1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/Basic/CodeGenOptions.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 41 isa<CXXOperatorCallExpr>(CE)); 42 assert(MD->isInstance() && 43 "Trying to emit a member or operator call expr on a static method!"); 44 45 // Push the this ptr. 46 const CXXRecordDecl *RD = 47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 unsigned PrefixSize = Args.size() - 1; 58 59 // And the rest of the call args. 60 if (RtlArgs) { 61 // Special case: if the caller emitted the arguments right-to-left already 62 // (prior to emitting the *this argument), we're done. This happens for 63 // assignment operators. 64 Args.addFrom(*RtlArgs); 65 } else if (CE) { 66 // Special case: skip first argument of CXXOperatorCall (it is "this"). 67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 69 CE->getDirectCallee()); 70 } else { 71 assert( 72 FPT->getNumParams() == 0 && 73 "No CallExpr specified for function with non-zero number of arguments"); 74 } 75 return {required, PrefixSize}; 76 } 77 78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 79 const CXXMethodDecl *MD, const CGCallee &Callee, 80 ReturnValueSlot ReturnValue, 81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 82 const CallExpr *CE, CallArgList *RtlArgs) { 83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 84 CallArgList Args; 85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 90 CE && CE == MustTailCall, 91 CE ? CE->getExprLoc() : SourceLocation()); 92 } 93 94 RValue CodeGenFunction::EmitCXXDestructorCall( 95 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 97 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 98 99 assert(!ThisTy.isNull()); 100 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 101 "Pointer/Object mixup"); 102 103 LangAS SrcAS = ThisTy.getAddressSpace(); 104 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 105 if (SrcAS != DstAS) { 106 QualType DstTy = DtorDecl->getThisType(); 107 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 108 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 109 NewType); 110 } 111 112 CallArgList Args; 113 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam, 114 ImplicitParamTy, CE, Args, nullptr); 115 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 116 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall, 117 CE ? CE->getExprLoc() : SourceLocation{}); 118 } 119 120 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 121 const CXXPseudoDestructorExpr *E) { 122 QualType DestroyedType = E->getDestroyedType(); 123 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 124 // Automatic Reference Counting: 125 // If the pseudo-expression names a retainable object with weak or 126 // strong lifetime, the object shall be released. 127 Expr *BaseExpr = E->getBase(); 128 Address BaseValue = Address::invalid(); 129 Qualifiers BaseQuals; 130 131 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 132 if (E->isArrow()) { 133 BaseValue = EmitPointerWithAlignment(BaseExpr); 134 const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); 135 BaseQuals = PTy->getPointeeType().getQualifiers(); 136 } else { 137 LValue BaseLV = EmitLValue(BaseExpr); 138 BaseValue = BaseLV.getAddress(*this); 139 QualType BaseTy = BaseExpr->getType(); 140 BaseQuals = BaseTy.getQualifiers(); 141 } 142 143 switch (DestroyedType.getObjCLifetime()) { 144 case Qualifiers::OCL_None: 145 case Qualifiers::OCL_ExplicitNone: 146 case Qualifiers::OCL_Autoreleasing: 147 break; 148 149 case Qualifiers::OCL_Strong: 150 EmitARCRelease(Builder.CreateLoad(BaseValue, 151 DestroyedType.isVolatileQualified()), 152 ARCPreciseLifetime); 153 break; 154 155 case Qualifiers::OCL_Weak: 156 EmitARCDestroyWeak(BaseValue); 157 break; 158 } 159 } else { 160 // C++ [expr.pseudo]p1: 161 // The result shall only be used as the operand for the function call 162 // operator (), and the result of such a call has type void. The only 163 // effect is the evaluation of the postfix-expression before the dot or 164 // arrow. 165 EmitIgnoredExpr(E->getBase()); 166 } 167 168 return RValue::get(nullptr); 169 } 170 171 static CXXRecordDecl *getCXXRecord(const Expr *E) { 172 QualType T = E->getType(); 173 if (const PointerType *PTy = T->getAs<PointerType>()) 174 T = PTy->getPointeeType(); 175 const RecordType *Ty = T->castAs<RecordType>(); 176 return cast<CXXRecordDecl>(Ty->getDecl()); 177 } 178 179 // Note: This function also emit constructor calls to support a MSVC 180 // extensions allowing explicit constructor function call. 181 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 182 ReturnValueSlot ReturnValue) { 183 const Expr *callee = CE->getCallee()->IgnoreParens(); 184 185 if (isa<BinaryOperator>(callee)) 186 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 187 188 const MemberExpr *ME = cast<MemberExpr>(callee); 189 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 190 191 if (MD->isStatic()) { 192 // The method is static, emit it as we would a regular call. 193 CGCallee callee = 194 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 195 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 196 ReturnValue); 197 } 198 199 bool HasQualifier = ME->hasQualifier(); 200 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 201 bool IsArrow = ME->isArrow(); 202 const Expr *Base = ME->getBase(); 203 204 return EmitCXXMemberOrOperatorMemberCallExpr( 205 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 206 } 207 208 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 209 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 210 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 211 const Expr *Base) { 212 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 213 214 // Compute the object pointer. 215 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 216 217 const CXXMethodDecl *DevirtualizedMethod = nullptr; 218 if (CanUseVirtualCall && 219 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 220 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 221 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 222 assert(DevirtualizedMethod); 223 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 224 const Expr *Inner = Base->IgnoreParenBaseCasts(); 225 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 226 MD->getReturnType().getCanonicalType()) 227 // If the return types are not the same, this might be a case where more 228 // code needs to run to compensate for it. For example, the derived 229 // method might return a type that inherits form from the return 230 // type of MD and has a prefix. 231 // For now we just avoid devirtualizing these covariant cases. 232 DevirtualizedMethod = nullptr; 233 else if (getCXXRecord(Inner) == DevirtualizedClass) 234 // If the class of the Inner expression is where the dynamic method 235 // is defined, build the this pointer from it. 236 Base = Inner; 237 else if (getCXXRecord(Base) != DevirtualizedClass) { 238 // If the method is defined in a class that is not the best dynamic 239 // one or the one of the full expression, we would have to build 240 // a derived-to-base cast to compute the correct this pointer, but 241 // we don't have support for that yet, so do a virtual call. 242 DevirtualizedMethod = nullptr; 243 } 244 } 245 246 bool TrivialForCodegen = 247 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); 248 bool TrivialAssignment = 249 TrivialForCodegen && 250 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 251 !MD->getParent()->mayInsertExtraPadding(); 252 253 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 254 // operator before the LHS. 255 CallArgList RtlArgStorage; 256 CallArgList *RtlArgs = nullptr; 257 LValue TrivialAssignmentRHS; 258 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 259 if (OCE->isAssignmentOp()) { 260 if (TrivialAssignment) { 261 TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); 262 } else { 263 RtlArgs = &RtlArgStorage; 264 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 265 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 266 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 267 } 268 } 269 } 270 271 LValue This; 272 if (IsArrow) { 273 LValueBaseInfo BaseInfo; 274 TBAAAccessInfo TBAAInfo; 275 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 276 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 277 } else { 278 This = EmitLValue(Base); 279 } 280 281 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 282 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 283 // constructing a new complete object of type Ctor. 284 assert(!RtlArgs); 285 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 286 CallArgList Args; 287 commonEmitCXXMemberOrOperatorCall( 288 *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr, 289 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 290 291 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 292 /*Delegating=*/false, This.getAddress(*this), Args, 293 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 294 /*NewPointerIsChecked=*/false); 295 return RValue::get(nullptr); 296 } 297 298 if (TrivialForCodegen) { 299 if (isa<CXXDestructorDecl>(MD)) 300 return RValue::get(nullptr); 301 302 if (TrivialAssignment) { 303 // We don't like to generate the trivial copy/move assignment operator 304 // when it isn't necessary; just produce the proper effect here. 305 // It's important that we use the result of EmitLValue here rather than 306 // emitting call arguments, in order to preserve TBAA information from 307 // the RHS. 308 LValue RHS = isa<CXXOperatorCallExpr>(CE) 309 ? TrivialAssignmentRHS 310 : EmitLValue(*CE->arg_begin()); 311 EmitAggregateAssign(This, RHS, CE->getType()); 312 return RValue::get(This.getPointer(*this)); 313 } 314 315 assert(MD->getParent()->mayInsertExtraPadding() && 316 "unknown trivial member function"); 317 } 318 319 // Compute the function type we're calling. 320 const CXXMethodDecl *CalleeDecl = 321 DevirtualizedMethod ? DevirtualizedMethod : MD; 322 const CGFunctionInfo *FInfo = nullptr; 323 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 324 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 325 GlobalDecl(Dtor, Dtor_Complete)); 326 else 327 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 328 329 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 330 331 // C++11 [class.mfct.non-static]p2: 332 // If a non-static member function of a class X is called for an object that 333 // is not of type X, or of a type derived from X, the behavior is undefined. 334 SourceLocation CallLoc; 335 ASTContext &C = getContext(); 336 if (CE) 337 CallLoc = CE->getExprLoc(); 338 339 SanitizerSet SkippedChecks; 340 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 341 auto *IOA = CMCE->getImplicitObjectArgument(); 342 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 343 if (IsImplicitObjectCXXThis) 344 SkippedChecks.set(SanitizerKind::Alignment, true); 345 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 346 SkippedChecks.set(SanitizerKind::Null, true); 347 } 348 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, 349 This.getPointer(*this), 350 C.getRecordType(CalleeDecl->getParent()), 351 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 352 353 // C++ [class.virtual]p12: 354 // Explicit qualification with the scope operator (5.1) suppresses the 355 // virtual call mechanism. 356 // 357 // We also don't emit a virtual call if the base expression has a record type 358 // because then we know what the type is. 359 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 360 361 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 362 assert(CE->arg_begin() == CE->arg_end() && 363 "Destructor shouldn't have explicit parameters"); 364 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 365 if (UseVirtualCall) { 366 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 367 This.getAddress(*this), 368 cast<CXXMemberCallExpr>(CE)); 369 } else { 370 GlobalDecl GD(Dtor, Dtor_Complete); 371 CGCallee Callee; 372 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 373 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 374 else if (!DevirtualizedMethod) 375 Callee = 376 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 377 else { 378 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 379 } 380 381 QualType ThisTy = 382 IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 383 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, 384 /*ImplicitParam=*/nullptr, 385 /*ImplicitParamTy=*/QualType(), CE); 386 } 387 return RValue::get(nullptr); 388 } 389 390 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 391 // 'CalleeDecl' instead. 392 393 CGCallee Callee; 394 if (UseVirtualCall) { 395 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty); 396 } else { 397 if (SanOpts.has(SanitizerKind::CFINVCall) && 398 MD->getParent()->isDynamicClass()) { 399 llvm::Value *VTable; 400 const CXXRecordDecl *RD; 401 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( 402 *this, This.getAddress(*this), CalleeDecl->getParent()); 403 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 404 } 405 406 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 407 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 408 else if (!DevirtualizedMethod) 409 Callee = 410 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 411 else { 412 Callee = 413 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 414 GlobalDecl(DevirtualizedMethod)); 415 } 416 } 417 418 if (MD->isVirtual()) { 419 Address NewThisAddr = 420 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 421 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall); 422 This.setAddress(NewThisAddr); 423 } 424 425 return EmitCXXMemberOrOperatorCall( 426 CalleeDecl, Callee, ReturnValue, This.getPointer(*this), 427 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 428 } 429 430 RValue 431 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 432 ReturnValueSlot ReturnValue) { 433 const BinaryOperator *BO = 434 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 435 const Expr *BaseExpr = BO->getLHS(); 436 const Expr *MemFnExpr = BO->getRHS(); 437 438 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 439 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 440 const auto *RD = 441 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 442 443 // Emit the 'this' pointer. 444 Address This = Address::invalid(); 445 if (BO->getOpcode() == BO_PtrMemI) 446 This = EmitPointerWithAlignment(BaseExpr); 447 else 448 This = EmitLValue(BaseExpr).getAddress(*this); 449 450 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 451 QualType(MPT->getClass(), 0)); 452 453 // Get the member function pointer. 454 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 455 456 // Ask the ABI to load the callee. Note that This is modified. 457 llvm::Value *ThisPtrForCall = nullptr; 458 CGCallee Callee = 459 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 460 ThisPtrForCall, MemFnPtr, MPT); 461 462 CallArgList Args; 463 464 QualType ThisType = 465 getContext().getPointerType(getContext().getTagDeclType(RD)); 466 467 // Push the this ptr. 468 Args.add(RValue::get(ThisPtrForCall), ThisType); 469 470 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 471 472 // And the rest of the call args 473 EmitCallArgs(Args, FPT, E->arguments()); 474 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 475 /*PrefixSize=*/0), 476 Callee, ReturnValue, Args, nullptr, E == MustTailCall, 477 E->getExprLoc()); 478 } 479 480 RValue 481 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 482 const CXXMethodDecl *MD, 483 ReturnValueSlot ReturnValue) { 484 assert(MD->isInstance() && 485 "Trying to emit a member call expr on a static method!"); 486 return EmitCXXMemberOrOperatorMemberCallExpr( 487 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 488 /*IsArrow=*/false, E->getArg(0)); 489 } 490 491 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 492 ReturnValueSlot ReturnValue) { 493 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 494 } 495 496 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 497 Address DestPtr, 498 const CXXRecordDecl *Base) { 499 if (Base->isEmpty()) 500 return; 501 502 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 503 504 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 505 CharUnits NVSize = Layout.getNonVirtualSize(); 506 507 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 508 // present, they are initialized by the most derived class before calling the 509 // constructor. 510 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 511 Stores.emplace_back(CharUnits::Zero(), NVSize); 512 513 // Each store is split by the existence of a vbptr. 514 CharUnits VBPtrWidth = CGF.getPointerSize(); 515 std::vector<CharUnits> VBPtrOffsets = 516 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 517 for (CharUnits VBPtrOffset : VBPtrOffsets) { 518 // Stop before we hit any virtual base pointers located in virtual bases. 519 if (VBPtrOffset >= NVSize) 520 break; 521 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 522 CharUnits LastStoreOffset = LastStore.first; 523 CharUnits LastStoreSize = LastStore.second; 524 525 CharUnits SplitBeforeOffset = LastStoreOffset; 526 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 527 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 528 if (!SplitBeforeSize.isZero()) 529 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 530 531 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 532 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 533 assert(!SplitAfterSize.isNegative() && "negative store size!"); 534 if (!SplitAfterSize.isZero()) 535 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 536 } 537 538 // If the type contains a pointer to data member we can't memset it to zero. 539 // Instead, create a null constant and copy it to the destination. 540 // TODO: there are other patterns besides zero that we can usefully memset, 541 // like -1, which happens to be the pattern used by member-pointers. 542 // TODO: isZeroInitializable can be over-conservative in the case where a 543 // virtual base contains a member pointer. 544 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 545 if (!NullConstantForBase->isNullValue()) { 546 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 547 CGF.CGM.getModule(), NullConstantForBase->getType(), 548 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 549 NullConstantForBase, Twine()); 550 551 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 552 DestPtr.getAlignment()); 553 NullVariable->setAlignment(Align.getAsAlign()); 554 555 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 556 557 // Get and call the appropriate llvm.memcpy overload. 558 for (std::pair<CharUnits, CharUnits> Store : Stores) { 559 CharUnits StoreOffset = Store.first; 560 CharUnits StoreSize = Store.second; 561 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 562 CGF.Builder.CreateMemCpy( 563 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 564 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 565 StoreSizeVal); 566 } 567 568 // Otherwise, just memset the whole thing to zero. This is legal 569 // because in LLVM, all default initializers (other than the ones we just 570 // handled above) are guaranteed to have a bit pattern of all zeros. 571 } else { 572 for (std::pair<CharUnits, CharUnits> Store : Stores) { 573 CharUnits StoreOffset = Store.first; 574 CharUnits StoreSize = Store.second; 575 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 576 CGF.Builder.CreateMemSet( 577 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 578 CGF.Builder.getInt8(0), StoreSizeVal); 579 } 580 } 581 } 582 583 void 584 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 585 AggValueSlot Dest) { 586 assert(!Dest.isIgnored() && "Must have a destination!"); 587 const CXXConstructorDecl *CD = E->getConstructor(); 588 589 // If we require zero initialization before (or instead of) calling the 590 // constructor, as can be the case with a non-user-provided default 591 // constructor, emit the zero initialization now, unless destination is 592 // already zeroed. 593 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 594 switch (E->getConstructionKind()) { 595 case CXXConstructExpr::CK_Delegating: 596 case CXXConstructExpr::CK_Complete: 597 EmitNullInitialization(Dest.getAddress(), E->getType()); 598 break; 599 case CXXConstructExpr::CK_VirtualBase: 600 case CXXConstructExpr::CK_NonVirtualBase: 601 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 602 CD->getParent()); 603 break; 604 } 605 } 606 607 // If this is a call to a trivial default constructor, do nothing. 608 if (CD->isTrivial() && CD->isDefaultConstructor()) 609 return; 610 611 // Elide the constructor if we're constructing from a temporary. 612 if (getLangOpts().ElideConstructors && E->isElidable()) { 613 // FIXME: This only handles the simplest case, where the source object 614 // is passed directly as the first argument to the constructor. 615 // This should also handle stepping though implicit casts and 616 // conversion sequences which involve two steps, with a 617 // conversion operator followed by a converting constructor. 618 const Expr *SrcObj = E->getArg(0); 619 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent())); 620 assert( 621 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 622 EmitAggExpr(SrcObj, Dest); 623 return; 624 } 625 626 if (const ArrayType *arrayType 627 = getContext().getAsArrayType(E->getType())) { 628 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 629 Dest.isSanitizerChecked()); 630 } else { 631 CXXCtorType Type = Ctor_Complete; 632 bool ForVirtualBase = false; 633 bool Delegating = false; 634 635 switch (E->getConstructionKind()) { 636 case CXXConstructExpr::CK_Delegating: 637 // We should be emitting a constructor; GlobalDecl will assert this 638 Type = CurGD.getCtorType(); 639 Delegating = true; 640 break; 641 642 case CXXConstructExpr::CK_Complete: 643 Type = Ctor_Complete; 644 break; 645 646 case CXXConstructExpr::CK_VirtualBase: 647 ForVirtualBase = true; 648 LLVM_FALLTHROUGH; 649 650 case CXXConstructExpr::CK_NonVirtualBase: 651 Type = Ctor_Base; 652 } 653 654 // Call the constructor. 655 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 656 } 657 } 658 659 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 660 const Expr *Exp) { 661 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 662 Exp = E->getSubExpr(); 663 assert(isa<CXXConstructExpr>(Exp) && 664 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 665 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 666 const CXXConstructorDecl *CD = E->getConstructor(); 667 RunCleanupsScope Scope(*this); 668 669 // If we require zero initialization before (or instead of) calling the 670 // constructor, as can be the case with a non-user-provided default 671 // constructor, emit the zero initialization now. 672 // FIXME. Do I still need this for a copy ctor synthesis? 673 if (E->requiresZeroInitialization()) 674 EmitNullInitialization(Dest, E->getType()); 675 676 assert(!getContext().getAsConstantArrayType(E->getType()) 677 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 678 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 679 } 680 681 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 682 const CXXNewExpr *E) { 683 if (!E->isArray()) 684 return CharUnits::Zero(); 685 686 // No cookie is required if the operator new[] being used is the 687 // reserved placement operator new[]. 688 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 689 return CharUnits::Zero(); 690 691 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 692 } 693 694 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 695 const CXXNewExpr *e, 696 unsigned minElements, 697 llvm::Value *&numElements, 698 llvm::Value *&sizeWithoutCookie) { 699 QualType type = e->getAllocatedType(); 700 701 if (!e->isArray()) { 702 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 703 sizeWithoutCookie 704 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 705 return sizeWithoutCookie; 706 } 707 708 // The width of size_t. 709 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 710 711 // Figure out the cookie size. 712 llvm::APInt cookieSize(sizeWidth, 713 CalculateCookiePadding(CGF, e).getQuantity()); 714 715 // Emit the array size expression. 716 // We multiply the size of all dimensions for NumElements. 717 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 718 numElements = 719 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 720 if (!numElements) 721 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 722 assert(isa<llvm::IntegerType>(numElements->getType())); 723 724 // The number of elements can be have an arbitrary integer type; 725 // essentially, we need to multiply it by a constant factor, add a 726 // cookie size, and verify that the result is representable as a 727 // size_t. That's just a gloss, though, and it's wrong in one 728 // important way: if the count is negative, it's an error even if 729 // the cookie size would bring the total size >= 0. 730 bool isSigned 731 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 732 llvm::IntegerType *numElementsType 733 = cast<llvm::IntegerType>(numElements->getType()); 734 unsigned numElementsWidth = numElementsType->getBitWidth(); 735 736 // Compute the constant factor. 737 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 738 while (const ConstantArrayType *CAT 739 = CGF.getContext().getAsConstantArrayType(type)) { 740 type = CAT->getElementType(); 741 arraySizeMultiplier *= CAT->getSize(); 742 } 743 744 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 745 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 746 typeSizeMultiplier *= arraySizeMultiplier; 747 748 // This will be a size_t. 749 llvm::Value *size; 750 751 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 752 // Don't bloat the -O0 code. 753 if (llvm::ConstantInt *numElementsC = 754 dyn_cast<llvm::ConstantInt>(numElements)) { 755 const llvm::APInt &count = numElementsC->getValue(); 756 757 bool hasAnyOverflow = false; 758 759 // If 'count' was a negative number, it's an overflow. 760 if (isSigned && count.isNegative()) 761 hasAnyOverflow = true; 762 763 // We want to do all this arithmetic in size_t. If numElements is 764 // wider than that, check whether it's already too big, and if so, 765 // overflow. 766 else if (numElementsWidth > sizeWidth && 767 numElementsWidth - sizeWidth > count.countLeadingZeros()) 768 hasAnyOverflow = true; 769 770 // Okay, compute a count at the right width. 771 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 772 773 // If there is a brace-initializer, we cannot allocate fewer elements than 774 // there are initializers. If we do, that's treated like an overflow. 775 if (adjustedCount.ult(minElements)) 776 hasAnyOverflow = true; 777 778 // Scale numElements by that. This might overflow, but we don't 779 // care because it only overflows if allocationSize does, too, and 780 // if that overflows then we shouldn't use this. 781 numElements = llvm::ConstantInt::get(CGF.SizeTy, 782 adjustedCount * arraySizeMultiplier); 783 784 // Compute the size before cookie, and track whether it overflowed. 785 bool overflow; 786 llvm::APInt allocationSize 787 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 788 hasAnyOverflow |= overflow; 789 790 // Add in the cookie, and check whether it's overflowed. 791 if (cookieSize != 0) { 792 // Save the current size without a cookie. This shouldn't be 793 // used if there was overflow. 794 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 795 796 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 797 hasAnyOverflow |= overflow; 798 } 799 800 // On overflow, produce a -1 so operator new will fail. 801 if (hasAnyOverflow) { 802 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 803 } else { 804 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 805 } 806 807 // Otherwise, we might need to use the overflow intrinsics. 808 } else { 809 // There are up to five conditions we need to test for: 810 // 1) if isSigned, we need to check whether numElements is negative; 811 // 2) if numElementsWidth > sizeWidth, we need to check whether 812 // numElements is larger than something representable in size_t; 813 // 3) if minElements > 0, we need to check whether numElements is smaller 814 // than that. 815 // 4) we need to compute 816 // sizeWithoutCookie := numElements * typeSizeMultiplier 817 // and check whether it overflows; and 818 // 5) if we need a cookie, we need to compute 819 // size := sizeWithoutCookie + cookieSize 820 // and check whether it overflows. 821 822 llvm::Value *hasOverflow = nullptr; 823 824 // If numElementsWidth > sizeWidth, then one way or another, we're 825 // going to have to do a comparison for (2), and this happens to 826 // take care of (1), too. 827 if (numElementsWidth > sizeWidth) { 828 llvm::APInt threshold(numElementsWidth, 1); 829 threshold <<= sizeWidth; 830 831 llvm::Value *thresholdV 832 = llvm::ConstantInt::get(numElementsType, threshold); 833 834 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 835 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 836 837 // Otherwise, if we're signed, we want to sext up to size_t. 838 } else if (isSigned) { 839 if (numElementsWidth < sizeWidth) 840 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 841 842 // If there's a non-1 type size multiplier, then we can do the 843 // signedness check at the same time as we do the multiply 844 // because a negative number times anything will cause an 845 // unsigned overflow. Otherwise, we have to do it here. But at least 846 // in this case, we can subsume the >= minElements check. 847 if (typeSizeMultiplier == 1) 848 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 849 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 850 851 // Otherwise, zext up to size_t if necessary. 852 } else if (numElementsWidth < sizeWidth) { 853 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 854 } 855 856 assert(numElements->getType() == CGF.SizeTy); 857 858 if (minElements) { 859 // Don't allow allocation of fewer elements than we have initializers. 860 if (!hasOverflow) { 861 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 862 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 863 } else if (numElementsWidth > sizeWidth) { 864 // The other existing overflow subsumes this check. 865 // We do an unsigned comparison, since any signed value < -1 is 866 // taken care of either above or below. 867 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 868 CGF.Builder.CreateICmpULT(numElements, 869 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 870 } 871 } 872 873 size = numElements; 874 875 // Multiply by the type size if necessary. This multiplier 876 // includes all the factors for nested arrays. 877 // 878 // This step also causes numElements to be scaled up by the 879 // nested-array factor if necessary. Overflow on this computation 880 // can be ignored because the result shouldn't be used if 881 // allocation fails. 882 if (typeSizeMultiplier != 1) { 883 llvm::Function *umul_with_overflow 884 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 885 886 llvm::Value *tsmV = 887 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 888 llvm::Value *result = 889 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 890 891 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 892 if (hasOverflow) 893 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 894 else 895 hasOverflow = overflowed; 896 897 size = CGF.Builder.CreateExtractValue(result, 0); 898 899 // Also scale up numElements by the array size multiplier. 900 if (arraySizeMultiplier != 1) { 901 // If the base element type size is 1, then we can re-use the 902 // multiply we just did. 903 if (typeSize.isOne()) { 904 assert(arraySizeMultiplier == typeSizeMultiplier); 905 numElements = size; 906 907 // Otherwise we need a separate multiply. 908 } else { 909 llvm::Value *asmV = 910 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 911 numElements = CGF.Builder.CreateMul(numElements, asmV); 912 } 913 } 914 } else { 915 // numElements doesn't need to be scaled. 916 assert(arraySizeMultiplier == 1); 917 } 918 919 // Add in the cookie size if necessary. 920 if (cookieSize != 0) { 921 sizeWithoutCookie = size; 922 923 llvm::Function *uadd_with_overflow 924 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 925 926 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 927 llvm::Value *result = 928 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 929 930 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 931 if (hasOverflow) 932 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 933 else 934 hasOverflow = overflowed; 935 936 size = CGF.Builder.CreateExtractValue(result, 0); 937 } 938 939 // If we had any possibility of dynamic overflow, make a select to 940 // overwrite 'size' with an all-ones value, which should cause 941 // operator new to throw. 942 if (hasOverflow) 943 size = CGF.Builder.CreateSelect(hasOverflow, 944 llvm::Constant::getAllOnesValue(CGF.SizeTy), 945 size); 946 } 947 948 if (cookieSize == 0) 949 sizeWithoutCookie = size; 950 else 951 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 952 953 return size; 954 } 955 956 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 957 QualType AllocType, Address NewPtr, 958 AggValueSlot::Overlap_t MayOverlap) { 959 // FIXME: Refactor with EmitExprAsInit. 960 switch (CGF.getEvaluationKind(AllocType)) { 961 case TEK_Scalar: 962 CGF.EmitScalarInit(Init, nullptr, 963 CGF.MakeAddrLValue(NewPtr, AllocType), false); 964 return; 965 case TEK_Complex: 966 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 967 /*isInit*/ true); 968 return; 969 case TEK_Aggregate: { 970 AggValueSlot Slot 971 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 972 AggValueSlot::IsDestructed, 973 AggValueSlot::DoesNotNeedGCBarriers, 974 AggValueSlot::IsNotAliased, 975 MayOverlap, AggValueSlot::IsNotZeroed, 976 AggValueSlot::IsSanitizerChecked); 977 CGF.EmitAggExpr(Init, Slot); 978 return; 979 } 980 } 981 llvm_unreachable("bad evaluation kind"); 982 } 983 984 void CodeGenFunction::EmitNewArrayInitializer( 985 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 986 Address BeginPtr, llvm::Value *NumElements, 987 llvm::Value *AllocSizeWithoutCookie) { 988 // If we have a type with trivial initialization and no initializer, 989 // there's nothing to do. 990 if (!E->hasInitializer()) 991 return; 992 993 Address CurPtr = BeginPtr; 994 995 unsigned InitListElements = 0; 996 997 const Expr *Init = E->getInitializer(); 998 Address EndOfInit = Address::invalid(); 999 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 1000 EHScopeStack::stable_iterator Cleanup; 1001 llvm::Instruction *CleanupDominator = nullptr; 1002 1003 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 1004 CharUnits ElementAlign = 1005 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 1006 1007 // Attempt to perform zero-initialization using memset. 1008 auto TryMemsetInitialization = [&]() -> bool { 1009 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 1010 // we can initialize with a memset to -1. 1011 if (!CGM.getTypes().isZeroInitializable(ElementType)) 1012 return false; 1013 1014 // Optimization: since zero initialization will just set the memory 1015 // to all zeroes, generate a single memset to do it in one shot. 1016 1017 // Subtract out the size of any elements we've already initialized. 1018 auto *RemainingSize = AllocSizeWithoutCookie; 1019 if (InitListElements) { 1020 // We know this can't overflow; we check this when doing the allocation. 1021 auto *InitializedSize = llvm::ConstantInt::get( 1022 RemainingSize->getType(), 1023 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1024 InitListElements); 1025 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1026 } 1027 1028 // Create the memset. 1029 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1030 return true; 1031 }; 1032 1033 // If the initializer is an initializer list, first do the explicit elements. 1034 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1035 // Initializing from a (braced) string literal is a special case; the init 1036 // list element does not initialize a (single) array element. 1037 if (ILE->isStringLiteralInit()) { 1038 // Initialize the initial portion of length equal to that of the string 1039 // literal. The allocation must be for at least this much; we emitted a 1040 // check for that earlier. 1041 AggValueSlot Slot = 1042 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1043 AggValueSlot::IsDestructed, 1044 AggValueSlot::DoesNotNeedGCBarriers, 1045 AggValueSlot::IsNotAliased, 1046 AggValueSlot::DoesNotOverlap, 1047 AggValueSlot::IsNotZeroed, 1048 AggValueSlot::IsSanitizerChecked); 1049 EmitAggExpr(ILE->getInit(0), Slot); 1050 1051 // Move past these elements. 1052 InitListElements = 1053 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1054 ->getSize().getZExtValue(); 1055 CurPtr = Builder.CreateConstInBoundsGEP( 1056 CurPtr, InitListElements, "string.init.end"); 1057 1058 // Zero out the rest, if any remain. 1059 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1060 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1061 bool OK = TryMemsetInitialization(); 1062 (void)OK; 1063 assert(OK && "couldn't memset character type?"); 1064 } 1065 return; 1066 } 1067 1068 InitListElements = ILE->getNumInits(); 1069 1070 // If this is a multi-dimensional array new, we will initialize multiple 1071 // elements with each init list element. 1072 QualType AllocType = E->getAllocatedType(); 1073 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1074 AllocType->getAsArrayTypeUnsafe())) { 1075 ElementTy = ConvertTypeForMem(AllocType); 1076 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1077 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1078 } 1079 1080 // Enter a partial-destruction Cleanup if necessary. 1081 if (needsEHCleanup(DtorKind)) { 1082 // In principle we could tell the Cleanup where we are more 1083 // directly, but the control flow can get so varied here that it 1084 // would actually be quite complex. Therefore we go through an 1085 // alloca. 1086 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1087 "array.init.end"); 1088 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1089 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1090 ElementType, ElementAlign, 1091 getDestroyer(DtorKind)); 1092 Cleanup = EHStack.stable_begin(); 1093 } 1094 1095 CharUnits StartAlign = CurPtr.getAlignment(); 1096 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1097 // Tell the cleanup that it needs to destroy up to this 1098 // element. TODO: some of these stores can be trivially 1099 // observed to be unnecessary. 1100 if (EndOfInit.isValid()) { 1101 auto FinishedPtr = 1102 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1103 Builder.CreateStore(FinishedPtr, EndOfInit); 1104 } 1105 // FIXME: If the last initializer is an incomplete initializer list for 1106 // an array, and we have an array filler, we can fold together the two 1107 // initialization loops. 1108 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1109 ILE->getInit(i)->getType(), CurPtr, 1110 AggValueSlot::DoesNotOverlap); 1111 CurPtr = Address(Builder.CreateInBoundsGEP( 1112 CurPtr.getElementType(), CurPtr.getPointer(), 1113 Builder.getSize(1), "array.exp.next"), 1114 CurPtr.getElementType(), 1115 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1116 } 1117 1118 // The remaining elements are filled with the array filler expression. 1119 Init = ILE->getArrayFiller(); 1120 1121 // Extract the initializer for the individual array elements by pulling 1122 // out the array filler from all the nested initializer lists. This avoids 1123 // generating a nested loop for the initialization. 1124 while (Init && Init->getType()->isConstantArrayType()) { 1125 auto *SubILE = dyn_cast<InitListExpr>(Init); 1126 if (!SubILE) 1127 break; 1128 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1129 Init = SubILE->getArrayFiller(); 1130 } 1131 1132 // Switch back to initializing one base element at a time. 1133 CurPtr = Builder.CreateElementBitCast(CurPtr, BeginPtr.getElementType()); 1134 } 1135 1136 // If all elements have already been initialized, skip any further 1137 // initialization. 1138 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1139 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1140 // If there was a Cleanup, deactivate it. 1141 if (CleanupDominator) 1142 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1143 return; 1144 } 1145 1146 assert(Init && "have trailing elements to initialize but no initializer"); 1147 1148 // If this is a constructor call, try to optimize it out, and failing that 1149 // emit a single loop to initialize all remaining elements. 1150 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1151 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1152 if (Ctor->isTrivial()) { 1153 // If new expression did not specify value-initialization, then there 1154 // is no initialization. 1155 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1156 return; 1157 1158 if (TryMemsetInitialization()) 1159 return; 1160 } 1161 1162 // Store the new Cleanup position for irregular Cleanups. 1163 // 1164 // FIXME: Share this cleanup with the constructor call emission rather than 1165 // having it create a cleanup of its own. 1166 if (EndOfInit.isValid()) 1167 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1168 1169 // Emit a constructor call loop to initialize the remaining elements. 1170 if (InitListElements) 1171 NumElements = Builder.CreateSub( 1172 NumElements, 1173 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1174 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1175 /*NewPointerIsChecked*/true, 1176 CCE->requiresZeroInitialization()); 1177 return; 1178 } 1179 1180 // If this is value-initialization, we can usually use memset. 1181 ImplicitValueInitExpr IVIE(ElementType); 1182 if (isa<ImplicitValueInitExpr>(Init)) { 1183 if (TryMemsetInitialization()) 1184 return; 1185 1186 // Switch to an ImplicitValueInitExpr for the element type. This handles 1187 // only one case: multidimensional array new of pointers to members. In 1188 // all other cases, we already have an initializer for the array element. 1189 Init = &IVIE; 1190 } 1191 1192 // At this point we should have found an initializer for the individual 1193 // elements of the array. 1194 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1195 "got wrong type of element to initialize"); 1196 1197 // If we have an empty initializer list, we can usually use memset. 1198 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1199 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1200 return; 1201 1202 // If we have a struct whose every field is value-initialized, we can 1203 // usually use memset. 1204 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1205 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1206 if (RType->getDecl()->isStruct()) { 1207 unsigned NumElements = 0; 1208 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1209 NumElements = CXXRD->getNumBases(); 1210 for (auto *Field : RType->getDecl()->fields()) 1211 if (!Field->isUnnamedBitfield()) 1212 ++NumElements; 1213 // FIXME: Recurse into nested InitListExprs. 1214 if (ILE->getNumInits() == NumElements) 1215 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1216 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1217 --NumElements; 1218 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1219 return; 1220 } 1221 } 1222 } 1223 1224 // Create the loop blocks. 1225 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1226 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1227 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1228 1229 // Find the end of the array, hoisted out of the loop. 1230 llvm::Value *EndPtr = 1231 Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(), 1232 NumElements, "array.end"); 1233 1234 // If the number of elements isn't constant, we have to now check if there is 1235 // anything left to initialize. 1236 if (!ConstNum) { 1237 llvm::Value *IsEmpty = 1238 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1239 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1240 } 1241 1242 // Enter the loop. 1243 EmitBlock(LoopBB); 1244 1245 // Set up the current-element phi. 1246 llvm::PHINode *CurPtrPhi = 1247 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1248 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1249 1250 CurPtr = Address(CurPtrPhi, ElementAlign); 1251 1252 // Store the new Cleanup position for irregular Cleanups. 1253 if (EndOfInit.isValid()) 1254 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1255 1256 // Enter a partial-destruction Cleanup if necessary. 1257 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1258 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1259 ElementType, ElementAlign, 1260 getDestroyer(DtorKind)); 1261 Cleanup = EHStack.stable_begin(); 1262 CleanupDominator = Builder.CreateUnreachable(); 1263 } 1264 1265 // Emit the initializer into this element. 1266 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1267 AggValueSlot::DoesNotOverlap); 1268 1269 // Leave the Cleanup if we entered one. 1270 if (CleanupDominator) { 1271 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1272 CleanupDominator->eraseFromParent(); 1273 } 1274 1275 // Advance to the next element by adjusting the pointer type as necessary. 1276 llvm::Value *NextPtr = 1277 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1278 "array.next"); 1279 1280 // Check whether we've gotten to the end of the array and, if so, 1281 // exit the loop. 1282 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1283 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1284 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1285 1286 EmitBlock(ContBB); 1287 } 1288 1289 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1290 QualType ElementType, llvm::Type *ElementTy, 1291 Address NewPtr, llvm::Value *NumElements, 1292 llvm::Value *AllocSizeWithoutCookie) { 1293 ApplyDebugLocation DL(CGF, E); 1294 if (E->isArray()) 1295 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1296 AllocSizeWithoutCookie); 1297 else if (const Expr *Init = E->getInitializer()) 1298 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1299 AggValueSlot::DoesNotOverlap); 1300 } 1301 1302 /// Emit a call to an operator new or operator delete function, as implicitly 1303 /// created by new-expressions and delete-expressions. 1304 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1305 const FunctionDecl *CalleeDecl, 1306 const FunctionProtoType *CalleeType, 1307 const CallArgList &Args) { 1308 llvm::CallBase *CallOrInvoke; 1309 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1310 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1311 RValue RV = 1312 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1313 Args, CalleeType, /*ChainCall=*/false), 1314 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1315 1316 /// C++1y [expr.new]p10: 1317 /// [In a new-expression,] an implementation is allowed to omit a call 1318 /// to a replaceable global allocation function. 1319 /// 1320 /// We model such elidable calls with the 'builtin' attribute. 1321 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1322 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1323 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1324 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin); 1325 } 1326 1327 return RV; 1328 } 1329 1330 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1331 const CallExpr *TheCall, 1332 bool IsDelete) { 1333 CallArgList Args; 1334 EmitCallArgs(Args, Type, TheCall->arguments()); 1335 // Find the allocation or deallocation function that we're calling. 1336 ASTContext &Ctx = getContext(); 1337 DeclarationName Name = Ctx.DeclarationNames 1338 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1339 1340 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1341 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1342 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1343 return EmitNewDeleteCall(*this, FD, Type, Args); 1344 llvm_unreachable("predeclared global operator new/delete is missing"); 1345 } 1346 1347 namespace { 1348 /// The parameters to pass to a usual operator delete. 1349 struct UsualDeleteParams { 1350 bool DestroyingDelete = false; 1351 bool Size = false; 1352 bool Alignment = false; 1353 }; 1354 } 1355 1356 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1357 UsualDeleteParams Params; 1358 1359 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1360 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1361 1362 // The first argument is always a void*. 1363 ++AI; 1364 1365 // The next parameter may be a std::destroying_delete_t. 1366 if (FD->isDestroyingOperatorDelete()) { 1367 Params.DestroyingDelete = true; 1368 assert(AI != AE); 1369 ++AI; 1370 } 1371 1372 // Figure out what other parameters we should be implicitly passing. 1373 if (AI != AE && (*AI)->isIntegerType()) { 1374 Params.Size = true; 1375 ++AI; 1376 } 1377 1378 if (AI != AE && (*AI)->isAlignValT()) { 1379 Params.Alignment = true; 1380 ++AI; 1381 } 1382 1383 assert(AI == AE && "unexpected usual deallocation function parameter"); 1384 return Params; 1385 } 1386 1387 namespace { 1388 /// A cleanup to call the given 'operator delete' function upon abnormal 1389 /// exit from a new expression. Templated on a traits type that deals with 1390 /// ensuring that the arguments dominate the cleanup if necessary. 1391 template<typename Traits> 1392 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1393 /// Type used to hold llvm::Value*s. 1394 typedef typename Traits::ValueTy ValueTy; 1395 /// Type used to hold RValues. 1396 typedef typename Traits::RValueTy RValueTy; 1397 struct PlacementArg { 1398 RValueTy ArgValue; 1399 QualType ArgType; 1400 }; 1401 1402 unsigned NumPlacementArgs : 31; 1403 unsigned PassAlignmentToPlacementDelete : 1; 1404 const FunctionDecl *OperatorDelete; 1405 ValueTy Ptr; 1406 ValueTy AllocSize; 1407 CharUnits AllocAlign; 1408 1409 PlacementArg *getPlacementArgs() { 1410 return reinterpret_cast<PlacementArg *>(this + 1); 1411 } 1412 1413 public: 1414 static size_t getExtraSize(size_t NumPlacementArgs) { 1415 return NumPlacementArgs * sizeof(PlacementArg); 1416 } 1417 1418 CallDeleteDuringNew(size_t NumPlacementArgs, 1419 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1420 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1421 CharUnits AllocAlign) 1422 : NumPlacementArgs(NumPlacementArgs), 1423 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1424 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1425 AllocAlign(AllocAlign) {} 1426 1427 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1428 assert(I < NumPlacementArgs && "index out of range"); 1429 getPlacementArgs()[I] = {Arg, Type}; 1430 } 1431 1432 void Emit(CodeGenFunction &CGF, Flags flags) override { 1433 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); 1434 CallArgList DeleteArgs; 1435 1436 // The first argument is always a void* (or C* for a destroying operator 1437 // delete for class type C). 1438 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1439 1440 // Figure out what other parameters we should be implicitly passing. 1441 UsualDeleteParams Params; 1442 if (NumPlacementArgs) { 1443 // A placement deallocation function is implicitly passed an alignment 1444 // if the placement allocation function was, but is never passed a size. 1445 Params.Alignment = PassAlignmentToPlacementDelete; 1446 } else { 1447 // For a non-placement new-expression, 'operator delete' can take a 1448 // size and/or an alignment if it has the right parameters. 1449 Params = getUsualDeleteParams(OperatorDelete); 1450 } 1451 1452 assert(!Params.DestroyingDelete && 1453 "should not call destroying delete in a new-expression"); 1454 1455 // The second argument can be a std::size_t (for non-placement delete). 1456 if (Params.Size) 1457 DeleteArgs.add(Traits::get(CGF, AllocSize), 1458 CGF.getContext().getSizeType()); 1459 1460 // The next (second or third) argument can be a std::align_val_t, which 1461 // is an enum whose underlying type is std::size_t. 1462 // FIXME: Use the right type as the parameter type. Note that in a call 1463 // to operator delete(size_t, ...), we may not have it available. 1464 if (Params.Alignment) 1465 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1466 CGF.SizeTy, AllocAlign.getQuantity())), 1467 CGF.getContext().getSizeType()); 1468 1469 // Pass the rest of the arguments, which must match exactly. 1470 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1471 auto Arg = getPlacementArgs()[I]; 1472 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1473 } 1474 1475 // Call 'operator delete'. 1476 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1477 } 1478 }; 1479 } 1480 1481 /// Enter a cleanup to call 'operator delete' if the initializer in a 1482 /// new-expression throws. 1483 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1484 const CXXNewExpr *E, 1485 Address NewPtr, 1486 llvm::Value *AllocSize, 1487 CharUnits AllocAlign, 1488 const CallArgList &NewArgs) { 1489 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1490 1491 // If we're not inside a conditional branch, then the cleanup will 1492 // dominate and we can do the easier (and more efficient) thing. 1493 if (!CGF.isInConditionalBranch()) { 1494 struct DirectCleanupTraits { 1495 typedef llvm::Value *ValueTy; 1496 typedef RValue RValueTy; 1497 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1498 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1499 }; 1500 1501 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1502 1503 DirectCleanup *Cleanup = CGF.EHStack 1504 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1505 E->getNumPlacementArgs(), 1506 E->getOperatorDelete(), 1507 NewPtr.getPointer(), 1508 AllocSize, 1509 E->passAlignment(), 1510 AllocAlign); 1511 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1512 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1513 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1514 } 1515 1516 return; 1517 } 1518 1519 // Otherwise, we need to save all this stuff. 1520 DominatingValue<RValue>::saved_type SavedNewPtr = 1521 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1522 DominatingValue<RValue>::saved_type SavedAllocSize = 1523 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1524 1525 struct ConditionalCleanupTraits { 1526 typedef DominatingValue<RValue>::saved_type ValueTy; 1527 typedef DominatingValue<RValue>::saved_type RValueTy; 1528 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1529 return V.restore(CGF); 1530 } 1531 }; 1532 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1533 1534 ConditionalCleanup *Cleanup = CGF.EHStack 1535 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1536 E->getNumPlacementArgs(), 1537 E->getOperatorDelete(), 1538 SavedNewPtr, 1539 SavedAllocSize, 1540 E->passAlignment(), 1541 AllocAlign); 1542 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1543 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1544 Cleanup->setPlacementArg( 1545 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1546 } 1547 1548 CGF.initFullExprCleanup(); 1549 } 1550 1551 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1552 // The element type being allocated. 1553 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1554 1555 // 1. Build a call to the allocation function. 1556 FunctionDecl *allocator = E->getOperatorNew(); 1557 1558 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1559 unsigned minElements = 0; 1560 if (E->isArray() && E->hasInitializer()) { 1561 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1562 if (ILE && ILE->isStringLiteralInit()) 1563 minElements = 1564 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1565 ->getSize().getZExtValue(); 1566 else if (ILE) 1567 minElements = ILE->getNumInits(); 1568 } 1569 1570 llvm::Value *numElements = nullptr; 1571 llvm::Value *allocSizeWithoutCookie = nullptr; 1572 llvm::Value *allocSize = 1573 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1574 allocSizeWithoutCookie); 1575 CharUnits allocAlign = getContext().getPreferredTypeAlignInChars(allocType); 1576 1577 // Emit the allocation call. If the allocator is a global placement 1578 // operator, just "inline" it directly. 1579 Address allocation = Address::invalid(); 1580 CallArgList allocatorArgs; 1581 if (allocator->isReservedGlobalPlacementOperator()) { 1582 assert(E->getNumPlacementArgs() == 1); 1583 const Expr *arg = *E->placement_arguments().begin(); 1584 1585 LValueBaseInfo BaseInfo; 1586 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1587 1588 // The pointer expression will, in many cases, be an opaque void*. 1589 // In these cases, discard the computed alignment and use the 1590 // formal alignment of the allocated type. 1591 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1592 allocation = allocation.withAlignment(allocAlign); 1593 1594 // Set up allocatorArgs for the call to operator delete if it's not 1595 // the reserved global operator. 1596 if (E->getOperatorDelete() && 1597 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1598 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1599 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1600 } 1601 1602 } else { 1603 const FunctionProtoType *allocatorType = 1604 allocator->getType()->castAs<FunctionProtoType>(); 1605 unsigned ParamsToSkip = 0; 1606 1607 // The allocation size is the first argument. 1608 QualType sizeType = getContext().getSizeType(); 1609 allocatorArgs.add(RValue::get(allocSize), sizeType); 1610 ++ParamsToSkip; 1611 1612 if (allocSize != allocSizeWithoutCookie) { 1613 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1614 allocAlign = std::max(allocAlign, cookieAlign); 1615 } 1616 1617 // The allocation alignment may be passed as the second argument. 1618 if (E->passAlignment()) { 1619 QualType AlignValT = sizeType; 1620 if (allocatorType->getNumParams() > 1) { 1621 AlignValT = allocatorType->getParamType(1); 1622 assert(getContext().hasSameUnqualifiedType( 1623 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1624 sizeType) && 1625 "wrong type for alignment parameter"); 1626 ++ParamsToSkip; 1627 } else { 1628 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1629 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1630 } 1631 allocatorArgs.add( 1632 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1633 AlignValT); 1634 } 1635 1636 // FIXME: Why do we not pass a CalleeDecl here? 1637 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1638 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1639 1640 RValue RV = 1641 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1642 1643 // Set !heapallocsite metadata on the call to operator new. 1644 if (getDebugInfo()) 1645 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal())) 1646 getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType, 1647 E->getExprLoc()); 1648 1649 // If this was a call to a global replaceable allocation function that does 1650 // not take an alignment argument, the allocator is known to produce 1651 // storage that's suitably aligned for any object that fits, up to a known 1652 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1653 CharUnits allocationAlign = allocAlign; 1654 if (!E->passAlignment() && 1655 allocator->isReplaceableGlobalAllocationFunction()) { 1656 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1657 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1658 allocationAlign = std::max( 1659 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1660 } 1661 1662 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign); 1663 } 1664 1665 // Emit a null check on the allocation result if the allocation 1666 // function is allowed to return null (because it has a non-throwing 1667 // exception spec or is the reserved placement new) and we have an 1668 // interesting initializer will be running sanitizers on the initialization. 1669 bool nullCheck = E->shouldNullCheckAllocation() && 1670 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1671 sanitizePerformTypeCheck()); 1672 1673 llvm::BasicBlock *nullCheckBB = nullptr; 1674 llvm::BasicBlock *contBB = nullptr; 1675 1676 // The null-check means that the initializer is conditionally 1677 // evaluated. 1678 ConditionalEvaluation conditional(*this); 1679 1680 if (nullCheck) { 1681 conditional.begin(*this); 1682 1683 nullCheckBB = Builder.GetInsertBlock(); 1684 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1685 contBB = createBasicBlock("new.cont"); 1686 1687 llvm::Value *isNull = 1688 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1689 Builder.CreateCondBr(isNull, contBB, notNullBB); 1690 EmitBlock(notNullBB); 1691 } 1692 1693 // If there's an operator delete, enter a cleanup to call it if an 1694 // exception is thrown. 1695 EHScopeStack::stable_iterator operatorDeleteCleanup; 1696 llvm::Instruction *cleanupDominator = nullptr; 1697 if (E->getOperatorDelete() && 1698 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1699 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1700 allocatorArgs); 1701 operatorDeleteCleanup = EHStack.stable_begin(); 1702 cleanupDominator = Builder.CreateUnreachable(); 1703 } 1704 1705 assert((allocSize == allocSizeWithoutCookie) == 1706 CalculateCookiePadding(*this, E).isZero()); 1707 if (allocSize != allocSizeWithoutCookie) { 1708 assert(E->isArray()); 1709 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1710 numElements, 1711 E, allocType); 1712 } 1713 1714 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1715 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1716 1717 // Passing pointer through launder.invariant.group to avoid propagation of 1718 // vptrs information which may be included in previous type. 1719 // To not break LTO with different optimizations levels, we do it regardless 1720 // of optimization level. 1721 if (CGM.getCodeGenOpts().StrictVTablePointers && 1722 allocator->isReservedGlobalPlacementOperator()) 1723 result = Builder.CreateLaunderInvariantGroup(result); 1724 1725 // Emit sanitizer checks for pointer value now, so that in the case of an 1726 // array it was checked only once and not at each constructor call. We may 1727 // have already checked that the pointer is non-null. 1728 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1729 // we'll null check the wrong pointer here. 1730 SanitizerSet SkippedChecks; 1731 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1732 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1733 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1734 result.getPointer(), allocType, result.getAlignment(), 1735 SkippedChecks, numElements); 1736 1737 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1738 allocSizeWithoutCookie); 1739 if (E->isArray()) { 1740 // NewPtr is a pointer to the base element type. If we're 1741 // allocating an array of arrays, we'll need to cast back to the 1742 // array pointer type. 1743 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1744 if (result.getType() != resultType) 1745 result = Builder.CreateBitCast(result, resultType); 1746 } 1747 1748 // Deactivate the 'operator delete' cleanup if we finished 1749 // initialization. 1750 if (operatorDeleteCleanup.isValid()) { 1751 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1752 cleanupDominator->eraseFromParent(); 1753 } 1754 1755 llvm::Value *resultPtr = result.getPointer(); 1756 if (nullCheck) { 1757 conditional.end(*this); 1758 1759 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1760 EmitBlock(contBB); 1761 1762 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1763 PHI->addIncoming(resultPtr, notNullBB); 1764 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1765 nullCheckBB); 1766 1767 resultPtr = PHI; 1768 } 1769 1770 return resultPtr; 1771 } 1772 1773 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1774 llvm::Value *Ptr, QualType DeleteTy, 1775 llvm::Value *NumElements, 1776 CharUnits CookieSize) { 1777 assert((!NumElements && CookieSize.isZero()) || 1778 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1779 1780 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); 1781 CallArgList DeleteArgs; 1782 1783 auto Params = getUsualDeleteParams(DeleteFD); 1784 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1785 1786 // Pass the pointer itself. 1787 QualType ArgTy = *ParamTypeIt++; 1788 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1789 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1790 1791 // Pass the std::destroying_delete tag if present. 1792 llvm::AllocaInst *DestroyingDeleteTag = nullptr; 1793 if (Params.DestroyingDelete) { 1794 QualType DDTag = *ParamTypeIt++; 1795 llvm::Type *Ty = getTypes().ConvertType(DDTag); 1796 CharUnits Align = CGM.getNaturalTypeAlignment(DDTag); 1797 DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag"); 1798 DestroyingDeleteTag->setAlignment(Align.getAsAlign()); 1799 DeleteArgs.add(RValue::getAggregate(Address(DestroyingDeleteTag, Align)), DDTag); 1800 } 1801 1802 // Pass the size if the delete function has a size_t parameter. 1803 if (Params.Size) { 1804 QualType SizeType = *ParamTypeIt++; 1805 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1806 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1807 DeleteTypeSize.getQuantity()); 1808 1809 // For array new, multiply by the number of elements. 1810 if (NumElements) 1811 Size = Builder.CreateMul(Size, NumElements); 1812 1813 // If there is a cookie, add the cookie size. 1814 if (!CookieSize.isZero()) 1815 Size = Builder.CreateAdd( 1816 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1817 1818 DeleteArgs.add(RValue::get(Size), SizeType); 1819 } 1820 1821 // Pass the alignment if the delete function has an align_val_t parameter. 1822 if (Params.Alignment) { 1823 QualType AlignValType = *ParamTypeIt++; 1824 CharUnits DeleteTypeAlign = 1825 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown( 1826 DeleteTy, true /* NeedsPreferredAlignment */)); 1827 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1828 DeleteTypeAlign.getQuantity()); 1829 DeleteArgs.add(RValue::get(Align), AlignValType); 1830 } 1831 1832 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1833 "unknown parameter to usual delete function"); 1834 1835 // Emit the call to delete. 1836 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1837 1838 // If call argument lowering didn't use the destroying_delete_t alloca, 1839 // remove it again. 1840 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty()) 1841 DestroyingDeleteTag->eraseFromParent(); 1842 } 1843 1844 namespace { 1845 /// Calls the given 'operator delete' on a single object. 1846 struct CallObjectDelete final : EHScopeStack::Cleanup { 1847 llvm::Value *Ptr; 1848 const FunctionDecl *OperatorDelete; 1849 QualType ElementType; 1850 1851 CallObjectDelete(llvm::Value *Ptr, 1852 const FunctionDecl *OperatorDelete, 1853 QualType ElementType) 1854 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1855 1856 void Emit(CodeGenFunction &CGF, Flags flags) override { 1857 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1858 } 1859 }; 1860 } 1861 1862 void 1863 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1864 llvm::Value *CompletePtr, 1865 QualType ElementType) { 1866 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1867 OperatorDelete, ElementType); 1868 } 1869 1870 /// Emit the code for deleting a single object with a destroying operator 1871 /// delete. If the element type has a non-virtual destructor, Ptr has already 1872 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1873 /// Ptr points to an object of the static type. 1874 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1875 const CXXDeleteExpr *DE, Address Ptr, 1876 QualType ElementType) { 1877 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1878 if (Dtor && Dtor->isVirtual()) 1879 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1880 Dtor); 1881 else 1882 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1883 } 1884 1885 /// Emit the code for deleting a single object. 1886 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false 1887 /// if not. 1888 static bool EmitObjectDelete(CodeGenFunction &CGF, 1889 const CXXDeleteExpr *DE, 1890 Address Ptr, 1891 QualType ElementType, 1892 llvm::BasicBlock *UnconditionalDeleteBlock) { 1893 // C++11 [expr.delete]p3: 1894 // If the static type of the object to be deleted is different from its 1895 // dynamic type, the static type shall be a base class of the dynamic type 1896 // of the object to be deleted and the static type shall have a virtual 1897 // destructor or the behavior is undefined. 1898 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1899 DE->getExprLoc(), Ptr.getPointer(), 1900 ElementType); 1901 1902 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1903 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1904 1905 // Find the destructor for the type, if applicable. If the 1906 // destructor is virtual, we'll just emit the vcall and return. 1907 const CXXDestructorDecl *Dtor = nullptr; 1908 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1909 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1910 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1911 Dtor = RD->getDestructor(); 1912 1913 if (Dtor->isVirtual()) { 1914 bool UseVirtualCall = true; 1915 const Expr *Base = DE->getArgument(); 1916 if (auto *DevirtualizedDtor = 1917 dyn_cast_or_null<const CXXDestructorDecl>( 1918 Dtor->getDevirtualizedMethod( 1919 Base, CGF.CGM.getLangOpts().AppleKext))) { 1920 UseVirtualCall = false; 1921 const CXXRecordDecl *DevirtualizedClass = 1922 DevirtualizedDtor->getParent(); 1923 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1924 // Devirtualized to the class of the base type (the type of the 1925 // whole expression). 1926 Dtor = DevirtualizedDtor; 1927 } else { 1928 // Devirtualized to some other type. Would need to cast the this 1929 // pointer to that type but we don't have support for that yet, so 1930 // do a virtual call. FIXME: handle the case where it is 1931 // devirtualized to the derived type (the type of the inner 1932 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1933 UseVirtualCall = true; 1934 } 1935 } 1936 if (UseVirtualCall) { 1937 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1938 Dtor); 1939 return false; 1940 } 1941 } 1942 } 1943 } 1944 1945 // Make sure that we call delete even if the dtor throws. 1946 // This doesn't have to a conditional cleanup because we're going 1947 // to pop it off in a second. 1948 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1949 Ptr.getPointer(), 1950 OperatorDelete, ElementType); 1951 1952 if (Dtor) 1953 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1954 /*ForVirtualBase=*/false, 1955 /*Delegating=*/false, 1956 Ptr, ElementType); 1957 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1958 switch (Lifetime) { 1959 case Qualifiers::OCL_None: 1960 case Qualifiers::OCL_ExplicitNone: 1961 case Qualifiers::OCL_Autoreleasing: 1962 break; 1963 1964 case Qualifiers::OCL_Strong: 1965 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1966 break; 1967 1968 case Qualifiers::OCL_Weak: 1969 CGF.EmitARCDestroyWeak(Ptr); 1970 break; 1971 } 1972 } 1973 1974 // When optimizing for size, call 'operator delete' unconditionally. 1975 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) { 1976 CGF.EmitBlock(UnconditionalDeleteBlock); 1977 CGF.PopCleanupBlock(); 1978 return true; 1979 } 1980 1981 CGF.PopCleanupBlock(); 1982 return false; 1983 } 1984 1985 namespace { 1986 /// Calls the given 'operator delete' on an array of objects. 1987 struct CallArrayDelete final : EHScopeStack::Cleanup { 1988 llvm::Value *Ptr; 1989 const FunctionDecl *OperatorDelete; 1990 llvm::Value *NumElements; 1991 QualType ElementType; 1992 CharUnits CookieSize; 1993 1994 CallArrayDelete(llvm::Value *Ptr, 1995 const FunctionDecl *OperatorDelete, 1996 llvm::Value *NumElements, 1997 QualType ElementType, 1998 CharUnits CookieSize) 1999 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 2000 ElementType(ElementType), CookieSize(CookieSize) {} 2001 2002 void Emit(CodeGenFunction &CGF, Flags flags) override { 2003 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 2004 CookieSize); 2005 } 2006 }; 2007 } 2008 2009 /// Emit the code for deleting an array of objects. 2010 static void EmitArrayDelete(CodeGenFunction &CGF, 2011 const CXXDeleteExpr *E, 2012 Address deletedPtr, 2013 QualType elementType) { 2014 llvm::Value *numElements = nullptr; 2015 llvm::Value *allocatedPtr = nullptr; 2016 CharUnits cookieSize; 2017 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 2018 numElements, allocatedPtr, cookieSize); 2019 2020 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 2021 2022 // Make sure that we call delete even if one of the dtors throws. 2023 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 2024 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 2025 allocatedPtr, operatorDelete, 2026 numElements, elementType, 2027 cookieSize); 2028 2029 // Destroy the elements. 2030 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 2031 assert(numElements && "no element count for a type with a destructor!"); 2032 2033 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2034 CharUnits elementAlign = 2035 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 2036 2037 llvm::Value *arrayBegin = deletedPtr.getPointer(); 2038 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP( 2039 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end"); 2040 2041 // Note that it is legal to allocate a zero-length array, and we 2042 // can never fold the check away because the length should always 2043 // come from a cookie. 2044 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 2045 CGF.getDestroyer(dtorKind), 2046 /*checkZeroLength*/ true, 2047 CGF.needsEHCleanup(dtorKind)); 2048 } 2049 2050 // Pop the cleanup block. 2051 CGF.PopCleanupBlock(); 2052 } 2053 2054 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 2055 const Expr *Arg = E->getArgument(); 2056 Address Ptr = EmitPointerWithAlignment(Arg); 2057 2058 // Null check the pointer. 2059 // 2060 // We could avoid this null check if we can determine that the object 2061 // destruction is trivial and doesn't require an array cookie; we can 2062 // unconditionally perform the operator delete call in that case. For now, we 2063 // assume that deleted pointers are null rarely enough that it's better to 2064 // keep the branch. This might be worth revisiting for a -O0 code size win. 2065 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2066 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2067 2068 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2069 2070 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2071 EmitBlock(DeleteNotNull); 2072 2073 QualType DeleteTy = E->getDestroyedType(); 2074 2075 // A destroying operator delete overrides the entire operation of the 2076 // delete expression. 2077 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2078 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2079 EmitBlock(DeleteEnd); 2080 return; 2081 } 2082 2083 // We might be deleting a pointer to array. If so, GEP down to the 2084 // first non-array element. 2085 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2086 if (DeleteTy->isConstantArrayType()) { 2087 llvm::Value *Zero = Builder.getInt32(0); 2088 SmallVector<llvm::Value*,8> GEP; 2089 2090 GEP.push_back(Zero); // point at the outermost array 2091 2092 // For each layer of array type we're pointing at: 2093 while (const ConstantArrayType *Arr 2094 = getContext().getAsConstantArrayType(DeleteTy)) { 2095 // 1. Unpeel the array type. 2096 DeleteTy = Arr->getElementType(); 2097 2098 // 2. GEP to the first element of the array. 2099 GEP.push_back(Zero); 2100 } 2101 2102 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(), 2103 Ptr.getPointer(), GEP, "del.first"), 2104 Ptr.getAlignment()); 2105 } 2106 2107 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2108 2109 if (E->isArrayForm()) { 2110 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2111 EmitBlock(DeleteEnd); 2112 } else { 2113 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd)) 2114 EmitBlock(DeleteEnd); 2115 } 2116 } 2117 2118 static bool isGLValueFromPointerDeref(const Expr *E) { 2119 E = E->IgnoreParens(); 2120 2121 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2122 if (!CE->getSubExpr()->isGLValue()) 2123 return false; 2124 return isGLValueFromPointerDeref(CE->getSubExpr()); 2125 } 2126 2127 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2128 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2129 2130 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2131 if (BO->getOpcode() == BO_Comma) 2132 return isGLValueFromPointerDeref(BO->getRHS()); 2133 2134 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2135 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2136 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2137 2138 // C++11 [expr.sub]p1: 2139 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2140 if (isa<ArraySubscriptExpr>(E)) 2141 return true; 2142 2143 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2144 if (UO->getOpcode() == UO_Deref) 2145 return true; 2146 2147 return false; 2148 } 2149 2150 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2151 llvm::Type *StdTypeInfoPtrTy) { 2152 // Get the vtable pointer. 2153 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF); 2154 2155 QualType SrcRecordTy = E->getType(); 2156 2157 // C++ [class.cdtor]p4: 2158 // If the operand of typeid refers to the object under construction or 2159 // destruction and the static type of the operand is neither the constructor 2160 // or destructor’s class nor one of its bases, the behavior is undefined. 2161 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2162 ThisPtr.getPointer(), SrcRecordTy); 2163 2164 // C++ [expr.typeid]p2: 2165 // If the glvalue expression is obtained by applying the unary * operator to 2166 // a pointer and the pointer is a null pointer value, the typeid expression 2167 // throws the std::bad_typeid exception. 2168 // 2169 // However, this paragraph's intent is not clear. We choose a very generous 2170 // interpretation which implores us to consider comma operators, conditional 2171 // operators, parentheses and other such constructs. 2172 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2173 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2174 llvm::BasicBlock *BadTypeidBlock = 2175 CGF.createBasicBlock("typeid.bad_typeid"); 2176 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2177 2178 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2179 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2180 2181 CGF.EmitBlock(BadTypeidBlock); 2182 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2183 CGF.EmitBlock(EndBlock); 2184 } 2185 2186 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2187 StdTypeInfoPtrTy); 2188 } 2189 2190 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2191 llvm::Type *StdTypeInfoPtrTy = 2192 ConvertType(E->getType())->getPointerTo(); 2193 2194 if (E->isTypeOperand()) { 2195 llvm::Constant *TypeInfo = 2196 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2197 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2198 } 2199 2200 // C++ [expr.typeid]p2: 2201 // When typeid is applied to a glvalue expression whose type is a 2202 // polymorphic class type, the result refers to a std::type_info object 2203 // representing the type of the most derived object (that is, the dynamic 2204 // type) to which the glvalue refers. 2205 // If the operand is already most derived object, no need to look up vtable. 2206 if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext())) 2207 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2208 StdTypeInfoPtrTy); 2209 2210 QualType OperandTy = E->getExprOperand()->getType(); 2211 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2212 StdTypeInfoPtrTy); 2213 } 2214 2215 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2216 QualType DestTy) { 2217 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2218 if (DestTy->isPointerType()) 2219 return llvm::Constant::getNullValue(DestLTy); 2220 2221 /// C++ [expr.dynamic.cast]p9: 2222 /// A failed cast to reference type throws std::bad_cast 2223 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2224 return nullptr; 2225 2226 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2227 return llvm::UndefValue::get(DestLTy); 2228 } 2229 2230 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2231 const CXXDynamicCastExpr *DCE) { 2232 CGM.EmitExplicitCastExprType(DCE, this); 2233 QualType DestTy = DCE->getTypeAsWritten(); 2234 2235 QualType SrcTy = DCE->getSubExpr()->getType(); 2236 2237 // C++ [expr.dynamic.cast]p7: 2238 // If T is "pointer to cv void," then the result is a pointer to the most 2239 // derived object pointed to by v. 2240 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2241 2242 bool isDynamicCastToVoid; 2243 QualType SrcRecordTy; 2244 QualType DestRecordTy; 2245 if (DestPTy) { 2246 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2247 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2248 DestRecordTy = DestPTy->getPointeeType(); 2249 } else { 2250 isDynamicCastToVoid = false; 2251 SrcRecordTy = SrcTy; 2252 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2253 } 2254 2255 // C++ [class.cdtor]p5: 2256 // If the operand of the dynamic_cast refers to the object under 2257 // construction or destruction and the static type of the operand is not a 2258 // pointer to or object of the constructor or destructor’s own class or one 2259 // of its bases, the dynamic_cast results in undefined behavior. 2260 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2261 SrcRecordTy); 2262 2263 if (DCE->isAlwaysNull()) 2264 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2265 return T; 2266 2267 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2268 2269 // C++ [expr.dynamic.cast]p4: 2270 // If the value of v is a null pointer value in the pointer case, the result 2271 // is the null pointer value of type T. 2272 bool ShouldNullCheckSrcValue = 2273 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2274 SrcRecordTy); 2275 2276 llvm::BasicBlock *CastNull = nullptr; 2277 llvm::BasicBlock *CastNotNull = nullptr; 2278 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2279 2280 if (ShouldNullCheckSrcValue) { 2281 CastNull = createBasicBlock("dynamic_cast.null"); 2282 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2283 2284 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2285 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2286 EmitBlock(CastNotNull); 2287 } 2288 2289 llvm::Value *Value; 2290 if (isDynamicCastToVoid) { 2291 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2292 DestTy); 2293 } else { 2294 assert(DestRecordTy->isRecordType() && 2295 "destination type must be a record type!"); 2296 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2297 DestTy, DestRecordTy, CastEnd); 2298 CastNotNull = Builder.GetInsertBlock(); 2299 } 2300 2301 if (ShouldNullCheckSrcValue) { 2302 EmitBranch(CastEnd); 2303 2304 EmitBlock(CastNull); 2305 EmitBranch(CastEnd); 2306 } 2307 2308 EmitBlock(CastEnd); 2309 2310 if (ShouldNullCheckSrcValue) { 2311 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2312 PHI->addIncoming(Value, CastNotNull); 2313 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2314 2315 Value = PHI; 2316 } 2317 2318 return Value; 2319 } 2320