xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprConstant.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ABIInfoImpl.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/APValue.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/Sequence.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include <optional>
35 using namespace clang;
36 using namespace CodeGen;
37 
38 //===----------------------------------------------------------------------===//
39 //                            ConstantAggregateBuilder
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 class ConstExprEmitter;
44 
45 struct ConstantAggregateBuilderUtils {
46   CodeGenModule &CGM;
47 
48   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
49 
50   CharUnits getAlignment(const llvm::Constant *C) const {
51     return CharUnits::fromQuantity(
52         CGM.getDataLayout().getABITypeAlign(C->getType()));
53   }
54 
55   CharUnits getSize(llvm::Type *Ty) const {
56     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
57   }
58 
59   CharUnits getSize(const llvm::Constant *C) const {
60     return getSize(C->getType());
61   }
62 
63   llvm::Constant *getPadding(CharUnits PadSize) const {
64     llvm::Type *Ty = CGM.CharTy;
65     if (PadSize > CharUnits::One())
66       Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
67     return llvm::UndefValue::get(Ty);
68   }
69 
70   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
71     llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
72     return llvm::ConstantAggregateZero::get(Ty);
73   }
74 };
75 
76 /// Incremental builder for an llvm::Constant* holding a struct or array
77 /// constant.
78 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
79   /// The elements of the constant. These two arrays must have the same size;
80   /// Offsets[i] describes the offset of Elems[i] within the constant. The
81   /// elements are kept in increasing offset order, and we ensure that there
82   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
83   ///
84   /// This may contain explicit padding elements (in order to create a
85   /// natural layout), but need not. Gaps between elements are implicitly
86   /// considered to be filled with undef.
87   llvm::SmallVector<llvm::Constant*, 32> Elems;
88   llvm::SmallVector<CharUnits, 32> Offsets;
89 
90   /// The size of the constant (the maximum end offset of any added element).
91   /// May be larger than the end of Elems.back() if we split the last element
92   /// and removed some trailing undefs.
93   CharUnits Size = CharUnits::Zero();
94 
95   /// This is true only if laying out Elems in order as the elements of a
96   /// non-packed LLVM struct will give the correct layout.
97   bool NaturalLayout = true;
98 
99   bool split(size_t Index, CharUnits Hint);
100   std::optional<size_t> splitAt(CharUnits Pos);
101 
102   static llvm::Constant *buildFrom(CodeGenModule &CGM,
103                                    ArrayRef<llvm::Constant *> Elems,
104                                    ArrayRef<CharUnits> Offsets,
105                                    CharUnits StartOffset, CharUnits Size,
106                                    bool NaturalLayout, llvm::Type *DesiredTy,
107                                    bool AllowOversized);
108 
109 public:
110   ConstantAggregateBuilder(CodeGenModule &CGM)
111       : ConstantAggregateBuilderUtils(CGM) {}
112 
113   /// Update or overwrite the value starting at \p Offset with \c C.
114   ///
115   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
116   ///        a constant that has already been added. This flag is only used to
117   ///        detect bugs.
118   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
119 
120   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
121   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
122 
123   /// Attempt to condense the value starting at \p Offset to a constant of type
124   /// \p DesiredTy.
125   void condense(CharUnits Offset, llvm::Type *DesiredTy);
126 
127   /// Produce a constant representing the entire accumulated value, ideally of
128   /// the specified type. If \p AllowOversized, the constant might be larger
129   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
130   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
131   /// even if we can't represent it as that type.
132   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
133     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
134                      NaturalLayout, DesiredTy, AllowOversized);
135   }
136 };
137 
138 template<typename Container, typename Range = std::initializer_list<
139                                  typename Container::value_type>>
140 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
141   assert(BeginOff <= EndOff && "invalid replacement range");
142   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
143 }
144 
145 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
146                           bool AllowOverwrite) {
147   // Common case: appending to a layout.
148   if (Offset >= Size) {
149     CharUnits Align = getAlignment(C);
150     CharUnits AlignedSize = Size.alignTo(Align);
151     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
152       NaturalLayout = false;
153     else if (AlignedSize < Offset) {
154       Elems.push_back(getPadding(Offset - Size));
155       Offsets.push_back(Size);
156     }
157     Elems.push_back(C);
158     Offsets.push_back(Offset);
159     Size = Offset + getSize(C);
160     return true;
161   }
162 
163   // Uncommon case: constant overlaps what we've already created.
164   std::optional<size_t> FirstElemToReplace = splitAt(Offset);
165   if (!FirstElemToReplace)
166     return false;
167 
168   CharUnits CSize = getSize(C);
169   std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
170   if (!LastElemToReplace)
171     return false;
172 
173   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
174          "unexpectedly overwriting field");
175 
176   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
177   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
178   Size = std::max(Size, Offset + CSize);
179   NaturalLayout = false;
180   return true;
181 }
182 
183 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
184                               bool AllowOverwrite) {
185   const ASTContext &Context = CGM.getContext();
186   const uint64_t CharWidth = CGM.getContext().getCharWidth();
187 
188   // Offset of where we want the first bit to go within the bits of the
189   // current char.
190   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
191 
192   // We split bit-fields up into individual bytes. Walk over the bytes and
193   // update them.
194   for (CharUnits OffsetInChars =
195            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
196        /**/; ++OffsetInChars) {
197     // Number of bits we want to fill in this char.
198     unsigned WantedBits =
199         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
200 
201     // Get a char containing the bits we want in the right places. The other
202     // bits have unspecified values.
203     llvm::APInt BitsThisChar = Bits;
204     if (BitsThisChar.getBitWidth() < CharWidth)
205       BitsThisChar = BitsThisChar.zext(CharWidth);
206     if (CGM.getDataLayout().isBigEndian()) {
207       // Figure out how much to shift by. We may need to left-shift if we have
208       // less than one byte of Bits left.
209       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
210       if (Shift > 0)
211         BitsThisChar.lshrInPlace(Shift);
212       else if (Shift < 0)
213         BitsThisChar = BitsThisChar.shl(-Shift);
214     } else {
215       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
216     }
217     if (BitsThisChar.getBitWidth() > CharWidth)
218       BitsThisChar = BitsThisChar.trunc(CharWidth);
219 
220     if (WantedBits == CharWidth) {
221       // Got a full byte: just add it directly.
222       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
223           OffsetInChars, AllowOverwrite);
224     } else {
225       // Partial byte: update the existing integer if there is one. If we
226       // can't split out a 1-CharUnit range to update, then we can't add
227       // these bits and fail the entire constant emission.
228       std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
229       if (!FirstElemToUpdate)
230         return false;
231       std::optional<size_t> LastElemToUpdate =
232           splitAt(OffsetInChars + CharUnits::One());
233       if (!LastElemToUpdate)
234         return false;
235       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
236              "should have at most one element covering one byte");
237 
238       // Figure out which bits we want and discard the rest.
239       llvm::APInt UpdateMask(CharWidth, 0);
240       if (CGM.getDataLayout().isBigEndian())
241         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
242                            CharWidth - OffsetWithinChar);
243       else
244         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
245       BitsThisChar &= UpdateMask;
246 
247       if (*FirstElemToUpdate == *LastElemToUpdate ||
248           Elems[*FirstElemToUpdate]->isNullValue() ||
249           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
250         // All existing bits are either zero or undef.
251         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
252             OffsetInChars, /*AllowOverwrite*/ true);
253       } else {
254         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
255         // In order to perform a partial update, we need the existing bitwise
256         // value, which we can only extract for a constant int.
257         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
258         if (!CI)
259           return false;
260         // Because this is a 1-CharUnit range, the constant occupying it must
261         // be exactly one CharUnit wide.
262         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
263         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
264                "unexpectedly overwriting bitfield");
265         BitsThisChar |= (CI->getValue() & ~UpdateMask);
266         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
267       }
268     }
269 
270     // Stop if we've added all the bits.
271     if (WantedBits == Bits.getBitWidth())
272       break;
273 
274     // Remove the consumed bits from Bits.
275     if (!CGM.getDataLayout().isBigEndian())
276       Bits.lshrInPlace(WantedBits);
277     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
278 
279     // The remanining bits go at the start of the following bytes.
280     OffsetWithinChar = 0;
281   }
282 
283   return true;
284 }
285 
286 /// Returns a position within Elems and Offsets such that all elements
287 /// before the returned index end before Pos and all elements at or after
288 /// the returned index begin at or after Pos. Splits elements as necessary
289 /// to ensure this. Returns std::nullopt if we find something we can't split.
290 std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
291   if (Pos >= Size)
292     return Offsets.size();
293 
294   while (true) {
295     auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
296     if (FirstAfterPos == Offsets.begin())
297       return 0;
298 
299     // If we already have an element starting at Pos, we're done.
300     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
301     if (Offsets[LastAtOrBeforePosIndex] == Pos)
302       return LastAtOrBeforePosIndex;
303 
304     // We found an element starting before Pos. Check for overlap.
305     if (Offsets[LastAtOrBeforePosIndex] +
306         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
307       return LastAtOrBeforePosIndex + 1;
308 
309     // Try to decompose it into smaller constants.
310     if (!split(LastAtOrBeforePosIndex, Pos))
311       return std::nullopt;
312   }
313 }
314 
315 /// Split the constant at index Index, if possible. Return true if we did.
316 /// Hint indicates the location at which we'd like to split, but may be
317 /// ignored.
318 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
319   NaturalLayout = false;
320   llvm::Constant *C = Elems[Index];
321   CharUnits Offset = Offsets[Index];
322 
323   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
324     // Expand the sequence into its contained elements.
325     // FIXME: This assumes vector elements are byte-sized.
326     replace(Elems, Index, Index + 1,
327             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
328                             [&](unsigned Op) { return CA->getOperand(Op); }));
329     if (isa<llvm::ArrayType>(CA->getType()) ||
330         isa<llvm::VectorType>(CA->getType())) {
331       // Array or vector.
332       llvm::Type *ElemTy =
333           llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
334       CharUnits ElemSize = getSize(ElemTy);
335       replace(
336           Offsets, Index, Index + 1,
337           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
338                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
339     } else {
340       // Must be a struct.
341       auto *ST = cast<llvm::StructType>(CA->getType());
342       const llvm::StructLayout *Layout =
343           CGM.getDataLayout().getStructLayout(ST);
344       replace(Offsets, Index, Index + 1,
345               llvm::map_range(
346                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
347                     return Offset + CharUnits::fromQuantity(
348                                         Layout->getElementOffset(Op));
349                   }));
350     }
351     return true;
352   }
353 
354   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
355     // Expand the sequence into its contained elements.
356     // FIXME: This assumes vector elements are byte-sized.
357     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
358     CharUnits ElemSize = getSize(CDS->getElementType());
359     replace(Elems, Index, Index + 1,
360             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
361                             [&](unsigned Elem) {
362                               return CDS->getElementAsConstant(Elem);
363                             }));
364     replace(Offsets, Index, Index + 1,
365             llvm::map_range(
366                 llvm::seq(0u, CDS->getNumElements()),
367                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
368     return true;
369   }
370 
371   if (isa<llvm::ConstantAggregateZero>(C)) {
372     // Split into two zeros at the hinted offset.
373     CharUnits ElemSize = getSize(C);
374     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
375     replace(Elems, Index, Index + 1,
376             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
377     replace(Offsets, Index, Index + 1, {Offset, Hint});
378     return true;
379   }
380 
381   if (isa<llvm::UndefValue>(C)) {
382     // Drop undef; it doesn't contribute to the final layout.
383     replace(Elems, Index, Index + 1, {});
384     replace(Offsets, Index, Index + 1, {});
385     return true;
386   }
387 
388   // FIXME: We could split a ConstantInt if the need ever arose.
389   // We don't need to do this to handle bit-fields because we always eagerly
390   // split them into 1-byte chunks.
391 
392   return false;
393 }
394 
395 static llvm::Constant *
396 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
397                   llvm::Type *CommonElementType, uint64_t ArrayBound,
398                   SmallVectorImpl<llvm::Constant *> &Elements,
399                   llvm::Constant *Filler);
400 
401 llvm::Constant *ConstantAggregateBuilder::buildFrom(
402     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
403     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
404     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
405   ConstantAggregateBuilderUtils Utils(CGM);
406 
407   if (Elems.empty())
408     return llvm::UndefValue::get(DesiredTy);
409 
410   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
411 
412   // If we want an array type, see if all the elements are the same type and
413   // appropriately spaced.
414   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
415     assert(!AllowOversized && "oversized array emission not supported");
416 
417     bool CanEmitArray = true;
418     llvm::Type *CommonType = Elems[0]->getType();
419     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
420     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
421     SmallVector<llvm::Constant*, 32> ArrayElements;
422     for (size_t I = 0; I != Elems.size(); ++I) {
423       // Skip zeroes; we'll use a zero value as our array filler.
424       if (Elems[I]->isNullValue())
425         continue;
426 
427       // All remaining elements must be the same type.
428       if (Elems[I]->getType() != CommonType ||
429           Offset(I) % ElemSize != 0) {
430         CanEmitArray = false;
431         break;
432       }
433       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
434       ArrayElements.back() = Elems[I];
435     }
436 
437     if (CanEmitArray) {
438       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
439                                ArrayElements, Filler);
440     }
441 
442     // Can't emit as an array, carry on to emit as a struct.
443   }
444 
445   // The size of the constant we plan to generate.  This is usually just
446   // the size of the initialized type, but in AllowOversized mode (i.e.
447   // flexible array init), it can be larger.
448   CharUnits DesiredSize = Utils.getSize(DesiredTy);
449   if (Size > DesiredSize) {
450     assert(AllowOversized && "Elems are oversized");
451     DesiredSize = Size;
452   }
453 
454   // The natural alignment of an unpacked LLVM struct with the given elements.
455   CharUnits Align = CharUnits::One();
456   for (llvm::Constant *C : Elems)
457     Align = std::max(Align, Utils.getAlignment(C));
458 
459   // The natural size of an unpacked LLVM struct with the given elements.
460   CharUnits AlignedSize = Size.alignTo(Align);
461 
462   bool Packed = false;
463   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
464   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
465   if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
466     // The natural layout would be too big; force use of a packed layout.
467     NaturalLayout = false;
468     Packed = true;
469   } else if (DesiredSize > AlignedSize) {
470     // The natural layout would be too small. Add padding to fix it. (This
471     // is ignored if we choose a packed layout.)
472     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
473     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
474     UnpackedElems = UnpackedElemStorage;
475   }
476 
477   // If we don't have a natural layout, insert padding as necessary.
478   // As we go, double-check to see if we can actually just emit Elems
479   // as a non-packed struct and do so opportunistically if possible.
480   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
481   if (!NaturalLayout) {
482     CharUnits SizeSoFar = CharUnits::Zero();
483     for (size_t I = 0; I != Elems.size(); ++I) {
484       CharUnits Align = Utils.getAlignment(Elems[I]);
485       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
486       CharUnits DesiredOffset = Offset(I);
487       assert(DesiredOffset >= SizeSoFar && "elements out of order");
488 
489       if (DesiredOffset != NaturalOffset)
490         Packed = true;
491       if (DesiredOffset != SizeSoFar)
492         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
493       PackedElems.push_back(Elems[I]);
494       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
495     }
496     // If we're using the packed layout, pad it out to the desired size if
497     // necessary.
498     if (Packed) {
499       assert(SizeSoFar <= DesiredSize &&
500              "requested size is too small for contents");
501       if (SizeSoFar < DesiredSize)
502         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
503     }
504   }
505 
506   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
507       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
508 
509   // Pick the type to use.  If the type is layout identical to the desired
510   // type then use it, otherwise use whatever the builder produced for us.
511   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
512     if (DesiredSTy->isLayoutIdentical(STy))
513       STy = DesiredSTy;
514   }
515 
516   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
517 }
518 
519 void ConstantAggregateBuilder::condense(CharUnits Offset,
520                                         llvm::Type *DesiredTy) {
521   CharUnits Size = getSize(DesiredTy);
522 
523   std::optional<size_t> FirstElemToReplace = splitAt(Offset);
524   if (!FirstElemToReplace)
525     return;
526   size_t First = *FirstElemToReplace;
527 
528   std::optional<size_t> LastElemToReplace = splitAt(Offset + Size);
529   if (!LastElemToReplace)
530     return;
531   size_t Last = *LastElemToReplace;
532 
533   size_t Length = Last - First;
534   if (Length == 0)
535     return;
536 
537   if (Length == 1 && Offsets[First] == Offset &&
538       getSize(Elems[First]) == Size) {
539     // Re-wrap single element structs if necessary. Otherwise, leave any single
540     // element constant of the right size alone even if it has the wrong type.
541     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
542     if (STy && STy->getNumElements() == 1 &&
543         STy->getElementType(0) == Elems[First]->getType())
544       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
545     return;
546   }
547 
548   llvm::Constant *Replacement = buildFrom(
549       CGM, ArrayRef(Elems).slice(First, Length),
550       ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
551       /*known to have natural layout=*/false, DesiredTy, false);
552   replace(Elems, First, Last, {Replacement});
553   replace(Offsets, First, Last, {Offset});
554 }
555 
556 //===----------------------------------------------------------------------===//
557 //                            ConstStructBuilder
558 //===----------------------------------------------------------------------===//
559 
560 class ConstStructBuilder {
561   CodeGenModule &CGM;
562   ConstantEmitter &Emitter;
563   ConstantAggregateBuilder &Builder;
564   CharUnits StartOffset;
565 
566 public:
567   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
568                                      const InitListExpr *ILE,
569                                      QualType StructTy);
570   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
571                                      const APValue &Value, QualType ValTy);
572   static bool UpdateStruct(ConstantEmitter &Emitter,
573                            ConstantAggregateBuilder &Const, CharUnits Offset,
574                            const InitListExpr *Updater);
575 
576 private:
577   ConstStructBuilder(ConstantEmitter &Emitter,
578                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
579       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
580         StartOffset(StartOffset) {}
581 
582   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
583                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
584 
585   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
586                    bool AllowOverwrite = false);
587 
588   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
589                       llvm::Constant *InitExpr, bool AllowOverwrite = false);
590 
591   bool Build(const InitListExpr *ILE, bool AllowOverwrite);
592   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
593              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
594   llvm::Constant *Finalize(QualType Ty);
595 };
596 
597 bool ConstStructBuilder::AppendField(
598     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
599     bool AllowOverwrite) {
600   const ASTContext &Context = CGM.getContext();
601 
602   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
603 
604   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
605 }
606 
607 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
608                                      llvm::Constant *InitCst,
609                                      bool AllowOverwrite) {
610   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
611 }
612 
613 bool ConstStructBuilder::AppendBitField(const FieldDecl *Field,
614                                         uint64_t FieldOffset, llvm::Constant *C,
615                                         bool AllowOverwrite) {
616 
617   llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C);
618   if (!CI) {
619     // Constants for long _BitInt types are sometimes split into individual
620     // bytes. Try to fold these back into an integer constant. If that doesn't
621     // work out, then we are trying to initialize a bitfield with a non-trivial
622     // constant, this must require run-time code.
623     llvm::Type *LoadType =
624         CGM.getTypes().convertTypeForLoadStore(Field->getType(), C->getType());
625     llvm::Constant *FoldedConstant = llvm::ConstantFoldLoadFromConst(
626         C, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout());
627     CI = dyn_cast_if_present<llvm::ConstantInt>(FoldedConstant);
628     if (!CI)
629       return false;
630   }
631 
632   const CGRecordLayout &RL =
633       CGM.getTypes().getCGRecordLayout(Field->getParent());
634   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
635   llvm::APInt FieldValue = CI->getValue();
636 
637   // Promote the size of FieldValue if necessary
638   // FIXME: This should never occur, but currently it can because initializer
639   // constants are cast to bool, and because clang is not enforcing bitfield
640   // width limits.
641   if (Info.Size > FieldValue.getBitWidth())
642     FieldValue = FieldValue.zext(Info.Size);
643 
644   // Truncate the size of FieldValue to the bit field size.
645   if (Info.Size < FieldValue.getBitWidth())
646     FieldValue = FieldValue.trunc(Info.Size);
647 
648   return Builder.addBits(FieldValue,
649                          CGM.getContext().toBits(StartOffset) + FieldOffset,
650                          AllowOverwrite);
651 }
652 
653 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
654                                       ConstantAggregateBuilder &Const,
655                                       CharUnits Offset, QualType Type,
656                                       const InitListExpr *Updater) {
657   if (Type->isRecordType())
658     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
659 
660   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
661   if (!CAT)
662     return false;
663   QualType ElemType = CAT->getElementType();
664   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
665   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
666 
667   llvm::Constant *FillC = nullptr;
668   if (const Expr *Filler = Updater->getArrayFiller()) {
669     if (!isa<NoInitExpr>(Filler)) {
670       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
671       if (!FillC)
672         return false;
673     }
674   }
675 
676   unsigned NumElementsToUpdate =
677       FillC ? CAT->getZExtSize() : Updater->getNumInits();
678   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
679     const Expr *Init = nullptr;
680     if (I < Updater->getNumInits())
681       Init = Updater->getInit(I);
682 
683     if (!Init && FillC) {
684       if (!Const.add(FillC, Offset, true))
685         return false;
686     } else if (!Init || isa<NoInitExpr>(Init)) {
687       continue;
688     } else if (const auto *ChildILE = dyn_cast<InitListExpr>(Init)) {
689       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
690                                      ChildILE))
691         return false;
692       // Attempt to reduce the array element to a single constant if necessary.
693       Const.condense(Offset, ElemTy);
694     } else {
695       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
696       if (!Const.add(Val, Offset, true))
697         return false;
698     }
699   }
700 
701   return true;
702 }
703 
704 bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) {
705   RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
706   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
707 
708   unsigned FieldNo = -1;
709   unsigned ElementNo = 0;
710 
711   // Bail out if we have base classes. We could support these, but they only
712   // arise in C++1z where we will have already constant folded most interesting
713   // cases. FIXME: There are still a few more cases we can handle this way.
714   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
715     if (CXXRD->getNumBases())
716       return false;
717 
718   for (FieldDecl *Field : RD->fields()) {
719     ++FieldNo;
720 
721     // If this is a union, skip all the fields that aren't being initialized.
722     if (RD->isUnion() &&
723         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
724       continue;
725 
726     // Don't emit anonymous bitfields.
727     if (Field->isUnnamedBitField())
728       continue;
729 
730     // Get the initializer.  A struct can include fields without initializers,
731     // we just use explicit null values for them.
732     const Expr *Init = nullptr;
733     if (ElementNo < ILE->getNumInits())
734       Init = ILE->getInit(ElementNo++);
735     if (isa_and_nonnull<NoInitExpr>(Init))
736       continue;
737 
738     // Zero-sized fields are not emitted, but their initializers may still
739     // prevent emission of this struct as a constant.
740     if (isEmptyFieldForLayout(CGM.getContext(), Field)) {
741       if (Init->HasSideEffects(CGM.getContext()))
742         return false;
743       continue;
744     }
745 
746     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
747     // represents additional overwriting of our current constant value, and not
748     // a new constant to emit independently.
749     if (AllowOverwrite &&
750         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
751       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
752         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
753             Layout.getFieldOffset(FieldNo));
754         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
755                                        Field->getType(), SubILE))
756           return false;
757         // If we split apart the field's value, try to collapse it down to a
758         // single value now.
759         Builder.condense(StartOffset + Offset,
760                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
761         continue;
762       }
763     }
764 
765     llvm::Constant *EltInit =
766         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
767              : Emitter.emitNullForMemory(Field->getType());
768     if (!EltInit)
769       return false;
770 
771     if (!Field->isBitField()) {
772       // Handle non-bitfield members.
773       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
774                        AllowOverwrite))
775         return false;
776       // After emitting a non-empty field with [[no_unique_address]], we may
777       // need to overwrite its tail padding.
778       if (Field->hasAttr<NoUniqueAddressAttr>())
779         AllowOverwrite = true;
780     } else {
781       // Otherwise we have a bitfield.
782       if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), EltInit,
783                           AllowOverwrite))
784         return false;
785     }
786   }
787 
788   return true;
789 }
790 
791 namespace {
792 struct BaseInfo {
793   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
794     : Decl(Decl), Offset(Offset), Index(Index) {
795   }
796 
797   const CXXRecordDecl *Decl;
798   CharUnits Offset;
799   unsigned Index;
800 
801   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
802 };
803 }
804 
805 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
806                                bool IsPrimaryBase,
807                                const CXXRecordDecl *VTableClass,
808                                CharUnits Offset) {
809   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
810 
811   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
812     // Add a vtable pointer, if we need one and it hasn't already been added.
813     if (Layout.hasOwnVFPtr()) {
814       llvm::Constant *VTableAddressPoint =
815           CGM.getCXXABI().getVTableAddressPoint(BaseSubobject(CD, Offset),
816                                                 VTableClass);
817       if (auto Authentication = CGM.getVTablePointerAuthentication(CD)) {
818         VTableAddressPoint = Emitter.tryEmitConstantSignedPointer(
819             VTableAddressPoint, *Authentication);
820         if (!VTableAddressPoint)
821           return false;
822       }
823       if (!AppendBytes(Offset, VTableAddressPoint))
824         return false;
825     }
826 
827     // Accumulate and sort bases, in order to visit them in address order, which
828     // may not be the same as declaration order.
829     SmallVector<BaseInfo, 8> Bases;
830     Bases.reserve(CD->getNumBases());
831     unsigned BaseNo = 0;
832     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
833          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
834       assert(!Base->isVirtual() && "should not have virtual bases here");
835       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
836       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
837       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
838     }
839     llvm::stable_sort(Bases);
840 
841     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
842       BaseInfo &Base = Bases[I];
843 
844       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
845       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
846             VTableClass, Offset + Base.Offset);
847     }
848   }
849 
850   unsigned FieldNo = 0;
851   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
852 
853   bool AllowOverwrite = false;
854   for (RecordDecl::field_iterator Field = RD->field_begin(),
855        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
856     // If this is a union, skip all the fields that aren't being initialized.
857     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
858       continue;
859 
860     // Don't emit anonymous bitfields or zero-sized fields.
861     if (Field->isUnnamedBitField() ||
862         isEmptyFieldForLayout(CGM.getContext(), *Field))
863       continue;
864 
865     // Emit the value of the initializer.
866     const APValue &FieldValue =
867       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
868     llvm::Constant *EltInit =
869       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
870     if (!EltInit)
871       return false;
872 
873     if (!Field->isBitField()) {
874       // Handle non-bitfield members.
875       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
876                        EltInit, AllowOverwrite))
877         return false;
878       // After emitting a non-empty field with [[no_unique_address]], we may
879       // need to overwrite its tail padding.
880       if (Field->hasAttr<NoUniqueAddressAttr>())
881         AllowOverwrite = true;
882     } else {
883       // Otherwise we have a bitfield.
884       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
885                           EltInit, AllowOverwrite))
886         return false;
887     }
888   }
889 
890   return true;
891 }
892 
893 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
894   Type = Type.getNonReferenceType();
895   RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
896   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
897   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
898 }
899 
900 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
901                                                 const InitListExpr *ILE,
902                                                 QualType ValTy) {
903   ConstantAggregateBuilder Const(Emitter.CGM);
904   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
905 
906   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
907     return nullptr;
908 
909   return Builder.Finalize(ValTy);
910 }
911 
912 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
913                                                 const APValue &Val,
914                                                 QualType ValTy) {
915   ConstantAggregateBuilder Const(Emitter.CGM);
916   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
917 
918   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
919   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
920   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
921     return nullptr;
922 
923   return Builder.Finalize(ValTy);
924 }
925 
926 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
927                                       ConstantAggregateBuilder &Const,
928                                       CharUnits Offset,
929                                       const InitListExpr *Updater) {
930   return ConstStructBuilder(Emitter, Const, Offset)
931       .Build(Updater, /*AllowOverwrite*/ true);
932 }
933 
934 //===----------------------------------------------------------------------===//
935 //                             ConstExprEmitter
936 //===----------------------------------------------------------------------===//
937 
938 static ConstantAddress
939 tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
940                              const CompoundLiteralExpr *E) {
941   CodeGenModule &CGM = emitter.CGM;
942   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
943   if (llvm::GlobalVariable *Addr =
944           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
945     return ConstantAddress(Addr, Addr->getValueType(), Align);
946 
947   LangAS addressSpace = E->getType().getAddressSpace();
948   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
949                                                     addressSpace, E->getType());
950   if (!C) {
951     assert(!E->isFileScope() &&
952            "file-scope compound literal did not have constant initializer!");
953     return ConstantAddress::invalid();
954   }
955 
956   auto GV = new llvm::GlobalVariable(
957       CGM.getModule(), C->getType(),
958       E->getType().isConstantStorage(CGM.getContext(), true, false),
959       llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
960       llvm::GlobalVariable::NotThreadLocal,
961       CGM.getContext().getTargetAddressSpace(addressSpace));
962   emitter.finalize(GV);
963   GV->setAlignment(Align.getAsAlign());
964   CGM.setAddrOfConstantCompoundLiteral(E, GV);
965   return ConstantAddress(GV, GV->getValueType(), Align);
966 }
967 
968 static llvm::Constant *
969 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
970                   llvm::Type *CommonElementType, uint64_t ArrayBound,
971                   SmallVectorImpl<llvm::Constant *> &Elements,
972                   llvm::Constant *Filler) {
973   // Figure out how long the initial prefix of non-zero elements is.
974   uint64_t NonzeroLength = ArrayBound;
975   if (Elements.size() < NonzeroLength && Filler->isNullValue())
976     NonzeroLength = Elements.size();
977   if (NonzeroLength == Elements.size()) {
978     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
979       --NonzeroLength;
980   }
981 
982   if (NonzeroLength == 0)
983     return llvm::ConstantAggregateZero::get(DesiredType);
984 
985   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
986   uint64_t TrailingZeroes = ArrayBound - NonzeroLength;
987   if (TrailingZeroes >= 8) {
988     assert(Elements.size() >= NonzeroLength &&
989            "missing initializer for non-zero element");
990 
991     // If all the elements had the same type up to the trailing zeroes, emit a
992     // struct of two arrays (the nonzero data and the zeroinitializer).
993     if (CommonElementType && NonzeroLength >= 8) {
994       llvm::Constant *Initial = llvm::ConstantArray::get(
995           llvm::ArrayType::get(CommonElementType, NonzeroLength),
996           ArrayRef(Elements).take_front(NonzeroLength));
997       Elements.resize(2);
998       Elements[0] = Initial;
999     } else {
1000       Elements.resize(NonzeroLength + 1);
1001     }
1002 
1003     auto *FillerType =
1004         CommonElementType ? CommonElementType : DesiredType->getElementType();
1005     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
1006     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
1007     CommonElementType = nullptr;
1008   } else if (Elements.size() != ArrayBound) {
1009     // Otherwise pad to the right size with the filler if necessary.
1010     Elements.resize(ArrayBound, Filler);
1011     if (Filler->getType() != CommonElementType)
1012       CommonElementType = nullptr;
1013   }
1014 
1015   // If all elements have the same type, just emit an array constant.
1016   if (CommonElementType)
1017     return llvm::ConstantArray::get(
1018         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
1019 
1020   // We have mixed types. Use a packed struct.
1021   llvm::SmallVector<llvm::Type *, 16> Types;
1022   Types.reserve(Elements.size());
1023   for (llvm::Constant *Elt : Elements)
1024     Types.push_back(Elt->getType());
1025   llvm::StructType *SType =
1026       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1027   return llvm::ConstantStruct::get(SType, Elements);
1028 }
1029 
1030 // This class only needs to handle arrays, structs and unions. Outside C++11
1031 // mode, we don't currently constant fold those types.  All other types are
1032 // handled by constant folding.
1033 //
1034 // Constant folding is currently missing support for a few features supported
1035 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1036 class ConstExprEmitter
1037     : public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> {
1038   CodeGenModule &CGM;
1039   ConstantEmitter &Emitter;
1040   llvm::LLVMContext &VMContext;
1041 public:
1042   ConstExprEmitter(ConstantEmitter &emitter)
1043     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1044   }
1045 
1046   //===--------------------------------------------------------------------===//
1047   //                            Visitor Methods
1048   //===--------------------------------------------------------------------===//
1049 
1050   llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; }
1051 
1052   llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) {
1053     if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1054       return Result;
1055     return Visit(CE->getSubExpr(), T);
1056   }
1057 
1058   llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) {
1059     return Visit(PE->getSubExpr(), T);
1060   }
1061 
1062   llvm::Constant *
1063   VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE,
1064                                     QualType T) {
1065     return Visit(PE->getReplacement(), T);
1066   }
1067 
1068   llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE,
1069                                             QualType T) {
1070     return Visit(GE->getResultExpr(), T);
1071   }
1072 
1073   llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) {
1074     return Visit(CE->getChosenSubExpr(), T);
1075   }
1076 
1077   llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E,
1078                                            QualType T) {
1079     return Visit(E->getInitializer(), T);
1080   }
1081 
1082   llvm::Constant *ProduceIntToIntCast(const Expr *E, QualType DestType) {
1083     QualType FromType = E->getType();
1084     // See also HandleIntToIntCast in ExprConstant.cpp
1085     if (FromType->isIntegerType())
1086       if (llvm::Constant *C = Visit(E, FromType))
1087         if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1088           unsigned SrcWidth = CGM.getContext().getIntWidth(FromType);
1089           unsigned DstWidth = CGM.getContext().getIntWidth(DestType);
1090           if (DstWidth == SrcWidth)
1091             return CI;
1092           llvm::APInt A = FromType->isSignedIntegerType()
1093                               ? CI->getValue().sextOrTrunc(DstWidth)
1094                               : CI->getValue().zextOrTrunc(DstWidth);
1095           return llvm::ConstantInt::get(CGM.getLLVMContext(), A);
1096         }
1097     return nullptr;
1098   }
1099 
1100   llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) {
1101     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1102       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1103     const Expr *subExpr = E->getSubExpr();
1104 
1105     switch (E->getCastKind()) {
1106     case CK_ToUnion: {
1107       // GCC cast to union extension
1108       assert(E->getType()->isUnionType() &&
1109              "Destination type is not union type!");
1110 
1111       auto field = E->getTargetUnionField();
1112 
1113       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1114       if (!C) return nullptr;
1115 
1116       auto destTy = ConvertType(destType);
1117       if (C->getType() == destTy) return C;
1118 
1119       // Build a struct with the union sub-element as the first member,
1120       // and padded to the appropriate size.
1121       SmallVector<llvm::Constant*, 2> Elts;
1122       SmallVector<llvm::Type*, 2> Types;
1123       Elts.push_back(C);
1124       Types.push_back(C->getType());
1125       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1126       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1127 
1128       assert(CurSize <= TotalSize && "Union size mismatch!");
1129       if (unsigned NumPadBytes = TotalSize - CurSize) {
1130         llvm::Type *Ty = CGM.CharTy;
1131         if (NumPadBytes > 1)
1132           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1133 
1134         Elts.push_back(llvm::UndefValue::get(Ty));
1135         Types.push_back(Ty);
1136       }
1137 
1138       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1139       return llvm::ConstantStruct::get(STy, Elts);
1140     }
1141 
1142     case CK_AddressSpaceConversion: {
1143       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1144       if (!C) return nullptr;
1145       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1146       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1147       llvm::Type *destTy = ConvertType(E->getType());
1148       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1149                                                              destAS, destTy);
1150     }
1151 
1152     case CK_LValueToRValue: {
1153       // We don't really support doing lvalue-to-rvalue conversions here; any
1154       // interesting conversions should be done in Evaluate().  But as a
1155       // special case, allow compound literals to support the gcc extension
1156       // allowing "struct x {int x;} x = (struct x) {};".
1157       if (const auto *E =
1158               dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1159         return Visit(E->getInitializer(), destType);
1160       return nullptr;
1161     }
1162 
1163     case CK_AtomicToNonAtomic:
1164     case CK_NonAtomicToAtomic:
1165     case CK_NoOp:
1166     case CK_ConstructorConversion:
1167       return Visit(subExpr, destType);
1168 
1169     case CK_ArrayToPointerDecay:
1170       if (const auto *S = dyn_cast<StringLiteral>(subExpr))
1171         return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer();
1172       return nullptr;
1173     case CK_NullToPointer:
1174       if (Visit(subExpr, destType))
1175         return CGM.EmitNullConstant(destType);
1176       return nullptr;
1177 
1178     case CK_IntToOCLSampler:
1179       llvm_unreachable("global sampler variables are not generated");
1180 
1181     case CK_IntegralCast:
1182       return ProduceIntToIntCast(subExpr, destType);
1183 
1184     case CK_Dependent: llvm_unreachable("saw dependent cast!");
1185 
1186     case CK_BuiltinFnToFnPtr:
1187       llvm_unreachable("builtin functions are handled elsewhere");
1188 
1189     case CK_ReinterpretMemberPointer:
1190     case CK_DerivedToBaseMemberPointer:
1191     case CK_BaseToDerivedMemberPointer: {
1192       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1193       if (!C) return nullptr;
1194       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1195     }
1196 
1197     // These will never be supported.
1198     case CK_ObjCObjectLValueCast:
1199     case CK_ARCProduceObject:
1200     case CK_ARCConsumeObject:
1201     case CK_ARCReclaimReturnedObject:
1202     case CK_ARCExtendBlockObject:
1203     case CK_CopyAndAutoreleaseBlockObject:
1204       return nullptr;
1205 
1206     // These don't need to be handled here because Evaluate knows how to
1207     // evaluate them in the cases where they can be folded.
1208     case CK_BitCast:
1209     case CK_ToVoid:
1210     case CK_Dynamic:
1211     case CK_LValueBitCast:
1212     case CK_LValueToRValueBitCast:
1213     case CK_NullToMemberPointer:
1214     case CK_UserDefinedConversion:
1215     case CK_CPointerToObjCPointerCast:
1216     case CK_BlockPointerToObjCPointerCast:
1217     case CK_AnyPointerToBlockPointerCast:
1218     case CK_FunctionToPointerDecay:
1219     case CK_BaseToDerived:
1220     case CK_DerivedToBase:
1221     case CK_UncheckedDerivedToBase:
1222     case CK_MemberPointerToBoolean:
1223     case CK_VectorSplat:
1224     case CK_FloatingRealToComplex:
1225     case CK_FloatingComplexToReal:
1226     case CK_FloatingComplexToBoolean:
1227     case CK_FloatingComplexCast:
1228     case CK_FloatingComplexToIntegralComplex:
1229     case CK_IntegralRealToComplex:
1230     case CK_IntegralComplexToReal:
1231     case CK_IntegralComplexToBoolean:
1232     case CK_IntegralComplexCast:
1233     case CK_IntegralComplexToFloatingComplex:
1234     case CK_PointerToIntegral:
1235     case CK_PointerToBoolean:
1236     case CK_BooleanToSignedIntegral:
1237     case CK_IntegralToPointer:
1238     case CK_IntegralToBoolean:
1239     case CK_IntegralToFloating:
1240     case CK_FloatingToIntegral:
1241     case CK_FloatingToBoolean:
1242     case CK_FloatingCast:
1243     case CK_FloatingToFixedPoint:
1244     case CK_FixedPointToFloating:
1245     case CK_FixedPointCast:
1246     case CK_FixedPointToBoolean:
1247     case CK_FixedPointToIntegral:
1248     case CK_IntegralToFixedPoint:
1249     case CK_ZeroToOCLOpaqueType:
1250     case CK_MatrixCast:
1251     case CK_HLSLVectorTruncation:
1252     case CK_HLSLArrayRValue:
1253       return nullptr;
1254     }
1255     llvm_unreachable("Invalid CastKind");
1256   }
1257 
1258   llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE,
1259                                           QualType T) {
1260     // No need for a DefaultInitExprScope: we don't handle 'this' in a
1261     // constant expression.
1262     return Visit(DIE->getExpr(), T);
1263   }
1264 
1265   llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) {
1266     return Visit(E->getSubExpr(), T);
1267   }
1268 
1269   llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) {
1270     return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1271   }
1272 
1273   static APValue withDestType(ASTContext &Ctx, const Expr *E, QualType SrcType,
1274                               QualType DestType, const llvm::APSInt &Value) {
1275     if (!Ctx.hasSameType(SrcType, DestType)) {
1276       if (DestType->isFloatingType()) {
1277         llvm::APFloat Result =
1278             llvm::APFloat(Ctx.getFloatTypeSemantics(DestType), 1);
1279         llvm::RoundingMode RM =
1280             E->getFPFeaturesInEffect(Ctx.getLangOpts()).getRoundingMode();
1281         if (RM == llvm::RoundingMode::Dynamic)
1282           RM = llvm::RoundingMode::NearestTiesToEven;
1283         Result.convertFromAPInt(Value, Value.isSigned(), RM);
1284         return APValue(Result);
1285       }
1286     }
1287     return APValue(Value);
1288   }
1289 
1290   llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) {
1291     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1292     assert(CAT && "can't emit array init for non-constant-bound array");
1293     uint64_t NumInitElements = ILE->getNumInits();
1294     const uint64_t NumElements = CAT->getZExtSize();
1295     for (const auto *Init : ILE->inits()) {
1296       if (const auto *Embed =
1297               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1298         NumInitElements += Embed->getDataElementCount() - 1;
1299         if (NumInitElements > NumElements) {
1300           NumInitElements = NumElements;
1301           break;
1302         }
1303       }
1304     }
1305 
1306     // Initialising an array requires us to automatically
1307     // initialise any elements that have not been initialised explicitly
1308     uint64_t NumInitableElts = std::min<uint64_t>(NumInitElements, NumElements);
1309 
1310     QualType EltType = CAT->getElementType();
1311 
1312     // Initialize remaining array elements.
1313     llvm::Constant *fillC = nullptr;
1314     if (const Expr *filler = ILE->getArrayFiller()) {
1315       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1316       if (!fillC)
1317         return nullptr;
1318     }
1319 
1320     // Copy initializer elements.
1321     SmallVector<llvm::Constant *, 16> Elts;
1322     if (fillC && fillC->isNullValue())
1323       Elts.reserve(NumInitableElts + 1);
1324     else
1325       Elts.reserve(NumElements);
1326 
1327     llvm::Type *CommonElementType = nullptr;
1328     auto Emit = [&](const Expr *Init, unsigned ArrayIndex) {
1329       llvm::Constant *C = nullptr;
1330       C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1331       if (!C)
1332         return false;
1333       if (ArrayIndex == 0)
1334         CommonElementType = C->getType();
1335       else if (C->getType() != CommonElementType)
1336         CommonElementType = nullptr;
1337       Elts.push_back(C);
1338       return true;
1339     };
1340 
1341     unsigned ArrayIndex = 0;
1342     QualType DestTy = CAT->getElementType();
1343     for (unsigned i = 0; i < ILE->getNumInits(); ++i) {
1344       const Expr *Init = ILE->getInit(i);
1345       if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1346         StringLiteral *SL = EmbedS->getDataStringLiteral();
1347         llvm::APSInt Value(CGM.getContext().getTypeSize(DestTy),
1348                            DestTy->isUnsignedIntegerType());
1349         llvm::Constant *C;
1350         for (unsigned I = EmbedS->getStartingElementPos(),
1351                       N = EmbedS->getDataElementCount();
1352              I != EmbedS->getStartingElementPos() + N; ++I) {
1353           Value = SL->getCodeUnit(I);
1354           if (DestTy->isIntegerType()) {
1355             C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value);
1356           } else {
1357             C = Emitter.tryEmitPrivateForMemory(
1358                 withDestType(CGM.getContext(), Init, EmbedS->getType(), DestTy,
1359                              Value),
1360                 EltType);
1361           }
1362           if (!C)
1363             return nullptr;
1364           Elts.push_back(C);
1365           ArrayIndex++;
1366         }
1367         if ((ArrayIndex - EmbedS->getDataElementCount()) == 0)
1368           CommonElementType = C->getType();
1369         else if (C->getType() != CommonElementType)
1370           CommonElementType = nullptr;
1371       } else {
1372         if (!Emit(Init, ArrayIndex))
1373           return nullptr;
1374         ArrayIndex++;
1375       }
1376     }
1377 
1378     llvm::ArrayType *Desired =
1379         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1380     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1381                              fillC);
1382   }
1383 
1384   llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE,
1385                                            QualType T) {
1386     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1387   }
1388 
1389   llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E,
1390                                              QualType T) {
1391     return CGM.EmitNullConstant(T);
1392   }
1393 
1394   llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) {
1395     if (ILE->isTransparent())
1396       return Visit(ILE->getInit(0), T);
1397 
1398     if (ILE->getType()->isArrayType())
1399       return EmitArrayInitialization(ILE, T);
1400 
1401     if (ILE->getType()->isRecordType())
1402       return EmitRecordInitialization(ILE, T);
1403 
1404     return nullptr;
1405   }
1406 
1407   llvm::Constant *
1408   VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E,
1409                                 QualType destType) {
1410     auto C = Visit(E->getBase(), destType);
1411     if (!C)
1412       return nullptr;
1413 
1414     ConstantAggregateBuilder Const(CGM);
1415     Const.add(C, CharUnits::Zero(), false);
1416 
1417     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1418                                    E->getUpdater()))
1419       return nullptr;
1420 
1421     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1422     bool HasFlexibleArray = false;
1423     if (const auto *RT = destType->getAs<RecordType>())
1424       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1425     return Const.build(ValTy, HasFlexibleArray);
1426   }
1427 
1428   llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E,
1429                                         QualType Ty) {
1430     if (!E->getConstructor()->isTrivial())
1431       return nullptr;
1432 
1433     // Only default and copy/move constructors can be trivial.
1434     if (E->getNumArgs()) {
1435       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1436       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1437              "trivial ctor has argument but isn't a copy/move ctor");
1438 
1439       const Expr *Arg = E->getArg(0);
1440       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1441              "argument to copy ctor is of wrong type");
1442 
1443       // Look through the temporary; it's just converting the value to an
1444       // lvalue to pass it to the constructor.
1445       if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg))
1446         return Visit(MTE->getSubExpr(), Ty);
1447       // Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1448       return nullptr;
1449     }
1450 
1451     return CGM.EmitNullConstant(Ty);
1452   }
1453 
1454   llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) {
1455     // This is a string literal initializing an array in an initializer.
1456     return CGM.GetConstantArrayFromStringLiteral(E);
1457   }
1458 
1459   llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) {
1460     // This must be an @encode initializing an array in a static initializer.
1461     // Don't emit it as the address of the string, emit the string data itself
1462     // as an inline array.
1463     std::string Str;
1464     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1465     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1466     assert(CAT && "String data not of constant array type!");
1467 
1468     // Resize the string to the right size, adding zeros at the end, or
1469     // truncating as needed.
1470     Str.resize(CAT->getZExtSize(), '\0');
1471     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1472   }
1473 
1474   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1475     return Visit(E->getSubExpr(), T);
1476   }
1477 
1478   llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) {
1479     if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1480       if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1481         return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1482     return nullptr;
1483   }
1484 
1485   llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) {
1486     return Visit(E->getSelectedExpr(), T);
1487   }
1488 
1489   // Utility methods
1490   llvm::Type *ConvertType(QualType T) {
1491     return CGM.getTypes().ConvertType(T);
1492   }
1493 };
1494 
1495 }  // end anonymous namespace.
1496 
1497 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1498                                                         AbstractState saved) {
1499   Abstract = saved.OldValue;
1500 
1501   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1502          "created a placeholder while doing an abstract emission?");
1503 
1504   // No validation necessary for now.
1505   // No cleanup to do for now.
1506   return C;
1507 }
1508 
1509 llvm::Constant *
1510 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1511   auto state = pushAbstract();
1512   auto C = tryEmitPrivateForVarInit(D);
1513   return validateAndPopAbstract(C, state);
1514 }
1515 
1516 llvm::Constant *
1517 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1518   auto state = pushAbstract();
1519   auto C = tryEmitPrivate(E, destType);
1520   return validateAndPopAbstract(C, state);
1521 }
1522 
1523 llvm::Constant *
1524 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1525   auto state = pushAbstract();
1526   auto C = tryEmitPrivate(value, destType);
1527   return validateAndPopAbstract(C, state);
1528 }
1529 
1530 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1531   if (!CE->hasAPValueResult())
1532     return nullptr;
1533 
1534   QualType RetType = CE->getType();
1535   if (CE->isGLValue())
1536     RetType = CGM.getContext().getLValueReferenceType(RetType);
1537 
1538   return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1539 }
1540 
1541 llvm::Constant *
1542 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1543   auto state = pushAbstract();
1544   auto C = tryEmitPrivate(E, destType);
1545   C = validateAndPopAbstract(C, state);
1546   if (!C) {
1547     CGM.Error(E->getExprLoc(),
1548               "internal error: could not emit constant value \"abstractly\"");
1549     C = CGM.EmitNullConstant(destType);
1550   }
1551   return C;
1552 }
1553 
1554 llvm::Constant *
1555 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1556                               QualType destType,
1557                               bool EnablePtrAuthFunctionTypeDiscrimination) {
1558   auto state = pushAbstract();
1559   auto C =
1560       tryEmitPrivate(value, destType, EnablePtrAuthFunctionTypeDiscrimination);
1561   C = validateAndPopAbstract(C, state);
1562   if (!C) {
1563     CGM.Error(loc,
1564               "internal error: could not emit constant value \"abstractly\"");
1565     C = CGM.EmitNullConstant(destType);
1566   }
1567   return C;
1568 }
1569 
1570 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1571   initializeNonAbstract(D.getType().getAddressSpace());
1572   return markIfFailed(tryEmitPrivateForVarInit(D));
1573 }
1574 
1575 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1576                                                        LangAS destAddrSpace,
1577                                                        QualType destType) {
1578   initializeNonAbstract(destAddrSpace);
1579   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1580 }
1581 
1582 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1583                                                     LangAS destAddrSpace,
1584                                                     QualType destType) {
1585   initializeNonAbstract(destAddrSpace);
1586   auto C = tryEmitPrivateForMemory(value, destType);
1587   assert(C && "couldn't emit constant value non-abstractly?");
1588   return C;
1589 }
1590 
1591 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1592   assert(!Abstract && "cannot get current address for abstract constant");
1593 
1594 
1595 
1596   // Make an obviously ill-formed global that should blow up compilation
1597   // if it survives.
1598   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1599                                          llvm::GlobalValue::PrivateLinkage,
1600                                          /*init*/ nullptr,
1601                                          /*name*/ "",
1602                                          /*before*/ nullptr,
1603                                          llvm::GlobalVariable::NotThreadLocal,
1604                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1605 
1606   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1607 
1608   return global;
1609 }
1610 
1611 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1612                                            llvm::GlobalValue *placeholder) {
1613   assert(!PlaceholderAddresses.empty());
1614   assert(PlaceholderAddresses.back().first == nullptr);
1615   assert(PlaceholderAddresses.back().second == placeholder);
1616   PlaceholderAddresses.back().first = signal;
1617 }
1618 
1619 namespace {
1620   struct ReplacePlaceholders {
1621     CodeGenModule &CGM;
1622 
1623     /// The base address of the global.
1624     llvm::Constant *Base;
1625     llvm::Type *BaseValueTy = nullptr;
1626 
1627     /// The placeholder addresses that were registered during emission.
1628     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1629 
1630     /// The locations of the placeholder signals.
1631     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1632 
1633     /// The current index stack.  We use a simple unsigned stack because
1634     /// we assume that placeholders will be relatively sparse in the
1635     /// initializer, but we cache the index values we find just in case.
1636     llvm::SmallVector<unsigned, 8> Indices;
1637     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1638 
1639     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1640                         ArrayRef<std::pair<llvm::Constant*,
1641                                            llvm::GlobalVariable*>> addresses)
1642         : CGM(CGM), Base(base),
1643           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1644     }
1645 
1646     void replaceInInitializer(llvm::Constant *init) {
1647       // Remember the type of the top-most initializer.
1648       BaseValueTy = init->getType();
1649 
1650       // Initialize the stack.
1651       Indices.push_back(0);
1652       IndexValues.push_back(nullptr);
1653 
1654       // Recurse into the initializer.
1655       findLocations(init);
1656 
1657       // Check invariants.
1658       assert(IndexValues.size() == Indices.size() && "mismatch");
1659       assert(Indices.size() == 1 && "didn't pop all indices");
1660 
1661       // Do the replacement; this basically invalidates 'init'.
1662       assert(Locations.size() == PlaceholderAddresses.size() &&
1663              "missed a placeholder?");
1664 
1665       // We're iterating over a hashtable, so this would be a source of
1666       // non-determinism in compiler output *except* that we're just
1667       // messing around with llvm::Constant structures, which never itself
1668       // does anything that should be visible in compiler output.
1669       for (auto &entry : Locations) {
1670         assert(entry.first->getName() == "" && "not a placeholder!");
1671         entry.first->replaceAllUsesWith(entry.second);
1672         entry.first->eraseFromParent();
1673       }
1674     }
1675 
1676   private:
1677     void findLocations(llvm::Constant *init) {
1678       // Recurse into aggregates.
1679       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1680         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1681           Indices.push_back(i);
1682           IndexValues.push_back(nullptr);
1683 
1684           findLocations(agg->getOperand(i));
1685 
1686           IndexValues.pop_back();
1687           Indices.pop_back();
1688         }
1689         return;
1690       }
1691 
1692       // Otherwise, check for registered constants.
1693       while (true) {
1694         auto it = PlaceholderAddresses.find(init);
1695         if (it != PlaceholderAddresses.end()) {
1696           setLocation(it->second);
1697           break;
1698         }
1699 
1700         // Look through bitcasts or other expressions.
1701         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1702           init = expr->getOperand(0);
1703         } else {
1704           break;
1705         }
1706       }
1707     }
1708 
1709     void setLocation(llvm::GlobalVariable *placeholder) {
1710       assert(!Locations.contains(placeholder) &&
1711              "already found location for placeholder!");
1712 
1713       // Lazily fill in IndexValues with the values from Indices.
1714       // We do this in reverse because we should always have a strict
1715       // prefix of indices from the start.
1716       assert(Indices.size() == IndexValues.size());
1717       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1718         if (IndexValues[i]) {
1719 #ifndef NDEBUG
1720           for (size_t j = 0; j != i + 1; ++j) {
1721             assert(IndexValues[j] &&
1722                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1723                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1724                      == Indices[j]);
1725           }
1726 #endif
1727           break;
1728         }
1729 
1730         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1731       }
1732 
1733       llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1734           BaseValueTy, Base, IndexValues);
1735 
1736       Locations.insert({placeholder, location});
1737     }
1738   };
1739 }
1740 
1741 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1742   assert(InitializedNonAbstract &&
1743          "finalizing emitter that was used for abstract emission?");
1744   assert(!Finalized && "finalizing emitter multiple times");
1745   assert(global->getInitializer());
1746 
1747   // Note that we might also be Failed.
1748   Finalized = true;
1749 
1750   if (!PlaceholderAddresses.empty()) {
1751     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1752       .replaceInInitializer(global->getInitializer());
1753     PlaceholderAddresses.clear(); // satisfy
1754   }
1755 }
1756 
1757 ConstantEmitter::~ConstantEmitter() {
1758   assert((!InitializedNonAbstract || Finalized || Failed) &&
1759          "not finalized after being initialized for non-abstract emission");
1760   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1761 }
1762 
1763 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1764   if (auto AT = type->getAs<AtomicType>()) {
1765     return CGM.getContext().getQualifiedType(AT->getValueType(),
1766                                              type.getQualifiers());
1767   }
1768   return type;
1769 }
1770 
1771 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1772   // Make a quick check if variable can be default NULL initialized
1773   // and avoid going through rest of code which may do, for c++11,
1774   // initialization of memory to all NULLs.
1775   if (!D.hasLocalStorage()) {
1776     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1777     if (Ty->isRecordType())
1778       if (const CXXConstructExpr *E =
1779           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1780         const CXXConstructorDecl *CD = E->getConstructor();
1781         if (CD->isTrivial() && CD->isDefaultConstructor())
1782           return CGM.EmitNullConstant(D.getType());
1783       }
1784   }
1785   InConstantContext = D.hasConstantInitialization();
1786 
1787   QualType destType = D.getType();
1788   const Expr *E = D.getInit();
1789   assert(E && "No initializer to emit");
1790 
1791   if (!destType->isReferenceType()) {
1792     QualType nonMemoryDestType = getNonMemoryType(CGM, destType);
1793     if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, nonMemoryDestType))
1794       return emitForMemory(C, destType);
1795   }
1796 
1797   // Try to emit the initializer.  Note that this can allow some things that
1798   // are not allowed by tryEmitPrivateForMemory alone.
1799   if (APValue *value = D.evaluateValue())
1800     return tryEmitPrivateForMemory(*value, destType);
1801 
1802   return nullptr;
1803 }
1804 
1805 llvm::Constant *
1806 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1807   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1808   auto C = tryEmitAbstract(E, nonMemoryDestType);
1809   return (C ? emitForMemory(C, destType) : nullptr);
1810 }
1811 
1812 llvm::Constant *
1813 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1814                                           QualType destType) {
1815   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1816   auto C = tryEmitAbstract(value, nonMemoryDestType);
1817   return (C ? emitForMemory(C, destType) : nullptr);
1818 }
1819 
1820 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1821                                                          QualType destType) {
1822   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1823   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1824   return (C ? emitForMemory(C, destType) : nullptr);
1825 }
1826 
1827 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1828                                                          QualType destType) {
1829   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1830   auto C = tryEmitPrivate(value, nonMemoryDestType);
1831   return (C ? emitForMemory(C, destType) : nullptr);
1832 }
1833 
1834 /// Try to emit a constant signed pointer, given a raw pointer and the
1835 /// destination ptrauth qualifier.
1836 ///
1837 /// This can fail if the qualifier needs address discrimination and the
1838 /// emitter is in an abstract mode.
1839 llvm::Constant *
1840 ConstantEmitter::tryEmitConstantSignedPointer(llvm::Constant *UnsignedPointer,
1841                                               PointerAuthQualifier Schema) {
1842   assert(Schema && "applying trivial ptrauth schema");
1843 
1844   if (Schema.hasKeyNone())
1845     return UnsignedPointer;
1846 
1847   unsigned Key = Schema.getKey();
1848 
1849   // Create an address placeholder if we're using address discrimination.
1850   llvm::GlobalValue *StorageAddress = nullptr;
1851   if (Schema.isAddressDiscriminated()) {
1852     // We can't do this if the emitter is in an abstract state.
1853     if (isAbstract())
1854       return nullptr;
1855 
1856     StorageAddress = getCurrentAddrPrivate();
1857   }
1858 
1859   llvm::ConstantInt *Discriminator =
1860       llvm::ConstantInt::get(CGM.IntPtrTy, Schema.getExtraDiscriminator());
1861 
1862   llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
1863       UnsignedPointer, Key, StorageAddress, Discriminator);
1864 
1865   if (Schema.isAddressDiscriminated())
1866     registerCurrentAddrPrivate(SignedPointer, StorageAddress);
1867 
1868   return SignedPointer;
1869 }
1870 
1871 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1872                                                llvm::Constant *C,
1873                                                QualType destType) {
1874   // For an _Atomic-qualified constant, we may need to add tail padding.
1875   if (auto AT = destType->getAs<AtomicType>()) {
1876     QualType destValueType = AT->getValueType();
1877     C = emitForMemory(CGM, C, destValueType);
1878 
1879     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1880     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1881     if (innerSize == outerSize)
1882       return C;
1883 
1884     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1885     llvm::Constant *elts[] = {
1886       C,
1887       llvm::ConstantAggregateZero::get(
1888           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1889     };
1890     return llvm::ConstantStruct::getAnon(elts);
1891   }
1892 
1893   // Zero-extend bool.
1894   if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) {
1895     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1896     llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1897         llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout());
1898     assert(Res && "Constant folding must succeed");
1899     return Res;
1900   }
1901 
1902   if (destType->isBitIntType()) {
1903     ConstantAggregateBuilder Builder(CGM);
1904     llvm::Type *LoadStoreTy = CGM.getTypes().convertTypeForLoadStore(destType);
1905     // ptrtoint/inttoptr should not involve _BitInt in constant expressions, so
1906     // casting to ConstantInt is safe here.
1907     auto *CI = cast<llvm::ConstantInt>(C);
1908     llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1909         destType->isSignedIntegerOrEnumerationType() ? llvm::Instruction::SExt
1910                                                      : llvm::Instruction::ZExt,
1911         CI, LoadStoreTy, CGM.getDataLayout());
1912     if (CGM.getTypes().typeRequiresSplitIntoByteArray(destType, C->getType())) {
1913       // Long _BitInt has array of bytes as in-memory type.
1914       // So, split constant into individual bytes.
1915       llvm::Type *DesiredTy = CGM.getTypes().ConvertTypeForMem(destType);
1916       llvm::APInt Value = cast<llvm::ConstantInt>(Res)->getValue();
1917       Builder.addBits(Value, /*OffsetInBits=*/0, /*AllowOverwrite=*/false);
1918       return Builder.build(DesiredTy, /*AllowOversized*/ false);
1919     }
1920     return Res;
1921   }
1922 
1923   return C;
1924 }
1925 
1926 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1927                                                 QualType destType) {
1928   assert(!destType->isVoidType() && "can't emit a void constant");
1929 
1930   if (!destType->isReferenceType())
1931     if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, destType))
1932       return C;
1933 
1934   Expr::EvalResult Result;
1935 
1936   bool Success = false;
1937 
1938   if (destType->isReferenceType())
1939     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1940   else
1941     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1942 
1943   if (Success && !Result.HasSideEffects)
1944     return tryEmitPrivate(Result.Val, destType);
1945 
1946   return nullptr;
1947 }
1948 
1949 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1950   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1951 }
1952 
1953 namespace {
1954 /// A struct which can be used to peephole certain kinds of finalization
1955 /// that normally happen during l-value emission.
1956 struct ConstantLValue {
1957   llvm::Constant *Value;
1958   bool HasOffsetApplied;
1959 
1960   /*implicit*/ ConstantLValue(llvm::Constant *value,
1961                               bool hasOffsetApplied = false)
1962     : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1963 
1964   /*implicit*/ ConstantLValue(ConstantAddress address)
1965     : ConstantLValue(address.getPointer()) {}
1966 };
1967 
1968 /// A helper class for emitting constant l-values.
1969 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1970                                                       ConstantLValue> {
1971   CodeGenModule &CGM;
1972   ConstantEmitter &Emitter;
1973   const APValue &Value;
1974   QualType DestType;
1975   bool EnablePtrAuthFunctionTypeDiscrimination;
1976 
1977   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1978   friend StmtVisitorBase;
1979 
1980 public:
1981   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1982                         QualType destType,
1983                         bool EnablePtrAuthFunctionTypeDiscrimination = true)
1984       : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType),
1985         EnablePtrAuthFunctionTypeDiscrimination(
1986             EnablePtrAuthFunctionTypeDiscrimination) {}
1987 
1988   llvm::Constant *tryEmit();
1989 
1990 private:
1991   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1992   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1993 
1994   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1995   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1996   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1997   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1998   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1999   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
2000   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
2001   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
2002   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
2003   ConstantLValue VisitCallExpr(const CallExpr *E);
2004   ConstantLValue VisitBlockExpr(const BlockExpr *E);
2005   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2006   ConstantLValue VisitMaterializeTemporaryExpr(
2007                                          const MaterializeTemporaryExpr *E);
2008 
2009   ConstantLValue emitPointerAuthSignConstant(const CallExpr *E);
2010   llvm::Constant *emitPointerAuthPointer(const Expr *E);
2011   unsigned emitPointerAuthKey(const Expr *E);
2012   std::pair<llvm::Constant *, llvm::ConstantInt *>
2013   emitPointerAuthDiscriminator(const Expr *E);
2014 
2015   bool hasNonZeroOffset() const {
2016     return !Value.getLValueOffset().isZero();
2017   }
2018 
2019   /// Return the value offset.
2020   llvm::Constant *getOffset() {
2021     return llvm::ConstantInt::get(CGM.Int64Ty,
2022                                   Value.getLValueOffset().getQuantity());
2023   }
2024 
2025   /// Apply the value offset to the given constant.
2026   llvm::Constant *applyOffset(llvm::Constant *C) {
2027     if (!hasNonZeroOffset())
2028       return C;
2029 
2030     return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
2031   }
2032 };
2033 
2034 }
2035 
2036 llvm::Constant *ConstantLValueEmitter::tryEmit() {
2037   const APValue::LValueBase &base = Value.getLValueBase();
2038 
2039   // The destination type should be a pointer or reference
2040   // type, but it might also be a cast thereof.
2041   //
2042   // FIXME: the chain of casts required should be reflected in the APValue.
2043   // We need this in order to correctly handle things like a ptrtoint of a
2044   // non-zero null pointer and addrspace casts that aren't trivially
2045   // represented in LLVM IR.
2046   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
2047   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
2048 
2049   // If there's no base at all, this is a null or absolute pointer,
2050   // possibly cast back to an integer type.
2051   if (!base) {
2052     return tryEmitAbsolute(destTy);
2053   }
2054 
2055   // Otherwise, try to emit the base.
2056   ConstantLValue result = tryEmitBase(base);
2057 
2058   // If that failed, we're done.
2059   llvm::Constant *value = result.Value;
2060   if (!value) return nullptr;
2061 
2062   // Apply the offset if necessary and not already done.
2063   if (!result.HasOffsetApplied) {
2064     value = applyOffset(value);
2065   }
2066 
2067   // Convert to the appropriate type; this could be an lvalue for
2068   // an integer.  FIXME: performAddrSpaceCast
2069   if (isa<llvm::PointerType>(destTy))
2070     return llvm::ConstantExpr::getPointerCast(value, destTy);
2071 
2072   return llvm::ConstantExpr::getPtrToInt(value, destTy);
2073 }
2074 
2075 /// Try to emit an absolute l-value, such as a null pointer or an integer
2076 /// bitcast to pointer type.
2077 llvm::Constant *
2078 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
2079   // If we're producing a pointer, this is easy.
2080   auto destPtrTy = cast<llvm::PointerType>(destTy);
2081   if (Value.isNullPointer()) {
2082     // FIXME: integer offsets from non-zero null pointers.
2083     return CGM.getNullPointer(destPtrTy, DestType);
2084   }
2085 
2086   // Convert the integer to a pointer-sized integer before converting it
2087   // to a pointer.
2088   // FIXME: signedness depends on the original integer type.
2089   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
2090   llvm::Constant *C;
2091   C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false,
2092                                     CGM.getDataLayout());
2093   assert(C && "Must have folded, as Offset is a ConstantInt");
2094   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
2095   return C;
2096 }
2097 
2098 ConstantLValue
2099 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
2100   // Handle values.
2101   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
2102     // The constant always points to the canonical declaration. We want to look
2103     // at properties of the most recent declaration at the point of emission.
2104     D = cast<ValueDecl>(D->getMostRecentDecl());
2105 
2106     if (D->hasAttr<WeakRefAttr>())
2107       return CGM.GetWeakRefReference(D).getPointer();
2108 
2109     auto PtrAuthSign = [&](llvm::Constant *C) {
2110       CGPointerAuthInfo AuthInfo;
2111 
2112       if (EnablePtrAuthFunctionTypeDiscrimination)
2113         AuthInfo = CGM.getFunctionPointerAuthInfo(DestType);
2114 
2115       if (AuthInfo) {
2116         if (hasNonZeroOffset())
2117           return ConstantLValue(nullptr);
2118 
2119         C = applyOffset(C);
2120         C = CGM.getConstantSignedPointer(
2121             C, AuthInfo.getKey(), nullptr,
2122             cast_or_null<llvm::ConstantInt>(AuthInfo.getDiscriminator()));
2123         return ConstantLValue(C, /*applied offset*/ true);
2124       }
2125 
2126       return ConstantLValue(C);
2127     };
2128 
2129     if (const auto *FD = dyn_cast<FunctionDecl>(D))
2130       return PtrAuthSign(CGM.getRawFunctionPointer(FD));
2131 
2132     if (const auto *VD = dyn_cast<VarDecl>(D)) {
2133       // We can never refer to a variable with local storage.
2134       if (!VD->hasLocalStorage()) {
2135         if (VD->isFileVarDecl() || VD->hasExternalStorage())
2136           return CGM.GetAddrOfGlobalVar(VD);
2137 
2138         if (VD->isLocalVarDecl()) {
2139           return CGM.getOrCreateStaticVarDecl(
2140               *VD, CGM.getLLVMLinkageVarDefinition(VD));
2141         }
2142       }
2143     }
2144 
2145     if (const auto *GD = dyn_cast<MSGuidDecl>(D))
2146       return CGM.GetAddrOfMSGuidDecl(GD);
2147 
2148     if (const auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
2149       return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
2150 
2151     if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
2152       return CGM.GetAddrOfTemplateParamObject(TPO);
2153 
2154     return nullptr;
2155   }
2156 
2157   // Handle typeid(T).
2158   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
2159     return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
2160 
2161   // Otherwise, it must be an expression.
2162   return Visit(base.get<const Expr*>());
2163 }
2164 
2165 ConstantLValue
2166 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
2167   if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
2168     return Result;
2169   return Visit(E->getSubExpr());
2170 }
2171 
2172 ConstantLValue
2173 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2174   ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
2175   CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
2176   return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E);
2177 }
2178 
2179 ConstantLValue
2180 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
2181   return CGM.GetAddrOfConstantStringFromLiteral(E);
2182 }
2183 
2184 ConstantLValue
2185 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2186   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
2187 }
2188 
2189 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2190                                                     QualType T,
2191                                                     CodeGenModule &CGM) {
2192   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2193   return C.withElementType(CGM.getTypes().ConvertTypeForMem(T));
2194 }
2195 
2196 ConstantLValue
2197 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2198   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2199 }
2200 
2201 ConstantLValue
2202 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2203   assert(E->isExpressibleAsConstantInitializer() &&
2204          "this boxed expression can't be emitted as a compile-time constant");
2205   const auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2206   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2207 }
2208 
2209 ConstantLValue
2210 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2211   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2212 }
2213 
2214 ConstantLValue
2215 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2216   assert(Emitter.CGF && "Invalid address of label expression outside function");
2217   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2218   return Ptr;
2219 }
2220 
2221 ConstantLValue
2222 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2223   unsigned builtin = E->getBuiltinCallee();
2224   if (builtin == Builtin::BI__builtin_function_start)
2225     return CGM.GetFunctionStart(
2226         E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2227 
2228   if (builtin == Builtin::BI__builtin_ptrauth_sign_constant)
2229     return emitPointerAuthSignConstant(E);
2230 
2231   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2232       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2233     return nullptr;
2234 
2235   const auto *Literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2236   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2237     return CGM.getObjCRuntime().GenerateConstantString(Literal);
2238   } else {
2239     // FIXME: need to deal with UCN conversion issues.
2240     return CGM.GetAddrOfConstantCFString(Literal);
2241   }
2242 }
2243 
2244 ConstantLValue
2245 ConstantLValueEmitter::emitPointerAuthSignConstant(const CallExpr *E) {
2246   llvm::Constant *UnsignedPointer = emitPointerAuthPointer(E->getArg(0));
2247   unsigned Key = emitPointerAuthKey(E->getArg(1));
2248   auto [StorageAddress, OtherDiscriminator] =
2249       emitPointerAuthDiscriminator(E->getArg(2));
2250 
2251   llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
2252       UnsignedPointer, Key, StorageAddress, OtherDiscriminator);
2253   return SignedPointer;
2254 }
2255 
2256 llvm::Constant *ConstantLValueEmitter::emitPointerAuthPointer(const Expr *E) {
2257   Expr::EvalResult Result;
2258   bool Succeeded = E->EvaluateAsRValue(Result, CGM.getContext());
2259   assert(Succeeded);
2260   (void)Succeeded;
2261 
2262   // The assertions here are all checked by Sema.
2263   assert(Result.Val.isLValue());
2264   if (isa<FunctionDecl>(Result.Val.getLValueBase().get<const ValueDecl *>()))
2265     assert(Result.Val.getLValueOffset().isZero());
2266   return ConstantEmitter(CGM, Emitter.CGF)
2267       .emitAbstract(E->getExprLoc(), Result.Val, E->getType(), false);
2268 }
2269 
2270 unsigned ConstantLValueEmitter::emitPointerAuthKey(const Expr *E) {
2271   return E->EvaluateKnownConstInt(CGM.getContext()).getZExtValue();
2272 }
2273 
2274 std::pair<llvm::Constant *, llvm::ConstantInt *>
2275 ConstantLValueEmitter::emitPointerAuthDiscriminator(const Expr *E) {
2276   E = E->IgnoreParens();
2277 
2278   if (const auto *Call = dyn_cast<CallExpr>(E)) {
2279     if (Call->getBuiltinCallee() ==
2280         Builtin::BI__builtin_ptrauth_blend_discriminator) {
2281       llvm::Constant *Pointer = ConstantEmitter(CGM).emitAbstract(
2282           Call->getArg(0), Call->getArg(0)->getType());
2283       auto *Extra = cast<llvm::ConstantInt>(ConstantEmitter(CGM).emitAbstract(
2284           Call->getArg(1), Call->getArg(1)->getType()));
2285       return {Pointer, Extra};
2286     }
2287   }
2288 
2289   llvm::Constant *Result = ConstantEmitter(CGM).emitAbstract(E, E->getType());
2290   if (Result->getType()->isPointerTy())
2291     return {Result, nullptr};
2292   return {nullptr, cast<llvm::ConstantInt>(Result)};
2293 }
2294 
2295 ConstantLValue
2296 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2297   StringRef functionName;
2298   if (auto CGF = Emitter.CGF)
2299     functionName = CGF->CurFn->getName();
2300   else
2301     functionName = "global";
2302 
2303   return CGM.GetAddrOfGlobalBlock(E, functionName);
2304 }
2305 
2306 ConstantLValue
2307 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2308   QualType T;
2309   if (E->isTypeOperand())
2310     T = E->getTypeOperand(CGM.getContext());
2311   else
2312     T = E->getExprOperand()->getType();
2313   return CGM.GetAddrOfRTTIDescriptor(T);
2314 }
2315 
2316 ConstantLValue
2317 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2318                                             const MaterializeTemporaryExpr *E) {
2319   assert(E->getStorageDuration() == SD_Static);
2320   const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2321   return CGM.GetAddrOfGlobalTemporary(E, Inner);
2322 }
2323 
2324 llvm::Constant *
2325 ConstantEmitter::tryEmitPrivate(const APValue &Value, QualType DestType,
2326                                 bool EnablePtrAuthFunctionTypeDiscrimination) {
2327   switch (Value.getKind()) {
2328   case APValue::None:
2329   case APValue::Indeterminate:
2330     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2331     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2332   case APValue::LValue:
2333     return ConstantLValueEmitter(*this, Value, DestType,
2334                                  EnablePtrAuthFunctionTypeDiscrimination)
2335         .tryEmit();
2336   case APValue::Int:
2337     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2338   case APValue::FixedPoint:
2339     return llvm::ConstantInt::get(CGM.getLLVMContext(),
2340                                   Value.getFixedPoint().getValue());
2341   case APValue::ComplexInt: {
2342     llvm::Constant *Complex[2];
2343 
2344     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2345                                         Value.getComplexIntReal());
2346     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2347                                         Value.getComplexIntImag());
2348 
2349     // FIXME: the target may want to specify that this is packed.
2350     llvm::StructType *STy =
2351         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2352     return llvm::ConstantStruct::get(STy, Complex);
2353   }
2354   case APValue::Float: {
2355     const llvm::APFloat &Init = Value.getFloat();
2356     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2357         !CGM.getContext().getLangOpts().NativeHalfType &&
2358         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2359       return llvm::ConstantInt::get(CGM.getLLVMContext(),
2360                                     Init.bitcastToAPInt());
2361     else
2362       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2363   }
2364   case APValue::ComplexFloat: {
2365     llvm::Constant *Complex[2];
2366 
2367     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2368                                        Value.getComplexFloatReal());
2369     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2370                                        Value.getComplexFloatImag());
2371 
2372     // FIXME: the target may want to specify that this is packed.
2373     llvm::StructType *STy =
2374         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2375     return llvm::ConstantStruct::get(STy, Complex);
2376   }
2377   case APValue::Vector: {
2378     unsigned NumElts = Value.getVectorLength();
2379     SmallVector<llvm::Constant *, 4> Inits(NumElts);
2380 
2381     for (unsigned I = 0; I != NumElts; ++I) {
2382       const APValue &Elt = Value.getVectorElt(I);
2383       if (Elt.isInt())
2384         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2385       else if (Elt.isFloat())
2386         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2387       else if (Elt.isIndeterminate())
2388         Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType(
2389             DestType->castAs<VectorType>()->getElementType()));
2390       else
2391         llvm_unreachable("unsupported vector element type");
2392     }
2393     return llvm::ConstantVector::get(Inits);
2394   }
2395   case APValue::AddrLabelDiff: {
2396     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2397     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2398     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2399     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2400     if (!LHS || !RHS) return nullptr;
2401 
2402     // Compute difference
2403     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2404     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2405     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2406     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2407 
2408     // LLVM is a bit sensitive about the exact format of the
2409     // address-of-label difference; make sure to truncate after
2410     // the subtraction.
2411     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2412   }
2413   case APValue::Struct:
2414   case APValue::Union:
2415     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2416   case APValue::Array: {
2417     const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2418     unsigned NumElements = Value.getArraySize();
2419     unsigned NumInitElts = Value.getArrayInitializedElts();
2420 
2421     // Emit array filler, if there is one.
2422     llvm::Constant *Filler = nullptr;
2423     if (Value.hasArrayFiller()) {
2424       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2425                                         ArrayTy->getElementType());
2426       if (!Filler)
2427         return nullptr;
2428     }
2429 
2430     // Emit initializer elements.
2431     SmallVector<llvm::Constant*, 16> Elts;
2432     if (Filler && Filler->isNullValue())
2433       Elts.reserve(NumInitElts + 1);
2434     else
2435       Elts.reserve(NumElements);
2436 
2437     llvm::Type *CommonElementType = nullptr;
2438     for (unsigned I = 0; I < NumInitElts; ++I) {
2439       llvm::Constant *C = tryEmitPrivateForMemory(
2440           Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2441       if (!C) return nullptr;
2442 
2443       if (I == 0)
2444         CommonElementType = C->getType();
2445       else if (C->getType() != CommonElementType)
2446         CommonElementType = nullptr;
2447       Elts.push_back(C);
2448     }
2449 
2450     llvm::ArrayType *Desired =
2451         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2452 
2453     // Fix the type of incomplete arrays if the initializer isn't empty.
2454     if (DestType->isIncompleteArrayType() && !Elts.empty())
2455       Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size());
2456 
2457     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2458                              Filler);
2459   }
2460   case APValue::MemberPointer:
2461     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2462   }
2463   llvm_unreachable("Unknown APValue kind");
2464 }
2465 
2466 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2467     const CompoundLiteralExpr *E) {
2468   return EmittedCompoundLiterals.lookup(E);
2469 }
2470 
2471 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2472     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2473   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2474   (void)Ok;
2475   assert(Ok && "CLE has already been emitted!");
2476 }
2477 
2478 ConstantAddress
2479 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2480   assert(E->isFileScope() && "not a file-scope compound literal expr");
2481   ConstantEmitter emitter(*this);
2482   return tryEmitGlobalCompoundLiteral(emitter, E);
2483 }
2484 
2485 llvm::Constant *
2486 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2487   // Member pointer constants always have a very particular form.
2488   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2489   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2490 
2491   // A member function pointer.
2492   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2493     return getCXXABI().EmitMemberFunctionPointer(method);
2494 
2495   // Otherwise, a member data pointer.
2496   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2497   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2498   return getCXXABI().EmitMemberDataPointer(type, chars);
2499 }
2500 
2501 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2502                                                llvm::Type *baseType,
2503                                                const CXXRecordDecl *base);
2504 
2505 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2506                                         const RecordDecl *record,
2507                                         bool asCompleteObject) {
2508   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2509   llvm::StructType *structure =
2510     (asCompleteObject ? layout.getLLVMType()
2511                       : layout.getBaseSubobjectLLVMType());
2512 
2513   unsigned numElements = structure->getNumElements();
2514   std::vector<llvm::Constant *> elements(numElements);
2515 
2516   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2517   // Fill in all the bases.
2518   if (CXXR) {
2519     for (const auto &I : CXXR->bases()) {
2520       if (I.isVirtual()) {
2521         // Ignore virtual bases; if we're laying out for a complete
2522         // object, we'll lay these out later.
2523         continue;
2524       }
2525 
2526       const CXXRecordDecl *base =
2527         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2528 
2529       // Ignore empty bases.
2530       if (isEmptyRecordForLayout(CGM.getContext(), I.getType()) ||
2531           CGM.getContext()
2532               .getASTRecordLayout(base)
2533               .getNonVirtualSize()
2534               .isZero())
2535         continue;
2536 
2537       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2538       llvm::Type *baseType = structure->getElementType(fieldIndex);
2539       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2540     }
2541   }
2542 
2543   // Fill in all the fields.
2544   for (const auto *Field : record->fields()) {
2545     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2546     // will fill in later.)
2547     if (!Field->isBitField() &&
2548         !isEmptyFieldForLayout(CGM.getContext(), Field)) {
2549       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2550       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2551     }
2552 
2553     // For unions, stop after the first named field.
2554     if (record->isUnion()) {
2555       if (Field->getIdentifier())
2556         break;
2557       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2558         if (FieldRD->findFirstNamedDataMember())
2559           break;
2560     }
2561   }
2562 
2563   // Fill in the virtual bases, if we're working with the complete object.
2564   if (CXXR && asCompleteObject) {
2565     for (const auto &I : CXXR->vbases()) {
2566       const CXXRecordDecl *base =
2567         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2568 
2569       // Ignore empty bases.
2570       if (isEmptyRecordForLayout(CGM.getContext(), I.getType()))
2571         continue;
2572 
2573       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2574 
2575       // We might have already laid this field out.
2576       if (elements[fieldIndex]) continue;
2577 
2578       llvm::Type *baseType = structure->getElementType(fieldIndex);
2579       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2580     }
2581   }
2582 
2583   // Now go through all other fields and zero them out.
2584   for (unsigned i = 0; i != numElements; ++i) {
2585     if (!elements[i])
2586       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2587   }
2588 
2589   return llvm::ConstantStruct::get(structure, elements);
2590 }
2591 
2592 /// Emit the null constant for a base subobject.
2593 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2594                                                llvm::Type *baseType,
2595                                                const CXXRecordDecl *base) {
2596   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2597 
2598   // Just zero out bases that don't have any pointer to data members.
2599   if (baseLayout.isZeroInitializableAsBase())
2600     return llvm::Constant::getNullValue(baseType);
2601 
2602   // Otherwise, we can just use its null constant.
2603   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2604 }
2605 
2606 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2607                                                    QualType T) {
2608   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2609 }
2610 
2611 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2612   if (T->getAs<PointerType>())
2613     return getNullPointer(
2614         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2615 
2616   if (getTypes().isZeroInitializable(T))
2617     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2618 
2619   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2620     llvm::ArrayType *ATy =
2621       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2622 
2623     QualType ElementTy = CAT->getElementType();
2624 
2625     llvm::Constant *Element =
2626       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2627     unsigned NumElements = CAT->getZExtSize();
2628     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2629     return llvm::ConstantArray::get(ATy, Array);
2630   }
2631 
2632   if (const RecordType *RT = T->getAs<RecordType>())
2633     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2634 
2635   assert(T->isMemberDataPointerType() &&
2636          "Should only see pointers to data members here!");
2637 
2638   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2639 }
2640 
2641 llvm::Constant *
2642 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2643   return ::EmitNullConstant(*this, Record, false);
2644 }
2645