1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "ConstantEmitter.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Metadata.h" 23 #include <algorithm> 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Complex Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 32 33 /// Return the complex type that we are meant to emit. 34 static const ComplexType *getComplexType(QualType type) { 35 type = type.getCanonicalType(); 36 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 37 return comp; 38 } else { 39 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 40 } 41 } 42 43 namespace { 44 class ComplexExprEmitter 45 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 46 CodeGenFunction &CGF; 47 CGBuilderTy &Builder; 48 bool IgnoreReal; 49 bool IgnoreImag; 50 public: 51 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 52 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 53 } 54 55 56 //===--------------------------------------------------------------------===// 57 // Utilities 58 //===--------------------------------------------------------------------===// 59 60 bool TestAndClearIgnoreReal() { 61 bool I = IgnoreReal; 62 IgnoreReal = false; 63 return I; 64 } 65 bool TestAndClearIgnoreImag() { 66 bool I = IgnoreImag; 67 IgnoreImag = false; 68 return I; 69 } 70 71 /// EmitLoadOfLValue - Given an expression with complex type that represents a 72 /// value l-value, this method emits the address of the l-value, then loads 73 /// and returns the result. 74 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 75 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 76 } 77 78 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 79 80 /// EmitStoreOfComplex - Store the specified real/imag parts into the 81 /// specified value pointer. 82 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 83 84 /// Emit a cast from complex value Val to DestType. 85 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 86 QualType DestType, SourceLocation Loc); 87 /// Emit a cast from scalar value Val to DestType. 88 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 89 QualType DestType, SourceLocation Loc); 90 91 //===--------------------------------------------------------------------===// 92 // Visitor Methods 93 //===--------------------------------------------------------------------===// 94 95 ComplexPairTy Visit(Expr *E) { 96 ApplyDebugLocation DL(CGF, E); 97 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 98 } 99 100 ComplexPairTy VisitStmt(Stmt *S) { 101 S->dump(llvm::errs(), CGF.getContext()); 102 llvm_unreachable("Stmt can't have complex result type!"); 103 } 104 ComplexPairTy VisitExpr(Expr *S); 105 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 106 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) 107 return ComplexPairTy(Result->getAggregateElement(0U), 108 Result->getAggregateElement(1U)); 109 return Visit(E->getSubExpr()); 110 } 111 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 112 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 return Visit(GE->getResultExpr()); 114 } 115 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 116 ComplexPairTy 117 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 118 return Visit(PE->getReplacement()); 119 } 120 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 121 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 122 } 123 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 124 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 125 } 126 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 127 return Visit(E->getSubExpr()); 128 } 129 130 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 131 Expr *E) { 132 assert(Constant && "not a constant"); 133 if (Constant.isReference()) 134 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 135 E->getExprLoc()); 136 137 llvm::Constant *pair = Constant.getValue(); 138 return ComplexPairTy(pair->getAggregateElement(0U), 139 pair->getAggregateElement(1U)); 140 } 141 142 // l-values. 143 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 144 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 145 return emitConstant(Constant, E); 146 return EmitLoadOfLValue(E); 147 } 148 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 149 return EmitLoadOfLValue(E); 150 } 151 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 152 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 153 } 154 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 155 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 156 if (CodeGenFunction::ConstantEmission Constant = 157 CGF.tryEmitAsConstant(ME)) { 158 CGF.EmitIgnoredExpr(ME->getBase()); 159 return emitConstant(Constant, ME); 160 } 161 return EmitLoadOfLValue(ME); 162 } 163 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 164 if (E->isGLValue()) 165 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 166 E->getExprLoc()); 167 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 168 } 169 170 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 171 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 172 } 173 174 // FIXME: CompoundLiteralExpr 175 176 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 177 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 178 // Unlike for scalars, we don't have to worry about function->ptr demotion 179 // here. 180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181 } 182 ComplexPairTy VisitCastExpr(CastExpr *E) { 183 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 184 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 185 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 186 } 187 ComplexPairTy VisitCallExpr(const CallExpr *E); 188 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 189 190 // Operators. 191 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 192 bool isInc, bool isPre) { 193 LValue LV = CGF.EmitLValue(E->getSubExpr()); 194 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 195 } 196 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 197 return VisitPrePostIncDec(E, false, false); 198 } 199 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 200 return VisitPrePostIncDec(E, true, false); 201 } 202 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 203 return VisitPrePostIncDec(E, false, true); 204 } 205 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 206 return VisitPrePostIncDec(E, true, true); 207 } 208 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 209 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 210 TestAndClearIgnoreReal(); 211 TestAndClearIgnoreImag(); 212 return Visit(E->getSubExpr()); 213 } 214 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 215 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 216 // LNot,Real,Imag never return complex. 217 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 218 return Visit(E->getSubExpr()); 219 } 220 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 221 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 222 return Visit(DAE->getExpr()); 223 } 224 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 225 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 226 return Visit(DIE->getExpr()); 227 } 228 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 229 CodeGenFunction::RunCleanupsScope Scope(CGF); 230 ComplexPairTy Vals = Visit(E->getSubExpr()); 231 // Defend against dominance problems caused by jumps out of expression 232 // evaluation through the shared cleanup block. 233 Scope.ForceCleanup({&Vals.first, &Vals.second}); 234 return Vals; 235 } 236 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 237 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 238 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 239 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 240 return ComplexPairTy(Null, Null); 241 } 242 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 243 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 244 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 245 llvm::Constant *Null = 246 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 247 return ComplexPairTy(Null, Null); 248 } 249 250 struct BinOpInfo { 251 ComplexPairTy LHS; 252 ComplexPairTy RHS; 253 QualType Ty; // Computation Type. 254 }; 255 256 BinOpInfo EmitBinOps(const BinaryOperator *E); 257 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 258 ComplexPairTy (ComplexExprEmitter::*Func) 259 (const BinOpInfo &), 260 RValue &Val); 261 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 262 ComplexPairTy (ComplexExprEmitter::*Func) 263 (const BinOpInfo &)); 264 265 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 266 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 267 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 268 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 269 270 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 271 const BinOpInfo &Op); 272 273 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 274 return EmitBinAdd(EmitBinOps(E)); 275 } 276 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 277 return EmitBinSub(EmitBinOps(E)); 278 } 279 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 280 return EmitBinMul(EmitBinOps(E)); 281 } 282 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 283 return EmitBinDiv(EmitBinOps(E)); 284 } 285 286 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 287 return Visit(E->getSemanticForm()); 288 } 289 290 // Compound assignments. 291 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 292 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 293 } 294 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 295 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 296 } 297 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 298 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 299 } 300 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 301 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 302 } 303 304 // GCC rejects rem/and/or/xor for integer complex. 305 // Logical and/or always return int, never complex. 306 307 // No comparisons produce a complex result. 308 309 LValue EmitBinAssignLValue(const BinaryOperator *E, 310 ComplexPairTy &Val); 311 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 312 ComplexPairTy VisitBinComma (const BinaryOperator *E); 313 314 315 ComplexPairTy 316 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 317 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 318 319 ComplexPairTy VisitInitListExpr(InitListExpr *E); 320 321 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 322 return EmitLoadOfLValue(E); 323 } 324 325 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 326 327 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 328 return CGF.EmitAtomicExpr(E).getComplexVal(); 329 } 330 }; 331 } // end anonymous namespace. 332 333 //===----------------------------------------------------------------------===// 334 // Utilities 335 //===----------------------------------------------------------------------===// 336 337 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 338 QualType complexType) { 339 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 340 } 341 342 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 343 QualType complexType) { 344 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 345 } 346 347 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 348 /// load the real and imaginary pieces, returning them as Real/Imag. 349 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 350 SourceLocation loc) { 351 assert(lvalue.isSimple() && "non-simple complex l-value?"); 352 if (lvalue.getType()->isAtomicType()) 353 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 354 355 Address SrcPtr = lvalue.getAddress(CGF); 356 bool isVolatile = lvalue.isVolatileQualified(); 357 358 llvm::Value *Real = nullptr, *Imag = nullptr; 359 360 if (!IgnoreReal || isVolatile) { 361 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 362 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 363 } 364 365 if (!IgnoreImag || isVolatile) { 366 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 367 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 368 } 369 370 return ComplexPairTy(Real, Imag); 371 } 372 373 /// EmitStoreOfComplex - Store the specified real/imag parts into the 374 /// specified value pointer. 375 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 376 bool isInit) { 377 if (lvalue.getType()->isAtomicType() || 378 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 379 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 380 381 Address Ptr = lvalue.getAddress(CGF); 382 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 383 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 384 385 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 386 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 387 } 388 389 390 391 //===----------------------------------------------------------------------===// 392 // Visitor Methods 393 //===----------------------------------------------------------------------===// 394 395 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 396 CGF.ErrorUnsupported(E, "complex expression"); 397 llvm::Type *EltTy = 398 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 399 llvm::Value *U = llvm::UndefValue::get(EltTy); 400 return ComplexPairTy(U, U); 401 } 402 403 ComplexPairTy ComplexExprEmitter:: 404 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 405 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 406 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 407 } 408 409 410 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 411 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 412 return EmitLoadOfLValue(E); 413 414 return CGF.EmitCallExpr(E).getComplexVal(); 415 } 416 417 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 418 CodeGenFunction::StmtExprEvaluation eval(CGF); 419 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 420 assert(RetAlloca.isValid() && "Expected complex return value"); 421 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 422 E->getExprLoc()); 423 } 424 425 /// Emit a cast from complex value Val to DestType. 426 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 427 QualType SrcType, 428 QualType DestType, 429 SourceLocation Loc) { 430 // Get the src/dest element type. 431 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 432 DestType = DestType->castAs<ComplexType>()->getElementType(); 433 434 // C99 6.3.1.6: When a value of complex type is converted to another 435 // complex type, both the real and imaginary parts follow the conversion 436 // rules for the corresponding real types. 437 if (Val.first) 438 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 439 if (Val.second) 440 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 441 return Val; 442 } 443 444 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 445 QualType SrcType, 446 QualType DestType, 447 SourceLocation Loc) { 448 // Convert the input element to the element type of the complex. 449 DestType = DestType->castAs<ComplexType>()->getElementType(); 450 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 451 452 // Return (realval, 0). 453 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 454 } 455 456 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 457 QualType DestTy) { 458 switch (CK) { 459 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 460 461 // Atomic to non-atomic casts may be more than a no-op for some platforms and 462 // for some types. 463 case CK_AtomicToNonAtomic: 464 case CK_NonAtomicToAtomic: 465 case CK_NoOp: 466 case CK_LValueToRValue: 467 case CK_UserDefinedConversion: 468 return Visit(Op); 469 470 case CK_LValueBitCast: { 471 LValue origLV = CGF.EmitLValue(Op); 472 Address V = origLV.getAddress(CGF); 473 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 474 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 475 } 476 477 case CK_LValueToRValueBitCast: { 478 LValue SourceLVal = CGF.EmitLValue(Op); 479 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 480 CGF.ConvertTypeForMem(DestTy)); 481 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 482 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 483 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 484 } 485 486 case CK_BitCast: 487 case CK_BaseToDerived: 488 case CK_DerivedToBase: 489 case CK_UncheckedDerivedToBase: 490 case CK_Dynamic: 491 case CK_ToUnion: 492 case CK_ArrayToPointerDecay: 493 case CK_FunctionToPointerDecay: 494 case CK_NullToPointer: 495 case CK_NullToMemberPointer: 496 case CK_BaseToDerivedMemberPointer: 497 case CK_DerivedToBaseMemberPointer: 498 case CK_MemberPointerToBoolean: 499 case CK_ReinterpretMemberPointer: 500 case CK_ConstructorConversion: 501 case CK_IntegralToPointer: 502 case CK_PointerToIntegral: 503 case CK_PointerToBoolean: 504 case CK_ToVoid: 505 case CK_VectorSplat: 506 case CK_IntegralCast: 507 case CK_BooleanToSignedIntegral: 508 case CK_IntegralToBoolean: 509 case CK_IntegralToFloating: 510 case CK_FloatingToIntegral: 511 case CK_FloatingToBoolean: 512 case CK_FloatingCast: 513 case CK_CPointerToObjCPointerCast: 514 case CK_BlockPointerToObjCPointerCast: 515 case CK_AnyPointerToBlockPointerCast: 516 case CK_ObjCObjectLValueCast: 517 case CK_FloatingComplexToReal: 518 case CK_FloatingComplexToBoolean: 519 case CK_IntegralComplexToReal: 520 case CK_IntegralComplexToBoolean: 521 case CK_ARCProduceObject: 522 case CK_ARCConsumeObject: 523 case CK_ARCReclaimReturnedObject: 524 case CK_ARCExtendBlockObject: 525 case CK_CopyAndAutoreleaseBlockObject: 526 case CK_BuiltinFnToFnPtr: 527 case CK_ZeroToOCLOpaqueType: 528 case CK_AddressSpaceConversion: 529 case CK_IntToOCLSampler: 530 case CK_FloatingToFixedPoint: 531 case CK_FixedPointToFloating: 532 case CK_FixedPointCast: 533 case CK_FixedPointToBoolean: 534 case CK_FixedPointToIntegral: 535 case CK_IntegralToFixedPoint: 536 case CK_MatrixCast: 537 llvm_unreachable("invalid cast kind for complex value"); 538 539 case CK_FloatingRealToComplex: 540 case CK_IntegralRealToComplex: { 541 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 542 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 543 DestTy, Op->getExprLoc()); 544 } 545 546 case CK_FloatingComplexCast: 547 case CK_FloatingComplexToIntegralComplex: 548 case CK_IntegralComplexCast: 549 case CK_IntegralComplexToFloatingComplex: { 550 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 551 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 552 Op->getExprLoc()); 553 } 554 } 555 556 llvm_unreachable("unknown cast resulting in complex value"); 557 } 558 559 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 560 TestAndClearIgnoreReal(); 561 TestAndClearIgnoreImag(); 562 ComplexPairTy Op = Visit(E->getSubExpr()); 563 564 llvm::Value *ResR, *ResI; 565 if (Op.first->getType()->isFloatingPointTy()) { 566 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 567 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 568 } else { 569 ResR = Builder.CreateNeg(Op.first, "neg.r"); 570 ResI = Builder.CreateNeg(Op.second, "neg.i"); 571 } 572 return ComplexPairTy(ResR, ResI); 573 } 574 575 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 576 TestAndClearIgnoreReal(); 577 TestAndClearIgnoreImag(); 578 // ~(a+ib) = a + i*-b 579 ComplexPairTy Op = Visit(E->getSubExpr()); 580 llvm::Value *ResI; 581 if (Op.second->getType()->isFloatingPointTy()) 582 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 583 else 584 ResI = Builder.CreateNeg(Op.second, "conj.i"); 585 586 return ComplexPairTy(Op.first, ResI); 587 } 588 589 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 590 llvm::Value *ResR, *ResI; 591 592 if (Op.LHS.first->getType()->isFloatingPointTy()) { 593 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 594 if (Op.LHS.second && Op.RHS.second) 595 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 596 else 597 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 598 assert(ResI && "Only one operand may be real!"); 599 } else { 600 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 601 assert(Op.LHS.second && Op.RHS.second && 602 "Both operands of integer complex operators must be complex!"); 603 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 604 } 605 return ComplexPairTy(ResR, ResI); 606 } 607 608 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 609 llvm::Value *ResR, *ResI; 610 if (Op.LHS.first->getType()->isFloatingPointTy()) { 611 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 612 if (Op.LHS.second && Op.RHS.second) 613 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 614 else 615 ResI = Op.LHS.second ? Op.LHS.second 616 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 617 assert(ResI && "Only one operand may be real!"); 618 } else { 619 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 620 assert(Op.LHS.second && Op.RHS.second && 621 "Both operands of integer complex operators must be complex!"); 622 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 623 } 624 return ComplexPairTy(ResR, ResI); 625 } 626 627 /// Emit a libcall for a binary operation on complex types. 628 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 629 const BinOpInfo &Op) { 630 CallArgList Args; 631 Args.add(RValue::get(Op.LHS.first), 632 Op.Ty->castAs<ComplexType>()->getElementType()); 633 Args.add(RValue::get(Op.LHS.second), 634 Op.Ty->castAs<ComplexType>()->getElementType()); 635 Args.add(RValue::get(Op.RHS.first), 636 Op.Ty->castAs<ComplexType>()->getElementType()); 637 Args.add(RValue::get(Op.RHS.second), 638 Op.Ty->castAs<ComplexType>()->getElementType()); 639 640 // We *must* use the full CG function call building logic here because the 641 // complex type has special ABI handling. We also should not forget about 642 // special calling convention which may be used for compiler builtins. 643 644 // We create a function qualified type to state that this call does not have 645 // any exceptions. 646 FunctionProtoType::ExtProtoInfo EPI; 647 EPI = EPI.withExceptionSpec( 648 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 649 SmallVector<QualType, 4> ArgsQTys( 650 4, Op.Ty->castAs<ComplexType>()->getElementType()); 651 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 652 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 653 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 654 655 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 656 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 657 FTy, LibCallName, llvm::AttributeList(), true); 658 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 659 660 llvm::CallBase *Call; 661 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 662 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 663 return Res.getComplexVal(); 664 } 665 666 /// Lookup the libcall name for a given floating point type complex 667 /// multiply. 668 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 669 switch (Ty->getTypeID()) { 670 default: 671 llvm_unreachable("Unsupported floating point type!"); 672 case llvm::Type::HalfTyID: 673 return "__mulhc3"; 674 case llvm::Type::FloatTyID: 675 return "__mulsc3"; 676 case llvm::Type::DoubleTyID: 677 return "__muldc3"; 678 case llvm::Type::PPC_FP128TyID: 679 return "__multc3"; 680 case llvm::Type::X86_FP80TyID: 681 return "__mulxc3"; 682 case llvm::Type::FP128TyID: 683 return "__multc3"; 684 } 685 } 686 687 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 688 // typed values. 689 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 690 using llvm::Value; 691 Value *ResR, *ResI; 692 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 693 694 if (Op.LHS.first->getType()->isFloatingPointTy()) { 695 // The general formulation is: 696 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 697 // 698 // But we can fold away components which would be zero due to a real 699 // operand according to C11 Annex G.5.1p2. 700 // FIXME: C11 also provides for imaginary types which would allow folding 701 // still more of this within the type system. 702 703 if (Op.LHS.second && Op.RHS.second) { 704 // If both operands are complex, emit the core math directly, and then 705 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 706 // to carefully re-compute the correct infinity representation if 707 // possible. The expectation is that the presence of NaNs here is 708 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 709 // This is good, because the libcall re-computes the core multiplication 710 // exactly the same as we do here and re-tests for NaNs in order to be 711 // a generic complex*complex libcall. 712 713 // First compute the four products. 714 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 715 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 716 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 717 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 718 719 // The real part is the difference of the first two, the imaginary part is 720 // the sum of the second. 721 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 722 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 723 724 // Emit the test for the real part becoming NaN and create a branch to 725 // handle it. We test for NaN by comparing the number to itself. 726 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 727 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 728 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 729 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 730 llvm::BasicBlock *OrigBB = Branch->getParent(); 731 732 // Give hint that we very much don't expect to see NaNs. 733 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 734 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 735 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 736 737 // Now test the imaginary part and create its branch. 738 CGF.EmitBlock(INaNBB); 739 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 740 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 741 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 742 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 743 744 // Now emit the libcall on this slowest of the slow paths. 745 CGF.EmitBlock(LibCallBB); 746 Value *LibCallR, *LibCallI; 747 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 748 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 749 Builder.CreateBr(ContBB); 750 751 // Finally continue execution by phi-ing together the different 752 // computation paths. 753 CGF.EmitBlock(ContBB); 754 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 755 RealPHI->addIncoming(ResR, OrigBB); 756 RealPHI->addIncoming(ResR, INaNBB); 757 RealPHI->addIncoming(LibCallR, LibCallBB); 758 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 759 ImagPHI->addIncoming(ResI, OrigBB); 760 ImagPHI->addIncoming(ResI, INaNBB); 761 ImagPHI->addIncoming(LibCallI, LibCallBB); 762 return ComplexPairTy(RealPHI, ImagPHI); 763 } 764 assert((Op.LHS.second || Op.RHS.second) && 765 "At least one operand must be complex!"); 766 767 // If either of the operands is a real rather than a complex, the 768 // imaginary component is ignored when computing the real component of the 769 // result. 770 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 771 772 ResI = Op.LHS.second 773 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 774 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 775 } else { 776 assert(Op.LHS.second && Op.RHS.second && 777 "Both operands of integer complex operators must be complex!"); 778 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 779 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 780 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 781 782 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 783 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 784 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 785 } 786 return ComplexPairTy(ResR, ResI); 787 } 788 789 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 790 // typed values. 791 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 792 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 793 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 794 795 llvm::Value *DSTr, *DSTi; 796 if (LHSr->getType()->isFloatingPointTy()) { 797 // If we have a complex operand on the RHS and FastMath is not allowed, we 798 // delegate to a libcall to handle all of the complexities and minimize 799 // underflow/overflow cases. When FastMath is allowed we construct the 800 // divide inline using the same algorithm as for integer operands. 801 // 802 // FIXME: We would be able to avoid the libcall in many places if we 803 // supported imaginary types in addition to complex types. 804 if (RHSi && !CGF.getLangOpts().FastMath) { 805 BinOpInfo LibCallOp = Op; 806 // If LHS was a real, supply a null imaginary part. 807 if (!LHSi) 808 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 809 810 switch (LHSr->getType()->getTypeID()) { 811 default: 812 llvm_unreachable("Unsupported floating point type!"); 813 case llvm::Type::HalfTyID: 814 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 815 case llvm::Type::FloatTyID: 816 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 817 case llvm::Type::DoubleTyID: 818 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 819 case llvm::Type::PPC_FP128TyID: 820 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 821 case llvm::Type::X86_FP80TyID: 822 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 823 case llvm::Type::FP128TyID: 824 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 825 } 826 } else if (RHSi) { 827 if (!LHSi) 828 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 829 830 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 831 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 832 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 833 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 834 835 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 836 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 837 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 838 839 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 840 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 841 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 842 843 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 844 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 845 } else { 846 assert(LHSi && "Can have at most one non-complex operand!"); 847 848 DSTr = Builder.CreateFDiv(LHSr, RHSr); 849 DSTi = Builder.CreateFDiv(LHSi, RHSr); 850 } 851 } else { 852 assert(Op.LHS.second && Op.RHS.second && 853 "Both operands of integer complex operators must be complex!"); 854 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 855 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 856 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 857 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 858 859 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 860 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 861 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 862 863 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 864 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 865 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 866 867 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 868 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 869 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 870 } else { 871 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 872 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 873 } 874 } 875 876 return ComplexPairTy(DSTr, DSTi); 877 } 878 879 ComplexExprEmitter::BinOpInfo 880 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 881 TestAndClearIgnoreReal(); 882 TestAndClearIgnoreImag(); 883 BinOpInfo Ops; 884 if (E->getLHS()->getType()->isRealFloatingType()) 885 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 886 else 887 Ops.LHS = Visit(E->getLHS()); 888 if (E->getRHS()->getType()->isRealFloatingType()) 889 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 890 else 891 Ops.RHS = Visit(E->getRHS()); 892 893 Ops.Ty = E->getType(); 894 return Ops; 895 } 896 897 898 LValue ComplexExprEmitter:: 899 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 900 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 901 RValue &Val) { 902 TestAndClearIgnoreReal(); 903 TestAndClearIgnoreImag(); 904 QualType LHSTy = E->getLHS()->getType(); 905 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 906 LHSTy = AT->getValueType(); 907 908 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 909 BinOpInfo OpInfo; 910 911 // Load the RHS and LHS operands. 912 // __block variables need to have the rhs evaluated first, plus this should 913 // improve codegen a little. 914 OpInfo.Ty = E->getComputationResultType(); 915 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 916 917 // The RHS should have been converted to the computation type. 918 if (E->getRHS()->getType()->isRealFloatingType()) { 919 assert( 920 CGF.getContext() 921 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 922 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 923 } else { 924 assert(CGF.getContext() 925 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 926 OpInfo.RHS = Visit(E->getRHS()); 927 } 928 929 LValue LHS = CGF.EmitLValue(E->getLHS()); 930 931 // Load from the l-value and convert it. 932 SourceLocation Loc = E->getExprLoc(); 933 if (LHSTy->isAnyComplexType()) { 934 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 935 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 936 } else { 937 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 938 // For floating point real operands we can directly pass the scalar form 939 // to the binary operator emission and potentially get more efficient code. 940 if (LHSTy->isRealFloatingType()) { 941 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 942 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 943 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 944 } else { 945 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 946 } 947 } 948 949 // Expand the binary operator. 950 ComplexPairTy Result = (this->*Func)(OpInfo); 951 952 // Truncate the result and store it into the LHS lvalue. 953 if (LHSTy->isAnyComplexType()) { 954 ComplexPairTy ResVal = 955 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 956 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 957 Val = RValue::getComplex(ResVal); 958 } else { 959 llvm::Value *ResVal = 960 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 961 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 962 Val = RValue::get(ResVal); 963 } 964 965 return LHS; 966 } 967 968 // Compound assignments. 969 ComplexPairTy ComplexExprEmitter:: 970 EmitCompoundAssign(const CompoundAssignOperator *E, 971 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 972 RValue Val; 973 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 974 975 // The result of an assignment in C is the assigned r-value. 976 if (!CGF.getLangOpts().CPlusPlus) 977 return Val.getComplexVal(); 978 979 // If the lvalue is non-volatile, return the computed value of the assignment. 980 if (!LV.isVolatileQualified()) 981 return Val.getComplexVal(); 982 983 return EmitLoadOfLValue(LV, E->getExprLoc()); 984 } 985 986 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 987 ComplexPairTy &Val) { 988 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 989 E->getRHS()->getType()) && 990 "Invalid assignment"); 991 TestAndClearIgnoreReal(); 992 TestAndClearIgnoreImag(); 993 994 // Emit the RHS. __block variables need the RHS evaluated first. 995 Val = Visit(E->getRHS()); 996 997 // Compute the address to store into. 998 LValue LHS = CGF.EmitLValue(E->getLHS()); 999 1000 // Store the result value into the LHS lvalue. 1001 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 1002 1003 return LHS; 1004 } 1005 1006 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1007 ComplexPairTy Val; 1008 LValue LV = EmitBinAssignLValue(E, Val); 1009 1010 // The result of an assignment in C is the assigned r-value. 1011 if (!CGF.getLangOpts().CPlusPlus) 1012 return Val; 1013 1014 // If the lvalue is non-volatile, return the computed value of the assignment. 1015 if (!LV.isVolatileQualified()) 1016 return Val; 1017 1018 return EmitLoadOfLValue(LV, E->getExprLoc()); 1019 } 1020 1021 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1022 CGF.EmitIgnoredExpr(E->getLHS()); 1023 return Visit(E->getRHS()); 1024 } 1025 1026 ComplexPairTy ComplexExprEmitter:: 1027 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1028 TestAndClearIgnoreReal(); 1029 TestAndClearIgnoreImag(); 1030 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1031 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1032 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1033 1034 // Bind the common expression if necessary. 1035 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1036 1037 1038 CodeGenFunction::ConditionalEvaluation eval(CGF); 1039 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1040 CGF.getProfileCount(E)); 1041 1042 eval.begin(CGF); 1043 CGF.EmitBlock(LHSBlock); 1044 CGF.incrementProfileCounter(E); 1045 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1046 LHSBlock = Builder.GetInsertBlock(); 1047 CGF.EmitBranch(ContBlock); 1048 eval.end(CGF); 1049 1050 eval.begin(CGF); 1051 CGF.EmitBlock(RHSBlock); 1052 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1053 RHSBlock = Builder.GetInsertBlock(); 1054 CGF.EmitBlock(ContBlock); 1055 eval.end(CGF); 1056 1057 // Create a PHI node for the real part. 1058 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1059 RealPN->addIncoming(LHS.first, LHSBlock); 1060 RealPN->addIncoming(RHS.first, RHSBlock); 1061 1062 // Create a PHI node for the imaginary part. 1063 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1064 ImagPN->addIncoming(LHS.second, LHSBlock); 1065 ImagPN->addIncoming(RHS.second, RHSBlock); 1066 1067 return ComplexPairTy(RealPN, ImagPN); 1068 } 1069 1070 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1071 return Visit(E->getChosenSubExpr()); 1072 } 1073 1074 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1075 bool Ignore = TestAndClearIgnoreReal(); 1076 (void)Ignore; 1077 assert (Ignore == false && "init list ignored"); 1078 Ignore = TestAndClearIgnoreImag(); 1079 (void)Ignore; 1080 assert (Ignore == false && "init list ignored"); 1081 1082 if (E->getNumInits() == 2) { 1083 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1084 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1085 return ComplexPairTy(Real, Imag); 1086 } else if (E->getNumInits() == 1) { 1087 return Visit(E->getInit(0)); 1088 } 1089 1090 // Empty init list initializes to null 1091 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1092 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1093 llvm::Type* LTy = CGF.ConvertType(Ty); 1094 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1095 return ComplexPairTy(zeroConstant, zeroConstant); 1096 } 1097 1098 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1099 Address ArgValue = Address::invalid(); 1100 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1101 1102 if (!ArgPtr.isValid()) { 1103 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1104 llvm::Type *EltTy = 1105 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1106 llvm::Value *U = llvm::UndefValue::get(EltTy); 1107 return ComplexPairTy(U, U); 1108 } 1109 1110 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1111 E->getExprLoc()); 1112 } 1113 1114 //===----------------------------------------------------------------------===// 1115 // Entry Point into this File 1116 //===----------------------------------------------------------------------===// 1117 1118 /// EmitComplexExpr - Emit the computation of the specified expression of 1119 /// complex type, ignoring the result. 1120 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1121 bool IgnoreImag) { 1122 assert(E && getComplexType(E->getType()) && 1123 "Invalid complex expression to emit"); 1124 1125 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1126 .Visit(const_cast<Expr *>(E)); 1127 } 1128 1129 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1130 bool isInit) { 1131 assert(E && getComplexType(E->getType()) && 1132 "Invalid complex expression to emit"); 1133 ComplexExprEmitter Emitter(*this); 1134 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1135 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1136 } 1137 1138 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1139 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1140 bool isInit) { 1141 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1142 } 1143 1144 /// EmitLoadOfComplex - Load a complex number from the specified address. 1145 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1146 SourceLocation loc) { 1147 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1148 } 1149 1150 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1151 assert(E->getOpcode() == BO_Assign); 1152 ComplexPairTy Val; // ignored 1153 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1154 if (getLangOpts().OpenMP) 1155 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1156 E->getLHS()); 1157 return LVal; 1158 } 1159 1160 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1161 const ComplexExprEmitter::BinOpInfo &); 1162 1163 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1164 switch (Op) { 1165 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1166 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1167 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1168 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1169 default: 1170 llvm_unreachable("unexpected complex compound assignment"); 1171 } 1172 } 1173 1174 LValue CodeGenFunction:: 1175 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1176 CompoundFunc Op = getComplexOp(E->getOpcode()); 1177 RValue Val; 1178 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1179 } 1180 1181 LValue CodeGenFunction:: 1182 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1183 llvm::Value *&Result) { 1184 CompoundFunc Op = getComplexOp(E->getOpcode()); 1185 RValue Val; 1186 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1187 Result = Val.getScalarVal(); 1188 return Ret; 1189 } 1190