1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "ConstantEmitter.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Metadata.h" 23 #include <algorithm> 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Complex Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 32 33 /// Return the complex type that we are meant to emit. 34 static const ComplexType *getComplexType(QualType type) { 35 type = type.getCanonicalType(); 36 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 37 return comp; 38 } else { 39 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 40 } 41 } 42 43 namespace { 44 class ComplexExprEmitter 45 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 46 CodeGenFunction &CGF; 47 CGBuilderTy &Builder; 48 bool IgnoreReal; 49 bool IgnoreImag; 50 public: 51 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 52 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 53 } 54 55 56 //===--------------------------------------------------------------------===// 57 // Utilities 58 //===--------------------------------------------------------------------===// 59 60 bool TestAndClearIgnoreReal() { 61 bool I = IgnoreReal; 62 IgnoreReal = false; 63 return I; 64 } 65 bool TestAndClearIgnoreImag() { 66 bool I = IgnoreImag; 67 IgnoreImag = false; 68 return I; 69 } 70 71 /// EmitLoadOfLValue - Given an expression with complex type that represents a 72 /// value l-value, this method emits the address of the l-value, then loads 73 /// and returns the result. 74 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 75 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 76 } 77 78 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 79 80 /// EmitStoreOfComplex - Store the specified real/imag parts into the 81 /// specified value pointer. 82 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 83 84 /// Emit a cast from complex value Val to DestType. 85 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 86 QualType DestType, SourceLocation Loc); 87 /// Emit a cast from scalar value Val to DestType. 88 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 89 QualType DestType, SourceLocation Loc); 90 91 //===--------------------------------------------------------------------===// 92 // Visitor Methods 93 //===--------------------------------------------------------------------===// 94 95 ComplexPairTy Visit(Expr *E) { 96 ApplyDebugLocation DL(CGF, E); 97 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 98 } 99 100 ComplexPairTy VisitStmt(Stmt *S) { 101 S->dump(llvm::errs(), CGF.getContext()); 102 llvm_unreachable("Stmt can't have complex result type!"); 103 } 104 ComplexPairTy VisitExpr(Expr *S); 105 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 106 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) 107 return ComplexPairTy(Result->getAggregateElement(0U), 108 Result->getAggregateElement(1U)); 109 return Visit(E->getSubExpr()); 110 } 111 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 112 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 return Visit(GE->getResultExpr()); 114 } 115 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 116 ComplexPairTy 117 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 118 return Visit(PE->getReplacement()); 119 } 120 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 121 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 122 } 123 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 124 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 125 } 126 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 127 return Visit(E->getSubExpr()); 128 } 129 130 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 131 Expr *E) { 132 assert(Constant && "not a constant"); 133 if (Constant.isReference()) 134 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 135 E->getExprLoc()); 136 137 llvm::Constant *pair = Constant.getValue(); 138 return ComplexPairTy(pair->getAggregateElement(0U), 139 pair->getAggregateElement(1U)); 140 } 141 142 // l-values. 143 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 144 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 145 return emitConstant(Constant, E); 146 return EmitLoadOfLValue(E); 147 } 148 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 149 return EmitLoadOfLValue(E); 150 } 151 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 152 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 153 } 154 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 155 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 156 if (CodeGenFunction::ConstantEmission Constant = 157 CGF.tryEmitAsConstant(ME)) { 158 CGF.EmitIgnoredExpr(ME->getBase()); 159 return emitConstant(Constant, ME); 160 } 161 return EmitLoadOfLValue(ME); 162 } 163 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 164 if (E->isGLValue()) 165 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 166 E->getExprLoc()); 167 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 168 } 169 170 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 171 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 172 } 173 174 // FIXME: CompoundLiteralExpr 175 176 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 177 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 178 // Unlike for scalars, we don't have to worry about function->ptr demotion 179 // here. 180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181 } 182 ComplexPairTy VisitCastExpr(CastExpr *E) { 183 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 184 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 185 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 186 } 187 ComplexPairTy VisitCallExpr(const CallExpr *E); 188 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 189 190 // Operators. 191 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 192 bool isInc, bool isPre) { 193 LValue LV = CGF.EmitLValue(E->getSubExpr()); 194 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 195 } 196 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 197 return VisitPrePostIncDec(E, false, false); 198 } 199 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 200 return VisitPrePostIncDec(E, true, false); 201 } 202 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 203 return VisitPrePostIncDec(E, false, true); 204 } 205 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 206 return VisitPrePostIncDec(E, true, true); 207 } 208 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 209 210 ComplexPairTy VisitUnaryPlus(const UnaryOperator *E, 211 QualType PromotionType = QualType()); 212 ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType); 213 ComplexPairTy VisitUnaryMinus(const UnaryOperator *E, 214 QualType PromotionType = QualType()); 215 ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType); 216 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 217 // LNot,Real,Imag never return complex. 218 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 219 return Visit(E->getSubExpr()); 220 } 221 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 222 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 223 return Visit(DAE->getExpr()); 224 } 225 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 226 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 227 return Visit(DIE->getExpr()); 228 } 229 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 230 CodeGenFunction::RunCleanupsScope Scope(CGF); 231 ComplexPairTy Vals = Visit(E->getSubExpr()); 232 // Defend against dominance problems caused by jumps out of expression 233 // evaluation through the shared cleanup block. 234 Scope.ForceCleanup({&Vals.first, &Vals.second}); 235 return Vals; 236 } 237 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 238 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 239 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 240 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 241 return ComplexPairTy(Null, Null); 242 } 243 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 244 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 245 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 246 llvm::Constant *Null = 247 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 248 return ComplexPairTy(Null, Null); 249 } 250 251 struct BinOpInfo { 252 ComplexPairTy LHS; 253 ComplexPairTy RHS; 254 QualType Ty; // Computation Type. 255 FPOptions FPFeatures; 256 }; 257 258 BinOpInfo EmitBinOps(const BinaryOperator *E, 259 QualType PromotionTy = QualType()); 260 ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy); 261 ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy); 262 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 263 ComplexPairTy (ComplexExprEmitter::*Func) 264 (const BinOpInfo &), 265 RValue &Val); 266 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 267 ComplexPairTy (ComplexExprEmitter::*Func) 268 (const BinOpInfo &)); 269 270 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 271 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 272 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 273 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 274 275 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 276 const BinOpInfo &Op); 277 278 QualType getPromotionType(QualType Ty) { 279 if (auto *CT = Ty->getAs<ComplexType>()) { 280 QualType ElementType = CT->getElementType(); 281 if (ElementType.UseExcessPrecision(CGF.getContext())) 282 return CGF.getContext().getComplexType(CGF.getContext().FloatTy); 283 } 284 if (Ty.UseExcessPrecision(CGF.getContext())) 285 return CGF.getContext().FloatTy; 286 return QualType(); 287 } 288 289 #define HANDLEBINOP(OP) \ 290 ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \ 291 QualType promotionTy = getPromotionType(E->getType()); \ 292 ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \ 293 if (!promotionTy.isNull()) \ 294 result = \ 295 CGF.EmitUnPromotedValue(result, E->getType()); \ 296 return result; \ 297 } 298 299 HANDLEBINOP(Mul) 300 HANDLEBINOP(Div) 301 HANDLEBINOP(Add) 302 HANDLEBINOP(Sub) 303 #undef HANDLEBINOP 304 305 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 306 return Visit(E->getSemanticForm()); 307 } 308 309 // Compound assignments. 310 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 311 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 312 } 313 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 314 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 315 } 316 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 317 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 318 } 319 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 320 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 321 } 322 323 // GCC rejects rem/and/or/xor for integer complex. 324 // Logical and/or always return int, never complex. 325 326 // No comparisons produce a complex result. 327 328 LValue EmitBinAssignLValue(const BinaryOperator *E, 329 ComplexPairTy &Val); 330 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 331 ComplexPairTy VisitBinComma (const BinaryOperator *E); 332 333 334 ComplexPairTy 335 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 336 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 337 338 ComplexPairTy VisitInitListExpr(InitListExpr *E); 339 340 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 341 return EmitLoadOfLValue(E); 342 } 343 344 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 345 346 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 347 return CGF.EmitAtomicExpr(E).getComplexVal(); 348 } 349 }; 350 } // end anonymous namespace. 351 352 //===----------------------------------------------------------------------===// 353 // Utilities 354 //===----------------------------------------------------------------------===// 355 356 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 357 QualType complexType) { 358 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 359 } 360 361 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 362 QualType complexType) { 363 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 364 } 365 366 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 367 /// load the real and imaginary pieces, returning them as Real/Imag. 368 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 369 SourceLocation loc) { 370 assert(lvalue.isSimple() && "non-simple complex l-value?"); 371 if (lvalue.getType()->isAtomicType()) 372 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 373 374 Address SrcPtr = lvalue.getAddress(CGF); 375 bool isVolatile = lvalue.isVolatileQualified(); 376 377 llvm::Value *Real = nullptr, *Imag = nullptr; 378 379 if (!IgnoreReal || isVolatile) { 380 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 381 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 382 } 383 384 if (!IgnoreImag || isVolatile) { 385 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 386 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 387 } 388 389 return ComplexPairTy(Real, Imag); 390 } 391 392 /// EmitStoreOfComplex - Store the specified real/imag parts into the 393 /// specified value pointer. 394 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 395 bool isInit) { 396 if (lvalue.getType()->isAtomicType() || 397 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 398 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 399 400 Address Ptr = lvalue.getAddress(CGF); 401 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 402 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 403 404 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 405 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 406 } 407 408 409 410 //===----------------------------------------------------------------------===// 411 // Visitor Methods 412 //===----------------------------------------------------------------------===// 413 414 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 415 CGF.ErrorUnsupported(E, "complex expression"); 416 llvm::Type *EltTy = 417 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 418 llvm::Value *U = llvm::UndefValue::get(EltTy); 419 return ComplexPairTy(U, U); 420 } 421 422 ComplexPairTy ComplexExprEmitter:: 423 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 424 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 425 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 426 } 427 428 429 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 430 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 431 return EmitLoadOfLValue(E); 432 433 return CGF.EmitCallExpr(E).getComplexVal(); 434 } 435 436 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 437 CodeGenFunction::StmtExprEvaluation eval(CGF); 438 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 439 assert(RetAlloca.isValid() && "Expected complex return value"); 440 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 441 E->getExprLoc()); 442 } 443 444 /// Emit a cast from complex value Val to DestType. 445 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 446 QualType SrcType, 447 QualType DestType, 448 SourceLocation Loc) { 449 // Get the src/dest element type. 450 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 451 DestType = DestType->castAs<ComplexType>()->getElementType(); 452 453 // C99 6.3.1.6: When a value of complex type is converted to another 454 // complex type, both the real and imaginary parts follow the conversion 455 // rules for the corresponding real types. 456 if (Val.first) 457 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 458 if (Val.second) 459 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 460 return Val; 461 } 462 463 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 464 QualType SrcType, 465 QualType DestType, 466 SourceLocation Loc) { 467 // Convert the input element to the element type of the complex. 468 DestType = DestType->castAs<ComplexType>()->getElementType(); 469 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 470 471 // Return (realval, 0). 472 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 473 } 474 475 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 476 QualType DestTy) { 477 switch (CK) { 478 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 479 480 // Atomic to non-atomic casts may be more than a no-op for some platforms and 481 // for some types. 482 case CK_AtomicToNonAtomic: 483 case CK_NonAtomicToAtomic: 484 case CK_NoOp: 485 case CK_LValueToRValue: 486 case CK_UserDefinedConversion: 487 return Visit(Op); 488 489 case CK_LValueBitCast: { 490 LValue origLV = CGF.EmitLValue(Op); 491 Address V = origLV.getAddress(CGF); 492 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 493 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 494 } 495 496 case CK_LValueToRValueBitCast: { 497 LValue SourceLVal = CGF.EmitLValue(Op); 498 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 499 CGF.ConvertTypeForMem(DestTy)); 500 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 501 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 502 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 503 } 504 505 case CK_BitCast: 506 case CK_BaseToDerived: 507 case CK_DerivedToBase: 508 case CK_UncheckedDerivedToBase: 509 case CK_Dynamic: 510 case CK_ToUnion: 511 case CK_ArrayToPointerDecay: 512 case CK_FunctionToPointerDecay: 513 case CK_NullToPointer: 514 case CK_NullToMemberPointer: 515 case CK_BaseToDerivedMemberPointer: 516 case CK_DerivedToBaseMemberPointer: 517 case CK_MemberPointerToBoolean: 518 case CK_ReinterpretMemberPointer: 519 case CK_ConstructorConversion: 520 case CK_IntegralToPointer: 521 case CK_PointerToIntegral: 522 case CK_PointerToBoolean: 523 case CK_ToVoid: 524 case CK_VectorSplat: 525 case CK_IntegralCast: 526 case CK_BooleanToSignedIntegral: 527 case CK_IntegralToBoolean: 528 case CK_IntegralToFloating: 529 case CK_FloatingToIntegral: 530 case CK_FloatingToBoolean: 531 case CK_FloatingCast: 532 case CK_CPointerToObjCPointerCast: 533 case CK_BlockPointerToObjCPointerCast: 534 case CK_AnyPointerToBlockPointerCast: 535 case CK_ObjCObjectLValueCast: 536 case CK_FloatingComplexToReal: 537 case CK_FloatingComplexToBoolean: 538 case CK_IntegralComplexToReal: 539 case CK_IntegralComplexToBoolean: 540 case CK_ARCProduceObject: 541 case CK_ARCConsumeObject: 542 case CK_ARCReclaimReturnedObject: 543 case CK_ARCExtendBlockObject: 544 case CK_CopyAndAutoreleaseBlockObject: 545 case CK_BuiltinFnToFnPtr: 546 case CK_ZeroToOCLOpaqueType: 547 case CK_AddressSpaceConversion: 548 case CK_IntToOCLSampler: 549 case CK_FloatingToFixedPoint: 550 case CK_FixedPointToFloating: 551 case CK_FixedPointCast: 552 case CK_FixedPointToBoolean: 553 case CK_FixedPointToIntegral: 554 case CK_IntegralToFixedPoint: 555 case CK_MatrixCast: 556 llvm_unreachable("invalid cast kind for complex value"); 557 558 case CK_FloatingRealToComplex: 559 case CK_IntegralRealToComplex: { 560 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 561 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 562 DestTy, Op->getExprLoc()); 563 } 564 565 case CK_FloatingComplexCast: 566 case CK_FloatingComplexToIntegralComplex: 567 case CK_IntegralComplexCast: 568 case CK_IntegralComplexToFloatingComplex: { 569 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 570 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 571 Op->getExprLoc()); 572 } 573 } 574 575 llvm_unreachable("unknown cast resulting in complex value"); 576 } 577 578 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E, 579 QualType PromotionType) { 580 QualType promotionTy = PromotionType.isNull() 581 ? getPromotionType(E->getSubExpr()->getType()) 582 : PromotionType; 583 ComplexPairTy result = VisitPlus(E, promotionTy); 584 if (!promotionTy.isNull()) 585 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 586 return result; 587 } 588 589 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E, 590 QualType PromotionType) { 591 TestAndClearIgnoreReal(); 592 TestAndClearIgnoreImag(); 593 if (!PromotionType.isNull()) 594 return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 595 return Visit(E->getSubExpr()); 596 } 597 598 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E, 599 QualType PromotionType) { 600 QualType promotionTy = PromotionType.isNull() 601 ? getPromotionType(E->getSubExpr()->getType()) 602 : PromotionType; 603 ComplexPairTy result = VisitMinus(E, promotionTy); 604 if (!promotionTy.isNull()) 605 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); 606 return result; 607 } 608 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E, 609 QualType PromotionType) { 610 TestAndClearIgnoreReal(); 611 TestAndClearIgnoreImag(); 612 ComplexPairTy Op; 613 if (!PromotionType.isNull()) 614 Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); 615 else 616 Op = Visit(E->getSubExpr()); 617 618 llvm::Value *ResR, *ResI; 619 if (Op.first->getType()->isFloatingPointTy()) { 620 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 621 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 622 } else { 623 ResR = Builder.CreateNeg(Op.first, "neg.r"); 624 ResI = Builder.CreateNeg(Op.second, "neg.i"); 625 } 626 return ComplexPairTy(ResR, ResI); 627 } 628 629 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 630 TestAndClearIgnoreReal(); 631 TestAndClearIgnoreImag(); 632 // ~(a+ib) = a + i*-b 633 ComplexPairTy Op = Visit(E->getSubExpr()); 634 llvm::Value *ResI; 635 if (Op.second->getType()->isFloatingPointTy()) 636 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 637 else 638 ResI = Builder.CreateNeg(Op.second, "conj.i"); 639 640 return ComplexPairTy(Op.first, ResI); 641 } 642 643 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 644 llvm::Value *ResR, *ResI; 645 646 if (Op.LHS.first->getType()->isFloatingPointTy()) { 647 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 648 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 649 if (Op.LHS.second && Op.RHS.second) 650 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 651 else 652 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 653 assert(ResI && "Only one operand may be real!"); 654 } else { 655 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 656 assert(Op.LHS.second && Op.RHS.second && 657 "Both operands of integer complex operators must be complex!"); 658 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 659 } 660 return ComplexPairTy(ResR, ResI); 661 } 662 663 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 664 llvm::Value *ResR, *ResI; 665 if (Op.LHS.first->getType()->isFloatingPointTy()) { 666 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 667 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 668 if (Op.LHS.second && Op.RHS.second) 669 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 670 else 671 ResI = Op.LHS.second ? Op.LHS.second 672 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 673 assert(ResI && "Only one operand may be real!"); 674 } else { 675 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 676 assert(Op.LHS.second && Op.RHS.second && 677 "Both operands of integer complex operators must be complex!"); 678 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 679 } 680 return ComplexPairTy(ResR, ResI); 681 } 682 683 /// Emit a libcall for a binary operation on complex types. 684 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 685 const BinOpInfo &Op) { 686 CallArgList Args; 687 Args.add(RValue::get(Op.LHS.first), 688 Op.Ty->castAs<ComplexType>()->getElementType()); 689 Args.add(RValue::get(Op.LHS.second), 690 Op.Ty->castAs<ComplexType>()->getElementType()); 691 Args.add(RValue::get(Op.RHS.first), 692 Op.Ty->castAs<ComplexType>()->getElementType()); 693 Args.add(RValue::get(Op.RHS.second), 694 Op.Ty->castAs<ComplexType>()->getElementType()); 695 696 // We *must* use the full CG function call building logic here because the 697 // complex type has special ABI handling. We also should not forget about 698 // special calling convention which may be used for compiler builtins. 699 700 // We create a function qualified type to state that this call does not have 701 // any exceptions. 702 FunctionProtoType::ExtProtoInfo EPI; 703 EPI = EPI.withExceptionSpec( 704 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 705 SmallVector<QualType, 4> ArgsQTys( 706 4, Op.Ty->castAs<ComplexType>()->getElementType()); 707 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 708 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 709 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 710 711 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 712 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 713 FTy, LibCallName, llvm::AttributeList(), true); 714 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 715 716 llvm::CallBase *Call; 717 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 718 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 719 return Res.getComplexVal(); 720 } 721 722 /// Lookup the libcall name for a given floating point type complex 723 /// multiply. 724 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 725 switch (Ty->getTypeID()) { 726 default: 727 llvm_unreachable("Unsupported floating point type!"); 728 case llvm::Type::HalfTyID: 729 return "__mulhc3"; 730 case llvm::Type::FloatTyID: 731 return "__mulsc3"; 732 case llvm::Type::DoubleTyID: 733 return "__muldc3"; 734 case llvm::Type::PPC_FP128TyID: 735 return "__multc3"; 736 case llvm::Type::X86_FP80TyID: 737 return "__mulxc3"; 738 case llvm::Type::FP128TyID: 739 return "__multc3"; 740 } 741 } 742 743 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 744 // typed values. 745 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 746 using llvm::Value; 747 Value *ResR, *ResI; 748 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 749 750 if (Op.LHS.first->getType()->isFloatingPointTy()) { 751 // The general formulation is: 752 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 753 // 754 // But we can fold away components which would be zero due to a real 755 // operand according to C11 Annex G.5.1p2. 756 // FIXME: C11 also provides for imaginary types which would allow folding 757 // still more of this within the type system. 758 759 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 760 if (Op.LHS.second && Op.RHS.second) { 761 // If both operands are complex, emit the core math directly, and then 762 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 763 // to carefully re-compute the correct infinity representation if 764 // possible. The expectation is that the presence of NaNs here is 765 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 766 // This is good, because the libcall re-computes the core multiplication 767 // exactly the same as we do here and re-tests for NaNs in order to be 768 // a generic complex*complex libcall. 769 770 // First compute the four products. 771 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 772 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 773 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 774 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 775 776 // The real part is the difference of the first two, the imaginary part is 777 // the sum of the second. 778 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 779 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 780 781 // Emit the test for the real part becoming NaN and create a branch to 782 // handle it. We test for NaN by comparing the number to itself. 783 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 784 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 785 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 786 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 787 llvm::BasicBlock *OrigBB = Branch->getParent(); 788 789 // Give hint that we very much don't expect to see NaNs. 790 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 791 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 792 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 793 794 // Now test the imaginary part and create its branch. 795 CGF.EmitBlock(INaNBB); 796 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 797 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 798 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 799 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 800 801 // Now emit the libcall on this slowest of the slow paths. 802 CGF.EmitBlock(LibCallBB); 803 Value *LibCallR, *LibCallI; 804 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 805 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 806 Builder.CreateBr(ContBB); 807 808 // Finally continue execution by phi-ing together the different 809 // computation paths. 810 CGF.EmitBlock(ContBB); 811 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 812 RealPHI->addIncoming(ResR, OrigBB); 813 RealPHI->addIncoming(ResR, INaNBB); 814 RealPHI->addIncoming(LibCallR, LibCallBB); 815 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 816 ImagPHI->addIncoming(ResI, OrigBB); 817 ImagPHI->addIncoming(ResI, INaNBB); 818 ImagPHI->addIncoming(LibCallI, LibCallBB); 819 return ComplexPairTy(RealPHI, ImagPHI); 820 } 821 assert((Op.LHS.second || Op.RHS.second) && 822 "At least one operand must be complex!"); 823 824 // If either of the operands is a real rather than a complex, the 825 // imaginary component is ignored when computing the real component of the 826 // result. 827 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 828 829 ResI = Op.LHS.second 830 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 831 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 832 } else { 833 assert(Op.LHS.second && Op.RHS.second && 834 "Both operands of integer complex operators must be complex!"); 835 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 836 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 837 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 838 839 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 840 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 841 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 842 } 843 return ComplexPairTy(ResR, ResI); 844 } 845 846 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 847 // typed values. 848 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 849 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 850 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 851 852 llvm::Value *DSTr, *DSTi; 853 if (LHSr->getType()->isFloatingPointTy()) { 854 // If we have a complex operand on the RHS and FastMath is not allowed, we 855 // delegate to a libcall to handle all of the complexities and minimize 856 // underflow/overflow cases. When FastMath is allowed we construct the 857 // divide inline using the same algorithm as for integer operands. 858 // 859 // FIXME: We would be able to avoid the libcall in many places if we 860 // supported imaginary types in addition to complex types. 861 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); 862 if (RHSi && !CGF.getLangOpts().FastMath) { 863 BinOpInfo LibCallOp = Op; 864 // If LHS was a real, supply a null imaginary part. 865 if (!LHSi) 866 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 867 868 switch (LHSr->getType()->getTypeID()) { 869 default: 870 llvm_unreachable("Unsupported floating point type!"); 871 case llvm::Type::HalfTyID: 872 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 873 case llvm::Type::FloatTyID: 874 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 875 case llvm::Type::DoubleTyID: 876 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 877 case llvm::Type::PPC_FP128TyID: 878 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 879 case llvm::Type::X86_FP80TyID: 880 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 881 case llvm::Type::FP128TyID: 882 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 883 } 884 } else if (RHSi) { 885 if (!LHSi) 886 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 887 888 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 889 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 890 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 891 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 892 893 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 894 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 895 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 896 897 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 898 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 899 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 900 901 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 902 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 903 } else { 904 assert(LHSi && "Can have at most one non-complex operand!"); 905 906 DSTr = Builder.CreateFDiv(LHSr, RHSr); 907 DSTi = Builder.CreateFDiv(LHSi, RHSr); 908 } 909 } else { 910 assert(Op.LHS.second && Op.RHS.second && 911 "Both operands of integer complex operators must be complex!"); 912 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 913 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 914 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 915 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 916 917 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 918 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 919 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 920 921 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 922 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 923 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 924 925 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 926 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 927 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 928 } else { 929 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 930 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 931 } 932 } 933 934 return ComplexPairTy(DSTr, DSTi); 935 } 936 937 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result, 938 QualType UnPromotionType) { 939 llvm::Type *ComplexElementTy = 940 ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType()); 941 if (result.first) 942 result.first = 943 Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion"); 944 if (result.second) 945 result.second = 946 Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion"); 947 return result; 948 } 949 950 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result, 951 QualType PromotionType) { 952 llvm::Type *ComplexElementTy = 953 ConvertType(PromotionType->castAs<ComplexType>()->getElementType()); 954 if (result.first) 955 result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext"); 956 if (result.second) 957 result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext"); 958 959 return result; 960 } 961 962 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E, 963 QualType PromotionType) { 964 E = E->IgnoreParens(); 965 if (auto BO = dyn_cast<BinaryOperator>(E)) { 966 switch (BO->getOpcode()) { 967 #define HANDLE_BINOP(OP) \ 968 case BO_##OP: \ 969 return EmitBin##OP(EmitBinOps(BO, PromotionType)); 970 HANDLE_BINOP(Add) 971 HANDLE_BINOP(Sub) 972 HANDLE_BINOP(Mul) 973 HANDLE_BINOP(Div) 974 #undef HANDLE_BINOP 975 default: 976 break; 977 } 978 } else if (auto UO = dyn_cast<UnaryOperator>(E)) { 979 switch (UO->getOpcode()) { 980 case UO_Minus: 981 return VisitMinus(UO, PromotionType); 982 case UO_Plus: 983 return VisitPlus(UO, PromotionType); 984 default: 985 break; 986 } 987 } 988 auto result = Visit(const_cast<Expr *>(E)); 989 if (!PromotionType.isNull()) 990 return CGF.EmitPromotedValue(result, PromotionType); 991 else 992 return result; 993 } 994 995 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E, 996 QualType DstTy) { 997 return ComplexExprEmitter(*this).EmitPromoted(E, DstTy); 998 } 999 1000 ComplexPairTy 1001 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E, 1002 QualType OverallPromotionType) { 1003 if (E->getType()->isAnyComplexType()) { 1004 if (!OverallPromotionType.isNull()) 1005 return CGF.EmitPromotedComplexExpr(E, OverallPromotionType); 1006 else 1007 return Visit(const_cast<Expr *>(E)); 1008 } else { 1009 if (!OverallPromotionType.isNull()) { 1010 QualType ComplexElementTy = 1011 OverallPromotionType->castAs<ComplexType>()->getElementType(); 1012 return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy), 1013 nullptr); 1014 } else { 1015 return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr); 1016 } 1017 } 1018 } 1019 1020 ComplexExprEmitter::BinOpInfo 1021 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E, 1022 QualType PromotionType) { 1023 TestAndClearIgnoreReal(); 1024 TestAndClearIgnoreImag(); 1025 BinOpInfo Ops; 1026 1027 Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType); 1028 Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType); 1029 if (!PromotionType.isNull()) 1030 Ops.Ty = PromotionType; 1031 else 1032 Ops.Ty = E->getType(); 1033 Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1034 return Ops; 1035 } 1036 1037 1038 LValue ComplexExprEmitter:: 1039 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 1040 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 1041 RValue &Val) { 1042 TestAndClearIgnoreReal(); 1043 TestAndClearIgnoreImag(); 1044 QualType LHSTy = E->getLHS()->getType(); 1045 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 1046 LHSTy = AT->getValueType(); 1047 1048 BinOpInfo OpInfo; 1049 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 1050 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 1051 1052 // Load the RHS and LHS operands. 1053 // __block variables need to have the rhs evaluated first, plus this should 1054 // improve codegen a little. 1055 QualType PromotionTypeCR; 1056 PromotionTypeCR = getPromotionType(E->getComputationResultType()); 1057 if (PromotionTypeCR.isNull()) 1058 PromotionTypeCR = E->getComputationResultType(); 1059 OpInfo.Ty = PromotionTypeCR; 1060 QualType ComplexElementTy = 1061 OpInfo.Ty->castAs<ComplexType>()->getElementType(); 1062 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType()); 1063 1064 // The RHS should have been converted to the computation type. 1065 if (E->getRHS()->getType()->isRealFloatingType()) { 1066 if (!PromotionTypeRHS.isNull()) 1067 OpInfo.RHS = ComplexPairTy( 1068 CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr); 1069 else { 1070 assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, 1071 E->getRHS()->getType())); 1072 1073 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 1074 } 1075 } else { 1076 if (!PromotionTypeRHS.isNull()) { 1077 OpInfo.RHS = ComplexPairTy( 1078 CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS)); 1079 } else { 1080 assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty, 1081 E->getRHS()->getType())); 1082 OpInfo.RHS = Visit(E->getRHS()); 1083 } 1084 } 1085 1086 LValue LHS = CGF.EmitLValue(E->getLHS()); 1087 1088 // Load from the l-value and convert it. 1089 SourceLocation Loc = E->getExprLoc(); 1090 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType()); 1091 if (LHSTy->isAnyComplexType()) { 1092 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 1093 if (!PromotionTypeLHS.isNull()) 1094 OpInfo.LHS = 1095 EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc); 1096 else 1097 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1098 } else { 1099 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 1100 // For floating point real operands we can directly pass the scalar form 1101 // to the binary operator emission and potentially get more efficient code. 1102 if (LHSTy->isRealFloatingType()) { 1103 QualType PromotedComplexElementTy; 1104 if (!PromotionTypeLHS.isNull()) { 1105 PromotedComplexElementTy = 1106 cast<ComplexType>(PromotionTypeLHS)->getElementType(); 1107 if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy, 1108 PromotionTypeLHS)) 1109 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, 1110 PromotedComplexElementTy, Loc); 1111 } else { 1112 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 1113 LHSVal = 1114 CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 1115 } 1116 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 1117 } else { 1118 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 1119 } 1120 } 1121 1122 // Expand the binary operator. 1123 ComplexPairTy Result = (this->*Func)(OpInfo); 1124 1125 // Truncate the result and store it into the LHS lvalue. 1126 if (LHSTy->isAnyComplexType()) { 1127 ComplexPairTy ResVal = 1128 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 1129 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 1130 Val = RValue::getComplex(ResVal); 1131 } else { 1132 llvm::Value *ResVal = 1133 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 1134 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 1135 Val = RValue::get(ResVal); 1136 } 1137 1138 return LHS; 1139 } 1140 1141 // Compound assignments. 1142 ComplexPairTy ComplexExprEmitter:: 1143 EmitCompoundAssign(const CompoundAssignOperator *E, 1144 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 1145 RValue Val; 1146 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 1147 1148 // The result of an assignment in C is the assigned r-value. 1149 if (!CGF.getLangOpts().CPlusPlus) 1150 return Val.getComplexVal(); 1151 1152 // If the lvalue is non-volatile, return the computed value of the assignment. 1153 if (!LV.isVolatileQualified()) 1154 return Val.getComplexVal(); 1155 1156 return EmitLoadOfLValue(LV, E->getExprLoc()); 1157 } 1158 1159 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 1160 ComplexPairTy &Val) { 1161 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1162 E->getRHS()->getType()) && 1163 "Invalid assignment"); 1164 TestAndClearIgnoreReal(); 1165 TestAndClearIgnoreImag(); 1166 1167 // Emit the RHS. __block variables need the RHS evaluated first. 1168 Val = Visit(E->getRHS()); 1169 1170 // Compute the address to store into. 1171 LValue LHS = CGF.EmitLValue(E->getLHS()); 1172 1173 // Store the result value into the LHS lvalue. 1174 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 1175 1176 return LHS; 1177 } 1178 1179 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1180 ComplexPairTy Val; 1181 LValue LV = EmitBinAssignLValue(E, Val); 1182 1183 // The result of an assignment in C is the assigned r-value. 1184 if (!CGF.getLangOpts().CPlusPlus) 1185 return Val; 1186 1187 // If the lvalue is non-volatile, return the computed value of the assignment. 1188 if (!LV.isVolatileQualified()) 1189 return Val; 1190 1191 return EmitLoadOfLValue(LV, E->getExprLoc()); 1192 } 1193 1194 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1195 CGF.EmitIgnoredExpr(E->getLHS()); 1196 return Visit(E->getRHS()); 1197 } 1198 1199 ComplexPairTy ComplexExprEmitter:: 1200 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1201 TestAndClearIgnoreReal(); 1202 TestAndClearIgnoreImag(); 1203 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1204 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1205 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1206 1207 // Bind the common expression if necessary. 1208 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1209 1210 1211 CodeGenFunction::ConditionalEvaluation eval(CGF); 1212 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1213 CGF.getProfileCount(E)); 1214 1215 eval.begin(CGF); 1216 CGF.EmitBlock(LHSBlock); 1217 CGF.incrementProfileCounter(E); 1218 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1219 LHSBlock = Builder.GetInsertBlock(); 1220 CGF.EmitBranch(ContBlock); 1221 eval.end(CGF); 1222 1223 eval.begin(CGF); 1224 CGF.EmitBlock(RHSBlock); 1225 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1226 RHSBlock = Builder.GetInsertBlock(); 1227 CGF.EmitBlock(ContBlock); 1228 eval.end(CGF); 1229 1230 // Create a PHI node for the real part. 1231 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1232 RealPN->addIncoming(LHS.first, LHSBlock); 1233 RealPN->addIncoming(RHS.first, RHSBlock); 1234 1235 // Create a PHI node for the imaginary part. 1236 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1237 ImagPN->addIncoming(LHS.second, LHSBlock); 1238 ImagPN->addIncoming(RHS.second, RHSBlock); 1239 1240 return ComplexPairTy(RealPN, ImagPN); 1241 } 1242 1243 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1244 return Visit(E->getChosenSubExpr()); 1245 } 1246 1247 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1248 bool Ignore = TestAndClearIgnoreReal(); 1249 (void)Ignore; 1250 assert (Ignore == false && "init list ignored"); 1251 Ignore = TestAndClearIgnoreImag(); 1252 (void)Ignore; 1253 assert (Ignore == false && "init list ignored"); 1254 1255 if (E->getNumInits() == 2) { 1256 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1257 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1258 return ComplexPairTy(Real, Imag); 1259 } else if (E->getNumInits() == 1) { 1260 return Visit(E->getInit(0)); 1261 } 1262 1263 // Empty init list initializes to null 1264 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1265 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1266 llvm::Type* LTy = CGF.ConvertType(Ty); 1267 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1268 return ComplexPairTy(zeroConstant, zeroConstant); 1269 } 1270 1271 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1272 Address ArgValue = Address::invalid(); 1273 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1274 1275 if (!ArgPtr.isValid()) { 1276 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1277 llvm::Type *EltTy = 1278 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1279 llvm::Value *U = llvm::UndefValue::get(EltTy); 1280 return ComplexPairTy(U, U); 1281 } 1282 1283 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1284 E->getExprLoc()); 1285 } 1286 1287 //===----------------------------------------------------------------------===// 1288 // Entry Point into this File 1289 //===----------------------------------------------------------------------===// 1290 1291 /// EmitComplexExpr - Emit the computation of the specified expression of 1292 /// complex type, ignoring the result. 1293 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1294 bool IgnoreImag) { 1295 assert(E && getComplexType(E->getType()) && 1296 "Invalid complex expression to emit"); 1297 1298 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1299 .Visit(const_cast<Expr *>(E)); 1300 } 1301 1302 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1303 bool isInit) { 1304 assert(E && getComplexType(E->getType()) && 1305 "Invalid complex expression to emit"); 1306 ComplexExprEmitter Emitter(*this); 1307 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1308 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1309 } 1310 1311 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1312 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1313 bool isInit) { 1314 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1315 } 1316 1317 /// EmitLoadOfComplex - Load a complex number from the specified address. 1318 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1319 SourceLocation loc) { 1320 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1321 } 1322 1323 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1324 assert(E->getOpcode() == BO_Assign); 1325 ComplexPairTy Val; // ignored 1326 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1327 if (getLangOpts().OpenMP) 1328 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1329 E->getLHS()); 1330 return LVal; 1331 } 1332 1333 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1334 const ComplexExprEmitter::BinOpInfo &); 1335 1336 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1337 switch (Op) { 1338 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1339 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1340 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1341 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1342 default: 1343 llvm_unreachable("unexpected complex compound assignment"); 1344 } 1345 } 1346 1347 LValue CodeGenFunction:: 1348 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1349 CompoundFunc Op = getComplexOp(E->getOpcode()); 1350 RValue Val; 1351 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1352 } 1353 1354 LValue CodeGenFunction:: 1355 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1356 llvm::Value *&Result) { 1357 CompoundFunc Op = getComplexOp(E->getOpcode()); 1358 RValue Val; 1359 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1360 Result = Val.getScalarVal(); 1361 return Ret; 1362 } 1363