xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprComplex.cpp (revision cc68614da8232d8baaca0ae0d0dd8f890f06623e)
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "ConstantEmitter.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/IR/Metadata.h"
23 #include <algorithm>
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Complex Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
32 
33 /// Return the complex type that we are meant to emit.
34 static const ComplexType *getComplexType(QualType type) {
35   type = type.getCanonicalType();
36   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
37     return comp;
38   } else {
39     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
40   }
41 }
42 
43 namespace  {
44 class ComplexExprEmitter
45   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
46   CodeGenFunction &CGF;
47   CGBuilderTy &Builder;
48   bool IgnoreReal;
49   bool IgnoreImag;
50 public:
51   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
52     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
53   }
54 
55 
56   //===--------------------------------------------------------------------===//
57   //                               Utilities
58   //===--------------------------------------------------------------------===//
59 
60   bool TestAndClearIgnoreReal() {
61     bool I = IgnoreReal;
62     IgnoreReal = false;
63     return I;
64   }
65   bool TestAndClearIgnoreImag() {
66     bool I = IgnoreImag;
67     IgnoreImag = false;
68     return I;
69   }
70 
71   /// EmitLoadOfLValue - Given an expression with complex type that represents a
72   /// value l-value, this method emits the address of the l-value, then loads
73   /// and returns the result.
74   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
75     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
76   }
77 
78   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
79 
80   /// EmitStoreOfComplex - Store the specified real/imag parts into the
81   /// specified value pointer.
82   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
83 
84   /// Emit a cast from complex value Val to DestType.
85   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
86                                          QualType DestType, SourceLocation Loc);
87   /// Emit a cast from scalar value Val to DestType.
88   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
89                                         QualType DestType, SourceLocation Loc);
90 
91   //===--------------------------------------------------------------------===//
92   //                            Visitor Methods
93   //===--------------------------------------------------------------------===//
94 
95   ComplexPairTy Visit(Expr *E) {
96     ApplyDebugLocation DL(CGF, E);
97     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
98   }
99 
100   ComplexPairTy VisitStmt(Stmt *S) {
101     S->dump(llvm::errs(), CGF.getContext());
102     llvm_unreachable("Stmt can't have complex result type!");
103   }
104   ComplexPairTy VisitExpr(Expr *S);
105   ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
106     if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
107       return ComplexPairTy(Result->getAggregateElement(0U),
108                            Result->getAggregateElement(1U));
109     return Visit(E->getSubExpr());
110   }
111   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
112   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     return Visit(GE->getResultExpr());
114   }
115   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
116   ComplexPairTy
117   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
118     return Visit(PE->getReplacement());
119   }
120   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
121     return CGF.EmitCoawaitExpr(*S).getComplexVal();
122   }
123   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
124     return CGF.EmitCoyieldExpr(*S).getComplexVal();
125   }
126   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
127     return Visit(E->getSubExpr());
128   }
129 
130   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
131                              Expr *E) {
132     assert(Constant && "not a constant");
133     if (Constant.isReference())
134       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
135                               E->getExprLoc());
136 
137     llvm::Constant *pair = Constant.getValue();
138     return ComplexPairTy(pair->getAggregateElement(0U),
139                          pair->getAggregateElement(1U));
140   }
141 
142   // l-values.
143   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
144     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
145       return emitConstant(Constant, E);
146     return EmitLoadOfLValue(E);
147   }
148   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
149     return EmitLoadOfLValue(E);
150   }
151   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
152     return CGF.EmitObjCMessageExpr(E).getComplexVal();
153   }
154   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
155   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
156     if (CodeGenFunction::ConstantEmission Constant =
157             CGF.tryEmitAsConstant(ME)) {
158       CGF.EmitIgnoredExpr(ME->getBase());
159       return emitConstant(Constant, ME);
160     }
161     return EmitLoadOfLValue(ME);
162   }
163   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
164     if (E->isGLValue())
165       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
166                               E->getExprLoc());
167     return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
168   }
169 
170   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
171     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
172   }
173 
174   // FIXME: CompoundLiteralExpr
175 
176   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
177   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
178     // Unlike for scalars, we don't have to worry about function->ptr demotion
179     // here.
180     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
181   }
182   ComplexPairTy VisitCastExpr(CastExpr *E) {
183     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
184       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
185     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
186   }
187   ComplexPairTy VisitCallExpr(const CallExpr *E);
188   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
189 
190   // Operators.
191   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
192                                    bool isInc, bool isPre) {
193     LValue LV = CGF.EmitLValue(E->getSubExpr());
194     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
195   }
196   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
197     return VisitPrePostIncDec(E, false, false);
198   }
199   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
200     return VisitPrePostIncDec(E, true, false);
201   }
202   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
203     return VisitPrePostIncDec(E, false, true);
204   }
205   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
206     return VisitPrePostIncDec(E, true, true);
207   }
208   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
209   ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
210     TestAndClearIgnoreReal();
211     TestAndClearIgnoreImag();
212     return Visit(E->getSubExpr());
213   }
214   ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
215   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
216   // LNot,Real,Imag never return complex.
217   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
218     return Visit(E->getSubExpr());
219   }
220   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
221     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
222     return Visit(DAE->getExpr());
223   }
224   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
225     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
226     return Visit(DIE->getExpr());
227   }
228   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
229     CodeGenFunction::RunCleanupsScope Scope(CGF);
230     ComplexPairTy Vals = Visit(E->getSubExpr());
231     // Defend against dominance problems caused by jumps out of expression
232     // evaluation through the shared cleanup block.
233     Scope.ForceCleanup({&Vals.first, &Vals.second});
234     return Vals;
235   }
236   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
237     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
238     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
239     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
240     return ComplexPairTy(Null, Null);
241   }
242   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
243     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
244     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
245     llvm::Constant *Null =
246                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
247     return ComplexPairTy(Null, Null);
248   }
249 
250   struct BinOpInfo {
251     ComplexPairTy LHS;
252     ComplexPairTy RHS;
253     QualType Ty;  // Computation Type.
254   };
255 
256   BinOpInfo EmitBinOps(const BinaryOperator *E);
257   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
258                                   ComplexPairTy (ComplexExprEmitter::*Func)
259                                   (const BinOpInfo &),
260                                   RValue &Val);
261   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
262                                    ComplexPairTy (ComplexExprEmitter::*Func)
263                                    (const BinOpInfo &));
264 
265   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
266   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
267   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
268   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
269 
270   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
271                                         const BinOpInfo &Op);
272 
273   ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
274     return EmitBinAdd(EmitBinOps(E));
275   }
276   ComplexPairTy VisitBinSub(const BinaryOperator *E) {
277     return EmitBinSub(EmitBinOps(E));
278   }
279   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
280     return EmitBinMul(EmitBinOps(E));
281   }
282   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
283     return EmitBinDiv(EmitBinOps(E));
284   }
285 
286   ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
287     return Visit(E->getSemanticForm());
288   }
289 
290   // Compound assignments.
291   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
292     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
293   }
294   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
295     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
296   }
297   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
298     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
299   }
300   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
301     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
302   }
303 
304   // GCC rejects rem/and/or/xor for integer complex.
305   // Logical and/or always return int, never complex.
306 
307   // No comparisons produce a complex result.
308 
309   LValue EmitBinAssignLValue(const BinaryOperator *E,
310                              ComplexPairTy &Val);
311   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
312   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
313 
314 
315   ComplexPairTy
316   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
317   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
318 
319   ComplexPairTy VisitInitListExpr(InitListExpr *E);
320 
321   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
322     return EmitLoadOfLValue(E);
323   }
324 
325   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
326 
327   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
328     return CGF.EmitAtomicExpr(E).getComplexVal();
329   }
330 };
331 }  // end anonymous namespace.
332 
333 //===----------------------------------------------------------------------===//
334 //                                Utilities
335 //===----------------------------------------------------------------------===//
336 
337 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
338                                                  QualType complexType) {
339   return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
340 }
341 
342 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
343                                                  QualType complexType) {
344   return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
345 }
346 
347 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
348 /// load the real and imaginary pieces, returning them as Real/Imag.
349 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
350                                                    SourceLocation loc) {
351   assert(lvalue.isSimple() && "non-simple complex l-value?");
352   if (lvalue.getType()->isAtomicType())
353     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
354 
355   Address SrcPtr = lvalue.getAddress(CGF);
356   bool isVolatile = lvalue.isVolatileQualified();
357 
358   llvm::Value *Real = nullptr, *Imag = nullptr;
359 
360   if (!IgnoreReal || isVolatile) {
361     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
362     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
363   }
364 
365   if (!IgnoreImag || isVolatile) {
366     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
367     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
368   }
369 
370   return ComplexPairTy(Real, Imag);
371 }
372 
373 /// EmitStoreOfComplex - Store the specified real/imag parts into the
374 /// specified value pointer.
375 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
376                                             bool isInit) {
377   if (lvalue.getType()->isAtomicType() ||
378       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
379     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
380 
381   Address Ptr = lvalue.getAddress(CGF);
382   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
383   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
384 
385   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
386   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
387 }
388 
389 
390 
391 //===----------------------------------------------------------------------===//
392 //                            Visitor Methods
393 //===----------------------------------------------------------------------===//
394 
395 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
396   CGF.ErrorUnsupported(E, "complex expression");
397   llvm::Type *EltTy =
398     CGF.ConvertType(getComplexType(E->getType())->getElementType());
399   llvm::Value *U = llvm::UndefValue::get(EltTy);
400   return ComplexPairTy(U, U);
401 }
402 
403 ComplexPairTy ComplexExprEmitter::
404 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
405   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
406   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
407 }
408 
409 
410 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
411   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
412     return EmitLoadOfLValue(E);
413 
414   return CGF.EmitCallExpr(E).getComplexVal();
415 }
416 
417 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
418   CodeGenFunction::StmtExprEvaluation eval(CGF);
419   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
420   assert(RetAlloca.isValid() && "Expected complex return value");
421   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
422                           E->getExprLoc());
423 }
424 
425 /// Emit a cast from complex value Val to DestType.
426 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
427                                                            QualType SrcType,
428                                                            QualType DestType,
429                                                            SourceLocation Loc) {
430   // Get the src/dest element type.
431   SrcType = SrcType->castAs<ComplexType>()->getElementType();
432   DestType = DestType->castAs<ComplexType>()->getElementType();
433 
434   // C99 6.3.1.6: When a value of complex type is converted to another
435   // complex type, both the real and imaginary parts follow the conversion
436   // rules for the corresponding real types.
437   if (Val.first)
438     Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
439   if (Val.second)
440     Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
441   return Val;
442 }
443 
444 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
445                                                           QualType SrcType,
446                                                           QualType DestType,
447                                                           SourceLocation Loc) {
448   // Convert the input element to the element type of the complex.
449   DestType = DestType->castAs<ComplexType>()->getElementType();
450   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
451 
452   // Return (realval, 0).
453   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
454 }
455 
456 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
457                                            QualType DestTy) {
458   switch (CK) {
459   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
460 
461   // Atomic to non-atomic casts may be more than a no-op for some platforms and
462   // for some types.
463   case CK_AtomicToNonAtomic:
464   case CK_NonAtomicToAtomic:
465   case CK_NoOp:
466   case CK_LValueToRValue:
467   case CK_UserDefinedConversion:
468     return Visit(Op);
469 
470   case CK_LValueBitCast: {
471     LValue origLV = CGF.EmitLValue(Op);
472     Address V = origLV.getAddress(CGF);
473     V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
474     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
475   }
476 
477   case CK_LValueToRValueBitCast: {
478     LValue SourceLVal = CGF.EmitLValue(Op);
479     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
480                                                 CGF.ConvertTypeForMem(DestTy));
481     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
482     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
483     return EmitLoadOfLValue(DestLV, Op->getExprLoc());
484   }
485 
486   case CK_BitCast:
487   case CK_BaseToDerived:
488   case CK_DerivedToBase:
489   case CK_UncheckedDerivedToBase:
490   case CK_Dynamic:
491   case CK_ToUnion:
492   case CK_ArrayToPointerDecay:
493   case CK_FunctionToPointerDecay:
494   case CK_NullToPointer:
495   case CK_NullToMemberPointer:
496   case CK_BaseToDerivedMemberPointer:
497   case CK_DerivedToBaseMemberPointer:
498   case CK_MemberPointerToBoolean:
499   case CK_ReinterpretMemberPointer:
500   case CK_ConstructorConversion:
501   case CK_IntegralToPointer:
502   case CK_PointerToIntegral:
503   case CK_PointerToBoolean:
504   case CK_ToVoid:
505   case CK_VectorSplat:
506   case CK_IntegralCast:
507   case CK_BooleanToSignedIntegral:
508   case CK_IntegralToBoolean:
509   case CK_IntegralToFloating:
510   case CK_FloatingToIntegral:
511   case CK_FloatingToBoolean:
512   case CK_FloatingCast:
513   case CK_CPointerToObjCPointerCast:
514   case CK_BlockPointerToObjCPointerCast:
515   case CK_AnyPointerToBlockPointerCast:
516   case CK_ObjCObjectLValueCast:
517   case CK_FloatingComplexToReal:
518   case CK_FloatingComplexToBoolean:
519   case CK_IntegralComplexToReal:
520   case CK_IntegralComplexToBoolean:
521   case CK_ARCProduceObject:
522   case CK_ARCConsumeObject:
523   case CK_ARCReclaimReturnedObject:
524   case CK_ARCExtendBlockObject:
525   case CK_CopyAndAutoreleaseBlockObject:
526   case CK_BuiltinFnToFnPtr:
527   case CK_ZeroToOCLOpaqueType:
528   case CK_AddressSpaceConversion:
529   case CK_IntToOCLSampler:
530   case CK_FloatingToFixedPoint:
531   case CK_FixedPointToFloating:
532   case CK_FixedPointCast:
533   case CK_FixedPointToBoolean:
534   case CK_FixedPointToIntegral:
535   case CK_IntegralToFixedPoint:
536   case CK_MatrixCast:
537     llvm_unreachable("invalid cast kind for complex value");
538 
539   case CK_FloatingRealToComplex:
540   case CK_IntegralRealToComplex: {
541     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
542     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
543                                    DestTy, Op->getExprLoc());
544   }
545 
546   case CK_FloatingComplexCast:
547   case CK_FloatingComplexToIntegralComplex:
548   case CK_IntegralComplexCast:
549   case CK_IntegralComplexToFloatingComplex: {
550     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
551     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
552                                     Op->getExprLoc());
553   }
554   }
555 
556   llvm_unreachable("unknown cast resulting in complex value");
557 }
558 
559 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
560   TestAndClearIgnoreReal();
561   TestAndClearIgnoreImag();
562   ComplexPairTy Op = Visit(E->getSubExpr());
563 
564   llvm::Value *ResR, *ResI;
565   if (Op.first->getType()->isFloatingPointTy()) {
566     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
567     ResI = Builder.CreateFNeg(Op.second, "neg.i");
568   } else {
569     ResR = Builder.CreateNeg(Op.first,  "neg.r");
570     ResI = Builder.CreateNeg(Op.second, "neg.i");
571   }
572   return ComplexPairTy(ResR, ResI);
573 }
574 
575 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
576   TestAndClearIgnoreReal();
577   TestAndClearIgnoreImag();
578   // ~(a+ib) = a + i*-b
579   ComplexPairTy Op = Visit(E->getSubExpr());
580   llvm::Value *ResI;
581   if (Op.second->getType()->isFloatingPointTy())
582     ResI = Builder.CreateFNeg(Op.second, "conj.i");
583   else
584     ResI = Builder.CreateNeg(Op.second, "conj.i");
585 
586   return ComplexPairTy(Op.first, ResI);
587 }
588 
589 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
590   llvm::Value *ResR, *ResI;
591 
592   if (Op.LHS.first->getType()->isFloatingPointTy()) {
593     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
594     if (Op.LHS.second && Op.RHS.second)
595       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
596     else
597       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
598     assert(ResI && "Only one operand may be real!");
599   } else {
600     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
601     assert(Op.LHS.second && Op.RHS.second &&
602            "Both operands of integer complex operators must be complex!");
603     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
604   }
605   return ComplexPairTy(ResR, ResI);
606 }
607 
608 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
609   llvm::Value *ResR, *ResI;
610   if (Op.LHS.first->getType()->isFloatingPointTy()) {
611     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
612     if (Op.LHS.second && Op.RHS.second)
613       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
614     else
615       ResI = Op.LHS.second ? Op.LHS.second
616                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
617     assert(ResI && "Only one operand may be real!");
618   } else {
619     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
620     assert(Op.LHS.second && Op.RHS.second &&
621            "Both operands of integer complex operators must be complex!");
622     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
623   }
624   return ComplexPairTy(ResR, ResI);
625 }
626 
627 /// Emit a libcall for a binary operation on complex types.
628 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
629                                                           const BinOpInfo &Op) {
630   CallArgList Args;
631   Args.add(RValue::get(Op.LHS.first),
632            Op.Ty->castAs<ComplexType>()->getElementType());
633   Args.add(RValue::get(Op.LHS.second),
634            Op.Ty->castAs<ComplexType>()->getElementType());
635   Args.add(RValue::get(Op.RHS.first),
636            Op.Ty->castAs<ComplexType>()->getElementType());
637   Args.add(RValue::get(Op.RHS.second),
638            Op.Ty->castAs<ComplexType>()->getElementType());
639 
640   // We *must* use the full CG function call building logic here because the
641   // complex type has special ABI handling. We also should not forget about
642   // special calling convention which may be used for compiler builtins.
643 
644   // We create a function qualified type to state that this call does not have
645   // any exceptions.
646   FunctionProtoType::ExtProtoInfo EPI;
647   EPI = EPI.withExceptionSpec(
648       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
649   SmallVector<QualType, 4> ArgsQTys(
650       4, Op.Ty->castAs<ComplexType>()->getElementType());
651   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
652   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
653       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
654 
655   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
656   llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
657       FTy, LibCallName, llvm::AttributeList(), true);
658   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
659 
660   llvm::CallBase *Call;
661   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
662   Call->setCallingConv(CGF.CGM.getRuntimeCC());
663   return Res.getComplexVal();
664 }
665 
666 /// Lookup the libcall name for a given floating point type complex
667 /// multiply.
668 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
669   switch (Ty->getTypeID()) {
670   default:
671     llvm_unreachable("Unsupported floating point type!");
672   case llvm::Type::HalfTyID:
673     return "__mulhc3";
674   case llvm::Type::FloatTyID:
675     return "__mulsc3";
676   case llvm::Type::DoubleTyID:
677     return "__muldc3";
678   case llvm::Type::PPC_FP128TyID:
679     return "__multc3";
680   case llvm::Type::X86_FP80TyID:
681     return "__mulxc3";
682   case llvm::Type::FP128TyID:
683     return "__multc3";
684   }
685 }
686 
687 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
688 // typed values.
689 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
690   using llvm::Value;
691   Value *ResR, *ResI;
692   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
693 
694   if (Op.LHS.first->getType()->isFloatingPointTy()) {
695     // The general formulation is:
696     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
697     //
698     // But we can fold away components which would be zero due to a real
699     // operand according to C11 Annex G.5.1p2.
700     // FIXME: C11 also provides for imaginary types which would allow folding
701     // still more of this within the type system.
702 
703     if (Op.LHS.second && Op.RHS.second) {
704       // If both operands are complex, emit the core math directly, and then
705       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
706       // to carefully re-compute the correct infinity representation if
707       // possible. The expectation is that the presence of NaNs here is
708       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
709       // This is good, because the libcall re-computes the core multiplication
710       // exactly the same as we do here and re-tests for NaNs in order to be
711       // a generic complex*complex libcall.
712 
713       // First compute the four products.
714       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
715       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
716       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
717       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
718 
719       // The real part is the difference of the first two, the imaginary part is
720       // the sum of the second.
721       ResR = Builder.CreateFSub(AC, BD, "mul_r");
722       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
723 
724       // Emit the test for the real part becoming NaN and create a branch to
725       // handle it. We test for NaN by comparing the number to itself.
726       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
727       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
728       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
729       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
730       llvm::BasicBlock *OrigBB = Branch->getParent();
731 
732       // Give hint that we very much don't expect to see NaNs.
733       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
734       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
735       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
736 
737       // Now test the imaginary part and create its branch.
738       CGF.EmitBlock(INaNBB);
739       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
740       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
741       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
742       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
743 
744       // Now emit the libcall on this slowest of the slow paths.
745       CGF.EmitBlock(LibCallBB);
746       Value *LibCallR, *LibCallI;
747       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
748           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
749       Builder.CreateBr(ContBB);
750 
751       // Finally continue execution by phi-ing together the different
752       // computation paths.
753       CGF.EmitBlock(ContBB);
754       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
755       RealPHI->addIncoming(ResR, OrigBB);
756       RealPHI->addIncoming(ResR, INaNBB);
757       RealPHI->addIncoming(LibCallR, LibCallBB);
758       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
759       ImagPHI->addIncoming(ResI, OrigBB);
760       ImagPHI->addIncoming(ResI, INaNBB);
761       ImagPHI->addIncoming(LibCallI, LibCallBB);
762       return ComplexPairTy(RealPHI, ImagPHI);
763     }
764     assert((Op.LHS.second || Op.RHS.second) &&
765            "At least one operand must be complex!");
766 
767     // If either of the operands is a real rather than a complex, the
768     // imaginary component is ignored when computing the real component of the
769     // result.
770     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
771 
772     ResI = Op.LHS.second
773                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
774                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
775   } else {
776     assert(Op.LHS.second && Op.RHS.second &&
777            "Both operands of integer complex operators must be complex!");
778     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
779     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
780     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
781 
782     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
783     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
784     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
785   }
786   return ComplexPairTy(ResR, ResI);
787 }
788 
789 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
790 // typed values.
791 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
792   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
793   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
794 
795   llvm::Value *DSTr, *DSTi;
796   if (LHSr->getType()->isFloatingPointTy()) {
797     // If we have a complex operand on the RHS and FastMath is not allowed, we
798     // delegate to a libcall to handle all of the complexities and minimize
799     // underflow/overflow cases. When FastMath is allowed we construct the
800     // divide inline using the same algorithm as for integer operands.
801     //
802     // FIXME: We would be able to avoid the libcall in many places if we
803     // supported imaginary types in addition to complex types.
804     if (RHSi && !CGF.getLangOpts().FastMath) {
805       BinOpInfo LibCallOp = Op;
806       // If LHS was a real, supply a null imaginary part.
807       if (!LHSi)
808         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
809 
810       switch (LHSr->getType()->getTypeID()) {
811       default:
812         llvm_unreachable("Unsupported floating point type!");
813       case llvm::Type::HalfTyID:
814         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
815       case llvm::Type::FloatTyID:
816         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
817       case llvm::Type::DoubleTyID:
818         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
819       case llvm::Type::PPC_FP128TyID:
820         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
821       case llvm::Type::X86_FP80TyID:
822         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
823       case llvm::Type::FP128TyID:
824         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
825       }
826     } else if (RHSi) {
827       if (!LHSi)
828         LHSi = llvm::Constant::getNullValue(RHSi->getType());
829 
830       // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
831       llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
832       llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
833       llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
834 
835       llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
836       llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
837       llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
838 
839       llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
840       llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
841       llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
842 
843       DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
844       DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
845     } else {
846       assert(LHSi && "Can have at most one non-complex operand!");
847 
848       DSTr = Builder.CreateFDiv(LHSr, RHSr);
849       DSTi = Builder.CreateFDiv(LHSi, RHSr);
850     }
851   } else {
852     assert(Op.LHS.second && Op.RHS.second &&
853            "Both operands of integer complex operators must be complex!");
854     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
855     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
856     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
857     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
858 
859     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
860     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
861     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
862 
863     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
864     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
865     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
866 
867     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
868       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
869       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
870     } else {
871       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
872       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
873     }
874   }
875 
876   return ComplexPairTy(DSTr, DSTi);
877 }
878 
879 ComplexExprEmitter::BinOpInfo
880 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
881   TestAndClearIgnoreReal();
882   TestAndClearIgnoreImag();
883   BinOpInfo Ops;
884   if (E->getLHS()->getType()->isRealFloatingType())
885     Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
886   else
887     Ops.LHS = Visit(E->getLHS());
888   if (E->getRHS()->getType()->isRealFloatingType())
889     Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
890   else
891     Ops.RHS = Visit(E->getRHS());
892 
893   Ops.Ty = E->getType();
894   return Ops;
895 }
896 
897 
898 LValue ComplexExprEmitter::
899 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
900           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
901                          RValue &Val) {
902   TestAndClearIgnoreReal();
903   TestAndClearIgnoreImag();
904   QualType LHSTy = E->getLHS()->getType();
905   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
906     LHSTy = AT->getValueType();
907 
908   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
909   BinOpInfo OpInfo;
910 
911   // Load the RHS and LHS operands.
912   // __block variables need to have the rhs evaluated first, plus this should
913   // improve codegen a little.
914   OpInfo.Ty = E->getComputationResultType();
915   QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
916 
917   // The RHS should have been converted to the computation type.
918   if (E->getRHS()->getType()->isRealFloatingType()) {
919     assert(
920         CGF.getContext()
921             .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
922     OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
923   } else {
924     assert(CGF.getContext()
925                .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
926     OpInfo.RHS = Visit(E->getRHS());
927   }
928 
929   LValue LHS = CGF.EmitLValue(E->getLHS());
930 
931   // Load from the l-value and convert it.
932   SourceLocation Loc = E->getExprLoc();
933   if (LHSTy->isAnyComplexType()) {
934     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
935     OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
936   } else {
937     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
938     // For floating point real operands we can directly pass the scalar form
939     // to the binary operator emission and potentially get more efficient code.
940     if (LHSTy->isRealFloatingType()) {
941       if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
942         LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
943       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
944     } else {
945       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
946     }
947   }
948 
949   // Expand the binary operator.
950   ComplexPairTy Result = (this->*Func)(OpInfo);
951 
952   // Truncate the result and store it into the LHS lvalue.
953   if (LHSTy->isAnyComplexType()) {
954     ComplexPairTy ResVal =
955         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
956     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
957     Val = RValue::getComplex(ResVal);
958   } else {
959     llvm::Value *ResVal =
960         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
961     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
962     Val = RValue::get(ResVal);
963   }
964 
965   return LHS;
966 }
967 
968 // Compound assignments.
969 ComplexPairTy ComplexExprEmitter::
970 EmitCompoundAssign(const CompoundAssignOperator *E,
971                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
972   RValue Val;
973   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
974 
975   // The result of an assignment in C is the assigned r-value.
976   if (!CGF.getLangOpts().CPlusPlus)
977     return Val.getComplexVal();
978 
979   // If the lvalue is non-volatile, return the computed value of the assignment.
980   if (!LV.isVolatileQualified())
981     return Val.getComplexVal();
982 
983   return EmitLoadOfLValue(LV, E->getExprLoc());
984 }
985 
986 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
987                                                ComplexPairTy &Val) {
988   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
989                                                  E->getRHS()->getType()) &&
990          "Invalid assignment");
991   TestAndClearIgnoreReal();
992   TestAndClearIgnoreImag();
993 
994   // Emit the RHS.  __block variables need the RHS evaluated first.
995   Val = Visit(E->getRHS());
996 
997   // Compute the address to store into.
998   LValue LHS = CGF.EmitLValue(E->getLHS());
999 
1000   // Store the result value into the LHS lvalue.
1001   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
1002 
1003   return LHS;
1004 }
1005 
1006 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1007   ComplexPairTy Val;
1008   LValue LV = EmitBinAssignLValue(E, Val);
1009 
1010   // The result of an assignment in C is the assigned r-value.
1011   if (!CGF.getLangOpts().CPlusPlus)
1012     return Val;
1013 
1014   // If the lvalue is non-volatile, return the computed value of the assignment.
1015   if (!LV.isVolatileQualified())
1016     return Val;
1017 
1018   return EmitLoadOfLValue(LV, E->getExprLoc());
1019 }
1020 
1021 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1022   CGF.EmitIgnoredExpr(E->getLHS());
1023   return Visit(E->getRHS());
1024 }
1025 
1026 ComplexPairTy ComplexExprEmitter::
1027 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1028   TestAndClearIgnoreReal();
1029   TestAndClearIgnoreImag();
1030   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1031   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1032   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1033 
1034   // Bind the common expression if necessary.
1035   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1036 
1037 
1038   CodeGenFunction::ConditionalEvaluation eval(CGF);
1039   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1040                            CGF.getProfileCount(E));
1041 
1042   eval.begin(CGF);
1043   CGF.EmitBlock(LHSBlock);
1044   CGF.incrementProfileCounter(E);
1045   ComplexPairTy LHS = Visit(E->getTrueExpr());
1046   LHSBlock = Builder.GetInsertBlock();
1047   CGF.EmitBranch(ContBlock);
1048   eval.end(CGF);
1049 
1050   eval.begin(CGF);
1051   CGF.EmitBlock(RHSBlock);
1052   ComplexPairTy RHS = Visit(E->getFalseExpr());
1053   RHSBlock = Builder.GetInsertBlock();
1054   CGF.EmitBlock(ContBlock);
1055   eval.end(CGF);
1056 
1057   // Create a PHI node for the real part.
1058   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1059   RealPN->addIncoming(LHS.first, LHSBlock);
1060   RealPN->addIncoming(RHS.first, RHSBlock);
1061 
1062   // Create a PHI node for the imaginary part.
1063   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1064   ImagPN->addIncoming(LHS.second, LHSBlock);
1065   ImagPN->addIncoming(RHS.second, RHSBlock);
1066 
1067   return ComplexPairTy(RealPN, ImagPN);
1068 }
1069 
1070 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1071   return Visit(E->getChosenSubExpr());
1072 }
1073 
1074 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1075     bool Ignore = TestAndClearIgnoreReal();
1076     (void)Ignore;
1077     assert (Ignore == false && "init list ignored");
1078     Ignore = TestAndClearIgnoreImag();
1079     (void)Ignore;
1080     assert (Ignore == false && "init list ignored");
1081 
1082   if (E->getNumInits() == 2) {
1083     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1084     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1085     return ComplexPairTy(Real, Imag);
1086   } else if (E->getNumInits() == 1) {
1087     return Visit(E->getInit(0));
1088   }
1089 
1090   // Empty init list initializes to null
1091   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1092   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1093   llvm::Type* LTy = CGF.ConvertType(Ty);
1094   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1095   return ComplexPairTy(zeroConstant, zeroConstant);
1096 }
1097 
1098 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1099   Address ArgValue = Address::invalid();
1100   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1101 
1102   if (!ArgPtr.isValid()) {
1103     CGF.ErrorUnsupported(E, "complex va_arg expression");
1104     llvm::Type *EltTy =
1105       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1106     llvm::Value *U = llvm::UndefValue::get(EltTy);
1107     return ComplexPairTy(U, U);
1108   }
1109 
1110   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1111                           E->getExprLoc());
1112 }
1113 
1114 //===----------------------------------------------------------------------===//
1115 //                         Entry Point into this File
1116 //===----------------------------------------------------------------------===//
1117 
1118 /// EmitComplexExpr - Emit the computation of the specified expression of
1119 /// complex type, ignoring the result.
1120 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1121                                                bool IgnoreImag) {
1122   assert(E && getComplexType(E->getType()) &&
1123          "Invalid complex expression to emit");
1124 
1125   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1126       .Visit(const_cast<Expr *>(E));
1127 }
1128 
1129 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1130                                                 bool isInit) {
1131   assert(E && getComplexType(E->getType()) &&
1132          "Invalid complex expression to emit");
1133   ComplexExprEmitter Emitter(*this);
1134   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1135   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1136 }
1137 
1138 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1139 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1140                                          bool isInit) {
1141   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1142 }
1143 
1144 /// EmitLoadOfComplex - Load a complex number from the specified address.
1145 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1146                                                  SourceLocation loc) {
1147   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1148 }
1149 
1150 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1151   assert(E->getOpcode() == BO_Assign);
1152   ComplexPairTy Val; // ignored
1153   LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1154   if (getLangOpts().OpenMP)
1155     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1156                                                               E->getLHS());
1157   return LVal;
1158 }
1159 
1160 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1161     const ComplexExprEmitter::BinOpInfo &);
1162 
1163 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1164   switch (Op) {
1165   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1166   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1167   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1168   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1169   default:
1170     llvm_unreachable("unexpected complex compound assignment");
1171   }
1172 }
1173 
1174 LValue CodeGenFunction::
1175 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1176   CompoundFunc Op = getComplexOp(E->getOpcode());
1177   RValue Val;
1178   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1179 }
1180 
1181 LValue CodeGenFunction::
1182 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1183                                     llvm::Value *&Result) {
1184   CompoundFunc Op = getComplexOp(E->getOpcode());
1185   RValue Val;
1186   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1187   Result = Val.getScalarVal();
1188   return Ret;
1189 }
1190