1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGOpenMPRuntime.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "ConstantEmitter.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Metadata.h" 23 #include <algorithm> 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Complex Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 32 33 /// Return the complex type that we are meant to emit. 34 static const ComplexType *getComplexType(QualType type) { 35 type = type.getCanonicalType(); 36 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 37 return comp; 38 } else { 39 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 40 } 41 } 42 43 namespace { 44 class ComplexExprEmitter 45 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 46 CodeGenFunction &CGF; 47 CGBuilderTy &Builder; 48 bool IgnoreReal; 49 bool IgnoreImag; 50 public: 51 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 52 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 53 } 54 55 56 //===--------------------------------------------------------------------===// 57 // Utilities 58 //===--------------------------------------------------------------------===// 59 60 bool TestAndClearIgnoreReal() { 61 bool I = IgnoreReal; 62 IgnoreReal = false; 63 return I; 64 } 65 bool TestAndClearIgnoreImag() { 66 bool I = IgnoreImag; 67 IgnoreImag = false; 68 return I; 69 } 70 71 /// EmitLoadOfLValue - Given an expression with complex type that represents a 72 /// value l-value, this method emits the address of the l-value, then loads 73 /// and returns the result. 74 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 75 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 76 } 77 78 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 79 80 /// EmitStoreOfComplex - Store the specified real/imag parts into the 81 /// specified value pointer. 82 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 83 84 /// Emit a cast from complex value Val to DestType. 85 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 86 QualType DestType, SourceLocation Loc); 87 /// Emit a cast from scalar value Val to DestType. 88 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 89 QualType DestType, SourceLocation Loc); 90 91 //===--------------------------------------------------------------------===// 92 // Visitor Methods 93 //===--------------------------------------------------------------------===// 94 95 ComplexPairTy Visit(Expr *E) { 96 ApplyDebugLocation DL(CGF, E); 97 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 98 } 99 100 ComplexPairTy VisitStmt(Stmt *S) { 101 S->dump(llvm::errs(), CGF.getContext()); 102 llvm_unreachable("Stmt can't have complex result type!"); 103 } 104 ComplexPairTy VisitExpr(Expr *S); 105 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 106 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) 107 return ComplexPairTy(Result->getAggregateElement(0U), 108 Result->getAggregateElement(1U)); 109 return Visit(E->getSubExpr()); 110 } 111 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 112 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 return Visit(GE->getResultExpr()); 114 } 115 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 116 ComplexPairTy 117 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 118 return Visit(PE->getReplacement()); 119 } 120 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 121 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 122 } 123 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 124 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 125 } 126 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 127 return Visit(E->getSubExpr()); 128 } 129 130 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 131 Expr *E) { 132 assert(Constant && "not a constant"); 133 if (Constant.isReference()) 134 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 135 E->getExprLoc()); 136 137 llvm::Constant *pair = Constant.getValue(); 138 return ComplexPairTy(pair->getAggregateElement(0U), 139 pair->getAggregateElement(1U)); 140 } 141 142 // l-values. 143 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 144 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 145 return emitConstant(Constant, E); 146 return EmitLoadOfLValue(E); 147 } 148 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 149 return EmitLoadOfLValue(E); 150 } 151 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 152 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 153 } 154 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 155 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 156 if (CodeGenFunction::ConstantEmission Constant = 157 CGF.tryEmitAsConstant(ME)) { 158 CGF.EmitIgnoredExpr(ME->getBase()); 159 return emitConstant(Constant, ME); 160 } 161 return EmitLoadOfLValue(ME); 162 } 163 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 164 if (E->isGLValue()) 165 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 166 E->getExprLoc()); 167 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 168 } 169 170 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 171 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 172 } 173 174 // FIXME: CompoundLiteralExpr 175 176 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 177 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 178 // Unlike for scalars, we don't have to worry about function->ptr demotion 179 // here. 180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181 } 182 ComplexPairTy VisitCastExpr(CastExpr *E) { 183 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 184 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 185 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 186 } 187 ComplexPairTy VisitCallExpr(const CallExpr *E); 188 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 189 190 // Operators. 191 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 192 bool isInc, bool isPre) { 193 LValue LV = CGF.EmitLValue(E->getSubExpr()); 194 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 195 } 196 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 197 return VisitPrePostIncDec(E, false, false); 198 } 199 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 200 return VisitPrePostIncDec(E, true, false); 201 } 202 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 203 return VisitPrePostIncDec(E, false, true); 204 } 205 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 206 return VisitPrePostIncDec(E, true, true); 207 } 208 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 209 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 210 TestAndClearIgnoreReal(); 211 TestAndClearIgnoreImag(); 212 return Visit(E->getSubExpr()); 213 } 214 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 215 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 216 // LNot,Real,Imag never return complex. 217 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 218 return Visit(E->getSubExpr()); 219 } 220 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 221 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 222 return Visit(DAE->getExpr()); 223 } 224 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 225 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 226 return Visit(DIE->getExpr()); 227 } 228 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 229 CodeGenFunction::RunCleanupsScope Scope(CGF); 230 ComplexPairTy Vals = Visit(E->getSubExpr()); 231 // Defend against dominance problems caused by jumps out of expression 232 // evaluation through the shared cleanup block. 233 Scope.ForceCleanup({&Vals.first, &Vals.second}); 234 return Vals; 235 } 236 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 237 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 238 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 239 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 240 return ComplexPairTy(Null, Null); 241 } 242 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 243 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 244 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 245 llvm::Constant *Null = 246 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 247 return ComplexPairTy(Null, Null); 248 } 249 250 struct BinOpInfo { 251 ComplexPairTy LHS; 252 ComplexPairTy RHS; 253 QualType Ty; // Computation Type. 254 }; 255 256 BinOpInfo EmitBinOps(const BinaryOperator *E); 257 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 258 ComplexPairTy (ComplexExprEmitter::*Func) 259 (const BinOpInfo &), 260 RValue &Val); 261 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 262 ComplexPairTy (ComplexExprEmitter::*Func) 263 (const BinOpInfo &)); 264 265 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 266 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 267 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 268 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 269 270 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 271 const BinOpInfo &Op); 272 273 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 274 return EmitBinAdd(EmitBinOps(E)); 275 } 276 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 277 return EmitBinSub(EmitBinOps(E)); 278 } 279 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 280 return EmitBinMul(EmitBinOps(E)); 281 } 282 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 283 return EmitBinDiv(EmitBinOps(E)); 284 } 285 286 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 287 return Visit(E->getSemanticForm()); 288 } 289 290 // Compound assignments. 291 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 292 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 293 } 294 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 295 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 296 } 297 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 298 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 299 } 300 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 301 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 302 } 303 304 // GCC rejects rem/and/or/xor for integer complex. 305 // Logical and/or always return int, never complex. 306 307 // No comparisons produce a complex result. 308 309 LValue EmitBinAssignLValue(const BinaryOperator *E, 310 ComplexPairTy &Val); 311 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 312 ComplexPairTy VisitBinComma (const BinaryOperator *E); 313 314 315 ComplexPairTy 316 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 317 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 318 319 ComplexPairTy VisitInitListExpr(InitListExpr *E); 320 321 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 322 return EmitLoadOfLValue(E); 323 } 324 325 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 326 327 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 328 return CGF.EmitAtomicExpr(E).getComplexVal(); 329 } 330 }; 331 } // end anonymous namespace. 332 333 //===----------------------------------------------------------------------===// 334 // Utilities 335 //===----------------------------------------------------------------------===// 336 337 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 338 QualType complexType) { 339 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 340 } 341 342 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 343 QualType complexType) { 344 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 345 } 346 347 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 348 /// load the real and imaginary pieces, returning them as Real/Imag. 349 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 350 SourceLocation loc) { 351 assert(lvalue.isSimple() && "non-simple complex l-value?"); 352 if (lvalue.getType()->isAtomicType()) 353 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 354 355 Address SrcPtr = lvalue.getAddress(CGF); 356 bool isVolatile = lvalue.isVolatileQualified(); 357 358 llvm::Value *Real = nullptr, *Imag = nullptr; 359 360 if (!IgnoreReal || isVolatile) { 361 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 362 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 363 } 364 365 if (!IgnoreImag || isVolatile) { 366 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 367 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 368 } 369 370 return ComplexPairTy(Real, Imag); 371 } 372 373 /// EmitStoreOfComplex - Store the specified real/imag parts into the 374 /// specified value pointer. 375 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 376 bool isInit) { 377 if (lvalue.getType()->isAtomicType() || 378 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 379 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 380 381 Address Ptr = lvalue.getAddress(CGF); 382 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 383 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 384 385 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 386 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 387 } 388 389 390 391 //===----------------------------------------------------------------------===// 392 // Visitor Methods 393 //===----------------------------------------------------------------------===// 394 395 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 396 CGF.ErrorUnsupported(E, "complex expression"); 397 llvm::Type *EltTy = 398 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 399 llvm::Value *U = llvm::UndefValue::get(EltTy); 400 return ComplexPairTy(U, U); 401 } 402 403 ComplexPairTy ComplexExprEmitter:: 404 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 405 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 406 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 407 } 408 409 410 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 411 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 412 return EmitLoadOfLValue(E); 413 414 return CGF.EmitCallExpr(E).getComplexVal(); 415 } 416 417 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 418 CodeGenFunction::StmtExprEvaluation eval(CGF); 419 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 420 assert(RetAlloca.isValid() && "Expected complex return value"); 421 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 422 E->getExprLoc()); 423 } 424 425 /// Emit a cast from complex value Val to DestType. 426 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 427 QualType SrcType, 428 QualType DestType, 429 SourceLocation Loc) { 430 // Get the src/dest element type. 431 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 432 DestType = DestType->castAs<ComplexType>()->getElementType(); 433 434 // C99 6.3.1.6: When a value of complex type is converted to another 435 // complex type, both the real and imaginary parts follow the conversion 436 // rules for the corresponding real types. 437 if (Val.first) 438 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 439 if (Val.second) 440 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 441 return Val; 442 } 443 444 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 445 QualType SrcType, 446 QualType DestType, 447 SourceLocation Loc) { 448 // Convert the input element to the element type of the complex. 449 DestType = DestType->castAs<ComplexType>()->getElementType(); 450 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 451 452 // Return (realval, 0). 453 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 454 } 455 456 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 457 QualType DestTy) { 458 switch (CK) { 459 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 460 461 // Atomic to non-atomic casts may be more than a no-op for some platforms and 462 // for some types. 463 case CK_AtomicToNonAtomic: 464 case CK_NonAtomicToAtomic: 465 case CK_NoOp: 466 case CK_LValueToRValue: 467 case CK_UserDefinedConversion: 468 return Visit(Op); 469 470 case CK_LValueBitCast: { 471 LValue origLV = CGF.EmitLValue(Op); 472 Address V = origLV.getAddress(CGF); 473 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 474 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 475 } 476 477 case CK_LValueToRValueBitCast: { 478 LValue SourceLVal = CGF.EmitLValue(Op); 479 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 480 CGF.ConvertTypeForMem(DestTy)); 481 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 482 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 483 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 484 } 485 486 case CK_BitCast: 487 case CK_BaseToDerived: 488 case CK_DerivedToBase: 489 case CK_UncheckedDerivedToBase: 490 case CK_Dynamic: 491 case CK_ToUnion: 492 case CK_ArrayToPointerDecay: 493 case CK_FunctionToPointerDecay: 494 case CK_NullToPointer: 495 case CK_NullToMemberPointer: 496 case CK_BaseToDerivedMemberPointer: 497 case CK_DerivedToBaseMemberPointer: 498 case CK_MemberPointerToBoolean: 499 case CK_ReinterpretMemberPointer: 500 case CK_ConstructorConversion: 501 case CK_IntegralToPointer: 502 case CK_PointerToIntegral: 503 case CK_PointerToBoolean: 504 case CK_ToVoid: 505 case CK_VectorSplat: 506 case CK_IntegralCast: 507 case CK_BooleanToSignedIntegral: 508 case CK_IntegralToBoolean: 509 case CK_IntegralToFloating: 510 case CK_FloatingToIntegral: 511 case CK_FloatingToBoolean: 512 case CK_FloatingCast: 513 case CK_CPointerToObjCPointerCast: 514 case CK_BlockPointerToObjCPointerCast: 515 case CK_AnyPointerToBlockPointerCast: 516 case CK_ObjCObjectLValueCast: 517 case CK_FloatingComplexToReal: 518 case CK_FloatingComplexToBoolean: 519 case CK_IntegralComplexToReal: 520 case CK_IntegralComplexToBoolean: 521 case CK_ARCProduceObject: 522 case CK_ARCConsumeObject: 523 case CK_ARCReclaimReturnedObject: 524 case CK_ARCExtendBlockObject: 525 case CK_CopyAndAutoreleaseBlockObject: 526 case CK_BuiltinFnToFnPtr: 527 case CK_ZeroToOCLOpaqueType: 528 case CK_AddressSpaceConversion: 529 case CK_IntToOCLSampler: 530 case CK_FloatingToFixedPoint: 531 case CK_FixedPointToFloating: 532 case CK_FixedPointCast: 533 case CK_FixedPointToBoolean: 534 case CK_FixedPointToIntegral: 535 case CK_IntegralToFixedPoint: 536 llvm_unreachable("invalid cast kind for complex value"); 537 538 case CK_FloatingRealToComplex: 539 case CK_IntegralRealToComplex: { 540 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 541 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 542 DestTy, Op->getExprLoc()); 543 } 544 545 case CK_FloatingComplexCast: 546 case CK_FloatingComplexToIntegralComplex: 547 case CK_IntegralComplexCast: 548 case CK_IntegralComplexToFloatingComplex: { 549 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); 550 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 551 Op->getExprLoc()); 552 } 553 } 554 555 llvm_unreachable("unknown cast resulting in complex value"); 556 } 557 558 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 559 TestAndClearIgnoreReal(); 560 TestAndClearIgnoreImag(); 561 ComplexPairTy Op = Visit(E->getSubExpr()); 562 563 llvm::Value *ResR, *ResI; 564 if (Op.first->getType()->isFloatingPointTy()) { 565 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 566 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 567 } else { 568 ResR = Builder.CreateNeg(Op.first, "neg.r"); 569 ResI = Builder.CreateNeg(Op.second, "neg.i"); 570 } 571 return ComplexPairTy(ResR, ResI); 572 } 573 574 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 575 TestAndClearIgnoreReal(); 576 TestAndClearIgnoreImag(); 577 // ~(a+ib) = a + i*-b 578 ComplexPairTy Op = Visit(E->getSubExpr()); 579 llvm::Value *ResI; 580 if (Op.second->getType()->isFloatingPointTy()) 581 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 582 else 583 ResI = Builder.CreateNeg(Op.second, "conj.i"); 584 585 return ComplexPairTy(Op.first, ResI); 586 } 587 588 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 589 llvm::Value *ResR, *ResI; 590 591 if (Op.LHS.first->getType()->isFloatingPointTy()) { 592 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 593 if (Op.LHS.second && Op.RHS.second) 594 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 595 else 596 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 597 assert(ResI && "Only one operand may be real!"); 598 } else { 599 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 600 assert(Op.LHS.second && Op.RHS.second && 601 "Both operands of integer complex operators must be complex!"); 602 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 603 } 604 return ComplexPairTy(ResR, ResI); 605 } 606 607 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 608 llvm::Value *ResR, *ResI; 609 if (Op.LHS.first->getType()->isFloatingPointTy()) { 610 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 611 if (Op.LHS.second && Op.RHS.second) 612 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 613 else 614 ResI = Op.LHS.second ? Op.LHS.second 615 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 616 assert(ResI && "Only one operand may be real!"); 617 } else { 618 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 619 assert(Op.LHS.second && Op.RHS.second && 620 "Both operands of integer complex operators must be complex!"); 621 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 622 } 623 return ComplexPairTy(ResR, ResI); 624 } 625 626 /// Emit a libcall for a binary operation on complex types. 627 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 628 const BinOpInfo &Op) { 629 CallArgList Args; 630 Args.add(RValue::get(Op.LHS.first), 631 Op.Ty->castAs<ComplexType>()->getElementType()); 632 Args.add(RValue::get(Op.LHS.second), 633 Op.Ty->castAs<ComplexType>()->getElementType()); 634 Args.add(RValue::get(Op.RHS.first), 635 Op.Ty->castAs<ComplexType>()->getElementType()); 636 Args.add(RValue::get(Op.RHS.second), 637 Op.Ty->castAs<ComplexType>()->getElementType()); 638 639 // We *must* use the full CG function call building logic here because the 640 // complex type has special ABI handling. We also should not forget about 641 // special calling convention which may be used for compiler builtins. 642 643 // We create a function qualified type to state that this call does not have 644 // any exceptions. 645 FunctionProtoType::ExtProtoInfo EPI; 646 EPI = EPI.withExceptionSpec( 647 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 648 SmallVector<QualType, 4> ArgsQTys( 649 4, Op.Ty->castAs<ComplexType>()->getElementType()); 650 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 651 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 652 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 653 654 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 655 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 656 FTy, LibCallName, llvm::AttributeList(), true); 657 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 658 659 llvm::CallBase *Call; 660 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 661 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 662 return Res.getComplexVal(); 663 } 664 665 /// Lookup the libcall name for a given floating point type complex 666 /// multiply. 667 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 668 switch (Ty->getTypeID()) { 669 default: 670 llvm_unreachable("Unsupported floating point type!"); 671 case llvm::Type::HalfTyID: 672 return "__mulhc3"; 673 case llvm::Type::FloatTyID: 674 return "__mulsc3"; 675 case llvm::Type::DoubleTyID: 676 return "__muldc3"; 677 case llvm::Type::PPC_FP128TyID: 678 return "__multc3"; 679 case llvm::Type::X86_FP80TyID: 680 return "__mulxc3"; 681 case llvm::Type::FP128TyID: 682 return "__multc3"; 683 } 684 } 685 686 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 687 // typed values. 688 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 689 using llvm::Value; 690 Value *ResR, *ResI; 691 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 692 693 if (Op.LHS.first->getType()->isFloatingPointTy()) { 694 // The general formulation is: 695 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 696 // 697 // But we can fold away components which would be zero due to a real 698 // operand according to C11 Annex G.5.1p2. 699 // FIXME: C11 also provides for imaginary types which would allow folding 700 // still more of this within the type system. 701 702 if (Op.LHS.second && Op.RHS.second) { 703 // If both operands are complex, emit the core math directly, and then 704 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 705 // to carefully re-compute the correct infinity representation if 706 // possible. The expectation is that the presence of NaNs here is 707 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 708 // This is good, because the libcall re-computes the core multiplication 709 // exactly the same as we do here and re-tests for NaNs in order to be 710 // a generic complex*complex libcall. 711 712 // First compute the four products. 713 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 714 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 715 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 716 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 717 718 // The real part is the difference of the first two, the imaginary part is 719 // the sum of the second. 720 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 721 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 722 723 // Emit the test for the real part becoming NaN and create a branch to 724 // handle it. We test for NaN by comparing the number to itself. 725 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 726 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 727 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 728 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 729 llvm::BasicBlock *OrigBB = Branch->getParent(); 730 731 // Give hint that we very much don't expect to see NaNs. 732 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 733 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 734 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 735 736 // Now test the imaginary part and create its branch. 737 CGF.EmitBlock(INaNBB); 738 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 739 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 740 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 741 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 742 743 // Now emit the libcall on this slowest of the slow paths. 744 CGF.EmitBlock(LibCallBB); 745 Value *LibCallR, *LibCallI; 746 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 747 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 748 Builder.CreateBr(ContBB); 749 750 // Finally continue execution by phi-ing together the different 751 // computation paths. 752 CGF.EmitBlock(ContBB); 753 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 754 RealPHI->addIncoming(ResR, OrigBB); 755 RealPHI->addIncoming(ResR, INaNBB); 756 RealPHI->addIncoming(LibCallR, LibCallBB); 757 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 758 ImagPHI->addIncoming(ResI, OrigBB); 759 ImagPHI->addIncoming(ResI, INaNBB); 760 ImagPHI->addIncoming(LibCallI, LibCallBB); 761 return ComplexPairTy(RealPHI, ImagPHI); 762 } 763 assert((Op.LHS.second || Op.RHS.second) && 764 "At least one operand must be complex!"); 765 766 // If either of the operands is a real rather than a complex, the 767 // imaginary component is ignored when computing the real component of the 768 // result. 769 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 770 771 ResI = Op.LHS.second 772 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 773 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 774 } else { 775 assert(Op.LHS.second && Op.RHS.second && 776 "Both operands of integer complex operators must be complex!"); 777 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 778 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 779 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 780 781 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 782 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 783 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 784 } 785 return ComplexPairTy(ResR, ResI); 786 } 787 788 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 789 // typed values. 790 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 791 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 792 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 793 794 llvm::Value *DSTr, *DSTi; 795 if (LHSr->getType()->isFloatingPointTy()) { 796 // If we have a complex operand on the RHS and FastMath is not allowed, we 797 // delegate to a libcall to handle all of the complexities and minimize 798 // underflow/overflow cases. When FastMath is allowed we construct the 799 // divide inline using the same algorithm as for integer operands. 800 // 801 // FIXME: We would be able to avoid the libcall in many places if we 802 // supported imaginary types in addition to complex types. 803 if (RHSi && !CGF.getLangOpts().FastMath) { 804 BinOpInfo LibCallOp = Op; 805 // If LHS was a real, supply a null imaginary part. 806 if (!LHSi) 807 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 808 809 switch (LHSr->getType()->getTypeID()) { 810 default: 811 llvm_unreachable("Unsupported floating point type!"); 812 case llvm::Type::HalfTyID: 813 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 814 case llvm::Type::FloatTyID: 815 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 816 case llvm::Type::DoubleTyID: 817 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 818 case llvm::Type::PPC_FP128TyID: 819 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 820 case llvm::Type::X86_FP80TyID: 821 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 822 case llvm::Type::FP128TyID: 823 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 824 } 825 } else if (RHSi) { 826 if (!LHSi) 827 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 828 829 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 830 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 831 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 832 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 833 834 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 835 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 836 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 837 838 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 839 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 840 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 841 842 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 843 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 844 } else { 845 assert(LHSi && "Can have at most one non-complex operand!"); 846 847 DSTr = Builder.CreateFDiv(LHSr, RHSr); 848 DSTi = Builder.CreateFDiv(LHSi, RHSr); 849 } 850 } else { 851 assert(Op.LHS.second && Op.RHS.second && 852 "Both operands of integer complex operators must be complex!"); 853 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 854 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 855 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 856 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 857 858 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 859 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 860 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 861 862 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 863 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 864 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 865 866 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 867 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 868 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 869 } else { 870 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 871 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 872 } 873 } 874 875 return ComplexPairTy(DSTr, DSTi); 876 } 877 878 ComplexExprEmitter::BinOpInfo 879 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 880 TestAndClearIgnoreReal(); 881 TestAndClearIgnoreImag(); 882 BinOpInfo Ops; 883 if (E->getLHS()->getType()->isRealFloatingType()) 884 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 885 else 886 Ops.LHS = Visit(E->getLHS()); 887 if (E->getRHS()->getType()->isRealFloatingType()) 888 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 889 else 890 Ops.RHS = Visit(E->getRHS()); 891 892 Ops.Ty = E->getType(); 893 return Ops; 894 } 895 896 897 LValue ComplexExprEmitter:: 898 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 899 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 900 RValue &Val) { 901 TestAndClearIgnoreReal(); 902 TestAndClearIgnoreImag(); 903 QualType LHSTy = E->getLHS()->getType(); 904 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 905 LHSTy = AT->getValueType(); 906 907 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 908 BinOpInfo OpInfo; 909 910 // Load the RHS and LHS operands. 911 // __block variables need to have the rhs evaluated first, plus this should 912 // improve codegen a little. 913 OpInfo.Ty = E->getComputationResultType(); 914 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 915 916 // The RHS should have been converted to the computation type. 917 if (E->getRHS()->getType()->isRealFloatingType()) { 918 assert( 919 CGF.getContext() 920 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 921 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 922 } else { 923 assert(CGF.getContext() 924 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 925 OpInfo.RHS = Visit(E->getRHS()); 926 } 927 928 LValue LHS = CGF.EmitLValue(E->getLHS()); 929 930 // Load from the l-value and convert it. 931 SourceLocation Loc = E->getExprLoc(); 932 if (LHSTy->isAnyComplexType()) { 933 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 934 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 935 } else { 936 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 937 // For floating point real operands we can directly pass the scalar form 938 // to the binary operator emission and potentially get more efficient code. 939 if (LHSTy->isRealFloatingType()) { 940 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 941 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 942 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 943 } else { 944 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 945 } 946 } 947 948 // Expand the binary operator. 949 ComplexPairTy Result = (this->*Func)(OpInfo); 950 951 // Truncate the result and store it into the LHS lvalue. 952 if (LHSTy->isAnyComplexType()) { 953 ComplexPairTy ResVal = 954 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 955 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 956 Val = RValue::getComplex(ResVal); 957 } else { 958 llvm::Value *ResVal = 959 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 960 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 961 Val = RValue::get(ResVal); 962 } 963 964 return LHS; 965 } 966 967 // Compound assignments. 968 ComplexPairTy ComplexExprEmitter:: 969 EmitCompoundAssign(const CompoundAssignOperator *E, 970 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 971 RValue Val; 972 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 973 974 // The result of an assignment in C is the assigned r-value. 975 if (!CGF.getLangOpts().CPlusPlus) 976 return Val.getComplexVal(); 977 978 // If the lvalue is non-volatile, return the computed value of the assignment. 979 if (!LV.isVolatileQualified()) 980 return Val.getComplexVal(); 981 982 return EmitLoadOfLValue(LV, E->getExprLoc()); 983 } 984 985 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 986 ComplexPairTy &Val) { 987 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 988 E->getRHS()->getType()) && 989 "Invalid assignment"); 990 TestAndClearIgnoreReal(); 991 TestAndClearIgnoreImag(); 992 993 // Emit the RHS. __block variables need the RHS evaluated first. 994 Val = Visit(E->getRHS()); 995 996 // Compute the address to store into. 997 LValue LHS = CGF.EmitLValue(E->getLHS()); 998 999 // Store the result value into the LHS lvalue. 1000 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 1001 1002 return LHS; 1003 } 1004 1005 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1006 ComplexPairTy Val; 1007 LValue LV = EmitBinAssignLValue(E, Val); 1008 1009 // The result of an assignment in C is the assigned r-value. 1010 if (!CGF.getLangOpts().CPlusPlus) 1011 return Val; 1012 1013 // If the lvalue is non-volatile, return the computed value of the assignment. 1014 if (!LV.isVolatileQualified()) 1015 return Val; 1016 1017 return EmitLoadOfLValue(LV, E->getExprLoc()); 1018 } 1019 1020 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1021 CGF.EmitIgnoredExpr(E->getLHS()); 1022 return Visit(E->getRHS()); 1023 } 1024 1025 ComplexPairTy ComplexExprEmitter:: 1026 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1027 TestAndClearIgnoreReal(); 1028 TestAndClearIgnoreImag(); 1029 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1030 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1031 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1032 1033 // Bind the common expression if necessary. 1034 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1035 1036 1037 CodeGenFunction::ConditionalEvaluation eval(CGF); 1038 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1039 CGF.getProfileCount(E)); 1040 1041 eval.begin(CGF); 1042 CGF.EmitBlock(LHSBlock); 1043 CGF.incrementProfileCounter(E); 1044 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1045 LHSBlock = Builder.GetInsertBlock(); 1046 CGF.EmitBranch(ContBlock); 1047 eval.end(CGF); 1048 1049 eval.begin(CGF); 1050 CGF.EmitBlock(RHSBlock); 1051 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1052 RHSBlock = Builder.GetInsertBlock(); 1053 CGF.EmitBlock(ContBlock); 1054 eval.end(CGF); 1055 1056 // Create a PHI node for the real part. 1057 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1058 RealPN->addIncoming(LHS.first, LHSBlock); 1059 RealPN->addIncoming(RHS.first, RHSBlock); 1060 1061 // Create a PHI node for the imaginary part. 1062 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1063 ImagPN->addIncoming(LHS.second, LHSBlock); 1064 ImagPN->addIncoming(RHS.second, RHSBlock); 1065 1066 return ComplexPairTy(RealPN, ImagPN); 1067 } 1068 1069 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1070 return Visit(E->getChosenSubExpr()); 1071 } 1072 1073 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1074 bool Ignore = TestAndClearIgnoreReal(); 1075 (void)Ignore; 1076 assert (Ignore == false && "init list ignored"); 1077 Ignore = TestAndClearIgnoreImag(); 1078 (void)Ignore; 1079 assert (Ignore == false && "init list ignored"); 1080 1081 if (E->getNumInits() == 2) { 1082 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1083 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1084 return ComplexPairTy(Real, Imag); 1085 } else if (E->getNumInits() == 1) { 1086 return Visit(E->getInit(0)); 1087 } 1088 1089 // Empty init list initializes to null 1090 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1091 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1092 llvm::Type* LTy = CGF.ConvertType(Ty); 1093 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1094 return ComplexPairTy(zeroConstant, zeroConstant); 1095 } 1096 1097 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1098 Address ArgValue = Address::invalid(); 1099 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1100 1101 if (!ArgPtr.isValid()) { 1102 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1103 llvm::Type *EltTy = 1104 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1105 llvm::Value *U = llvm::UndefValue::get(EltTy); 1106 return ComplexPairTy(U, U); 1107 } 1108 1109 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1110 E->getExprLoc()); 1111 } 1112 1113 //===----------------------------------------------------------------------===// 1114 // Entry Point into this File 1115 //===----------------------------------------------------------------------===// 1116 1117 /// EmitComplexExpr - Emit the computation of the specified expression of 1118 /// complex type, ignoring the result. 1119 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1120 bool IgnoreImag) { 1121 assert(E && getComplexType(E->getType()) && 1122 "Invalid complex expression to emit"); 1123 1124 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1125 .Visit(const_cast<Expr *>(E)); 1126 } 1127 1128 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1129 bool isInit) { 1130 assert(E && getComplexType(E->getType()) && 1131 "Invalid complex expression to emit"); 1132 ComplexExprEmitter Emitter(*this); 1133 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1134 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1135 } 1136 1137 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1138 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1139 bool isInit) { 1140 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1141 } 1142 1143 /// EmitLoadOfComplex - Load a complex number from the specified address. 1144 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1145 SourceLocation loc) { 1146 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1147 } 1148 1149 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1150 assert(E->getOpcode() == BO_Assign); 1151 ComplexPairTy Val; // ignored 1152 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1153 if (getLangOpts().OpenMP) 1154 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1155 E->getLHS()); 1156 return LVal; 1157 } 1158 1159 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1160 const ComplexExprEmitter::BinOpInfo &); 1161 1162 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1163 switch (Op) { 1164 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1165 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1166 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1167 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1168 default: 1169 llvm_unreachable("unexpected complex compound assignment"); 1170 } 1171 } 1172 1173 LValue CodeGenFunction:: 1174 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1175 CompoundFunc Op = getComplexOp(E->getOpcode()); 1176 RValue Val; 1177 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1178 } 1179 1180 LValue CodeGenFunction:: 1181 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1182 llvm::Value *&Result) { 1183 CompoundFunc Op = getComplexOp(E->getOpcode()); 1184 RValue Val; 1185 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1186 Result = Val.getScalarVal(); 1187 return Ret; 1188 } 1189