xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprComplex.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/StmtVisitor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Metadata.h"
22 #include <algorithm>
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Complex Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
31 
32 /// Return the complex type that we are meant to emit.
33 static const ComplexType *getComplexType(QualType type) {
34   type = type.getCanonicalType();
35   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
36     return comp;
37   } else {
38     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
39   }
40 }
41 
42 namespace  {
43 class ComplexExprEmitter
44   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
45   CodeGenFunction &CGF;
46   CGBuilderTy &Builder;
47   bool IgnoreReal;
48   bool IgnoreImag;
49 public:
50   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
51     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
52   }
53 
54 
55   //===--------------------------------------------------------------------===//
56   //                               Utilities
57   //===--------------------------------------------------------------------===//
58 
59   bool TestAndClearIgnoreReal() {
60     bool I = IgnoreReal;
61     IgnoreReal = false;
62     return I;
63   }
64   bool TestAndClearIgnoreImag() {
65     bool I = IgnoreImag;
66     IgnoreImag = false;
67     return I;
68   }
69 
70   /// EmitLoadOfLValue - Given an expression with complex type that represents a
71   /// value l-value, this method emits the address of the l-value, then loads
72   /// and returns the result.
73   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
74     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
75   }
76 
77   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
78 
79   /// EmitStoreOfComplex - Store the specified real/imag parts into the
80   /// specified value pointer.
81   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
82 
83   /// Emit a cast from complex value Val to DestType.
84   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
85                                          QualType DestType, SourceLocation Loc);
86   /// Emit a cast from scalar value Val to DestType.
87   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
88                                         QualType DestType, SourceLocation Loc);
89 
90   //===--------------------------------------------------------------------===//
91   //                            Visitor Methods
92   //===--------------------------------------------------------------------===//
93 
94   ComplexPairTy Visit(Expr *E) {
95     ApplyDebugLocation DL(CGF, E);
96     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
97   }
98 
99   ComplexPairTy VisitStmt(Stmt *S) {
100     S->dump(CGF.getContext().getSourceManager());
101     llvm_unreachable("Stmt can't have complex result type!");
102   }
103   ComplexPairTy VisitExpr(Expr *S);
104   ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
105     return Visit(E->getSubExpr());
106   }
107   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
108   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
109     return Visit(GE->getResultExpr());
110   }
111   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112   ComplexPairTy
113   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
114     return Visit(PE->getReplacement());
115   }
116   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
117     return CGF.EmitCoawaitExpr(*S).getComplexVal();
118   }
119   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
120     return CGF.EmitCoyieldExpr(*S).getComplexVal();
121   }
122   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
123     return Visit(E->getSubExpr());
124   }
125 
126   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
127                              Expr *E) {
128     assert(Constant && "not a constant");
129     if (Constant.isReference())
130       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
131                               E->getExprLoc());
132 
133     llvm::Constant *pair = Constant.getValue();
134     return ComplexPairTy(pair->getAggregateElement(0U),
135                          pair->getAggregateElement(1U));
136   }
137 
138   // l-values.
139   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
140     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
141       return emitConstant(Constant, E);
142     return EmitLoadOfLValue(E);
143   }
144   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
145     return EmitLoadOfLValue(E);
146   }
147   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
148     return CGF.EmitObjCMessageExpr(E).getComplexVal();
149   }
150   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
151   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
152     if (CodeGenFunction::ConstantEmission Constant =
153             CGF.tryEmitAsConstant(ME)) {
154       CGF.EmitIgnoredExpr(ME->getBase());
155       return emitConstant(Constant, ME);
156     }
157     return EmitLoadOfLValue(ME);
158   }
159   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
160     if (E->isGLValue())
161       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
162                               E->getExprLoc());
163     return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
164   }
165 
166   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
167     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
168   }
169 
170   // FIXME: CompoundLiteralExpr
171 
172   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
173   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
174     // Unlike for scalars, we don't have to worry about function->ptr demotion
175     // here.
176     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
177   }
178   ComplexPairTy VisitCastExpr(CastExpr *E) {
179     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
180       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
181     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
182   }
183   ComplexPairTy VisitCallExpr(const CallExpr *E);
184   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
185 
186   // Operators.
187   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
188                                    bool isInc, bool isPre) {
189     LValue LV = CGF.EmitLValue(E->getSubExpr());
190     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
191   }
192   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
193     return VisitPrePostIncDec(E, false, false);
194   }
195   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
196     return VisitPrePostIncDec(E, true, false);
197   }
198   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
199     return VisitPrePostIncDec(E, false, true);
200   }
201   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
202     return VisitPrePostIncDec(E, true, true);
203   }
204   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
205   ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
206     TestAndClearIgnoreReal();
207     TestAndClearIgnoreImag();
208     return Visit(E->getSubExpr());
209   }
210   ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
211   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
212   // LNot,Real,Imag never return complex.
213   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
214     return Visit(E->getSubExpr());
215   }
216   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
217     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
218     return Visit(DAE->getExpr());
219   }
220   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
221     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
222     return Visit(DIE->getExpr());
223   }
224   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
225     CGF.enterFullExpression(E);
226     CodeGenFunction::RunCleanupsScope Scope(CGF);
227     ComplexPairTy Vals = Visit(E->getSubExpr());
228     // Defend against dominance problems caused by jumps out of expression
229     // evaluation through the shared cleanup block.
230     Scope.ForceCleanup({&Vals.first, &Vals.second});
231     return Vals;
232   }
233   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
234     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
235     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
236     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
237     return ComplexPairTy(Null, Null);
238   }
239   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
240     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
241     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
242     llvm::Constant *Null =
243                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
244     return ComplexPairTy(Null, Null);
245   }
246 
247   struct BinOpInfo {
248     ComplexPairTy LHS;
249     ComplexPairTy RHS;
250     QualType Ty;  // Computation Type.
251   };
252 
253   BinOpInfo EmitBinOps(const BinaryOperator *E);
254   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
255                                   ComplexPairTy (ComplexExprEmitter::*Func)
256                                   (const BinOpInfo &),
257                                   RValue &Val);
258   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
259                                    ComplexPairTy (ComplexExprEmitter::*Func)
260                                    (const BinOpInfo &));
261 
262   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
263   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
264   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
265   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
266 
267   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
268                                         const BinOpInfo &Op);
269 
270   ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
271     return EmitBinAdd(EmitBinOps(E));
272   }
273   ComplexPairTy VisitBinSub(const BinaryOperator *E) {
274     return EmitBinSub(EmitBinOps(E));
275   }
276   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
277     return EmitBinMul(EmitBinOps(E));
278   }
279   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
280     return EmitBinDiv(EmitBinOps(E));
281   }
282 
283   ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
284     return Visit(E->getSemanticForm());
285   }
286 
287   // Compound assignments.
288   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
289     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
290   }
291   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
292     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
293   }
294   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
295     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
296   }
297   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
298     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
299   }
300 
301   // GCC rejects rem/and/or/xor for integer complex.
302   // Logical and/or always return int, never complex.
303 
304   // No comparisons produce a complex result.
305 
306   LValue EmitBinAssignLValue(const BinaryOperator *E,
307                              ComplexPairTy &Val);
308   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
309   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
310 
311 
312   ComplexPairTy
313   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
314   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
315 
316   ComplexPairTy VisitInitListExpr(InitListExpr *E);
317 
318   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
319     return EmitLoadOfLValue(E);
320   }
321 
322   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
323 
324   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
325     return CGF.EmitAtomicExpr(E).getComplexVal();
326   }
327 };
328 }  // end anonymous namespace.
329 
330 //===----------------------------------------------------------------------===//
331 //                                Utilities
332 //===----------------------------------------------------------------------===//
333 
334 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
335                                                  QualType complexType) {
336   return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
337 }
338 
339 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
340                                                  QualType complexType) {
341   return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
342 }
343 
344 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
345 /// load the real and imaginary pieces, returning them as Real/Imag.
346 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
347                                                    SourceLocation loc) {
348   assert(lvalue.isSimple() && "non-simple complex l-value?");
349   if (lvalue.getType()->isAtomicType())
350     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
351 
352   Address SrcPtr = lvalue.getAddress(CGF);
353   bool isVolatile = lvalue.isVolatileQualified();
354 
355   llvm::Value *Real = nullptr, *Imag = nullptr;
356 
357   if (!IgnoreReal || isVolatile) {
358     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
359     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
360   }
361 
362   if (!IgnoreImag || isVolatile) {
363     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
364     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
365   }
366 
367   return ComplexPairTy(Real, Imag);
368 }
369 
370 /// EmitStoreOfComplex - Store the specified real/imag parts into the
371 /// specified value pointer.
372 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
373                                             bool isInit) {
374   if (lvalue.getType()->isAtomicType() ||
375       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
376     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
377 
378   Address Ptr = lvalue.getAddress(CGF);
379   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
380   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
381 
382   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
383   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
384 }
385 
386 
387 
388 //===----------------------------------------------------------------------===//
389 //                            Visitor Methods
390 //===----------------------------------------------------------------------===//
391 
392 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
393   CGF.ErrorUnsupported(E, "complex expression");
394   llvm::Type *EltTy =
395     CGF.ConvertType(getComplexType(E->getType())->getElementType());
396   llvm::Value *U = llvm::UndefValue::get(EltTy);
397   return ComplexPairTy(U, U);
398 }
399 
400 ComplexPairTy ComplexExprEmitter::
401 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
402   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
403   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
404 }
405 
406 
407 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
408   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
409     return EmitLoadOfLValue(E);
410 
411   return CGF.EmitCallExpr(E).getComplexVal();
412 }
413 
414 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
415   CodeGenFunction::StmtExprEvaluation eval(CGF);
416   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
417   assert(RetAlloca.isValid() && "Expected complex return value");
418   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
419                           E->getExprLoc());
420 }
421 
422 /// Emit a cast from complex value Val to DestType.
423 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
424                                                            QualType SrcType,
425                                                            QualType DestType,
426                                                            SourceLocation Loc) {
427   // Get the src/dest element type.
428   SrcType = SrcType->castAs<ComplexType>()->getElementType();
429   DestType = DestType->castAs<ComplexType>()->getElementType();
430 
431   // C99 6.3.1.6: When a value of complex type is converted to another
432   // complex type, both the real and imaginary parts follow the conversion
433   // rules for the corresponding real types.
434   Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
435   Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
436   return Val;
437 }
438 
439 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
440                                                           QualType SrcType,
441                                                           QualType DestType,
442                                                           SourceLocation Loc) {
443   // Convert the input element to the element type of the complex.
444   DestType = DestType->castAs<ComplexType>()->getElementType();
445   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
446 
447   // Return (realval, 0).
448   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
449 }
450 
451 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
452                                            QualType DestTy) {
453   switch (CK) {
454   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
455 
456   // Atomic to non-atomic casts may be more than a no-op for some platforms and
457   // for some types.
458   case CK_AtomicToNonAtomic:
459   case CK_NonAtomicToAtomic:
460   case CK_NoOp:
461   case CK_LValueToRValue:
462   case CK_UserDefinedConversion:
463     return Visit(Op);
464 
465   case CK_LValueBitCast: {
466     LValue origLV = CGF.EmitLValue(Op);
467     Address V = origLV.getAddress(CGF);
468     V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
469     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
470   }
471 
472   case CK_LValueToRValueBitCast: {
473     LValue SourceLVal = CGF.EmitLValue(Op);
474     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
475                                                 CGF.ConvertTypeForMem(DestTy));
476     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
477     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
478     return EmitLoadOfLValue(DestLV, Op->getExprLoc());
479   }
480 
481   case CK_BitCast:
482   case CK_BaseToDerived:
483   case CK_DerivedToBase:
484   case CK_UncheckedDerivedToBase:
485   case CK_Dynamic:
486   case CK_ToUnion:
487   case CK_ArrayToPointerDecay:
488   case CK_FunctionToPointerDecay:
489   case CK_NullToPointer:
490   case CK_NullToMemberPointer:
491   case CK_BaseToDerivedMemberPointer:
492   case CK_DerivedToBaseMemberPointer:
493   case CK_MemberPointerToBoolean:
494   case CK_ReinterpretMemberPointer:
495   case CK_ConstructorConversion:
496   case CK_IntegralToPointer:
497   case CK_PointerToIntegral:
498   case CK_PointerToBoolean:
499   case CK_ToVoid:
500   case CK_VectorSplat:
501   case CK_IntegralCast:
502   case CK_BooleanToSignedIntegral:
503   case CK_IntegralToBoolean:
504   case CK_IntegralToFloating:
505   case CK_FloatingToIntegral:
506   case CK_FloatingToBoolean:
507   case CK_FloatingCast:
508   case CK_CPointerToObjCPointerCast:
509   case CK_BlockPointerToObjCPointerCast:
510   case CK_AnyPointerToBlockPointerCast:
511   case CK_ObjCObjectLValueCast:
512   case CK_FloatingComplexToReal:
513   case CK_FloatingComplexToBoolean:
514   case CK_IntegralComplexToReal:
515   case CK_IntegralComplexToBoolean:
516   case CK_ARCProduceObject:
517   case CK_ARCConsumeObject:
518   case CK_ARCReclaimReturnedObject:
519   case CK_ARCExtendBlockObject:
520   case CK_CopyAndAutoreleaseBlockObject:
521   case CK_BuiltinFnToFnPtr:
522   case CK_ZeroToOCLOpaqueType:
523   case CK_AddressSpaceConversion:
524   case CK_IntToOCLSampler:
525   case CK_FixedPointCast:
526   case CK_FixedPointToBoolean:
527   case CK_FixedPointToIntegral:
528   case CK_IntegralToFixedPoint:
529     llvm_unreachable("invalid cast kind for complex value");
530 
531   case CK_FloatingRealToComplex:
532   case CK_IntegralRealToComplex:
533     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
534                                    DestTy, Op->getExprLoc());
535 
536   case CK_FloatingComplexCast:
537   case CK_FloatingComplexToIntegralComplex:
538   case CK_IntegralComplexCast:
539   case CK_IntegralComplexToFloatingComplex:
540     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
541                                     Op->getExprLoc());
542   }
543 
544   llvm_unreachable("unknown cast resulting in complex value");
545 }
546 
547 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
548   TestAndClearIgnoreReal();
549   TestAndClearIgnoreImag();
550   ComplexPairTy Op = Visit(E->getSubExpr());
551 
552   llvm::Value *ResR, *ResI;
553   if (Op.first->getType()->isFloatingPointTy()) {
554     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
555     ResI = Builder.CreateFNeg(Op.second, "neg.i");
556   } else {
557     ResR = Builder.CreateNeg(Op.first,  "neg.r");
558     ResI = Builder.CreateNeg(Op.second, "neg.i");
559   }
560   return ComplexPairTy(ResR, ResI);
561 }
562 
563 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
564   TestAndClearIgnoreReal();
565   TestAndClearIgnoreImag();
566   // ~(a+ib) = a + i*-b
567   ComplexPairTy Op = Visit(E->getSubExpr());
568   llvm::Value *ResI;
569   if (Op.second->getType()->isFloatingPointTy())
570     ResI = Builder.CreateFNeg(Op.second, "conj.i");
571   else
572     ResI = Builder.CreateNeg(Op.second, "conj.i");
573 
574   return ComplexPairTy(Op.first, ResI);
575 }
576 
577 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
578   llvm::Value *ResR, *ResI;
579 
580   if (Op.LHS.first->getType()->isFloatingPointTy()) {
581     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
582     if (Op.LHS.second && Op.RHS.second)
583       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
584     else
585       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
586     assert(ResI && "Only one operand may be real!");
587   } else {
588     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
589     assert(Op.LHS.second && Op.RHS.second &&
590            "Both operands of integer complex operators must be complex!");
591     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
592   }
593   return ComplexPairTy(ResR, ResI);
594 }
595 
596 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
597   llvm::Value *ResR, *ResI;
598   if (Op.LHS.first->getType()->isFloatingPointTy()) {
599     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
600     if (Op.LHS.second && Op.RHS.second)
601       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
602     else
603       ResI = Op.LHS.second ? Op.LHS.second
604                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
605     assert(ResI && "Only one operand may be real!");
606   } else {
607     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
608     assert(Op.LHS.second && Op.RHS.second &&
609            "Both operands of integer complex operators must be complex!");
610     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
611   }
612   return ComplexPairTy(ResR, ResI);
613 }
614 
615 /// Emit a libcall for a binary operation on complex types.
616 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
617                                                           const BinOpInfo &Op) {
618   CallArgList Args;
619   Args.add(RValue::get(Op.LHS.first),
620            Op.Ty->castAs<ComplexType>()->getElementType());
621   Args.add(RValue::get(Op.LHS.second),
622            Op.Ty->castAs<ComplexType>()->getElementType());
623   Args.add(RValue::get(Op.RHS.first),
624            Op.Ty->castAs<ComplexType>()->getElementType());
625   Args.add(RValue::get(Op.RHS.second),
626            Op.Ty->castAs<ComplexType>()->getElementType());
627 
628   // We *must* use the full CG function call building logic here because the
629   // complex type has special ABI handling. We also should not forget about
630   // special calling convention which may be used for compiler builtins.
631 
632   // We create a function qualified type to state that this call does not have
633   // any exceptions.
634   FunctionProtoType::ExtProtoInfo EPI;
635   EPI = EPI.withExceptionSpec(
636       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
637   SmallVector<QualType, 4> ArgsQTys(
638       4, Op.Ty->castAs<ComplexType>()->getElementType());
639   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
640   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
641       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
642 
643   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
644   llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
645       FTy, LibCallName, llvm::AttributeList(), true);
646   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
647 
648   llvm::CallBase *Call;
649   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
650   Call->setCallingConv(CGF.CGM.getRuntimeCC());
651   return Res.getComplexVal();
652 }
653 
654 /// Lookup the libcall name for a given floating point type complex
655 /// multiply.
656 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
657   switch (Ty->getTypeID()) {
658   default:
659     llvm_unreachable("Unsupported floating point type!");
660   case llvm::Type::HalfTyID:
661     return "__mulhc3";
662   case llvm::Type::FloatTyID:
663     return "__mulsc3";
664   case llvm::Type::DoubleTyID:
665     return "__muldc3";
666   case llvm::Type::PPC_FP128TyID:
667     return "__multc3";
668   case llvm::Type::X86_FP80TyID:
669     return "__mulxc3";
670   case llvm::Type::FP128TyID:
671     return "__multc3";
672   }
673 }
674 
675 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
676 // typed values.
677 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
678   using llvm::Value;
679   Value *ResR, *ResI;
680   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
681 
682   if (Op.LHS.first->getType()->isFloatingPointTy()) {
683     // The general formulation is:
684     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
685     //
686     // But we can fold away components which would be zero due to a real
687     // operand according to C11 Annex G.5.1p2.
688     // FIXME: C11 also provides for imaginary types which would allow folding
689     // still more of this within the type system.
690 
691     if (Op.LHS.second && Op.RHS.second) {
692       // If both operands are complex, emit the core math directly, and then
693       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
694       // to carefully re-compute the correct infinity representation if
695       // possible. The expectation is that the presence of NaNs here is
696       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
697       // This is good, because the libcall re-computes the core multiplication
698       // exactly the same as we do here and re-tests for NaNs in order to be
699       // a generic complex*complex libcall.
700 
701       // First compute the four products.
702       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
703       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
704       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
705       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
706 
707       // The real part is the difference of the first two, the imaginary part is
708       // the sum of the second.
709       ResR = Builder.CreateFSub(AC, BD, "mul_r");
710       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
711 
712       // Emit the test for the real part becoming NaN and create a branch to
713       // handle it. We test for NaN by comparing the number to itself.
714       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
715       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
716       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
717       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
718       llvm::BasicBlock *OrigBB = Branch->getParent();
719 
720       // Give hint that we very much don't expect to see NaNs.
721       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
722       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
723       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
724 
725       // Now test the imaginary part and create its branch.
726       CGF.EmitBlock(INaNBB);
727       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
728       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
729       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
730       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
731 
732       // Now emit the libcall on this slowest of the slow paths.
733       CGF.EmitBlock(LibCallBB);
734       Value *LibCallR, *LibCallI;
735       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
736           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
737       Builder.CreateBr(ContBB);
738 
739       // Finally continue execution by phi-ing together the different
740       // computation paths.
741       CGF.EmitBlock(ContBB);
742       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
743       RealPHI->addIncoming(ResR, OrigBB);
744       RealPHI->addIncoming(ResR, INaNBB);
745       RealPHI->addIncoming(LibCallR, LibCallBB);
746       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
747       ImagPHI->addIncoming(ResI, OrigBB);
748       ImagPHI->addIncoming(ResI, INaNBB);
749       ImagPHI->addIncoming(LibCallI, LibCallBB);
750       return ComplexPairTy(RealPHI, ImagPHI);
751     }
752     assert((Op.LHS.second || Op.RHS.second) &&
753            "At least one operand must be complex!");
754 
755     // If either of the operands is a real rather than a complex, the
756     // imaginary component is ignored when computing the real component of the
757     // result.
758     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
759 
760     ResI = Op.LHS.second
761                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
762                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
763   } else {
764     assert(Op.LHS.second && Op.RHS.second &&
765            "Both operands of integer complex operators must be complex!");
766     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
767     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
768     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
769 
770     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
771     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
772     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
773   }
774   return ComplexPairTy(ResR, ResI);
775 }
776 
777 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
778 // typed values.
779 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
780   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
781   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
782 
783   llvm::Value *DSTr, *DSTi;
784   if (LHSr->getType()->isFloatingPointTy()) {
785     // If we have a complex operand on the RHS and FastMath is not allowed, we
786     // delegate to a libcall to handle all of the complexities and minimize
787     // underflow/overflow cases. When FastMath is allowed we construct the
788     // divide inline using the same algorithm as for integer operands.
789     //
790     // FIXME: We would be able to avoid the libcall in many places if we
791     // supported imaginary types in addition to complex types.
792     if (RHSi && !CGF.getLangOpts().FastMath) {
793       BinOpInfo LibCallOp = Op;
794       // If LHS was a real, supply a null imaginary part.
795       if (!LHSi)
796         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
797 
798       switch (LHSr->getType()->getTypeID()) {
799       default:
800         llvm_unreachable("Unsupported floating point type!");
801       case llvm::Type::HalfTyID:
802         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
803       case llvm::Type::FloatTyID:
804         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
805       case llvm::Type::DoubleTyID:
806         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
807       case llvm::Type::PPC_FP128TyID:
808         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
809       case llvm::Type::X86_FP80TyID:
810         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
811       case llvm::Type::FP128TyID:
812         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
813       }
814     } else if (RHSi) {
815       if (!LHSi)
816         LHSi = llvm::Constant::getNullValue(RHSi->getType());
817 
818       // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
819       llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
820       llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
821       llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
822 
823       llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
824       llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
825       llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
826 
827       llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
828       llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
829       llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
830 
831       DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
832       DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
833     } else {
834       assert(LHSi && "Can have at most one non-complex operand!");
835 
836       DSTr = Builder.CreateFDiv(LHSr, RHSr);
837       DSTi = Builder.CreateFDiv(LHSi, RHSr);
838     }
839   } else {
840     assert(Op.LHS.second && Op.RHS.second &&
841            "Both operands of integer complex operators must be complex!");
842     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
843     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
844     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
845     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
846 
847     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
848     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
849     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
850 
851     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
852     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
853     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
854 
855     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
856       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
857       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
858     } else {
859       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
860       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
861     }
862   }
863 
864   return ComplexPairTy(DSTr, DSTi);
865 }
866 
867 ComplexExprEmitter::BinOpInfo
868 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
869   TestAndClearIgnoreReal();
870   TestAndClearIgnoreImag();
871   BinOpInfo Ops;
872   if (E->getLHS()->getType()->isRealFloatingType())
873     Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
874   else
875     Ops.LHS = Visit(E->getLHS());
876   if (E->getRHS()->getType()->isRealFloatingType())
877     Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
878   else
879     Ops.RHS = Visit(E->getRHS());
880 
881   Ops.Ty = E->getType();
882   return Ops;
883 }
884 
885 
886 LValue ComplexExprEmitter::
887 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
888           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
889                          RValue &Val) {
890   TestAndClearIgnoreReal();
891   TestAndClearIgnoreImag();
892   QualType LHSTy = E->getLHS()->getType();
893   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
894     LHSTy = AT->getValueType();
895 
896   BinOpInfo OpInfo;
897 
898   // Load the RHS and LHS operands.
899   // __block variables need to have the rhs evaluated first, plus this should
900   // improve codegen a little.
901   OpInfo.Ty = E->getComputationResultType();
902   QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
903 
904   // The RHS should have been converted to the computation type.
905   if (E->getRHS()->getType()->isRealFloatingType()) {
906     assert(
907         CGF.getContext()
908             .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
909     OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
910   } else {
911     assert(CGF.getContext()
912                .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
913     OpInfo.RHS = Visit(E->getRHS());
914   }
915 
916   LValue LHS = CGF.EmitLValue(E->getLHS());
917 
918   // Load from the l-value and convert it.
919   SourceLocation Loc = E->getExprLoc();
920   if (LHSTy->isAnyComplexType()) {
921     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
922     OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
923   } else {
924     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
925     // For floating point real operands we can directly pass the scalar form
926     // to the binary operator emission and potentially get more efficient code.
927     if (LHSTy->isRealFloatingType()) {
928       if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
929         LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
930       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
931     } else {
932       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
933     }
934   }
935 
936   // Expand the binary operator.
937   ComplexPairTy Result = (this->*Func)(OpInfo);
938 
939   // Truncate the result and store it into the LHS lvalue.
940   if (LHSTy->isAnyComplexType()) {
941     ComplexPairTy ResVal =
942         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
943     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
944     Val = RValue::getComplex(ResVal);
945   } else {
946     llvm::Value *ResVal =
947         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
948     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
949     Val = RValue::get(ResVal);
950   }
951 
952   return LHS;
953 }
954 
955 // Compound assignments.
956 ComplexPairTy ComplexExprEmitter::
957 EmitCompoundAssign(const CompoundAssignOperator *E,
958                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
959   RValue Val;
960   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
961 
962   // The result of an assignment in C is the assigned r-value.
963   if (!CGF.getLangOpts().CPlusPlus)
964     return Val.getComplexVal();
965 
966   // If the lvalue is non-volatile, return the computed value of the assignment.
967   if (!LV.isVolatileQualified())
968     return Val.getComplexVal();
969 
970   return EmitLoadOfLValue(LV, E->getExprLoc());
971 }
972 
973 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
974                                                ComplexPairTy &Val) {
975   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
976                                                  E->getRHS()->getType()) &&
977          "Invalid assignment");
978   TestAndClearIgnoreReal();
979   TestAndClearIgnoreImag();
980 
981   // Emit the RHS.  __block variables need the RHS evaluated first.
982   Val = Visit(E->getRHS());
983 
984   // Compute the address to store into.
985   LValue LHS = CGF.EmitLValue(E->getLHS());
986 
987   // Store the result value into the LHS lvalue.
988   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
989 
990   return LHS;
991 }
992 
993 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
994   ComplexPairTy Val;
995   LValue LV = EmitBinAssignLValue(E, Val);
996 
997   // The result of an assignment in C is the assigned r-value.
998   if (!CGF.getLangOpts().CPlusPlus)
999     return Val;
1000 
1001   // If the lvalue is non-volatile, return the computed value of the assignment.
1002   if (!LV.isVolatileQualified())
1003     return Val;
1004 
1005   return EmitLoadOfLValue(LV, E->getExprLoc());
1006 }
1007 
1008 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1009   CGF.EmitIgnoredExpr(E->getLHS());
1010   return Visit(E->getRHS());
1011 }
1012 
1013 ComplexPairTy ComplexExprEmitter::
1014 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1015   TestAndClearIgnoreReal();
1016   TestAndClearIgnoreImag();
1017   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1018   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1019   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1020 
1021   // Bind the common expression if necessary.
1022   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1023 
1024 
1025   CodeGenFunction::ConditionalEvaluation eval(CGF);
1026   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1027                            CGF.getProfileCount(E));
1028 
1029   eval.begin(CGF);
1030   CGF.EmitBlock(LHSBlock);
1031   CGF.incrementProfileCounter(E);
1032   ComplexPairTy LHS = Visit(E->getTrueExpr());
1033   LHSBlock = Builder.GetInsertBlock();
1034   CGF.EmitBranch(ContBlock);
1035   eval.end(CGF);
1036 
1037   eval.begin(CGF);
1038   CGF.EmitBlock(RHSBlock);
1039   ComplexPairTy RHS = Visit(E->getFalseExpr());
1040   RHSBlock = Builder.GetInsertBlock();
1041   CGF.EmitBlock(ContBlock);
1042   eval.end(CGF);
1043 
1044   // Create a PHI node for the real part.
1045   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1046   RealPN->addIncoming(LHS.first, LHSBlock);
1047   RealPN->addIncoming(RHS.first, RHSBlock);
1048 
1049   // Create a PHI node for the imaginary part.
1050   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1051   ImagPN->addIncoming(LHS.second, LHSBlock);
1052   ImagPN->addIncoming(RHS.second, RHSBlock);
1053 
1054   return ComplexPairTy(RealPN, ImagPN);
1055 }
1056 
1057 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1058   return Visit(E->getChosenSubExpr());
1059 }
1060 
1061 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1062     bool Ignore = TestAndClearIgnoreReal();
1063     (void)Ignore;
1064     assert (Ignore == false && "init list ignored");
1065     Ignore = TestAndClearIgnoreImag();
1066     (void)Ignore;
1067     assert (Ignore == false && "init list ignored");
1068 
1069   if (E->getNumInits() == 2) {
1070     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1071     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1072     return ComplexPairTy(Real, Imag);
1073   } else if (E->getNumInits() == 1) {
1074     return Visit(E->getInit(0));
1075   }
1076 
1077   // Empty init list initializes to null
1078   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1079   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1080   llvm::Type* LTy = CGF.ConvertType(Ty);
1081   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1082   return ComplexPairTy(zeroConstant, zeroConstant);
1083 }
1084 
1085 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1086   Address ArgValue = Address::invalid();
1087   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1088 
1089   if (!ArgPtr.isValid()) {
1090     CGF.ErrorUnsupported(E, "complex va_arg expression");
1091     llvm::Type *EltTy =
1092       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1093     llvm::Value *U = llvm::UndefValue::get(EltTy);
1094     return ComplexPairTy(U, U);
1095   }
1096 
1097   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1098                           E->getExprLoc());
1099 }
1100 
1101 //===----------------------------------------------------------------------===//
1102 //                         Entry Point into this File
1103 //===----------------------------------------------------------------------===//
1104 
1105 /// EmitComplexExpr - Emit the computation of the specified expression of
1106 /// complex type, ignoring the result.
1107 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1108                                                bool IgnoreImag) {
1109   assert(E && getComplexType(E->getType()) &&
1110          "Invalid complex expression to emit");
1111 
1112   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1113       .Visit(const_cast<Expr *>(E));
1114 }
1115 
1116 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1117                                                 bool isInit) {
1118   assert(E && getComplexType(E->getType()) &&
1119          "Invalid complex expression to emit");
1120   ComplexExprEmitter Emitter(*this);
1121   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1122   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1123 }
1124 
1125 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1126 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1127                                          bool isInit) {
1128   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1129 }
1130 
1131 /// EmitLoadOfComplex - Load a complex number from the specified address.
1132 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1133                                                  SourceLocation loc) {
1134   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1135 }
1136 
1137 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1138   assert(E->getOpcode() == BO_Assign);
1139   ComplexPairTy Val; // ignored
1140   LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1141   if (getLangOpts().OpenMP)
1142     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1143                                                               E->getLHS());
1144   return LVal;
1145 }
1146 
1147 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1148     const ComplexExprEmitter::BinOpInfo &);
1149 
1150 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1151   switch (Op) {
1152   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1153   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1154   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1155   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1156   default:
1157     llvm_unreachable("unexpected complex compound assignment");
1158   }
1159 }
1160 
1161 LValue CodeGenFunction::
1162 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1163   CompoundFunc Op = getComplexOp(E->getOpcode());
1164   RValue Val;
1165   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1166 }
1167 
1168 LValue CodeGenFunction::
1169 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1170                                     llvm::Value *&Result) {
1171   CompoundFunc Op = getComplexOp(E->getOpcode());
1172   RValue Val;
1173   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1174   Result = Val.getScalarVal();
1175   return Ret;
1176 }
1177