xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprComplex.cpp (revision c1d255d3ffdbe447de3ab875bf4e7d7accc5bfc5)
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "ConstantEmitter.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/IR/Metadata.h"
23 #include <algorithm>
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Complex Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
32 
33 /// Return the complex type that we are meant to emit.
34 static const ComplexType *getComplexType(QualType type) {
35   type = type.getCanonicalType();
36   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
37     return comp;
38   } else {
39     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
40   }
41 }
42 
43 namespace  {
44 class ComplexExprEmitter
45   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
46   CodeGenFunction &CGF;
47   CGBuilderTy &Builder;
48   bool IgnoreReal;
49   bool IgnoreImag;
50 public:
51   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
52     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
53   }
54 
55 
56   //===--------------------------------------------------------------------===//
57   //                               Utilities
58   //===--------------------------------------------------------------------===//
59 
60   bool TestAndClearIgnoreReal() {
61     bool I = IgnoreReal;
62     IgnoreReal = false;
63     return I;
64   }
65   bool TestAndClearIgnoreImag() {
66     bool I = IgnoreImag;
67     IgnoreImag = false;
68     return I;
69   }
70 
71   /// EmitLoadOfLValue - Given an expression with complex type that represents a
72   /// value l-value, this method emits the address of the l-value, then loads
73   /// and returns the result.
74   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
75     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
76   }
77 
78   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
79 
80   /// EmitStoreOfComplex - Store the specified real/imag parts into the
81   /// specified value pointer.
82   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
83 
84   /// Emit a cast from complex value Val to DestType.
85   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
86                                          QualType DestType, SourceLocation Loc);
87   /// Emit a cast from scalar value Val to DestType.
88   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
89                                         QualType DestType, SourceLocation Loc);
90 
91   //===--------------------------------------------------------------------===//
92   //                            Visitor Methods
93   //===--------------------------------------------------------------------===//
94 
95   ComplexPairTy Visit(Expr *E) {
96     ApplyDebugLocation DL(CGF, E);
97     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
98   }
99 
100   ComplexPairTy VisitStmt(Stmt *S) {
101     S->dump(llvm::errs(), CGF.getContext());
102     llvm_unreachable("Stmt can't have complex result type!");
103   }
104   ComplexPairTy VisitExpr(Expr *S);
105   ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
106     if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
107       return ComplexPairTy(Result->getAggregateElement(0U),
108                            Result->getAggregateElement(1U));
109     return Visit(E->getSubExpr());
110   }
111   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
112   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     return Visit(GE->getResultExpr());
114   }
115   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
116   ComplexPairTy
117   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
118     return Visit(PE->getReplacement());
119   }
120   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
121     return CGF.EmitCoawaitExpr(*S).getComplexVal();
122   }
123   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
124     return CGF.EmitCoyieldExpr(*S).getComplexVal();
125   }
126   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
127     return Visit(E->getSubExpr());
128   }
129 
130   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
131                              Expr *E) {
132     assert(Constant && "not a constant");
133     if (Constant.isReference())
134       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
135                               E->getExprLoc());
136 
137     llvm::Constant *pair = Constant.getValue();
138     return ComplexPairTy(pair->getAggregateElement(0U),
139                          pair->getAggregateElement(1U));
140   }
141 
142   // l-values.
143   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
144     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
145       return emitConstant(Constant, E);
146     return EmitLoadOfLValue(E);
147   }
148   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
149     return EmitLoadOfLValue(E);
150   }
151   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
152     return CGF.EmitObjCMessageExpr(E).getComplexVal();
153   }
154   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
155   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
156     if (CodeGenFunction::ConstantEmission Constant =
157             CGF.tryEmitAsConstant(ME)) {
158       CGF.EmitIgnoredExpr(ME->getBase());
159       return emitConstant(Constant, ME);
160     }
161     return EmitLoadOfLValue(ME);
162   }
163   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
164     if (E->isGLValue())
165       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
166                               E->getExprLoc());
167     return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
168   }
169 
170   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
171     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
172   }
173 
174   // FIXME: CompoundLiteralExpr
175 
176   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
177   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
178     // Unlike for scalars, we don't have to worry about function->ptr demotion
179     // here.
180     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
181   }
182   ComplexPairTy VisitCastExpr(CastExpr *E) {
183     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
184       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
185     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
186   }
187   ComplexPairTy VisitCallExpr(const CallExpr *E);
188   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
189 
190   // Operators.
191   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
192                                    bool isInc, bool isPre) {
193     LValue LV = CGF.EmitLValue(E->getSubExpr());
194     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
195   }
196   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
197     return VisitPrePostIncDec(E, false, false);
198   }
199   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
200     return VisitPrePostIncDec(E, true, false);
201   }
202   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
203     return VisitPrePostIncDec(E, false, true);
204   }
205   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
206     return VisitPrePostIncDec(E, true, true);
207   }
208   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
209   ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
210     TestAndClearIgnoreReal();
211     TestAndClearIgnoreImag();
212     return Visit(E->getSubExpr());
213   }
214   ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
215   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
216   // LNot,Real,Imag never return complex.
217   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
218     return Visit(E->getSubExpr());
219   }
220   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
221     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
222     return Visit(DAE->getExpr());
223   }
224   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
225     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
226     return Visit(DIE->getExpr());
227   }
228   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
229     CodeGenFunction::RunCleanupsScope Scope(CGF);
230     ComplexPairTy Vals = Visit(E->getSubExpr());
231     // Defend against dominance problems caused by jumps out of expression
232     // evaluation through the shared cleanup block.
233     Scope.ForceCleanup({&Vals.first, &Vals.second});
234     return Vals;
235   }
236   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
237     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
238     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
239     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
240     return ComplexPairTy(Null, Null);
241   }
242   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
243     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
244     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
245     llvm::Constant *Null =
246                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
247     return ComplexPairTy(Null, Null);
248   }
249 
250   struct BinOpInfo {
251     ComplexPairTy LHS;
252     ComplexPairTy RHS;
253     QualType Ty;  // Computation Type.
254   };
255 
256   BinOpInfo EmitBinOps(const BinaryOperator *E);
257   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
258                                   ComplexPairTy (ComplexExprEmitter::*Func)
259                                   (const BinOpInfo &),
260                                   RValue &Val);
261   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
262                                    ComplexPairTy (ComplexExprEmitter::*Func)
263                                    (const BinOpInfo &));
264 
265   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
266   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
267   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
268   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
269 
270   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
271                                         const BinOpInfo &Op);
272 
273   ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
274     return EmitBinAdd(EmitBinOps(E));
275   }
276   ComplexPairTy VisitBinSub(const BinaryOperator *E) {
277     return EmitBinSub(EmitBinOps(E));
278   }
279   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
280     return EmitBinMul(EmitBinOps(E));
281   }
282   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
283     return EmitBinDiv(EmitBinOps(E));
284   }
285 
286   ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
287     return Visit(E->getSemanticForm());
288   }
289 
290   // Compound assignments.
291   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
292     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
293   }
294   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
295     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
296   }
297   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
298     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
299   }
300   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
301     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
302   }
303 
304   // GCC rejects rem/and/or/xor for integer complex.
305   // Logical and/or always return int, never complex.
306 
307   // No comparisons produce a complex result.
308 
309   LValue EmitBinAssignLValue(const BinaryOperator *E,
310                              ComplexPairTy &Val);
311   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
312   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
313 
314 
315   ComplexPairTy
316   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
317   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
318 
319   ComplexPairTy VisitInitListExpr(InitListExpr *E);
320 
321   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
322     return EmitLoadOfLValue(E);
323   }
324 
325   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
326 
327   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
328     return CGF.EmitAtomicExpr(E).getComplexVal();
329   }
330 };
331 }  // end anonymous namespace.
332 
333 //===----------------------------------------------------------------------===//
334 //                                Utilities
335 //===----------------------------------------------------------------------===//
336 
337 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
338                                                  QualType complexType) {
339   return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
340 }
341 
342 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
343                                                  QualType complexType) {
344   return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
345 }
346 
347 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
348 /// load the real and imaginary pieces, returning them as Real/Imag.
349 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
350                                                    SourceLocation loc) {
351   assert(lvalue.isSimple() && "non-simple complex l-value?");
352   if (lvalue.getType()->isAtomicType())
353     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
354 
355   Address SrcPtr = lvalue.getAddress(CGF);
356   bool isVolatile = lvalue.isVolatileQualified();
357 
358   llvm::Value *Real = nullptr, *Imag = nullptr;
359 
360   if (!IgnoreReal || isVolatile) {
361     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
362     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
363   }
364 
365   if (!IgnoreImag || isVolatile) {
366     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
367     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
368   }
369 
370   return ComplexPairTy(Real, Imag);
371 }
372 
373 /// EmitStoreOfComplex - Store the specified real/imag parts into the
374 /// specified value pointer.
375 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
376                                             bool isInit) {
377   if (lvalue.getType()->isAtomicType() ||
378       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
379     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
380 
381   Address Ptr = lvalue.getAddress(CGF);
382   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
383   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
384 
385   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
386   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
387 }
388 
389 
390 
391 //===----------------------------------------------------------------------===//
392 //                            Visitor Methods
393 //===----------------------------------------------------------------------===//
394 
395 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
396   CGF.ErrorUnsupported(E, "complex expression");
397   llvm::Type *EltTy =
398     CGF.ConvertType(getComplexType(E->getType())->getElementType());
399   llvm::Value *U = llvm::UndefValue::get(EltTy);
400   return ComplexPairTy(U, U);
401 }
402 
403 ComplexPairTy ComplexExprEmitter::
404 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
405   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
406   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
407 }
408 
409 
410 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
411   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
412     return EmitLoadOfLValue(E);
413 
414   return CGF.EmitCallExpr(E).getComplexVal();
415 }
416 
417 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
418   CodeGenFunction::StmtExprEvaluation eval(CGF);
419   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
420   assert(RetAlloca.isValid() && "Expected complex return value");
421   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
422                           E->getExprLoc());
423 }
424 
425 /// Emit a cast from complex value Val to DestType.
426 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
427                                                            QualType SrcType,
428                                                            QualType DestType,
429                                                            SourceLocation Loc) {
430   // Get the src/dest element type.
431   SrcType = SrcType->castAs<ComplexType>()->getElementType();
432   DestType = DestType->castAs<ComplexType>()->getElementType();
433 
434   // C99 6.3.1.6: When a value of complex type is converted to another
435   // complex type, both the real and imaginary parts follow the conversion
436   // rules for the corresponding real types.
437   if (Val.first)
438     Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
439   if (Val.second)
440     Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
441   return Val;
442 }
443 
444 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
445                                                           QualType SrcType,
446                                                           QualType DestType,
447                                                           SourceLocation Loc) {
448   // Convert the input element to the element type of the complex.
449   DestType = DestType->castAs<ComplexType>()->getElementType();
450   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
451 
452   // Return (realval, 0).
453   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
454 }
455 
456 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
457                                            QualType DestTy) {
458   switch (CK) {
459   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
460 
461   // Atomic to non-atomic casts may be more than a no-op for some platforms and
462   // for some types.
463   case CK_AtomicToNonAtomic:
464   case CK_NonAtomicToAtomic:
465   case CK_NoOp:
466   case CK_LValueToRValue:
467   case CK_UserDefinedConversion:
468     return Visit(Op);
469 
470   case CK_LValueBitCast: {
471     LValue origLV = CGF.EmitLValue(Op);
472     Address V = origLV.getAddress(CGF);
473     V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
474     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
475   }
476 
477   case CK_LValueToRValueBitCast: {
478     LValue SourceLVal = CGF.EmitLValue(Op);
479     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
480                                                 CGF.ConvertTypeForMem(DestTy));
481     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
482     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
483     return EmitLoadOfLValue(DestLV, Op->getExprLoc());
484   }
485 
486   case CK_BitCast:
487   case CK_BaseToDerived:
488   case CK_DerivedToBase:
489   case CK_UncheckedDerivedToBase:
490   case CK_Dynamic:
491   case CK_ToUnion:
492   case CK_ArrayToPointerDecay:
493   case CK_FunctionToPointerDecay:
494   case CK_NullToPointer:
495   case CK_NullToMemberPointer:
496   case CK_BaseToDerivedMemberPointer:
497   case CK_DerivedToBaseMemberPointer:
498   case CK_MemberPointerToBoolean:
499   case CK_ReinterpretMemberPointer:
500   case CK_ConstructorConversion:
501   case CK_IntegralToPointer:
502   case CK_PointerToIntegral:
503   case CK_PointerToBoolean:
504   case CK_ToVoid:
505   case CK_VectorSplat:
506   case CK_IntegralCast:
507   case CK_BooleanToSignedIntegral:
508   case CK_IntegralToBoolean:
509   case CK_IntegralToFloating:
510   case CK_FloatingToIntegral:
511   case CK_FloatingToBoolean:
512   case CK_FloatingCast:
513   case CK_CPointerToObjCPointerCast:
514   case CK_BlockPointerToObjCPointerCast:
515   case CK_AnyPointerToBlockPointerCast:
516   case CK_ObjCObjectLValueCast:
517   case CK_FloatingComplexToReal:
518   case CK_FloatingComplexToBoolean:
519   case CK_IntegralComplexToReal:
520   case CK_IntegralComplexToBoolean:
521   case CK_ARCProduceObject:
522   case CK_ARCConsumeObject:
523   case CK_ARCReclaimReturnedObject:
524   case CK_ARCExtendBlockObject:
525   case CK_CopyAndAutoreleaseBlockObject:
526   case CK_BuiltinFnToFnPtr:
527   case CK_ZeroToOCLOpaqueType:
528   case CK_AddressSpaceConversion:
529   case CK_IntToOCLSampler:
530   case CK_FloatingToFixedPoint:
531   case CK_FixedPointToFloating:
532   case CK_FixedPointCast:
533   case CK_FixedPointToBoolean:
534   case CK_FixedPointToIntegral:
535   case CK_IntegralToFixedPoint:
536     llvm_unreachable("invalid cast kind for complex value");
537 
538   case CK_FloatingRealToComplex:
539   case CK_IntegralRealToComplex: {
540     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
541     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
542                                    DestTy, Op->getExprLoc());
543   }
544 
545   case CK_FloatingComplexCast:
546   case CK_FloatingComplexToIntegralComplex:
547   case CK_IntegralComplexCast:
548   case CK_IntegralComplexToFloatingComplex: {
549     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
550     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
551                                     Op->getExprLoc());
552   }
553   }
554 
555   llvm_unreachable("unknown cast resulting in complex value");
556 }
557 
558 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
559   TestAndClearIgnoreReal();
560   TestAndClearIgnoreImag();
561   ComplexPairTy Op = Visit(E->getSubExpr());
562 
563   llvm::Value *ResR, *ResI;
564   if (Op.first->getType()->isFloatingPointTy()) {
565     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
566     ResI = Builder.CreateFNeg(Op.second, "neg.i");
567   } else {
568     ResR = Builder.CreateNeg(Op.first,  "neg.r");
569     ResI = Builder.CreateNeg(Op.second, "neg.i");
570   }
571   return ComplexPairTy(ResR, ResI);
572 }
573 
574 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
575   TestAndClearIgnoreReal();
576   TestAndClearIgnoreImag();
577   // ~(a+ib) = a + i*-b
578   ComplexPairTy Op = Visit(E->getSubExpr());
579   llvm::Value *ResI;
580   if (Op.second->getType()->isFloatingPointTy())
581     ResI = Builder.CreateFNeg(Op.second, "conj.i");
582   else
583     ResI = Builder.CreateNeg(Op.second, "conj.i");
584 
585   return ComplexPairTy(Op.first, ResI);
586 }
587 
588 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
589   llvm::Value *ResR, *ResI;
590 
591   if (Op.LHS.first->getType()->isFloatingPointTy()) {
592     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
593     if (Op.LHS.second && Op.RHS.second)
594       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
595     else
596       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
597     assert(ResI && "Only one operand may be real!");
598   } else {
599     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
600     assert(Op.LHS.second && Op.RHS.second &&
601            "Both operands of integer complex operators must be complex!");
602     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
603   }
604   return ComplexPairTy(ResR, ResI);
605 }
606 
607 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
608   llvm::Value *ResR, *ResI;
609   if (Op.LHS.first->getType()->isFloatingPointTy()) {
610     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
611     if (Op.LHS.second && Op.RHS.second)
612       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
613     else
614       ResI = Op.LHS.second ? Op.LHS.second
615                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
616     assert(ResI && "Only one operand may be real!");
617   } else {
618     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
619     assert(Op.LHS.second && Op.RHS.second &&
620            "Both operands of integer complex operators must be complex!");
621     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
622   }
623   return ComplexPairTy(ResR, ResI);
624 }
625 
626 /// Emit a libcall for a binary operation on complex types.
627 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
628                                                           const BinOpInfo &Op) {
629   CallArgList Args;
630   Args.add(RValue::get(Op.LHS.first),
631            Op.Ty->castAs<ComplexType>()->getElementType());
632   Args.add(RValue::get(Op.LHS.second),
633            Op.Ty->castAs<ComplexType>()->getElementType());
634   Args.add(RValue::get(Op.RHS.first),
635            Op.Ty->castAs<ComplexType>()->getElementType());
636   Args.add(RValue::get(Op.RHS.second),
637            Op.Ty->castAs<ComplexType>()->getElementType());
638 
639   // We *must* use the full CG function call building logic here because the
640   // complex type has special ABI handling. We also should not forget about
641   // special calling convention which may be used for compiler builtins.
642 
643   // We create a function qualified type to state that this call does not have
644   // any exceptions.
645   FunctionProtoType::ExtProtoInfo EPI;
646   EPI = EPI.withExceptionSpec(
647       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
648   SmallVector<QualType, 4> ArgsQTys(
649       4, Op.Ty->castAs<ComplexType>()->getElementType());
650   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
651   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
652       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
653 
654   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
655   llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
656       FTy, LibCallName, llvm::AttributeList(), true);
657   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
658 
659   llvm::CallBase *Call;
660   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
661   Call->setCallingConv(CGF.CGM.getRuntimeCC());
662   return Res.getComplexVal();
663 }
664 
665 /// Lookup the libcall name for a given floating point type complex
666 /// multiply.
667 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
668   switch (Ty->getTypeID()) {
669   default:
670     llvm_unreachable("Unsupported floating point type!");
671   case llvm::Type::HalfTyID:
672     return "__mulhc3";
673   case llvm::Type::FloatTyID:
674     return "__mulsc3";
675   case llvm::Type::DoubleTyID:
676     return "__muldc3";
677   case llvm::Type::PPC_FP128TyID:
678     return "__multc3";
679   case llvm::Type::X86_FP80TyID:
680     return "__mulxc3";
681   case llvm::Type::FP128TyID:
682     return "__multc3";
683   }
684 }
685 
686 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
687 // typed values.
688 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
689   using llvm::Value;
690   Value *ResR, *ResI;
691   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
692 
693   if (Op.LHS.first->getType()->isFloatingPointTy()) {
694     // The general formulation is:
695     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
696     //
697     // But we can fold away components which would be zero due to a real
698     // operand according to C11 Annex G.5.1p2.
699     // FIXME: C11 also provides for imaginary types which would allow folding
700     // still more of this within the type system.
701 
702     if (Op.LHS.second && Op.RHS.second) {
703       // If both operands are complex, emit the core math directly, and then
704       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
705       // to carefully re-compute the correct infinity representation if
706       // possible. The expectation is that the presence of NaNs here is
707       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
708       // This is good, because the libcall re-computes the core multiplication
709       // exactly the same as we do here and re-tests for NaNs in order to be
710       // a generic complex*complex libcall.
711 
712       // First compute the four products.
713       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
714       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
715       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
716       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
717 
718       // The real part is the difference of the first two, the imaginary part is
719       // the sum of the second.
720       ResR = Builder.CreateFSub(AC, BD, "mul_r");
721       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
722 
723       // Emit the test for the real part becoming NaN and create a branch to
724       // handle it. We test for NaN by comparing the number to itself.
725       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
726       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
727       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
728       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
729       llvm::BasicBlock *OrigBB = Branch->getParent();
730 
731       // Give hint that we very much don't expect to see NaNs.
732       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
733       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
734       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
735 
736       // Now test the imaginary part and create its branch.
737       CGF.EmitBlock(INaNBB);
738       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
739       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
740       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
741       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
742 
743       // Now emit the libcall on this slowest of the slow paths.
744       CGF.EmitBlock(LibCallBB);
745       Value *LibCallR, *LibCallI;
746       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
747           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
748       Builder.CreateBr(ContBB);
749 
750       // Finally continue execution by phi-ing together the different
751       // computation paths.
752       CGF.EmitBlock(ContBB);
753       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
754       RealPHI->addIncoming(ResR, OrigBB);
755       RealPHI->addIncoming(ResR, INaNBB);
756       RealPHI->addIncoming(LibCallR, LibCallBB);
757       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
758       ImagPHI->addIncoming(ResI, OrigBB);
759       ImagPHI->addIncoming(ResI, INaNBB);
760       ImagPHI->addIncoming(LibCallI, LibCallBB);
761       return ComplexPairTy(RealPHI, ImagPHI);
762     }
763     assert((Op.LHS.second || Op.RHS.second) &&
764            "At least one operand must be complex!");
765 
766     // If either of the operands is a real rather than a complex, the
767     // imaginary component is ignored when computing the real component of the
768     // result.
769     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
770 
771     ResI = Op.LHS.second
772                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
773                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
774   } else {
775     assert(Op.LHS.second && Op.RHS.second &&
776            "Both operands of integer complex operators must be complex!");
777     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
778     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
779     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
780 
781     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
782     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
783     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
784   }
785   return ComplexPairTy(ResR, ResI);
786 }
787 
788 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
789 // typed values.
790 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
791   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
792   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
793 
794   llvm::Value *DSTr, *DSTi;
795   if (LHSr->getType()->isFloatingPointTy()) {
796     // If we have a complex operand on the RHS and FastMath is not allowed, we
797     // delegate to a libcall to handle all of the complexities and minimize
798     // underflow/overflow cases. When FastMath is allowed we construct the
799     // divide inline using the same algorithm as for integer operands.
800     //
801     // FIXME: We would be able to avoid the libcall in many places if we
802     // supported imaginary types in addition to complex types.
803     if (RHSi && !CGF.getLangOpts().FastMath) {
804       BinOpInfo LibCallOp = Op;
805       // If LHS was a real, supply a null imaginary part.
806       if (!LHSi)
807         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
808 
809       switch (LHSr->getType()->getTypeID()) {
810       default:
811         llvm_unreachable("Unsupported floating point type!");
812       case llvm::Type::HalfTyID:
813         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
814       case llvm::Type::FloatTyID:
815         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
816       case llvm::Type::DoubleTyID:
817         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
818       case llvm::Type::PPC_FP128TyID:
819         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
820       case llvm::Type::X86_FP80TyID:
821         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
822       case llvm::Type::FP128TyID:
823         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
824       }
825     } else if (RHSi) {
826       if (!LHSi)
827         LHSi = llvm::Constant::getNullValue(RHSi->getType());
828 
829       // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
830       llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
831       llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
832       llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
833 
834       llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
835       llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
836       llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
837 
838       llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
839       llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
840       llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
841 
842       DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
843       DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
844     } else {
845       assert(LHSi && "Can have at most one non-complex operand!");
846 
847       DSTr = Builder.CreateFDiv(LHSr, RHSr);
848       DSTi = Builder.CreateFDiv(LHSi, RHSr);
849     }
850   } else {
851     assert(Op.LHS.second && Op.RHS.second &&
852            "Both operands of integer complex operators must be complex!");
853     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
854     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
855     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
856     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
857 
858     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
859     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
860     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
861 
862     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
863     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
864     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
865 
866     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
867       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
868       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
869     } else {
870       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
871       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
872     }
873   }
874 
875   return ComplexPairTy(DSTr, DSTi);
876 }
877 
878 ComplexExprEmitter::BinOpInfo
879 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
880   TestAndClearIgnoreReal();
881   TestAndClearIgnoreImag();
882   BinOpInfo Ops;
883   if (E->getLHS()->getType()->isRealFloatingType())
884     Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
885   else
886     Ops.LHS = Visit(E->getLHS());
887   if (E->getRHS()->getType()->isRealFloatingType())
888     Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
889   else
890     Ops.RHS = Visit(E->getRHS());
891 
892   Ops.Ty = E->getType();
893   return Ops;
894 }
895 
896 
897 LValue ComplexExprEmitter::
898 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
899           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
900                          RValue &Val) {
901   TestAndClearIgnoreReal();
902   TestAndClearIgnoreImag();
903   QualType LHSTy = E->getLHS()->getType();
904   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
905     LHSTy = AT->getValueType();
906 
907   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
908   BinOpInfo OpInfo;
909 
910   // Load the RHS and LHS operands.
911   // __block variables need to have the rhs evaluated first, plus this should
912   // improve codegen a little.
913   OpInfo.Ty = E->getComputationResultType();
914   QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
915 
916   // The RHS should have been converted to the computation type.
917   if (E->getRHS()->getType()->isRealFloatingType()) {
918     assert(
919         CGF.getContext()
920             .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
921     OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
922   } else {
923     assert(CGF.getContext()
924                .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
925     OpInfo.RHS = Visit(E->getRHS());
926   }
927 
928   LValue LHS = CGF.EmitLValue(E->getLHS());
929 
930   // Load from the l-value and convert it.
931   SourceLocation Loc = E->getExprLoc();
932   if (LHSTy->isAnyComplexType()) {
933     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
934     OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
935   } else {
936     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
937     // For floating point real operands we can directly pass the scalar form
938     // to the binary operator emission and potentially get more efficient code.
939     if (LHSTy->isRealFloatingType()) {
940       if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
941         LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
942       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
943     } else {
944       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
945     }
946   }
947 
948   // Expand the binary operator.
949   ComplexPairTy Result = (this->*Func)(OpInfo);
950 
951   // Truncate the result and store it into the LHS lvalue.
952   if (LHSTy->isAnyComplexType()) {
953     ComplexPairTy ResVal =
954         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
955     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
956     Val = RValue::getComplex(ResVal);
957   } else {
958     llvm::Value *ResVal =
959         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
960     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
961     Val = RValue::get(ResVal);
962   }
963 
964   return LHS;
965 }
966 
967 // Compound assignments.
968 ComplexPairTy ComplexExprEmitter::
969 EmitCompoundAssign(const CompoundAssignOperator *E,
970                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
971   RValue Val;
972   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
973 
974   // The result of an assignment in C is the assigned r-value.
975   if (!CGF.getLangOpts().CPlusPlus)
976     return Val.getComplexVal();
977 
978   // If the lvalue is non-volatile, return the computed value of the assignment.
979   if (!LV.isVolatileQualified())
980     return Val.getComplexVal();
981 
982   return EmitLoadOfLValue(LV, E->getExprLoc());
983 }
984 
985 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
986                                                ComplexPairTy &Val) {
987   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
988                                                  E->getRHS()->getType()) &&
989          "Invalid assignment");
990   TestAndClearIgnoreReal();
991   TestAndClearIgnoreImag();
992 
993   // Emit the RHS.  __block variables need the RHS evaluated first.
994   Val = Visit(E->getRHS());
995 
996   // Compute the address to store into.
997   LValue LHS = CGF.EmitLValue(E->getLHS());
998 
999   // Store the result value into the LHS lvalue.
1000   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
1001 
1002   return LHS;
1003 }
1004 
1005 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1006   ComplexPairTy Val;
1007   LValue LV = EmitBinAssignLValue(E, Val);
1008 
1009   // The result of an assignment in C is the assigned r-value.
1010   if (!CGF.getLangOpts().CPlusPlus)
1011     return Val;
1012 
1013   // If the lvalue is non-volatile, return the computed value of the assignment.
1014   if (!LV.isVolatileQualified())
1015     return Val;
1016 
1017   return EmitLoadOfLValue(LV, E->getExprLoc());
1018 }
1019 
1020 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1021   CGF.EmitIgnoredExpr(E->getLHS());
1022   return Visit(E->getRHS());
1023 }
1024 
1025 ComplexPairTy ComplexExprEmitter::
1026 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1027   TestAndClearIgnoreReal();
1028   TestAndClearIgnoreImag();
1029   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1030   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1031   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1032 
1033   // Bind the common expression if necessary.
1034   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1035 
1036 
1037   CodeGenFunction::ConditionalEvaluation eval(CGF);
1038   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1039                            CGF.getProfileCount(E));
1040 
1041   eval.begin(CGF);
1042   CGF.EmitBlock(LHSBlock);
1043   CGF.incrementProfileCounter(E);
1044   ComplexPairTy LHS = Visit(E->getTrueExpr());
1045   LHSBlock = Builder.GetInsertBlock();
1046   CGF.EmitBranch(ContBlock);
1047   eval.end(CGF);
1048 
1049   eval.begin(CGF);
1050   CGF.EmitBlock(RHSBlock);
1051   ComplexPairTy RHS = Visit(E->getFalseExpr());
1052   RHSBlock = Builder.GetInsertBlock();
1053   CGF.EmitBlock(ContBlock);
1054   eval.end(CGF);
1055 
1056   // Create a PHI node for the real part.
1057   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1058   RealPN->addIncoming(LHS.first, LHSBlock);
1059   RealPN->addIncoming(RHS.first, RHSBlock);
1060 
1061   // Create a PHI node for the imaginary part.
1062   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1063   ImagPN->addIncoming(LHS.second, LHSBlock);
1064   ImagPN->addIncoming(RHS.second, RHSBlock);
1065 
1066   return ComplexPairTy(RealPN, ImagPN);
1067 }
1068 
1069 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1070   return Visit(E->getChosenSubExpr());
1071 }
1072 
1073 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1074     bool Ignore = TestAndClearIgnoreReal();
1075     (void)Ignore;
1076     assert (Ignore == false && "init list ignored");
1077     Ignore = TestAndClearIgnoreImag();
1078     (void)Ignore;
1079     assert (Ignore == false && "init list ignored");
1080 
1081   if (E->getNumInits() == 2) {
1082     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1083     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1084     return ComplexPairTy(Real, Imag);
1085   } else if (E->getNumInits() == 1) {
1086     return Visit(E->getInit(0));
1087   }
1088 
1089   // Empty init list initializes to null
1090   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1091   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1092   llvm::Type* LTy = CGF.ConvertType(Ty);
1093   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1094   return ComplexPairTy(zeroConstant, zeroConstant);
1095 }
1096 
1097 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1098   Address ArgValue = Address::invalid();
1099   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1100 
1101   if (!ArgPtr.isValid()) {
1102     CGF.ErrorUnsupported(E, "complex va_arg expression");
1103     llvm::Type *EltTy =
1104       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1105     llvm::Value *U = llvm::UndefValue::get(EltTy);
1106     return ComplexPairTy(U, U);
1107   }
1108 
1109   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1110                           E->getExprLoc());
1111 }
1112 
1113 //===----------------------------------------------------------------------===//
1114 //                         Entry Point into this File
1115 //===----------------------------------------------------------------------===//
1116 
1117 /// EmitComplexExpr - Emit the computation of the specified expression of
1118 /// complex type, ignoring the result.
1119 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1120                                                bool IgnoreImag) {
1121   assert(E && getComplexType(E->getType()) &&
1122          "Invalid complex expression to emit");
1123 
1124   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1125       .Visit(const_cast<Expr *>(E));
1126 }
1127 
1128 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1129                                                 bool isInit) {
1130   assert(E && getComplexType(E->getType()) &&
1131          "Invalid complex expression to emit");
1132   ComplexExprEmitter Emitter(*this);
1133   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1134   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1135 }
1136 
1137 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1138 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1139                                          bool isInit) {
1140   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1141 }
1142 
1143 /// EmitLoadOfComplex - Load a complex number from the specified address.
1144 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1145                                                  SourceLocation loc) {
1146   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1147 }
1148 
1149 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1150   assert(E->getOpcode() == BO_Assign);
1151   ComplexPairTy Val; // ignored
1152   LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1153   if (getLangOpts().OpenMP)
1154     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1155                                                               E->getLHS());
1156   return LVal;
1157 }
1158 
1159 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1160     const ComplexExprEmitter::BinOpInfo &);
1161 
1162 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1163   switch (Op) {
1164   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1165   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1166   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1167   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1168   default:
1169     llvm_unreachable("unexpected complex compound assignment");
1170   }
1171 }
1172 
1173 LValue CodeGenFunction::
1174 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1175   CompoundFunc Op = getComplexOp(E->getOpcode());
1176   RValue Val;
1177   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1178 }
1179 
1180 LValue CodeGenFunction::
1181 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1182                                     llvm::Value *&Result) {
1183   CompoundFunc Op = getComplexOp(E->getOpcode());
1184   RValue Val;
1185   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1186   Result = Val.getScalarVal();
1187   return Ret;
1188 }
1189