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2615 2616 if (getTypes().isZeroInitializable(T)) 2617 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2618 2619 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2620 llvm::ArrayType *ATy = 2621 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2622 2623 QualType ElementTy = CAT->getElementType(); 2624 2625 llvm::Constant *Element = 2626 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2627 unsigned NumElements = CAT->getZExtSize(); 2628 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2629 return llvm::ConstantArray::get(ATy, Array); 2630 } 2631 2632 if (const RecordType *RT = T->getAs<RecordType>()) 2633 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2634 2635 assert(T->isMemberDataPointerType() && 2636 "Should only see pointers to data members here!"); 2637 2638 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2639 } 2640 2641 llvm::Constant * 2642 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2643 return ::EmitNullConstant(*this, Record, false); 2644 } 2645