1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "ConstantEmitter.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Metadata.h" 23 #include <algorithm> 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Complex Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 32 33 /// Return the complex type that we are meant to emit. 34 static const ComplexType *getComplexType(QualType type) { 35 type = type.getCanonicalType(); 36 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 37 return comp; 38 } else { 39 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 40 } 41 } 42 43 namespace { 44 class ComplexExprEmitter 45 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 46 CodeGenFunction &CGF; 47 CGBuilderTy &Builder; 48 bool IgnoreReal; 49 bool IgnoreImag; 50 public: 51 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 52 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 53 } 54 55 56 //===--------------------------------------------------------------------===// 57 // Utilities 58 //===--------------------------------------------------------------------===// 59 60 bool TestAndClearIgnoreReal() { 61 bool I = IgnoreReal; 62 IgnoreReal = false; 63 return I; 64 } 65 bool TestAndClearIgnoreImag() { 66 bool I = IgnoreImag; 67 IgnoreImag = false; 68 return I; 69 } 70 71 /// EmitLoadOfLValue - Given an expression with complex type that represents a 72 /// value l-value, this method emits the address of the l-value, then loads 73 /// and returns the result. 74 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 75 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 76 } 77 78 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 79 80 /// EmitStoreOfComplex - Store the specified real/imag parts into the 81 /// specified value pointer. 82 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 83 84 /// Emit a cast from complex value Val to DestType. 85 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 86 QualType DestType, SourceLocation Loc); 87 /// Emit a cast from scalar value Val to DestType. 88 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 89 QualType DestType, SourceLocation Loc); 90 91 //===--------------------------------------------------------------------===// 92 // Visitor Methods 93 //===--------------------------------------------------------------------===// 94 95 ComplexPairTy Visit(Expr *E) { 96 ApplyDebugLocation DL(CGF, E); 97 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 98 } 99 100 ComplexPairTy VisitStmt(Stmt *S) { 101 S->dump(llvm::errs(), CGF.getContext()); 102 llvm_unreachable("Stmt can't have complex result type!"); 103 } 104 ComplexPairTy VisitExpr(Expr *S); 105 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 106 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) 107 return ComplexPairTy(Result->getAggregateElement(0U), 108 Result->getAggregateElement(1U)); 109 return Visit(E->getSubExpr()); 110 } 111 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 112 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 return Visit(GE->getResultExpr()); 114 } 115 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 116 ComplexPairTy 117 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 118 return Visit(PE->getReplacement()); 119 } 120 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 121 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 122 } 123 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 124 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 125 } 126 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 127 return Visit(E->getSubExpr()); 128 } 129 130 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 131 Expr *E) { 132 assert(Constant && "not a constant"); 133 if (Constant.isReference()) 134 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 135 E->getExprLoc()); 136 137 llvm::Constant *pair = Constant.getValue(); 138 return ComplexPairTy(pair->getAggregateElement(0U), 139 pair->getAggregateElement(1U)); 140 } 141 142 // l-values. 143 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 144 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 145 return emitConstant(Constant, E); 146 return EmitLoadOfLValue(E); 147 } 148 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 149 return EmitLoadOfLValue(E); 150 } 151 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 152 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 153 } 154 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 155 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 156 if (CodeGenFunction::ConstantEmission Constant = 157 CGF.tryEmitAsConstant(ME)) { 158 CGF.EmitIgnoredExpr(ME->getBase()); 159 return emitConstant(Constant, ME); 160 } 161 return EmitLoadOfLValue(ME); 162 } 163 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 164 if (E->isGLValue()) 165 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 166 E->getExprLoc()); 167 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 168 } 169 170 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 171 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 172 } 173 174 // FIXME: CompoundLiteralExpr 175 176 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 177 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 178 // Unlike for scalars, we don't have to worry about function->ptr demotion 179 // here. 180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181 } 182 ComplexPairTy VisitCastExpr(CastExpr *E) { 183 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 184 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 185 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 186 } 187 ComplexPairTy VisitCallExpr(const CallExpr *E); 188 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 189 190 // Operators. 191 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 192 bool isInc, bool isPre) { 193 LValue LV = CGF.EmitLValue(E->getSubExpr()); 194 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 195 } 196 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 197 return VisitPrePostIncDec(E, false, false); 198 } 199 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 200 return VisitPrePostIncDec(E, true, false); 201 } 202 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 203 return VisitPrePostIncDec(E, false, true); 204 } 205 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 206 return VisitPrePostIncDec(E, true, true); 207 } 208 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 209 210 ComplexPairTy VisitUnaryPlus(const UnaryOperator *E, 211 QualType PromotionType = QualType()); 212 ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType); 213 ComplexPairTy VisitUnaryMinus(const UnaryOperator *E, 214 QualType PromotionType = QualType()); 215 ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType); 216 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 217 // LNot,Real,Imag never return complex. 218 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 219 return Visit(E->getSubExpr()); 220 } 221 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 222 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 223 return Visit(DAE->getExpr()); 224 } 225 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 226 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 227 return Visit(DIE->getExpr()); 228 } 229 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 230 CodeGenFunction::RunCleanupsScope Scope(CGF); 231 ComplexPairTy Vals = Visit(E->getSubExpr()); 232 // Defend against dominance problems caused by jumps out of expression 233 // evaluation through the shared cleanup block. 234 Scope.ForceCleanup({&Vals.first, &Vals.second}); 235 return Vals; 236 } 237 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 238 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 239 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 240 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 241 return ComplexPairTy(Null, Null); 242 } 243 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 244 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 245 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 246 llvm::Constant *Null = 247 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 248 return ComplexPairTy(Null, Null); 249 } 250 251 struct BinOpInfo { 252 ComplexPairTy LHS; 253 ComplexPairTy RHS; 254 QualType Ty; // Computation Type. 255 FPOptions FPFeatures; 256 }; 257 258 BinOpInfo EmitBinOps(const BinaryOperator *E, 259 QualType PromotionTy = QualType()); 260 ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy); 261 ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy); 262 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 263 ComplexPairTy (ComplexExprEmitter::*Func) 264 (const BinOpInfo &), 265 RValue &Val); 266 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 267 ComplexPairTy (ComplexExprEmitter::*Func) 268 (const BinOpInfo &)); 269 270 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 271 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 272 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 273 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 274 275 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 276 const BinOpInfo &Op); 277 278 QualType getPromotionType(QualType Ty) { 279 if (auto *CT = Ty->getAs<ComplexType>()) { 280 QualType ElementType = CT->getElementType(); 281 if (ElementType.UseExcessPrecision(CGF.getContext())) 282 return CGF.getContext().getComplexType(CGF.getContext().FloatTy); 283 } 284 if (Ty.UseExcessPrecision(CGF.getContext())) 285 return CGF.getContext().FloatTy; 286 return QualType(); 287 } 288 289 #define HANDLEBINOP(OP) \ 290 ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \ 291 QualType promotionTy = getPromotionType(E->getType()); \ 292 ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \ 293 if (!promotionTy.isNull()) \ 294 result = \ 295 CGF.EmitUnPromotedValue(result, E->getType()); \ 296 return result; \ 297 } 298 299 HANDLEBINOP(Mul) 300 HANDLEBINOP(Div) 301 HANDLEBINOP(Add) 302 HANDLEBINOP(Sub) 303 #undef HANDLEBINOP 304 305 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 306 return Visit(E->getSemanticForm()); 307 } 308 309 // Compound assignments. 310 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 311 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 312 } 313 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 314 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 315 } 316 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 317 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 318 } 319 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 320 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 321 } 322 323 // GCC rejects rem/and/or/xor for integer complex. 324 // Logical and/or always return int, never complex. 325 326 // No comparisons produce a complex result. 327 328 LValue EmitBinAssignLValue(const BinaryOperator *E, 329 ComplexPairTy &Val); 330 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 331 ComplexPairTy VisitBinComma (const BinaryOperator *E); 332 333 334 ComplexPairTy 335 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 336 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 337 338 ComplexPairTy VisitInitListExpr(InitListExpr *E); 339 340 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 341 return EmitLoadOfLValue(E); 342 } 343 344 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 345 346 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 347 return CGF.EmitAtomicExpr(E).getComplexVal(); 348 } 349 }; 350 } // end anonymous namespace. 351 352 //===----------------------------------------------------------------------===// 353 // Utilities 354 //===----------------------------------------------------------------------===// 355 356 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 357 QualType complexType) { 358 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 359 } 360 361 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 362 QualType complexType) { 363 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 364 } 365 366 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 367 /// load the real and imaginary pieces, returning them as Real/Imag. 368 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 369 SourceLocation loc) { 370 assert(lvalue.isSimple() && "non-simple complex l-value?"); 371 if (lvalue.getType()->isAtomicType()) 372 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 373 374 Address SrcPtr = lvalue.getAddress(CGF); 375 bool isVolatile = lvalue.isVolatileQualified(); 376 377 llvm::Value *Real = nullptr, *Imag = nullptr; 378 379 if (!IgnoreReal || isVolatile) { 380 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 381 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 382 } 383 384 if (!IgnoreImag || isVolatile) { 385 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 386 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 387 } 388 389 return ComplexPairTy(Real, Imag); 390 } 391 392 /// EmitStoreOfComplex - Store the specified real/imag parts into the 393 /// specified value pointer. 394 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 395 bool isInit) { 396 if (lvalue.getType()->isAtomicType() || 397 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 398 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 399 400 Address Ptr = lvalue.getAddress(CGF); 401 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 402 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 403 404 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 405 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 406 } 407 408 409 410 //===----------------------------------------------------------------------===// 411 // Visitor Methods 412 //===----------------------------------------------------------------------===// 413 414 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 415 CGF.ErrorUnsupported(E, "complex expression"); 416 llvm::Type *EltTy = 417 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 418 llvm::Value *U = llvm::UndefValue::get(EltTy); 419 return ComplexPairTy(U, U); 420 } 421 422 ComplexPairTy ComplexExprEmitter:: 423 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 424 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 425 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 426 } 427 428 429 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 430 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 431 return EmitLoadOfLValue(E); 432 433 return CGF.EmitCallExpr(E).getComplexVal(); 434 } 435 436 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 437 CodeGenFunction::StmtExprEvaluation eval(CGF); 438 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 439 assert(RetAlloca.isValid() && "Expected complex return value"); 440 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 441 E->getExprLoc()); 442 } 443 444 /// Emit a cast from complex value Val to DestType. 445 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 446 QualType SrcType, 447 QualType DestType, 448 SourceLocation Loc) { 449 // Get the src/dest element type. 450 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 451 DestType = DestType->castAs<ComplexType>()->getElementType(); 452 453 // C99 6.3.1.6: When a value of complex type is converted to another 454 // complex type, both the real and imaginary parts follow the conversion 455 // rules for the corresponding real types. 456 if (Val.first) 457 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 458 if (Val.second) 459 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 460 return Val; 461 } 462 463 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 464 QualType SrcType, 465 QualType DestType, 466 SourceLocation Loc) { 467 // Convert the input element to the element type of the complex. 468 DestType = DestType->castAs<ComplexType>()->getElementType(); 469 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 470 471 // Return (realval, 0). 472 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 473 } 474 475 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 476 QualType DestTy) { 477 switch (CK) { 478 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 479 480 // Atomic to non-atomic casts may be more than a no-op for some platforms and 481 // for some types. 482 case CK_AtomicToNonAtomic: 483 case CK_NonAtomicToAtomic: 484 case CK_NoOp: 485 case CK_LValueToRValue: 486 case CK_UserDefinedConversion: 487 return Visit(Op); 488 489 case CK_LValueBitCast: { 490 LValue origLV = CGF.EmitLValue(Op); 491 Address V = origLV.getAddress(CGF).withElementType(CGF.ConvertType(DestTy)); 492 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 493 } 494 495 case CK_LValueToRValueBitCast: { 496 LValue SourceLVal = CGF.EmitLValue(Op); 497 Address Addr = SourceLVal.getAddress(CGF).withElementType( 498 CGF.ConvertTypeForMem(DestTy)); 499 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 500 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 501 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 502 } 503 504 case CK_BitCast: 505 case CK_BaseToDerived: 506 case CK_DerivedToBase: 507 case CK_UncheckedDerivedToBase: 508 case CK_Dynamic: 509 case CK_ToUnion: 510 case CK_ArrayToPointerDecay: 511 case CK_FunctionToPointerDecay: 512 case CK_NullToPointer: 513 case CK_NullToMemberPointer: 514 case CK_BaseToDerivedMemberPointer: 515 case CK_DerivedToBaseMemberPointer: 516 case CK_MemberPointerToBoolean: 517 case CK_ReinterpretMemberPointer: 518 case CK_ConstructorConversion: 519 case CK_IntegralToPointer: 520 case CK_PointerToIntegral: 521 case CK_PointerToBoolean: 522 case CK_ToVoid: 523 case CK_VectorSplat: 524 case CK_IntegralCast: 525 case CK_BooleanToSignedIntegral: 526 case CK_IntegralToBoolean: 527 case CK_IntegralToFloating: 528 case CK_FloatingToIntegral: 529 case CK_FloatingToBoolean: 530 case CK_FloatingCast: 531 case CK_CPointerToObjCPointerCast: 532 case CK_BlockPointerToObjCPointerCast: 533 case CK_AnyPointerToBlockPointerCast: 534 case CK_ObjCObjectLValueCast: 535 case CK_FloatingComplexToReal: 536 case CK_FloatingComplexToBoolean: 537 case CK_IntegralComplexToReal: 538 case CK_IntegralComplexToBoolean: 539 case CK_ARCProduceObject: 540 case CK_ARCConsumeObject: 541 case CK_ARCReclaimReturnedObject: 542 case CK_ARCExtendBlockObject: 543 case CK_CopyAndAutoreleaseBlockObject: 544 case CK_BuiltinFnToFnPtr: 545 case CK_ZeroToOCLOpaqueType: 546 case CK_AddressSpaceConversion: 547 case CK_IntToOCLSampler: 548 case CK_FloatingToFixedPoint: 549 case CK_FixedPointToFloating: 550 case CK_FixedPointCast: 551 case CK_FixedPointToBoolean: 552 case CK_FixedPointToIntegral: 553 case CK_IntegralToFixedPoint: 554 case CK_MatrixCast: 555 llvm_unreachable("invalid cast kind for complex value"); 556 557 case CK_FloatingRealToComplex: 558 case CK_IntegralRealToComplex: { 559 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 560 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 561 DestTy, Op->getExprLoc()); 562 } 563 564 case CK_FloatingComplexCast: 565 case CK_FloatingComplexToIntegralComplex: 566 case CK_IntegralComplexCast: 567 case CK_IntegralComplexToFloatingComplex: { 568 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 569 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 570 Op->getExprLoc()); 571 } 572 } 573 574 llvm_unreachable("unknown cast resulting in complex value"); 575 } 576 577 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E, 578 QualType PromotionType) { 579 QualType promotionTy = PromotionType.isNull() 580 ? getPromotionType(E->getSubExpr()->getType()) 581 : PromotionType; 582 ComplexPairTy result = VisitPlus(E, promotionTy); 583 if (!promotionTy.isNull()) 584 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 585 return result; 586 } 587 588 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E, 589 QualType PromotionType) { 590 TestAndClearIgnoreReal(); 591 TestAndClearIgnoreImag(); 592 if (!PromotionType.isNull()) 593 return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 594 return Visit(E->getSubExpr()); 595 } 596 597 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E, 598 QualType PromotionType) { 599 QualType promotionTy = PromotionType.isNull() 600 ? getPromotionType(E->getSubExpr()->getType()) 601 : PromotionType; 602 ComplexPairTy result = VisitMinus(E, promotionTy); 603 if (!promotionTy.isNull()) 604 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 605 return result; 606 } 607 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E, 608 QualType PromotionType) { 609 TestAndClearIgnoreReal(); 610 TestAndClearIgnoreImag(); 611 ComplexPairTy Op; 612 if (!PromotionType.isNull()) 613 Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 614 else 615 Op = Visit(E->getSubExpr()); 616 617 llvm::Value *ResR, *ResI; 618 if (Op.first->getType()->isFloatingPointTy()) { 619 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 620 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 621 } else { 622 ResR = Builder.CreateNeg(Op.first, "neg.r"); 623 ResI = Builder.CreateNeg(Op.second, "neg.i"); 624 } 625 return ComplexPairTy(ResR, ResI); 626 } 627 628 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 629 TestAndClearIgnoreReal(); 630 TestAndClearIgnoreImag(); 631 // ~(a+ib) = a + i*-b 632 ComplexPairTy Op = Visit(E->getSubExpr()); 633 llvm::Value *ResI; 634 if (Op.second->getType()->isFloatingPointTy()) 635 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 636 else 637 ResI = Builder.CreateNeg(Op.second, "conj.i"); 638 639 return ComplexPairTy(Op.first, ResI); 640 } 641 642 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 643 llvm::Value *ResR, *ResI; 644 645 if (Op.LHS.first->getType()->isFloatingPointTy()) { 646 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 647 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 648 if (Op.LHS.second && Op.RHS.second) 649 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 650 else 651 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 652 assert(ResI && "Only one operand may be real!"); 653 } else { 654 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 655 assert(Op.LHS.second && Op.RHS.second && 656 "Both operands of integer complex operators must be complex!"); 657 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 658 } 659 return ComplexPairTy(ResR, ResI); 660 } 661 662 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 663 llvm::Value *ResR, *ResI; 664 if (Op.LHS.first->getType()->isFloatingPointTy()) { 665 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 666 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 667 if (Op.LHS.second && Op.RHS.second) 668 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 669 else 670 ResI = Op.LHS.second ? Op.LHS.second 671 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 672 assert(ResI && "Only one operand may be real!"); 673 } else { 674 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 675 assert(Op.LHS.second && Op.RHS.second && 676 "Both operands of integer complex operators must be complex!"); 677 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 678 } 679 return ComplexPairTy(ResR, ResI); 680 } 681 682 /// Emit a libcall for a binary operation on complex types. 683 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 684 const BinOpInfo &Op) { 685 CallArgList Args; 686 Args.add(RValue::get(Op.LHS.first), 687 Op.Ty->castAs<ComplexType>()->getElementType()); 688 Args.add(RValue::get(Op.LHS.second), 689 Op.Ty->castAs<ComplexType>()->getElementType()); 690 Args.add(RValue::get(Op.RHS.first), 691 Op.Ty->castAs<ComplexType>()->getElementType()); 692 Args.add(RValue::get(Op.RHS.second), 693 Op.Ty->castAs<ComplexType>()->getElementType()); 694 695 // We *must* use the full CG function call building logic here because the 696 // complex type has special ABI handling. We also should not forget about 697 // special calling convention which may be used for compiler builtins. 698 699 // We create a function qualified type to state that this call does not have 700 // any exceptions. 701 FunctionProtoType::ExtProtoInfo EPI; 702 EPI = EPI.withExceptionSpec( 703 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 704 SmallVector<QualType, 4> ArgsQTys( 705 4, Op.Ty->castAs<ComplexType>()->getElementType()); 706 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 707 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 708 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 709 710 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 711 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 712 FTy, LibCallName, llvm::AttributeList(), true); 713 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 714 715 llvm::CallBase *Call; 716 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 717 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 718 return Res.getComplexVal(); 719 } 720 721 /// Lookup the libcall name for a given floating point type complex 722 /// multiply. 723 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 724 switch (Ty->getTypeID()) { 725 default: 726 llvm_unreachable("Unsupported floating point type!"); 727 case llvm::Type::HalfTyID: 728 return "__mulhc3"; 729 case llvm::Type::FloatTyID: 730 return "__mulsc3"; 731 case llvm::Type::DoubleTyID: 732 return "__muldc3"; 733 case llvm::Type::PPC_FP128TyID: 734 return "__multc3"; 735 case llvm::Type::X86_FP80TyID: 736 return "__mulxc3"; 737 case llvm::Type::FP128TyID: 738 return "__multc3"; 739 } 740 } 741 742 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 743 // typed values. 744 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 745 using llvm::Value; 746 Value *ResR, *ResI; 747 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 748 749 if (Op.LHS.first->getType()->isFloatingPointTy()) { 750 // The general formulation is: 751 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 752 // 753 // But we can fold away components which would be zero due to a real 754 // operand according to C11 Annex G.5.1p2. 755 // FIXME: C11 also provides for imaginary types which would allow folding 756 // still more of this within the type system. 757 758 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 759 if (Op.LHS.second && Op.RHS.second) { 760 // If both operands are complex, emit the core math directly, and then 761 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 762 // to carefully re-compute the correct infinity representation if 763 // possible. The expectation is that the presence of NaNs here is 764 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 765 // This is good, because the libcall re-computes the core multiplication 766 // exactly the same as we do here and re-tests for NaNs in order to be 767 // a generic complex*complex libcall. 768 769 // First compute the four products. 770 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 771 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 772 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 773 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 774 775 // The real part is the difference of the first two, the imaginary part is 776 // the sum of the second. 777 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 778 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 779 780 // Emit the test for the real part becoming NaN and create a branch to 781 // handle it. We test for NaN by comparing the number to itself. 782 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 783 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 784 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 785 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 786 llvm::BasicBlock *OrigBB = Branch->getParent(); 787 788 // Give hint that we very much don't expect to see NaNs. 789 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 790 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 791 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 792 793 // Now test the imaginary part and create its branch. 794 CGF.EmitBlock(INaNBB); 795 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 796 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 797 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 798 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 799 800 // Now emit the libcall on this slowest of the slow paths. 801 CGF.EmitBlock(LibCallBB); 802 Value *LibCallR, *LibCallI; 803 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 804 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 805 Builder.CreateBr(ContBB); 806 807 // Finally continue execution by phi-ing together the different 808 // computation paths. 809 CGF.EmitBlock(ContBB); 810 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 811 RealPHI->addIncoming(ResR, OrigBB); 812 RealPHI->addIncoming(ResR, INaNBB); 813 RealPHI->addIncoming(LibCallR, LibCallBB); 814 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 815 ImagPHI->addIncoming(ResI, OrigBB); 816 ImagPHI->addIncoming(ResI, INaNBB); 817 ImagPHI->addIncoming(LibCallI, LibCallBB); 818 return ComplexPairTy(RealPHI, ImagPHI); 819 } 820 assert((Op.LHS.second || Op.RHS.second) && 821 "At least one operand must be complex!"); 822 823 // If either of the operands is a real rather than a complex, the 824 // imaginary component is ignored when computing the real component of the 825 // result. 826 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 827 828 ResI = Op.LHS.second 829 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 830 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 831 } else { 832 assert(Op.LHS.second && Op.RHS.second && 833 "Both operands of integer complex operators must be complex!"); 834 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 835 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 836 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 837 838 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 839 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 840 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 841 } 842 return ComplexPairTy(ResR, ResI); 843 } 844 845 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 846 // typed values. 847 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 848 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 849 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 850 851 llvm::Value *DSTr, *DSTi; 852 if (LHSr->getType()->isFloatingPointTy()) { 853 // If we have a complex operand on the RHS and FastMath is not allowed, we 854 // delegate to a libcall to handle all of the complexities and minimize 855 // underflow/overflow cases. When FastMath is allowed we construct the 856 // divide inline using the same algorithm as for integer operands. 857 // 858 // FIXME: We would be able to avoid the libcall in many places if we 859 // supported imaginary types in addition to complex types. 860 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 861 if (RHSi && !CGF.getLangOpts().FastMath) { 862 BinOpInfo LibCallOp = Op; 863 // If LHS was a real, supply a null imaginary part. 864 if (!LHSi) 865 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 866 867 switch (LHSr->getType()->getTypeID()) { 868 default: 869 llvm_unreachable("Unsupported floating point type!"); 870 case llvm::Type::HalfTyID: 871 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 872 case llvm::Type::FloatTyID: 873 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 874 case llvm::Type::DoubleTyID: 875 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 876 case llvm::Type::PPC_FP128TyID: 877 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 878 case llvm::Type::X86_FP80TyID: 879 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 880 case llvm::Type::FP128TyID: 881 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 882 } 883 } else if (RHSi) { 884 if (!LHSi) 885 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 886 887 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 888 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 889 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 890 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 891 892 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 893 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 894 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 895 896 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 897 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 898 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 899 900 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 901 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 902 } else { 903 assert(LHSi && "Can have at most one non-complex operand!"); 904 905 DSTr = Builder.CreateFDiv(LHSr, RHSr); 906 DSTi = Builder.CreateFDiv(LHSi, RHSr); 907 } 908 } else { 909 assert(Op.LHS.second && Op.RHS.second && 910 "Both operands of integer complex operators must be complex!"); 911 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 912 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 913 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 914 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 915 916 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 917 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 918 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 919 920 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 921 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 922 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 923 924 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 925 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 926 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 927 } else { 928 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 929 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 930 } 931 } 932 933 return ComplexPairTy(DSTr, DSTi); 934 } 935 936 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result, 937 QualType UnPromotionType) { 938 llvm::Type *ComplexElementTy = 939 ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType()); 940 if (result.first) 941 result.first = 942 Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion"); 943 if (result.second) 944 result.second = 945 Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion"); 946 return result; 947 } 948 949 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result, 950 QualType PromotionType) { 951 llvm::Type *ComplexElementTy = 952 ConvertType(PromotionType->castAs<ComplexType>()->getElementType()); 953 if (result.first) 954 result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext"); 955 if (result.second) 956 result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext"); 957 958 return result; 959 } 960 961 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E, 962 QualType PromotionType) { 963 E = E->IgnoreParens(); 964 if (auto BO = dyn_cast<BinaryOperator>(E)) { 965 switch (BO->getOpcode()) { 966 #define HANDLE_BINOP(OP) \ 967 case BO_##OP: \ 968 return EmitBin##OP(EmitBinOps(BO, PromotionType)); 969 HANDLE_BINOP(Add) 970 HANDLE_BINOP(Sub) 971 HANDLE_BINOP(Mul) 972 HANDLE_BINOP(Div) 973 #undef HANDLE_BINOP 974 default: 975 break; 976 } 977 } else if (auto UO = dyn_cast<UnaryOperator>(E)) { 978 switch (UO->getOpcode()) { 979 case UO_Minus: 980 return VisitMinus(UO, PromotionType); 981 case UO_Plus: 982 return VisitPlus(UO, PromotionType); 983 default: 984 break; 985 } 986 } 987 auto result = Visit(const_cast<Expr *>(E)); 988 if (!PromotionType.isNull()) 989 return CGF.EmitPromotedValue(result, PromotionType); 990 else 991 return result; 992 } 993 994 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E, 995 QualType DstTy) { 996 return ComplexExprEmitter(*this).EmitPromoted(E, DstTy); 997 } 998 999 ComplexPairTy 1000 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E, 1001 QualType OverallPromotionType) { 1002 if (E->getType()->isAnyComplexType()) { 1003 if (!OverallPromotionType.isNull()) 1004 return CGF.EmitPromotedComplexExpr(E, OverallPromotionType); 1005 else 1006 return Visit(const_cast<Expr *>(E)); 1007 } else { 1008 if (!OverallPromotionType.isNull()) { 1009 QualType ComplexElementTy = 1010 OverallPromotionType->castAs<ComplexType>()->getElementType(); 1011 return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy), 1012 nullptr); 1013 } else { 1014 return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr); 1015 } 1016 } 1017 } 1018 1019 ComplexExprEmitter::BinOpInfo 1020 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E, 1021 QualType PromotionType) { 1022 TestAndClearIgnoreReal(); 1023 TestAndClearIgnoreImag(); 1024 BinOpInfo Ops; 1025 1026 Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType); 1027 Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType); 1028 if (!PromotionType.isNull()) 1029 Ops.Ty = PromotionType; 1030 else 1031 Ops.Ty = E->getType(); 1032 Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1033 return Ops; 1034 } 1035 1036 1037 LValue ComplexExprEmitter:: 1038 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 1039 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 1040 RValue &Val) { 1041 TestAndClearIgnoreReal(); 1042 TestAndClearIgnoreImag(); 1043 QualType LHSTy = E->getLHS()->getType(); 1044 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 1045 LHSTy = AT->getValueType(); 1046 1047 BinOpInfo OpInfo; 1048 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1049 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 1050 1051 // Load the RHS and LHS operands. 1052 // __block variables need to have the rhs evaluated first, plus this should 1053 // improve codegen a little. 1054 QualType PromotionTypeCR; 1055 PromotionTypeCR = getPromotionType(E->getComputationResultType()); 1056 if (PromotionTypeCR.isNull()) 1057 PromotionTypeCR = E->getComputationResultType(); 1058 OpInfo.Ty = PromotionTypeCR; 1059 QualType ComplexElementTy = 1060 OpInfo.Ty->castAs<ComplexType>()->getElementType(); 1061 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType()); 1062 1063 // The RHS should have been converted to the computation type. 1064 if (E->getRHS()->getType()->isRealFloatingType()) { 1065 if (!PromotionTypeRHS.isNull()) 1066 OpInfo.RHS = ComplexPairTy( 1067 CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr); 1068 else { 1069 assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, 1070 E->getRHS()->getType())); 1071 1072 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 1073 } 1074 } else { 1075 if (!PromotionTypeRHS.isNull()) { 1076 OpInfo.RHS = ComplexPairTy( 1077 CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS)); 1078 } else { 1079 assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty, 1080 E->getRHS()->getType())); 1081 OpInfo.RHS = Visit(E->getRHS()); 1082 } 1083 } 1084 1085 LValue LHS = CGF.EmitLValue(E->getLHS()); 1086 1087 // Load from the l-value and convert it. 1088 SourceLocation Loc = E->getExprLoc(); 1089 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType()); 1090 if (LHSTy->isAnyComplexType()) { 1091 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 1092 if (!PromotionTypeLHS.isNull()) 1093 OpInfo.LHS = 1094 EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc); 1095 else 1096 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1097 } else { 1098 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 1099 // For floating point real operands we can directly pass the scalar form 1100 // to the binary operator emission and potentially get more efficient code. 1101 if (LHSTy->isRealFloatingType()) { 1102 QualType PromotedComplexElementTy; 1103 if (!PromotionTypeLHS.isNull()) { 1104 PromotedComplexElementTy = 1105 cast<ComplexType>(PromotionTypeLHS)->getElementType(); 1106 if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy, 1107 PromotionTypeLHS)) 1108 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, 1109 PromotedComplexElementTy, Loc); 1110 } else { 1111 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 1112 LHSVal = 1113 CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 1114 } 1115 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 1116 } else { 1117 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1118 } 1119 } 1120 1121 // Expand the binary operator. 1122 ComplexPairTy Result = (this->*Func)(OpInfo); 1123 1124 // Truncate the result and store it into the LHS lvalue. 1125 if (LHSTy->isAnyComplexType()) { 1126 ComplexPairTy ResVal = 1127 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 1128 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 1129 Val = RValue::getComplex(ResVal); 1130 } else { 1131 llvm::Value *ResVal = 1132 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 1133 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 1134 Val = RValue::get(ResVal); 1135 } 1136 1137 return LHS; 1138 } 1139 1140 // Compound assignments. 1141 ComplexPairTy ComplexExprEmitter:: 1142 EmitCompoundAssign(const CompoundAssignOperator *E, 1143 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 1144 RValue Val; 1145 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 1146 1147 // The result of an assignment in C is the assigned r-value. 1148 if (!CGF.getLangOpts().CPlusPlus) 1149 return Val.getComplexVal(); 1150 1151 // If the lvalue is non-volatile, return the computed value of the assignment. 1152 if (!LV.isVolatileQualified()) 1153 return Val.getComplexVal(); 1154 1155 return EmitLoadOfLValue(LV, E->getExprLoc()); 1156 } 1157 1158 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 1159 ComplexPairTy &Val) { 1160 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1161 E->getRHS()->getType()) && 1162 "Invalid assignment"); 1163 TestAndClearIgnoreReal(); 1164 TestAndClearIgnoreImag(); 1165 1166 // Emit the RHS. __block variables need the RHS evaluated first. 1167 Val = Visit(E->getRHS()); 1168 1169 // Compute the address to store into. 1170 LValue LHS = CGF.EmitLValue(E->getLHS()); 1171 1172 // Store the result value into the LHS lvalue. 1173 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 1174 1175 return LHS; 1176 } 1177 1178 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1179 ComplexPairTy Val; 1180 LValue LV = EmitBinAssignLValue(E, Val); 1181 1182 // The result of an assignment in C is the assigned r-value. 1183 if (!CGF.getLangOpts().CPlusPlus) 1184 return Val; 1185 1186 // If the lvalue is non-volatile, return the computed value of the assignment. 1187 if (!LV.isVolatileQualified()) 1188 return Val; 1189 1190 return EmitLoadOfLValue(LV, E->getExprLoc()); 1191 } 1192 1193 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1194 CGF.EmitIgnoredExpr(E->getLHS()); 1195 return Visit(E->getRHS()); 1196 } 1197 1198 ComplexPairTy ComplexExprEmitter:: 1199 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1200 TestAndClearIgnoreReal(); 1201 TestAndClearIgnoreImag(); 1202 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1203 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1204 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1205 1206 // Bind the common expression if necessary. 1207 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1208 1209 1210 CodeGenFunction::ConditionalEvaluation eval(CGF); 1211 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1212 CGF.getProfileCount(E)); 1213 1214 eval.begin(CGF); 1215 CGF.EmitBlock(LHSBlock); 1216 CGF.incrementProfileCounter(E); 1217 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1218 LHSBlock = Builder.GetInsertBlock(); 1219 CGF.EmitBranch(ContBlock); 1220 eval.end(CGF); 1221 1222 eval.begin(CGF); 1223 CGF.EmitBlock(RHSBlock); 1224 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1225 RHSBlock = Builder.GetInsertBlock(); 1226 CGF.EmitBlock(ContBlock); 1227 eval.end(CGF); 1228 1229 // Create a PHI node for the real part. 1230 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1231 RealPN->addIncoming(LHS.first, LHSBlock); 1232 RealPN->addIncoming(RHS.first, RHSBlock); 1233 1234 // Create a PHI node for the imaginary part. 1235 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1236 ImagPN->addIncoming(LHS.second, LHSBlock); 1237 ImagPN->addIncoming(RHS.second, RHSBlock); 1238 1239 return ComplexPairTy(RealPN, ImagPN); 1240 } 1241 1242 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1243 return Visit(E->getChosenSubExpr()); 1244 } 1245 1246 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1247 bool Ignore = TestAndClearIgnoreReal(); 1248 (void)Ignore; 1249 assert (Ignore == false && "init list ignored"); 1250 Ignore = TestAndClearIgnoreImag(); 1251 (void)Ignore; 1252 assert (Ignore == false && "init list ignored"); 1253 1254 if (E->getNumInits() == 2) { 1255 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1256 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1257 return ComplexPairTy(Real, Imag); 1258 } else if (E->getNumInits() == 1) { 1259 return Visit(E->getInit(0)); 1260 } 1261 1262 // Empty init list initializes to null 1263 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1264 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1265 llvm::Type* LTy = CGF.ConvertType(Ty); 1266 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1267 return ComplexPairTy(zeroConstant, zeroConstant); 1268 } 1269 1270 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1271 Address ArgValue = Address::invalid(); 1272 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1273 1274 if (!ArgPtr.isValid()) { 1275 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1276 llvm::Type *EltTy = 1277 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1278 llvm::Value *U = llvm::UndefValue::get(EltTy); 1279 return ComplexPairTy(U, U); 1280 } 1281 1282 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1283 E->getExprLoc()); 1284 } 1285 1286 //===----------------------------------------------------------------------===// 1287 // Entry Point into this File 1288 //===----------------------------------------------------------------------===// 1289 1290 /// EmitComplexExpr - Emit the computation of the specified expression of 1291 /// complex type, ignoring the result. 1292 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1293 bool IgnoreImag) { 1294 assert(E && getComplexType(E->getType()) && 1295 "Invalid complex expression to emit"); 1296 1297 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1298 .Visit(const_cast<Expr *>(E)); 1299 } 1300 1301 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1302 bool isInit) { 1303 assert(E && getComplexType(E->getType()) && 1304 "Invalid complex expression to emit"); 1305 ComplexExprEmitter Emitter(*this); 1306 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1307 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1308 } 1309 1310 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1311 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1312 bool isInit) { 1313 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1314 } 1315 1316 /// EmitLoadOfComplex - Load a complex number from the specified address. 1317 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1318 SourceLocation loc) { 1319 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1320 } 1321 1322 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1323 assert(E->getOpcode() == BO_Assign); 1324 ComplexPairTy Val; // ignored 1325 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1326 if (getLangOpts().OpenMP) 1327 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1328 E->getLHS()); 1329 return LVal; 1330 } 1331 1332 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1333 const ComplexExprEmitter::BinOpInfo &); 1334 1335 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1336 switch (Op) { 1337 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1338 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1339 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1340 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1341 default: 1342 llvm_unreachable("unexpected complex compound assignment"); 1343 } 1344 } 1345 1346 LValue CodeGenFunction:: 1347 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1348 CompoundFunc Op = getComplexOp(E->getOpcode()); 1349 RValue Val; 1350 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1351 } 1352 1353 LValue CodeGenFunction:: 1354 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1355 llvm::Value *&Result) { 1356 CompoundFunc Op = getComplexOp(E->getOpcode()); 1357 RValue Val; 1358 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1359 Result = Val.getScalarVal(); 1360 return Ret; 1361 } 1362