1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/Sequence.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalVariable.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 //===----------------------------------------------------------------------===// 36 // ConstantAggregateBuilder 37 //===----------------------------------------------------------------------===// 38 39 namespace { 40 class ConstExprEmitter; 41 42 struct ConstantAggregateBuilderUtils { 43 CodeGenModule &CGM; 44 45 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 46 47 CharUnits getAlignment(const llvm::Constant *C) const { 48 return CharUnits::fromQuantity( 49 CGM.getDataLayout().getABITypeAlignment(C->getType())); 50 } 51 52 CharUnits getSize(llvm::Type *Ty) const { 53 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 54 } 55 56 CharUnits getSize(const llvm::Constant *C) const { 57 return getSize(C->getType()); 58 } 59 60 llvm::Constant *getPadding(CharUnits PadSize) const { 61 llvm::Type *Ty = CGM.CharTy; 62 if (PadSize > CharUnits::One()) 63 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 64 return llvm::UndefValue::get(Ty); 65 } 66 67 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 68 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity()); 69 return llvm::ConstantAggregateZero::get(Ty); 70 } 71 }; 72 73 /// Incremental builder for an llvm::Constant* holding a struct or array 74 /// constant. 75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 76 /// The elements of the constant. These two arrays must have the same size; 77 /// Offsets[i] describes the offset of Elems[i] within the constant. The 78 /// elements are kept in increasing offset order, and we ensure that there 79 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 80 /// 81 /// This may contain explicit padding elements (in order to create a 82 /// natural layout), but need not. Gaps between elements are implicitly 83 /// considered to be filled with undef. 84 llvm::SmallVector<llvm::Constant*, 32> Elems; 85 llvm::SmallVector<CharUnits, 32> Offsets; 86 87 /// The size of the constant (the maximum end offset of any added element). 88 /// May be larger than the end of Elems.back() if we split the last element 89 /// and removed some trailing undefs. 90 CharUnits Size = CharUnits::Zero(); 91 92 /// This is true only if laying out Elems in order as the elements of a 93 /// non-packed LLVM struct will give the correct layout. 94 bool NaturalLayout = true; 95 96 bool split(size_t Index, CharUnits Hint); 97 Optional<size_t> splitAt(CharUnits Pos); 98 99 static llvm::Constant *buildFrom(CodeGenModule &CGM, 100 ArrayRef<llvm::Constant *> Elems, 101 ArrayRef<CharUnits> Offsets, 102 CharUnits StartOffset, CharUnits Size, 103 bool NaturalLayout, llvm::Type *DesiredTy, 104 bool AllowOversized); 105 106 public: 107 ConstantAggregateBuilder(CodeGenModule &CGM) 108 : ConstantAggregateBuilderUtils(CGM) {} 109 110 /// Update or overwrite the value starting at \p Offset with \c C. 111 /// 112 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 113 /// a constant that has already been added. This flag is only used to 114 /// detect bugs. 115 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 116 117 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 118 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 119 120 /// Attempt to condense the value starting at \p Offset to a constant of type 121 /// \p DesiredTy. 122 void condense(CharUnits Offset, llvm::Type *DesiredTy); 123 124 /// Produce a constant representing the entire accumulated value, ideally of 125 /// the specified type. If \p AllowOversized, the constant might be larger 126 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 127 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 128 /// even if we can't represent it as that type. 129 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 130 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 131 NaturalLayout, DesiredTy, AllowOversized); 132 } 133 }; 134 135 template<typename Container, typename Range = std::initializer_list< 136 typename Container::value_type>> 137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 138 assert(BeginOff <= EndOff && "invalid replacement range"); 139 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 140 } 141 142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 143 bool AllowOverwrite) { 144 // Common case: appending to a layout. 145 if (Offset >= Size) { 146 CharUnits Align = getAlignment(C); 147 CharUnits AlignedSize = Size.alignTo(Align); 148 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 149 NaturalLayout = false; 150 else if (AlignedSize < Offset) { 151 Elems.push_back(getPadding(Offset - Size)); 152 Offsets.push_back(Size); 153 } 154 Elems.push_back(C); 155 Offsets.push_back(Offset); 156 Size = Offset + getSize(C); 157 return true; 158 } 159 160 // Uncommon case: constant overlaps what we've already created. 161 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 162 if (!FirstElemToReplace) 163 return false; 164 165 CharUnits CSize = getSize(C); 166 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 167 if (!LastElemToReplace) 168 return false; 169 170 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 171 "unexpectedly overwriting field"); 172 173 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 174 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 175 Size = std::max(Size, Offset + CSize); 176 NaturalLayout = false; 177 return true; 178 } 179 180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 181 bool AllowOverwrite) { 182 const ASTContext &Context = CGM.getContext(); 183 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 184 185 // Offset of where we want the first bit to go within the bits of the 186 // current char. 187 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 188 189 // We split bit-fields up into individual bytes. Walk over the bytes and 190 // update them. 191 for (CharUnits OffsetInChars = 192 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); 193 /**/; ++OffsetInChars) { 194 // Number of bits we want to fill in this char. 195 unsigned WantedBits = 196 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 197 198 // Get a char containing the bits we want in the right places. The other 199 // bits have unspecified values. 200 llvm::APInt BitsThisChar = Bits; 201 if (BitsThisChar.getBitWidth() < CharWidth) 202 BitsThisChar = BitsThisChar.zext(CharWidth); 203 if (CGM.getDataLayout().isBigEndian()) { 204 // Figure out how much to shift by. We may need to left-shift if we have 205 // less than one byte of Bits left. 206 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 207 if (Shift > 0) 208 BitsThisChar.lshrInPlace(Shift); 209 else if (Shift < 0) 210 BitsThisChar = BitsThisChar.shl(-Shift); 211 } else { 212 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 213 } 214 if (BitsThisChar.getBitWidth() > CharWidth) 215 BitsThisChar = BitsThisChar.trunc(CharWidth); 216 217 if (WantedBits == CharWidth) { 218 // Got a full byte: just add it directly. 219 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 220 OffsetInChars, AllowOverwrite); 221 } else { 222 // Partial byte: update the existing integer if there is one. If we 223 // can't split out a 1-CharUnit range to update, then we can't add 224 // these bits and fail the entire constant emission. 225 llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 226 if (!FirstElemToUpdate) 227 return false; 228 llvm::Optional<size_t> LastElemToUpdate = 229 splitAt(OffsetInChars + CharUnits::One()); 230 if (!LastElemToUpdate) 231 return false; 232 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 233 "should have at most one element covering one byte"); 234 235 // Figure out which bits we want and discard the rest. 236 llvm::APInt UpdateMask(CharWidth, 0); 237 if (CGM.getDataLayout().isBigEndian()) 238 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 239 CharWidth - OffsetWithinChar); 240 else 241 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 242 BitsThisChar &= UpdateMask; 243 244 if (*FirstElemToUpdate == *LastElemToUpdate || 245 Elems[*FirstElemToUpdate]->isNullValue() || 246 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 247 // All existing bits are either zero or undef. 248 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 249 OffsetInChars, /*AllowOverwrite*/ true); 250 } else { 251 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 252 // In order to perform a partial update, we need the existing bitwise 253 // value, which we can only extract for a constant int. 254 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 255 if (!CI) 256 return false; 257 // Because this is a 1-CharUnit range, the constant occupying it must 258 // be exactly one CharUnit wide. 259 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 260 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 261 "unexpectedly overwriting bitfield"); 262 BitsThisChar |= (CI->getValue() & ~UpdateMask); 263 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 264 } 265 } 266 267 // Stop if we've added all the bits. 268 if (WantedBits == Bits.getBitWidth()) 269 break; 270 271 // Remove the consumed bits from Bits. 272 if (!CGM.getDataLayout().isBigEndian()) 273 Bits.lshrInPlace(WantedBits); 274 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 275 276 // The remanining bits go at the start of the following bytes. 277 OffsetWithinChar = 0; 278 } 279 280 return true; 281 } 282 283 /// Returns a position within Elems and Offsets such that all elements 284 /// before the returned index end before Pos and all elements at or after 285 /// the returned index begin at or after Pos. Splits elements as necessary 286 /// to ensure this. Returns None if we find something we can't split. 287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 288 if (Pos >= Size) 289 return Offsets.size(); 290 291 while (true) { 292 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); 293 if (FirstAfterPos == Offsets.begin()) 294 return 0; 295 296 // If we already have an element starting at Pos, we're done. 297 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 298 if (Offsets[LastAtOrBeforePosIndex] == Pos) 299 return LastAtOrBeforePosIndex; 300 301 // We found an element starting before Pos. Check for overlap. 302 if (Offsets[LastAtOrBeforePosIndex] + 303 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 304 return LastAtOrBeforePosIndex + 1; 305 306 // Try to decompose it into smaller constants. 307 if (!split(LastAtOrBeforePosIndex, Pos)) 308 return None; 309 } 310 } 311 312 /// Split the constant at index Index, if possible. Return true if we did. 313 /// Hint indicates the location at which we'd like to split, but may be 314 /// ignored. 315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 316 NaturalLayout = false; 317 llvm::Constant *C = Elems[Index]; 318 CharUnits Offset = Offsets[Index]; 319 320 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 321 // Expand the sequence into its contained elements. 322 // FIXME: This assumes vector elements are byte-sized. 323 replace(Elems, Index, Index + 1, 324 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 325 [&](unsigned Op) { return CA->getOperand(Op); })); 326 if (isa<llvm::ArrayType>(CA->getType()) || 327 isa<llvm::VectorType>(CA->getType())) { 328 // Array or vector. 329 llvm::Type *ElemTy = 330 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0); 331 CharUnits ElemSize = getSize(ElemTy); 332 replace( 333 Offsets, Index, Index + 1, 334 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 335 [&](unsigned Op) { return Offset + Op * ElemSize; })); 336 } else { 337 // Must be a struct. 338 auto *ST = cast<llvm::StructType>(CA->getType()); 339 const llvm::StructLayout *Layout = 340 CGM.getDataLayout().getStructLayout(ST); 341 replace(Offsets, Index, Index + 1, 342 llvm::map_range( 343 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 344 return Offset + CharUnits::fromQuantity( 345 Layout->getElementOffset(Op)); 346 })); 347 } 348 return true; 349 } 350 351 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 352 // Expand the sequence into its contained elements. 353 // FIXME: This assumes vector elements are byte-sized. 354 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 355 CharUnits ElemSize = getSize(CDS->getElementType()); 356 replace(Elems, Index, Index + 1, 357 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 358 [&](unsigned Elem) { 359 return CDS->getElementAsConstant(Elem); 360 })); 361 replace(Offsets, Index, Index + 1, 362 llvm::map_range( 363 llvm::seq(0u, CDS->getNumElements()), 364 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 365 return true; 366 } 367 368 if (isa<llvm::ConstantAggregateZero>(C)) { 369 // Split into two zeros at the hinted offset. 370 CharUnits ElemSize = getSize(C); 371 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 372 replace(Elems, Index, Index + 1, 373 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 374 replace(Offsets, Index, Index + 1, {Offset, Hint}); 375 return true; 376 } 377 378 if (isa<llvm::UndefValue>(C)) { 379 // Drop undef; it doesn't contribute to the final layout. 380 replace(Elems, Index, Index + 1, {}); 381 replace(Offsets, Index, Index + 1, {}); 382 return true; 383 } 384 385 // FIXME: We could split a ConstantInt if the need ever arose. 386 // We don't need to do this to handle bit-fields because we always eagerly 387 // split them into 1-byte chunks. 388 389 return false; 390 } 391 392 static llvm::Constant * 393 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 394 llvm::Type *CommonElementType, unsigned ArrayBound, 395 SmallVectorImpl<llvm::Constant *> &Elements, 396 llvm::Constant *Filler); 397 398 llvm::Constant *ConstantAggregateBuilder::buildFrom( 399 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 400 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 401 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 402 ConstantAggregateBuilderUtils Utils(CGM); 403 404 if (Elems.empty()) 405 return llvm::UndefValue::get(DesiredTy); 406 407 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 408 409 // If we want an array type, see if all the elements are the same type and 410 // appropriately spaced. 411 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 412 assert(!AllowOversized && "oversized array emission not supported"); 413 414 bool CanEmitArray = true; 415 llvm::Type *CommonType = Elems[0]->getType(); 416 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 417 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 418 SmallVector<llvm::Constant*, 32> ArrayElements; 419 for (size_t I = 0; I != Elems.size(); ++I) { 420 // Skip zeroes; we'll use a zero value as our array filler. 421 if (Elems[I]->isNullValue()) 422 continue; 423 424 // All remaining elements must be the same type. 425 if (Elems[I]->getType() != CommonType || 426 Offset(I) % ElemSize != 0) { 427 CanEmitArray = false; 428 break; 429 } 430 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 431 ArrayElements.back() = Elems[I]; 432 } 433 434 if (CanEmitArray) { 435 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 436 ArrayElements, Filler); 437 } 438 439 // Can't emit as an array, carry on to emit as a struct. 440 } 441 442 CharUnits DesiredSize = Utils.getSize(DesiredTy); 443 CharUnits Align = CharUnits::One(); 444 for (llvm::Constant *C : Elems) 445 Align = std::max(Align, Utils.getAlignment(C)); 446 CharUnits AlignedSize = Size.alignTo(Align); 447 448 bool Packed = false; 449 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 450 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 451 if ((DesiredSize < AlignedSize && !AllowOversized) || 452 DesiredSize.alignTo(Align) != DesiredSize) { 453 // The natural layout would be the wrong size; force use of a packed layout. 454 NaturalLayout = false; 455 Packed = true; 456 } else if (DesiredSize > AlignedSize) { 457 // The constant would be too small. Add padding to fix it. 458 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 459 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 460 UnpackedElems = UnpackedElemStorage; 461 } 462 463 // If we don't have a natural layout, insert padding as necessary. 464 // As we go, double-check to see if we can actually just emit Elems 465 // as a non-packed struct and do so opportunistically if possible. 466 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 467 if (!NaturalLayout) { 468 CharUnits SizeSoFar = CharUnits::Zero(); 469 for (size_t I = 0; I != Elems.size(); ++I) { 470 CharUnits Align = Utils.getAlignment(Elems[I]); 471 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 472 CharUnits DesiredOffset = Offset(I); 473 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 474 475 if (DesiredOffset != NaturalOffset) 476 Packed = true; 477 if (DesiredOffset != SizeSoFar) 478 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 479 PackedElems.push_back(Elems[I]); 480 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 481 } 482 // If we're using the packed layout, pad it out to the desired size if 483 // necessary. 484 if (Packed) { 485 assert((SizeSoFar <= DesiredSize || AllowOversized) && 486 "requested size is too small for contents"); 487 if (SizeSoFar < DesiredSize) 488 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 489 } 490 } 491 492 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 493 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 494 495 // Pick the type to use. If the type is layout identical to the desired 496 // type then use it, otherwise use whatever the builder produced for us. 497 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 498 if (DesiredSTy->isLayoutIdentical(STy)) 499 STy = DesiredSTy; 500 } 501 502 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 503 } 504 505 void ConstantAggregateBuilder::condense(CharUnits Offset, 506 llvm::Type *DesiredTy) { 507 CharUnits Size = getSize(DesiredTy); 508 509 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 510 if (!FirstElemToReplace) 511 return; 512 size_t First = *FirstElemToReplace; 513 514 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size); 515 if (!LastElemToReplace) 516 return; 517 size_t Last = *LastElemToReplace; 518 519 size_t Length = Last - First; 520 if (Length == 0) 521 return; 522 523 if (Length == 1 && Offsets[First] == Offset && 524 getSize(Elems[First]) == Size) { 525 // Re-wrap single element structs if necessary. Otherwise, leave any single 526 // element constant of the right size alone even if it has the wrong type. 527 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 528 if (STy && STy->getNumElements() == 1 && 529 STy->getElementType(0) == Elems[First]->getType()) 530 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 531 return; 532 } 533 534 llvm::Constant *Replacement = buildFrom( 535 CGM, makeArrayRef(Elems).slice(First, Length), 536 makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 537 /*known to have natural layout=*/false, DesiredTy, false); 538 replace(Elems, First, Last, {Replacement}); 539 replace(Offsets, First, Last, {Offset}); 540 } 541 542 //===----------------------------------------------------------------------===// 543 // ConstStructBuilder 544 //===----------------------------------------------------------------------===// 545 546 class ConstStructBuilder { 547 CodeGenModule &CGM; 548 ConstantEmitter &Emitter; 549 ConstantAggregateBuilder &Builder; 550 CharUnits StartOffset; 551 552 public: 553 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 554 InitListExpr *ILE, QualType StructTy); 555 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 556 const APValue &Value, QualType ValTy); 557 static bool UpdateStruct(ConstantEmitter &Emitter, 558 ConstantAggregateBuilder &Const, CharUnits Offset, 559 InitListExpr *Updater); 560 561 private: 562 ConstStructBuilder(ConstantEmitter &Emitter, 563 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 564 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 565 StartOffset(StartOffset) {} 566 567 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 568 llvm::Constant *InitExpr, bool AllowOverwrite = false); 569 570 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 571 bool AllowOverwrite = false); 572 573 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 574 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false); 575 576 bool Build(InitListExpr *ILE, bool AllowOverwrite); 577 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 578 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 579 llvm::Constant *Finalize(QualType Ty); 580 }; 581 582 bool ConstStructBuilder::AppendField( 583 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 584 bool AllowOverwrite) { 585 const ASTContext &Context = CGM.getContext(); 586 587 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 588 589 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 590 } 591 592 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 593 llvm::Constant *InitCst, 594 bool AllowOverwrite) { 595 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 596 } 597 598 bool ConstStructBuilder::AppendBitField( 599 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI, 600 bool AllowOverwrite) { 601 const CGRecordLayout &RL = 602 CGM.getTypes().getCGRecordLayout(Field->getParent()); 603 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 604 llvm::APInt FieldValue = CI->getValue(); 605 606 // Promote the size of FieldValue if necessary 607 // FIXME: This should never occur, but currently it can because initializer 608 // constants are cast to bool, and because clang is not enforcing bitfield 609 // width limits. 610 if (Info.Size > FieldValue.getBitWidth()) 611 FieldValue = FieldValue.zext(Info.Size); 612 613 // Truncate the size of FieldValue to the bit field size. 614 if (Info.Size < FieldValue.getBitWidth()) 615 FieldValue = FieldValue.trunc(Info.Size); 616 617 return Builder.addBits(FieldValue, 618 CGM.getContext().toBits(StartOffset) + FieldOffset, 619 AllowOverwrite); 620 } 621 622 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 623 ConstantAggregateBuilder &Const, 624 CharUnits Offset, QualType Type, 625 InitListExpr *Updater) { 626 if (Type->isRecordType()) 627 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 628 629 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 630 if (!CAT) 631 return false; 632 QualType ElemType = CAT->getElementType(); 633 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 634 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 635 636 llvm::Constant *FillC = nullptr; 637 if (Expr *Filler = Updater->getArrayFiller()) { 638 if (!isa<NoInitExpr>(Filler)) { 639 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 640 if (!FillC) 641 return false; 642 } 643 } 644 645 unsigned NumElementsToUpdate = 646 FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits(); 647 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 648 Expr *Init = nullptr; 649 if (I < Updater->getNumInits()) 650 Init = Updater->getInit(I); 651 652 if (!Init && FillC) { 653 if (!Const.add(FillC, Offset, true)) 654 return false; 655 } else if (!Init || isa<NoInitExpr>(Init)) { 656 continue; 657 } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) { 658 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 659 ChildILE)) 660 return false; 661 // Attempt to reduce the array element to a single constant if necessary. 662 Const.condense(Offset, ElemTy); 663 } else { 664 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 665 if (!Const.add(Val, Offset, true)) 666 return false; 667 } 668 } 669 670 return true; 671 } 672 673 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) { 674 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 675 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 676 677 unsigned FieldNo = -1; 678 unsigned ElementNo = 0; 679 680 // Bail out if we have base classes. We could support these, but they only 681 // arise in C++1z where we will have already constant folded most interesting 682 // cases. FIXME: There are still a few more cases we can handle this way. 683 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 684 if (CXXRD->getNumBases()) 685 return false; 686 687 for (FieldDecl *Field : RD->fields()) { 688 ++FieldNo; 689 690 // If this is a union, skip all the fields that aren't being initialized. 691 if (RD->isUnion() && 692 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) 693 continue; 694 695 // Don't emit anonymous bitfields or zero-sized fields. 696 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 697 continue; 698 699 // Get the initializer. A struct can include fields without initializers, 700 // we just use explicit null values for them. 701 Expr *Init = nullptr; 702 if (ElementNo < ILE->getNumInits()) 703 Init = ILE->getInit(ElementNo++); 704 if (Init && isa<NoInitExpr>(Init)) 705 continue; 706 707 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 708 // represents additional overwriting of our current constant value, and not 709 // a new constant to emit independently. 710 if (AllowOverwrite && 711 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 712 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 713 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 714 Layout.getFieldOffset(FieldNo)); 715 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 716 Field->getType(), SubILE)) 717 return false; 718 // If we split apart the field's value, try to collapse it down to a 719 // single value now. 720 Builder.condense(StartOffset + Offset, 721 CGM.getTypes().ConvertTypeForMem(Field->getType())); 722 continue; 723 } 724 } 725 726 llvm::Constant *EltInit = 727 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 728 : Emitter.emitNullForMemory(Field->getType()); 729 if (!EltInit) 730 return false; 731 732 if (!Field->isBitField()) { 733 // Handle non-bitfield members. 734 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 735 AllowOverwrite)) 736 return false; 737 // After emitting a non-empty field with [[no_unique_address]], we may 738 // need to overwrite its tail padding. 739 if (Field->hasAttr<NoUniqueAddressAttr>()) 740 AllowOverwrite = true; 741 } else { 742 // Otherwise we have a bitfield. 743 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 744 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI, 745 AllowOverwrite)) 746 return false; 747 } else { 748 // We are trying to initialize a bitfield with a non-trivial constant, 749 // this must require run-time code. 750 return false; 751 } 752 } 753 } 754 755 return true; 756 } 757 758 namespace { 759 struct BaseInfo { 760 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 761 : Decl(Decl), Offset(Offset), Index(Index) { 762 } 763 764 const CXXRecordDecl *Decl; 765 CharUnits Offset; 766 unsigned Index; 767 768 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 769 }; 770 } 771 772 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 773 bool IsPrimaryBase, 774 const CXXRecordDecl *VTableClass, 775 CharUnits Offset) { 776 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 777 778 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 779 // Add a vtable pointer, if we need one and it hasn't already been added. 780 if (Layout.hasOwnVFPtr()) { 781 llvm::Constant *VTableAddressPoint = 782 CGM.getCXXABI().getVTableAddressPointForConstExpr( 783 BaseSubobject(CD, Offset), VTableClass); 784 if (!AppendBytes(Offset, VTableAddressPoint)) 785 return false; 786 } 787 788 // Accumulate and sort bases, in order to visit them in address order, which 789 // may not be the same as declaration order. 790 SmallVector<BaseInfo, 8> Bases; 791 Bases.reserve(CD->getNumBases()); 792 unsigned BaseNo = 0; 793 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 794 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 795 assert(!Base->isVirtual() && "should not have virtual bases here"); 796 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 797 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 798 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 799 } 800 llvm::stable_sort(Bases); 801 802 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 803 BaseInfo &Base = Bases[I]; 804 805 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 806 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 807 VTableClass, Offset + Base.Offset); 808 } 809 } 810 811 unsigned FieldNo = 0; 812 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 813 814 bool AllowOverwrite = false; 815 for (RecordDecl::field_iterator Field = RD->field_begin(), 816 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 817 // If this is a union, skip all the fields that aren't being initialized. 818 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 819 continue; 820 821 // Don't emit anonymous bitfields or zero-sized fields. 822 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 823 continue; 824 825 // Emit the value of the initializer. 826 const APValue &FieldValue = 827 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 828 llvm::Constant *EltInit = 829 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 830 if (!EltInit) 831 return false; 832 833 if (!Field->isBitField()) { 834 // Handle non-bitfield members. 835 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 836 EltInit, AllowOverwrite)) 837 return false; 838 // After emitting a non-empty field with [[no_unique_address]], we may 839 // need to overwrite its tail padding. 840 if (Field->hasAttr<NoUniqueAddressAttr>()) 841 AllowOverwrite = true; 842 } else { 843 // Otherwise we have a bitfield. 844 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 845 cast<llvm::ConstantInt>(EltInit), AllowOverwrite)) 846 return false; 847 } 848 } 849 850 return true; 851 } 852 853 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 854 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 855 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 856 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 857 } 858 859 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 860 InitListExpr *ILE, 861 QualType ValTy) { 862 ConstantAggregateBuilder Const(Emitter.CGM); 863 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 864 865 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 866 return nullptr; 867 868 return Builder.Finalize(ValTy); 869 } 870 871 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 872 const APValue &Val, 873 QualType ValTy) { 874 ConstantAggregateBuilder Const(Emitter.CGM); 875 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 876 877 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 878 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 879 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 880 return nullptr; 881 882 return Builder.Finalize(ValTy); 883 } 884 885 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 886 ConstantAggregateBuilder &Const, 887 CharUnits Offset, InitListExpr *Updater) { 888 return ConstStructBuilder(Emitter, Const, Offset) 889 .Build(Updater, /*AllowOverwrite*/ true); 890 } 891 892 //===----------------------------------------------------------------------===// 893 // ConstExprEmitter 894 //===----------------------------------------------------------------------===// 895 896 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 897 CodeGenFunction *CGF, 898 const CompoundLiteralExpr *E) { 899 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 900 if (llvm::GlobalVariable *Addr = 901 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 902 return ConstantAddress(Addr, Align); 903 904 LangAS addressSpace = E->getType().getAddressSpace(); 905 906 ConstantEmitter emitter(CGM, CGF); 907 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 908 addressSpace, E->getType()); 909 if (!C) { 910 assert(!E->isFileScope() && 911 "file-scope compound literal did not have constant initializer!"); 912 return ConstantAddress::invalid(); 913 } 914 915 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 916 CGM.isTypeConstant(E->getType(), true), 917 llvm::GlobalValue::InternalLinkage, 918 C, ".compoundliteral", nullptr, 919 llvm::GlobalVariable::NotThreadLocal, 920 CGM.getContext().getTargetAddressSpace(addressSpace)); 921 emitter.finalize(GV); 922 GV->setAlignment(Align.getAsAlign()); 923 CGM.setAddrOfConstantCompoundLiteral(E, GV); 924 return ConstantAddress(GV, Align); 925 } 926 927 static llvm::Constant * 928 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 929 llvm::Type *CommonElementType, unsigned ArrayBound, 930 SmallVectorImpl<llvm::Constant *> &Elements, 931 llvm::Constant *Filler) { 932 // Figure out how long the initial prefix of non-zero elements is. 933 unsigned NonzeroLength = ArrayBound; 934 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 935 NonzeroLength = Elements.size(); 936 if (NonzeroLength == Elements.size()) { 937 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 938 --NonzeroLength; 939 } 940 941 if (NonzeroLength == 0) 942 return llvm::ConstantAggregateZero::get(DesiredType); 943 944 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 945 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 946 if (TrailingZeroes >= 8) { 947 assert(Elements.size() >= NonzeroLength && 948 "missing initializer for non-zero element"); 949 950 // If all the elements had the same type up to the trailing zeroes, emit a 951 // struct of two arrays (the nonzero data and the zeroinitializer). 952 if (CommonElementType && NonzeroLength >= 8) { 953 llvm::Constant *Initial = llvm::ConstantArray::get( 954 llvm::ArrayType::get(CommonElementType, NonzeroLength), 955 makeArrayRef(Elements).take_front(NonzeroLength)); 956 Elements.resize(2); 957 Elements[0] = Initial; 958 } else { 959 Elements.resize(NonzeroLength + 1); 960 } 961 962 auto *FillerType = 963 CommonElementType ? CommonElementType : DesiredType->getElementType(); 964 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 965 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 966 CommonElementType = nullptr; 967 } else if (Elements.size() != ArrayBound) { 968 // Otherwise pad to the right size with the filler if necessary. 969 Elements.resize(ArrayBound, Filler); 970 if (Filler->getType() != CommonElementType) 971 CommonElementType = nullptr; 972 } 973 974 // If all elements have the same type, just emit an array constant. 975 if (CommonElementType) 976 return llvm::ConstantArray::get( 977 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 978 979 // We have mixed types. Use a packed struct. 980 llvm::SmallVector<llvm::Type *, 16> Types; 981 Types.reserve(Elements.size()); 982 for (llvm::Constant *Elt : Elements) 983 Types.push_back(Elt->getType()); 984 llvm::StructType *SType = 985 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 986 return llvm::ConstantStruct::get(SType, Elements); 987 } 988 989 // This class only needs to handle arrays, structs and unions. Outside C++11 990 // mode, we don't currently constant fold those types. All other types are 991 // handled by constant folding. 992 // 993 // Constant folding is currently missing support for a few features supported 994 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 995 class ConstExprEmitter : 996 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 997 CodeGenModule &CGM; 998 ConstantEmitter &Emitter; 999 llvm::LLVMContext &VMContext; 1000 public: 1001 ConstExprEmitter(ConstantEmitter &emitter) 1002 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 1003 } 1004 1005 //===--------------------------------------------------------------------===// 1006 // Visitor Methods 1007 //===--------------------------------------------------------------------===// 1008 1009 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 1010 return nullptr; 1011 } 1012 1013 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { 1014 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE)) 1015 return Result; 1016 return Visit(CE->getSubExpr(), T); 1017 } 1018 1019 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 1020 return Visit(PE->getSubExpr(), T); 1021 } 1022 1023 llvm::Constant * 1024 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 1025 QualType T) { 1026 return Visit(PE->getReplacement(), T); 1027 } 1028 1029 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 1030 QualType T) { 1031 return Visit(GE->getResultExpr(), T); 1032 } 1033 1034 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 1035 return Visit(CE->getChosenSubExpr(), T); 1036 } 1037 1038 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 1039 return Visit(E->getInitializer(), T); 1040 } 1041 1042 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 1043 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1044 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1045 Expr *subExpr = E->getSubExpr(); 1046 1047 switch (E->getCastKind()) { 1048 case CK_ToUnion: { 1049 // GCC cast to union extension 1050 assert(E->getType()->isUnionType() && 1051 "Destination type is not union type!"); 1052 1053 auto field = E->getTargetUnionField(); 1054 1055 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1056 if (!C) return nullptr; 1057 1058 auto destTy = ConvertType(destType); 1059 if (C->getType() == destTy) return C; 1060 1061 // Build a struct with the union sub-element as the first member, 1062 // and padded to the appropriate size. 1063 SmallVector<llvm::Constant*, 2> Elts; 1064 SmallVector<llvm::Type*, 2> Types; 1065 Elts.push_back(C); 1066 Types.push_back(C->getType()); 1067 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1068 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1069 1070 assert(CurSize <= TotalSize && "Union size mismatch!"); 1071 if (unsigned NumPadBytes = TotalSize - CurSize) { 1072 llvm::Type *Ty = CGM.CharTy; 1073 if (NumPadBytes > 1) 1074 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 1075 1076 Elts.push_back(llvm::UndefValue::get(Ty)); 1077 Types.push_back(Ty); 1078 } 1079 1080 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1081 return llvm::ConstantStruct::get(STy, Elts); 1082 } 1083 1084 case CK_AddressSpaceConversion: { 1085 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1086 if (!C) return nullptr; 1087 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1088 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1089 llvm::Type *destTy = ConvertType(E->getType()); 1090 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1091 destAS, destTy); 1092 } 1093 1094 case CK_LValueToRValue: 1095 case CK_AtomicToNonAtomic: 1096 case CK_NonAtomicToAtomic: 1097 case CK_NoOp: 1098 case CK_ConstructorConversion: 1099 return Visit(subExpr, destType); 1100 1101 case CK_IntToOCLSampler: 1102 llvm_unreachable("global sampler variables are not generated"); 1103 1104 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1105 1106 case CK_BuiltinFnToFnPtr: 1107 llvm_unreachable("builtin functions are handled elsewhere"); 1108 1109 case CK_ReinterpretMemberPointer: 1110 case CK_DerivedToBaseMemberPointer: 1111 case CK_BaseToDerivedMemberPointer: { 1112 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1113 if (!C) return nullptr; 1114 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1115 } 1116 1117 // These will never be supported. 1118 case CK_ObjCObjectLValueCast: 1119 case CK_ARCProduceObject: 1120 case CK_ARCConsumeObject: 1121 case CK_ARCReclaimReturnedObject: 1122 case CK_ARCExtendBlockObject: 1123 case CK_CopyAndAutoreleaseBlockObject: 1124 return nullptr; 1125 1126 // These don't need to be handled here because Evaluate knows how to 1127 // evaluate them in the cases where they can be folded. 1128 case CK_BitCast: 1129 case CK_ToVoid: 1130 case CK_Dynamic: 1131 case CK_LValueBitCast: 1132 case CK_LValueToRValueBitCast: 1133 case CK_NullToMemberPointer: 1134 case CK_UserDefinedConversion: 1135 case CK_CPointerToObjCPointerCast: 1136 case CK_BlockPointerToObjCPointerCast: 1137 case CK_AnyPointerToBlockPointerCast: 1138 case CK_ArrayToPointerDecay: 1139 case CK_FunctionToPointerDecay: 1140 case CK_BaseToDerived: 1141 case CK_DerivedToBase: 1142 case CK_UncheckedDerivedToBase: 1143 case CK_MemberPointerToBoolean: 1144 case CK_VectorSplat: 1145 case CK_FloatingRealToComplex: 1146 case CK_FloatingComplexToReal: 1147 case CK_FloatingComplexToBoolean: 1148 case CK_FloatingComplexCast: 1149 case CK_FloatingComplexToIntegralComplex: 1150 case CK_IntegralRealToComplex: 1151 case CK_IntegralComplexToReal: 1152 case CK_IntegralComplexToBoolean: 1153 case CK_IntegralComplexCast: 1154 case CK_IntegralComplexToFloatingComplex: 1155 case CK_PointerToIntegral: 1156 case CK_PointerToBoolean: 1157 case CK_NullToPointer: 1158 case CK_IntegralCast: 1159 case CK_BooleanToSignedIntegral: 1160 case CK_IntegralToPointer: 1161 case CK_IntegralToBoolean: 1162 case CK_IntegralToFloating: 1163 case CK_FloatingToIntegral: 1164 case CK_FloatingToBoolean: 1165 case CK_FloatingCast: 1166 case CK_FloatingToFixedPoint: 1167 case CK_FixedPointToFloating: 1168 case CK_FixedPointCast: 1169 case CK_FixedPointToBoolean: 1170 case CK_FixedPointToIntegral: 1171 case CK_IntegralToFixedPoint: 1172 case CK_ZeroToOCLOpaqueType: 1173 return nullptr; 1174 } 1175 llvm_unreachable("Invalid CastKind"); 1176 } 1177 1178 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 1179 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1180 // constant expression. 1181 return Visit(DIE->getExpr(), T); 1182 } 1183 1184 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 1185 return Visit(E->getSubExpr(), T); 1186 } 1187 1188 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 1189 QualType T) { 1190 return Visit(E->getSubExpr(), T); 1191 } 1192 1193 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 1194 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1195 assert(CAT && "can't emit array init for non-constant-bound array"); 1196 unsigned NumInitElements = ILE->getNumInits(); 1197 unsigned NumElements = CAT->getSize().getZExtValue(); 1198 1199 // Initialising an array requires us to automatically 1200 // initialise any elements that have not been initialised explicitly 1201 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 1202 1203 QualType EltType = CAT->getElementType(); 1204 1205 // Initialize remaining array elements. 1206 llvm::Constant *fillC = nullptr; 1207 if (Expr *filler = ILE->getArrayFiller()) { 1208 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1209 if (!fillC) 1210 return nullptr; 1211 } 1212 1213 // Copy initializer elements. 1214 SmallVector<llvm::Constant*, 16> Elts; 1215 if (fillC && fillC->isNullValue()) 1216 Elts.reserve(NumInitableElts + 1); 1217 else 1218 Elts.reserve(NumElements); 1219 1220 llvm::Type *CommonElementType = nullptr; 1221 for (unsigned i = 0; i < NumInitableElts; ++i) { 1222 Expr *Init = ILE->getInit(i); 1223 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1224 if (!C) 1225 return nullptr; 1226 if (i == 0) 1227 CommonElementType = C->getType(); 1228 else if (C->getType() != CommonElementType) 1229 CommonElementType = nullptr; 1230 Elts.push_back(C); 1231 } 1232 1233 llvm::ArrayType *Desired = 1234 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1235 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1236 fillC); 1237 } 1238 1239 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 1240 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1241 } 1242 1243 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 1244 QualType T) { 1245 return CGM.EmitNullConstant(T); 1246 } 1247 1248 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 1249 if (ILE->isTransparent()) 1250 return Visit(ILE->getInit(0), T); 1251 1252 if (ILE->getType()->isArrayType()) 1253 return EmitArrayInitialization(ILE, T); 1254 1255 if (ILE->getType()->isRecordType()) 1256 return EmitRecordInitialization(ILE, T); 1257 1258 return nullptr; 1259 } 1260 1261 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1262 QualType destType) { 1263 auto C = Visit(E->getBase(), destType); 1264 if (!C) 1265 return nullptr; 1266 1267 ConstantAggregateBuilder Const(CGM); 1268 Const.add(C, CharUnits::Zero(), false); 1269 1270 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1271 E->getUpdater())) 1272 return nullptr; 1273 1274 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1275 bool HasFlexibleArray = false; 1276 if (auto *RT = destType->getAs<RecordType>()) 1277 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1278 return Const.build(ValTy, HasFlexibleArray); 1279 } 1280 1281 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1282 if (!E->getConstructor()->isTrivial()) 1283 return nullptr; 1284 1285 // Only default and copy/move constructors can be trivial. 1286 if (E->getNumArgs()) { 1287 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1288 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1289 "trivial ctor has argument but isn't a copy/move ctor"); 1290 1291 Expr *Arg = E->getArg(0); 1292 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1293 "argument to copy ctor is of wrong type"); 1294 1295 return Visit(Arg, Ty); 1296 } 1297 1298 return CGM.EmitNullConstant(Ty); 1299 } 1300 1301 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1302 // This is a string literal initializing an array in an initializer. 1303 return CGM.GetConstantArrayFromStringLiteral(E); 1304 } 1305 1306 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1307 // This must be an @encode initializing an array in a static initializer. 1308 // Don't emit it as the address of the string, emit the string data itself 1309 // as an inline array. 1310 std::string Str; 1311 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1312 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1313 1314 // Resize the string to the right size, adding zeros at the end, or 1315 // truncating as needed. 1316 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1317 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1318 } 1319 1320 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1321 return Visit(E->getSubExpr(), T); 1322 } 1323 1324 // Utility methods 1325 llvm::Type *ConvertType(QualType T) { 1326 return CGM.getTypes().ConvertType(T); 1327 } 1328 }; 1329 1330 } // end anonymous namespace. 1331 1332 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1333 AbstractState saved) { 1334 Abstract = saved.OldValue; 1335 1336 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1337 "created a placeholder while doing an abstract emission?"); 1338 1339 // No validation necessary for now. 1340 // No cleanup to do for now. 1341 return C; 1342 } 1343 1344 llvm::Constant * 1345 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1346 auto state = pushAbstract(); 1347 auto C = tryEmitPrivateForVarInit(D); 1348 return validateAndPopAbstract(C, state); 1349 } 1350 1351 llvm::Constant * 1352 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1353 auto state = pushAbstract(); 1354 auto C = tryEmitPrivate(E, destType); 1355 return validateAndPopAbstract(C, state); 1356 } 1357 1358 llvm::Constant * 1359 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1360 auto state = pushAbstract(); 1361 auto C = tryEmitPrivate(value, destType); 1362 return validateAndPopAbstract(C, state); 1363 } 1364 1365 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) { 1366 if (!CE->hasAPValueResult()) 1367 return nullptr; 1368 const Expr *Inner = CE->getSubExpr()->IgnoreImplicit(); 1369 QualType RetType; 1370 if (auto *Call = dyn_cast<CallExpr>(Inner)) 1371 RetType = Call->getCallReturnType(CGF->getContext()); 1372 else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Inner)) 1373 RetType = Ctor->getType(); 1374 llvm::Constant *Res = 1375 emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType); 1376 return Res; 1377 } 1378 1379 llvm::Constant * 1380 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1381 auto state = pushAbstract(); 1382 auto C = tryEmitPrivate(E, destType); 1383 C = validateAndPopAbstract(C, state); 1384 if (!C) { 1385 CGM.Error(E->getExprLoc(), 1386 "internal error: could not emit constant value \"abstractly\""); 1387 C = CGM.EmitNullConstant(destType); 1388 } 1389 return C; 1390 } 1391 1392 llvm::Constant * 1393 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1394 QualType destType) { 1395 auto state = pushAbstract(); 1396 auto C = tryEmitPrivate(value, destType); 1397 C = validateAndPopAbstract(C, state); 1398 if (!C) { 1399 CGM.Error(loc, 1400 "internal error: could not emit constant value \"abstractly\""); 1401 C = CGM.EmitNullConstant(destType); 1402 } 1403 return C; 1404 } 1405 1406 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1407 initializeNonAbstract(D.getType().getAddressSpace()); 1408 return markIfFailed(tryEmitPrivateForVarInit(D)); 1409 } 1410 1411 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1412 LangAS destAddrSpace, 1413 QualType destType) { 1414 initializeNonAbstract(destAddrSpace); 1415 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1416 } 1417 1418 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1419 LangAS destAddrSpace, 1420 QualType destType) { 1421 initializeNonAbstract(destAddrSpace); 1422 auto C = tryEmitPrivateForMemory(value, destType); 1423 assert(C && "couldn't emit constant value non-abstractly?"); 1424 return C; 1425 } 1426 1427 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1428 assert(!Abstract && "cannot get current address for abstract constant"); 1429 1430 1431 1432 // Make an obviously ill-formed global that should blow up compilation 1433 // if it survives. 1434 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1435 llvm::GlobalValue::PrivateLinkage, 1436 /*init*/ nullptr, 1437 /*name*/ "", 1438 /*before*/ nullptr, 1439 llvm::GlobalVariable::NotThreadLocal, 1440 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1441 1442 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1443 1444 return global; 1445 } 1446 1447 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1448 llvm::GlobalValue *placeholder) { 1449 assert(!PlaceholderAddresses.empty()); 1450 assert(PlaceholderAddresses.back().first == nullptr); 1451 assert(PlaceholderAddresses.back().second == placeholder); 1452 PlaceholderAddresses.back().first = signal; 1453 } 1454 1455 namespace { 1456 struct ReplacePlaceholders { 1457 CodeGenModule &CGM; 1458 1459 /// The base address of the global. 1460 llvm::Constant *Base; 1461 llvm::Type *BaseValueTy = nullptr; 1462 1463 /// The placeholder addresses that were registered during emission. 1464 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1465 1466 /// The locations of the placeholder signals. 1467 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1468 1469 /// The current index stack. We use a simple unsigned stack because 1470 /// we assume that placeholders will be relatively sparse in the 1471 /// initializer, but we cache the index values we find just in case. 1472 llvm::SmallVector<unsigned, 8> Indices; 1473 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1474 1475 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1476 ArrayRef<std::pair<llvm::Constant*, 1477 llvm::GlobalVariable*>> addresses) 1478 : CGM(CGM), Base(base), 1479 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1480 } 1481 1482 void replaceInInitializer(llvm::Constant *init) { 1483 // Remember the type of the top-most initializer. 1484 BaseValueTy = init->getType(); 1485 1486 // Initialize the stack. 1487 Indices.push_back(0); 1488 IndexValues.push_back(nullptr); 1489 1490 // Recurse into the initializer. 1491 findLocations(init); 1492 1493 // Check invariants. 1494 assert(IndexValues.size() == Indices.size() && "mismatch"); 1495 assert(Indices.size() == 1 && "didn't pop all indices"); 1496 1497 // Do the replacement; this basically invalidates 'init'. 1498 assert(Locations.size() == PlaceholderAddresses.size() && 1499 "missed a placeholder?"); 1500 1501 // We're iterating over a hashtable, so this would be a source of 1502 // non-determinism in compiler output *except* that we're just 1503 // messing around with llvm::Constant structures, which never itself 1504 // does anything that should be visible in compiler output. 1505 for (auto &entry : Locations) { 1506 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1507 entry.first->replaceAllUsesWith(entry.second); 1508 entry.first->eraseFromParent(); 1509 } 1510 } 1511 1512 private: 1513 void findLocations(llvm::Constant *init) { 1514 // Recurse into aggregates. 1515 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1516 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1517 Indices.push_back(i); 1518 IndexValues.push_back(nullptr); 1519 1520 findLocations(agg->getOperand(i)); 1521 1522 IndexValues.pop_back(); 1523 Indices.pop_back(); 1524 } 1525 return; 1526 } 1527 1528 // Otherwise, check for registered constants. 1529 while (true) { 1530 auto it = PlaceholderAddresses.find(init); 1531 if (it != PlaceholderAddresses.end()) { 1532 setLocation(it->second); 1533 break; 1534 } 1535 1536 // Look through bitcasts or other expressions. 1537 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1538 init = expr->getOperand(0); 1539 } else { 1540 break; 1541 } 1542 } 1543 } 1544 1545 void setLocation(llvm::GlobalVariable *placeholder) { 1546 assert(Locations.find(placeholder) == Locations.end() && 1547 "already found location for placeholder!"); 1548 1549 // Lazily fill in IndexValues with the values from Indices. 1550 // We do this in reverse because we should always have a strict 1551 // prefix of indices from the start. 1552 assert(Indices.size() == IndexValues.size()); 1553 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1554 if (IndexValues[i]) { 1555 #ifndef NDEBUG 1556 for (size_t j = 0; j != i + 1; ++j) { 1557 assert(IndexValues[j] && 1558 isa<llvm::ConstantInt>(IndexValues[j]) && 1559 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1560 == Indices[j]); 1561 } 1562 #endif 1563 break; 1564 } 1565 1566 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1567 } 1568 1569 // Form a GEP and then bitcast to the placeholder type so that the 1570 // replacement will succeed. 1571 llvm::Constant *location = 1572 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1573 Base, IndexValues); 1574 location = llvm::ConstantExpr::getBitCast(location, 1575 placeholder->getType()); 1576 1577 Locations.insert({placeholder, location}); 1578 } 1579 }; 1580 } 1581 1582 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1583 assert(InitializedNonAbstract && 1584 "finalizing emitter that was used for abstract emission?"); 1585 assert(!Finalized && "finalizing emitter multiple times"); 1586 assert(global->getInitializer()); 1587 1588 // Note that we might also be Failed. 1589 Finalized = true; 1590 1591 if (!PlaceholderAddresses.empty()) { 1592 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1593 .replaceInInitializer(global->getInitializer()); 1594 PlaceholderAddresses.clear(); // satisfy 1595 } 1596 } 1597 1598 ConstantEmitter::~ConstantEmitter() { 1599 assert((!InitializedNonAbstract || Finalized || Failed) && 1600 "not finalized after being initialized for non-abstract emission"); 1601 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1602 } 1603 1604 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1605 if (auto AT = type->getAs<AtomicType>()) { 1606 return CGM.getContext().getQualifiedType(AT->getValueType(), 1607 type.getQualifiers()); 1608 } 1609 return type; 1610 } 1611 1612 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1613 // Make a quick check if variable can be default NULL initialized 1614 // and avoid going through rest of code which may do, for c++11, 1615 // initialization of memory to all NULLs. 1616 if (!D.hasLocalStorage()) { 1617 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1618 if (Ty->isRecordType()) 1619 if (const CXXConstructExpr *E = 1620 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1621 const CXXConstructorDecl *CD = E->getConstructor(); 1622 if (CD->isTrivial() && CD->isDefaultConstructor()) 1623 return CGM.EmitNullConstant(D.getType()); 1624 } 1625 InConstantContext = true; 1626 } 1627 1628 QualType destType = D.getType(); 1629 1630 // Try to emit the initializer. Note that this can allow some things that 1631 // are not allowed by tryEmitPrivateForMemory alone. 1632 if (auto value = D.evaluateValue()) { 1633 return tryEmitPrivateForMemory(*value, destType); 1634 } 1635 1636 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1637 // reference is a constant expression, and the reference binds to a temporary, 1638 // then constant initialization is performed. ConstExprEmitter will 1639 // incorrectly emit a prvalue constant in this case, and the calling code 1640 // interprets that as the (pointer) value of the reference, rather than the 1641 // desired value of the referee. 1642 if (destType->isReferenceType()) 1643 return nullptr; 1644 1645 const Expr *E = D.getInit(); 1646 assert(E && "No initializer to emit"); 1647 1648 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1649 auto C = 1650 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1651 return (C ? emitForMemory(C, destType) : nullptr); 1652 } 1653 1654 llvm::Constant * 1655 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1656 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1657 auto C = tryEmitAbstract(E, nonMemoryDestType); 1658 return (C ? emitForMemory(C, destType) : nullptr); 1659 } 1660 1661 llvm::Constant * 1662 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1663 QualType destType) { 1664 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1665 auto C = tryEmitAbstract(value, nonMemoryDestType); 1666 return (C ? emitForMemory(C, destType) : nullptr); 1667 } 1668 1669 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1670 QualType destType) { 1671 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1672 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1673 return (C ? emitForMemory(C, destType) : nullptr); 1674 } 1675 1676 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1677 QualType destType) { 1678 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1679 auto C = tryEmitPrivate(value, nonMemoryDestType); 1680 return (C ? emitForMemory(C, destType) : nullptr); 1681 } 1682 1683 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1684 llvm::Constant *C, 1685 QualType destType) { 1686 // For an _Atomic-qualified constant, we may need to add tail padding. 1687 if (auto AT = destType->getAs<AtomicType>()) { 1688 QualType destValueType = AT->getValueType(); 1689 C = emitForMemory(CGM, C, destValueType); 1690 1691 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1692 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1693 if (innerSize == outerSize) 1694 return C; 1695 1696 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1697 llvm::Constant *elts[] = { 1698 C, 1699 llvm::ConstantAggregateZero::get( 1700 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1701 }; 1702 return llvm::ConstantStruct::getAnon(elts); 1703 } 1704 1705 // Zero-extend bool. 1706 if (C->getType()->isIntegerTy(1)) { 1707 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1708 return llvm::ConstantExpr::getZExt(C, boolTy); 1709 } 1710 1711 return C; 1712 } 1713 1714 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1715 QualType destType) { 1716 Expr::EvalResult Result; 1717 1718 bool Success = false; 1719 1720 if (destType->isReferenceType()) 1721 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1722 else 1723 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1724 1725 llvm::Constant *C; 1726 if (Success && !Result.HasSideEffects) 1727 C = tryEmitPrivate(Result.Val, destType); 1728 else 1729 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1730 1731 return C; 1732 } 1733 1734 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1735 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1736 } 1737 1738 namespace { 1739 /// A struct which can be used to peephole certain kinds of finalization 1740 /// that normally happen during l-value emission. 1741 struct ConstantLValue { 1742 llvm::Constant *Value; 1743 bool HasOffsetApplied; 1744 1745 /*implicit*/ ConstantLValue(llvm::Constant *value, 1746 bool hasOffsetApplied = false) 1747 : Value(value), HasOffsetApplied(hasOffsetApplied) {} 1748 1749 /*implicit*/ ConstantLValue(ConstantAddress address) 1750 : ConstantLValue(address.getPointer()) {} 1751 }; 1752 1753 /// A helper class for emitting constant l-values. 1754 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1755 ConstantLValue> { 1756 CodeGenModule &CGM; 1757 ConstantEmitter &Emitter; 1758 const APValue &Value; 1759 QualType DestType; 1760 1761 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1762 friend StmtVisitorBase; 1763 1764 public: 1765 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1766 QualType destType) 1767 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1768 1769 llvm::Constant *tryEmit(); 1770 1771 private: 1772 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1773 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1774 1775 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1776 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1777 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1778 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1779 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 1780 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1781 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1782 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1783 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1784 ConstantLValue VisitCallExpr(const CallExpr *E); 1785 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1786 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1787 ConstantLValue VisitMaterializeTemporaryExpr( 1788 const MaterializeTemporaryExpr *E); 1789 1790 bool hasNonZeroOffset() const { 1791 return !Value.getLValueOffset().isZero(); 1792 } 1793 1794 /// Return the value offset. 1795 llvm::Constant *getOffset() { 1796 return llvm::ConstantInt::get(CGM.Int64Ty, 1797 Value.getLValueOffset().getQuantity()); 1798 } 1799 1800 /// Apply the value offset to the given constant. 1801 llvm::Constant *applyOffset(llvm::Constant *C) { 1802 if (!hasNonZeroOffset()) 1803 return C; 1804 1805 llvm::Type *origPtrTy = C->getType(); 1806 unsigned AS = origPtrTy->getPointerAddressSpace(); 1807 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1808 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1809 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1810 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1811 return C; 1812 } 1813 }; 1814 1815 } 1816 1817 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1818 const APValue::LValueBase &base = Value.getLValueBase(); 1819 1820 // The destination type should be a pointer or reference 1821 // type, but it might also be a cast thereof. 1822 // 1823 // FIXME: the chain of casts required should be reflected in the APValue. 1824 // We need this in order to correctly handle things like a ptrtoint of a 1825 // non-zero null pointer and addrspace casts that aren't trivially 1826 // represented in LLVM IR. 1827 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1828 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1829 1830 // If there's no base at all, this is a null or absolute pointer, 1831 // possibly cast back to an integer type. 1832 if (!base) { 1833 return tryEmitAbsolute(destTy); 1834 } 1835 1836 // Otherwise, try to emit the base. 1837 ConstantLValue result = tryEmitBase(base); 1838 1839 // If that failed, we're done. 1840 llvm::Constant *value = result.Value; 1841 if (!value) return nullptr; 1842 1843 // Apply the offset if necessary and not already done. 1844 if (!result.HasOffsetApplied) { 1845 value = applyOffset(value); 1846 } 1847 1848 // Convert to the appropriate type; this could be an lvalue for 1849 // an integer. FIXME: performAddrSpaceCast 1850 if (isa<llvm::PointerType>(destTy)) 1851 return llvm::ConstantExpr::getPointerCast(value, destTy); 1852 1853 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1854 } 1855 1856 /// Try to emit an absolute l-value, such as a null pointer or an integer 1857 /// bitcast to pointer type. 1858 llvm::Constant * 1859 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1860 // If we're producing a pointer, this is easy. 1861 auto destPtrTy = cast<llvm::PointerType>(destTy); 1862 if (Value.isNullPointer()) { 1863 // FIXME: integer offsets from non-zero null pointers. 1864 return CGM.getNullPointer(destPtrTy, DestType); 1865 } 1866 1867 // Convert the integer to a pointer-sized integer before converting it 1868 // to a pointer. 1869 // FIXME: signedness depends on the original integer type. 1870 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1871 llvm::Constant *C; 1872 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1873 /*isSigned*/ false); 1874 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1875 return C; 1876 } 1877 1878 ConstantLValue 1879 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1880 // Handle values. 1881 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1882 // The constant always points to the canonical declaration. We want to look 1883 // at properties of the most recent declaration at the point of emission. 1884 D = cast<ValueDecl>(D->getMostRecentDecl()); 1885 1886 if (D->hasAttr<WeakRefAttr>()) 1887 return CGM.GetWeakRefReference(D).getPointer(); 1888 1889 if (auto FD = dyn_cast<FunctionDecl>(D)) 1890 return CGM.GetAddrOfFunction(FD); 1891 1892 if (auto VD = dyn_cast<VarDecl>(D)) { 1893 // We can never refer to a variable with local storage. 1894 if (!VD->hasLocalStorage()) { 1895 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1896 return CGM.GetAddrOfGlobalVar(VD); 1897 1898 if (VD->isLocalVarDecl()) { 1899 return CGM.getOrCreateStaticVarDecl( 1900 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 1901 } 1902 } 1903 } 1904 1905 if (auto *GD = dyn_cast<MSGuidDecl>(D)) 1906 return CGM.GetAddrOfMSGuidDecl(GD); 1907 1908 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) 1909 return CGM.GetAddrOfTemplateParamObject(TPO); 1910 1911 return nullptr; 1912 } 1913 1914 // Handle typeid(T). 1915 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) { 1916 llvm::Type *StdTypeInfoPtrTy = 1917 CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo(); 1918 llvm::Constant *TypeInfo = 1919 CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 1920 if (TypeInfo->getType() != StdTypeInfoPtrTy) 1921 TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy); 1922 return TypeInfo; 1923 } 1924 1925 // Otherwise, it must be an expression. 1926 return Visit(base.get<const Expr*>()); 1927 } 1928 1929 ConstantLValue 1930 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 1931 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E)) 1932 return Result; 1933 return Visit(E->getSubExpr()); 1934 } 1935 1936 ConstantLValue 1937 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1938 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1939 } 1940 1941 ConstantLValue 1942 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1943 return CGM.GetAddrOfConstantStringFromLiteral(E); 1944 } 1945 1946 ConstantLValue 1947 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1948 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1949 } 1950 1951 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 1952 QualType T, 1953 CodeGenModule &CGM) { 1954 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 1955 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T)); 1956 } 1957 1958 ConstantLValue 1959 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1960 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 1961 } 1962 1963 ConstantLValue 1964 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 1965 assert(E->isExpressibleAsConstantInitializer() && 1966 "this boxed expression can't be emitted as a compile-time constant"); 1967 auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 1968 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 1969 } 1970 1971 ConstantLValue 1972 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 1973 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 1974 } 1975 1976 ConstantLValue 1977 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 1978 assert(Emitter.CGF && "Invalid address of label expression outside function"); 1979 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 1980 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 1981 CGM.getTypes().ConvertType(E->getType())); 1982 return Ptr; 1983 } 1984 1985 ConstantLValue 1986 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 1987 unsigned builtin = E->getBuiltinCallee(); 1988 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 1989 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 1990 return nullptr; 1991 1992 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 1993 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 1994 return CGM.getObjCRuntime().GenerateConstantString(literal); 1995 } else { 1996 // FIXME: need to deal with UCN conversion issues. 1997 return CGM.GetAddrOfConstantCFString(literal); 1998 } 1999 } 2000 2001 ConstantLValue 2002 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 2003 StringRef functionName; 2004 if (auto CGF = Emitter.CGF) 2005 functionName = CGF->CurFn->getName(); 2006 else 2007 functionName = "global"; 2008 2009 return CGM.GetAddrOfGlobalBlock(E, functionName); 2010 } 2011 2012 ConstantLValue 2013 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 2014 QualType T; 2015 if (E->isTypeOperand()) 2016 T = E->getTypeOperand(CGM.getContext()); 2017 else 2018 T = E->getExprOperand()->getType(); 2019 return CGM.GetAddrOfRTTIDescriptor(T); 2020 } 2021 2022 ConstantLValue 2023 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 2024 const MaterializeTemporaryExpr *E) { 2025 assert(E->getStorageDuration() == SD_Static); 2026 SmallVector<const Expr *, 2> CommaLHSs; 2027 SmallVector<SubobjectAdjustment, 2> Adjustments; 2028 const Expr *Inner = 2029 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 2030 return CGM.GetAddrOfGlobalTemporary(E, Inner); 2031 } 2032 2033 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 2034 QualType DestType) { 2035 switch (Value.getKind()) { 2036 case APValue::None: 2037 case APValue::Indeterminate: 2038 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2039 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2040 case APValue::LValue: 2041 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 2042 case APValue::Int: 2043 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2044 case APValue::FixedPoint: 2045 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2046 Value.getFixedPoint().getValue()); 2047 case APValue::ComplexInt: { 2048 llvm::Constant *Complex[2]; 2049 2050 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2051 Value.getComplexIntReal()); 2052 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2053 Value.getComplexIntImag()); 2054 2055 // FIXME: the target may want to specify that this is packed. 2056 llvm::StructType *STy = 2057 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2058 return llvm::ConstantStruct::get(STy, Complex); 2059 } 2060 case APValue::Float: { 2061 const llvm::APFloat &Init = Value.getFloat(); 2062 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2063 !CGM.getContext().getLangOpts().NativeHalfType && 2064 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2065 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2066 Init.bitcastToAPInt()); 2067 else 2068 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2069 } 2070 case APValue::ComplexFloat: { 2071 llvm::Constant *Complex[2]; 2072 2073 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2074 Value.getComplexFloatReal()); 2075 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2076 Value.getComplexFloatImag()); 2077 2078 // FIXME: the target may want to specify that this is packed. 2079 llvm::StructType *STy = 2080 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2081 return llvm::ConstantStruct::get(STy, Complex); 2082 } 2083 case APValue::Vector: { 2084 unsigned NumElts = Value.getVectorLength(); 2085 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2086 2087 for (unsigned I = 0; I != NumElts; ++I) { 2088 const APValue &Elt = Value.getVectorElt(I); 2089 if (Elt.isInt()) 2090 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2091 else if (Elt.isFloat()) 2092 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2093 else 2094 llvm_unreachable("unsupported vector element type"); 2095 } 2096 return llvm::ConstantVector::get(Inits); 2097 } 2098 case APValue::AddrLabelDiff: { 2099 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2100 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2101 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2102 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2103 if (!LHS || !RHS) return nullptr; 2104 2105 // Compute difference 2106 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2107 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2108 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2109 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2110 2111 // LLVM is a bit sensitive about the exact format of the 2112 // address-of-label difference; make sure to truncate after 2113 // the subtraction. 2114 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2115 } 2116 case APValue::Struct: 2117 case APValue::Union: 2118 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2119 case APValue::Array: { 2120 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType); 2121 unsigned NumElements = Value.getArraySize(); 2122 unsigned NumInitElts = Value.getArrayInitializedElts(); 2123 2124 // Emit array filler, if there is one. 2125 llvm::Constant *Filler = nullptr; 2126 if (Value.hasArrayFiller()) { 2127 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2128 ArrayTy->getElementType()); 2129 if (!Filler) 2130 return nullptr; 2131 } 2132 2133 // Emit initializer elements. 2134 SmallVector<llvm::Constant*, 16> Elts; 2135 if (Filler && Filler->isNullValue()) 2136 Elts.reserve(NumInitElts + 1); 2137 else 2138 Elts.reserve(NumElements); 2139 2140 llvm::Type *CommonElementType = nullptr; 2141 for (unsigned I = 0; I < NumInitElts; ++I) { 2142 llvm::Constant *C = tryEmitPrivateForMemory( 2143 Value.getArrayInitializedElt(I), ArrayTy->getElementType()); 2144 if (!C) return nullptr; 2145 2146 if (I == 0) 2147 CommonElementType = C->getType(); 2148 else if (C->getType() != CommonElementType) 2149 CommonElementType = nullptr; 2150 Elts.push_back(C); 2151 } 2152 2153 llvm::ArrayType *Desired = 2154 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2155 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2156 Filler); 2157 } 2158 case APValue::MemberPointer: 2159 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2160 } 2161 llvm_unreachable("Unknown APValue kind"); 2162 } 2163 2164 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2165 const CompoundLiteralExpr *E) { 2166 return EmittedCompoundLiterals.lookup(E); 2167 } 2168 2169 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2170 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2171 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2172 (void)Ok; 2173 assert(Ok && "CLE has already been emitted!"); 2174 } 2175 2176 ConstantAddress 2177 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2178 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2179 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 2180 } 2181 2182 llvm::Constant * 2183 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2184 // Member pointer constants always have a very particular form. 2185 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2186 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2187 2188 // A member function pointer. 2189 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2190 return getCXXABI().EmitMemberFunctionPointer(method); 2191 2192 // Otherwise, a member data pointer. 2193 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2194 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2195 return getCXXABI().EmitMemberDataPointer(type, chars); 2196 } 2197 2198 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2199 llvm::Type *baseType, 2200 const CXXRecordDecl *base); 2201 2202 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2203 const RecordDecl *record, 2204 bool asCompleteObject) { 2205 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2206 llvm::StructType *structure = 2207 (asCompleteObject ? layout.getLLVMType() 2208 : layout.getBaseSubobjectLLVMType()); 2209 2210 unsigned numElements = structure->getNumElements(); 2211 std::vector<llvm::Constant *> elements(numElements); 2212 2213 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2214 // Fill in all the bases. 2215 if (CXXR) { 2216 for (const auto &I : CXXR->bases()) { 2217 if (I.isVirtual()) { 2218 // Ignore virtual bases; if we're laying out for a complete 2219 // object, we'll lay these out later. 2220 continue; 2221 } 2222 2223 const CXXRecordDecl *base = 2224 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2225 2226 // Ignore empty bases. 2227 if (base->isEmpty() || 2228 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2229 .isZero()) 2230 continue; 2231 2232 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2233 llvm::Type *baseType = structure->getElementType(fieldIndex); 2234 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2235 } 2236 } 2237 2238 // Fill in all the fields. 2239 for (const auto *Field : record->fields()) { 2240 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2241 // will fill in later.) 2242 if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) { 2243 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2244 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2245 } 2246 2247 // For unions, stop after the first named field. 2248 if (record->isUnion()) { 2249 if (Field->getIdentifier()) 2250 break; 2251 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2252 if (FieldRD->findFirstNamedDataMember()) 2253 break; 2254 } 2255 } 2256 2257 // Fill in the virtual bases, if we're working with the complete object. 2258 if (CXXR && asCompleteObject) { 2259 for (const auto &I : CXXR->vbases()) { 2260 const CXXRecordDecl *base = 2261 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2262 2263 // Ignore empty bases. 2264 if (base->isEmpty()) 2265 continue; 2266 2267 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2268 2269 // We might have already laid this field out. 2270 if (elements[fieldIndex]) continue; 2271 2272 llvm::Type *baseType = structure->getElementType(fieldIndex); 2273 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2274 } 2275 } 2276 2277 // Now go through all other fields and zero them out. 2278 for (unsigned i = 0; i != numElements; ++i) { 2279 if (!elements[i]) 2280 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2281 } 2282 2283 return llvm::ConstantStruct::get(structure, elements); 2284 } 2285 2286 /// Emit the null constant for a base subobject. 2287 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2288 llvm::Type *baseType, 2289 const CXXRecordDecl *base) { 2290 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2291 2292 // Just zero out bases that don't have any pointer to data members. 2293 if (baseLayout.isZeroInitializableAsBase()) 2294 return llvm::Constant::getNullValue(baseType); 2295 2296 // Otherwise, we can just use its null constant. 2297 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2298 } 2299 2300 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2301 QualType T) { 2302 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2303 } 2304 2305 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2306 if (T->getAs<PointerType>()) 2307 return getNullPointer( 2308 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2309 2310 if (getTypes().isZeroInitializable(T)) 2311 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2312 2313 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2314 llvm::ArrayType *ATy = 2315 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2316 2317 QualType ElementTy = CAT->getElementType(); 2318 2319 llvm::Constant *Element = 2320 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2321 unsigned NumElements = CAT->getSize().getZExtValue(); 2322 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2323 return llvm::ConstantArray::get(ATy, Array); 2324 } 2325 2326 if (const RecordType *RT = T->getAs<RecordType>()) 2327 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2328 2329 assert(T->isMemberDataPointerType() && 2330 "Should only see pointers to data members here!"); 2331 2332 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2333 } 2334 2335 llvm::Constant * 2336 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2337 return ::EmitNullConstant(*this, Record, false); 2338 } 2339