1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/Sequence.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include <optional> 33 using namespace clang; 34 using namespace CodeGen; 35 36 //===----------------------------------------------------------------------===// 37 // ConstantAggregateBuilder 38 //===----------------------------------------------------------------------===// 39 40 namespace { 41 class ConstExprEmitter; 42 43 struct ConstantAggregateBuilderUtils { 44 CodeGenModule &CGM; 45 46 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 47 48 CharUnits getAlignment(const llvm::Constant *C) const { 49 return CharUnits::fromQuantity( 50 CGM.getDataLayout().getABITypeAlign(C->getType())); 51 } 52 53 CharUnits getSize(llvm::Type *Ty) const { 54 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 55 } 56 57 CharUnits getSize(const llvm::Constant *C) const { 58 return getSize(C->getType()); 59 } 60 61 llvm::Constant *getPadding(CharUnits PadSize) const { 62 llvm::Type *Ty = CGM.CharTy; 63 if (PadSize > CharUnits::One()) 64 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 65 return llvm::UndefValue::get(Ty); 66 } 67 68 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 69 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity()); 70 return llvm::ConstantAggregateZero::get(Ty); 71 } 72 }; 73 74 /// Incremental builder for an llvm::Constant* holding a struct or array 75 /// constant. 76 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 77 /// The elements of the constant. These two arrays must have the same size; 78 /// Offsets[i] describes the offset of Elems[i] within the constant. The 79 /// elements are kept in increasing offset order, and we ensure that there 80 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 81 /// 82 /// This may contain explicit padding elements (in order to create a 83 /// natural layout), but need not. Gaps between elements are implicitly 84 /// considered to be filled with undef. 85 llvm::SmallVector<llvm::Constant*, 32> Elems; 86 llvm::SmallVector<CharUnits, 32> Offsets; 87 88 /// The size of the constant (the maximum end offset of any added element). 89 /// May be larger than the end of Elems.back() if we split the last element 90 /// and removed some trailing undefs. 91 CharUnits Size = CharUnits::Zero(); 92 93 /// This is true only if laying out Elems in order as the elements of a 94 /// non-packed LLVM struct will give the correct layout. 95 bool NaturalLayout = true; 96 97 bool split(size_t Index, CharUnits Hint); 98 std::optional<size_t> splitAt(CharUnits Pos); 99 100 static llvm::Constant *buildFrom(CodeGenModule &CGM, 101 ArrayRef<llvm::Constant *> Elems, 102 ArrayRef<CharUnits> Offsets, 103 CharUnits StartOffset, CharUnits Size, 104 bool NaturalLayout, llvm::Type *DesiredTy, 105 bool AllowOversized); 106 107 public: 108 ConstantAggregateBuilder(CodeGenModule &CGM) 109 : ConstantAggregateBuilderUtils(CGM) {} 110 111 /// Update or overwrite the value starting at \p Offset with \c C. 112 /// 113 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 114 /// a constant that has already been added. This flag is only used to 115 /// detect bugs. 116 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 117 118 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 119 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 120 121 /// Attempt to condense the value starting at \p Offset to a constant of type 122 /// \p DesiredTy. 123 void condense(CharUnits Offset, llvm::Type *DesiredTy); 124 125 /// Produce a constant representing the entire accumulated value, ideally of 126 /// the specified type. If \p AllowOversized, the constant might be larger 127 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 128 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 129 /// even if we can't represent it as that type. 130 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 131 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 132 NaturalLayout, DesiredTy, AllowOversized); 133 } 134 }; 135 136 template<typename Container, typename Range = std::initializer_list< 137 typename Container::value_type>> 138 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 139 assert(BeginOff <= EndOff && "invalid replacement range"); 140 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 141 } 142 143 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 144 bool AllowOverwrite) { 145 // Common case: appending to a layout. 146 if (Offset >= Size) { 147 CharUnits Align = getAlignment(C); 148 CharUnits AlignedSize = Size.alignTo(Align); 149 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 150 NaturalLayout = false; 151 else if (AlignedSize < Offset) { 152 Elems.push_back(getPadding(Offset - Size)); 153 Offsets.push_back(Size); 154 } 155 Elems.push_back(C); 156 Offsets.push_back(Offset); 157 Size = Offset + getSize(C); 158 return true; 159 } 160 161 // Uncommon case: constant overlaps what we've already created. 162 std::optional<size_t> FirstElemToReplace = splitAt(Offset); 163 if (!FirstElemToReplace) 164 return false; 165 166 CharUnits CSize = getSize(C); 167 std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 168 if (!LastElemToReplace) 169 return false; 170 171 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 172 "unexpectedly overwriting field"); 173 174 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 175 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 176 Size = std::max(Size, Offset + CSize); 177 NaturalLayout = false; 178 return true; 179 } 180 181 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 182 bool AllowOverwrite) { 183 const ASTContext &Context = CGM.getContext(); 184 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 185 186 // Offset of where we want the first bit to go within the bits of the 187 // current char. 188 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 189 190 // We split bit-fields up into individual bytes. Walk over the bytes and 191 // update them. 192 for (CharUnits OffsetInChars = 193 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); 194 /**/; ++OffsetInChars) { 195 // Number of bits we want to fill in this char. 196 unsigned WantedBits = 197 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 198 199 // Get a char containing the bits we want in the right places. The other 200 // bits have unspecified values. 201 llvm::APInt BitsThisChar = Bits; 202 if (BitsThisChar.getBitWidth() < CharWidth) 203 BitsThisChar = BitsThisChar.zext(CharWidth); 204 if (CGM.getDataLayout().isBigEndian()) { 205 // Figure out how much to shift by. We may need to left-shift if we have 206 // less than one byte of Bits left. 207 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 208 if (Shift > 0) 209 BitsThisChar.lshrInPlace(Shift); 210 else if (Shift < 0) 211 BitsThisChar = BitsThisChar.shl(-Shift); 212 } else { 213 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 214 } 215 if (BitsThisChar.getBitWidth() > CharWidth) 216 BitsThisChar = BitsThisChar.trunc(CharWidth); 217 218 if (WantedBits == CharWidth) { 219 // Got a full byte: just add it directly. 220 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 221 OffsetInChars, AllowOverwrite); 222 } else { 223 // Partial byte: update the existing integer if there is one. If we 224 // can't split out a 1-CharUnit range to update, then we can't add 225 // these bits and fail the entire constant emission. 226 std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 227 if (!FirstElemToUpdate) 228 return false; 229 std::optional<size_t> LastElemToUpdate = 230 splitAt(OffsetInChars + CharUnits::One()); 231 if (!LastElemToUpdate) 232 return false; 233 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 234 "should have at most one element covering one byte"); 235 236 // Figure out which bits we want and discard the rest. 237 llvm::APInt UpdateMask(CharWidth, 0); 238 if (CGM.getDataLayout().isBigEndian()) 239 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 240 CharWidth - OffsetWithinChar); 241 else 242 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 243 BitsThisChar &= UpdateMask; 244 245 if (*FirstElemToUpdate == *LastElemToUpdate || 246 Elems[*FirstElemToUpdate]->isNullValue() || 247 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 248 // All existing bits are either zero or undef. 249 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 250 OffsetInChars, /*AllowOverwrite*/ true); 251 } else { 252 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 253 // In order to perform a partial update, we need the existing bitwise 254 // value, which we can only extract for a constant int. 255 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 256 if (!CI) 257 return false; 258 // Because this is a 1-CharUnit range, the constant occupying it must 259 // be exactly one CharUnit wide. 260 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 261 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 262 "unexpectedly overwriting bitfield"); 263 BitsThisChar |= (CI->getValue() & ~UpdateMask); 264 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 265 } 266 } 267 268 // Stop if we've added all the bits. 269 if (WantedBits == Bits.getBitWidth()) 270 break; 271 272 // Remove the consumed bits from Bits. 273 if (!CGM.getDataLayout().isBigEndian()) 274 Bits.lshrInPlace(WantedBits); 275 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 276 277 // The remanining bits go at the start of the following bytes. 278 OffsetWithinChar = 0; 279 } 280 281 return true; 282 } 283 284 /// Returns a position within Elems and Offsets such that all elements 285 /// before the returned index end before Pos and all elements at or after 286 /// the returned index begin at or after Pos. Splits elements as necessary 287 /// to ensure this. Returns std::nullopt if we find something we can't split. 288 std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 289 if (Pos >= Size) 290 return Offsets.size(); 291 292 while (true) { 293 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); 294 if (FirstAfterPos == Offsets.begin()) 295 return 0; 296 297 // If we already have an element starting at Pos, we're done. 298 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 299 if (Offsets[LastAtOrBeforePosIndex] == Pos) 300 return LastAtOrBeforePosIndex; 301 302 // We found an element starting before Pos. Check for overlap. 303 if (Offsets[LastAtOrBeforePosIndex] + 304 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 305 return LastAtOrBeforePosIndex + 1; 306 307 // Try to decompose it into smaller constants. 308 if (!split(LastAtOrBeforePosIndex, Pos)) 309 return std::nullopt; 310 } 311 } 312 313 /// Split the constant at index Index, if possible. Return true if we did. 314 /// Hint indicates the location at which we'd like to split, but may be 315 /// ignored. 316 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 317 NaturalLayout = false; 318 llvm::Constant *C = Elems[Index]; 319 CharUnits Offset = Offsets[Index]; 320 321 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 322 // Expand the sequence into its contained elements. 323 // FIXME: This assumes vector elements are byte-sized. 324 replace(Elems, Index, Index + 1, 325 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 326 [&](unsigned Op) { return CA->getOperand(Op); })); 327 if (isa<llvm::ArrayType>(CA->getType()) || 328 isa<llvm::VectorType>(CA->getType())) { 329 // Array or vector. 330 llvm::Type *ElemTy = 331 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0); 332 CharUnits ElemSize = getSize(ElemTy); 333 replace( 334 Offsets, Index, Index + 1, 335 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 336 [&](unsigned Op) { return Offset + Op * ElemSize; })); 337 } else { 338 // Must be a struct. 339 auto *ST = cast<llvm::StructType>(CA->getType()); 340 const llvm::StructLayout *Layout = 341 CGM.getDataLayout().getStructLayout(ST); 342 replace(Offsets, Index, Index + 1, 343 llvm::map_range( 344 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 345 return Offset + CharUnits::fromQuantity( 346 Layout->getElementOffset(Op)); 347 })); 348 } 349 return true; 350 } 351 352 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 353 // Expand the sequence into its contained elements. 354 // FIXME: This assumes vector elements are byte-sized. 355 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 356 CharUnits ElemSize = getSize(CDS->getElementType()); 357 replace(Elems, Index, Index + 1, 358 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 359 [&](unsigned Elem) { 360 return CDS->getElementAsConstant(Elem); 361 })); 362 replace(Offsets, Index, Index + 1, 363 llvm::map_range( 364 llvm::seq(0u, CDS->getNumElements()), 365 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 366 return true; 367 } 368 369 if (isa<llvm::ConstantAggregateZero>(C)) { 370 // Split into two zeros at the hinted offset. 371 CharUnits ElemSize = getSize(C); 372 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 373 replace(Elems, Index, Index + 1, 374 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 375 replace(Offsets, Index, Index + 1, {Offset, Hint}); 376 return true; 377 } 378 379 if (isa<llvm::UndefValue>(C)) { 380 // Drop undef; it doesn't contribute to the final layout. 381 replace(Elems, Index, Index + 1, {}); 382 replace(Offsets, Index, Index + 1, {}); 383 return true; 384 } 385 386 // FIXME: We could split a ConstantInt if the need ever arose. 387 // We don't need to do this to handle bit-fields because we always eagerly 388 // split them into 1-byte chunks. 389 390 return false; 391 } 392 393 static llvm::Constant * 394 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 395 llvm::Type *CommonElementType, unsigned ArrayBound, 396 SmallVectorImpl<llvm::Constant *> &Elements, 397 llvm::Constant *Filler); 398 399 llvm::Constant *ConstantAggregateBuilder::buildFrom( 400 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 401 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 402 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 403 ConstantAggregateBuilderUtils Utils(CGM); 404 405 if (Elems.empty()) 406 return llvm::UndefValue::get(DesiredTy); 407 408 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 409 410 // If we want an array type, see if all the elements are the same type and 411 // appropriately spaced. 412 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 413 assert(!AllowOversized && "oversized array emission not supported"); 414 415 bool CanEmitArray = true; 416 llvm::Type *CommonType = Elems[0]->getType(); 417 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 418 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 419 SmallVector<llvm::Constant*, 32> ArrayElements; 420 for (size_t I = 0; I != Elems.size(); ++I) { 421 // Skip zeroes; we'll use a zero value as our array filler. 422 if (Elems[I]->isNullValue()) 423 continue; 424 425 // All remaining elements must be the same type. 426 if (Elems[I]->getType() != CommonType || 427 Offset(I) % ElemSize != 0) { 428 CanEmitArray = false; 429 break; 430 } 431 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 432 ArrayElements.back() = Elems[I]; 433 } 434 435 if (CanEmitArray) { 436 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 437 ArrayElements, Filler); 438 } 439 440 // Can't emit as an array, carry on to emit as a struct. 441 } 442 443 // The size of the constant we plan to generate. This is usually just 444 // the size of the initialized type, but in AllowOversized mode (i.e. 445 // flexible array init), it can be larger. 446 CharUnits DesiredSize = Utils.getSize(DesiredTy); 447 if (Size > DesiredSize) { 448 assert(AllowOversized && "Elems are oversized"); 449 DesiredSize = Size; 450 } 451 452 // The natural alignment of an unpacked LLVM struct with the given elements. 453 CharUnits Align = CharUnits::One(); 454 for (llvm::Constant *C : Elems) 455 Align = std::max(Align, Utils.getAlignment(C)); 456 457 // The natural size of an unpacked LLVM struct with the given elements. 458 CharUnits AlignedSize = Size.alignTo(Align); 459 460 bool Packed = false; 461 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 462 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 463 if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) { 464 // The natural layout would be too big; force use of a packed layout. 465 NaturalLayout = false; 466 Packed = true; 467 } else if (DesiredSize > AlignedSize) { 468 // The natural layout would be too small. Add padding to fix it. (This 469 // is ignored if we choose a packed layout.) 470 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 471 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 472 UnpackedElems = UnpackedElemStorage; 473 } 474 475 // If we don't have a natural layout, insert padding as necessary. 476 // As we go, double-check to see if we can actually just emit Elems 477 // as a non-packed struct and do so opportunistically if possible. 478 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 479 if (!NaturalLayout) { 480 CharUnits SizeSoFar = CharUnits::Zero(); 481 for (size_t I = 0; I != Elems.size(); ++I) { 482 CharUnits Align = Utils.getAlignment(Elems[I]); 483 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 484 CharUnits DesiredOffset = Offset(I); 485 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 486 487 if (DesiredOffset != NaturalOffset) 488 Packed = true; 489 if (DesiredOffset != SizeSoFar) 490 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 491 PackedElems.push_back(Elems[I]); 492 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 493 } 494 // If we're using the packed layout, pad it out to the desired size if 495 // necessary. 496 if (Packed) { 497 assert(SizeSoFar <= DesiredSize && 498 "requested size is too small for contents"); 499 if (SizeSoFar < DesiredSize) 500 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 501 } 502 } 503 504 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 505 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 506 507 // Pick the type to use. If the type is layout identical to the desired 508 // type then use it, otherwise use whatever the builder produced for us. 509 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 510 if (DesiredSTy->isLayoutIdentical(STy)) 511 STy = DesiredSTy; 512 } 513 514 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 515 } 516 517 void ConstantAggregateBuilder::condense(CharUnits Offset, 518 llvm::Type *DesiredTy) { 519 CharUnits Size = getSize(DesiredTy); 520 521 std::optional<size_t> FirstElemToReplace = splitAt(Offset); 522 if (!FirstElemToReplace) 523 return; 524 size_t First = *FirstElemToReplace; 525 526 std::optional<size_t> LastElemToReplace = splitAt(Offset + Size); 527 if (!LastElemToReplace) 528 return; 529 size_t Last = *LastElemToReplace; 530 531 size_t Length = Last - First; 532 if (Length == 0) 533 return; 534 535 if (Length == 1 && Offsets[First] == Offset && 536 getSize(Elems[First]) == Size) { 537 // Re-wrap single element structs if necessary. Otherwise, leave any single 538 // element constant of the right size alone even if it has the wrong type. 539 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 540 if (STy && STy->getNumElements() == 1 && 541 STy->getElementType(0) == Elems[First]->getType()) 542 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 543 return; 544 } 545 546 llvm::Constant *Replacement = buildFrom( 547 CGM, ArrayRef(Elems).slice(First, Length), 548 ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 549 /*known to have natural layout=*/false, DesiredTy, false); 550 replace(Elems, First, Last, {Replacement}); 551 replace(Offsets, First, Last, {Offset}); 552 } 553 554 //===----------------------------------------------------------------------===// 555 // ConstStructBuilder 556 //===----------------------------------------------------------------------===// 557 558 class ConstStructBuilder { 559 CodeGenModule &CGM; 560 ConstantEmitter &Emitter; 561 ConstantAggregateBuilder &Builder; 562 CharUnits StartOffset; 563 564 public: 565 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 566 InitListExpr *ILE, QualType StructTy); 567 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 568 const APValue &Value, QualType ValTy); 569 static bool UpdateStruct(ConstantEmitter &Emitter, 570 ConstantAggregateBuilder &Const, CharUnits Offset, 571 InitListExpr *Updater); 572 573 private: 574 ConstStructBuilder(ConstantEmitter &Emitter, 575 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 576 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 577 StartOffset(StartOffset) {} 578 579 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 580 llvm::Constant *InitExpr, bool AllowOverwrite = false); 581 582 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 583 bool AllowOverwrite = false); 584 585 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 586 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false); 587 588 bool Build(InitListExpr *ILE, bool AllowOverwrite); 589 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 590 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 591 llvm::Constant *Finalize(QualType Ty); 592 }; 593 594 bool ConstStructBuilder::AppendField( 595 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 596 bool AllowOverwrite) { 597 const ASTContext &Context = CGM.getContext(); 598 599 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 600 601 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 602 } 603 604 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 605 llvm::Constant *InitCst, 606 bool AllowOverwrite) { 607 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 608 } 609 610 bool ConstStructBuilder::AppendBitField( 611 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI, 612 bool AllowOverwrite) { 613 const CGRecordLayout &RL = 614 CGM.getTypes().getCGRecordLayout(Field->getParent()); 615 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 616 llvm::APInt FieldValue = CI->getValue(); 617 618 // Promote the size of FieldValue if necessary 619 // FIXME: This should never occur, but currently it can because initializer 620 // constants are cast to bool, and because clang is not enforcing bitfield 621 // width limits. 622 if (Info.Size > FieldValue.getBitWidth()) 623 FieldValue = FieldValue.zext(Info.Size); 624 625 // Truncate the size of FieldValue to the bit field size. 626 if (Info.Size < FieldValue.getBitWidth()) 627 FieldValue = FieldValue.trunc(Info.Size); 628 629 return Builder.addBits(FieldValue, 630 CGM.getContext().toBits(StartOffset) + FieldOffset, 631 AllowOverwrite); 632 } 633 634 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 635 ConstantAggregateBuilder &Const, 636 CharUnits Offset, QualType Type, 637 InitListExpr *Updater) { 638 if (Type->isRecordType()) 639 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 640 641 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 642 if (!CAT) 643 return false; 644 QualType ElemType = CAT->getElementType(); 645 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 646 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 647 648 llvm::Constant *FillC = nullptr; 649 if (Expr *Filler = Updater->getArrayFiller()) { 650 if (!isa<NoInitExpr>(Filler)) { 651 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 652 if (!FillC) 653 return false; 654 } 655 } 656 657 unsigned NumElementsToUpdate = 658 FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits(); 659 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 660 Expr *Init = nullptr; 661 if (I < Updater->getNumInits()) 662 Init = Updater->getInit(I); 663 664 if (!Init && FillC) { 665 if (!Const.add(FillC, Offset, true)) 666 return false; 667 } else if (!Init || isa<NoInitExpr>(Init)) { 668 continue; 669 } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) { 670 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 671 ChildILE)) 672 return false; 673 // Attempt to reduce the array element to a single constant if necessary. 674 Const.condense(Offset, ElemTy); 675 } else { 676 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 677 if (!Const.add(Val, Offset, true)) 678 return false; 679 } 680 } 681 682 return true; 683 } 684 685 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) { 686 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 687 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 688 689 unsigned FieldNo = -1; 690 unsigned ElementNo = 0; 691 692 // Bail out if we have base classes. We could support these, but they only 693 // arise in C++1z where we will have already constant folded most interesting 694 // cases. FIXME: There are still a few more cases we can handle this way. 695 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 696 if (CXXRD->getNumBases()) 697 return false; 698 699 for (FieldDecl *Field : RD->fields()) { 700 ++FieldNo; 701 702 // If this is a union, skip all the fields that aren't being initialized. 703 if (RD->isUnion() && 704 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) 705 continue; 706 707 // Don't emit anonymous bitfields. 708 if (Field->isUnnamedBitfield()) 709 continue; 710 711 // Get the initializer. A struct can include fields without initializers, 712 // we just use explicit null values for them. 713 Expr *Init = nullptr; 714 if (ElementNo < ILE->getNumInits()) 715 Init = ILE->getInit(ElementNo++); 716 if (Init && isa<NoInitExpr>(Init)) 717 continue; 718 719 // Zero-sized fields are not emitted, but their initializers may still 720 // prevent emission of this struct as a constant. 721 if (Field->isZeroSize(CGM.getContext())) { 722 if (Init->HasSideEffects(CGM.getContext())) 723 return false; 724 continue; 725 } 726 727 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 728 // represents additional overwriting of our current constant value, and not 729 // a new constant to emit independently. 730 if (AllowOverwrite && 731 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 732 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 733 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 734 Layout.getFieldOffset(FieldNo)); 735 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 736 Field->getType(), SubILE)) 737 return false; 738 // If we split apart the field's value, try to collapse it down to a 739 // single value now. 740 Builder.condense(StartOffset + Offset, 741 CGM.getTypes().ConvertTypeForMem(Field->getType())); 742 continue; 743 } 744 } 745 746 llvm::Constant *EltInit = 747 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 748 : Emitter.emitNullForMemory(Field->getType()); 749 if (!EltInit) 750 return false; 751 752 if (!Field->isBitField()) { 753 // Handle non-bitfield members. 754 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 755 AllowOverwrite)) 756 return false; 757 // After emitting a non-empty field with [[no_unique_address]], we may 758 // need to overwrite its tail padding. 759 if (Field->hasAttr<NoUniqueAddressAttr>()) 760 AllowOverwrite = true; 761 } else { 762 // Otherwise we have a bitfield. 763 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 764 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI, 765 AllowOverwrite)) 766 return false; 767 } else { 768 // We are trying to initialize a bitfield with a non-trivial constant, 769 // this must require run-time code. 770 return false; 771 } 772 } 773 } 774 775 return true; 776 } 777 778 namespace { 779 struct BaseInfo { 780 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 781 : Decl(Decl), Offset(Offset), Index(Index) { 782 } 783 784 const CXXRecordDecl *Decl; 785 CharUnits Offset; 786 unsigned Index; 787 788 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 789 }; 790 } 791 792 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 793 bool IsPrimaryBase, 794 const CXXRecordDecl *VTableClass, 795 CharUnits Offset) { 796 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 797 798 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 799 // Add a vtable pointer, if we need one and it hasn't already been added. 800 if (Layout.hasOwnVFPtr()) { 801 llvm::Constant *VTableAddressPoint = 802 CGM.getCXXABI().getVTableAddressPointForConstExpr( 803 BaseSubobject(CD, Offset), VTableClass); 804 if (!AppendBytes(Offset, VTableAddressPoint)) 805 return false; 806 } 807 808 // Accumulate and sort bases, in order to visit them in address order, which 809 // may not be the same as declaration order. 810 SmallVector<BaseInfo, 8> Bases; 811 Bases.reserve(CD->getNumBases()); 812 unsigned BaseNo = 0; 813 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 814 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 815 assert(!Base->isVirtual() && "should not have virtual bases here"); 816 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 817 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 818 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 819 } 820 llvm::stable_sort(Bases); 821 822 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 823 BaseInfo &Base = Bases[I]; 824 825 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 826 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 827 VTableClass, Offset + Base.Offset); 828 } 829 } 830 831 unsigned FieldNo = 0; 832 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 833 834 bool AllowOverwrite = false; 835 for (RecordDecl::field_iterator Field = RD->field_begin(), 836 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 837 // If this is a union, skip all the fields that aren't being initialized. 838 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 839 continue; 840 841 // Don't emit anonymous bitfields or zero-sized fields. 842 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 843 continue; 844 845 // Emit the value of the initializer. 846 const APValue &FieldValue = 847 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 848 llvm::Constant *EltInit = 849 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 850 if (!EltInit) 851 return false; 852 853 if (!Field->isBitField()) { 854 // Handle non-bitfield members. 855 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 856 EltInit, AllowOverwrite)) 857 return false; 858 // After emitting a non-empty field with [[no_unique_address]], we may 859 // need to overwrite its tail padding. 860 if (Field->hasAttr<NoUniqueAddressAttr>()) 861 AllowOverwrite = true; 862 } else { 863 // Otherwise we have a bitfield. 864 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 865 cast<llvm::ConstantInt>(EltInit), AllowOverwrite)) 866 return false; 867 } 868 } 869 870 return true; 871 } 872 873 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 874 Type = Type.getNonReferenceType(); 875 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 876 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 877 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 878 } 879 880 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 881 InitListExpr *ILE, 882 QualType ValTy) { 883 ConstantAggregateBuilder Const(Emitter.CGM); 884 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 885 886 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 887 return nullptr; 888 889 return Builder.Finalize(ValTy); 890 } 891 892 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 893 const APValue &Val, 894 QualType ValTy) { 895 ConstantAggregateBuilder Const(Emitter.CGM); 896 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 897 898 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 899 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 900 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 901 return nullptr; 902 903 return Builder.Finalize(ValTy); 904 } 905 906 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 907 ConstantAggregateBuilder &Const, 908 CharUnits Offset, InitListExpr *Updater) { 909 return ConstStructBuilder(Emitter, Const, Offset) 910 .Build(Updater, /*AllowOverwrite*/ true); 911 } 912 913 //===----------------------------------------------------------------------===// 914 // ConstExprEmitter 915 //===----------------------------------------------------------------------===// 916 917 static ConstantAddress 918 tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter, 919 const CompoundLiteralExpr *E) { 920 CodeGenModule &CGM = emitter.CGM; 921 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 922 if (llvm::GlobalVariable *Addr = 923 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 924 return ConstantAddress(Addr, Addr->getValueType(), Align); 925 926 LangAS addressSpace = E->getType().getAddressSpace(); 927 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 928 addressSpace, E->getType()); 929 if (!C) { 930 assert(!E->isFileScope() && 931 "file-scope compound literal did not have constant initializer!"); 932 return ConstantAddress::invalid(); 933 } 934 935 auto GV = new llvm::GlobalVariable( 936 CGM.getModule(), C->getType(), 937 CGM.isTypeConstant(E->getType(), true, false), 938 llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr, 939 llvm::GlobalVariable::NotThreadLocal, 940 CGM.getContext().getTargetAddressSpace(addressSpace)); 941 emitter.finalize(GV); 942 GV->setAlignment(Align.getAsAlign()); 943 CGM.setAddrOfConstantCompoundLiteral(E, GV); 944 return ConstantAddress(GV, GV->getValueType(), Align); 945 } 946 947 static llvm::Constant * 948 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 949 llvm::Type *CommonElementType, unsigned ArrayBound, 950 SmallVectorImpl<llvm::Constant *> &Elements, 951 llvm::Constant *Filler) { 952 // Figure out how long the initial prefix of non-zero elements is. 953 unsigned NonzeroLength = ArrayBound; 954 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 955 NonzeroLength = Elements.size(); 956 if (NonzeroLength == Elements.size()) { 957 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 958 --NonzeroLength; 959 } 960 961 if (NonzeroLength == 0) 962 return llvm::ConstantAggregateZero::get(DesiredType); 963 964 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 965 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 966 if (TrailingZeroes >= 8) { 967 assert(Elements.size() >= NonzeroLength && 968 "missing initializer for non-zero element"); 969 970 // If all the elements had the same type up to the trailing zeroes, emit a 971 // struct of two arrays (the nonzero data and the zeroinitializer). 972 if (CommonElementType && NonzeroLength >= 8) { 973 llvm::Constant *Initial = llvm::ConstantArray::get( 974 llvm::ArrayType::get(CommonElementType, NonzeroLength), 975 ArrayRef(Elements).take_front(NonzeroLength)); 976 Elements.resize(2); 977 Elements[0] = Initial; 978 } else { 979 Elements.resize(NonzeroLength + 1); 980 } 981 982 auto *FillerType = 983 CommonElementType ? CommonElementType : DesiredType->getElementType(); 984 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 985 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 986 CommonElementType = nullptr; 987 } else if (Elements.size() != ArrayBound) { 988 // Otherwise pad to the right size with the filler if necessary. 989 Elements.resize(ArrayBound, Filler); 990 if (Filler->getType() != CommonElementType) 991 CommonElementType = nullptr; 992 } 993 994 // If all elements have the same type, just emit an array constant. 995 if (CommonElementType) 996 return llvm::ConstantArray::get( 997 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 998 999 // We have mixed types. Use a packed struct. 1000 llvm::SmallVector<llvm::Type *, 16> Types; 1001 Types.reserve(Elements.size()); 1002 for (llvm::Constant *Elt : Elements) 1003 Types.push_back(Elt->getType()); 1004 llvm::StructType *SType = 1005 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 1006 return llvm::ConstantStruct::get(SType, Elements); 1007 } 1008 1009 // This class only needs to handle arrays, structs and unions. Outside C++11 1010 // mode, we don't currently constant fold those types. All other types are 1011 // handled by constant folding. 1012 // 1013 // Constant folding is currently missing support for a few features supported 1014 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 1015 class ConstExprEmitter : 1016 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 1017 CodeGenModule &CGM; 1018 ConstantEmitter &Emitter; 1019 llvm::LLVMContext &VMContext; 1020 public: 1021 ConstExprEmitter(ConstantEmitter &emitter) 1022 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 1023 } 1024 1025 //===--------------------------------------------------------------------===// 1026 // Visitor Methods 1027 //===--------------------------------------------------------------------===// 1028 1029 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 1030 return nullptr; 1031 } 1032 1033 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { 1034 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE)) 1035 return Result; 1036 return Visit(CE->getSubExpr(), T); 1037 } 1038 1039 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 1040 return Visit(PE->getSubExpr(), T); 1041 } 1042 1043 llvm::Constant * 1044 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 1045 QualType T) { 1046 return Visit(PE->getReplacement(), T); 1047 } 1048 1049 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 1050 QualType T) { 1051 return Visit(GE->getResultExpr(), T); 1052 } 1053 1054 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 1055 return Visit(CE->getChosenSubExpr(), T); 1056 } 1057 1058 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 1059 return Visit(E->getInitializer(), T); 1060 } 1061 1062 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 1063 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1064 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1065 Expr *subExpr = E->getSubExpr(); 1066 1067 switch (E->getCastKind()) { 1068 case CK_ToUnion: { 1069 // GCC cast to union extension 1070 assert(E->getType()->isUnionType() && 1071 "Destination type is not union type!"); 1072 1073 auto field = E->getTargetUnionField(); 1074 1075 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1076 if (!C) return nullptr; 1077 1078 auto destTy = ConvertType(destType); 1079 if (C->getType() == destTy) return C; 1080 1081 // Build a struct with the union sub-element as the first member, 1082 // and padded to the appropriate size. 1083 SmallVector<llvm::Constant*, 2> Elts; 1084 SmallVector<llvm::Type*, 2> Types; 1085 Elts.push_back(C); 1086 Types.push_back(C->getType()); 1087 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1088 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1089 1090 assert(CurSize <= TotalSize && "Union size mismatch!"); 1091 if (unsigned NumPadBytes = TotalSize - CurSize) { 1092 llvm::Type *Ty = CGM.CharTy; 1093 if (NumPadBytes > 1) 1094 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 1095 1096 Elts.push_back(llvm::UndefValue::get(Ty)); 1097 Types.push_back(Ty); 1098 } 1099 1100 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1101 return llvm::ConstantStruct::get(STy, Elts); 1102 } 1103 1104 case CK_AddressSpaceConversion: { 1105 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1106 if (!C) return nullptr; 1107 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1108 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1109 llvm::Type *destTy = ConvertType(E->getType()); 1110 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1111 destAS, destTy); 1112 } 1113 1114 case CK_LValueToRValue: { 1115 // We don't really support doing lvalue-to-rvalue conversions here; any 1116 // interesting conversions should be done in Evaluate(). But as a 1117 // special case, allow compound literals to support the gcc extension 1118 // allowing "struct x {int x;} x = (struct x) {};". 1119 if (auto *E = dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens())) 1120 return Visit(E->getInitializer(), destType); 1121 return nullptr; 1122 } 1123 1124 case CK_AtomicToNonAtomic: 1125 case CK_NonAtomicToAtomic: 1126 case CK_NoOp: 1127 case CK_ConstructorConversion: 1128 return Visit(subExpr, destType); 1129 1130 case CK_IntToOCLSampler: 1131 llvm_unreachable("global sampler variables are not generated"); 1132 1133 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1134 1135 case CK_BuiltinFnToFnPtr: 1136 llvm_unreachable("builtin functions are handled elsewhere"); 1137 1138 case CK_ReinterpretMemberPointer: 1139 case CK_DerivedToBaseMemberPointer: 1140 case CK_BaseToDerivedMemberPointer: { 1141 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1142 if (!C) return nullptr; 1143 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1144 } 1145 1146 // These will never be supported. 1147 case CK_ObjCObjectLValueCast: 1148 case CK_ARCProduceObject: 1149 case CK_ARCConsumeObject: 1150 case CK_ARCReclaimReturnedObject: 1151 case CK_ARCExtendBlockObject: 1152 case CK_CopyAndAutoreleaseBlockObject: 1153 return nullptr; 1154 1155 // These don't need to be handled here because Evaluate knows how to 1156 // evaluate them in the cases where they can be folded. 1157 case CK_BitCast: 1158 case CK_ToVoid: 1159 case CK_Dynamic: 1160 case CK_LValueBitCast: 1161 case CK_LValueToRValueBitCast: 1162 case CK_NullToMemberPointer: 1163 case CK_UserDefinedConversion: 1164 case CK_CPointerToObjCPointerCast: 1165 case CK_BlockPointerToObjCPointerCast: 1166 case CK_AnyPointerToBlockPointerCast: 1167 case CK_ArrayToPointerDecay: 1168 case CK_FunctionToPointerDecay: 1169 case CK_BaseToDerived: 1170 case CK_DerivedToBase: 1171 case CK_UncheckedDerivedToBase: 1172 case CK_MemberPointerToBoolean: 1173 case CK_VectorSplat: 1174 case CK_FloatingRealToComplex: 1175 case CK_FloatingComplexToReal: 1176 case CK_FloatingComplexToBoolean: 1177 case CK_FloatingComplexCast: 1178 case CK_FloatingComplexToIntegralComplex: 1179 case CK_IntegralRealToComplex: 1180 case CK_IntegralComplexToReal: 1181 case CK_IntegralComplexToBoolean: 1182 case CK_IntegralComplexCast: 1183 case CK_IntegralComplexToFloatingComplex: 1184 case CK_PointerToIntegral: 1185 case CK_PointerToBoolean: 1186 case CK_NullToPointer: 1187 case CK_IntegralCast: 1188 case CK_BooleanToSignedIntegral: 1189 case CK_IntegralToPointer: 1190 case CK_IntegralToBoolean: 1191 case CK_IntegralToFloating: 1192 case CK_FloatingToIntegral: 1193 case CK_FloatingToBoolean: 1194 case CK_FloatingCast: 1195 case CK_FloatingToFixedPoint: 1196 case CK_FixedPointToFloating: 1197 case CK_FixedPointCast: 1198 case CK_FixedPointToBoolean: 1199 case CK_FixedPointToIntegral: 1200 case CK_IntegralToFixedPoint: 1201 case CK_ZeroToOCLOpaqueType: 1202 case CK_MatrixCast: 1203 return nullptr; 1204 } 1205 llvm_unreachable("Invalid CastKind"); 1206 } 1207 1208 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 1209 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1210 // constant expression. 1211 return Visit(DIE->getExpr(), T); 1212 } 1213 1214 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 1215 return Visit(E->getSubExpr(), T); 1216 } 1217 1218 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 1219 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1220 assert(CAT && "can't emit array init for non-constant-bound array"); 1221 unsigned NumInitElements = ILE->getNumInits(); 1222 unsigned NumElements = CAT->getSize().getZExtValue(); 1223 1224 // Initialising an array requires us to automatically 1225 // initialise any elements that have not been initialised explicitly 1226 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 1227 1228 QualType EltType = CAT->getElementType(); 1229 1230 // Initialize remaining array elements. 1231 llvm::Constant *fillC = nullptr; 1232 if (Expr *filler = ILE->getArrayFiller()) { 1233 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1234 if (!fillC) 1235 return nullptr; 1236 } 1237 1238 // Copy initializer elements. 1239 SmallVector<llvm::Constant*, 16> Elts; 1240 if (fillC && fillC->isNullValue()) 1241 Elts.reserve(NumInitableElts + 1); 1242 else 1243 Elts.reserve(NumElements); 1244 1245 llvm::Type *CommonElementType = nullptr; 1246 for (unsigned i = 0; i < NumInitableElts; ++i) { 1247 Expr *Init = ILE->getInit(i); 1248 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1249 if (!C) 1250 return nullptr; 1251 if (i == 0) 1252 CommonElementType = C->getType(); 1253 else if (C->getType() != CommonElementType) 1254 CommonElementType = nullptr; 1255 Elts.push_back(C); 1256 } 1257 1258 llvm::ArrayType *Desired = 1259 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1260 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1261 fillC); 1262 } 1263 1264 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 1265 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1266 } 1267 1268 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 1269 QualType T) { 1270 return CGM.EmitNullConstant(T); 1271 } 1272 1273 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 1274 if (ILE->isTransparent()) 1275 return Visit(ILE->getInit(0), T); 1276 1277 if (ILE->getType()->isArrayType()) 1278 return EmitArrayInitialization(ILE, T); 1279 1280 if (ILE->getType()->isRecordType()) 1281 return EmitRecordInitialization(ILE, T); 1282 1283 return nullptr; 1284 } 1285 1286 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1287 QualType destType) { 1288 auto C = Visit(E->getBase(), destType); 1289 if (!C) 1290 return nullptr; 1291 1292 ConstantAggregateBuilder Const(CGM); 1293 Const.add(C, CharUnits::Zero(), false); 1294 1295 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1296 E->getUpdater())) 1297 return nullptr; 1298 1299 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1300 bool HasFlexibleArray = false; 1301 if (auto *RT = destType->getAs<RecordType>()) 1302 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1303 return Const.build(ValTy, HasFlexibleArray); 1304 } 1305 1306 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1307 if (!E->getConstructor()->isTrivial()) 1308 return nullptr; 1309 1310 // Only default and copy/move constructors can be trivial. 1311 if (E->getNumArgs()) { 1312 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1313 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1314 "trivial ctor has argument but isn't a copy/move ctor"); 1315 1316 Expr *Arg = E->getArg(0); 1317 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1318 "argument to copy ctor is of wrong type"); 1319 1320 // Look through the temporary; it's just converting the value to an 1321 // lvalue to pass it to the constructor. 1322 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg)) 1323 return Visit(MTE->getSubExpr(), Ty); 1324 // Don't try to support arbitrary lvalue-to-rvalue conversions for now. 1325 return nullptr; 1326 } 1327 1328 return CGM.EmitNullConstant(Ty); 1329 } 1330 1331 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1332 // This is a string literal initializing an array in an initializer. 1333 return CGM.GetConstantArrayFromStringLiteral(E); 1334 } 1335 1336 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1337 // This must be an @encode initializing an array in a static initializer. 1338 // Don't emit it as the address of the string, emit the string data itself 1339 // as an inline array. 1340 std::string Str; 1341 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1342 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1343 assert(CAT && "String data not of constant array type!"); 1344 1345 // Resize the string to the right size, adding zeros at the end, or 1346 // truncating as needed. 1347 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1348 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1349 } 1350 1351 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1352 return Visit(E->getSubExpr(), T); 1353 } 1354 1355 // Utility methods 1356 llvm::Type *ConvertType(QualType T) { 1357 return CGM.getTypes().ConvertType(T); 1358 } 1359 }; 1360 1361 } // end anonymous namespace. 1362 1363 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1364 AbstractState saved) { 1365 Abstract = saved.OldValue; 1366 1367 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1368 "created a placeholder while doing an abstract emission?"); 1369 1370 // No validation necessary for now. 1371 // No cleanup to do for now. 1372 return C; 1373 } 1374 1375 llvm::Constant * 1376 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1377 auto state = pushAbstract(); 1378 auto C = tryEmitPrivateForVarInit(D); 1379 return validateAndPopAbstract(C, state); 1380 } 1381 1382 llvm::Constant * 1383 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1384 auto state = pushAbstract(); 1385 auto C = tryEmitPrivate(E, destType); 1386 return validateAndPopAbstract(C, state); 1387 } 1388 1389 llvm::Constant * 1390 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1391 auto state = pushAbstract(); 1392 auto C = tryEmitPrivate(value, destType); 1393 return validateAndPopAbstract(C, state); 1394 } 1395 1396 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) { 1397 if (!CE->hasAPValueResult()) 1398 return nullptr; 1399 1400 QualType RetType = CE->getType(); 1401 if (CE->isGLValue()) 1402 RetType = CGM.getContext().getLValueReferenceType(RetType); 1403 1404 return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType); 1405 } 1406 1407 llvm::Constant * 1408 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1409 auto state = pushAbstract(); 1410 auto C = tryEmitPrivate(E, destType); 1411 C = validateAndPopAbstract(C, state); 1412 if (!C) { 1413 CGM.Error(E->getExprLoc(), 1414 "internal error: could not emit constant value \"abstractly\""); 1415 C = CGM.EmitNullConstant(destType); 1416 } 1417 return C; 1418 } 1419 1420 llvm::Constant * 1421 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1422 QualType destType) { 1423 auto state = pushAbstract(); 1424 auto C = tryEmitPrivate(value, destType); 1425 C = validateAndPopAbstract(C, state); 1426 if (!C) { 1427 CGM.Error(loc, 1428 "internal error: could not emit constant value \"abstractly\""); 1429 C = CGM.EmitNullConstant(destType); 1430 } 1431 return C; 1432 } 1433 1434 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1435 initializeNonAbstract(D.getType().getAddressSpace()); 1436 return markIfFailed(tryEmitPrivateForVarInit(D)); 1437 } 1438 1439 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1440 LangAS destAddrSpace, 1441 QualType destType) { 1442 initializeNonAbstract(destAddrSpace); 1443 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1444 } 1445 1446 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1447 LangAS destAddrSpace, 1448 QualType destType) { 1449 initializeNonAbstract(destAddrSpace); 1450 auto C = tryEmitPrivateForMemory(value, destType); 1451 assert(C && "couldn't emit constant value non-abstractly?"); 1452 return C; 1453 } 1454 1455 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1456 assert(!Abstract && "cannot get current address for abstract constant"); 1457 1458 1459 1460 // Make an obviously ill-formed global that should blow up compilation 1461 // if it survives. 1462 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1463 llvm::GlobalValue::PrivateLinkage, 1464 /*init*/ nullptr, 1465 /*name*/ "", 1466 /*before*/ nullptr, 1467 llvm::GlobalVariable::NotThreadLocal, 1468 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1469 1470 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1471 1472 return global; 1473 } 1474 1475 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1476 llvm::GlobalValue *placeholder) { 1477 assert(!PlaceholderAddresses.empty()); 1478 assert(PlaceholderAddresses.back().first == nullptr); 1479 assert(PlaceholderAddresses.back().second == placeholder); 1480 PlaceholderAddresses.back().first = signal; 1481 } 1482 1483 namespace { 1484 struct ReplacePlaceholders { 1485 CodeGenModule &CGM; 1486 1487 /// The base address of the global. 1488 llvm::Constant *Base; 1489 llvm::Type *BaseValueTy = nullptr; 1490 1491 /// The placeholder addresses that were registered during emission. 1492 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1493 1494 /// The locations of the placeholder signals. 1495 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1496 1497 /// The current index stack. We use a simple unsigned stack because 1498 /// we assume that placeholders will be relatively sparse in the 1499 /// initializer, but we cache the index values we find just in case. 1500 llvm::SmallVector<unsigned, 8> Indices; 1501 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1502 1503 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1504 ArrayRef<std::pair<llvm::Constant*, 1505 llvm::GlobalVariable*>> addresses) 1506 : CGM(CGM), Base(base), 1507 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1508 } 1509 1510 void replaceInInitializer(llvm::Constant *init) { 1511 // Remember the type of the top-most initializer. 1512 BaseValueTy = init->getType(); 1513 1514 // Initialize the stack. 1515 Indices.push_back(0); 1516 IndexValues.push_back(nullptr); 1517 1518 // Recurse into the initializer. 1519 findLocations(init); 1520 1521 // Check invariants. 1522 assert(IndexValues.size() == Indices.size() && "mismatch"); 1523 assert(Indices.size() == 1 && "didn't pop all indices"); 1524 1525 // Do the replacement; this basically invalidates 'init'. 1526 assert(Locations.size() == PlaceholderAddresses.size() && 1527 "missed a placeholder?"); 1528 1529 // We're iterating over a hashtable, so this would be a source of 1530 // non-determinism in compiler output *except* that we're just 1531 // messing around with llvm::Constant structures, which never itself 1532 // does anything that should be visible in compiler output. 1533 for (auto &entry : Locations) { 1534 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1535 entry.first->replaceAllUsesWith(entry.second); 1536 entry.first->eraseFromParent(); 1537 } 1538 } 1539 1540 private: 1541 void findLocations(llvm::Constant *init) { 1542 // Recurse into aggregates. 1543 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1544 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1545 Indices.push_back(i); 1546 IndexValues.push_back(nullptr); 1547 1548 findLocations(agg->getOperand(i)); 1549 1550 IndexValues.pop_back(); 1551 Indices.pop_back(); 1552 } 1553 return; 1554 } 1555 1556 // Otherwise, check for registered constants. 1557 while (true) { 1558 auto it = PlaceholderAddresses.find(init); 1559 if (it != PlaceholderAddresses.end()) { 1560 setLocation(it->second); 1561 break; 1562 } 1563 1564 // Look through bitcasts or other expressions. 1565 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1566 init = expr->getOperand(0); 1567 } else { 1568 break; 1569 } 1570 } 1571 } 1572 1573 void setLocation(llvm::GlobalVariable *placeholder) { 1574 assert(!Locations.contains(placeholder) && 1575 "already found location for placeholder!"); 1576 1577 // Lazily fill in IndexValues with the values from Indices. 1578 // We do this in reverse because we should always have a strict 1579 // prefix of indices from the start. 1580 assert(Indices.size() == IndexValues.size()); 1581 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1582 if (IndexValues[i]) { 1583 #ifndef NDEBUG 1584 for (size_t j = 0; j != i + 1; ++j) { 1585 assert(IndexValues[j] && 1586 isa<llvm::ConstantInt>(IndexValues[j]) && 1587 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1588 == Indices[j]); 1589 } 1590 #endif 1591 break; 1592 } 1593 1594 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1595 } 1596 1597 // Form a GEP and then bitcast to the placeholder type so that the 1598 // replacement will succeed. 1599 llvm::Constant *location = 1600 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1601 Base, IndexValues); 1602 location = llvm::ConstantExpr::getBitCast(location, 1603 placeholder->getType()); 1604 1605 Locations.insert({placeholder, location}); 1606 } 1607 }; 1608 } 1609 1610 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1611 assert(InitializedNonAbstract && 1612 "finalizing emitter that was used for abstract emission?"); 1613 assert(!Finalized && "finalizing emitter multiple times"); 1614 assert(global->getInitializer()); 1615 1616 // Note that we might also be Failed. 1617 Finalized = true; 1618 1619 if (!PlaceholderAddresses.empty()) { 1620 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1621 .replaceInInitializer(global->getInitializer()); 1622 PlaceholderAddresses.clear(); // satisfy 1623 } 1624 } 1625 1626 ConstantEmitter::~ConstantEmitter() { 1627 assert((!InitializedNonAbstract || Finalized || Failed) && 1628 "not finalized after being initialized for non-abstract emission"); 1629 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1630 } 1631 1632 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1633 if (auto AT = type->getAs<AtomicType>()) { 1634 return CGM.getContext().getQualifiedType(AT->getValueType(), 1635 type.getQualifiers()); 1636 } 1637 return type; 1638 } 1639 1640 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1641 // Make a quick check if variable can be default NULL initialized 1642 // and avoid going through rest of code which may do, for c++11, 1643 // initialization of memory to all NULLs. 1644 if (!D.hasLocalStorage()) { 1645 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1646 if (Ty->isRecordType()) 1647 if (const CXXConstructExpr *E = 1648 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1649 const CXXConstructorDecl *CD = E->getConstructor(); 1650 if (CD->isTrivial() && CD->isDefaultConstructor()) 1651 return CGM.EmitNullConstant(D.getType()); 1652 } 1653 } 1654 InConstantContext = D.hasConstantInitialization(); 1655 1656 QualType destType = D.getType(); 1657 const Expr *E = D.getInit(); 1658 assert(E && "No initializer to emit"); 1659 1660 if (!destType->isReferenceType()) { 1661 QualType nonMemoryDestType = getNonMemoryType(CGM, destType); 1662 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(const_cast<Expr *>(E), 1663 nonMemoryDestType)) 1664 return emitForMemory(C, destType); 1665 } 1666 1667 // Try to emit the initializer. Note that this can allow some things that 1668 // are not allowed by tryEmitPrivateForMemory alone. 1669 if (APValue *value = D.evaluateValue()) 1670 return tryEmitPrivateForMemory(*value, destType); 1671 1672 return nullptr; 1673 } 1674 1675 llvm::Constant * 1676 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1677 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1678 auto C = tryEmitAbstract(E, nonMemoryDestType); 1679 return (C ? emitForMemory(C, destType) : nullptr); 1680 } 1681 1682 llvm::Constant * 1683 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1684 QualType destType) { 1685 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1686 auto C = tryEmitAbstract(value, nonMemoryDestType); 1687 return (C ? emitForMemory(C, destType) : nullptr); 1688 } 1689 1690 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1691 QualType destType) { 1692 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1693 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1694 return (C ? emitForMemory(C, destType) : nullptr); 1695 } 1696 1697 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1698 QualType destType) { 1699 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1700 auto C = tryEmitPrivate(value, nonMemoryDestType); 1701 return (C ? emitForMemory(C, destType) : nullptr); 1702 } 1703 1704 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1705 llvm::Constant *C, 1706 QualType destType) { 1707 // For an _Atomic-qualified constant, we may need to add tail padding. 1708 if (auto AT = destType->getAs<AtomicType>()) { 1709 QualType destValueType = AT->getValueType(); 1710 C = emitForMemory(CGM, C, destValueType); 1711 1712 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1713 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1714 if (innerSize == outerSize) 1715 return C; 1716 1717 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1718 llvm::Constant *elts[] = { 1719 C, 1720 llvm::ConstantAggregateZero::get( 1721 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1722 }; 1723 return llvm::ConstantStruct::getAnon(elts); 1724 } 1725 1726 // Zero-extend bool. 1727 if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) { 1728 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1729 return llvm::ConstantExpr::getZExt(C, boolTy); 1730 } 1731 1732 return C; 1733 } 1734 1735 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1736 QualType destType) { 1737 assert(!destType->isVoidType() && "can't emit a void constant"); 1738 1739 if (!destType->isReferenceType()) 1740 if (llvm::Constant *C = 1741 ConstExprEmitter(*this).Visit(const_cast<Expr *>(E), destType)) 1742 return C; 1743 1744 Expr::EvalResult Result; 1745 1746 bool Success = false; 1747 1748 if (destType->isReferenceType()) 1749 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1750 else 1751 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1752 1753 if (Success && !Result.HasSideEffects) 1754 return tryEmitPrivate(Result.Val, destType); 1755 1756 return nullptr; 1757 } 1758 1759 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1760 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1761 } 1762 1763 namespace { 1764 /// A struct which can be used to peephole certain kinds of finalization 1765 /// that normally happen during l-value emission. 1766 struct ConstantLValue { 1767 llvm::Constant *Value; 1768 bool HasOffsetApplied; 1769 1770 /*implicit*/ ConstantLValue(llvm::Constant *value, 1771 bool hasOffsetApplied = false) 1772 : Value(value), HasOffsetApplied(hasOffsetApplied) {} 1773 1774 /*implicit*/ ConstantLValue(ConstantAddress address) 1775 : ConstantLValue(address.getPointer()) {} 1776 }; 1777 1778 /// A helper class for emitting constant l-values. 1779 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1780 ConstantLValue> { 1781 CodeGenModule &CGM; 1782 ConstantEmitter &Emitter; 1783 const APValue &Value; 1784 QualType DestType; 1785 1786 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1787 friend StmtVisitorBase; 1788 1789 public: 1790 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1791 QualType destType) 1792 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1793 1794 llvm::Constant *tryEmit(); 1795 1796 private: 1797 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1798 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1799 1800 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1801 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1802 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1803 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1804 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 1805 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1806 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1807 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1808 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1809 ConstantLValue VisitCallExpr(const CallExpr *E); 1810 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1811 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1812 ConstantLValue VisitMaterializeTemporaryExpr( 1813 const MaterializeTemporaryExpr *E); 1814 1815 bool hasNonZeroOffset() const { 1816 return !Value.getLValueOffset().isZero(); 1817 } 1818 1819 /// Return the value offset. 1820 llvm::Constant *getOffset() { 1821 return llvm::ConstantInt::get(CGM.Int64Ty, 1822 Value.getLValueOffset().getQuantity()); 1823 } 1824 1825 /// Apply the value offset to the given constant. 1826 llvm::Constant *applyOffset(llvm::Constant *C) { 1827 if (!hasNonZeroOffset()) 1828 return C; 1829 1830 llvm::Type *origPtrTy = C->getType(); 1831 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1832 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1833 return C; 1834 } 1835 }; 1836 1837 } 1838 1839 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1840 const APValue::LValueBase &base = Value.getLValueBase(); 1841 1842 // The destination type should be a pointer or reference 1843 // type, but it might also be a cast thereof. 1844 // 1845 // FIXME: the chain of casts required should be reflected in the APValue. 1846 // We need this in order to correctly handle things like a ptrtoint of a 1847 // non-zero null pointer and addrspace casts that aren't trivially 1848 // represented in LLVM IR. 1849 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1850 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1851 1852 // If there's no base at all, this is a null or absolute pointer, 1853 // possibly cast back to an integer type. 1854 if (!base) { 1855 return tryEmitAbsolute(destTy); 1856 } 1857 1858 // Otherwise, try to emit the base. 1859 ConstantLValue result = tryEmitBase(base); 1860 1861 // If that failed, we're done. 1862 llvm::Constant *value = result.Value; 1863 if (!value) return nullptr; 1864 1865 // Apply the offset if necessary and not already done. 1866 if (!result.HasOffsetApplied) { 1867 value = applyOffset(value); 1868 } 1869 1870 // Convert to the appropriate type; this could be an lvalue for 1871 // an integer. FIXME: performAddrSpaceCast 1872 if (isa<llvm::PointerType>(destTy)) 1873 return llvm::ConstantExpr::getPointerCast(value, destTy); 1874 1875 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1876 } 1877 1878 /// Try to emit an absolute l-value, such as a null pointer or an integer 1879 /// bitcast to pointer type. 1880 llvm::Constant * 1881 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1882 // If we're producing a pointer, this is easy. 1883 auto destPtrTy = cast<llvm::PointerType>(destTy); 1884 if (Value.isNullPointer()) { 1885 // FIXME: integer offsets from non-zero null pointers. 1886 return CGM.getNullPointer(destPtrTy, DestType); 1887 } 1888 1889 // Convert the integer to a pointer-sized integer before converting it 1890 // to a pointer. 1891 // FIXME: signedness depends on the original integer type. 1892 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1893 llvm::Constant *C; 1894 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1895 /*isSigned*/ false); 1896 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1897 return C; 1898 } 1899 1900 ConstantLValue 1901 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1902 // Handle values. 1903 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1904 // The constant always points to the canonical declaration. We want to look 1905 // at properties of the most recent declaration at the point of emission. 1906 D = cast<ValueDecl>(D->getMostRecentDecl()); 1907 1908 if (D->hasAttr<WeakRefAttr>()) 1909 return CGM.GetWeakRefReference(D).getPointer(); 1910 1911 if (auto FD = dyn_cast<FunctionDecl>(D)) 1912 return CGM.GetAddrOfFunction(FD); 1913 1914 if (auto VD = dyn_cast<VarDecl>(D)) { 1915 // We can never refer to a variable with local storage. 1916 if (!VD->hasLocalStorage()) { 1917 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1918 return CGM.GetAddrOfGlobalVar(VD); 1919 1920 if (VD->isLocalVarDecl()) { 1921 return CGM.getOrCreateStaticVarDecl( 1922 *VD, CGM.getLLVMLinkageVarDefinition(VD)); 1923 } 1924 } 1925 } 1926 1927 if (auto *GD = dyn_cast<MSGuidDecl>(D)) 1928 return CGM.GetAddrOfMSGuidDecl(GD); 1929 1930 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) 1931 return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD); 1932 1933 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) 1934 return CGM.GetAddrOfTemplateParamObject(TPO); 1935 1936 return nullptr; 1937 } 1938 1939 // Handle typeid(T). 1940 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) 1941 return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 1942 1943 // Otherwise, it must be an expression. 1944 return Visit(base.get<const Expr*>()); 1945 } 1946 1947 ConstantLValue 1948 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 1949 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E)) 1950 return Result; 1951 return Visit(E->getSubExpr()); 1952 } 1953 1954 ConstantLValue 1955 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1956 ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF); 1957 CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext()); 1958 return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E); 1959 } 1960 1961 ConstantLValue 1962 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1963 return CGM.GetAddrOfConstantStringFromLiteral(E); 1964 } 1965 1966 ConstantLValue 1967 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1968 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1969 } 1970 1971 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 1972 QualType T, 1973 CodeGenModule &CGM) { 1974 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 1975 return C.withElementType(CGM.getTypes().ConvertTypeForMem(T)); 1976 } 1977 1978 ConstantLValue 1979 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1980 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 1981 } 1982 1983 ConstantLValue 1984 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 1985 assert(E->isExpressibleAsConstantInitializer() && 1986 "this boxed expression can't be emitted as a compile-time constant"); 1987 auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 1988 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 1989 } 1990 1991 ConstantLValue 1992 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1993 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 1994 } 1995 1996 ConstantLValue 1997 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1998 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1999 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 2000 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 2001 CGM.getTypes().ConvertType(E->getType())); 2002 return Ptr; 2003 } 2004 2005 ConstantLValue 2006 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 2007 unsigned builtin = E->getBuiltinCallee(); 2008 if (builtin == Builtin::BI__builtin_function_start) 2009 return CGM.GetFunctionStart( 2010 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())); 2011 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 2012 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 2013 return nullptr; 2014 2015 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 2016 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 2017 return CGM.getObjCRuntime().GenerateConstantString(literal); 2018 } else { 2019 // FIXME: need to deal with UCN conversion issues. 2020 return CGM.GetAddrOfConstantCFString(literal); 2021 } 2022 } 2023 2024 ConstantLValue 2025 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 2026 StringRef functionName; 2027 if (auto CGF = Emitter.CGF) 2028 functionName = CGF->CurFn->getName(); 2029 else 2030 functionName = "global"; 2031 2032 return CGM.GetAddrOfGlobalBlock(E, functionName); 2033 } 2034 2035 ConstantLValue 2036 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 2037 QualType T; 2038 if (E->isTypeOperand()) 2039 T = E->getTypeOperand(CGM.getContext()); 2040 else 2041 T = E->getExprOperand()->getType(); 2042 return CGM.GetAddrOfRTTIDescriptor(T); 2043 } 2044 2045 ConstantLValue 2046 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 2047 const MaterializeTemporaryExpr *E) { 2048 assert(E->getStorageDuration() == SD_Static); 2049 SmallVector<const Expr *, 2> CommaLHSs; 2050 SmallVector<SubobjectAdjustment, 2> Adjustments; 2051 const Expr *Inner = 2052 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 2053 return CGM.GetAddrOfGlobalTemporary(E, Inner); 2054 } 2055 2056 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 2057 QualType DestType) { 2058 switch (Value.getKind()) { 2059 case APValue::None: 2060 case APValue::Indeterminate: 2061 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2062 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2063 case APValue::LValue: 2064 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 2065 case APValue::Int: 2066 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2067 case APValue::FixedPoint: 2068 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2069 Value.getFixedPoint().getValue()); 2070 case APValue::ComplexInt: { 2071 llvm::Constant *Complex[2]; 2072 2073 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2074 Value.getComplexIntReal()); 2075 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2076 Value.getComplexIntImag()); 2077 2078 // FIXME: the target may want to specify that this is packed. 2079 llvm::StructType *STy = 2080 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2081 return llvm::ConstantStruct::get(STy, Complex); 2082 } 2083 case APValue::Float: { 2084 const llvm::APFloat &Init = Value.getFloat(); 2085 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2086 !CGM.getContext().getLangOpts().NativeHalfType && 2087 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2088 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2089 Init.bitcastToAPInt()); 2090 else 2091 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2092 } 2093 case APValue::ComplexFloat: { 2094 llvm::Constant *Complex[2]; 2095 2096 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2097 Value.getComplexFloatReal()); 2098 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2099 Value.getComplexFloatImag()); 2100 2101 // FIXME: the target may want to specify that this is packed. 2102 llvm::StructType *STy = 2103 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2104 return llvm::ConstantStruct::get(STy, Complex); 2105 } 2106 case APValue::Vector: { 2107 unsigned NumElts = Value.getVectorLength(); 2108 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2109 2110 for (unsigned I = 0; I != NumElts; ++I) { 2111 const APValue &Elt = Value.getVectorElt(I); 2112 if (Elt.isInt()) 2113 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2114 else if (Elt.isFloat()) 2115 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2116 else 2117 llvm_unreachable("unsupported vector element type"); 2118 } 2119 return llvm::ConstantVector::get(Inits); 2120 } 2121 case APValue::AddrLabelDiff: { 2122 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2123 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2124 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2125 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2126 if (!LHS || !RHS) return nullptr; 2127 2128 // Compute difference 2129 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2130 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2131 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2132 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2133 2134 // LLVM is a bit sensitive about the exact format of the 2135 // address-of-label difference; make sure to truncate after 2136 // the subtraction. 2137 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2138 } 2139 case APValue::Struct: 2140 case APValue::Union: 2141 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2142 case APValue::Array: { 2143 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType); 2144 unsigned NumElements = Value.getArraySize(); 2145 unsigned NumInitElts = Value.getArrayInitializedElts(); 2146 2147 // Emit array filler, if there is one. 2148 llvm::Constant *Filler = nullptr; 2149 if (Value.hasArrayFiller()) { 2150 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2151 ArrayTy->getElementType()); 2152 if (!Filler) 2153 return nullptr; 2154 } 2155 2156 // Emit initializer elements. 2157 SmallVector<llvm::Constant*, 16> Elts; 2158 if (Filler && Filler->isNullValue()) 2159 Elts.reserve(NumInitElts + 1); 2160 else 2161 Elts.reserve(NumElements); 2162 2163 llvm::Type *CommonElementType = nullptr; 2164 for (unsigned I = 0; I < NumInitElts; ++I) { 2165 llvm::Constant *C = tryEmitPrivateForMemory( 2166 Value.getArrayInitializedElt(I), ArrayTy->getElementType()); 2167 if (!C) return nullptr; 2168 2169 if (I == 0) 2170 CommonElementType = C->getType(); 2171 else if (C->getType() != CommonElementType) 2172 CommonElementType = nullptr; 2173 Elts.push_back(C); 2174 } 2175 2176 llvm::ArrayType *Desired = 2177 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2178 2179 // Fix the type of incomplete arrays if the initializer isn't empty. 2180 if (DestType->isIncompleteArrayType() && !Elts.empty()) 2181 Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size()); 2182 2183 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2184 Filler); 2185 } 2186 case APValue::MemberPointer: 2187 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2188 } 2189 llvm_unreachable("Unknown APValue kind"); 2190 } 2191 2192 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2193 const CompoundLiteralExpr *E) { 2194 return EmittedCompoundLiterals.lookup(E); 2195 } 2196 2197 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2198 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2199 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2200 (void)Ok; 2201 assert(Ok && "CLE has already been emitted!"); 2202 } 2203 2204 ConstantAddress 2205 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2206 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2207 ConstantEmitter emitter(*this); 2208 return tryEmitGlobalCompoundLiteral(emitter, E); 2209 } 2210 2211 llvm::Constant * 2212 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2213 // Member pointer constants always have a very particular form. 2214 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2215 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2216 2217 // A member function pointer. 2218 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2219 return getCXXABI().EmitMemberFunctionPointer(method); 2220 2221 // Otherwise, a member data pointer. 2222 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2223 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2224 return getCXXABI().EmitMemberDataPointer(type, chars); 2225 } 2226 2227 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2228 llvm::Type *baseType, 2229 const CXXRecordDecl *base); 2230 2231 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2232 const RecordDecl *record, 2233 bool asCompleteObject) { 2234 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2235 llvm::StructType *structure = 2236 (asCompleteObject ? layout.getLLVMType() 2237 : layout.getBaseSubobjectLLVMType()); 2238 2239 unsigned numElements = structure->getNumElements(); 2240 std::vector<llvm::Constant *> elements(numElements); 2241 2242 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2243 // Fill in all the bases. 2244 if (CXXR) { 2245 for (const auto &I : CXXR->bases()) { 2246 if (I.isVirtual()) { 2247 // Ignore virtual bases; if we're laying out for a complete 2248 // object, we'll lay these out later. 2249 continue; 2250 } 2251 2252 const CXXRecordDecl *base = 2253 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2254 2255 // Ignore empty bases. 2256 if (base->isEmpty() || 2257 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2258 .isZero()) 2259 continue; 2260 2261 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2262 llvm::Type *baseType = structure->getElementType(fieldIndex); 2263 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2264 } 2265 } 2266 2267 // Fill in all the fields. 2268 for (const auto *Field : record->fields()) { 2269 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2270 // will fill in later.) 2271 if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) { 2272 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2273 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2274 } 2275 2276 // For unions, stop after the first named field. 2277 if (record->isUnion()) { 2278 if (Field->getIdentifier()) 2279 break; 2280 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2281 if (FieldRD->findFirstNamedDataMember()) 2282 break; 2283 } 2284 } 2285 2286 // Fill in the virtual bases, if we're working with the complete object. 2287 if (CXXR && asCompleteObject) { 2288 for (const auto &I : CXXR->vbases()) { 2289 const CXXRecordDecl *base = 2290 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2291 2292 // Ignore empty bases. 2293 if (base->isEmpty()) 2294 continue; 2295 2296 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2297 2298 // We might have already laid this field out. 2299 if (elements[fieldIndex]) continue; 2300 2301 llvm::Type *baseType = structure->getElementType(fieldIndex); 2302 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2303 } 2304 } 2305 2306 // Now go through all other fields and zero them out. 2307 for (unsigned i = 0; i != numElements; ++i) { 2308 if (!elements[i]) 2309 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2310 } 2311 2312 return llvm::ConstantStruct::get(structure, elements); 2313 } 2314 2315 /// Emit the null constant for a base subobject. 2316 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2317 llvm::Type *baseType, 2318 const CXXRecordDecl *base) { 2319 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2320 2321 // Just zero out bases that don't have any pointer to data members. 2322 if (baseLayout.isZeroInitializableAsBase()) 2323 return llvm::Constant::getNullValue(baseType); 2324 2325 // Otherwise, we can just use its null constant. 2326 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2327 } 2328 2329 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2330 QualType T) { 2331 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2332 } 2333 2334 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2335 if (T->getAs<PointerType>()) 2336 return getNullPointer( 2337 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2338 2339 if (getTypes().isZeroInitializable(T)) 2340 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2341 2342 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2343 llvm::ArrayType *ATy = 2344 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2345 2346 QualType ElementTy = CAT->getElementType(); 2347 2348 llvm::Constant *Element = 2349 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2350 unsigned NumElements = CAT->getSize().getZExtValue(); 2351 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2352 return llvm::ConstantArray::get(ATy, Array); 2353 } 2354 2355 if (const RecordType *RT = T->getAs<RecordType>()) 2356 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2357 2358 assert(T->isMemberDataPointerType() && 2359 "Should only see pointers to data members here!"); 2360 2361 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2362 } 2363 2364 llvm::Constant * 2365 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2366 return ::EmitNullConstant(*this, Record, false); 2367 } 2368