1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CodeGenModule.h" 15 #include "clang/AST/StmtVisitor.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/MDBuilder.h" 20 #include "llvm/IR/Metadata.h" 21 #include <algorithm> 22 using namespace clang; 23 using namespace CodeGen; 24 25 //===----------------------------------------------------------------------===// 26 // Complex Expression Emitter 27 //===----------------------------------------------------------------------===// 28 29 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 30 31 /// Return the complex type that we are meant to emit. 32 static const ComplexType *getComplexType(QualType type) { 33 type = type.getCanonicalType(); 34 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 35 return comp; 36 } else { 37 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 38 } 39 } 40 41 namespace { 42 class ComplexExprEmitter 43 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 44 CodeGenFunction &CGF; 45 CGBuilderTy &Builder; 46 bool IgnoreReal; 47 bool IgnoreImag; 48 public: 49 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 50 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 51 } 52 53 54 //===--------------------------------------------------------------------===// 55 // Utilities 56 //===--------------------------------------------------------------------===// 57 58 bool TestAndClearIgnoreReal() { 59 bool I = IgnoreReal; 60 IgnoreReal = false; 61 return I; 62 } 63 bool TestAndClearIgnoreImag() { 64 bool I = IgnoreImag; 65 IgnoreImag = false; 66 return I; 67 } 68 69 /// EmitLoadOfLValue - Given an expression with complex type that represents a 70 /// value l-value, this method emits the address of the l-value, then loads 71 /// and returns the result. 72 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 73 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 74 } 75 76 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 77 78 /// EmitStoreOfComplex - Store the specified real/imag parts into the 79 /// specified value pointer. 80 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 81 82 /// Emit a cast from complex value Val to DestType. 83 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 84 QualType DestType, SourceLocation Loc); 85 /// Emit a cast from scalar value Val to DestType. 86 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 87 QualType DestType, SourceLocation Loc); 88 89 //===--------------------------------------------------------------------===// 90 // Visitor Methods 91 //===--------------------------------------------------------------------===// 92 93 ComplexPairTy Visit(Expr *E) { 94 ApplyDebugLocation DL(CGF, E); 95 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 96 } 97 98 ComplexPairTy VisitStmt(Stmt *S) { 99 S->dump(CGF.getContext().getSourceManager()); 100 llvm_unreachable("Stmt can't have complex result type!"); 101 } 102 ComplexPairTy VisitExpr(Expr *S); 103 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 104 return Visit(E->getSubExpr()); 105 } 106 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 107 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 108 return Visit(GE->getResultExpr()); 109 } 110 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 111 ComplexPairTy 112 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 113 return Visit(PE->getReplacement()); 114 } 115 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 116 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 117 } 118 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 119 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 120 } 121 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 122 return Visit(E->getSubExpr()); 123 } 124 125 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 126 Expr *E) { 127 assert(Constant && "not a constant"); 128 if (Constant.isReference()) 129 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 130 E->getExprLoc()); 131 132 llvm::Constant *pair = Constant.getValue(); 133 return ComplexPairTy(pair->getAggregateElement(0U), 134 pair->getAggregateElement(1U)); 135 } 136 137 // l-values. 138 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 139 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 140 return emitConstant(Constant, E); 141 return EmitLoadOfLValue(E); 142 } 143 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 144 return EmitLoadOfLValue(E); 145 } 146 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 147 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 148 } 149 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 150 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 151 if (CodeGenFunction::ConstantEmission Constant = 152 CGF.tryEmitAsConstant(ME)) { 153 CGF.EmitIgnoredExpr(ME->getBase()); 154 return emitConstant(Constant, ME); 155 } 156 return EmitLoadOfLValue(ME); 157 } 158 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 159 if (E->isGLValue()) 160 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 161 E->getExprLoc()); 162 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 163 } 164 165 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 166 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 167 } 168 169 // FIXME: CompoundLiteralExpr 170 171 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 172 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 173 // Unlike for scalars, we don't have to worry about function->ptr demotion 174 // here. 175 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 176 } 177 ComplexPairTy VisitCastExpr(CastExpr *E) { 178 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 179 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181 } 182 ComplexPairTy VisitCallExpr(const CallExpr *E); 183 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 184 185 // Operators. 186 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 187 bool isInc, bool isPre) { 188 LValue LV = CGF.EmitLValue(E->getSubExpr()); 189 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 190 } 191 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 192 return VisitPrePostIncDec(E, false, false); 193 } 194 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 195 return VisitPrePostIncDec(E, true, false); 196 } 197 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 198 return VisitPrePostIncDec(E, false, true); 199 } 200 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 201 return VisitPrePostIncDec(E, true, true); 202 } 203 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 204 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 205 TestAndClearIgnoreReal(); 206 TestAndClearIgnoreImag(); 207 return Visit(E->getSubExpr()); 208 } 209 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 210 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 211 // LNot,Real,Imag never return complex. 212 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 213 return Visit(E->getSubExpr()); 214 } 215 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 216 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 217 return Visit(DAE->getExpr()); 218 } 219 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 220 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 221 return Visit(DIE->getExpr()); 222 } 223 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 224 CGF.enterFullExpression(E); 225 CodeGenFunction::RunCleanupsScope Scope(CGF); 226 ComplexPairTy Vals = Visit(E->getSubExpr()); 227 // Defend against dominance problems caused by jumps out of expression 228 // evaluation through the shared cleanup block. 229 Scope.ForceCleanup({&Vals.first, &Vals.second}); 230 return Vals; 231 } 232 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 233 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 234 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 235 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 236 return ComplexPairTy(Null, Null); 237 } 238 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 239 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 240 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 241 llvm::Constant *Null = 242 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 243 return ComplexPairTy(Null, Null); 244 } 245 246 struct BinOpInfo { 247 ComplexPairTy LHS; 248 ComplexPairTy RHS; 249 QualType Ty; // Computation Type. 250 }; 251 252 BinOpInfo EmitBinOps(const BinaryOperator *E); 253 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 254 ComplexPairTy (ComplexExprEmitter::*Func) 255 (const BinOpInfo &), 256 RValue &Val); 257 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 258 ComplexPairTy (ComplexExprEmitter::*Func) 259 (const BinOpInfo &)); 260 261 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 262 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 263 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 264 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 265 266 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 267 const BinOpInfo &Op); 268 269 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 270 return EmitBinAdd(EmitBinOps(E)); 271 } 272 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 273 return EmitBinSub(EmitBinOps(E)); 274 } 275 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 276 return EmitBinMul(EmitBinOps(E)); 277 } 278 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 279 return EmitBinDiv(EmitBinOps(E)); 280 } 281 282 // Compound assignments. 283 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 284 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 285 } 286 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 287 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 288 } 289 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 290 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 291 } 292 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 293 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 294 } 295 296 // GCC rejects rem/and/or/xor for integer complex. 297 // Logical and/or always return int, never complex. 298 299 // No comparisons produce a complex result. 300 301 LValue EmitBinAssignLValue(const BinaryOperator *E, 302 ComplexPairTy &Val); 303 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 304 ComplexPairTy VisitBinComma (const BinaryOperator *E); 305 306 307 ComplexPairTy 308 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 309 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 310 311 ComplexPairTy VisitInitListExpr(InitListExpr *E); 312 313 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 314 return EmitLoadOfLValue(E); 315 } 316 317 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 318 319 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 320 return CGF.EmitAtomicExpr(E).getComplexVal(); 321 } 322 }; 323 } // end anonymous namespace. 324 325 //===----------------------------------------------------------------------===// 326 // Utilities 327 //===----------------------------------------------------------------------===// 328 329 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 330 QualType complexType) { 331 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 332 } 333 334 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 335 QualType complexType) { 336 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 337 } 338 339 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 340 /// load the real and imaginary pieces, returning them as Real/Imag. 341 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 342 SourceLocation loc) { 343 assert(lvalue.isSimple() && "non-simple complex l-value?"); 344 if (lvalue.getType()->isAtomicType()) 345 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 346 347 Address SrcPtr = lvalue.getAddress(); 348 bool isVolatile = lvalue.isVolatileQualified(); 349 350 llvm::Value *Real = nullptr, *Imag = nullptr; 351 352 if (!IgnoreReal || isVolatile) { 353 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 354 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 355 } 356 357 if (!IgnoreImag || isVolatile) { 358 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 359 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 360 } 361 362 return ComplexPairTy(Real, Imag); 363 } 364 365 /// EmitStoreOfComplex - Store the specified real/imag parts into the 366 /// specified value pointer. 367 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 368 bool isInit) { 369 if (lvalue.getType()->isAtomicType() || 370 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 371 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 372 373 Address Ptr = lvalue.getAddress(); 374 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 375 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 376 377 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 378 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 379 } 380 381 382 383 //===----------------------------------------------------------------------===// 384 // Visitor Methods 385 //===----------------------------------------------------------------------===// 386 387 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 388 CGF.ErrorUnsupported(E, "complex expression"); 389 llvm::Type *EltTy = 390 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 391 llvm::Value *U = llvm::UndefValue::get(EltTy); 392 return ComplexPairTy(U, U); 393 } 394 395 ComplexPairTy ComplexExprEmitter:: 396 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 397 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 398 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 399 } 400 401 402 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 403 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 404 return EmitLoadOfLValue(E); 405 406 return CGF.EmitCallExpr(E).getComplexVal(); 407 } 408 409 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 410 CodeGenFunction::StmtExprEvaluation eval(CGF); 411 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 412 assert(RetAlloca.isValid() && "Expected complex return value"); 413 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 414 E->getExprLoc()); 415 } 416 417 /// Emit a cast from complex value Val to DestType. 418 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 419 QualType SrcType, 420 QualType DestType, 421 SourceLocation Loc) { 422 // Get the src/dest element type. 423 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 424 DestType = DestType->castAs<ComplexType>()->getElementType(); 425 426 // C99 6.3.1.6: When a value of complex type is converted to another 427 // complex type, both the real and imaginary parts follow the conversion 428 // rules for the corresponding real types. 429 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 430 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 431 return Val; 432 } 433 434 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 435 QualType SrcType, 436 QualType DestType, 437 SourceLocation Loc) { 438 // Convert the input element to the element type of the complex. 439 DestType = DestType->castAs<ComplexType>()->getElementType(); 440 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 441 442 // Return (realval, 0). 443 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 444 } 445 446 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 447 QualType DestTy) { 448 switch (CK) { 449 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 450 451 // Atomic to non-atomic casts may be more than a no-op for some platforms and 452 // for some types. 453 case CK_AtomicToNonAtomic: 454 case CK_NonAtomicToAtomic: 455 case CK_NoOp: 456 case CK_LValueToRValue: 457 case CK_UserDefinedConversion: 458 return Visit(Op); 459 460 case CK_LValueBitCast: { 461 LValue origLV = CGF.EmitLValue(Op); 462 Address V = origLV.getAddress(); 463 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 464 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 465 } 466 467 case CK_LValueToRValueBitCast: { 468 LValue SourceLVal = CGF.EmitLValue(Op); 469 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(), 470 CGF.ConvertTypeForMem(DestTy)); 471 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 472 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 473 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 474 } 475 476 case CK_BitCast: 477 case CK_BaseToDerived: 478 case CK_DerivedToBase: 479 case CK_UncheckedDerivedToBase: 480 case CK_Dynamic: 481 case CK_ToUnion: 482 case CK_ArrayToPointerDecay: 483 case CK_FunctionToPointerDecay: 484 case CK_NullToPointer: 485 case CK_NullToMemberPointer: 486 case CK_BaseToDerivedMemberPointer: 487 case CK_DerivedToBaseMemberPointer: 488 case CK_MemberPointerToBoolean: 489 case CK_ReinterpretMemberPointer: 490 case CK_ConstructorConversion: 491 case CK_IntegralToPointer: 492 case CK_PointerToIntegral: 493 case CK_PointerToBoolean: 494 case CK_ToVoid: 495 case CK_VectorSplat: 496 case CK_IntegralCast: 497 case CK_BooleanToSignedIntegral: 498 case CK_IntegralToBoolean: 499 case CK_IntegralToFloating: 500 case CK_FloatingToIntegral: 501 case CK_FloatingToBoolean: 502 case CK_FloatingCast: 503 case CK_CPointerToObjCPointerCast: 504 case CK_BlockPointerToObjCPointerCast: 505 case CK_AnyPointerToBlockPointerCast: 506 case CK_ObjCObjectLValueCast: 507 case CK_FloatingComplexToReal: 508 case CK_FloatingComplexToBoolean: 509 case CK_IntegralComplexToReal: 510 case CK_IntegralComplexToBoolean: 511 case CK_ARCProduceObject: 512 case CK_ARCConsumeObject: 513 case CK_ARCReclaimReturnedObject: 514 case CK_ARCExtendBlockObject: 515 case CK_CopyAndAutoreleaseBlockObject: 516 case CK_BuiltinFnToFnPtr: 517 case CK_ZeroToOCLOpaqueType: 518 case CK_AddressSpaceConversion: 519 case CK_IntToOCLSampler: 520 case CK_FixedPointCast: 521 case CK_FixedPointToBoolean: 522 case CK_FixedPointToIntegral: 523 case CK_IntegralToFixedPoint: 524 llvm_unreachable("invalid cast kind for complex value"); 525 526 case CK_FloatingRealToComplex: 527 case CK_IntegralRealToComplex: 528 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 529 DestTy, Op->getExprLoc()); 530 531 case CK_FloatingComplexCast: 532 case CK_FloatingComplexToIntegralComplex: 533 case CK_IntegralComplexCast: 534 case CK_IntegralComplexToFloatingComplex: 535 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 536 Op->getExprLoc()); 537 } 538 539 llvm_unreachable("unknown cast resulting in complex value"); 540 } 541 542 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 543 TestAndClearIgnoreReal(); 544 TestAndClearIgnoreImag(); 545 ComplexPairTy Op = Visit(E->getSubExpr()); 546 547 llvm::Value *ResR, *ResI; 548 if (Op.first->getType()->isFloatingPointTy()) { 549 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 550 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 551 } else { 552 ResR = Builder.CreateNeg(Op.first, "neg.r"); 553 ResI = Builder.CreateNeg(Op.second, "neg.i"); 554 } 555 return ComplexPairTy(ResR, ResI); 556 } 557 558 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 559 TestAndClearIgnoreReal(); 560 TestAndClearIgnoreImag(); 561 // ~(a+ib) = a + i*-b 562 ComplexPairTy Op = Visit(E->getSubExpr()); 563 llvm::Value *ResI; 564 if (Op.second->getType()->isFloatingPointTy()) 565 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 566 else 567 ResI = Builder.CreateNeg(Op.second, "conj.i"); 568 569 return ComplexPairTy(Op.first, ResI); 570 } 571 572 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 573 llvm::Value *ResR, *ResI; 574 575 if (Op.LHS.first->getType()->isFloatingPointTy()) { 576 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 577 if (Op.LHS.second && Op.RHS.second) 578 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 579 else 580 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 581 assert(ResI && "Only one operand may be real!"); 582 } else { 583 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 584 assert(Op.LHS.second && Op.RHS.second && 585 "Both operands of integer complex operators must be complex!"); 586 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 587 } 588 return ComplexPairTy(ResR, ResI); 589 } 590 591 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 592 llvm::Value *ResR, *ResI; 593 if (Op.LHS.first->getType()->isFloatingPointTy()) { 594 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 595 if (Op.LHS.second && Op.RHS.second) 596 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 597 else 598 ResI = Op.LHS.second ? Op.LHS.second 599 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 600 assert(ResI && "Only one operand may be real!"); 601 } else { 602 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 603 assert(Op.LHS.second && Op.RHS.second && 604 "Both operands of integer complex operators must be complex!"); 605 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 606 } 607 return ComplexPairTy(ResR, ResI); 608 } 609 610 /// Emit a libcall for a binary operation on complex types. 611 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 612 const BinOpInfo &Op) { 613 CallArgList Args; 614 Args.add(RValue::get(Op.LHS.first), 615 Op.Ty->castAs<ComplexType>()->getElementType()); 616 Args.add(RValue::get(Op.LHS.second), 617 Op.Ty->castAs<ComplexType>()->getElementType()); 618 Args.add(RValue::get(Op.RHS.first), 619 Op.Ty->castAs<ComplexType>()->getElementType()); 620 Args.add(RValue::get(Op.RHS.second), 621 Op.Ty->castAs<ComplexType>()->getElementType()); 622 623 // We *must* use the full CG function call building logic here because the 624 // complex type has special ABI handling. We also should not forget about 625 // special calling convention which may be used for compiler builtins. 626 627 // We create a function qualified type to state that this call does not have 628 // any exceptions. 629 FunctionProtoType::ExtProtoInfo EPI; 630 EPI = EPI.withExceptionSpec( 631 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 632 SmallVector<QualType, 4> ArgsQTys( 633 4, Op.Ty->castAs<ComplexType>()->getElementType()); 634 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 635 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 636 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 637 638 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 639 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 640 FTy, LibCallName, llvm::AttributeList(), true); 641 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 642 643 llvm::CallBase *Call; 644 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 645 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 646 return Res.getComplexVal(); 647 } 648 649 /// Lookup the libcall name for a given floating point type complex 650 /// multiply. 651 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 652 switch (Ty->getTypeID()) { 653 default: 654 llvm_unreachable("Unsupported floating point type!"); 655 case llvm::Type::HalfTyID: 656 return "__mulhc3"; 657 case llvm::Type::FloatTyID: 658 return "__mulsc3"; 659 case llvm::Type::DoubleTyID: 660 return "__muldc3"; 661 case llvm::Type::PPC_FP128TyID: 662 return "__multc3"; 663 case llvm::Type::X86_FP80TyID: 664 return "__mulxc3"; 665 case llvm::Type::FP128TyID: 666 return "__multc3"; 667 } 668 } 669 670 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 671 // typed values. 672 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 673 using llvm::Value; 674 Value *ResR, *ResI; 675 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 676 677 if (Op.LHS.first->getType()->isFloatingPointTy()) { 678 // The general formulation is: 679 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 680 // 681 // But we can fold away components which would be zero due to a real 682 // operand according to C11 Annex G.5.1p2. 683 // FIXME: C11 also provides for imaginary types which would allow folding 684 // still more of this within the type system. 685 686 if (Op.LHS.second && Op.RHS.second) { 687 // If both operands are complex, emit the core math directly, and then 688 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 689 // to carefully re-compute the correct infinity representation if 690 // possible. The expectation is that the presence of NaNs here is 691 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 692 // This is good, because the libcall re-computes the core multiplication 693 // exactly the same as we do here and re-tests for NaNs in order to be 694 // a generic complex*complex libcall. 695 696 // First compute the four products. 697 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 698 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 699 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 700 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 701 702 // The real part is the difference of the first two, the imaginary part is 703 // the sum of the second. 704 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 705 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 706 707 // Emit the test for the real part becoming NaN and create a branch to 708 // handle it. We test for NaN by comparing the number to itself. 709 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 710 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 711 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 712 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 713 llvm::BasicBlock *OrigBB = Branch->getParent(); 714 715 // Give hint that we very much don't expect to see NaNs. 716 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 717 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 718 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 719 720 // Now test the imaginary part and create its branch. 721 CGF.EmitBlock(INaNBB); 722 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 723 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 724 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 725 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 726 727 // Now emit the libcall on this slowest of the slow paths. 728 CGF.EmitBlock(LibCallBB); 729 Value *LibCallR, *LibCallI; 730 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 731 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 732 Builder.CreateBr(ContBB); 733 734 // Finally continue execution by phi-ing together the different 735 // computation paths. 736 CGF.EmitBlock(ContBB); 737 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 738 RealPHI->addIncoming(ResR, OrigBB); 739 RealPHI->addIncoming(ResR, INaNBB); 740 RealPHI->addIncoming(LibCallR, LibCallBB); 741 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 742 ImagPHI->addIncoming(ResI, OrigBB); 743 ImagPHI->addIncoming(ResI, INaNBB); 744 ImagPHI->addIncoming(LibCallI, LibCallBB); 745 return ComplexPairTy(RealPHI, ImagPHI); 746 } 747 assert((Op.LHS.second || Op.RHS.second) && 748 "At least one operand must be complex!"); 749 750 // If either of the operands is a real rather than a complex, the 751 // imaginary component is ignored when computing the real component of the 752 // result. 753 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 754 755 ResI = Op.LHS.second 756 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 757 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 758 } else { 759 assert(Op.LHS.second && Op.RHS.second && 760 "Both operands of integer complex operators must be complex!"); 761 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 762 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 763 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 764 765 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 766 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 767 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 768 } 769 return ComplexPairTy(ResR, ResI); 770 } 771 772 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 773 // typed values. 774 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 775 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 776 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 777 778 llvm::Value *DSTr, *DSTi; 779 if (LHSr->getType()->isFloatingPointTy()) { 780 // If we have a complex operand on the RHS and FastMath is not allowed, we 781 // delegate to a libcall to handle all of the complexities and minimize 782 // underflow/overflow cases. When FastMath is allowed we construct the 783 // divide inline using the same algorithm as for integer operands. 784 // 785 // FIXME: We would be able to avoid the libcall in many places if we 786 // supported imaginary types in addition to complex types. 787 if (RHSi && !CGF.getLangOpts().FastMath) { 788 BinOpInfo LibCallOp = Op; 789 // If LHS was a real, supply a null imaginary part. 790 if (!LHSi) 791 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 792 793 switch (LHSr->getType()->getTypeID()) { 794 default: 795 llvm_unreachable("Unsupported floating point type!"); 796 case llvm::Type::HalfTyID: 797 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 798 case llvm::Type::FloatTyID: 799 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 800 case llvm::Type::DoubleTyID: 801 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 802 case llvm::Type::PPC_FP128TyID: 803 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 804 case llvm::Type::X86_FP80TyID: 805 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 806 case llvm::Type::FP128TyID: 807 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 808 } 809 } else if (RHSi) { 810 if (!LHSi) 811 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 812 813 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 814 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 815 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 816 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 817 818 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 819 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 820 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 821 822 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 823 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 824 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 825 826 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 827 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 828 } else { 829 assert(LHSi && "Can have at most one non-complex operand!"); 830 831 DSTr = Builder.CreateFDiv(LHSr, RHSr); 832 DSTi = Builder.CreateFDiv(LHSi, RHSr); 833 } 834 } else { 835 assert(Op.LHS.second && Op.RHS.second && 836 "Both operands of integer complex operators must be complex!"); 837 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 838 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 839 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 840 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 841 842 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 843 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 844 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 845 846 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 847 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 848 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 849 850 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 851 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 852 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 853 } else { 854 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 855 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 856 } 857 } 858 859 return ComplexPairTy(DSTr, DSTi); 860 } 861 862 ComplexExprEmitter::BinOpInfo 863 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 864 TestAndClearIgnoreReal(); 865 TestAndClearIgnoreImag(); 866 BinOpInfo Ops; 867 if (E->getLHS()->getType()->isRealFloatingType()) 868 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 869 else 870 Ops.LHS = Visit(E->getLHS()); 871 if (E->getRHS()->getType()->isRealFloatingType()) 872 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 873 else 874 Ops.RHS = Visit(E->getRHS()); 875 876 Ops.Ty = E->getType(); 877 return Ops; 878 } 879 880 881 LValue ComplexExprEmitter:: 882 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 883 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 884 RValue &Val) { 885 TestAndClearIgnoreReal(); 886 TestAndClearIgnoreImag(); 887 QualType LHSTy = E->getLHS()->getType(); 888 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 889 LHSTy = AT->getValueType(); 890 891 BinOpInfo OpInfo; 892 893 // Load the RHS and LHS operands. 894 // __block variables need to have the rhs evaluated first, plus this should 895 // improve codegen a little. 896 OpInfo.Ty = E->getComputationResultType(); 897 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 898 899 // The RHS should have been converted to the computation type. 900 if (E->getRHS()->getType()->isRealFloatingType()) { 901 assert( 902 CGF.getContext() 903 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 904 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 905 } else { 906 assert(CGF.getContext() 907 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 908 OpInfo.RHS = Visit(E->getRHS()); 909 } 910 911 LValue LHS = CGF.EmitLValue(E->getLHS()); 912 913 // Load from the l-value and convert it. 914 SourceLocation Loc = E->getExprLoc(); 915 if (LHSTy->isAnyComplexType()) { 916 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 917 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 918 } else { 919 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 920 // For floating point real operands we can directly pass the scalar form 921 // to the binary operator emission and potentially get more efficient code. 922 if (LHSTy->isRealFloatingType()) { 923 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 924 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 925 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 926 } else { 927 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 928 } 929 } 930 931 // Expand the binary operator. 932 ComplexPairTy Result = (this->*Func)(OpInfo); 933 934 // Truncate the result and store it into the LHS lvalue. 935 if (LHSTy->isAnyComplexType()) { 936 ComplexPairTy ResVal = 937 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 938 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 939 Val = RValue::getComplex(ResVal); 940 } else { 941 llvm::Value *ResVal = 942 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 943 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 944 Val = RValue::get(ResVal); 945 } 946 947 return LHS; 948 } 949 950 // Compound assignments. 951 ComplexPairTy ComplexExprEmitter:: 952 EmitCompoundAssign(const CompoundAssignOperator *E, 953 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 954 RValue Val; 955 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 956 957 // The result of an assignment in C is the assigned r-value. 958 if (!CGF.getLangOpts().CPlusPlus) 959 return Val.getComplexVal(); 960 961 // If the lvalue is non-volatile, return the computed value of the assignment. 962 if (!LV.isVolatileQualified()) 963 return Val.getComplexVal(); 964 965 return EmitLoadOfLValue(LV, E->getExprLoc()); 966 } 967 968 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 969 ComplexPairTy &Val) { 970 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 971 E->getRHS()->getType()) && 972 "Invalid assignment"); 973 TestAndClearIgnoreReal(); 974 TestAndClearIgnoreImag(); 975 976 // Emit the RHS. __block variables need the RHS evaluated first. 977 Val = Visit(E->getRHS()); 978 979 // Compute the address to store into. 980 LValue LHS = CGF.EmitLValue(E->getLHS()); 981 982 // Store the result value into the LHS lvalue. 983 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 984 985 return LHS; 986 } 987 988 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 989 ComplexPairTy Val; 990 LValue LV = EmitBinAssignLValue(E, Val); 991 992 // The result of an assignment in C is the assigned r-value. 993 if (!CGF.getLangOpts().CPlusPlus) 994 return Val; 995 996 // If the lvalue is non-volatile, return the computed value of the assignment. 997 if (!LV.isVolatileQualified()) 998 return Val; 999 1000 return EmitLoadOfLValue(LV, E->getExprLoc()); 1001 } 1002 1003 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1004 CGF.EmitIgnoredExpr(E->getLHS()); 1005 return Visit(E->getRHS()); 1006 } 1007 1008 ComplexPairTy ComplexExprEmitter:: 1009 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1010 TestAndClearIgnoreReal(); 1011 TestAndClearIgnoreImag(); 1012 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1013 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1014 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1015 1016 // Bind the common expression if necessary. 1017 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1018 1019 1020 CodeGenFunction::ConditionalEvaluation eval(CGF); 1021 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1022 CGF.getProfileCount(E)); 1023 1024 eval.begin(CGF); 1025 CGF.EmitBlock(LHSBlock); 1026 CGF.incrementProfileCounter(E); 1027 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1028 LHSBlock = Builder.GetInsertBlock(); 1029 CGF.EmitBranch(ContBlock); 1030 eval.end(CGF); 1031 1032 eval.begin(CGF); 1033 CGF.EmitBlock(RHSBlock); 1034 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1035 RHSBlock = Builder.GetInsertBlock(); 1036 CGF.EmitBlock(ContBlock); 1037 eval.end(CGF); 1038 1039 // Create a PHI node for the real part. 1040 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1041 RealPN->addIncoming(LHS.first, LHSBlock); 1042 RealPN->addIncoming(RHS.first, RHSBlock); 1043 1044 // Create a PHI node for the imaginary part. 1045 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1046 ImagPN->addIncoming(LHS.second, LHSBlock); 1047 ImagPN->addIncoming(RHS.second, RHSBlock); 1048 1049 return ComplexPairTy(RealPN, ImagPN); 1050 } 1051 1052 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1053 return Visit(E->getChosenSubExpr()); 1054 } 1055 1056 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1057 bool Ignore = TestAndClearIgnoreReal(); 1058 (void)Ignore; 1059 assert (Ignore == false && "init list ignored"); 1060 Ignore = TestAndClearIgnoreImag(); 1061 (void)Ignore; 1062 assert (Ignore == false && "init list ignored"); 1063 1064 if (E->getNumInits() == 2) { 1065 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1066 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1067 return ComplexPairTy(Real, Imag); 1068 } else if (E->getNumInits() == 1) { 1069 return Visit(E->getInit(0)); 1070 } 1071 1072 // Empty init list initializes to null 1073 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1074 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1075 llvm::Type* LTy = CGF.ConvertType(Ty); 1076 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1077 return ComplexPairTy(zeroConstant, zeroConstant); 1078 } 1079 1080 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1081 Address ArgValue = Address::invalid(); 1082 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1083 1084 if (!ArgPtr.isValid()) { 1085 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1086 llvm::Type *EltTy = 1087 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1088 llvm::Value *U = llvm::UndefValue::get(EltTy); 1089 return ComplexPairTy(U, U); 1090 } 1091 1092 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1093 E->getExprLoc()); 1094 } 1095 1096 //===----------------------------------------------------------------------===// 1097 // Entry Point into this File 1098 //===----------------------------------------------------------------------===// 1099 1100 /// EmitComplexExpr - Emit the computation of the specified expression of 1101 /// complex type, ignoring the result. 1102 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1103 bool IgnoreImag) { 1104 assert(E && getComplexType(E->getType()) && 1105 "Invalid complex expression to emit"); 1106 1107 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1108 .Visit(const_cast<Expr *>(E)); 1109 } 1110 1111 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1112 bool isInit) { 1113 assert(E && getComplexType(E->getType()) && 1114 "Invalid complex expression to emit"); 1115 ComplexExprEmitter Emitter(*this); 1116 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1117 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1118 } 1119 1120 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1121 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1122 bool isInit) { 1123 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1124 } 1125 1126 /// EmitLoadOfComplex - Load a complex number from the specified address. 1127 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1128 SourceLocation loc) { 1129 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1130 } 1131 1132 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1133 assert(E->getOpcode() == BO_Assign); 1134 ComplexPairTy Val; // ignored 1135 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1136 } 1137 1138 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1139 const ComplexExprEmitter::BinOpInfo &); 1140 1141 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1142 switch (Op) { 1143 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1144 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1145 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1146 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1147 default: 1148 llvm_unreachable("unexpected complex compound assignment"); 1149 } 1150 } 1151 1152 LValue CodeGenFunction:: 1153 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1154 CompoundFunc Op = getComplexOp(E->getOpcode()); 1155 RValue Val; 1156 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1157 } 1158 1159 LValue CodeGenFunction:: 1160 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1161 llvm::Value *&Result) { 1162 CompoundFunc Op = getComplexOp(E->getOpcode()); 1163 RValue Val; 1164 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1165 Result = Val.getScalarVal(); 1166 return Ret; 1167 } 1168