1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Metadata.h" 22 #include <algorithm> 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Complex Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 31 32 /// Return the complex type that we are meant to emit. 33 static const ComplexType *getComplexType(QualType type) { 34 type = type.getCanonicalType(); 35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 36 return comp; 37 } else { 38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 39 } 40 } 41 42 namespace { 43 class ComplexExprEmitter 44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 45 CodeGenFunction &CGF; 46 CGBuilderTy &Builder; 47 bool IgnoreReal; 48 bool IgnoreImag; 49 public: 50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 52 } 53 54 55 //===--------------------------------------------------------------------===// 56 // Utilities 57 //===--------------------------------------------------------------------===// 58 59 bool TestAndClearIgnoreReal() { 60 bool I = IgnoreReal; 61 IgnoreReal = false; 62 return I; 63 } 64 bool TestAndClearIgnoreImag() { 65 bool I = IgnoreImag; 66 IgnoreImag = false; 67 return I; 68 } 69 70 /// EmitLoadOfLValue - Given an expression with complex type that represents a 71 /// value l-value, this method emits the address of the l-value, then loads 72 /// and returns the result. 73 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 75 } 76 77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 78 79 /// EmitStoreOfComplex - Store the specified real/imag parts into the 80 /// specified value pointer. 81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 82 83 /// Emit a cast from complex value Val to DestType. 84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 85 QualType DestType, SourceLocation Loc); 86 /// Emit a cast from scalar value Val to DestType. 87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 ComplexPairTy Visit(Expr *E) { 95 ApplyDebugLocation DL(CGF, E); 96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 97 } 98 99 ComplexPairTy VisitStmt(Stmt *S) { 100 S->dump(CGF.getContext().getSourceManager()); 101 llvm_unreachable("Stmt can't have complex result type!"); 102 } 103 ComplexPairTy VisitExpr(Expr *S); 104 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 105 return Visit(E->getSubExpr()); 106 } 107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 109 return Visit(GE->getResultExpr()); 110 } 111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 112 ComplexPairTy 113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 114 return Visit(PE->getReplacement()); 115 } 116 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 117 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 118 } 119 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 120 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 121 } 122 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 123 return Visit(E->getSubExpr()); 124 } 125 126 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 127 Expr *E) { 128 assert(Constant && "not a constant"); 129 if (Constant.isReference()) 130 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 131 E->getExprLoc()); 132 133 llvm::Constant *pair = Constant.getValue(); 134 return ComplexPairTy(pair->getAggregateElement(0U), 135 pair->getAggregateElement(1U)); 136 } 137 138 // l-values. 139 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 140 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 141 return emitConstant(Constant, E); 142 return EmitLoadOfLValue(E); 143 } 144 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 145 return EmitLoadOfLValue(E); 146 } 147 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 148 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 149 } 150 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 151 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 152 if (CodeGenFunction::ConstantEmission Constant = 153 CGF.tryEmitAsConstant(ME)) { 154 CGF.EmitIgnoredExpr(ME->getBase()); 155 return emitConstant(Constant, ME); 156 } 157 return EmitLoadOfLValue(ME); 158 } 159 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 160 if (E->isGLValue()) 161 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 162 E->getExprLoc()); 163 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 164 } 165 166 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 167 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 168 } 169 170 // FIXME: CompoundLiteralExpr 171 172 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 173 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 174 // Unlike for scalars, we don't have to worry about function->ptr demotion 175 // here. 176 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 177 } 178 ComplexPairTy VisitCastExpr(CastExpr *E) { 179 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 180 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 181 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 182 } 183 ComplexPairTy VisitCallExpr(const CallExpr *E); 184 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 185 186 // Operators. 187 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 188 bool isInc, bool isPre) { 189 LValue LV = CGF.EmitLValue(E->getSubExpr()); 190 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 191 } 192 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 193 return VisitPrePostIncDec(E, false, false); 194 } 195 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 196 return VisitPrePostIncDec(E, true, false); 197 } 198 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 199 return VisitPrePostIncDec(E, false, true); 200 } 201 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 202 return VisitPrePostIncDec(E, true, true); 203 } 204 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 205 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 206 TestAndClearIgnoreReal(); 207 TestAndClearIgnoreImag(); 208 return Visit(E->getSubExpr()); 209 } 210 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 211 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 212 // LNot,Real,Imag never return complex. 213 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 214 return Visit(E->getSubExpr()); 215 } 216 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 217 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 218 return Visit(DAE->getExpr()); 219 } 220 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 221 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 222 return Visit(DIE->getExpr()); 223 } 224 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 225 CGF.enterFullExpression(E); 226 CodeGenFunction::RunCleanupsScope Scope(CGF); 227 ComplexPairTy Vals = Visit(E->getSubExpr()); 228 // Defend against dominance problems caused by jumps out of expression 229 // evaluation through the shared cleanup block. 230 Scope.ForceCleanup({&Vals.first, &Vals.second}); 231 return Vals; 232 } 233 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 234 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 235 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 236 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 237 return ComplexPairTy(Null, Null); 238 } 239 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 240 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 241 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 242 llvm::Constant *Null = 243 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 244 return ComplexPairTy(Null, Null); 245 } 246 247 struct BinOpInfo { 248 ComplexPairTy LHS; 249 ComplexPairTy RHS; 250 QualType Ty; // Computation Type. 251 }; 252 253 BinOpInfo EmitBinOps(const BinaryOperator *E); 254 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 255 ComplexPairTy (ComplexExprEmitter::*Func) 256 (const BinOpInfo &), 257 RValue &Val); 258 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 259 ComplexPairTy (ComplexExprEmitter::*Func) 260 (const BinOpInfo &)); 261 262 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 263 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 264 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 265 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 266 267 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 268 const BinOpInfo &Op); 269 270 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 271 return EmitBinAdd(EmitBinOps(E)); 272 } 273 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 274 return EmitBinSub(EmitBinOps(E)); 275 } 276 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 277 return EmitBinMul(EmitBinOps(E)); 278 } 279 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 280 return EmitBinDiv(EmitBinOps(E)); 281 } 282 283 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 284 return Visit(E->getSemanticForm()); 285 } 286 287 // Compound assignments. 288 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 289 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 290 } 291 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 292 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 293 } 294 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 295 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 296 } 297 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 298 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 299 } 300 301 // GCC rejects rem/and/or/xor for integer complex. 302 // Logical and/or always return int, never complex. 303 304 // No comparisons produce a complex result. 305 306 LValue EmitBinAssignLValue(const BinaryOperator *E, 307 ComplexPairTy &Val); 308 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 309 ComplexPairTy VisitBinComma (const BinaryOperator *E); 310 311 312 ComplexPairTy 313 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 314 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 315 316 ComplexPairTy VisitInitListExpr(InitListExpr *E); 317 318 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 319 return EmitLoadOfLValue(E); 320 } 321 322 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 323 324 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 325 return CGF.EmitAtomicExpr(E).getComplexVal(); 326 } 327 }; 328 } // end anonymous namespace. 329 330 //===----------------------------------------------------------------------===// 331 // Utilities 332 //===----------------------------------------------------------------------===// 333 334 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 335 QualType complexType) { 336 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 337 } 338 339 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 340 QualType complexType) { 341 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 342 } 343 344 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 345 /// load the real and imaginary pieces, returning them as Real/Imag. 346 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 347 SourceLocation loc) { 348 assert(lvalue.isSimple() && "non-simple complex l-value?"); 349 if (lvalue.getType()->isAtomicType()) 350 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 351 352 Address SrcPtr = lvalue.getAddress(CGF); 353 bool isVolatile = lvalue.isVolatileQualified(); 354 355 llvm::Value *Real = nullptr, *Imag = nullptr; 356 357 if (!IgnoreReal || isVolatile) { 358 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 359 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 360 } 361 362 if (!IgnoreImag || isVolatile) { 363 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 364 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 365 } 366 367 return ComplexPairTy(Real, Imag); 368 } 369 370 /// EmitStoreOfComplex - Store the specified real/imag parts into the 371 /// specified value pointer. 372 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 373 bool isInit) { 374 if (lvalue.getType()->isAtomicType() || 375 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 376 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 377 378 Address Ptr = lvalue.getAddress(CGF); 379 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 380 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 381 382 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 383 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 384 } 385 386 387 388 //===----------------------------------------------------------------------===// 389 // Visitor Methods 390 //===----------------------------------------------------------------------===// 391 392 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 393 CGF.ErrorUnsupported(E, "complex expression"); 394 llvm::Type *EltTy = 395 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 396 llvm::Value *U = llvm::UndefValue::get(EltTy); 397 return ComplexPairTy(U, U); 398 } 399 400 ComplexPairTy ComplexExprEmitter:: 401 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 402 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 403 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 404 } 405 406 407 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 408 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 409 return EmitLoadOfLValue(E); 410 411 return CGF.EmitCallExpr(E).getComplexVal(); 412 } 413 414 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 415 CodeGenFunction::StmtExprEvaluation eval(CGF); 416 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 417 assert(RetAlloca.isValid() && "Expected complex return value"); 418 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 419 E->getExprLoc()); 420 } 421 422 /// Emit a cast from complex value Val to DestType. 423 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 424 QualType SrcType, 425 QualType DestType, 426 SourceLocation Loc) { 427 // Get the src/dest element type. 428 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 429 DestType = DestType->castAs<ComplexType>()->getElementType(); 430 431 // C99 6.3.1.6: When a value of complex type is converted to another 432 // complex type, both the real and imaginary parts follow the conversion 433 // rules for the corresponding real types. 434 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 435 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 436 return Val; 437 } 438 439 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 440 QualType SrcType, 441 QualType DestType, 442 SourceLocation Loc) { 443 // Convert the input element to the element type of the complex. 444 DestType = DestType->castAs<ComplexType>()->getElementType(); 445 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 446 447 // Return (realval, 0). 448 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 449 } 450 451 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 452 QualType DestTy) { 453 switch (CK) { 454 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 455 456 // Atomic to non-atomic casts may be more than a no-op for some platforms and 457 // for some types. 458 case CK_AtomicToNonAtomic: 459 case CK_NonAtomicToAtomic: 460 case CK_NoOp: 461 case CK_LValueToRValue: 462 case CK_UserDefinedConversion: 463 return Visit(Op); 464 465 case CK_LValueBitCast: { 466 LValue origLV = CGF.EmitLValue(Op); 467 Address V = origLV.getAddress(CGF); 468 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 469 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 470 } 471 472 case CK_LValueToRValueBitCast: { 473 LValue SourceLVal = CGF.EmitLValue(Op); 474 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 475 CGF.ConvertTypeForMem(DestTy)); 476 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 477 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 478 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 479 } 480 481 case CK_BitCast: 482 case CK_BaseToDerived: 483 case CK_DerivedToBase: 484 case CK_UncheckedDerivedToBase: 485 case CK_Dynamic: 486 case CK_ToUnion: 487 case CK_ArrayToPointerDecay: 488 case CK_FunctionToPointerDecay: 489 case CK_NullToPointer: 490 case CK_NullToMemberPointer: 491 case CK_BaseToDerivedMemberPointer: 492 case CK_DerivedToBaseMemberPointer: 493 case CK_MemberPointerToBoolean: 494 case CK_ReinterpretMemberPointer: 495 case CK_ConstructorConversion: 496 case CK_IntegralToPointer: 497 case CK_PointerToIntegral: 498 case CK_PointerToBoolean: 499 case CK_ToVoid: 500 case CK_VectorSplat: 501 case CK_IntegralCast: 502 case CK_BooleanToSignedIntegral: 503 case CK_IntegralToBoolean: 504 case CK_IntegralToFloating: 505 case CK_FloatingToIntegral: 506 case CK_FloatingToBoolean: 507 case CK_FloatingCast: 508 case CK_CPointerToObjCPointerCast: 509 case CK_BlockPointerToObjCPointerCast: 510 case CK_AnyPointerToBlockPointerCast: 511 case CK_ObjCObjectLValueCast: 512 case CK_FloatingComplexToReal: 513 case CK_FloatingComplexToBoolean: 514 case CK_IntegralComplexToReal: 515 case CK_IntegralComplexToBoolean: 516 case CK_ARCProduceObject: 517 case CK_ARCConsumeObject: 518 case CK_ARCReclaimReturnedObject: 519 case CK_ARCExtendBlockObject: 520 case CK_CopyAndAutoreleaseBlockObject: 521 case CK_BuiltinFnToFnPtr: 522 case CK_ZeroToOCLOpaqueType: 523 case CK_AddressSpaceConversion: 524 case CK_IntToOCLSampler: 525 case CK_FixedPointCast: 526 case CK_FixedPointToBoolean: 527 case CK_FixedPointToIntegral: 528 case CK_IntegralToFixedPoint: 529 llvm_unreachable("invalid cast kind for complex value"); 530 531 case CK_FloatingRealToComplex: 532 case CK_IntegralRealToComplex: 533 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 534 DestTy, Op->getExprLoc()); 535 536 case CK_FloatingComplexCast: 537 case CK_FloatingComplexToIntegralComplex: 538 case CK_IntegralComplexCast: 539 case CK_IntegralComplexToFloatingComplex: 540 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 541 Op->getExprLoc()); 542 } 543 544 llvm_unreachable("unknown cast resulting in complex value"); 545 } 546 547 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 548 TestAndClearIgnoreReal(); 549 TestAndClearIgnoreImag(); 550 ComplexPairTy Op = Visit(E->getSubExpr()); 551 552 llvm::Value *ResR, *ResI; 553 if (Op.first->getType()->isFloatingPointTy()) { 554 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 555 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 556 } else { 557 ResR = Builder.CreateNeg(Op.first, "neg.r"); 558 ResI = Builder.CreateNeg(Op.second, "neg.i"); 559 } 560 return ComplexPairTy(ResR, ResI); 561 } 562 563 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 564 TestAndClearIgnoreReal(); 565 TestAndClearIgnoreImag(); 566 // ~(a+ib) = a + i*-b 567 ComplexPairTy Op = Visit(E->getSubExpr()); 568 llvm::Value *ResI; 569 if (Op.second->getType()->isFloatingPointTy()) 570 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 571 else 572 ResI = Builder.CreateNeg(Op.second, "conj.i"); 573 574 return ComplexPairTy(Op.first, ResI); 575 } 576 577 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 578 llvm::Value *ResR, *ResI; 579 580 if (Op.LHS.first->getType()->isFloatingPointTy()) { 581 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 582 if (Op.LHS.second && Op.RHS.second) 583 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 584 else 585 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 586 assert(ResI && "Only one operand may be real!"); 587 } else { 588 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 589 assert(Op.LHS.second && Op.RHS.second && 590 "Both operands of integer complex operators must be complex!"); 591 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 592 } 593 return ComplexPairTy(ResR, ResI); 594 } 595 596 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 597 llvm::Value *ResR, *ResI; 598 if (Op.LHS.first->getType()->isFloatingPointTy()) { 599 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 600 if (Op.LHS.second && Op.RHS.second) 601 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 602 else 603 ResI = Op.LHS.second ? Op.LHS.second 604 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 605 assert(ResI && "Only one operand may be real!"); 606 } else { 607 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 608 assert(Op.LHS.second && Op.RHS.second && 609 "Both operands of integer complex operators must be complex!"); 610 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 611 } 612 return ComplexPairTy(ResR, ResI); 613 } 614 615 /// Emit a libcall for a binary operation on complex types. 616 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 617 const BinOpInfo &Op) { 618 CallArgList Args; 619 Args.add(RValue::get(Op.LHS.first), 620 Op.Ty->castAs<ComplexType>()->getElementType()); 621 Args.add(RValue::get(Op.LHS.second), 622 Op.Ty->castAs<ComplexType>()->getElementType()); 623 Args.add(RValue::get(Op.RHS.first), 624 Op.Ty->castAs<ComplexType>()->getElementType()); 625 Args.add(RValue::get(Op.RHS.second), 626 Op.Ty->castAs<ComplexType>()->getElementType()); 627 628 // We *must* use the full CG function call building logic here because the 629 // complex type has special ABI handling. We also should not forget about 630 // special calling convention which may be used for compiler builtins. 631 632 // We create a function qualified type to state that this call does not have 633 // any exceptions. 634 FunctionProtoType::ExtProtoInfo EPI; 635 EPI = EPI.withExceptionSpec( 636 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 637 SmallVector<QualType, 4> ArgsQTys( 638 4, Op.Ty->castAs<ComplexType>()->getElementType()); 639 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 640 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 641 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 642 643 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 644 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 645 FTy, LibCallName, llvm::AttributeList(), true); 646 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 647 648 llvm::CallBase *Call; 649 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 650 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 651 return Res.getComplexVal(); 652 } 653 654 /// Lookup the libcall name for a given floating point type complex 655 /// multiply. 656 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 657 switch (Ty->getTypeID()) { 658 default: 659 llvm_unreachable("Unsupported floating point type!"); 660 case llvm::Type::HalfTyID: 661 return "__mulhc3"; 662 case llvm::Type::FloatTyID: 663 return "__mulsc3"; 664 case llvm::Type::DoubleTyID: 665 return "__muldc3"; 666 case llvm::Type::PPC_FP128TyID: 667 return "__multc3"; 668 case llvm::Type::X86_FP80TyID: 669 return "__mulxc3"; 670 case llvm::Type::FP128TyID: 671 return "__multc3"; 672 } 673 } 674 675 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 676 // typed values. 677 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 678 using llvm::Value; 679 Value *ResR, *ResI; 680 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 681 682 if (Op.LHS.first->getType()->isFloatingPointTy()) { 683 // The general formulation is: 684 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 685 // 686 // But we can fold away components which would be zero due to a real 687 // operand according to C11 Annex G.5.1p2. 688 // FIXME: C11 also provides for imaginary types which would allow folding 689 // still more of this within the type system. 690 691 if (Op.LHS.second && Op.RHS.second) { 692 // If both operands are complex, emit the core math directly, and then 693 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 694 // to carefully re-compute the correct infinity representation if 695 // possible. The expectation is that the presence of NaNs here is 696 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 697 // This is good, because the libcall re-computes the core multiplication 698 // exactly the same as we do here and re-tests for NaNs in order to be 699 // a generic complex*complex libcall. 700 701 // First compute the four products. 702 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 703 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 704 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 705 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 706 707 // The real part is the difference of the first two, the imaginary part is 708 // the sum of the second. 709 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 710 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 711 712 // Emit the test for the real part becoming NaN and create a branch to 713 // handle it. We test for NaN by comparing the number to itself. 714 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 715 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 716 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 717 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 718 llvm::BasicBlock *OrigBB = Branch->getParent(); 719 720 // Give hint that we very much don't expect to see NaNs. 721 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 722 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 723 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 724 725 // Now test the imaginary part and create its branch. 726 CGF.EmitBlock(INaNBB); 727 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 728 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 729 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 730 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 731 732 // Now emit the libcall on this slowest of the slow paths. 733 CGF.EmitBlock(LibCallBB); 734 Value *LibCallR, *LibCallI; 735 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 736 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 737 Builder.CreateBr(ContBB); 738 739 // Finally continue execution by phi-ing together the different 740 // computation paths. 741 CGF.EmitBlock(ContBB); 742 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 743 RealPHI->addIncoming(ResR, OrigBB); 744 RealPHI->addIncoming(ResR, INaNBB); 745 RealPHI->addIncoming(LibCallR, LibCallBB); 746 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 747 ImagPHI->addIncoming(ResI, OrigBB); 748 ImagPHI->addIncoming(ResI, INaNBB); 749 ImagPHI->addIncoming(LibCallI, LibCallBB); 750 return ComplexPairTy(RealPHI, ImagPHI); 751 } 752 assert((Op.LHS.second || Op.RHS.second) && 753 "At least one operand must be complex!"); 754 755 // If either of the operands is a real rather than a complex, the 756 // imaginary component is ignored when computing the real component of the 757 // result. 758 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 759 760 ResI = Op.LHS.second 761 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 762 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 763 } else { 764 assert(Op.LHS.second && Op.RHS.second && 765 "Both operands of integer complex operators must be complex!"); 766 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 767 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 768 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 769 770 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 771 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 772 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 773 } 774 return ComplexPairTy(ResR, ResI); 775 } 776 777 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 778 // typed values. 779 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 780 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 781 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 782 783 llvm::Value *DSTr, *DSTi; 784 if (LHSr->getType()->isFloatingPointTy()) { 785 // If we have a complex operand on the RHS and FastMath is not allowed, we 786 // delegate to a libcall to handle all of the complexities and minimize 787 // underflow/overflow cases. When FastMath is allowed we construct the 788 // divide inline using the same algorithm as for integer operands. 789 // 790 // FIXME: We would be able to avoid the libcall in many places if we 791 // supported imaginary types in addition to complex types. 792 if (RHSi && !CGF.getLangOpts().FastMath) { 793 BinOpInfo LibCallOp = Op; 794 // If LHS was a real, supply a null imaginary part. 795 if (!LHSi) 796 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 797 798 switch (LHSr->getType()->getTypeID()) { 799 default: 800 llvm_unreachable("Unsupported floating point type!"); 801 case llvm::Type::HalfTyID: 802 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 803 case llvm::Type::FloatTyID: 804 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 805 case llvm::Type::DoubleTyID: 806 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 807 case llvm::Type::PPC_FP128TyID: 808 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 809 case llvm::Type::X86_FP80TyID: 810 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 811 case llvm::Type::FP128TyID: 812 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 813 } 814 } else if (RHSi) { 815 if (!LHSi) 816 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 817 818 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 819 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 820 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 821 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 822 823 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 824 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 825 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 826 827 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 828 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 829 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 830 831 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 832 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 833 } else { 834 assert(LHSi && "Can have at most one non-complex operand!"); 835 836 DSTr = Builder.CreateFDiv(LHSr, RHSr); 837 DSTi = Builder.CreateFDiv(LHSi, RHSr); 838 } 839 } else { 840 assert(Op.LHS.second && Op.RHS.second && 841 "Both operands of integer complex operators must be complex!"); 842 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 843 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 844 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 845 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 846 847 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 848 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 849 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 850 851 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 852 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 853 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 854 855 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 856 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 857 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 858 } else { 859 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 860 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 861 } 862 } 863 864 return ComplexPairTy(DSTr, DSTi); 865 } 866 867 ComplexExprEmitter::BinOpInfo 868 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 869 TestAndClearIgnoreReal(); 870 TestAndClearIgnoreImag(); 871 BinOpInfo Ops; 872 if (E->getLHS()->getType()->isRealFloatingType()) 873 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 874 else 875 Ops.LHS = Visit(E->getLHS()); 876 if (E->getRHS()->getType()->isRealFloatingType()) 877 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 878 else 879 Ops.RHS = Visit(E->getRHS()); 880 881 Ops.Ty = E->getType(); 882 return Ops; 883 } 884 885 886 LValue ComplexExprEmitter:: 887 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 888 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 889 RValue &Val) { 890 TestAndClearIgnoreReal(); 891 TestAndClearIgnoreImag(); 892 QualType LHSTy = E->getLHS()->getType(); 893 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 894 LHSTy = AT->getValueType(); 895 896 BinOpInfo OpInfo; 897 898 // Load the RHS and LHS operands. 899 // __block variables need to have the rhs evaluated first, plus this should 900 // improve codegen a little. 901 OpInfo.Ty = E->getComputationResultType(); 902 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 903 904 // The RHS should have been converted to the computation type. 905 if (E->getRHS()->getType()->isRealFloatingType()) { 906 assert( 907 CGF.getContext() 908 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 909 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 910 } else { 911 assert(CGF.getContext() 912 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 913 OpInfo.RHS = Visit(E->getRHS()); 914 } 915 916 LValue LHS = CGF.EmitLValue(E->getLHS()); 917 918 // Load from the l-value and convert it. 919 SourceLocation Loc = E->getExprLoc(); 920 if (LHSTy->isAnyComplexType()) { 921 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 922 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 923 } else { 924 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 925 // For floating point real operands we can directly pass the scalar form 926 // to the binary operator emission and potentially get more efficient code. 927 if (LHSTy->isRealFloatingType()) { 928 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 929 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 930 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 931 } else { 932 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 933 } 934 } 935 936 // Expand the binary operator. 937 ComplexPairTy Result = (this->*Func)(OpInfo); 938 939 // Truncate the result and store it into the LHS lvalue. 940 if (LHSTy->isAnyComplexType()) { 941 ComplexPairTy ResVal = 942 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 943 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 944 Val = RValue::getComplex(ResVal); 945 } else { 946 llvm::Value *ResVal = 947 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 948 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 949 Val = RValue::get(ResVal); 950 } 951 952 return LHS; 953 } 954 955 // Compound assignments. 956 ComplexPairTy ComplexExprEmitter:: 957 EmitCompoundAssign(const CompoundAssignOperator *E, 958 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 959 RValue Val; 960 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 961 962 // The result of an assignment in C is the assigned r-value. 963 if (!CGF.getLangOpts().CPlusPlus) 964 return Val.getComplexVal(); 965 966 // If the lvalue is non-volatile, return the computed value of the assignment. 967 if (!LV.isVolatileQualified()) 968 return Val.getComplexVal(); 969 970 return EmitLoadOfLValue(LV, E->getExprLoc()); 971 } 972 973 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 974 ComplexPairTy &Val) { 975 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 976 E->getRHS()->getType()) && 977 "Invalid assignment"); 978 TestAndClearIgnoreReal(); 979 TestAndClearIgnoreImag(); 980 981 // Emit the RHS. __block variables need the RHS evaluated first. 982 Val = Visit(E->getRHS()); 983 984 // Compute the address to store into. 985 LValue LHS = CGF.EmitLValue(E->getLHS()); 986 987 // Store the result value into the LHS lvalue. 988 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 989 990 return LHS; 991 } 992 993 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 994 ComplexPairTy Val; 995 LValue LV = EmitBinAssignLValue(E, Val); 996 997 // The result of an assignment in C is the assigned r-value. 998 if (!CGF.getLangOpts().CPlusPlus) 999 return Val; 1000 1001 // If the lvalue is non-volatile, return the computed value of the assignment. 1002 if (!LV.isVolatileQualified()) 1003 return Val; 1004 1005 return EmitLoadOfLValue(LV, E->getExprLoc()); 1006 } 1007 1008 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1009 CGF.EmitIgnoredExpr(E->getLHS()); 1010 return Visit(E->getRHS()); 1011 } 1012 1013 ComplexPairTy ComplexExprEmitter:: 1014 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1015 TestAndClearIgnoreReal(); 1016 TestAndClearIgnoreImag(); 1017 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1018 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1019 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1020 1021 // Bind the common expression if necessary. 1022 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1023 1024 1025 CodeGenFunction::ConditionalEvaluation eval(CGF); 1026 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1027 CGF.getProfileCount(E)); 1028 1029 eval.begin(CGF); 1030 CGF.EmitBlock(LHSBlock); 1031 CGF.incrementProfileCounter(E); 1032 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1033 LHSBlock = Builder.GetInsertBlock(); 1034 CGF.EmitBranch(ContBlock); 1035 eval.end(CGF); 1036 1037 eval.begin(CGF); 1038 CGF.EmitBlock(RHSBlock); 1039 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1040 RHSBlock = Builder.GetInsertBlock(); 1041 CGF.EmitBlock(ContBlock); 1042 eval.end(CGF); 1043 1044 // Create a PHI node for the real part. 1045 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1046 RealPN->addIncoming(LHS.first, LHSBlock); 1047 RealPN->addIncoming(RHS.first, RHSBlock); 1048 1049 // Create a PHI node for the imaginary part. 1050 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1051 ImagPN->addIncoming(LHS.second, LHSBlock); 1052 ImagPN->addIncoming(RHS.second, RHSBlock); 1053 1054 return ComplexPairTy(RealPN, ImagPN); 1055 } 1056 1057 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1058 return Visit(E->getChosenSubExpr()); 1059 } 1060 1061 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1062 bool Ignore = TestAndClearIgnoreReal(); 1063 (void)Ignore; 1064 assert (Ignore == false && "init list ignored"); 1065 Ignore = TestAndClearIgnoreImag(); 1066 (void)Ignore; 1067 assert (Ignore == false && "init list ignored"); 1068 1069 if (E->getNumInits() == 2) { 1070 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1071 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1072 return ComplexPairTy(Real, Imag); 1073 } else if (E->getNumInits() == 1) { 1074 return Visit(E->getInit(0)); 1075 } 1076 1077 // Empty init list initializes to null 1078 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1079 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1080 llvm::Type* LTy = CGF.ConvertType(Ty); 1081 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1082 return ComplexPairTy(zeroConstant, zeroConstant); 1083 } 1084 1085 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1086 Address ArgValue = Address::invalid(); 1087 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1088 1089 if (!ArgPtr.isValid()) { 1090 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1091 llvm::Type *EltTy = 1092 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1093 llvm::Value *U = llvm::UndefValue::get(EltTy); 1094 return ComplexPairTy(U, U); 1095 } 1096 1097 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1098 E->getExprLoc()); 1099 } 1100 1101 //===----------------------------------------------------------------------===// 1102 // Entry Point into this File 1103 //===----------------------------------------------------------------------===// 1104 1105 /// EmitComplexExpr - Emit the computation of the specified expression of 1106 /// complex type, ignoring the result. 1107 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1108 bool IgnoreImag) { 1109 assert(E && getComplexType(E->getType()) && 1110 "Invalid complex expression to emit"); 1111 1112 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1113 .Visit(const_cast<Expr *>(E)); 1114 } 1115 1116 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1117 bool isInit) { 1118 assert(E && getComplexType(E->getType()) && 1119 "Invalid complex expression to emit"); 1120 ComplexExprEmitter Emitter(*this); 1121 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1122 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1123 } 1124 1125 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1126 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1127 bool isInit) { 1128 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1129 } 1130 1131 /// EmitLoadOfComplex - Load a complex number from the specified address. 1132 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1133 SourceLocation loc) { 1134 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1135 } 1136 1137 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1138 assert(E->getOpcode() == BO_Assign); 1139 ComplexPairTy Val; // ignored 1140 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1141 if (getLangOpts().OpenMP) 1142 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1143 E->getLHS()); 1144 return LVal; 1145 } 1146 1147 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1148 const ComplexExprEmitter::BinOpInfo &); 1149 1150 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1151 switch (Op) { 1152 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1153 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1154 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1155 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1156 default: 1157 llvm_unreachable("unexpected complex compound assignment"); 1158 } 1159 } 1160 1161 LValue CodeGenFunction:: 1162 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1163 CompoundFunc Op = getComplexOp(E->getOpcode()); 1164 RValue Val; 1165 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1166 } 1167 1168 LValue CodeGenFunction:: 1169 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1170 llvm::Value *&Result) { 1171 CompoundFunc Op = getComplexOp(E->getOpcode()); 1172 RValue Val; 1173 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1174 Result = Val.getScalarVal(); 1175 return Ret; 1176 } 1177