1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/Sequence.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalVariable.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 //===----------------------------------------------------------------------===// 36 // ConstantAggregateBuilder 37 //===----------------------------------------------------------------------===// 38 39 namespace { 40 class ConstExprEmitter; 41 42 struct ConstantAggregateBuilderUtils { 43 CodeGenModule &CGM; 44 45 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 46 47 CharUnits getAlignment(const llvm::Constant *C) const { 48 return CharUnits::fromQuantity( 49 CGM.getDataLayout().getABITypeAlignment(C->getType())); 50 } 51 52 CharUnits getSize(llvm::Type *Ty) const { 53 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 54 } 55 56 CharUnits getSize(const llvm::Constant *C) const { 57 return getSize(C->getType()); 58 } 59 60 llvm::Constant *getPadding(CharUnits PadSize) const { 61 llvm::Type *Ty = CGM.CharTy; 62 if (PadSize > CharUnits::One()) 63 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 64 return llvm::UndefValue::get(Ty); 65 } 66 67 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 68 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity()); 69 return llvm::ConstantAggregateZero::get(Ty); 70 } 71 }; 72 73 /// Incremental builder for an llvm::Constant* holding a struct or array 74 /// constant. 75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 76 /// The elements of the constant. These two arrays must have the same size; 77 /// Offsets[i] describes the offset of Elems[i] within the constant. The 78 /// elements are kept in increasing offset order, and we ensure that there 79 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 80 /// 81 /// This may contain explicit padding elements (in order to create a 82 /// natural layout), but need not. Gaps between elements are implicitly 83 /// considered to be filled with undef. 84 llvm::SmallVector<llvm::Constant*, 32> Elems; 85 llvm::SmallVector<CharUnits, 32> Offsets; 86 87 /// The size of the constant (the maximum end offset of any added element). 88 /// May be larger than the end of Elems.back() if we split the last element 89 /// and removed some trailing undefs. 90 CharUnits Size = CharUnits::Zero(); 91 92 /// This is true only if laying out Elems in order as the elements of a 93 /// non-packed LLVM struct will give the correct layout. 94 bool NaturalLayout = true; 95 96 bool split(size_t Index, CharUnits Hint); 97 Optional<size_t> splitAt(CharUnits Pos); 98 99 static llvm::Constant *buildFrom(CodeGenModule &CGM, 100 ArrayRef<llvm::Constant *> Elems, 101 ArrayRef<CharUnits> Offsets, 102 CharUnits StartOffset, CharUnits Size, 103 bool NaturalLayout, llvm::Type *DesiredTy, 104 bool AllowOversized); 105 106 public: 107 ConstantAggregateBuilder(CodeGenModule &CGM) 108 : ConstantAggregateBuilderUtils(CGM) {} 109 110 /// Update or overwrite the value starting at \p Offset with \c C. 111 /// 112 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 113 /// a constant that has already been added. This flag is only used to 114 /// detect bugs. 115 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 116 117 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 118 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 119 120 /// Attempt to condense the value starting at \p Offset to a constant of type 121 /// \p DesiredTy. 122 void condense(CharUnits Offset, llvm::Type *DesiredTy); 123 124 /// Produce a constant representing the entire accumulated value, ideally of 125 /// the specified type. If \p AllowOversized, the constant might be larger 126 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 127 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 128 /// even if we can't represent it as that type. 129 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 130 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 131 NaturalLayout, DesiredTy, AllowOversized); 132 } 133 }; 134 135 template<typename Container, typename Range = std::initializer_list< 136 typename Container::value_type>> 137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 138 assert(BeginOff <= EndOff && "invalid replacement range"); 139 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 140 } 141 142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 143 bool AllowOverwrite) { 144 // Common case: appending to a layout. 145 if (Offset >= Size) { 146 CharUnits Align = getAlignment(C); 147 CharUnits AlignedSize = Size.alignTo(Align); 148 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 149 NaturalLayout = false; 150 else if (AlignedSize < Offset) { 151 Elems.push_back(getPadding(Offset - Size)); 152 Offsets.push_back(Size); 153 } 154 Elems.push_back(C); 155 Offsets.push_back(Offset); 156 Size = Offset + getSize(C); 157 return true; 158 } 159 160 // Uncommon case: constant overlaps what we've already created. 161 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 162 if (!FirstElemToReplace) 163 return false; 164 165 CharUnits CSize = getSize(C); 166 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 167 if (!LastElemToReplace) 168 return false; 169 170 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 171 "unexpectedly overwriting field"); 172 173 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 174 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 175 Size = std::max(Size, Offset + CSize); 176 NaturalLayout = false; 177 return true; 178 } 179 180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 181 bool AllowOverwrite) { 182 const ASTContext &Context = CGM.getContext(); 183 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 184 185 // Offset of where we want the first bit to go within the bits of the 186 // current char. 187 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 188 189 // We split bit-fields up into individual bytes. Walk over the bytes and 190 // update them. 191 for (CharUnits OffsetInChars = 192 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); 193 /**/; ++OffsetInChars) { 194 // Number of bits we want to fill in this char. 195 unsigned WantedBits = 196 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 197 198 // Get a char containing the bits we want in the right places. The other 199 // bits have unspecified values. 200 llvm::APInt BitsThisChar = Bits; 201 if (BitsThisChar.getBitWidth() < CharWidth) 202 BitsThisChar = BitsThisChar.zext(CharWidth); 203 if (CGM.getDataLayout().isBigEndian()) { 204 // Figure out how much to shift by. We may need to left-shift if we have 205 // less than one byte of Bits left. 206 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 207 if (Shift > 0) 208 BitsThisChar.lshrInPlace(Shift); 209 else if (Shift < 0) 210 BitsThisChar = BitsThisChar.shl(-Shift); 211 } else { 212 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 213 } 214 if (BitsThisChar.getBitWidth() > CharWidth) 215 BitsThisChar = BitsThisChar.trunc(CharWidth); 216 217 if (WantedBits == CharWidth) { 218 // Got a full byte: just add it directly. 219 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 220 OffsetInChars, AllowOverwrite); 221 } else { 222 // Partial byte: update the existing integer if there is one. If we 223 // can't split out a 1-CharUnit range to update, then we can't add 224 // these bits and fail the entire constant emission. 225 llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 226 if (!FirstElemToUpdate) 227 return false; 228 llvm::Optional<size_t> LastElemToUpdate = 229 splitAt(OffsetInChars + CharUnits::One()); 230 if (!LastElemToUpdate) 231 return false; 232 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 233 "should have at most one element covering one byte"); 234 235 // Figure out which bits we want and discard the rest. 236 llvm::APInt UpdateMask(CharWidth, 0); 237 if (CGM.getDataLayout().isBigEndian()) 238 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 239 CharWidth - OffsetWithinChar); 240 else 241 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 242 BitsThisChar &= UpdateMask; 243 244 if (*FirstElemToUpdate == *LastElemToUpdate || 245 Elems[*FirstElemToUpdate]->isNullValue() || 246 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 247 // All existing bits are either zero or undef. 248 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 249 OffsetInChars, /*AllowOverwrite*/ true); 250 } else { 251 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 252 // In order to perform a partial update, we need the existing bitwise 253 // value, which we can only extract for a constant int. 254 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 255 if (!CI) 256 return false; 257 // Because this is a 1-CharUnit range, the constant occupying it must 258 // be exactly one CharUnit wide. 259 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 260 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 261 "unexpectedly overwriting bitfield"); 262 BitsThisChar |= (CI->getValue() & ~UpdateMask); 263 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 264 } 265 } 266 267 // Stop if we've added all the bits. 268 if (WantedBits == Bits.getBitWidth()) 269 break; 270 271 // Remove the consumed bits from Bits. 272 if (!CGM.getDataLayout().isBigEndian()) 273 Bits.lshrInPlace(WantedBits); 274 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 275 276 // The remanining bits go at the start of the following bytes. 277 OffsetWithinChar = 0; 278 } 279 280 return true; 281 } 282 283 /// Returns a position within Elems and Offsets such that all elements 284 /// before the returned index end before Pos and all elements at or after 285 /// the returned index begin at or after Pos. Splits elements as necessary 286 /// to ensure this. Returns None if we find something we can't split. 287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 288 if (Pos >= Size) 289 return Offsets.size(); 290 291 while (true) { 292 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); 293 if (FirstAfterPos == Offsets.begin()) 294 return 0; 295 296 // If we already have an element starting at Pos, we're done. 297 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 298 if (Offsets[LastAtOrBeforePosIndex] == Pos) 299 return LastAtOrBeforePosIndex; 300 301 // We found an element starting before Pos. Check for overlap. 302 if (Offsets[LastAtOrBeforePosIndex] + 303 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 304 return LastAtOrBeforePosIndex + 1; 305 306 // Try to decompose it into smaller constants. 307 if (!split(LastAtOrBeforePosIndex, Pos)) 308 return None; 309 } 310 } 311 312 /// Split the constant at index Index, if possible. Return true if we did. 313 /// Hint indicates the location at which we'd like to split, but may be 314 /// ignored. 315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 316 NaturalLayout = false; 317 llvm::Constant *C = Elems[Index]; 318 CharUnits Offset = Offsets[Index]; 319 320 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 321 // Expand the sequence into its contained elements. 322 // FIXME: This assumes vector elements are byte-sized. 323 replace(Elems, Index, Index + 1, 324 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 325 [&](unsigned Op) { return CA->getOperand(Op); })); 326 if (isa<llvm::ArrayType>(CA->getType()) || 327 isa<llvm::VectorType>(CA->getType())) { 328 // Array or vector. 329 llvm::Type *ElemTy = 330 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0); 331 CharUnits ElemSize = getSize(ElemTy); 332 replace( 333 Offsets, Index, Index + 1, 334 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 335 [&](unsigned Op) { return Offset + Op * ElemSize; })); 336 } else { 337 // Must be a struct. 338 auto *ST = cast<llvm::StructType>(CA->getType()); 339 const llvm::StructLayout *Layout = 340 CGM.getDataLayout().getStructLayout(ST); 341 replace(Offsets, Index, Index + 1, 342 llvm::map_range( 343 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 344 return Offset + CharUnits::fromQuantity( 345 Layout->getElementOffset(Op)); 346 })); 347 } 348 return true; 349 } 350 351 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 352 // Expand the sequence into its contained elements. 353 // FIXME: This assumes vector elements are byte-sized. 354 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 355 CharUnits ElemSize = getSize(CDS->getElementType()); 356 replace(Elems, Index, Index + 1, 357 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 358 [&](unsigned Elem) { 359 return CDS->getElementAsConstant(Elem); 360 })); 361 replace(Offsets, Index, Index + 1, 362 llvm::map_range( 363 llvm::seq(0u, CDS->getNumElements()), 364 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 365 return true; 366 } 367 368 if (isa<llvm::ConstantAggregateZero>(C)) { 369 // Split into two zeros at the hinted offset. 370 CharUnits ElemSize = getSize(C); 371 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 372 replace(Elems, Index, Index + 1, 373 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 374 replace(Offsets, Index, Index + 1, {Offset, Hint}); 375 return true; 376 } 377 378 if (isa<llvm::UndefValue>(C)) { 379 // Drop undef; it doesn't contribute to the final layout. 380 replace(Elems, Index, Index + 1, {}); 381 replace(Offsets, Index, Index + 1, {}); 382 return true; 383 } 384 385 // FIXME: We could split a ConstantInt if the need ever arose. 386 // We don't need to do this to handle bit-fields because we always eagerly 387 // split them into 1-byte chunks. 388 389 return false; 390 } 391 392 static llvm::Constant * 393 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 394 llvm::Type *CommonElementType, unsigned ArrayBound, 395 SmallVectorImpl<llvm::Constant *> &Elements, 396 llvm::Constant *Filler); 397 398 llvm::Constant *ConstantAggregateBuilder::buildFrom( 399 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 400 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 401 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 402 ConstantAggregateBuilderUtils Utils(CGM); 403 404 if (Elems.empty()) 405 return llvm::UndefValue::get(DesiredTy); 406 407 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 408 409 // If we want an array type, see if all the elements are the same type and 410 // appropriately spaced. 411 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 412 assert(!AllowOversized && "oversized array emission not supported"); 413 414 bool CanEmitArray = true; 415 llvm::Type *CommonType = Elems[0]->getType(); 416 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 417 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 418 SmallVector<llvm::Constant*, 32> ArrayElements; 419 for (size_t I = 0; I != Elems.size(); ++I) { 420 // Skip zeroes; we'll use a zero value as our array filler. 421 if (Elems[I]->isNullValue()) 422 continue; 423 424 // All remaining elements must be the same type. 425 if (Elems[I]->getType() != CommonType || 426 Offset(I) % ElemSize != 0) { 427 CanEmitArray = false; 428 break; 429 } 430 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 431 ArrayElements.back() = Elems[I]; 432 } 433 434 if (CanEmitArray) { 435 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 436 ArrayElements, Filler); 437 } 438 439 // Can't emit as an array, carry on to emit as a struct. 440 } 441 442 CharUnits DesiredSize = Utils.getSize(DesiredTy); 443 CharUnits Align = CharUnits::One(); 444 for (llvm::Constant *C : Elems) 445 Align = std::max(Align, Utils.getAlignment(C)); 446 CharUnits AlignedSize = Size.alignTo(Align); 447 448 bool Packed = false; 449 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 450 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 451 if ((DesiredSize < AlignedSize && !AllowOversized) || 452 DesiredSize.alignTo(Align) != DesiredSize) { 453 // The natural layout would be the wrong size; force use of a packed layout. 454 NaturalLayout = false; 455 Packed = true; 456 } else if (DesiredSize > AlignedSize) { 457 // The constant would be too small. Add padding to fix it. 458 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 459 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 460 UnpackedElems = UnpackedElemStorage; 461 } 462 463 // If we don't have a natural layout, insert padding as necessary. 464 // As we go, double-check to see if we can actually just emit Elems 465 // as a non-packed struct and do so opportunistically if possible. 466 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 467 if (!NaturalLayout) { 468 CharUnits SizeSoFar = CharUnits::Zero(); 469 for (size_t I = 0; I != Elems.size(); ++I) { 470 CharUnits Align = Utils.getAlignment(Elems[I]); 471 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 472 CharUnits DesiredOffset = Offset(I); 473 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 474 475 if (DesiredOffset != NaturalOffset) 476 Packed = true; 477 if (DesiredOffset != SizeSoFar) 478 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 479 PackedElems.push_back(Elems[I]); 480 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 481 } 482 // If we're using the packed layout, pad it out to the desired size if 483 // necessary. 484 if (Packed) { 485 assert((SizeSoFar <= DesiredSize || AllowOversized) && 486 "requested size is too small for contents"); 487 if (SizeSoFar < DesiredSize) 488 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 489 } 490 } 491 492 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 493 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 494 495 // Pick the type to use. If the type is layout identical to the desired 496 // type then use it, otherwise use whatever the builder produced for us. 497 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 498 if (DesiredSTy->isLayoutIdentical(STy)) 499 STy = DesiredSTy; 500 } 501 502 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 503 } 504 505 void ConstantAggregateBuilder::condense(CharUnits Offset, 506 llvm::Type *DesiredTy) { 507 CharUnits Size = getSize(DesiredTy); 508 509 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 510 if (!FirstElemToReplace) 511 return; 512 size_t First = *FirstElemToReplace; 513 514 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size); 515 if (!LastElemToReplace) 516 return; 517 size_t Last = *LastElemToReplace; 518 519 size_t Length = Last - First; 520 if (Length == 0) 521 return; 522 523 if (Length == 1 && Offsets[First] == Offset && 524 getSize(Elems[First]) == Size) { 525 // Re-wrap single element structs if necessary. Otherwise, leave any single 526 // element constant of the right size alone even if it has the wrong type. 527 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 528 if (STy && STy->getNumElements() == 1 && 529 STy->getElementType(0) == Elems[First]->getType()) 530 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 531 return; 532 } 533 534 llvm::Constant *Replacement = buildFrom( 535 CGM, makeArrayRef(Elems).slice(First, Length), 536 makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 537 /*known to have natural layout=*/false, DesiredTy, false); 538 replace(Elems, First, Last, {Replacement}); 539 replace(Offsets, First, Last, {Offset}); 540 } 541 542 //===----------------------------------------------------------------------===// 543 // ConstStructBuilder 544 //===----------------------------------------------------------------------===// 545 546 class ConstStructBuilder { 547 CodeGenModule &CGM; 548 ConstantEmitter &Emitter; 549 ConstantAggregateBuilder &Builder; 550 CharUnits StartOffset; 551 552 public: 553 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 554 InitListExpr *ILE, QualType StructTy); 555 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 556 const APValue &Value, QualType ValTy); 557 static bool UpdateStruct(ConstantEmitter &Emitter, 558 ConstantAggregateBuilder &Const, CharUnits Offset, 559 InitListExpr *Updater); 560 561 private: 562 ConstStructBuilder(ConstantEmitter &Emitter, 563 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 564 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 565 StartOffset(StartOffset) {} 566 567 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 568 llvm::Constant *InitExpr, bool AllowOverwrite = false); 569 570 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 571 bool AllowOverwrite = false); 572 573 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 574 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false); 575 576 bool Build(InitListExpr *ILE, bool AllowOverwrite); 577 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 578 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 579 llvm::Constant *Finalize(QualType Ty); 580 }; 581 582 bool ConstStructBuilder::AppendField( 583 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 584 bool AllowOverwrite) { 585 const ASTContext &Context = CGM.getContext(); 586 587 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 588 589 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 590 } 591 592 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 593 llvm::Constant *InitCst, 594 bool AllowOverwrite) { 595 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 596 } 597 598 bool ConstStructBuilder::AppendBitField( 599 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI, 600 bool AllowOverwrite) { 601 const CGRecordLayout &RL = 602 CGM.getTypes().getCGRecordLayout(Field->getParent()); 603 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 604 llvm::APInt FieldValue = CI->getValue(); 605 606 // Promote the size of FieldValue if necessary 607 // FIXME: This should never occur, but currently it can because initializer 608 // constants are cast to bool, and because clang is not enforcing bitfield 609 // width limits. 610 if (Info.Size > FieldValue.getBitWidth()) 611 FieldValue = FieldValue.zext(Info.Size); 612 613 // Truncate the size of FieldValue to the bit field size. 614 if (Info.Size < FieldValue.getBitWidth()) 615 FieldValue = FieldValue.trunc(Info.Size); 616 617 return Builder.addBits(FieldValue, 618 CGM.getContext().toBits(StartOffset) + FieldOffset, 619 AllowOverwrite); 620 } 621 622 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 623 ConstantAggregateBuilder &Const, 624 CharUnits Offset, QualType Type, 625 InitListExpr *Updater) { 626 if (Type->isRecordType()) 627 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 628 629 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 630 if (!CAT) 631 return false; 632 QualType ElemType = CAT->getElementType(); 633 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 634 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 635 636 llvm::Constant *FillC = nullptr; 637 if (Expr *Filler = Updater->getArrayFiller()) { 638 if (!isa<NoInitExpr>(Filler)) { 639 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 640 if (!FillC) 641 return false; 642 } 643 } 644 645 unsigned NumElementsToUpdate = 646 FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits(); 647 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 648 Expr *Init = nullptr; 649 if (I < Updater->getNumInits()) 650 Init = Updater->getInit(I); 651 652 if (!Init && FillC) { 653 if (!Const.add(FillC, Offset, true)) 654 return false; 655 } else if (!Init || isa<NoInitExpr>(Init)) { 656 continue; 657 } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) { 658 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 659 ChildILE)) 660 return false; 661 // Attempt to reduce the array element to a single constant if necessary. 662 Const.condense(Offset, ElemTy); 663 } else { 664 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 665 if (!Const.add(Val, Offset, true)) 666 return false; 667 } 668 } 669 670 return true; 671 } 672 673 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) { 674 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 675 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 676 677 unsigned FieldNo = -1; 678 unsigned ElementNo = 0; 679 680 // Bail out if we have base classes. We could support these, but they only 681 // arise in C++1z where we will have already constant folded most interesting 682 // cases. FIXME: There are still a few more cases we can handle this way. 683 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 684 if (CXXRD->getNumBases()) 685 return false; 686 687 for (FieldDecl *Field : RD->fields()) { 688 ++FieldNo; 689 690 // If this is a union, skip all the fields that aren't being initialized. 691 if (RD->isUnion() && 692 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) 693 continue; 694 695 // Don't emit anonymous bitfields or zero-sized fields. 696 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 697 continue; 698 699 // Get the initializer. A struct can include fields without initializers, 700 // we just use explicit null values for them. 701 Expr *Init = nullptr; 702 if (ElementNo < ILE->getNumInits()) 703 Init = ILE->getInit(ElementNo++); 704 if (Init && isa<NoInitExpr>(Init)) 705 continue; 706 707 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 708 // represents additional overwriting of our current constant value, and not 709 // a new constant to emit independently. 710 if (AllowOverwrite && 711 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 712 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 713 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 714 Layout.getFieldOffset(FieldNo)); 715 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 716 Field->getType(), SubILE)) 717 return false; 718 // If we split apart the field's value, try to collapse it down to a 719 // single value now. 720 Builder.condense(StartOffset + Offset, 721 CGM.getTypes().ConvertTypeForMem(Field->getType())); 722 continue; 723 } 724 } 725 726 llvm::Constant *EltInit = 727 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 728 : Emitter.emitNullForMemory(Field->getType()); 729 if (!EltInit) 730 return false; 731 732 if (!Field->isBitField()) { 733 // Handle non-bitfield members. 734 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 735 AllowOverwrite)) 736 return false; 737 // After emitting a non-empty field with [[no_unique_address]], we may 738 // need to overwrite its tail padding. 739 if (Field->hasAttr<NoUniqueAddressAttr>()) 740 AllowOverwrite = true; 741 } else { 742 // Otherwise we have a bitfield. 743 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 744 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI, 745 AllowOverwrite)) 746 return false; 747 } else { 748 // We are trying to initialize a bitfield with a non-trivial constant, 749 // this must require run-time code. 750 return false; 751 } 752 } 753 } 754 755 return true; 756 } 757 758 namespace { 759 struct BaseInfo { 760 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 761 : Decl(Decl), Offset(Offset), Index(Index) { 762 } 763 764 const CXXRecordDecl *Decl; 765 CharUnits Offset; 766 unsigned Index; 767 768 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 769 }; 770 } 771 772 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 773 bool IsPrimaryBase, 774 const CXXRecordDecl *VTableClass, 775 CharUnits Offset) { 776 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 777 778 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 779 // Add a vtable pointer, if we need one and it hasn't already been added. 780 if (Layout.hasOwnVFPtr()) { 781 llvm::Constant *VTableAddressPoint = 782 CGM.getCXXABI().getVTableAddressPointForConstExpr( 783 BaseSubobject(CD, Offset), VTableClass); 784 if (!AppendBytes(Offset, VTableAddressPoint)) 785 return false; 786 } 787 788 // Accumulate and sort bases, in order to visit them in address order, which 789 // may not be the same as declaration order. 790 SmallVector<BaseInfo, 8> Bases; 791 Bases.reserve(CD->getNumBases()); 792 unsigned BaseNo = 0; 793 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 794 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 795 assert(!Base->isVirtual() && "should not have virtual bases here"); 796 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 797 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 798 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 799 } 800 llvm::stable_sort(Bases); 801 802 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 803 BaseInfo &Base = Bases[I]; 804 805 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 806 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 807 VTableClass, Offset + Base.Offset); 808 } 809 } 810 811 unsigned FieldNo = 0; 812 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 813 814 bool AllowOverwrite = false; 815 for (RecordDecl::field_iterator Field = RD->field_begin(), 816 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 817 // If this is a union, skip all the fields that aren't being initialized. 818 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 819 continue; 820 821 // Don't emit anonymous bitfields or zero-sized fields. 822 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 823 continue; 824 825 // Emit the value of the initializer. 826 const APValue &FieldValue = 827 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 828 llvm::Constant *EltInit = 829 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 830 if (!EltInit) 831 return false; 832 833 if (!Field->isBitField()) { 834 // Handle non-bitfield members. 835 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 836 EltInit, AllowOverwrite)) 837 return false; 838 // After emitting a non-empty field with [[no_unique_address]], we may 839 // need to overwrite its tail padding. 840 if (Field->hasAttr<NoUniqueAddressAttr>()) 841 AllowOverwrite = true; 842 } else { 843 // Otherwise we have a bitfield. 844 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 845 cast<llvm::ConstantInt>(EltInit), AllowOverwrite)) 846 return false; 847 } 848 } 849 850 return true; 851 } 852 853 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 854 Type = Type.getNonReferenceType(); 855 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 856 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 857 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 858 } 859 860 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 861 InitListExpr *ILE, 862 QualType ValTy) { 863 ConstantAggregateBuilder Const(Emitter.CGM); 864 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 865 866 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 867 return nullptr; 868 869 return Builder.Finalize(ValTy); 870 } 871 872 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 873 const APValue &Val, 874 QualType ValTy) { 875 ConstantAggregateBuilder Const(Emitter.CGM); 876 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 877 878 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 879 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 880 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 881 return nullptr; 882 883 return Builder.Finalize(ValTy); 884 } 885 886 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 887 ConstantAggregateBuilder &Const, 888 CharUnits Offset, InitListExpr *Updater) { 889 return ConstStructBuilder(Emitter, Const, Offset) 890 .Build(Updater, /*AllowOverwrite*/ true); 891 } 892 893 //===----------------------------------------------------------------------===// 894 // ConstExprEmitter 895 //===----------------------------------------------------------------------===// 896 897 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 898 CodeGenFunction *CGF, 899 const CompoundLiteralExpr *E) { 900 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 901 if (llvm::GlobalVariable *Addr = 902 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 903 return ConstantAddress(Addr, Addr->getValueType(), Align); 904 905 LangAS addressSpace = E->getType().getAddressSpace(); 906 907 ConstantEmitter emitter(CGM, CGF); 908 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 909 addressSpace, E->getType()); 910 if (!C) { 911 assert(!E->isFileScope() && 912 "file-scope compound literal did not have constant initializer!"); 913 return ConstantAddress::invalid(); 914 } 915 916 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 917 CGM.isTypeConstant(E->getType(), true), 918 llvm::GlobalValue::InternalLinkage, 919 C, ".compoundliteral", nullptr, 920 llvm::GlobalVariable::NotThreadLocal, 921 CGM.getContext().getTargetAddressSpace(addressSpace)); 922 emitter.finalize(GV); 923 GV->setAlignment(Align.getAsAlign()); 924 CGM.setAddrOfConstantCompoundLiteral(E, GV); 925 return ConstantAddress(GV, GV->getValueType(), Align); 926 } 927 928 static llvm::Constant * 929 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 930 llvm::Type *CommonElementType, unsigned ArrayBound, 931 SmallVectorImpl<llvm::Constant *> &Elements, 932 llvm::Constant *Filler) { 933 // Figure out how long the initial prefix of non-zero elements is. 934 unsigned NonzeroLength = ArrayBound; 935 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 936 NonzeroLength = Elements.size(); 937 if (NonzeroLength == Elements.size()) { 938 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 939 --NonzeroLength; 940 } 941 942 if (NonzeroLength == 0) 943 return llvm::ConstantAggregateZero::get(DesiredType); 944 945 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 946 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 947 if (TrailingZeroes >= 8) { 948 assert(Elements.size() >= NonzeroLength && 949 "missing initializer for non-zero element"); 950 951 // If all the elements had the same type up to the trailing zeroes, emit a 952 // struct of two arrays (the nonzero data and the zeroinitializer). 953 if (CommonElementType && NonzeroLength >= 8) { 954 llvm::Constant *Initial = llvm::ConstantArray::get( 955 llvm::ArrayType::get(CommonElementType, NonzeroLength), 956 makeArrayRef(Elements).take_front(NonzeroLength)); 957 Elements.resize(2); 958 Elements[0] = Initial; 959 } else { 960 Elements.resize(NonzeroLength + 1); 961 } 962 963 auto *FillerType = 964 CommonElementType ? CommonElementType : DesiredType->getElementType(); 965 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 966 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 967 CommonElementType = nullptr; 968 } else if (Elements.size() != ArrayBound) { 969 // Otherwise pad to the right size with the filler if necessary. 970 Elements.resize(ArrayBound, Filler); 971 if (Filler->getType() != CommonElementType) 972 CommonElementType = nullptr; 973 } 974 975 // If all elements have the same type, just emit an array constant. 976 if (CommonElementType) 977 return llvm::ConstantArray::get( 978 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 979 980 // We have mixed types. Use a packed struct. 981 llvm::SmallVector<llvm::Type *, 16> Types; 982 Types.reserve(Elements.size()); 983 for (llvm::Constant *Elt : Elements) 984 Types.push_back(Elt->getType()); 985 llvm::StructType *SType = 986 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 987 return llvm::ConstantStruct::get(SType, Elements); 988 } 989 990 // This class only needs to handle arrays, structs and unions. Outside C++11 991 // mode, we don't currently constant fold those types. All other types are 992 // handled by constant folding. 993 // 994 // Constant folding is currently missing support for a few features supported 995 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 996 class ConstExprEmitter : 997 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 998 CodeGenModule &CGM; 999 ConstantEmitter &Emitter; 1000 llvm::LLVMContext &VMContext; 1001 public: 1002 ConstExprEmitter(ConstantEmitter &emitter) 1003 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 1004 } 1005 1006 //===--------------------------------------------------------------------===// 1007 // Visitor Methods 1008 //===--------------------------------------------------------------------===// 1009 1010 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 1011 return nullptr; 1012 } 1013 1014 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { 1015 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE)) 1016 return Result; 1017 return Visit(CE->getSubExpr(), T); 1018 } 1019 1020 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 1021 return Visit(PE->getSubExpr(), T); 1022 } 1023 1024 llvm::Constant * 1025 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 1026 QualType T) { 1027 return Visit(PE->getReplacement(), T); 1028 } 1029 1030 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 1031 QualType T) { 1032 return Visit(GE->getResultExpr(), T); 1033 } 1034 1035 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 1036 return Visit(CE->getChosenSubExpr(), T); 1037 } 1038 1039 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 1040 return Visit(E->getInitializer(), T); 1041 } 1042 1043 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 1044 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1045 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1046 Expr *subExpr = E->getSubExpr(); 1047 1048 switch (E->getCastKind()) { 1049 case CK_ToUnion: { 1050 // GCC cast to union extension 1051 assert(E->getType()->isUnionType() && 1052 "Destination type is not union type!"); 1053 1054 auto field = E->getTargetUnionField(); 1055 1056 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1057 if (!C) return nullptr; 1058 1059 auto destTy = ConvertType(destType); 1060 if (C->getType() == destTy) return C; 1061 1062 // Build a struct with the union sub-element as the first member, 1063 // and padded to the appropriate size. 1064 SmallVector<llvm::Constant*, 2> Elts; 1065 SmallVector<llvm::Type*, 2> Types; 1066 Elts.push_back(C); 1067 Types.push_back(C->getType()); 1068 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1069 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1070 1071 assert(CurSize <= TotalSize && "Union size mismatch!"); 1072 if (unsigned NumPadBytes = TotalSize - CurSize) { 1073 llvm::Type *Ty = CGM.CharTy; 1074 if (NumPadBytes > 1) 1075 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 1076 1077 Elts.push_back(llvm::UndefValue::get(Ty)); 1078 Types.push_back(Ty); 1079 } 1080 1081 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1082 return llvm::ConstantStruct::get(STy, Elts); 1083 } 1084 1085 case CK_AddressSpaceConversion: { 1086 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1087 if (!C) return nullptr; 1088 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1089 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1090 llvm::Type *destTy = ConvertType(E->getType()); 1091 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1092 destAS, destTy); 1093 } 1094 1095 case CK_LValueToRValue: 1096 case CK_AtomicToNonAtomic: 1097 case CK_NonAtomicToAtomic: 1098 case CK_NoOp: 1099 case CK_ConstructorConversion: 1100 return Visit(subExpr, destType); 1101 1102 case CK_IntToOCLSampler: 1103 llvm_unreachable("global sampler variables are not generated"); 1104 1105 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1106 1107 case CK_BuiltinFnToFnPtr: 1108 llvm_unreachable("builtin functions are handled elsewhere"); 1109 1110 case CK_ReinterpretMemberPointer: 1111 case CK_DerivedToBaseMemberPointer: 1112 case CK_BaseToDerivedMemberPointer: { 1113 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1114 if (!C) return nullptr; 1115 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1116 } 1117 1118 // These will never be supported. 1119 case CK_ObjCObjectLValueCast: 1120 case CK_ARCProduceObject: 1121 case CK_ARCConsumeObject: 1122 case CK_ARCReclaimReturnedObject: 1123 case CK_ARCExtendBlockObject: 1124 case CK_CopyAndAutoreleaseBlockObject: 1125 return nullptr; 1126 1127 // These don't need to be handled here because Evaluate knows how to 1128 // evaluate them in the cases where they can be folded. 1129 case CK_BitCast: 1130 case CK_ToVoid: 1131 case CK_Dynamic: 1132 case CK_LValueBitCast: 1133 case CK_LValueToRValueBitCast: 1134 case CK_NullToMemberPointer: 1135 case CK_UserDefinedConversion: 1136 case CK_CPointerToObjCPointerCast: 1137 case CK_BlockPointerToObjCPointerCast: 1138 case CK_AnyPointerToBlockPointerCast: 1139 case CK_ArrayToPointerDecay: 1140 case CK_FunctionToPointerDecay: 1141 case CK_BaseToDerived: 1142 case CK_DerivedToBase: 1143 case CK_UncheckedDerivedToBase: 1144 case CK_MemberPointerToBoolean: 1145 case CK_VectorSplat: 1146 case CK_FloatingRealToComplex: 1147 case CK_FloatingComplexToReal: 1148 case CK_FloatingComplexToBoolean: 1149 case CK_FloatingComplexCast: 1150 case CK_FloatingComplexToIntegralComplex: 1151 case CK_IntegralRealToComplex: 1152 case CK_IntegralComplexToReal: 1153 case CK_IntegralComplexToBoolean: 1154 case CK_IntegralComplexCast: 1155 case CK_IntegralComplexToFloatingComplex: 1156 case CK_PointerToIntegral: 1157 case CK_PointerToBoolean: 1158 case CK_NullToPointer: 1159 case CK_IntegralCast: 1160 case CK_BooleanToSignedIntegral: 1161 case CK_IntegralToPointer: 1162 case CK_IntegralToBoolean: 1163 case CK_IntegralToFloating: 1164 case CK_FloatingToIntegral: 1165 case CK_FloatingToBoolean: 1166 case CK_FloatingCast: 1167 case CK_FloatingToFixedPoint: 1168 case CK_FixedPointToFloating: 1169 case CK_FixedPointCast: 1170 case CK_FixedPointToBoolean: 1171 case CK_FixedPointToIntegral: 1172 case CK_IntegralToFixedPoint: 1173 case CK_ZeroToOCLOpaqueType: 1174 case CK_MatrixCast: 1175 return nullptr; 1176 } 1177 llvm_unreachable("Invalid CastKind"); 1178 } 1179 1180 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 1181 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1182 // constant expression. 1183 return Visit(DIE->getExpr(), T); 1184 } 1185 1186 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 1187 return Visit(E->getSubExpr(), T); 1188 } 1189 1190 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 1191 QualType T) { 1192 return Visit(E->getSubExpr(), T); 1193 } 1194 1195 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 1196 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1197 assert(CAT && "can't emit array init for non-constant-bound array"); 1198 unsigned NumInitElements = ILE->getNumInits(); 1199 unsigned NumElements = CAT->getSize().getZExtValue(); 1200 1201 // Initialising an array requires us to automatically 1202 // initialise any elements that have not been initialised explicitly 1203 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 1204 1205 QualType EltType = CAT->getElementType(); 1206 1207 // Initialize remaining array elements. 1208 llvm::Constant *fillC = nullptr; 1209 if (Expr *filler = ILE->getArrayFiller()) { 1210 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1211 if (!fillC) 1212 return nullptr; 1213 } 1214 1215 // Copy initializer elements. 1216 SmallVector<llvm::Constant*, 16> Elts; 1217 if (fillC && fillC->isNullValue()) 1218 Elts.reserve(NumInitableElts + 1); 1219 else 1220 Elts.reserve(NumElements); 1221 1222 llvm::Type *CommonElementType = nullptr; 1223 for (unsigned i = 0; i < NumInitableElts; ++i) { 1224 Expr *Init = ILE->getInit(i); 1225 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1226 if (!C) 1227 return nullptr; 1228 if (i == 0) 1229 CommonElementType = C->getType(); 1230 else if (C->getType() != CommonElementType) 1231 CommonElementType = nullptr; 1232 Elts.push_back(C); 1233 } 1234 1235 llvm::ArrayType *Desired = 1236 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1237 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1238 fillC); 1239 } 1240 1241 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 1242 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1243 } 1244 1245 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 1246 QualType T) { 1247 return CGM.EmitNullConstant(T); 1248 } 1249 1250 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 1251 if (ILE->isTransparent()) 1252 return Visit(ILE->getInit(0), T); 1253 1254 if (ILE->getType()->isArrayType()) 1255 return EmitArrayInitialization(ILE, T); 1256 1257 if (ILE->getType()->isRecordType()) 1258 return EmitRecordInitialization(ILE, T); 1259 1260 return nullptr; 1261 } 1262 1263 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1264 QualType destType) { 1265 auto C = Visit(E->getBase(), destType); 1266 if (!C) 1267 return nullptr; 1268 1269 ConstantAggregateBuilder Const(CGM); 1270 Const.add(C, CharUnits::Zero(), false); 1271 1272 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1273 E->getUpdater())) 1274 return nullptr; 1275 1276 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1277 bool HasFlexibleArray = false; 1278 if (auto *RT = destType->getAs<RecordType>()) 1279 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1280 return Const.build(ValTy, HasFlexibleArray); 1281 } 1282 1283 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1284 if (!E->getConstructor()->isTrivial()) 1285 return nullptr; 1286 1287 // Only default and copy/move constructors can be trivial. 1288 if (E->getNumArgs()) { 1289 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1290 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1291 "trivial ctor has argument but isn't a copy/move ctor"); 1292 1293 Expr *Arg = E->getArg(0); 1294 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1295 "argument to copy ctor is of wrong type"); 1296 1297 return Visit(Arg, Ty); 1298 } 1299 1300 return CGM.EmitNullConstant(Ty); 1301 } 1302 1303 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1304 // This is a string literal initializing an array in an initializer. 1305 return CGM.GetConstantArrayFromStringLiteral(E); 1306 } 1307 1308 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1309 // This must be an @encode initializing an array in a static initializer. 1310 // Don't emit it as the address of the string, emit the string data itself 1311 // as an inline array. 1312 std::string Str; 1313 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1314 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1315 1316 // Resize the string to the right size, adding zeros at the end, or 1317 // truncating as needed. 1318 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1319 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1320 } 1321 1322 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1323 return Visit(E->getSubExpr(), T); 1324 } 1325 1326 // Utility methods 1327 llvm::Type *ConvertType(QualType T) { 1328 return CGM.getTypes().ConvertType(T); 1329 } 1330 }; 1331 1332 } // end anonymous namespace. 1333 1334 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1335 AbstractState saved) { 1336 Abstract = saved.OldValue; 1337 1338 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1339 "created a placeholder while doing an abstract emission?"); 1340 1341 // No validation necessary for now. 1342 // No cleanup to do for now. 1343 return C; 1344 } 1345 1346 llvm::Constant * 1347 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1348 auto state = pushAbstract(); 1349 auto C = tryEmitPrivateForVarInit(D); 1350 return validateAndPopAbstract(C, state); 1351 } 1352 1353 llvm::Constant * 1354 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1355 auto state = pushAbstract(); 1356 auto C = tryEmitPrivate(E, destType); 1357 return validateAndPopAbstract(C, state); 1358 } 1359 1360 llvm::Constant * 1361 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1362 auto state = pushAbstract(); 1363 auto C = tryEmitPrivate(value, destType); 1364 return validateAndPopAbstract(C, state); 1365 } 1366 1367 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) { 1368 if (!CE->hasAPValueResult()) 1369 return nullptr; 1370 const Expr *Inner = CE->getSubExpr()->IgnoreImplicit(); 1371 QualType RetType; 1372 if (auto *Call = dyn_cast<CallExpr>(Inner)) 1373 RetType = Call->getCallReturnType(CGM.getContext()); 1374 else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Inner)) 1375 RetType = Ctor->getType(); 1376 llvm::Constant *Res = 1377 emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType); 1378 return Res; 1379 } 1380 1381 llvm::Constant * 1382 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1383 auto state = pushAbstract(); 1384 auto C = tryEmitPrivate(E, destType); 1385 C = validateAndPopAbstract(C, state); 1386 if (!C) { 1387 CGM.Error(E->getExprLoc(), 1388 "internal error: could not emit constant value \"abstractly\""); 1389 C = CGM.EmitNullConstant(destType); 1390 } 1391 return C; 1392 } 1393 1394 llvm::Constant * 1395 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1396 QualType destType) { 1397 auto state = pushAbstract(); 1398 auto C = tryEmitPrivate(value, destType); 1399 C = validateAndPopAbstract(C, state); 1400 if (!C) { 1401 CGM.Error(loc, 1402 "internal error: could not emit constant value \"abstractly\""); 1403 C = CGM.EmitNullConstant(destType); 1404 } 1405 return C; 1406 } 1407 1408 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1409 initializeNonAbstract(D.getType().getAddressSpace()); 1410 return markIfFailed(tryEmitPrivateForVarInit(D)); 1411 } 1412 1413 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1414 LangAS destAddrSpace, 1415 QualType destType) { 1416 initializeNonAbstract(destAddrSpace); 1417 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1418 } 1419 1420 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1421 LangAS destAddrSpace, 1422 QualType destType) { 1423 initializeNonAbstract(destAddrSpace); 1424 auto C = tryEmitPrivateForMemory(value, destType); 1425 assert(C && "couldn't emit constant value non-abstractly?"); 1426 return C; 1427 } 1428 1429 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1430 assert(!Abstract && "cannot get current address for abstract constant"); 1431 1432 1433 1434 // Make an obviously ill-formed global that should blow up compilation 1435 // if it survives. 1436 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1437 llvm::GlobalValue::PrivateLinkage, 1438 /*init*/ nullptr, 1439 /*name*/ "", 1440 /*before*/ nullptr, 1441 llvm::GlobalVariable::NotThreadLocal, 1442 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1443 1444 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1445 1446 return global; 1447 } 1448 1449 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1450 llvm::GlobalValue *placeholder) { 1451 assert(!PlaceholderAddresses.empty()); 1452 assert(PlaceholderAddresses.back().first == nullptr); 1453 assert(PlaceholderAddresses.back().second == placeholder); 1454 PlaceholderAddresses.back().first = signal; 1455 } 1456 1457 namespace { 1458 struct ReplacePlaceholders { 1459 CodeGenModule &CGM; 1460 1461 /// The base address of the global. 1462 llvm::Constant *Base; 1463 llvm::Type *BaseValueTy = nullptr; 1464 1465 /// The placeholder addresses that were registered during emission. 1466 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1467 1468 /// The locations of the placeholder signals. 1469 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1470 1471 /// The current index stack. We use a simple unsigned stack because 1472 /// we assume that placeholders will be relatively sparse in the 1473 /// initializer, but we cache the index values we find just in case. 1474 llvm::SmallVector<unsigned, 8> Indices; 1475 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1476 1477 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1478 ArrayRef<std::pair<llvm::Constant*, 1479 llvm::GlobalVariable*>> addresses) 1480 : CGM(CGM), Base(base), 1481 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1482 } 1483 1484 void replaceInInitializer(llvm::Constant *init) { 1485 // Remember the type of the top-most initializer. 1486 BaseValueTy = init->getType(); 1487 1488 // Initialize the stack. 1489 Indices.push_back(0); 1490 IndexValues.push_back(nullptr); 1491 1492 // Recurse into the initializer. 1493 findLocations(init); 1494 1495 // Check invariants. 1496 assert(IndexValues.size() == Indices.size() && "mismatch"); 1497 assert(Indices.size() == 1 && "didn't pop all indices"); 1498 1499 // Do the replacement; this basically invalidates 'init'. 1500 assert(Locations.size() == PlaceholderAddresses.size() && 1501 "missed a placeholder?"); 1502 1503 // We're iterating over a hashtable, so this would be a source of 1504 // non-determinism in compiler output *except* that we're just 1505 // messing around with llvm::Constant structures, which never itself 1506 // does anything that should be visible in compiler output. 1507 for (auto &entry : Locations) { 1508 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1509 entry.first->replaceAllUsesWith(entry.second); 1510 entry.first->eraseFromParent(); 1511 } 1512 } 1513 1514 private: 1515 void findLocations(llvm::Constant *init) { 1516 // Recurse into aggregates. 1517 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1518 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1519 Indices.push_back(i); 1520 IndexValues.push_back(nullptr); 1521 1522 findLocations(agg->getOperand(i)); 1523 1524 IndexValues.pop_back(); 1525 Indices.pop_back(); 1526 } 1527 return; 1528 } 1529 1530 // Otherwise, check for registered constants. 1531 while (true) { 1532 auto it = PlaceholderAddresses.find(init); 1533 if (it != PlaceholderAddresses.end()) { 1534 setLocation(it->second); 1535 break; 1536 } 1537 1538 // Look through bitcasts or other expressions. 1539 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1540 init = expr->getOperand(0); 1541 } else { 1542 break; 1543 } 1544 } 1545 } 1546 1547 void setLocation(llvm::GlobalVariable *placeholder) { 1548 assert(Locations.find(placeholder) == Locations.end() && 1549 "already found location for placeholder!"); 1550 1551 // Lazily fill in IndexValues with the values from Indices. 1552 // We do this in reverse because we should always have a strict 1553 // prefix of indices from the start. 1554 assert(Indices.size() == IndexValues.size()); 1555 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1556 if (IndexValues[i]) { 1557 #ifndef NDEBUG 1558 for (size_t j = 0; j != i + 1; ++j) { 1559 assert(IndexValues[j] && 1560 isa<llvm::ConstantInt>(IndexValues[j]) && 1561 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1562 == Indices[j]); 1563 } 1564 #endif 1565 break; 1566 } 1567 1568 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1569 } 1570 1571 // Form a GEP and then bitcast to the placeholder type so that the 1572 // replacement will succeed. 1573 llvm::Constant *location = 1574 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1575 Base, IndexValues); 1576 location = llvm::ConstantExpr::getBitCast(location, 1577 placeholder->getType()); 1578 1579 Locations.insert({placeholder, location}); 1580 } 1581 }; 1582 } 1583 1584 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1585 assert(InitializedNonAbstract && 1586 "finalizing emitter that was used for abstract emission?"); 1587 assert(!Finalized && "finalizing emitter multiple times"); 1588 assert(global->getInitializer()); 1589 1590 // Note that we might also be Failed. 1591 Finalized = true; 1592 1593 if (!PlaceholderAddresses.empty()) { 1594 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1595 .replaceInInitializer(global->getInitializer()); 1596 PlaceholderAddresses.clear(); // satisfy 1597 } 1598 } 1599 1600 ConstantEmitter::~ConstantEmitter() { 1601 assert((!InitializedNonAbstract || Finalized || Failed) && 1602 "not finalized after being initialized for non-abstract emission"); 1603 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1604 } 1605 1606 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1607 if (auto AT = type->getAs<AtomicType>()) { 1608 return CGM.getContext().getQualifiedType(AT->getValueType(), 1609 type.getQualifiers()); 1610 } 1611 return type; 1612 } 1613 1614 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1615 // Make a quick check if variable can be default NULL initialized 1616 // and avoid going through rest of code which may do, for c++11, 1617 // initialization of memory to all NULLs. 1618 if (!D.hasLocalStorage()) { 1619 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1620 if (Ty->isRecordType()) 1621 if (const CXXConstructExpr *E = 1622 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1623 const CXXConstructorDecl *CD = E->getConstructor(); 1624 if (CD->isTrivial() && CD->isDefaultConstructor()) 1625 return CGM.EmitNullConstant(D.getType()); 1626 } 1627 InConstantContext = true; 1628 } 1629 1630 QualType destType = D.getType(); 1631 1632 // Try to emit the initializer. Note that this can allow some things that 1633 // are not allowed by tryEmitPrivateForMemory alone. 1634 if (auto value = D.evaluateValue()) { 1635 return tryEmitPrivateForMemory(*value, destType); 1636 } 1637 1638 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1639 // reference is a constant expression, and the reference binds to a temporary, 1640 // then constant initialization is performed. ConstExprEmitter will 1641 // incorrectly emit a prvalue constant in this case, and the calling code 1642 // interprets that as the (pointer) value of the reference, rather than the 1643 // desired value of the referee. 1644 if (destType->isReferenceType()) 1645 return nullptr; 1646 1647 const Expr *E = D.getInit(); 1648 assert(E && "No initializer to emit"); 1649 1650 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1651 auto C = 1652 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1653 return (C ? emitForMemory(C, destType) : nullptr); 1654 } 1655 1656 llvm::Constant * 1657 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1658 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1659 auto C = tryEmitAbstract(E, nonMemoryDestType); 1660 return (C ? emitForMemory(C, destType) : nullptr); 1661 } 1662 1663 llvm::Constant * 1664 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1665 QualType destType) { 1666 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1667 auto C = tryEmitAbstract(value, nonMemoryDestType); 1668 return (C ? emitForMemory(C, destType) : nullptr); 1669 } 1670 1671 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1672 QualType destType) { 1673 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1674 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1675 return (C ? emitForMemory(C, destType) : nullptr); 1676 } 1677 1678 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1679 QualType destType) { 1680 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1681 auto C = tryEmitPrivate(value, nonMemoryDestType); 1682 return (C ? emitForMemory(C, destType) : nullptr); 1683 } 1684 1685 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1686 llvm::Constant *C, 1687 QualType destType) { 1688 // For an _Atomic-qualified constant, we may need to add tail padding. 1689 if (auto AT = destType->getAs<AtomicType>()) { 1690 QualType destValueType = AT->getValueType(); 1691 C = emitForMemory(CGM, C, destValueType); 1692 1693 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1694 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1695 if (innerSize == outerSize) 1696 return C; 1697 1698 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1699 llvm::Constant *elts[] = { 1700 C, 1701 llvm::ConstantAggregateZero::get( 1702 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1703 }; 1704 return llvm::ConstantStruct::getAnon(elts); 1705 } 1706 1707 // Zero-extend bool. 1708 if (C->getType()->isIntegerTy(1)) { 1709 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1710 return llvm::ConstantExpr::getZExt(C, boolTy); 1711 } 1712 1713 return C; 1714 } 1715 1716 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1717 QualType destType) { 1718 assert(!destType->isVoidType() && "can't emit a void constant"); 1719 1720 Expr::EvalResult Result; 1721 1722 bool Success = false; 1723 1724 if (destType->isReferenceType()) 1725 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1726 else 1727 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1728 1729 llvm::Constant *C; 1730 if (Success && !Result.HasSideEffects) 1731 C = tryEmitPrivate(Result.Val, destType); 1732 else 1733 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1734 1735 return C; 1736 } 1737 1738 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1739 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1740 } 1741 1742 namespace { 1743 /// A struct which can be used to peephole certain kinds of finalization 1744 /// that normally happen during l-value emission. 1745 struct ConstantLValue { 1746 llvm::Constant *Value; 1747 bool HasOffsetApplied; 1748 1749 /*implicit*/ ConstantLValue(llvm::Constant *value, 1750 bool hasOffsetApplied = false) 1751 : Value(value), HasOffsetApplied(hasOffsetApplied) {} 1752 1753 /*implicit*/ ConstantLValue(ConstantAddress address) 1754 : ConstantLValue(address.getPointer()) {} 1755 }; 1756 1757 /// A helper class for emitting constant l-values. 1758 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1759 ConstantLValue> { 1760 CodeGenModule &CGM; 1761 ConstantEmitter &Emitter; 1762 const APValue &Value; 1763 QualType DestType; 1764 1765 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1766 friend StmtVisitorBase; 1767 1768 public: 1769 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1770 QualType destType) 1771 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1772 1773 llvm::Constant *tryEmit(); 1774 1775 private: 1776 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1777 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1778 1779 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1780 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1781 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1782 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1783 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 1784 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1785 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1786 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1787 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1788 ConstantLValue VisitCallExpr(const CallExpr *E); 1789 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1790 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1791 ConstantLValue VisitMaterializeTemporaryExpr( 1792 const MaterializeTemporaryExpr *E); 1793 1794 bool hasNonZeroOffset() const { 1795 return !Value.getLValueOffset().isZero(); 1796 } 1797 1798 /// Return the value offset. 1799 llvm::Constant *getOffset() { 1800 return llvm::ConstantInt::get(CGM.Int64Ty, 1801 Value.getLValueOffset().getQuantity()); 1802 } 1803 1804 /// Apply the value offset to the given constant. 1805 llvm::Constant *applyOffset(llvm::Constant *C) { 1806 if (!hasNonZeroOffset()) 1807 return C; 1808 1809 llvm::Type *origPtrTy = C->getType(); 1810 unsigned AS = origPtrTy->getPointerAddressSpace(); 1811 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1812 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1813 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1814 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1815 return C; 1816 } 1817 }; 1818 1819 } 1820 1821 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1822 const APValue::LValueBase &base = Value.getLValueBase(); 1823 1824 // The destination type should be a pointer or reference 1825 // type, but it might also be a cast thereof. 1826 // 1827 // FIXME: the chain of casts required should be reflected in the APValue. 1828 // We need this in order to correctly handle things like a ptrtoint of a 1829 // non-zero null pointer and addrspace casts that aren't trivially 1830 // represented in LLVM IR. 1831 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1832 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1833 1834 // If there's no base at all, this is a null or absolute pointer, 1835 // possibly cast back to an integer type. 1836 if (!base) { 1837 return tryEmitAbsolute(destTy); 1838 } 1839 1840 // Otherwise, try to emit the base. 1841 ConstantLValue result = tryEmitBase(base); 1842 1843 // If that failed, we're done. 1844 llvm::Constant *value = result.Value; 1845 if (!value) return nullptr; 1846 1847 // Apply the offset if necessary and not already done. 1848 if (!result.HasOffsetApplied) { 1849 value = applyOffset(value); 1850 } 1851 1852 // Convert to the appropriate type; this could be an lvalue for 1853 // an integer. FIXME: performAddrSpaceCast 1854 if (isa<llvm::PointerType>(destTy)) 1855 return llvm::ConstantExpr::getPointerCast(value, destTy); 1856 1857 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1858 } 1859 1860 /// Try to emit an absolute l-value, such as a null pointer or an integer 1861 /// bitcast to pointer type. 1862 llvm::Constant * 1863 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1864 // If we're producing a pointer, this is easy. 1865 auto destPtrTy = cast<llvm::PointerType>(destTy); 1866 if (Value.isNullPointer()) { 1867 // FIXME: integer offsets from non-zero null pointers. 1868 return CGM.getNullPointer(destPtrTy, DestType); 1869 } 1870 1871 // Convert the integer to a pointer-sized integer before converting it 1872 // to a pointer. 1873 // FIXME: signedness depends on the original integer type. 1874 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1875 llvm::Constant *C; 1876 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1877 /*isSigned*/ false); 1878 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1879 return C; 1880 } 1881 1882 ConstantLValue 1883 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1884 // Handle values. 1885 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1886 // The constant always points to the canonical declaration. We want to look 1887 // at properties of the most recent declaration at the point of emission. 1888 D = cast<ValueDecl>(D->getMostRecentDecl()); 1889 1890 if (D->hasAttr<WeakRefAttr>()) 1891 return CGM.GetWeakRefReference(D).getPointer(); 1892 1893 if (auto FD = dyn_cast<FunctionDecl>(D)) 1894 return CGM.GetAddrOfFunction(FD); 1895 1896 if (auto VD = dyn_cast<VarDecl>(D)) { 1897 // We can never refer to a variable with local storage. 1898 if (!VD->hasLocalStorage()) { 1899 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1900 return CGM.GetAddrOfGlobalVar(VD); 1901 1902 if (VD->isLocalVarDecl()) { 1903 return CGM.getOrCreateStaticVarDecl( 1904 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 1905 } 1906 } 1907 } 1908 1909 if (auto *GD = dyn_cast<MSGuidDecl>(D)) 1910 return CGM.GetAddrOfMSGuidDecl(GD); 1911 1912 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) 1913 return CGM.GetAddrOfTemplateParamObject(TPO); 1914 1915 return nullptr; 1916 } 1917 1918 // Handle typeid(T). 1919 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) { 1920 llvm::Type *StdTypeInfoPtrTy = 1921 CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo(); 1922 llvm::Constant *TypeInfo = 1923 CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 1924 if (TypeInfo->getType() != StdTypeInfoPtrTy) 1925 TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy); 1926 return TypeInfo; 1927 } 1928 1929 // Otherwise, it must be an expression. 1930 return Visit(base.get<const Expr*>()); 1931 } 1932 1933 ConstantLValue 1934 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 1935 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E)) 1936 return Result; 1937 return Visit(E->getSubExpr()); 1938 } 1939 1940 ConstantLValue 1941 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1942 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1943 } 1944 1945 ConstantLValue 1946 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1947 return CGM.GetAddrOfConstantStringFromLiteral(E); 1948 } 1949 1950 ConstantLValue 1951 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1952 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1953 } 1954 1955 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 1956 QualType T, 1957 CodeGenModule &CGM) { 1958 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 1959 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T)); 1960 } 1961 1962 ConstantLValue 1963 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1964 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 1965 } 1966 1967 ConstantLValue 1968 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 1969 assert(E->isExpressibleAsConstantInitializer() && 1970 "this boxed expression can't be emitted as a compile-time constant"); 1971 auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 1972 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 1973 } 1974 1975 ConstantLValue 1976 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1977 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 1978 } 1979 1980 ConstantLValue 1981 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1982 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1983 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1984 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1985 CGM.getTypes().ConvertType(E->getType())); 1986 return Ptr; 1987 } 1988 1989 ConstantLValue 1990 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1991 unsigned builtin = E->getBuiltinCallee(); 1992 if (builtin == Builtin::BI__builtin_function_start) 1993 return CGM.GetFunctionStart( 1994 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())); 1995 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1996 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1997 return nullptr; 1998 1999 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 2000 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 2001 return CGM.getObjCRuntime().GenerateConstantString(literal); 2002 } else { 2003 // FIXME: need to deal with UCN conversion issues. 2004 return CGM.GetAddrOfConstantCFString(literal); 2005 } 2006 } 2007 2008 ConstantLValue 2009 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 2010 StringRef functionName; 2011 if (auto CGF = Emitter.CGF) 2012 functionName = CGF->CurFn->getName(); 2013 else 2014 functionName = "global"; 2015 2016 return CGM.GetAddrOfGlobalBlock(E, functionName); 2017 } 2018 2019 ConstantLValue 2020 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 2021 QualType T; 2022 if (E->isTypeOperand()) 2023 T = E->getTypeOperand(CGM.getContext()); 2024 else 2025 T = E->getExprOperand()->getType(); 2026 return CGM.GetAddrOfRTTIDescriptor(T); 2027 } 2028 2029 ConstantLValue 2030 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 2031 const MaterializeTemporaryExpr *E) { 2032 assert(E->getStorageDuration() == SD_Static); 2033 SmallVector<const Expr *, 2> CommaLHSs; 2034 SmallVector<SubobjectAdjustment, 2> Adjustments; 2035 const Expr *Inner = 2036 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 2037 return CGM.GetAddrOfGlobalTemporary(E, Inner); 2038 } 2039 2040 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 2041 QualType DestType) { 2042 switch (Value.getKind()) { 2043 case APValue::None: 2044 case APValue::Indeterminate: 2045 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2046 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2047 case APValue::LValue: 2048 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 2049 case APValue::Int: 2050 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2051 case APValue::FixedPoint: 2052 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2053 Value.getFixedPoint().getValue()); 2054 case APValue::ComplexInt: { 2055 llvm::Constant *Complex[2]; 2056 2057 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2058 Value.getComplexIntReal()); 2059 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2060 Value.getComplexIntImag()); 2061 2062 // FIXME: the target may want to specify that this is packed. 2063 llvm::StructType *STy = 2064 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2065 return llvm::ConstantStruct::get(STy, Complex); 2066 } 2067 case APValue::Float: { 2068 const llvm::APFloat &Init = Value.getFloat(); 2069 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2070 !CGM.getContext().getLangOpts().NativeHalfType && 2071 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2072 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2073 Init.bitcastToAPInt()); 2074 else 2075 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2076 } 2077 case APValue::ComplexFloat: { 2078 llvm::Constant *Complex[2]; 2079 2080 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2081 Value.getComplexFloatReal()); 2082 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2083 Value.getComplexFloatImag()); 2084 2085 // FIXME: the target may want to specify that this is packed. 2086 llvm::StructType *STy = 2087 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2088 return llvm::ConstantStruct::get(STy, Complex); 2089 } 2090 case APValue::Vector: { 2091 unsigned NumElts = Value.getVectorLength(); 2092 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2093 2094 for (unsigned I = 0; I != NumElts; ++I) { 2095 const APValue &Elt = Value.getVectorElt(I); 2096 if (Elt.isInt()) 2097 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2098 else if (Elt.isFloat()) 2099 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2100 else 2101 llvm_unreachable("unsupported vector element type"); 2102 } 2103 return llvm::ConstantVector::get(Inits); 2104 } 2105 case APValue::AddrLabelDiff: { 2106 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2107 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2108 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2109 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2110 if (!LHS || !RHS) return nullptr; 2111 2112 // Compute difference 2113 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2114 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2115 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2116 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2117 2118 // LLVM is a bit sensitive about the exact format of the 2119 // address-of-label difference; make sure to truncate after 2120 // the subtraction. 2121 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2122 } 2123 case APValue::Struct: 2124 case APValue::Union: 2125 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2126 case APValue::Array: { 2127 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType); 2128 unsigned NumElements = Value.getArraySize(); 2129 unsigned NumInitElts = Value.getArrayInitializedElts(); 2130 2131 // Emit array filler, if there is one. 2132 llvm::Constant *Filler = nullptr; 2133 if (Value.hasArrayFiller()) { 2134 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2135 ArrayTy->getElementType()); 2136 if (!Filler) 2137 return nullptr; 2138 } 2139 2140 // Emit initializer elements. 2141 SmallVector<llvm::Constant*, 16> Elts; 2142 if (Filler && Filler->isNullValue()) 2143 Elts.reserve(NumInitElts + 1); 2144 else 2145 Elts.reserve(NumElements); 2146 2147 llvm::Type *CommonElementType = nullptr; 2148 for (unsigned I = 0; I < NumInitElts; ++I) { 2149 llvm::Constant *C = tryEmitPrivateForMemory( 2150 Value.getArrayInitializedElt(I), ArrayTy->getElementType()); 2151 if (!C) return nullptr; 2152 2153 if (I == 0) 2154 CommonElementType = C->getType(); 2155 else if (C->getType() != CommonElementType) 2156 CommonElementType = nullptr; 2157 Elts.push_back(C); 2158 } 2159 2160 llvm::ArrayType *Desired = 2161 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2162 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2163 Filler); 2164 } 2165 case APValue::MemberPointer: 2166 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2167 } 2168 llvm_unreachable("Unknown APValue kind"); 2169 } 2170 2171 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2172 const CompoundLiteralExpr *E) { 2173 return EmittedCompoundLiterals.lookup(E); 2174 } 2175 2176 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2177 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2178 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2179 (void)Ok; 2180 assert(Ok && "CLE has already been emitted!"); 2181 } 2182 2183 ConstantAddress 2184 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2185 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2186 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 2187 } 2188 2189 llvm::Constant * 2190 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2191 // Member pointer constants always have a very particular form. 2192 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2193 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2194 2195 // A member function pointer. 2196 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2197 return getCXXABI().EmitMemberFunctionPointer(method); 2198 2199 // Otherwise, a member data pointer. 2200 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2201 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2202 return getCXXABI().EmitMemberDataPointer(type, chars); 2203 } 2204 2205 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2206 llvm::Type *baseType, 2207 const CXXRecordDecl *base); 2208 2209 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2210 const RecordDecl *record, 2211 bool asCompleteObject) { 2212 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2213 llvm::StructType *structure = 2214 (asCompleteObject ? layout.getLLVMType() 2215 : layout.getBaseSubobjectLLVMType()); 2216 2217 unsigned numElements = structure->getNumElements(); 2218 std::vector<llvm::Constant *> elements(numElements); 2219 2220 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2221 // Fill in all the bases. 2222 if (CXXR) { 2223 for (const auto &I : CXXR->bases()) { 2224 if (I.isVirtual()) { 2225 // Ignore virtual bases; if we're laying out for a complete 2226 // object, we'll lay these out later. 2227 continue; 2228 } 2229 2230 const CXXRecordDecl *base = 2231 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2232 2233 // Ignore empty bases. 2234 if (base->isEmpty() || 2235 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2236 .isZero()) 2237 continue; 2238 2239 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2240 llvm::Type *baseType = structure->getElementType(fieldIndex); 2241 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2242 } 2243 } 2244 2245 // Fill in all the fields. 2246 for (const auto *Field : record->fields()) { 2247 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2248 // will fill in later.) 2249 if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) { 2250 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2251 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2252 } 2253 2254 // For unions, stop after the first named field. 2255 if (record->isUnion()) { 2256 if (Field->getIdentifier()) 2257 break; 2258 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2259 if (FieldRD->findFirstNamedDataMember()) 2260 break; 2261 } 2262 } 2263 2264 // Fill in the virtual bases, if we're working with the complete object. 2265 if (CXXR && asCompleteObject) { 2266 for (const auto &I : CXXR->vbases()) { 2267 const CXXRecordDecl *base = 2268 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2269 2270 // Ignore empty bases. 2271 if (base->isEmpty()) 2272 continue; 2273 2274 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2275 2276 // We might have already laid this field out. 2277 if (elements[fieldIndex]) continue; 2278 2279 llvm::Type *baseType = structure->getElementType(fieldIndex); 2280 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2281 } 2282 } 2283 2284 // Now go through all other fields and zero them out. 2285 for (unsigned i = 0; i != numElements; ++i) { 2286 if (!elements[i]) 2287 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2288 } 2289 2290 return llvm::ConstantStruct::get(structure, elements); 2291 } 2292 2293 /// Emit the null constant for a base subobject. 2294 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2295 llvm::Type *baseType, 2296 const CXXRecordDecl *base) { 2297 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2298 2299 // Just zero out bases that don't have any pointer to data members. 2300 if (baseLayout.isZeroInitializableAsBase()) 2301 return llvm::Constant::getNullValue(baseType); 2302 2303 // Otherwise, we can just use its null constant. 2304 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2305 } 2306 2307 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2308 QualType T) { 2309 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2310 } 2311 2312 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2313 if (T->getAs<PointerType>()) 2314 return getNullPointer( 2315 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2316 2317 if (getTypes().isZeroInitializable(T)) 2318 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2319 2320 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2321 llvm::ArrayType *ATy = 2322 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2323 2324 QualType ElementTy = CAT->getElementType(); 2325 2326 llvm::Constant *Element = 2327 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2328 unsigned NumElements = CAT->getSize().getZExtValue(); 2329 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2330 return llvm::ConstantArray::get(ATy, Array); 2331 } 2332 2333 if (const RecordType *RT = T->getAs<RecordType>()) 2334 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2335 2336 assert(T->isMemberDataPointerType() && 2337 "Should only see pointers to data members here!"); 2338 2339 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2340 } 2341 2342 llvm::Constant * 2343 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2344 return ::EmitNullConstant(*this, Record, false); 2345 } 2346