xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprCXX.cpp (revision f976241773df2260e6170317080761d1c5814fe5)
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29   RequiredArgs ReqArgs;
30   // Number of prefix arguments for the call. Ignores the `this` pointer.
31   unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37                                   llvm::Value *This, llvm::Value *ImplicitParam,
38                                   QualType ImplicitParamTy, const CallExpr *CE,
39                                   CallArgList &Args, CallArgList *RtlArgs) {
40   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41          isa<CXXOperatorCallExpr>(CE));
42   assert(MD->isInstance() &&
43          "Trying to emit a member or operator call expr on a static method!");
44 
45   // Push the this ptr.
46   const CXXRecordDecl *RD =
47       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49 
50   // If there is an implicit parameter (e.g. VTT), emit it.
51   if (ImplicitParam) {
52     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53   }
54 
55   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57   unsigned PrefixSize = Args.size() - 1;
58 
59   // And the rest of the call args.
60   if (RtlArgs) {
61     // Special case: if the caller emitted the arguments right-to-left already
62     // (prior to emitting the *this argument), we're done. This happens for
63     // assignment operators.
64     Args.addFrom(*RtlArgs);
65   } else if (CE) {
66     // Special case: skip first argument of CXXOperatorCall (it is "this").
67     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69                      CE->getDirectCallee());
70   } else {
71     assert(
72         FPT->getNumParams() == 0 &&
73         "No CallExpr specified for function with non-zero number of arguments");
74   }
75   return {required, PrefixSize};
76 }
77 
78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79     const CXXMethodDecl *MD, const CGCallee &Callee,
80     ReturnValueSlot ReturnValue,
81     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82     const CallExpr *CE, CallArgList *RtlArgs) {
83   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84   CallArgList Args;
85   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90                   CE ? CE->getExprLoc() : SourceLocation());
91 }
92 
93 RValue CodeGenFunction::EmitCXXDestructorCall(
94     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96   const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97 
98   assert(!ThisTy.isNull());
99   assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
100          "Pointer/Object mixup");
101 
102   LangAS SrcAS = ThisTy.getAddressSpace();
103   LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104   if (SrcAS != DstAS) {
105     QualType DstTy = DtorDecl->getThisType();
106     llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107     This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108                                                  NewType);
109   }
110 
111   CallArgList Args;
112   commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113                                     ImplicitParamTy, CE, Args, nullptr);
114   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115                   ReturnValueSlot(), Args);
116 }
117 
118 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
119                                             const CXXPseudoDestructorExpr *E) {
120   QualType DestroyedType = E->getDestroyedType();
121   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
122     // Automatic Reference Counting:
123     //   If the pseudo-expression names a retainable object with weak or
124     //   strong lifetime, the object shall be released.
125     Expr *BaseExpr = E->getBase();
126     Address BaseValue = Address::invalid();
127     Qualifiers BaseQuals;
128 
129     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
130     if (E->isArrow()) {
131       BaseValue = EmitPointerWithAlignment(BaseExpr);
132       const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
133       BaseQuals = PTy->getPointeeType().getQualifiers();
134     } else {
135       LValue BaseLV = EmitLValue(BaseExpr);
136       BaseValue = BaseLV.getAddress();
137       QualType BaseTy = BaseExpr->getType();
138       BaseQuals = BaseTy.getQualifiers();
139     }
140 
141     switch (DestroyedType.getObjCLifetime()) {
142     case Qualifiers::OCL_None:
143     case Qualifiers::OCL_ExplicitNone:
144     case Qualifiers::OCL_Autoreleasing:
145       break;
146 
147     case Qualifiers::OCL_Strong:
148       EmitARCRelease(Builder.CreateLoad(BaseValue,
149                         DestroyedType.isVolatileQualified()),
150                      ARCPreciseLifetime);
151       break;
152 
153     case Qualifiers::OCL_Weak:
154       EmitARCDestroyWeak(BaseValue);
155       break;
156     }
157   } else {
158     // C++ [expr.pseudo]p1:
159     //   The result shall only be used as the operand for the function call
160     //   operator (), and the result of such a call has type void. The only
161     //   effect is the evaluation of the postfix-expression before the dot or
162     //   arrow.
163     EmitIgnoredExpr(E->getBase());
164   }
165 
166   return RValue::get(nullptr);
167 }
168 
169 static CXXRecordDecl *getCXXRecord(const Expr *E) {
170   QualType T = E->getType();
171   if (const PointerType *PTy = T->getAs<PointerType>())
172     T = PTy->getPointeeType();
173   const RecordType *Ty = T->castAs<RecordType>();
174   return cast<CXXRecordDecl>(Ty->getDecl());
175 }
176 
177 // Note: This function also emit constructor calls to support a MSVC
178 // extensions allowing explicit constructor function call.
179 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
180                                               ReturnValueSlot ReturnValue) {
181   const Expr *callee = CE->getCallee()->IgnoreParens();
182 
183   if (isa<BinaryOperator>(callee))
184     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
185 
186   const MemberExpr *ME = cast<MemberExpr>(callee);
187   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
188 
189   if (MD->isStatic()) {
190     // The method is static, emit it as we would a regular call.
191     CGCallee callee =
192         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
193     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
194                     ReturnValue);
195   }
196 
197   bool HasQualifier = ME->hasQualifier();
198   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
199   bool IsArrow = ME->isArrow();
200   const Expr *Base = ME->getBase();
201 
202   return EmitCXXMemberOrOperatorMemberCallExpr(
203       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
204 }
205 
206 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
207     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
208     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
209     const Expr *Base) {
210   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
211 
212   // Compute the object pointer.
213   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
214 
215   const CXXMethodDecl *DevirtualizedMethod = nullptr;
216   if (CanUseVirtualCall &&
217       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
218     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
219     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
220     assert(DevirtualizedMethod);
221     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
222     const Expr *Inner = Base->ignoreParenBaseCasts();
223     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
224         MD->getReturnType().getCanonicalType())
225       // If the return types are not the same, this might be a case where more
226       // code needs to run to compensate for it. For example, the derived
227       // method might return a type that inherits form from the return
228       // type of MD and has a prefix.
229       // For now we just avoid devirtualizing these covariant cases.
230       DevirtualizedMethod = nullptr;
231     else if (getCXXRecord(Inner) == DevirtualizedClass)
232       // If the class of the Inner expression is where the dynamic method
233       // is defined, build the this pointer from it.
234       Base = Inner;
235     else if (getCXXRecord(Base) != DevirtualizedClass) {
236       // If the method is defined in a class that is not the best dynamic
237       // one or the one of the full expression, we would have to build
238       // a derived-to-base cast to compute the correct this pointer, but
239       // we don't have support for that yet, so do a virtual call.
240       DevirtualizedMethod = nullptr;
241     }
242   }
243 
244   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
245   // operator before the LHS.
246   CallArgList RtlArgStorage;
247   CallArgList *RtlArgs = nullptr;
248   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
249     if (OCE->isAssignmentOp()) {
250       RtlArgs = &RtlArgStorage;
251       EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
252                    drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
253                    /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
254     }
255   }
256 
257   LValue This;
258   if (IsArrow) {
259     LValueBaseInfo BaseInfo;
260     TBAAAccessInfo TBAAInfo;
261     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
262     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
263   } else {
264     This = EmitLValue(Base);
265   }
266 
267   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
268     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
269     // constructing a new complete object of type Ctor.
270     assert(!RtlArgs);
271     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
272     CallArgList Args;
273     commonEmitCXXMemberOrOperatorCall(
274         *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
275         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
276 
277     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
278                            /*Delegating=*/false, This.getAddress(), Args,
279                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
280                            /*NewPointerIsChecked=*/false);
281     return RValue::get(nullptr);
282   }
283 
284   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
285     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
286     if (!MD->getParent()->mayInsertExtraPadding()) {
287       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
288         // We don't like to generate the trivial copy/move assignment operator
289         // when it isn't necessary; just produce the proper effect here.
290         LValue RHS = isa<CXXOperatorCallExpr>(CE)
291                          ? MakeNaturalAlignAddrLValue(
292                                (*RtlArgs)[0].getRValue(*this).getScalarVal(),
293                                (*(CE->arg_begin() + 1))->getType())
294                          : EmitLValue(*CE->arg_begin());
295         EmitAggregateAssign(This, RHS, CE->getType());
296         return RValue::get(This.getPointer());
297       }
298       llvm_unreachable("unknown trivial member function");
299     }
300   }
301 
302   // Compute the function type we're calling.
303   const CXXMethodDecl *CalleeDecl =
304       DevirtualizedMethod ? DevirtualizedMethod : MD;
305   const CGFunctionInfo *FInfo = nullptr;
306   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
307     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
308         GlobalDecl(Dtor, Dtor_Complete));
309   else
310     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
311 
312   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
313 
314   // C++11 [class.mfct.non-static]p2:
315   //   If a non-static member function of a class X is called for an object that
316   //   is not of type X, or of a type derived from X, the behavior is undefined.
317   SourceLocation CallLoc;
318   ASTContext &C = getContext();
319   if (CE)
320     CallLoc = CE->getExprLoc();
321 
322   SanitizerSet SkippedChecks;
323   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
324     auto *IOA = CMCE->getImplicitObjectArgument();
325     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
326     if (IsImplicitObjectCXXThis)
327       SkippedChecks.set(SanitizerKind::Alignment, true);
328     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
329       SkippedChecks.set(SanitizerKind::Null, true);
330   }
331   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
332                 C.getRecordType(CalleeDecl->getParent()),
333                 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
334 
335   // C++ [class.virtual]p12:
336   //   Explicit qualification with the scope operator (5.1) suppresses the
337   //   virtual call mechanism.
338   //
339   // We also don't emit a virtual call if the base expression has a record type
340   // because then we know what the type is.
341   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
342 
343   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
344     assert(CE->arg_begin() == CE->arg_end() &&
345            "Destructor shouldn't have explicit parameters");
346     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
347     if (UseVirtualCall) {
348       CGM.getCXXABI().EmitVirtualDestructorCall(
349           *this, Dtor, Dtor_Complete, This.getAddress(),
350           cast<CXXMemberCallExpr>(CE));
351     } else {
352       GlobalDecl GD(Dtor, Dtor_Complete);
353       CGCallee Callee;
354       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
355         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
356       else if (!DevirtualizedMethod)
357         Callee =
358             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
359       else {
360         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
361       }
362 
363       QualType ThisTy =
364           IsArrow ? Base->getType()->getPointeeType() : Base->getType();
365       EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
366                             /*ImplicitParam=*/nullptr,
367                             /*ImplicitParamTy=*/QualType(), nullptr);
368     }
369     return RValue::get(nullptr);
370   }
371 
372   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
373   // 'CalleeDecl' instead.
374 
375   CGCallee Callee;
376   if (UseVirtualCall) {
377     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378   } else {
379     if (SanOpts.has(SanitizerKind::CFINVCall) &&
380         MD->getParent()->isDynamicClass()) {
381       llvm::Value *VTable;
382       const CXXRecordDecl *RD;
383       std::tie(VTable, RD) =
384           CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385                                         MD->getParent());
386       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
387     }
388 
389     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391     else if (!DevirtualizedMethod)
392       Callee =
393           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
394     else {
395       Callee =
396           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
397                               GlobalDecl(DevirtualizedMethod));
398     }
399   }
400 
401   if (MD->isVirtual()) {
402     Address NewThisAddr =
403         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
404             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
405     This.setAddress(NewThisAddr);
406   }
407 
408   return EmitCXXMemberOrOperatorCall(
409       CalleeDecl, Callee, ReturnValue, This.getPointer(),
410       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
411 }
412 
413 RValue
414 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
415                                               ReturnValueSlot ReturnValue) {
416   const BinaryOperator *BO =
417       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
418   const Expr *BaseExpr = BO->getLHS();
419   const Expr *MemFnExpr = BO->getRHS();
420 
421   const MemberPointerType *MPT =
422     MemFnExpr->getType()->castAs<MemberPointerType>();
423 
424   const FunctionProtoType *FPT =
425     MPT->getPointeeType()->castAs<FunctionProtoType>();
426   const CXXRecordDecl *RD =
427     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
428 
429   // Emit the 'this' pointer.
430   Address This = Address::invalid();
431   if (BO->getOpcode() == BO_PtrMemI)
432     This = EmitPointerWithAlignment(BaseExpr);
433   else
434     This = EmitLValue(BaseExpr).getAddress();
435 
436   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
437                 QualType(MPT->getClass(), 0));
438 
439   // Get the member function pointer.
440   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
441 
442   // Ask the ABI to load the callee.  Note that This is modified.
443   llvm::Value *ThisPtrForCall = nullptr;
444   CGCallee Callee =
445     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
446                                              ThisPtrForCall, MemFnPtr, MPT);
447 
448   CallArgList Args;
449 
450   QualType ThisType =
451     getContext().getPointerType(getContext().getTagDeclType(RD));
452 
453   // Push the this ptr.
454   Args.add(RValue::get(ThisPtrForCall), ThisType);
455 
456   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
457 
458   // And the rest of the call args
459   EmitCallArgs(Args, FPT, E->arguments());
460   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
461                                                       /*PrefixSize=*/0),
462                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
463 }
464 
465 RValue
466 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
467                                                const CXXMethodDecl *MD,
468                                                ReturnValueSlot ReturnValue) {
469   assert(MD->isInstance() &&
470          "Trying to emit a member call expr on a static method!");
471   return EmitCXXMemberOrOperatorMemberCallExpr(
472       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
473       /*IsArrow=*/false, E->getArg(0));
474 }
475 
476 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
477                                                ReturnValueSlot ReturnValue) {
478   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
479 }
480 
481 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
482                                             Address DestPtr,
483                                             const CXXRecordDecl *Base) {
484   if (Base->isEmpty())
485     return;
486 
487   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
488 
489   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
490   CharUnits NVSize = Layout.getNonVirtualSize();
491 
492   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
493   // present, they are initialized by the most derived class before calling the
494   // constructor.
495   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
496   Stores.emplace_back(CharUnits::Zero(), NVSize);
497 
498   // Each store is split by the existence of a vbptr.
499   CharUnits VBPtrWidth = CGF.getPointerSize();
500   std::vector<CharUnits> VBPtrOffsets =
501       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
502   for (CharUnits VBPtrOffset : VBPtrOffsets) {
503     // Stop before we hit any virtual base pointers located in virtual bases.
504     if (VBPtrOffset >= NVSize)
505       break;
506     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
507     CharUnits LastStoreOffset = LastStore.first;
508     CharUnits LastStoreSize = LastStore.second;
509 
510     CharUnits SplitBeforeOffset = LastStoreOffset;
511     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
512     assert(!SplitBeforeSize.isNegative() && "negative store size!");
513     if (!SplitBeforeSize.isZero())
514       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
515 
516     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
517     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
518     assert(!SplitAfterSize.isNegative() && "negative store size!");
519     if (!SplitAfterSize.isZero())
520       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
521   }
522 
523   // If the type contains a pointer to data member we can't memset it to zero.
524   // Instead, create a null constant and copy it to the destination.
525   // TODO: there are other patterns besides zero that we can usefully memset,
526   // like -1, which happens to be the pattern used by member-pointers.
527   // TODO: isZeroInitializable can be over-conservative in the case where a
528   // virtual base contains a member pointer.
529   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
530   if (!NullConstantForBase->isNullValue()) {
531     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
532         CGF.CGM.getModule(), NullConstantForBase->getType(),
533         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
534         NullConstantForBase, Twine());
535 
536     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
537                                DestPtr.getAlignment());
538     NullVariable->setAlignment(Align.getQuantity());
539 
540     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
541 
542     // Get and call the appropriate llvm.memcpy overload.
543     for (std::pair<CharUnits, CharUnits> Store : Stores) {
544       CharUnits StoreOffset = Store.first;
545       CharUnits StoreSize = Store.second;
546       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
547       CGF.Builder.CreateMemCpy(
548           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
549           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
550           StoreSizeVal);
551     }
552 
553   // Otherwise, just memset the whole thing to zero.  This is legal
554   // because in LLVM, all default initializers (other than the ones we just
555   // handled above) are guaranteed to have a bit pattern of all zeros.
556   } else {
557     for (std::pair<CharUnits, CharUnits> Store : Stores) {
558       CharUnits StoreOffset = Store.first;
559       CharUnits StoreSize = Store.second;
560       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
561       CGF.Builder.CreateMemSet(
562           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
563           CGF.Builder.getInt8(0), StoreSizeVal);
564     }
565   }
566 }
567 
568 void
569 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
570                                       AggValueSlot Dest) {
571   assert(!Dest.isIgnored() && "Must have a destination!");
572   const CXXConstructorDecl *CD = E->getConstructor();
573 
574   // If we require zero initialization before (or instead of) calling the
575   // constructor, as can be the case with a non-user-provided default
576   // constructor, emit the zero initialization now, unless destination is
577   // already zeroed.
578   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
579     switch (E->getConstructionKind()) {
580     case CXXConstructExpr::CK_Delegating:
581     case CXXConstructExpr::CK_Complete:
582       EmitNullInitialization(Dest.getAddress(), E->getType());
583       break;
584     case CXXConstructExpr::CK_VirtualBase:
585     case CXXConstructExpr::CK_NonVirtualBase:
586       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
587                                       CD->getParent());
588       break;
589     }
590   }
591 
592   // If this is a call to a trivial default constructor, do nothing.
593   if (CD->isTrivial() && CD->isDefaultConstructor())
594     return;
595 
596   // Elide the constructor if we're constructing from a temporary.
597   // The temporary check is required because Sema sets this on NRVO
598   // returns.
599   if (getLangOpts().ElideConstructors && E->isElidable()) {
600     assert(getContext().hasSameUnqualifiedType(E->getType(),
601                                                E->getArg(0)->getType()));
602     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
603       EmitAggExpr(E->getArg(0), Dest);
604       return;
605     }
606   }
607 
608   if (const ArrayType *arrayType
609         = getContext().getAsArrayType(E->getType())) {
610     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
611                                Dest.isSanitizerChecked());
612   } else {
613     CXXCtorType Type = Ctor_Complete;
614     bool ForVirtualBase = false;
615     bool Delegating = false;
616 
617     switch (E->getConstructionKind()) {
618      case CXXConstructExpr::CK_Delegating:
619       // We should be emitting a constructor; GlobalDecl will assert this
620       Type = CurGD.getCtorType();
621       Delegating = true;
622       break;
623 
624      case CXXConstructExpr::CK_Complete:
625       Type = Ctor_Complete;
626       break;
627 
628      case CXXConstructExpr::CK_VirtualBase:
629       ForVirtualBase = true;
630       LLVM_FALLTHROUGH;
631 
632      case CXXConstructExpr::CK_NonVirtualBase:
633       Type = Ctor_Base;
634      }
635 
636      // Call the constructor.
637      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
638   }
639 }
640 
641 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
642                                                  const Expr *Exp) {
643   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
644     Exp = E->getSubExpr();
645   assert(isa<CXXConstructExpr>(Exp) &&
646          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
647   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
648   const CXXConstructorDecl *CD = E->getConstructor();
649   RunCleanupsScope Scope(*this);
650 
651   // If we require zero initialization before (or instead of) calling the
652   // constructor, as can be the case with a non-user-provided default
653   // constructor, emit the zero initialization now.
654   // FIXME. Do I still need this for a copy ctor synthesis?
655   if (E->requiresZeroInitialization())
656     EmitNullInitialization(Dest, E->getType());
657 
658   assert(!getContext().getAsConstantArrayType(E->getType())
659          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
660   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
661 }
662 
663 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
664                                         const CXXNewExpr *E) {
665   if (!E->isArray())
666     return CharUnits::Zero();
667 
668   // No cookie is required if the operator new[] being used is the
669   // reserved placement operator new[].
670   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
671     return CharUnits::Zero();
672 
673   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
674 }
675 
676 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
677                                         const CXXNewExpr *e,
678                                         unsigned minElements,
679                                         llvm::Value *&numElements,
680                                         llvm::Value *&sizeWithoutCookie) {
681   QualType type = e->getAllocatedType();
682 
683   if (!e->isArray()) {
684     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
685     sizeWithoutCookie
686       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
687     return sizeWithoutCookie;
688   }
689 
690   // The width of size_t.
691   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
692 
693   // Figure out the cookie size.
694   llvm::APInt cookieSize(sizeWidth,
695                          CalculateCookiePadding(CGF, e).getQuantity());
696 
697   // Emit the array size expression.
698   // We multiply the size of all dimensions for NumElements.
699   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
700   numElements =
701     ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
702   if (!numElements)
703     numElements = CGF.EmitScalarExpr(*e->getArraySize());
704   assert(isa<llvm::IntegerType>(numElements->getType()));
705 
706   // The number of elements can be have an arbitrary integer type;
707   // essentially, we need to multiply it by a constant factor, add a
708   // cookie size, and verify that the result is representable as a
709   // size_t.  That's just a gloss, though, and it's wrong in one
710   // important way: if the count is negative, it's an error even if
711   // the cookie size would bring the total size >= 0.
712   bool isSigned
713     = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
714   llvm::IntegerType *numElementsType
715     = cast<llvm::IntegerType>(numElements->getType());
716   unsigned numElementsWidth = numElementsType->getBitWidth();
717 
718   // Compute the constant factor.
719   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
720   while (const ConstantArrayType *CAT
721              = CGF.getContext().getAsConstantArrayType(type)) {
722     type = CAT->getElementType();
723     arraySizeMultiplier *= CAT->getSize();
724   }
725 
726   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
727   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
728   typeSizeMultiplier *= arraySizeMultiplier;
729 
730   // This will be a size_t.
731   llvm::Value *size;
732 
733   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
734   // Don't bloat the -O0 code.
735   if (llvm::ConstantInt *numElementsC =
736         dyn_cast<llvm::ConstantInt>(numElements)) {
737     const llvm::APInt &count = numElementsC->getValue();
738 
739     bool hasAnyOverflow = false;
740 
741     // If 'count' was a negative number, it's an overflow.
742     if (isSigned && count.isNegative())
743       hasAnyOverflow = true;
744 
745     // We want to do all this arithmetic in size_t.  If numElements is
746     // wider than that, check whether it's already too big, and if so,
747     // overflow.
748     else if (numElementsWidth > sizeWidth &&
749              numElementsWidth - sizeWidth > count.countLeadingZeros())
750       hasAnyOverflow = true;
751 
752     // Okay, compute a count at the right width.
753     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
754 
755     // If there is a brace-initializer, we cannot allocate fewer elements than
756     // there are initializers. If we do, that's treated like an overflow.
757     if (adjustedCount.ult(minElements))
758       hasAnyOverflow = true;
759 
760     // Scale numElements by that.  This might overflow, but we don't
761     // care because it only overflows if allocationSize does, too, and
762     // if that overflows then we shouldn't use this.
763     numElements = llvm::ConstantInt::get(CGF.SizeTy,
764                                          adjustedCount * arraySizeMultiplier);
765 
766     // Compute the size before cookie, and track whether it overflowed.
767     bool overflow;
768     llvm::APInt allocationSize
769       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
770     hasAnyOverflow |= overflow;
771 
772     // Add in the cookie, and check whether it's overflowed.
773     if (cookieSize != 0) {
774       // Save the current size without a cookie.  This shouldn't be
775       // used if there was overflow.
776       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
777 
778       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
779       hasAnyOverflow |= overflow;
780     }
781 
782     // On overflow, produce a -1 so operator new will fail.
783     if (hasAnyOverflow) {
784       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
785     } else {
786       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
787     }
788 
789   // Otherwise, we might need to use the overflow intrinsics.
790   } else {
791     // There are up to five conditions we need to test for:
792     // 1) if isSigned, we need to check whether numElements is negative;
793     // 2) if numElementsWidth > sizeWidth, we need to check whether
794     //   numElements is larger than something representable in size_t;
795     // 3) if minElements > 0, we need to check whether numElements is smaller
796     //    than that.
797     // 4) we need to compute
798     //      sizeWithoutCookie := numElements * typeSizeMultiplier
799     //    and check whether it overflows; and
800     // 5) if we need a cookie, we need to compute
801     //      size := sizeWithoutCookie + cookieSize
802     //    and check whether it overflows.
803 
804     llvm::Value *hasOverflow = nullptr;
805 
806     // If numElementsWidth > sizeWidth, then one way or another, we're
807     // going to have to do a comparison for (2), and this happens to
808     // take care of (1), too.
809     if (numElementsWidth > sizeWidth) {
810       llvm::APInt threshold(numElementsWidth, 1);
811       threshold <<= sizeWidth;
812 
813       llvm::Value *thresholdV
814         = llvm::ConstantInt::get(numElementsType, threshold);
815 
816       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
817       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
818 
819     // Otherwise, if we're signed, we want to sext up to size_t.
820     } else if (isSigned) {
821       if (numElementsWidth < sizeWidth)
822         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
823 
824       // If there's a non-1 type size multiplier, then we can do the
825       // signedness check at the same time as we do the multiply
826       // because a negative number times anything will cause an
827       // unsigned overflow.  Otherwise, we have to do it here. But at least
828       // in this case, we can subsume the >= minElements check.
829       if (typeSizeMultiplier == 1)
830         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
831                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
832 
833     // Otherwise, zext up to size_t if necessary.
834     } else if (numElementsWidth < sizeWidth) {
835       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
836     }
837 
838     assert(numElements->getType() == CGF.SizeTy);
839 
840     if (minElements) {
841       // Don't allow allocation of fewer elements than we have initializers.
842       if (!hasOverflow) {
843         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
844                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
845       } else if (numElementsWidth > sizeWidth) {
846         // The other existing overflow subsumes this check.
847         // We do an unsigned comparison, since any signed value < -1 is
848         // taken care of either above or below.
849         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
850                           CGF.Builder.CreateICmpULT(numElements,
851                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
852       }
853     }
854 
855     size = numElements;
856 
857     // Multiply by the type size if necessary.  This multiplier
858     // includes all the factors for nested arrays.
859     //
860     // This step also causes numElements to be scaled up by the
861     // nested-array factor if necessary.  Overflow on this computation
862     // can be ignored because the result shouldn't be used if
863     // allocation fails.
864     if (typeSizeMultiplier != 1) {
865       llvm::Function *umul_with_overflow
866         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
867 
868       llvm::Value *tsmV =
869         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
870       llvm::Value *result =
871           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
872 
873       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
874       if (hasOverflow)
875         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
876       else
877         hasOverflow = overflowed;
878 
879       size = CGF.Builder.CreateExtractValue(result, 0);
880 
881       // Also scale up numElements by the array size multiplier.
882       if (arraySizeMultiplier != 1) {
883         // If the base element type size is 1, then we can re-use the
884         // multiply we just did.
885         if (typeSize.isOne()) {
886           assert(arraySizeMultiplier == typeSizeMultiplier);
887           numElements = size;
888 
889         // Otherwise we need a separate multiply.
890         } else {
891           llvm::Value *asmV =
892             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
893           numElements = CGF.Builder.CreateMul(numElements, asmV);
894         }
895       }
896     } else {
897       // numElements doesn't need to be scaled.
898       assert(arraySizeMultiplier == 1);
899     }
900 
901     // Add in the cookie size if necessary.
902     if (cookieSize != 0) {
903       sizeWithoutCookie = size;
904 
905       llvm::Function *uadd_with_overflow
906         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
907 
908       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
909       llvm::Value *result =
910           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
911 
912       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
913       if (hasOverflow)
914         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
915       else
916         hasOverflow = overflowed;
917 
918       size = CGF.Builder.CreateExtractValue(result, 0);
919     }
920 
921     // If we had any possibility of dynamic overflow, make a select to
922     // overwrite 'size' with an all-ones value, which should cause
923     // operator new to throw.
924     if (hasOverflow)
925       size = CGF.Builder.CreateSelect(hasOverflow,
926                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
927                                       size);
928   }
929 
930   if (cookieSize == 0)
931     sizeWithoutCookie = size;
932   else
933     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
934 
935   return size;
936 }
937 
938 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
939                                     QualType AllocType, Address NewPtr,
940                                     AggValueSlot::Overlap_t MayOverlap) {
941   // FIXME: Refactor with EmitExprAsInit.
942   switch (CGF.getEvaluationKind(AllocType)) {
943   case TEK_Scalar:
944     CGF.EmitScalarInit(Init, nullptr,
945                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
946     return;
947   case TEK_Complex:
948     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
949                                   /*isInit*/ true);
950     return;
951   case TEK_Aggregate: {
952     AggValueSlot Slot
953       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
954                               AggValueSlot::IsDestructed,
955                               AggValueSlot::DoesNotNeedGCBarriers,
956                               AggValueSlot::IsNotAliased,
957                               MayOverlap, AggValueSlot::IsNotZeroed,
958                               AggValueSlot::IsSanitizerChecked);
959     CGF.EmitAggExpr(Init, Slot);
960     return;
961   }
962   }
963   llvm_unreachable("bad evaluation kind");
964 }
965 
966 void CodeGenFunction::EmitNewArrayInitializer(
967     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
968     Address BeginPtr, llvm::Value *NumElements,
969     llvm::Value *AllocSizeWithoutCookie) {
970   // If we have a type with trivial initialization and no initializer,
971   // there's nothing to do.
972   if (!E->hasInitializer())
973     return;
974 
975   Address CurPtr = BeginPtr;
976 
977   unsigned InitListElements = 0;
978 
979   const Expr *Init = E->getInitializer();
980   Address EndOfInit = Address::invalid();
981   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
982   EHScopeStack::stable_iterator Cleanup;
983   llvm::Instruction *CleanupDominator = nullptr;
984 
985   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
986   CharUnits ElementAlign =
987     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
988 
989   // Attempt to perform zero-initialization using memset.
990   auto TryMemsetInitialization = [&]() -> bool {
991     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
992     // we can initialize with a memset to -1.
993     if (!CGM.getTypes().isZeroInitializable(ElementType))
994       return false;
995 
996     // Optimization: since zero initialization will just set the memory
997     // to all zeroes, generate a single memset to do it in one shot.
998 
999     // Subtract out the size of any elements we've already initialized.
1000     auto *RemainingSize = AllocSizeWithoutCookie;
1001     if (InitListElements) {
1002       // We know this can't overflow; we check this when doing the allocation.
1003       auto *InitializedSize = llvm::ConstantInt::get(
1004           RemainingSize->getType(),
1005           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1006               InitListElements);
1007       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1008     }
1009 
1010     // Create the memset.
1011     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1012     return true;
1013   };
1014 
1015   // If the initializer is an initializer list, first do the explicit elements.
1016   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1017     // Initializing from a (braced) string literal is a special case; the init
1018     // list element does not initialize a (single) array element.
1019     if (ILE->isStringLiteralInit()) {
1020       // Initialize the initial portion of length equal to that of the string
1021       // literal. The allocation must be for at least this much; we emitted a
1022       // check for that earlier.
1023       AggValueSlot Slot =
1024           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1025                                 AggValueSlot::IsDestructed,
1026                                 AggValueSlot::DoesNotNeedGCBarriers,
1027                                 AggValueSlot::IsNotAliased,
1028                                 AggValueSlot::DoesNotOverlap,
1029                                 AggValueSlot::IsNotZeroed,
1030                                 AggValueSlot::IsSanitizerChecked);
1031       EmitAggExpr(ILE->getInit(0), Slot);
1032 
1033       // Move past these elements.
1034       InitListElements =
1035           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1036               ->getSize().getZExtValue();
1037       CurPtr =
1038           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1039                                             Builder.getSize(InitListElements),
1040                                             "string.init.end"),
1041                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1042                                                           ElementSize));
1043 
1044       // Zero out the rest, if any remain.
1045       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1046       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1047         bool OK = TryMemsetInitialization();
1048         (void)OK;
1049         assert(OK && "couldn't memset character type?");
1050       }
1051       return;
1052     }
1053 
1054     InitListElements = ILE->getNumInits();
1055 
1056     // If this is a multi-dimensional array new, we will initialize multiple
1057     // elements with each init list element.
1058     QualType AllocType = E->getAllocatedType();
1059     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1060             AllocType->getAsArrayTypeUnsafe())) {
1061       ElementTy = ConvertTypeForMem(AllocType);
1062       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1063       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1064     }
1065 
1066     // Enter a partial-destruction Cleanup if necessary.
1067     if (needsEHCleanup(DtorKind)) {
1068       // In principle we could tell the Cleanup where we are more
1069       // directly, but the control flow can get so varied here that it
1070       // would actually be quite complex.  Therefore we go through an
1071       // alloca.
1072       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1073                                    "array.init.end");
1074       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1075       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1076                                        ElementType, ElementAlign,
1077                                        getDestroyer(DtorKind));
1078       Cleanup = EHStack.stable_begin();
1079     }
1080 
1081     CharUnits StartAlign = CurPtr.getAlignment();
1082     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1083       // Tell the cleanup that it needs to destroy up to this
1084       // element.  TODO: some of these stores can be trivially
1085       // observed to be unnecessary.
1086       if (EndOfInit.isValid()) {
1087         auto FinishedPtr =
1088           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1089         Builder.CreateStore(FinishedPtr, EndOfInit);
1090       }
1091       // FIXME: If the last initializer is an incomplete initializer list for
1092       // an array, and we have an array filler, we can fold together the two
1093       // initialization loops.
1094       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1095                               ILE->getInit(i)->getType(), CurPtr,
1096                               AggValueSlot::DoesNotOverlap);
1097       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1098                                                  Builder.getSize(1),
1099                                                  "array.exp.next"),
1100                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1101     }
1102 
1103     // The remaining elements are filled with the array filler expression.
1104     Init = ILE->getArrayFiller();
1105 
1106     // Extract the initializer for the individual array elements by pulling
1107     // out the array filler from all the nested initializer lists. This avoids
1108     // generating a nested loop for the initialization.
1109     while (Init && Init->getType()->isConstantArrayType()) {
1110       auto *SubILE = dyn_cast<InitListExpr>(Init);
1111       if (!SubILE)
1112         break;
1113       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1114       Init = SubILE->getArrayFiller();
1115     }
1116 
1117     // Switch back to initializing one base element at a time.
1118     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1119   }
1120 
1121   // If all elements have already been initialized, skip any further
1122   // initialization.
1123   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1124   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1125     // If there was a Cleanup, deactivate it.
1126     if (CleanupDominator)
1127       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1128     return;
1129   }
1130 
1131   assert(Init && "have trailing elements to initialize but no initializer");
1132 
1133   // If this is a constructor call, try to optimize it out, and failing that
1134   // emit a single loop to initialize all remaining elements.
1135   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1136     CXXConstructorDecl *Ctor = CCE->getConstructor();
1137     if (Ctor->isTrivial()) {
1138       // If new expression did not specify value-initialization, then there
1139       // is no initialization.
1140       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1141         return;
1142 
1143       if (TryMemsetInitialization())
1144         return;
1145     }
1146 
1147     // Store the new Cleanup position for irregular Cleanups.
1148     //
1149     // FIXME: Share this cleanup with the constructor call emission rather than
1150     // having it create a cleanup of its own.
1151     if (EndOfInit.isValid())
1152       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1153 
1154     // Emit a constructor call loop to initialize the remaining elements.
1155     if (InitListElements)
1156       NumElements = Builder.CreateSub(
1157           NumElements,
1158           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1159     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1160                                /*NewPointerIsChecked*/true,
1161                                CCE->requiresZeroInitialization());
1162     return;
1163   }
1164 
1165   // If this is value-initialization, we can usually use memset.
1166   ImplicitValueInitExpr IVIE(ElementType);
1167   if (isa<ImplicitValueInitExpr>(Init)) {
1168     if (TryMemsetInitialization())
1169       return;
1170 
1171     // Switch to an ImplicitValueInitExpr for the element type. This handles
1172     // only one case: multidimensional array new of pointers to members. In
1173     // all other cases, we already have an initializer for the array element.
1174     Init = &IVIE;
1175   }
1176 
1177   // At this point we should have found an initializer for the individual
1178   // elements of the array.
1179   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1180          "got wrong type of element to initialize");
1181 
1182   // If we have an empty initializer list, we can usually use memset.
1183   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1184     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1185       return;
1186 
1187   // If we have a struct whose every field is value-initialized, we can
1188   // usually use memset.
1189   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1190     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1191       if (RType->getDecl()->isStruct()) {
1192         unsigned NumElements = 0;
1193         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1194           NumElements = CXXRD->getNumBases();
1195         for (auto *Field : RType->getDecl()->fields())
1196           if (!Field->isUnnamedBitfield())
1197             ++NumElements;
1198         // FIXME: Recurse into nested InitListExprs.
1199         if (ILE->getNumInits() == NumElements)
1200           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1201             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1202               --NumElements;
1203         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1204           return;
1205       }
1206     }
1207   }
1208 
1209   // Create the loop blocks.
1210   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1211   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1212   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1213 
1214   // Find the end of the array, hoisted out of the loop.
1215   llvm::Value *EndPtr =
1216     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1217 
1218   // If the number of elements isn't constant, we have to now check if there is
1219   // anything left to initialize.
1220   if (!ConstNum) {
1221     llvm::Value *IsEmpty =
1222       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1223     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1224   }
1225 
1226   // Enter the loop.
1227   EmitBlock(LoopBB);
1228 
1229   // Set up the current-element phi.
1230   llvm::PHINode *CurPtrPhi =
1231     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1232   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1233 
1234   CurPtr = Address(CurPtrPhi, ElementAlign);
1235 
1236   // Store the new Cleanup position for irregular Cleanups.
1237   if (EndOfInit.isValid())
1238     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1239 
1240   // Enter a partial-destruction Cleanup if necessary.
1241   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1242     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1243                                    ElementType, ElementAlign,
1244                                    getDestroyer(DtorKind));
1245     Cleanup = EHStack.stable_begin();
1246     CleanupDominator = Builder.CreateUnreachable();
1247   }
1248 
1249   // Emit the initializer into this element.
1250   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1251                           AggValueSlot::DoesNotOverlap);
1252 
1253   // Leave the Cleanup if we entered one.
1254   if (CleanupDominator) {
1255     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1256     CleanupDominator->eraseFromParent();
1257   }
1258 
1259   // Advance to the next element by adjusting the pointer type as necessary.
1260   llvm::Value *NextPtr =
1261     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1262                                        "array.next");
1263 
1264   // Check whether we've gotten to the end of the array and, if so,
1265   // exit the loop.
1266   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1267   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1268   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1269 
1270   EmitBlock(ContBB);
1271 }
1272 
1273 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1274                                QualType ElementType, llvm::Type *ElementTy,
1275                                Address NewPtr, llvm::Value *NumElements,
1276                                llvm::Value *AllocSizeWithoutCookie) {
1277   ApplyDebugLocation DL(CGF, E);
1278   if (E->isArray())
1279     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1280                                 AllocSizeWithoutCookie);
1281   else if (const Expr *Init = E->getInitializer())
1282     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1283                             AggValueSlot::DoesNotOverlap);
1284 }
1285 
1286 /// Emit a call to an operator new or operator delete function, as implicitly
1287 /// created by new-expressions and delete-expressions.
1288 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1289                                 const FunctionDecl *CalleeDecl,
1290                                 const FunctionProtoType *CalleeType,
1291                                 const CallArgList &Args) {
1292   llvm::CallBase *CallOrInvoke;
1293   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1294   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1295   RValue RV =
1296       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1297                        Args, CalleeType, /*ChainCall=*/false),
1298                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1299 
1300   /// C++1y [expr.new]p10:
1301   ///   [In a new-expression,] an implementation is allowed to omit a call
1302   ///   to a replaceable global allocation function.
1303   ///
1304   /// We model such elidable calls with the 'builtin' attribute.
1305   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1306   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1307       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1308     CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1309                                llvm::Attribute::Builtin);
1310   }
1311 
1312   return RV;
1313 }
1314 
1315 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1316                                                  const CallExpr *TheCall,
1317                                                  bool IsDelete) {
1318   CallArgList Args;
1319   EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1320   // Find the allocation or deallocation function that we're calling.
1321   ASTContext &Ctx = getContext();
1322   DeclarationName Name = Ctx.DeclarationNames
1323       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1324 
1325   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1326     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1327       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1328         return EmitNewDeleteCall(*this, FD, Type, Args);
1329   llvm_unreachable("predeclared global operator new/delete is missing");
1330 }
1331 
1332 namespace {
1333 /// The parameters to pass to a usual operator delete.
1334 struct UsualDeleteParams {
1335   bool DestroyingDelete = false;
1336   bool Size = false;
1337   bool Alignment = false;
1338 };
1339 }
1340 
1341 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1342   UsualDeleteParams Params;
1343 
1344   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1345   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1346 
1347   // The first argument is always a void*.
1348   ++AI;
1349 
1350   // The next parameter may be a std::destroying_delete_t.
1351   if (FD->isDestroyingOperatorDelete()) {
1352     Params.DestroyingDelete = true;
1353     assert(AI != AE);
1354     ++AI;
1355   }
1356 
1357   // Figure out what other parameters we should be implicitly passing.
1358   if (AI != AE && (*AI)->isIntegerType()) {
1359     Params.Size = true;
1360     ++AI;
1361   }
1362 
1363   if (AI != AE && (*AI)->isAlignValT()) {
1364     Params.Alignment = true;
1365     ++AI;
1366   }
1367 
1368   assert(AI == AE && "unexpected usual deallocation function parameter");
1369   return Params;
1370 }
1371 
1372 namespace {
1373   /// A cleanup to call the given 'operator delete' function upon abnormal
1374   /// exit from a new expression. Templated on a traits type that deals with
1375   /// ensuring that the arguments dominate the cleanup if necessary.
1376   template<typename Traits>
1377   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1378     /// Type used to hold llvm::Value*s.
1379     typedef typename Traits::ValueTy ValueTy;
1380     /// Type used to hold RValues.
1381     typedef typename Traits::RValueTy RValueTy;
1382     struct PlacementArg {
1383       RValueTy ArgValue;
1384       QualType ArgType;
1385     };
1386 
1387     unsigned NumPlacementArgs : 31;
1388     unsigned PassAlignmentToPlacementDelete : 1;
1389     const FunctionDecl *OperatorDelete;
1390     ValueTy Ptr;
1391     ValueTy AllocSize;
1392     CharUnits AllocAlign;
1393 
1394     PlacementArg *getPlacementArgs() {
1395       return reinterpret_cast<PlacementArg *>(this + 1);
1396     }
1397 
1398   public:
1399     static size_t getExtraSize(size_t NumPlacementArgs) {
1400       return NumPlacementArgs * sizeof(PlacementArg);
1401     }
1402 
1403     CallDeleteDuringNew(size_t NumPlacementArgs,
1404                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1405                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1406                         CharUnits AllocAlign)
1407       : NumPlacementArgs(NumPlacementArgs),
1408         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1409         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1410         AllocAlign(AllocAlign) {}
1411 
1412     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1413       assert(I < NumPlacementArgs && "index out of range");
1414       getPlacementArgs()[I] = {Arg, Type};
1415     }
1416 
1417     void Emit(CodeGenFunction &CGF, Flags flags) override {
1418       const FunctionProtoType *FPT =
1419           OperatorDelete->getType()->getAs<FunctionProtoType>();
1420       CallArgList DeleteArgs;
1421 
1422       // The first argument is always a void* (or C* for a destroying operator
1423       // delete for class type C).
1424       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1425 
1426       // Figure out what other parameters we should be implicitly passing.
1427       UsualDeleteParams Params;
1428       if (NumPlacementArgs) {
1429         // A placement deallocation function is implicitly passed an alignment
1430         // if the placement allocation function was, but is never passed a size.
1431         Params.Alignment = PassAlignmentToPlacementDelete;
1432       } else {
1433         // For a non-placement new-expression, 'operator delete' can take a
1434         // size and/or an alignment if it has the right parameters.
1435         Params = getUsualDeleteParams(OperatorDelete);
1436       }
1437 
1438       assert(!Params.DestroyingDelete &&
1439              "should not call destroying delete in a new-expression");
1440 
1441       // The second argument can be a std::size_t (for non-placement delete).
1442       if (Params.Size)
1443         DeleteArgs.add(Traits::get(CGF, AllocSize),
1444                        CGF.getContext().getSizeType());
1445 
1446       // The next (second or third) argument can be a std::align_val_t, which
1447       // is an enum whose underlying type is std::size_t.
1448       // FIXME: Use the right type as the parameter type. Note that in a call
1449       // to operator delete(size_t, ...), we may not have it available.
1450       if (Params.Alignment)
1451         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1452                            CGF.SizeTy, AllocAlign.getQuantity())),
1453                        CGF.getContext().getSizeType());
1454 
1455       // Pass the rest of the arguments, which must match exactly.
1456       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1457         auto Arg = getPlacementArgs()[I];
1458         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1459       }
1460 
1461       // Call 'operator delete'.
1462       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1463     }
1464   };
1465 }
1466 
1467 /// Enter a cleanup to call 'operator delete' if the initializer in a
1468 /// new-expression throws.
1469 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1470                                   const CXXNewExpr *E,
1471                                   Address NewPtr,
1472                                   llvm::Value *AllocSize,
1473                                   CharUnits AllocAlign,
1474                                   const CallArgList &NewArgs) {
1475   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1476 
1477   // If we're not inside a conditional branch, then the cleanup will
1478   // dominate and we can do the easier (and more efficient) thing.
1479   if (!CGF.isInConditionalBranch()) {
1480     struct DirectCleanupTraits {
1481       typedef llvm::Value *ValueTy;
1482       typedef RValue RValueTy;
1483       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1484       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1485     };
1486 
1487     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1488 
1489     DirectCleanup *Cleanup = CGF.EHStack
1490       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1491                                            E->getNumPlacementArgs(),
1492                                            E->getOperatorDelete(),
1493                                            NewPtr.getPointer(),
1494                                            AllocSize,
1495                                            E->passAlignment(),
1496                                            AllocAlign);
1497     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1498       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1499       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1500     }
1501 
1502     return;
1503   }
1504 
1505   // Otherwise, we need to save all this stuff.
1506   DominatingValue<RValue>::saved_type SavedNewPtr =
1507     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1508   DominatingValue<RValue>::saved_type SavedAllocSize =
1509     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1510 
1511   struct ConditionalCleanupTraits {
1512     typedef DominatingValue<RValue>::saved_type ValueTy;
1513     typedef DominatingValue<RValue>::saved_type RValueTy;
1514     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1515       return V.restore(CGF);
1516     }
1517   };
1518   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1519 
1520   ConditionalCleanup *Cleanup = CGF.EHStack
1521     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1522                                               E->getNumPlacementArgs(),
1523                                               E->getOperatorDelete(),
1524                                               SavedNewPtr,
1525                                               SavedAllocSize,
1526                                               E->passAlignment(),
1527                                               AllocAlign);
1528   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1529     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1530     Cleanup->setPlacementArg(
1531         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1532   }
1533 
1534   CGF.initFullExprCleanup();
1535 }
1536 
1537 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1538   // The element type being allocated.
1539   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1540 
1541   // 1. Build a call to the allocation function.
1542   FunctionDecl *allocator = E->getOperatorNew();
1543 
1544   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1545   unsigned minElements = 0;
1546   if (E->isArray() && E->hasInitializer()) {
1547     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1548     if (ILE && ILE->isStringLiteralInit())
1549       minElements =
1550           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1551               ->getSize().getZExtValue();
1552     else if (ILE)
1553       minElements = ILE->getNumInits();
1554   }
1555 
1556   llvm::Value *numElements = nullptr;
1557   llvm::Value *allocSizeWithoutCookie = nullptr;
1558   llvm::Value *allocSize =
1559     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1560                         allocSizeWithoutCookie);
1561   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1562 
1563   // Emit the allocation call.  If the allocator is a global placement
1564   // operator, just "inline" it directly.
1565   Address allocation = Address::invalid();
1566   CallArgList allocatorArgs;
1567   if (allocator->isReservedGlobalPlacementOperator()) {
1568     assert(E->getNumPlacementArgs() == 1);
1569     const Expr *arg = *E->placement_arguments().begin();
1570 
1571     LValueBaseInfo BaseInfo;
1572     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1573 
1574     // The pointer expression will, in many cases, be an opaque void*.
1575     // In these cases, discard the computed alignment and use the
1576     // formal alignment of the allocated type.
1577     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1578       allocation = Address(allocation.getPointer(), allocAlign);
1579 
1580     // Set up allocatorArgs for the call to operator delete if it's not
1581     // the reserved global operator.
1582     if (E->getOperatorDelete() &&
1583         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1584       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1585       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1586     }
1587 
1588   } else {
1589     const FunctionProtoType *allocatorType =
1590       allocator->getType()->castAs<FunctionProtoType>();
1591     unsigned ParamsToSkip = 0;
1592 
1593     // The allocation size is the first argument.
1594     QualType sizeType = getContext().getSizeType();
1595     allocatorArgs.add(RValue::get(allocSize), sizeType);
1596     ++ParamsToSkip;
1597 
1598     if (allocSize != allocSizeWithoutCookie) {
1599       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1600       allocAlign = std::max(allocAlign, cookieAlign);
1601     }
1602 
1603     // The allocation alignment may be passed as the second argument.
1604     if (E->passAlignment()) {
1605       QualType AlignValT = sizeType;
1606       if (allocatorType->getNumParams() > 1) {
1607         AlignValT = allocatorType->getParamType(1);
1608         assert(getContext().hasSameUnqualifiedType(
1609                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1610                    sizeType) &&
1611                "wrong type for alignment parameter");
1612         ++ParamsToSkip;
1613       } else {
1614         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1615         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1616       }
1617       allocatorArgs.add(
1618           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1619           AlignValT);
1620     }
1621 
1622     // FIXME: Why do we not pass a CalleeDecl here?
1623     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1624                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1625 
1626     RValue RV =
1627       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1628 
1629     // If this was a call to a global replaceable allocation function that does
1630     // not take an alignment argument, the allocator is known to produce
1631     // storage that's suitably aligned for any object that fits, up to a known
1632     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1633     CharUnits allocationAlign = allocAlign;
1634     if (!E->passAlignment() &&
1635         allocator->isReplaceableGlobalAllocationFunction()) {
1636       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1637           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1638       allocationAlign = std::max(
1639           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1640     }
1641 
1642     allocation = Address(RV.getScalarVal(), allocationAlign);
1643   }
1644 
1645   // Emit a null check on the allocation result if the allocation
1646   // function is allowed to return null (because it has a non-throwing
1647   // exception spec or is the reserved placement new) and we have an
1648   // interesting initializer will be running sanitizers on the initialization.
1649   bool nullCheck = E->shouldNullCheckAllocation() &&
1650                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1651                     sanitizePerformTypeCheck());
1652 
1653   llvm::BasicBlock *nullCheckBB = nullptr;
1654   llvm::BasicBlock *contBB = nullptr;
1655 
1656   // The null-check means that the initializer is conditionally
1657   // evaluated.
1658   ConditionalEvaluation conditional(*this);
1659 
1660   if (nullCheck) {
1661     conditional.begin(*this);
1662 
1663     nullCheckBB = Builder.GetInsertBlock();
1664     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1665     contBB = createBasicBlock("new.cont");
1666 
1667     llvm::Value *isNull =
1668       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1669     Builder.CreateCondBr(isNull, contBB, notNullBB);
1670     EmitBlock(notNullBB);
1671   }
1672 
1673   // If there's an operator delete, enter a cleanup to call it if an
1674   // exception is thrown.
1675   EHScopeStack::stable_iterator operatorDeleteCleanup;
1676   llvm::Instruction *cleanupDominator = nullptr;
1677   if (E->getOperatorDelete() &&
1678       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1679     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1680                           allocatorArgs);
1681     operatorDeleteCleanup = EHStack.stable_begin();
1682     cleanupDominator = Builder.CreateUnreachable();
1683   }
1684 
1685   assert((allocSize == allocSizeWithoutCookie) ==
1686          CalculateCookiePadding(*this, E).isZero());
1687   if (allocSize != allocSizeWithoutCookie) {
1688     assert(E->isArray());
1689     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1690                                                        numElements,
1691                                                        E, allocType);
1692   }
1693 
1694   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1695   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1696 
1697   // Passing pointer through launder.invariant.group to avoid propagation of
1698   // vptrs information which may be included in previous type.
1699   // To not break LTO with different optimizations levels, we do it regardless
1700   // of optimization level.
1701   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1702       allocator->isReservedGlobalPlacementOperator())
1703     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1704                      result.getAlignment());
1705 
1706   // Emit sanitizer checks for pointer value now, so that in the case of an
1707   // array it was checked only once and not at each constructor call. We may
1708   // have already checked that the pointer is non-null.
1709   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1710   // we'll null check the wrong pointer here.
1711   SanitizerSet SkippedChecks;
1712   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1713   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1714                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1715                 result.getPointer(), allocType, result.getAlignment(),
1716                 SkippedChecks, numElements);
1717 
1718   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1719                      allocSizeWithoutCookie);
1720   if (E->isArray()) {
1721     // NewPtr is a pointer to the base element type.  If we're
1722     // allocating an array of arrays, we'll need to cast back to the
1723     // array pointer type.
1724     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1725     if (result.getType() != resultType)
1726       result = Builder.CreateBitCast(result, resultType);
1727   }
1728 
1729   // Deactivate the 'operator delete' cleanup if we finished
1730   // initialization.
1731   if (operatorDeleteCleanup.isValid()) {
1732     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1733     cleanupDominator->eraseFromParent();
1734   }
1735 
1736   llvm::Value *resultPtr = result.getPointer();
1737   if (nullCheck) {
1738     conditional.end(*this);
1739 
1740     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1741     EmitBlock(contBB);
1742 
1743     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1744     PHI->addIncoming(resultPtr, notNullBB);
1745     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1746                      nullCheckBB);
1747 
1748     resultPtr = PHI;
1749   }
1750 
1751   return resultPtr;
1752 }
1753 
1754 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1755                                      llvm::Value *Ptr, QualType DeleteTy,
1756                                      llvm::Value *NumElements,
1757                                      CharUnits CookieSize) {
1758   assert((!NumElements && CookieSize.isZero()) ||
1759          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1760 
1761   const FunctionProtoType *DeleteFTy =
1762     DeleteFD->getType()->getAs<FunctionProtoType>();
1763 
1764   CallArgList DeleteArgs;
1765 
1766   auto Params = getUsualDeleteParams(DeleteFD);
1767   auto ParamTypeIt = DeleteFTy->param_type_begin();
1768 
1769   // Pass the pointer itself.
1770   QualType ArgTy = *ParamTypeIt++;
1771   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1772   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1773 
1774   // Pass the std::destroying_delete tag if present.
1775   if (Params.DestroyingDelete) {
1776     QualType DDTag = *ParamTypeIt++;
1777     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1778     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1779     DeleteArgs.add(RValue::get(V), DDTag);
1780   }
1781 
1782   // Pass the size if the delete function has a size_t parameter.
1783   if (Params.Size) {
1784     QualType SizeType = *ParamTypeIt++;
1785     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1786     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1787                                                DeleteTypeSize.getQuantity());
1788 
1789     // For array new, multiply by the number of elements.
1790     if (NumElements)
1791       Size = Builder.CreateMul(Size, NumElements);
1792 
1793     // If there is a cookie, add the cookie size.
1794     if (!CookieSize.isZero())
1795       Size = Builder.CreateAdd(
1796           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1797 
1798     DeleteArgs.add(RValue::get(Size), SizeType);
1799   }
1800 
1801   // Pass the alignment if the delete function has an align_val_t parameter.
1802   if (Params.Alignment) {
1803     QualType AlignValType = *ParamTypeIt++;
1804     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1805         getContext().getTypeAlignIfKnown(DeleteTy));
1806     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1807                                                 DeleteTypeAlign.getQuantity());
1808     DeleteArgs.add(RValue::get(Align), AlignValType);
1809   }
1810 
1811   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1812          "unknown parameter to usual delete function");
1813 
1814   // Emit the call to delete.
1815   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1816 }
1817 
1818 namespace {
1819   /// Calls the given 'operator delete' on a single object.
1820   struct CallObjectDelete final : EHScopeStack::Cleanup {
1821     llvm::Value *Ptr;
1822     const FunctionDecl *OperatorDelete;
1823     QualType ElementType;
1824 
1825     CallObjectDelete(llvm::Value *Ptr,
1826                      const FunctionDecl *OperatorDelete,
1827                      QualType ElementType)
1828       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1829 
1830     void Emit(CodeGenFunction &CGF, Flags flags) override {
1831       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1832     }
1833   };
1834 }
1835 
1836 void
1837 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1838                                              llvm::Value *CompletePtr,
1839                                              QualType ElementType) {
1840   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1841                                         OperatorDelete, ElementType);
1842 }
1843 
1844 /// Emit the code for deleting a single object with a destroying operator
1845 /// delete. If the element type has a non-virtual destructor, Ptr has already
1846 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1847 /// Ptr points to an object of the static type.
1848 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1849                                        const CXXDeleteExpr *DE, Address Ptr,
1850                                        QualType ElementType) {
1851   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1852   if (Dtor && Dtor->isVirtual())
1853     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1854                                                 Dtor);
1855   else
1856     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1857 }
1858 
1859 /// Emit the code for deleting a single object.
1860 static void EmitObjectDelete(CodeGenFunction &CGF,
1861                              const CXXDeleteExpr *DE,
1862                              Address Ptr,
1863                              QualType ElementType) {
1864   // C++11 [expr.delete]p3:
1865   //   If the static type of the object to be deleted is different from its
1866   //   dynamic type, the static type shall be a base class of the dynamic type
1867   //   of the object to be deleted and the static type shall have a virtual
1868   //   destructor or the behavior is undefined.
1869   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1870                     DE->getExprLoc(), Ptr.getPointer(),
1871                     ElementType);
1872 
1873   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1874   assert(!OperatorDelete->isDestroyingOperatorDelete());
1875 
1876   // Find the destructor for the type, if applicable.  If the
1877   // destructor is virtual, we'll just emit the vcall and return.
1878   const CXXDestructorDecl *Dtor = nullptr;
1879   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1880     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1881     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1882       Dtor = RD->getDestructor();
1883 
1884       if (Dtor->isVirtual()) {
1885         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1886                                                     Dtor);
1887         return;
1888       }
1889     }
1890   }
1891 
1892   // Make sure that we call delete even if the dtor throws.
1893   // This doesn't have to a conditional cleanup because we're going
1894   // to pop it off in a second.
1895   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1896                                             Ptr.getPointer(),
1897                                             OperatorDelete, ElementType);
1898 
1899   if (Dtor)
1900     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1901                               /*ForVirtualBase=*/false,
1902                               /*Delegating=*/false,
1903                               Ptr, ElementType);
1904   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1905     switch (Lifetime) {
1906     case Qualifiers::OCL_None:
1907     case Qualifiers::OCL_ExplicitNone:
1908     case Qualifiers::OCL_Autoreleasing:
1909       break;
1910 
1911     case Qualifiers::OCL_Strong:
1912       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1913       break;
1914 
1915     case Qualifiers::OCL_Weak:
1916       CGF.EmitARCDestroyWeak(Ptr);
1917       break;
1918     }
1919   }
1920 
1921   CGF.PopCleanupBlock();
1922 }
1923 
1924 namespace {
1925   /// Calls the given 'operator delete' on an array of objects.
1926   struct CallArrayDelete final : EHScopeStack::Cleanup {
1927     llvm::Value *Ptr;
1928     const FunctionDecl *OperatorDelete;
1929     llvm::Value *NumElements;
1930     QualType ElementType;
1931     CharUnits CookieSize;
1932 
1933     CallArrayDelete(llvm::Value *Ptr,
1934                     const FunctionDecl *OperatorDelete,
1935                     llvm::Value *NumElements,
1936                     QualType ElementType,
1937                     CharUnits CookieSize)
1938       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1939         ElementType(ElementType), CookieSize(CookieSize) {}
1940 
1941     void Emit(CodeGenFunction &CGF, Flags flags) override {
1942       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1943                          CookieSize);
1944     }
1945   };
1946 }
1947 
1948 /// Emit the code for deleting an array of objects.
1949 static void EmitArrayDelete(CodeGenFunction &CGF,
1950                             const CXXDeleteExpr *E,
1951                             Address deletedPtr,
1952                             QualType elementType) {
1953   llvm::Value *numElements = nullptr;
1954   llvm::Value *allocatedPtr = nullptr;
1955   CharUnits cookieSize;
1956   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1957                                       numElements, allocatedPtr, cookieSize);
1958 
1959   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1960 
1961   // Make sure that we call delete even if one of the dtors throws.
1962   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1963   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1964                                            allocatedPtr, operatorDelete,
1965                                            numElements, elementType,
1966                                            cookieSize);
1967 
1968   // Destroy the elements.
1969   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1970     assert(numElements && "no element count for a type with a destructor!");
1971 
1972     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1973     CharUnits elementAlign =
1974       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1975 
1976     llvm::Value *arrayBegin = deletedPtr.getPointer();
1977     llvm::Value *arrayEnd =
1978       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1979 
1980     // Note that it is legal to allocate a zero-length array, and we
1981     // can never fold the check away because the length should always
1982     // come from a cookie.
1983     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1984                          CGF.getDestroyer(dtorKind),
1985                          /*checkZeroLength*/ true,
1986                          CGF.needsEHCleanup(dtorKind));
1987   }
1988 
1989   // Pop the cleanup block.
1990   CGF.PopCleanupBlock();
1991 }
1992 
1993 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1994   const Expr *Arg = E->getArgument();
1995   Address Ptr = EmitPointerWithAlignment(Arg);
1996 
1997   // Null check the pointer.
1998   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1999   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2000 
2001   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2002 
2003   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2004   EmitBlock(DeleteNotNull);
2005 
2006   QualType DeleteTy = E->getDestroyedType();
2007 
2008   // A destroying operator delete overrides the entire operation of the
2009   // delete expression.
2010   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2011     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2012     EmitBlock(DeleteEnd);
2013     return;
2014   }
2015 
2016   // We might be deleting a pointer to array.  If so, GEP down to the
2017   // first non-array element.
2018   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2019   if (DeleteTy->isConstantArrayType()) {
2020     llvm::Value *Zero = Builder.getInt32(0);
2021     SmallVector<llvm::Value*,8> GEP;
2022 
2023     GEP.push_back(Zero); // point at the outermost array
2024 
2025     // For each layer of array type we're pointing at:
2026     while (const ConstantArrayType *Arr
2027              = getContext().getAsConstantArrayType(DeleteTy)) {
2028       // 1. Unpeel the array type.
2029       DeleteTy = Arr->getElementType();
2030 
2031       // 2. GEP to the first element of the array.
2032       GEP.push_back(Zero);
2033     }
2034 
2035     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2036                   Ptr.getAlignment());
2037   }
2038 
2039   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2040 
2041   if (E->isArrayForm()) {
2042     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2043   } else {
2044     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2045   }
2046 
2047   EmitBlock(DeleteEnd);
2048 }
2049 
2050 static bool isGLValueFromPointerDeref(const Expr *E) {
2051   E = E->IgnoreParens();
2052 
2053   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2054     if (!CE->getSubExpr()->isGLValue())
2055       return false;
2056     return isGLValueFromPointerDeref(CE->getSubExpr());
2057   }
2058 
2059   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2060     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2061 
2062   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2063     if (BO->getOpcode() == BO_Comma)
2064       return isGLValueFromPointerDeref(BO->getRHS());
2065 
2066   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2067     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2068            isGLValueFromPointerDeref(ACO->getFalseExpr());
2069 
2070   // C++11 [expr.sub]p1:
2071   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2072   if (isa<ArraySubscriptExpr>(E))
2073     return true;
2074 
2075   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2076     if (UO->getOpcode() == UO_Deref)
2077       return true;
2078 
2079   return false;
2080 }
2081 
2082 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2083                                          llvm::Type *StdTypeInfoPtrTy) {
2084   // Get the vtable pointer.
2085   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2086 
2087   QualType SrcRecordTy = E->getType();
2088 
2089   // C++ [class.cdtor]p4:
2090   //   If the operand of typeid refers to the object under construction or
2091   //   destruction and the static type of the operand is neither the constructor
2092   //   or destructor’s class nor one of its bases, the behavior is undefined.
2093   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2094                     ThisPtr.getPointer(), SrcRecordTy);
2095 
2096   // C++ [expr.typeid]p2:
2097   //   If the glvalue expression is obtained by applying the unary * operator to
2098   //   a pointer and the pointer is a null pointer value, the typeid expression
2099   //   throws the std::bad_typeid exception.
2100   //
2101   // However, this paragraph's intent is not clear.  We choose a very generous
2102   // interpretation which implores us to consider comma operators, conditional
2103   // operators, parentheses and other such constructs.
2104   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2105           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2106     llvm::BasicBlock *BadTypeidBlock =
2107         CGF.createBasicBlock("typeid.bad_typeid");
2108     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2109 
2110     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2111     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2112 
2113     CGF.EmitBlock(BadTypeidBlock);
2114     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2115     CGF.EmitBlock(EndBlock);
2116   }
2117 
2118   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2119                                         StdTypeInfoPtrTy);
2120 }
2121 
2122 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2123   llvm::Type *StdTypeInfoPtrTy =
2124     ConvertType(E->getType())->getPointerTo();
2125 
2126   if (E->isTypeOperand()) {
2127     llvm::Constant *TypeInfo =
2128         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2129     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2130   }
2131 
2132   // C++ [expr.typeid]p2:
2133   //   When typeid is applied to a glvalue expression whose type is a
2134   //   polymorphic class type, the result refers to a std::type_info object
2135   //   representing the type of the most derived object (that is, the dynamic
2136   //   type) to which the glvalue refers.
2137   if (E->isPotentiallyEvaluated())
2138     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2139                                 StdTypeInfoPtrTy);
2140 
2141   QualType OperandTy = E->getExprOperand()->getType();
2142   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2143                                StdTypeInfoPtrTy);
2144 }
2145 
2146 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2147                                           QualType DestTy) {
2148   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2149   if (DestTy->isPointerType())
2150     return llvm::Constant::getNullValue(DestLTy);
2151 
2152   /// C++ [expr.dynamic.cast]p9:
2153   ///   A failed cast to reference type throws std::bad_cast
2154   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2155     return nullptr;
2156 
2157   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2158   return llvm::UndefValue::get(DestLTy);
2159 }
2160 
2161 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2162                                               const CXXDynamicCastExpr *DCE) {
2163   CGM.EmitExplicitCastExprType(DCE, this);
2164   QualType DestTy = DCE->getTypeAsWritten();
2165 
2166   QualType SrcTy = DCE->getSubExpr()->getType();
2167 
2168   // C++ [expr.dynamic.cast]p7:
2169   //   If T is "pointer to cv void," then the result is a pointer to the most
2170   //   derived object pointed to by v.
2171   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2172 
2173   bool isDynamicCastToVoid;
2174   QualType SrcRecordTy;
2175   QualType DestRecordTy;
2176   if (DestPTy) {
2177     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2178     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2179     DestRecordTy = DestPTy->getPointeeType();
2180   } else {
2181     isDynamicCastToVoid = false;
2182     SrcRecordTy = SrcTy;
2183     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2184   }
2185 
2186   // C++ [class.cdtor]p5:
2187   //   If the operand of the dynamic_cast refers to the object under
2188   //   construction or destruction and the static type of the operand is not a
2189   //   pointer to or object of the constructor or destructor’s own class or one
2190   //   of its bases, the dynamic_cast results in undefined behavior.
2191   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2192                 SrcRecordTy);
2193 
2194   if (DCE->isAlwaysNull())
2195     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2196       return T;
2197 
2198   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2199 
2200   // C++ [expr.dynamic.cast]p4:
2201   //   If the value of v is a null pointer value in the pointer case, the result
2202   //   is the null pointer value of type T.
2203   bool ShouldNullCheckSrcValue =
2204       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2205                                                          SrcRecordTy);
2206 
2207   llvm::BasicBlock *CastNull = nullptr;
2208   llvm::BasicBlock *CastNotNull = nullptr;
2209   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2210 
2211   if (ShouldNullCheckSrcValue) {
2212     CastNull = createBasicBlock("dynamic_cast.null");
2213     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2214 
2215     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2216     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2217     EmitBlock(CastNotNull);
2218   }
2219 
2220   llvm::Value *Value;
2221   if (isDynamicCastToVoid) {
2222     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2223                                                   DestTy);
2224   } else {
2225     assert(DestRecordTy->isRecordType() &&
2226            "destination type must be a record type!");
2227     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2228                                                 DestTy, DestRecordTy, CastEnd);
2229     CastNotNull = Builder.GetInsertBlock();
2230   }
2231 
2232   if (ShouldNullCheckSrcValue) {
2233     EmitBranch(CastEnd);
2234 
2235     EmitBlock(CastNull);
2236     EmitBranch(CastEnd);
2237   }
2238 
2239   EmitBlock(CastEnd);
2240 
2241   if (ShouldNullCheckSrcValue) {
2242     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2243     PHI->addIncoming(Value, CastNotNull);
2244     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2245 
2246     Value = PHI;
2247   }
2248 
2249   return Value;
2250 }
2251