1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/Basic/CodeGenOptions.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 41 isa<CXXOperatorCallExpr>(CE)); 42 assert(MD->isInstance() && 43 "Trying to emit a member or operator call expr on a static method!"); 44 45 // Push the this ptr. 46 const CXXRecordDecl *RD = 47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 unsigned PrefixSize = Args.size() - 1; 58 59 // And the rest of the call args. 60 if (RtlArgs) { 61 // Special case: if the caller emitted the arguments right-to-left already 62 // (prior to emitting the *this argument), we're done. This happens for 63 // assignment operators. 64 Args.addFrom(*RtlArgs); 65 } else if (CE) { 66 // Special case: skip first argument of CXXOperatorCall (it is "this"). 67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 69 CE->getDirectCallee()); 70 } else { 71 assert( 72 FPT->getNumParams() == 0 && 73 "No CallExpr specified for function with non-zero number of arguments"); 74 } 75 return {required, PrefixSize}; 76 } 77 78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 79 const CXXMethodDecl *MD, const CGCallee &Callee, 80 ReturnValueSlot ReturnValue, 81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 82 const CallExpr *CE, CallArgList *RtlArgs) { 83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 84 CallArgList Args; 85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 90 CE ? CE->getExprLoc() : SourceLocation()); 91 } 92 93 RValue CodeGenFunction::EmitCXXDestructorCall( 94 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 95 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 96 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 97 98 assert(!ThisTy.isNull()); 99 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 100 "Pointer/Object mixup"); 101 102 LangAS SrcAS = ThisTy.getAddressSpace(); 103 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 104 if (SrcAS != DstAS) { 105 QualType DstTy = DtorDecl->getThisType(); 106 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 107 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 108 NewType); 109 } 110 111 CallArgList Args; 112 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam, 113 ImplicitParamTy, CE, Args, nullptr); 114 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 115 ReturnValueSlot(), Args); 116 } 117 118 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 119 const CXXPseudoDestructorExpr *E) { 120 QualType DestroyedType = E->getDestroyedType(); 121 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 122 // Automatic Reference Counting: 123 // If the pseudo-expression names a retainable object with weak or 124 // strong lifetime, the object shall be released. 125 Expr *BaseExpr = E->getBase(); 126 Address BaseValue = Address::invalid(); 127 Qualifiers BaseQuals; 128 129 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 130 if (E->isArrow()) { 131 BaseValue = EmitPointerWithAlignment(BaseExpr); 132 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 133 BaseQuals = PTy->getPointeeType().getQualifiers(); 134 } else { 135 LValue BaseLV = EmitLValue(BaseExpr); 136 BaseValue = BaseLV.getAddress(); 137 QualType BaseTy = BaseExpr->getType(); 138 BaseQuals = BaseTy.getQualifiers(); 139 } 140 141 switch (DestroyedType.getObjCLifetime()) { 142 case Qualifiers::OCL_None: 143 case Qualifiers::OCL_ExplicitNone: 144 case Qualifiers::OCL_Autoreleasing: 145 break; 146 147 case Qualifiers::OCL_Strong: 148 EmitARCRelease(Builder.CreateLoad(BaseValue, 149 DestroyedType.isVolatileQualified()), 150 ARCPreciseLifetime); 151 break; 152 153 case Qualifiers::OCL_Weak: 154 EmitARCDestroyWeak(BaseValue); 155 break; 156 } 157 } else { 158 // C++ [expr.pseudo]p1: 159 // The result shall only be used as the operand for the function call 160 // operator (), and the result of such a call has type void. The only 161 // effect is the evaluation of the postfix-expression before the dot or 162 // arrow. 163 EmitIgnoredExpr(E->getBase()); 164 } 165 166 return RValue::get(nullptr); 167 } 168 169 static CXXRecordDecl *getCXXRecord(const Expr *E) { 170 QualType T = E->getType(); 171 if (const PointerType *PTy = T->getAs<PointerType>()) 172 T = PTy->getPointeeType(); 173 const RecordType *Ty = T->castAs<RecordType>(); 174 return cast<CXXRecordDecl>(Ty->getDecl()); 175 } 176 177 // Note: This function also emit constructor calls to support a MSVC 178 // extensions allowing explicit constructor function call. 179 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 180 ReturnValueSlot ReturnValue) { 181 const Expr *callee = CE->getCallee()->IgnoreParens(); 182 183 if (isa<BinaryOperator>(callee)) 184 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 185 186 const MemberExpr *ME = cast<MemberExpr>(callee); 187 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 188 189 if (MD->isStatic()) { 190 // The method is static, emit it as we would a regular call. 191 CGCallee callee = 192 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 193 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 194 ReturnValue); 195 } 196 197 bool HasQualifier = ME->hasQualifier(); 198 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 199 bool IsArrow = ME->isArrow(); 200 const Expr *Base = ME->getBase(); 201 202 return EmitCXXMemberOrOperatorMemberCallExpr( 203 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 204 } 205 206 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 207 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 208 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 209 const Expr *Base) { 210 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 211 212 // Compute the object pointer. 213 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 214 215 const CXXMethodDecl *DevirtualizedMethod = nullptr; 216 if (CanUseVirtualCall && 217 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 218 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 219 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 220 assert(DevirtualizedMethod); 221 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 222 const Expr *Inner = Base->ignoreParenBaseCasts(); 223 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 224 MD->getReturnType().getCanonicalType()) 225 // If the return types are not the same, this might be a case where more 226 // code needs to run to compensate for it. For example, the derived 227 // method might return a type that inherits form from the return 228 // type of MD and has a prefix. 229 // For now we just avoid devirtualizing these covariant cases. 230 DevirtualizedMethod = nullptr; 231 else if (getCXXRecord(Inner) == DevirtualizedClass) 232 // If the class of the Inner expression is where the dynamic method 233 // is defined, build the this pointer from it. 234 Base = Inner; 235 else if (getCXXRecord(Base) != DevirtualizedClass) { 236 // If the method is defined in a class that is not the best dynamic 237 // one or the one of the full expression, we would have to build 238 // a derived-to-base cast to compute the correct this pointer, but 239 // we don't have support for that yet, so do a virtual call. 240 DevirtualizedMethod = nullptr; 241 } 242 } 243 244 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 245 // operator before the LHS. 246 CallArgList RtlArgStorage; 247 CallArgList *RtlArgs = nullptr; 248 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 249 if (OCE->isAssignmentOp()) { 250 RtlArgs = &RtlArgStorage; 251 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 252 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 253 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 254 } 255 } 256 257 LValue This; 258 if (IsArrow) { 259 LValueBaseInfo BaseInfo; 260 TBAAAccessInfo TBAAInfo; 261 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 262 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 263 } else { 264 This = EmitLValue(Base); 265 } 266 267 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 268 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 269 // constructing a new complete object of type Ctor. 270 assert(!RtlArgs); 271 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 272 CallArgList Args; 273 commonEmitCXXMemberOrOperatorCall( 274 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr, 275 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 276 277 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 278 /*Delegating=*/false, This.getAddress(), Args, 279 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 280 /*NewPointerIsChecked=*/false); 281 return RValue::get(nullptr); 282 } 283 284 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 285 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 286 if (!MD->getParent()->mayInsertExtraPadding()) { 287 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 288 // We don't like to generate the trivial copy/move assignment operator 289 // when it isn't necessary; just produce the proper effect here. 290 LValue RHS = isa<CXXOperatorCallExpr>(CE) 291 ? MakeNaturalAlignAddrLValue( 292 (*RtlArgs)[0].getRValue(*this).getScalarVal(), 293 (*(CE->arg_begin() + 1))->getType()) 294 : EmitLValue(*CE->arg_begin()); 295 EmitAggregateAssign(This, RHS, CE->getType()); 296 return RValue::get(This.getPointer()); 297 } 298 llvm_unreachable("unknown trivial member function"); 299 } 300 } 301 302 // Compute the function type we're calling. 303 const CXXMethodDecl *CalleeDecl = 304 DevirtualizedMethod ? DevirtualizedMethod : MD; 305 const CGFunctionInfo *FInfo = nullptr; 306 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 307 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 308 GlobalDecl(Dtor, Dtor_Complete)); 309 else 310 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 311 312 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 313 314 // C++11 [class.mfct.non-static]p2: 315 // If a non-static member function of a class X is called for an object that 316 // is not of type X, or of a type derived from X, the behavior is undefined. 317 SourceLocation CallLoc; 318 ASTContext &C = getContext(); 319 if (CE) 320 CallLoc = CE->getExprLoc(); 321 322 SanitizerSet SkippedChecks; 323 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 324 auto *IOA = CMCE->getImplicitObjectArgument(); 325 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 326 if (IsImplicitObjectCXXThis) 327 SkippedChecks.set(SanitizerKind::Alignment, true); 328 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 329 SkippedChecks.set(SanitizerKind::Null, true); 330 } 331 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(), 332 C.getRecordType(CalleeDecl->getParent()), 333 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 334 335 // C++ [class.virtual]p12: 336 // Explicit qualification with the scope operator (5.1) suppresses the 337 // virtual call mechanism. 338 // 339 // We also don't emit a virtual call if the base expression has a record type 340 // because then we know what the type is. 341 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 342 343 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 344 assert(CE->arg_begin() == CE->arg_end() && 345 "Destructor shouldn't have explicit parameters"); 346 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 347 if (UseVirtualCall) { 348 CGM.getCXXABI().EmitVirtualDestructorCall( 349 *this, Dtor, Dtor_Complete, This.getAddress(), 350 cast<CXXMemberCallExpr>(CE)); 351 } else { 352 GlobalDecl GD(Dtor, Dtor_Complete); 353 CGCallee Callee; 354 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 355 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 356 else if (!DevirtualizedMethod) 357 Callee = 358 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 359 else { 360 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 361 } 362 363 QualType ThisTy = 364 IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 365 EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 366 /*ImplicitParam=*/nullptr, 367 /*ImplicitParamTy=*/QualType(), nullptr); 368 } 369 return RValue::get(nullptr); 370 } 371 372 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 373 // 'CalleeDecl' instead. 374 375 CGCallee Callee; 376 if (UseVirtualCall) { 377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 378 } else { 379 if (SanOpts.has(SanitizerKind::CFINVCall) && 380 MD->getParent()->isDynamicClass()) { 381 llvm::Value *VTable; 382 const CXXRecordDecl *RD; 383 std::tie(VTable, RD) = 384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), 385 CalleeDecl->getParent()); 386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 387 } 388 389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 391 else if (!DevirtualizedMethod) 392 Callee = 393 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 394 else { 395 Callee = 396 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 397 GlobalDecl(DevirtualizedMethod)); 398 } 399 } 400 401 if (MD->isVirtual()) { 402 Address NewThisAddr = 403 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 404 *this, CalleeDecl, This.getAddress(), UseVirtualCall); 405 This.setAddress(NewThisAddr); 406 } 407 408 return EmitCXXMemberOrOperatorCall( 409 CalleeDecl, Callee, ReturnValue, This.getPointer(), 410 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 411 } 412 413 RValue 414 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 415 ReturnValueSlot ReturnValue) { 416 const BinaryOperator *BO = 417 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 418 const Expr *BaseExpr = BO->getLHS(); 419 const Expr *MemFnExpr = BO->getRHS(); 420 421 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 422 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 423 const auto *RD = 424 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 425 426 // Emit the 'this' pointer. 427 Address This = Address::invalid(); 428 if (BO->getOpcode() == BO_PtrMemI) 429 This = EmitPointerWithAlignment(BaseExpr); 430 else 431 This = EmitLValue(BaseExpr).getAddress(); 432 433 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 434 QualType(MPT->getClass(), 0)); 435 436 // Get the member function pointer. 437 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 438 439 // Ask the ABI to load the callee. Note that This is modified. 440 llvm::Value *ThisPtrForCall = nullptr; 441 CGCallee Callee = 442 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 443 ThisPtrForCall, MemFnPtr, MPT); 444 445 CallArgList Args; 446 447 QualType ThisType = 448 getContext().getPointerType(getContext().getTagDeclType(RD)); 449 450 // Push the this ptr. 451 Args.add(RValue::get(ThisPtrForCall), ThisType); 452 453 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 454 455 // And the rest of the call args 456 EmitCallArgs(Args, FPT, E->arguments()); 457 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 458 /*PrefixSize=*/0), 459 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 460 } 461 462 RValue 463 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 464 const CXXMethodDecl *MD, 465 ReturnValueSlot ReturnValue) { 466 assert(MD->isInstance() && 467 "Trying to emit a member call expr on a static method!"); 468 return EmitCXXMemberOrOperatorMemberCallExpr( 469 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 470 /*IsArrow=*/false, E->getArg(0)); 471 } 472 473 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 474 ReturnValueSlot ReturnValue) { 475 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 476 } 477 478 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 479 Address DestPtr, 480 const CXXRecordDecl *Base) { 481 if (Base->isEmpty()) 482 return; 483 484 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 485 486 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 487 CharUnits NVSize = Layout.getNonVirtualSize(); 488 489 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 490 // present, they are initialized by the most derived class before calling the 491 // constructor. 492 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 493 Stores.emplace_back(CharUnits::Zero(), NVSize); 494 495 // Each store is split by the existence of a vbptr. 496 CharUnits VBPtrWidth = CGF.getPointerSize(); 497 std::vector<CharUnits> VBPtrOffsets = 498 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 499 for (CharUnits VBPtrOffset : VBPtrOffsets) { 500 // Stop before we hit any virtual base pointers located in virtual bases. 501 if (VBPtrOffset >= NVSize) 502 break; 503 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 504 CharUnits LastStoreOffset = LastStore.first; 505 CharUnits LastStoreSize = LastStore.second; 506 507 CharUnits SplitBeforeOffset = LastStoreOffset; 508 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 509 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 510 if (!SplitBeforeSize.isZero()) 511 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 512 513 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 514 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 515 assert(!SplitAfterSize.isNegative() && "negative store size!"); 516 if (!SplitAfterSize.isZero()) 517 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 518 } 519 520 // If the type contains a pointer to data member we can't memset it to zero. 521 // Instead, create a null constant and copy it to the destination. 522 // TODO: there are other patterns besides zero that we can usefully memset, 523 // like -1, which happens to be the pattern used by member-pointers. 524 // TODO: isZeroInitializable can be over-conservative in the case where a 525 // virtual base contains a member pointer. 526 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 527 if (!NullConstantForBase->isNullValue()) { 528 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 529 CGF.CGM.getModule(), NullConstantForBase->getType(), 530 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 531 NullConstantForBase, Twine()); 532 533 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 534 DestPtr.getAlignment()); 535 NullVariable->setAlignment(Align.getAsAlign()); 536 537 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 538 539 // Get and call the appropriate llvm.memcpy overload. 540 for (std::pair<CharUnits, CharUnits> Store : Stores) { 541 CharUnits StoreOffset = Store.first; 542 CharUnits StoreSize = Store.second; 543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 544 CGF.Builder.CreateMemCpy( 545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 546 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 547 StoreSizeVal); 548 } 549 550 // Otherwise, just memset the whole thing to zero. This is legal 551 // because in LLVM, all default initializers (other than the ones we just 552 // handled above) are guaranteed to have a bit pattern of all zeros. 553 } else { 554 for (std::pair<CharUnits, CharUnits> Store : Stores) { 555 CharUnits StoreOffset = Store.first; 556 CharUnits StoreSize = Store.second; 557 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 558 CGF.Builder.CreateMemSet( 559 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 560 CGF.Builder.getInt8(0), StoreSizeVal); 561 } 562 } 563 } 564 565 void 566 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 567 AggValueSlot Dest) { 568 assert(!Dest.isIgnored() && "Must have a destination!"); 569 const CXXConstructorDecl *CD = E->getConstructor(); 570 571 // If we require zero initialization before (or instead of) calling the 572 // constructor, as can be the case with a non-user-provided default 573 // constructor, emit the zero initialization now, unless destination is 574 // already zeroed. 575 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 576 switch (E->getConstructionKind()) { 577 case CXXConstructExpr::CK_Delegating: 578 case CXXConstructExpr::CK_Complete: 579 EmitNullInitialization(Dest.getAddress(), E->getType()); 580 break; 581 case CXXConstructExpr::CK_VirtualBase: 582 case CXXConstructExpr::CK_NonVirtualBase: 583 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 584 CD->getParent()); 585 break; 586 } 587 } 588 589 // If this is a call to a trivial default constructor, do nothing. 590 if (CD->isTrivial() && CD->isDefaultConstructor()) 591 return; 592 593 // Elide the constructor if we're constructing from a temporary. 594 // The temporary check is required because Sema sets this on NRVO 595 // returns. 596 if (getLangOpts().ElideConstructors && E->isElidable()) { 597 assert(getContext().hasSameUnqualifiedType(E->getType(), 598 E->getArg(0)->getType())); 599 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 600 EmitAggExpr(E->getArg(0), Dest); 601 return; 602 } 603 } 604 605 if (const ArrayType *arrayType 606 = getContext().getAsArrayType(E->getType())) { 607 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 608 Dest.isSanitizerChecked()); 609 } else { 610 CXXCtorType Type = Ctor_Complete; 611 bool ForVirtualBase = false; 612 bool Delegating = false; 613 614 switch (E->getConstructionKind()) { 615 case CXXConstructExpr::CK_Delegating: 616 // We should be emitting a constructor; GlobalDecl will assert this 617 Type = CurGD.getCtorType(); 618 Delegating = true; 619 break; 620 621 case CXXConstructExpr::CK_Complete: 622 Type = Ctor_Complete; 623 break; 624 625 case CXXConstructExpr::CK_VirtualBase: 626 ForVirtualBase = true; 627 LLVM_FALLTHROUGH; 628 629 case CXXConstructExpr::CK_NonVirtualBase: 630 Type = Ctor_Base; 631 } 632 633 // Call the constructor. 634 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 635 } 636 } 637 638 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 639 const Expr *Exp) { 640 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 641 Exp = E->getSubExpr(); 642 assert(isa<CXXConstructExpr>(Exp) && 643 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 644 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 645 const CXXConstructorDecl *CD = E->getConstructor(); 646 RunCleanupsScope Scope(*this); 647 648 // If we require zero initialization before (or instead of) calling the 649 // constructor, as can be the case with a non-user-provided default 650 // constructor, emit the zero initialization now. 651 // FIXME. Do I still need this for a copy ctor synthesis? 652 if (E->requiresZeroInitialization()) 653 EmitNullInitialization(Dest, E->getType()); 654 655 assert(!getContext().getAsConstantArrayType(E->getType()) 656 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 657 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 658 } 659 660 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 661 const CXXNewExpr *E) { 662 if (!E->isArray()) 663 return CharUnits::Zero(); 664 665 // No cookie is required if the operator new[] being used is the 666 // reserved placement operator new[]. 667 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 668 return CharUnits::Zero(); 669 670 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 671 } 672 673 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 674 const CXXNewExpr *e, 675 unsigned minElements, 676 llvm::Value *&numElements, 677 llvm::Value *&sizeWithoutCookie) { 678 QualType type = e->getAllocatedType(); 679 680 if (!e->isArray()) { 681 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 682 sizeWithoutCookie 683 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 684 return sizeWithoutCookie; 685 } 686 687 // The width of size_t. 688 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 689 690 // Figure out the cookie size. 691 llvm::APInt cookieSize(sizeWidth, 692 CalculateCookiePadding(CGF, e).getQuantity()); 693 694 // Emit the array size expression. 695 // We multiply the size of all dimensions for NumElements. 696 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 697 numElements = 698 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 699 if (!numElements) 700 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 701 assert(isa<llvm::IntegerType>(numElements->getType())); 702 703 // The number of elements can be have an arbitrary integer type; 704 // essentially, we need to multiply it by a constant factor, add a 705 // cookie size, and verify that the result is representable as a 706 // size_t. That's just a gloss, though, and it's wrong in one 707 // important way: if the count is negative, it's an error even if 708 // the cookie size would bring the total size >= 0. 709 bool isSigned 710 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 711 llvm::IntegerType *numElementsType 712 = cast<llvm::IntegerType>(numElements->getType()); 713 unsigned numElementsWidth = numElementsType->getBitWidth(); 714 715 // Compute the constant factor. 716 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 717 while (const ConstantArrayType *CAT 718 = CGF.getContext().getAsConstantArrayType(type)) { 719 type = CAT->getElementType(); 720 arraySizeMultiplier *= CAT->getSize(); 721 } 722 723 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 724 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 725 typeSizeMultiplier *= arraySizeMultiplier; 726 727 // This will be a size_t. 728 llvm::Value *size; 729 730 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 731 // Don't bloat the -O0 code. 732 if (llvm::ConstantInt *numElementsC = 733 dyn_cast<llvm::ConstantInt>(numElements)) { 734 const llvm::APInt &count = numElementsC->getValue(); 735 736 bool hasAnyOverflow = false; 737 738 // If 'count' was a negative number, it's an overflow. 739 if (isSigned && count.isNegative()) 740 hasAnyOverflow = true; 741 742 // We want to do all this arithmetic in size_t. If numElements is 743 // wider than that, check whether it's already too big, and if so, 744 // overflow. 745 else if (numElementsWidth > sizeWidth && 746 numElementsWidth - sizeWidth > count.countLeadingZeros()) 747 hasAnyOverflow = true; 748 749 // Okay, compute a count at the right width. 750 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 751 752 // If there is a brace-initializer, we cannot allocate fewer elements than 753 // there are initializers. If we do, that's treated like an overflow. 754 if (adjustedCount.ult(minElements)) 755 hasAnyOverflow = true; 756 757 // Scale numElements by that. This might overflow, but we don't 758 // care because it only overflows if allocationSize does, too, and 759 // if that overflows then we shouldn't use this. 760 numElements = llvm::ConstantInt::get(CGF.SizeTy, 761 adjustedCount * arraySizeMultiplier); 762 763 // Compute the size before cookie, and track whether it overflowed. 764 bool overflow; 765 llvm::APInt allocationSize 766 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 767 hasAnyOverflow |= overflow; 768 769 // Add in the cookie, and check whether it's overflowed. 770 if (cookieSize != 0) { 771 // Save the current size without a cookie. This shouldn't be 772 // used if there was overflow. 773 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 774 775 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 776 hasAnyOverflow |= overflow; 777 } 778 779 // On overflow, produce a -1 so operator new will fail. 780 if (hasAnyOverflow) { 781 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 782 } else { 783 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 784 } 785 786 // Otherwise, we might need to use the overflow intrinsics. 787 } else { 788 // There are up to five conditions we need to test for: 789 // 1) if isSigned, we need to check whether numElements is negative; 790 // 2) if numElementsWidth > sizeWidth, we need to check whether 791 // numElements is larger than something representable in size_t; 792 // 3) if minElements > 0, we need to check whether numElements is smaller 793 // than that. 794 // 4) we need to compute 795 // sizeWithoutCookie := numElements * typeSizeMultiplier 796 // and check whether it overflows; and 797 // 5) if we need a cookie, we need to compute 798 // size := sizeWithoutCookie + cookieSize 799 // and check whether it overflows. 800 801 llvm::Value *hasOverflow = nullptr; 802 803 // If numElementsWidth > sizeWidth, then one way or another, we're 804 // going to have to do a comparison for (2), and this happens to 805 // take care of (1), too. 806 if (numElementsWidth > sizeWidth) { 807 llvm::APInt threshold(numElementsWidth, 1); 808 threshold <<= sizeWidth; 809 810 llvm::Value *thresholdV 811 = llvm::ConstantInt::get(numElementsType, threshold); 812 813 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 814 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 815 816 // Otherwise, if we're signed, we want to sext up to size_t. 817 } else if (isSigned) { 818 if (numElementsWidth < sizeWidth) 819 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 820 821 // If there's a non-1 type size multiplier, then we can do the 822 // signedness check at the same time as we do the multiply 823 // because a negative number times anything will cause an 824 // unsigned overflow. Otherwise, we have to do it here. But at least 825 // in this case, we can subsume the >= minElements check. 826 if (typeSizeMultiplier == 1) 827 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 828 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 829 830 // Otherwise, zext up to size_t if necessary. 831 } else if (numElementsWidth < sizeWidth) { 832 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 833 } 834 835 assert(numElements->getType() == CGF.SizeTy); 836 837 if (minElements) { 838 // Don't allow allocation of fewer elements than we have initializers. 839 if (!hasOverflow) { 840 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 841 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 842 } else if (numElementsWidth > sizeWidth) { 843 // The other existing overflow subsumes this check. 844 // We do an unsigned comparison, since any signed value < -1 is 845 // taken care of either above or below. 846 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 847 CGF.Builder.CreateICmpULT(numElements, 848 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 849 } 850 } 851 852 size = numElements; 853 854 // Multiply by the type size if necessary. This multiplier 855 // includes all the factors for nested arrays. 856 // 857 // This step also causes numElements to be scaled up by the 858 // nested-array factor if necessary. Overflow on this computation 859 // can be ignored because the result shouldn't be used if 860 // allocation fails. 861 if (typeSizeMultiplier != 1) { 862 llvm::Function *umul_with_overflow 863 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 864 865 llvm::Value *tsmV = 866 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 867 llvm::Value *result = 868 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 869 870 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 871 if (hasOverflow) 872 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 873 else 874 hasOverflow = overflowed; 875 876 size = CGF.Builder.CreateExtractValue(result, 0); 877 878 // Also scale up numElements by the array size multiplier. 879 if (arraySizeMultiplier != 1) { 880 // If the base element type size is 1, then we can re-use the 881 // multiply we just did. 882 if (typeSize.isOne()) { 883 assert(arraySizeMultiplier == typeSizeMultiplier); 884 numElements = size; 885 886 // Otherwise we need a separate multiply. 887 } else { 888 llvm::Value *asmV = 889 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 890 numElements = CGF.Builder.CreateMul(numElements, asmV); 891 } 892 } 893 } else { 894 // numElements doesn't need to be scaled. 895 assert(arraySizeMultiplier == 1); 896 } 897 898 // Add in the cookie size if necessary. 899 if (cookieSize != 0) { 900 sizeWithoutCookie = size; 901 902 llvm::Function *uadd_with_overflow 903 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 904 905 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 906 llvm::Value *result = 907 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 908 909 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 910 if (hasOverflow) 911 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 912 else 913 hasOverflow = overflowed; 914 915 size = CGF.Builder.CreateExtractValue(result, 0); 916 } 917 918 // If we had any possibility of dynamic overflow, make a select to 919 // overwrite 'size' with an all-ones value, which should cause 920 // operator new to throw. 921 if (hasOverflow) 922 size = CGF.Builder.CreateSelect(hasOverflow, 923 llvm::Constant::getAllOnesValue(CGF.SizeTy), 924 size); 925 } 926 927 if (cookieSize == 0) 928 sizeWithoutCookie = size; 929 else 930 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 931 932 return size; 933 } 934 935 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 936 QualType AllocType, Address NewPtr, 937 AggValueSlot::Overlap_t MayOverlap) { 938 // FIXME: Refactor with EmitExprAsInit. 939 switch (CGF.getEvaluationKind(AllocType)) { 940 case TEK_Scalar: 941 CGF.EmitScalarInit(Init, nullptr, 942 CGF.MakeAddrLValue(NewPtr, AllocType), false); 943 return; 944 case TEK_Complex: 945 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 946 /*isInit*/ true); 947 return; 948 case TEK_Aggregate: { 949 AggValueSlot Slot 950 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 951 AggValueSlot::IsDestructed, 952 AggValueSlot::DoesNotNeedGCBarriers, 953 AggValueSlot::IsNotAliased, 954 MayOverlap, AggValueSlot::IsNotZeroed, 955 AggValueSlot::IsSanitizerChecked); 956 CGF.EmitAggExpr(Init, Slot); 957 return; 958 } 959 } 960 llvm_unreachable("bad evaluation kind"); 961 } 962 963 void CodeGenFunction::EmitNewArrayInitializer( 964 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 965 Address BeginPtr, llvm::Value *NumElements, 966 llvm::Value *AllocSizeWithoutCookie) { 967 // If we have a type with trivial initialization and no initializer, 968 // there's nothing to do. 969 if (!E->hasInitializer()) 970 return; 971 972 Address CurPtr = BeginPtr; 973 974 unsigned InitListElements = 0; 975 976 const Expr *Init = E->getInitializer(); 977 Address EndOfInit = Address::invalid(); 978 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 979 EHScopeStack::stable_iterator Cleanup; 980 llvm::Instruction *CleanupDominator = nullptr; 981 982 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 983 CharUnits ElementAlign = 984 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 985 986 // Attempt to perform zero-initialization using memset. 987 auto TryMemsetInitialization = [&]() -> bool { 988 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 989 // we can initialize with a memset to -1. 990 if (!CGM.getTypes().isZeroInitializable(ElementType)) 991 return false; 992 993 // Optimization: since zero initialization will just set the memory 994 // to all zeroes, generate a single memset to do it in one shot. 995 996 // Subtract out the size of any elements we've already initialized. 997 auto *RemainingSize = AllocSizeWithoutCookie; 998 if (InitListElements) { 999 // We know this can't overflow; we check this when doing the allocation. 1000 auto *InitializedSize = llvm::ConstantInt::get( 1001 RemainingSize->getType(), 1002 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1003 InitListElements); 1004 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1005 } 1006 1007 // Create the memset. 1008 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1009 return true; 1010 }; 1011 1012 // If the initializer is an initializer list, first do the explicit elements. 1013 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1014 // Initializing from a (braced) string literal is a special case; the init 1015 // list element does not initialize a (single) array element. 1016 if (ILE->isStringLiteralInit()) { 1017 // Initialize the initial portion of length equal to that of the string 1018 // literal. The allocation must be for at least this much; we emitted a 1019 // check for that earlier. 1020 AggValueSlot Slot = 1021 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1022 AggValueSlot::IsDestructed, 1023 AggValueSlot::DoesNotNeedGCBarriers, 1024 AggValueSlot::IsNotAliased, 1025 AggValueSlot::DoesNotOverlap, 1026 AggValueSlot::IsNotZeroed, 1027 AggValueSlot::IsSanitizerChecked); 1028 EmitAggExpr(ILE->getInit(0), Slot); 1029 1030 // Move past these elements. 1031 InitListElements = 1032 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1033 ->getSize().getZExtValue(); 1034 CurPtr = 1035 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1036 Builder.getSize(InitListElements), 1037 "string.init.end"), 1038 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1039 ElementSize)); 1040 1041 // Zero out the rest, if any remain. 1042 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1043 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1044 bool OK = TryMemsetInitialization(); 1045 (void)OK; 1046 assert(OK && "couldn't memset character type?"); 1047 } 1048 return; 1049 } 1050 1051 InitListElements = ILE->getNumInits(); 1052 1053 // If this is a multi-dimensional array new, we will initialize multiple 1054 // elements with each init list element. 1055 QualType AllocType = E->getAllocatedType(); 1056 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1057 AllocType->getAsArrayTypeUnsafe())) { 1058 ElementTy = ConvertTypeForMem(AllocType); 1059 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1060 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1061 } 1062 1063 // Enter a partial-destruction Cleanup if necessary. 1064 if (needsEHCleanup(DtorKind)) { 1065 // In principle we could tell the Cleanup where we are more 1066 // directly, but the control flow can get so varied here that it 1067 // would actually be quite complex. Therefore we go through an 1068 // alloca. 1069 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1070 "array.init.end"); 1071 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1072 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1073 ElementType, ElementAlign, 1074 getDestroyer(DtorKind)); 1075 Cleanup = EHStack.stable_begin(); 1076 } 1077 1078 CharUnits StartAlign = CurPtr.getAlignment(); 1079 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1080 // Tell the cleanup that it needs to destroy up to this 1081 // element. TODO: some of these stores can be trivially 1082 // observed to be unnecessary. 1083 if (EndOfInit.isValid()) { 1084 auto FinishedPtr = 1085 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1086 Builder.CreateStore(FinishedPtr, EndOfInit); 1087 } 1088 // FIXME: If the last initializer is an incomplete initializer list for 1089 // an array, and we have an array filler, we can fold together the two 1090 // initialization loops. 1091 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1092 ILE->getInit(i)->getType(), CurPtr, 1093 AggValueSlot::DoesNotOverlap); 1094 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1095 Builder.getSize(1), 1096 "array.exp.next"), 1097 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1098 } 1099 1100 // The remaining elements are filled with the array filler expression. 1101 Init = ILE->getArrayFiller(); 1102 1103 // Extract the initializer for the individual array elements by pulling 1104 // out the array filler from all the nested initializer lists. This avoids 1105 // generating a nested loop for the initialization. 1106 while (Init && Init->getType()->isConstantArrayType()) { 1107 auto *SubILE = dyn_cast<InitListExpr>(Init); 1108 if (!SubILE) 1109 break; 1110 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1111 Init = SubILE->getArrayFiller(); 1112 } 1113 1114 // Switch back to initializing one base element at a time. 1115 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1116 } 1117 1118 // If all elements have already been initialized, skip any further 1119 // initialization. 1120 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1121 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1122 // If there was a Cleanup, deactivate it. 1123 if (CleanupDominator) 1124 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1125 return; 1126 } 1127 1128 assert(Init && "have trailing elements to initialize but no initializer"); 1129 1130 // If this is a constructor call, try to optimize it out, and failing that 1131 // emit a single loop to initialize all remaining elements. 1132 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1133 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1134 if (Ctor->isTrivial()) { 1135 // If new expression did not specify value-initialization, then there 1136 // is no initialization. 1137 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1138 return; 1139 1140 if (TryMemsetInitialization()) 1141 return; 1142 } 1143 1144 // Store the new Cleanup position for irregular Cleanups. 1145 // 1146 // FIXME: Share this cleanup with the constructor call emission rather than 1147 // having it create a cleanup of its own. 1148 if (EndOfInit.isValid()) 1149 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1150 1151 // Emit a constructor call loop to initialize the remaining elements. 1152 if (InitListElements) 1153 NumElements = Builder.CreateSub( 1154 NumElements, 1155 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1156 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1157 /*NewPointerIsChecked*/true, 1158 CCE->requiresZeroInitialization()); 1159 return; 1160 } 1161 1162 // If this is value-initialization, we can usually use memset. 1163 ImplicitValueInitExpr IVIE(ElementType); 1164 if (isa<ImplicitValueInitExpr>(Init)) { 1165 if (TryMemsetInitialization()) 1166 return; 1167 1168 // Switch to an ImplicitValueInitExpr for the element type. This handles 1169 // only one case: multidimensional array new of pointers to members. In 1170 // all other cases, we already have an initializer for the array element. 1171 Init = &IVIE; 1172 } 1173 1174 // At this point we should have found an initializer for the individual 1175 // elements of the array. 1176 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1177 "got wrong type of element to initialize"); 1178 1179 // If we have an empty initializer list, we can usually use memset. 1180 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1181 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1182 return; 1183 1184 // If we have a struct whose every field is value-initialized, we can 1185 // usually use memset. 1186 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1187 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1188 if (RType->getDecl()->isStruct()) { 1189 unsigned NumElements = 0; 1190 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1191 NumElements = CXXRD->getNumBases(); 1192 for (auto *Field : RType->getDecl()->fields()) 1193 if (!Field->isUnnamedBitfield()) 1194 ++NumElements; 1195 // FIXME: Recurse into nested InitListExprs. 1196 if (ILE->getNumInits() == NumElements) 1197 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1198 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1199 --NumElements; 1200 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1201 return; 1202 } 1203 } 1204 } 1205 1206 // Create the loop blocks. 1207 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1208 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1209 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1210 1211 // Find the end of the array, hoisted out of the loop. 1212 llvm::Value *EndPtr = 1213 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1214 1215 // If the number of elements isn't constant, we have to now check if there is 1216 // anything left to initialize. 1217 if (!ConstNum) { 1218 llvm::Value *IsEmpty = 1219 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1220 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1221 } 1222 1223 // Enter the loop. 1224 EmitBlock(LoopBB); 1225 1226 // Set up the current-element phi. 1227 llvm::PHINode *CurPtrPhi = 1228 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1229 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1230 1231 CurPtr = Address(CurPtrPhi, ElementAlign); 1232 1233 // Store the new Cleanup position for irregular Cleanups. 1234 if (EndOfInit.isValid()) 1235 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1236 1237 // Enter a partial-destruction Cleanup if necessary. 1238 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1239 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1240 ElementType, ElementAlign, 1241 getDestroyer(DtorKind)); 1242 Cleanup = EHStack.stable_begin(); 1243 CleanupDominator = Builder.CreateUnreachable(); 1244 } 1245 1246 // Emit the initializer into this element. 1247 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1248 AggValueSlot::DoesNotOverlap); 1249 1250 // Leave the Cleanup if we entered one. 1251 if (CleanupDominator) { 1252 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1253 CleanupDominator->eraseFromParent(); 1254 } 1255 1256 // Advance to the next element by adjusting the pointer type as necessary. 1257 llvm::Value *NextPtr = 1258 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1259 "array.next"); 1260 1261 // Check whether we've gotten to the end of the array and, if so, 1262 // exit the loop. 1263 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1264 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1265 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1266 1267 EmitBlock(ContBB); 1268 } 1269 1270 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1271 QualType ElementType, llvm::Type *ElementTy, 1272 Address NewPtr, llvm::Value *NumElements, 1273 llvm::Value *AllocSizeWithoutCookie) { 1274 ApplyDebugLocation DL(CGF, E); 1275 if (E->isArray()) 1276 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1277 AllocSizeWithoutCookie); 1278 else if (const Expr *Init = E->getInitializer()) 1279 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1280 AggValueSlot::DoesNotOverlap); 1281 } 1282 1283 /// Emit a call to an operator new or operator delete function, as implicitly 1284 /// created by new-expressions and delete-expressions. 1285 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1286 const FunctionDecl *CalleeDecl, 1287 const FunctionProtoType *CalleeType, 1288 const CallArgList &Args) { 1289 llvm::CallBase *CallOrInvoke; 1290 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1291 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1292 RValue RV = 1293 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1294 Args, CalleeType, /*ChainCall=*/false), 1295 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1296 1297 /// C++1y [expr.new]p10: 1298 /// [In a new-expression,] an implementation is allowed to omit a call 1299 /// to a replaceable global allocation function. 1300 /// 1301 /// We model such elidable calls with the 'builtin' attribute. 1302 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1303 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1304 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1305 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex, 1306 llvm::Attribute::Builtin); 1307 } 1308 1309 return RV; 1310 } 1311 1312 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1313 const CallExpr *TheCall, 1314 bool IsDelete) { 1315 CallArgList Args; 1316 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1317 // Find the allocation or deallocation function that we're calling. 1318 ASTContext &Ctx = getContext(); 1319 DeclarationName Name = Ctx.DeclarationNames 1320 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1321 1322 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1323 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1324 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1325 return EmitNewDeleteCall(*this, FD, Type, Args); 1326 llvm_unreachable("predeclared global operator new/delete is missing"); 1327 } 1328 1329 namespace { 1330 /// The parameters to pass to a usual operator delete. 1331 struct UsualDeleteParams { 1332 bool DestroyingDelete = false; 1333 bool Size = false; 1334 bool Alignment = false; 1335 }; 1336 } 1337 1338 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1339 UsualDeleteParams Params; 1340 1341 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1342 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1343 1344 // The first argument is always a void*. 1345 ++AI; 1346 1347 // The next parameter may be a std::destroying_delete_t. 1348 if (FD->isDestroyingOperatorDelete()) { 1349 Params.DestroyingDelete = true; 1350 assert(AI != AE); 1351 ++AI; 1352 } 1353 1354 // Figure out what other parameters we should be implicitly passing. 1355 if (AI != AE && (*AI)->isIntegerType()) { 1356 Params.Size = true; 1357 ++AI; 1358 } 1359 1360 if (AI != AE && (*AI)->isAlignValT()) { 1361 Params.Alignment = true; 1362 ++AI; 1363 } 1364 1365 assert(AI == AE && "unexpected usual deallocation function parameter"); 1366 return Params; 1367 } 1368 1369 namespace { 1370 /// A cleanup to call the given 'operator delete' function upon abnormal 1371 /// exit from a new expression. Templated on a traits type that deals with 1372 /// ensuring that the arguments dominate the cleanup if necessary. 1373 template<typename Traits> 1374 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1375 /// Type used to hold llvm::Value*s. 1376 typedef typename Traits::ValueTy ValueTy; 1377 /// Type used to hold RValues. 1378 typedef typename Traits::RValueTy RValueTy; 1379 struct PlacementArg { 1380 RValueTy ArgValue; 1381 QualType ArgType; 1382 }; 1383 1384 unsigned NumPlacementArgs : 31; 1385 unsigned PassAlignmentToPlacementDelete : 1; 1386 const FunctionDecl *OperatorDelete; 1387 ValueTy Ptr; 1388 ValueTy AllocSize; 1389 CharUnits AllocAlign; 1390 1391 PlacementArg *getPlacementArgs() { 1392 return reinterpret_cast<PlacementArg *>(this + 1); 1393 } 1394 1395 public: 1396 static size_t getExtraSize(size_t NumPlacementArgs) { 1397 return NumPlacementArgs * sizeof(PlacementArg); 1398 } 1399 1400 CallDeleteDuringNew(size_t NumPlacementArgs, 1401 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1402 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1403 CharUnits AllocAlign) 1404 : NumPlacementArgs(NumPlacementArgs), 1405 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1406 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1407 AllocAlign(AllocAlign) {} 1408 1409 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1410 assert(I < NumPlacementArgs && "index out of range"); 1411 getPlacementArgs()[I] = {Arg, Type}; 1412 } 1413 1414 void Emit(CodeGenFunction &CGF, Flags flags) override { 1415 const FunctionProtoType *FPT = 1416 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1417 CallArgList DeleteArgs; 1418 1419 // The first argument is always a void* (or C* for a destroying operator 1420 // delete for class type C). 1421 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1422 1423 // Figure out what other parameters we should be implicitly passing. 1424 UsualDeleteParams Params; 1425 if (NumPlacementArgs) { 1426 // A placement deallocation function is implicitly passed an alignment 1427 // if the placement allocation function was, but is never passed a size. 1428 Params.Alignment = PassAlignmentToPlacementDelete; 1429 } else { 1430 // For a non-placement new-expression, 'operator delete' can take a 1431 // size and/or an alignment if it has the right parameters. 1432 Params = getUsualDeleteParams(OperatorDelete); 1433 } 1434 1435 assert(!Params.DestroyingDelete && 1436 "should not call destroying delete in a new-expression"); 1437 1438 // The second argument can be a std::size_t (for non-placement delete). 1439 if (Params.Size) 1440 DeleteArgs.add(Traits::get(CGF, AllocSize), 1441 CGF.getContext().getSizeType()); 1442 1443 // The next (second or third) argument can be a std::align_val_t, which 1444 // is an enum whose underlying type is std::size_t. 1445 // FIXME: Use the right type as the parameter type. Note that in a call 1446 // to operator delete(size_t, ...), we may not have it available. 1447 if (Params.Alignment) 1448 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1449 CGF.SizeTy, AllocAlign.getQuantity())), 1450 CGF.getContext().getSizeType()); 1451 1452 // Pass the rest of the arguments, which must match exactly. 1453 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1454 auto Arg = getPlacementArgs()[I]; 1455 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1456 } 1457 1458 // Call 'operator delete'. 1459 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1460 } 1461 }; 1462 } 1463 1464 /// Enter a cleanup to call 'operator delete' if the initializer in a 1465 /// new-expression throws. 1466 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1467 const CXXNewExpr *E, 1468 Address NewPtr, 1469 llvm::Value *AllocSize, 1470 CharUnits AllocAlign, 1471 const CallArgList &NewArgs) { 1472 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1473 1474 // If we're not inside a conditional branch, then the cleanup will 1475 // dominate and we can do the easier (and more efficient) thing. 1476 if (!CGF.isInConditionalBranch()) { 1477 struct DirectCleanupTraits { 1478 typedef llvm::Value *ValueTy; 1479 typedef RValue RValueTy; 1480 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1481 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1482 }; 1483 1484 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1485 1486 DirectCleanup *Cleanup = CGF.EHStack 1487 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1488 E->getNumPlacementArgs(), 1489 E->getOperatorDelete(), 1490 NewPtr.getPointer(), 1491 AllocSize, 1492 E->passAlignment(), 1493 AllocAlign); 1494 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1495 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1496 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1497 } 1498 1499 return; 1500 } 1501 1502 // Otherwise, we need to save all this stuff. 1503 DominatingValue<RValue>::saved_type SavedNewPtr = 1504 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1505 DominatingValue<RValue>::saved_type SavedAllocSize = 1506 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1507 1508 struct ConditionalCleanupTraits { 1509 typedef DominatingValue<RValue>::saved_type ValueTy; 1510 typedef DominatingValue<RValue>::saved_type RValueTy; 1511 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1512 return V.restore(CGF); 1513 } 1514 }; 1515 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1516 1517 ConditionalCleanup *Cleanup = CGF.EHStack 1518 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1519 E->getNumPlacementArgs(), 1520 E->getOperatorDelete(), 1521 SavedNewPtr, 1522 SavedAllocSize, 1523 E->passAlignment(), 1524 AllocAlign); 1525 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1526 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1527 Cleanup->setPlacementArg( 1528 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1529 } 1530 1531 CGF.initFullExprCleanup(); 1532 } 1533 1534 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1535 // The element type being allocated. 1536 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1537 1538 // 1. Build a call to the allocation function. 1539 FunctionDecl *allocator = E->getOperatorNew(); 1540 1541 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1542 unsigned minElements = 0; 1543 if (E->isArray() && E->hasInitializer()) { 1544 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1545 if (ILE && ILE->isStringLiteralInit()) 1546 minElements = 1547 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1548 ->getSize().getZExtValue(); 1549 else if (ILE) 1550 minElements = ILE->getNumInits(); 1551 } 1552 1553 llvm::Value *numElements = nullptr; 1554 llvm::Value *allocSizeWithoutCookie = nullptr; 1555 llvm::Value *allocSize = 1556 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1557 allocSizeWithoutCookie); 1558 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1559 1560 // Emit the allocation call. If the allocator is a global placement 1561 // operator, just "inline" it directly. 1562 Address allocation = Address::invalid(); 1563 CallArgList allocatorArgs; 1564 if (allocator->isReservedGlobalPlacementOperator()) { 1565 assert(E->getNumPlacementArgs() == 1); 1566 const Expr *arg = *E->placement_arguments().begin(); 1567 1568 LValueBaseInfo BaseInfo; 1569 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1570 1571 // The pointer expression will, in many cases, be an opaque void*. 1572 // In these cases, discard the computed alignment and use the 1573 // formal alignment of the allocated type. 1574 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1575 allocation = Address(allocation.getPointer(), allocAlign); 1576 1577 // Set up allocatorArgs for the call to operator delete if it's not 1578 // the reserved global operator. 1579 if (E->getOperatorDelete() && 1580 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1581 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1582 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1583 } 1584 1585 } else { 1586 const FunctionProtoType *allocatorType = 1587 allocator->getType()->castAs<FunctionProtoType>(); 1588 unsigned ParamsToSkip = 0; 1589 1590 // The allocation size is the first argument. 1591 QualType sizeType = getContext().getSizeType(); 1592 allocatorArgs.add(RValue::get(allocSize), sizeType); 1593 ++ParamsToSkip; 1594 1595 if (allocSize != allocSizeWithoutCookie) { 1596 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1597 allocAlign = std::max(allocAlign, cookieAlign); 1598 } 1599 1600 // The allocation alignment may be passed as the second argument. 1601 if (E->passAlignment()) { 1602 QualType AlignValT = sizeType; 1603 if (allocatorType->getNumParams() > 1) { 1604 AlignValT = allocatorType->getParamType(1); 1605 assert(getContext().hasSameUnqualifiedType( 1606 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1607 sizeType) && 1608 "wrong type for alignment parameter"); 1609 ++ParamsToSkip; 1610 } else { 1611 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1612 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1613 } 1614 allocatorArgs.add( 1615 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1616 AlignValT); 1617 } 1618 1619 // FIXME: Why do we not pass a CalleeDecl here? 1620 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1621 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1622 1623 RValue RV = 1624 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1625 1626 // If this was a call to a global replaceable allocation function that does 1627 // not take an alignment argument, the allocator is known to produce 1628 // storage that's suitably aligned for any object that fits, up to a known 1629 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1630 CharUnits allocationAlign = allocAlign; 1631 if (!E->passAlignment() && 1632 allocator->isReplaceableGlobalAllocationFunction()) { 1633 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1634 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1635 allocationAlign = std::max( 1636 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1637 } 1638 1639 allocation = Address(RV.getScalarVal(), allocationAlign); 1640 } 1641 1642 // Emit a null check on the allocation result if the allocation 1643 // function is allowed to return null (because it has a non-throwing 1644 // exception spec or is the reserved placement new) and we have an 1645 // interesting initializer will be running sanitizers on the initialization. 1646 bool nullCheck = E->shouldNullCheckAllocation() && 1647 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1648 sanitizePerformTypeCheck()); 1649 1650 llvm::BasicBlock *nullCheckBB = nullptr; 1651 llvm::BasicBlock *contBB = nullptr; 1652 1653 // The null-check means that the initializer is conditionally 1654 // evaluated. 1655 ConditionalEvaluation conditional(*this); 1656 1657 if (nullCheck) { 1658 conditional.begin(*this); 1659 1660 nullCheckBB = Builder.GetInsertBlock(); 1661 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1662 contBB = createBasicBlock("new.cont"); 1663 1664 llvm::Value *isNull = 1665 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1666 Builder.CreateCondBr(isNull, contBB, notNullBB); 1667 EmitBlock(notNullBB); 1668 } 1669 1670 // If there's an operator delete, enter a cleanup to call it if an 1671 // exception is thrown. 1672 EHScopeStack::stable_iterator operatorDeleteCleanup; 1673 llvm::Instruction *cleanupDominator = nullptr; 1674 if (E->getOperatorDelete() && 1675 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1676 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1677 allocatorArgs); 1678 operatorDeleteCleanup = EHStack.stable_begin(); 1679 cleanupDominator = Builder.CreateUnreachable(); 1680 } 1681 1682 assert((allocSize == allocSizeWithoutCookie) == 1683 CalculateCookiePadding(*this, E).isZero()); 1684 if (allocSize != allocSizeWithoutCookie) { 1685 assert(E->isArray()); 1686 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1687 numElements, 1688 E, allocType); 1689 } 1690 1691 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1692 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1693 1694 // Passing pointer through launder.invariant.group to avoid propagation of 1695 // vptrs information which may be included in previous type. 1696 // To not break LTO with different optimizations levels, we do it regardless 1697 // of optimization level. 1698 if (CGM.getCodeGenOpts().StrictVTablePointers && 1699 allocator->isReservedGlobalPlacementOperator()) 1700 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1701 result.getAlignment()); 1702 1703 // Emit sanitizer checks for pointer value now, so that in the case of an 1704 // array it was checked only once and not at each constructor call. We may 1705 // have already checked that the pointer is non-null. 1706 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1707 // we'll null check the wrong pointer here. 1708 SanitizerSet SkippedChecks; 1709 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1710 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1711 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1712 result.getPointer(), allocType, result.getAlignment(), 1713 SkippedChecks, numElements); 1714 1715 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1716 allocSizeWithoutCookie); 1717 if (E->isArray()) { 1718 // NewPtr is a pointer to the base element type. If we're 1719 // allocating an array of arrays, we'll need to cast back to the 1720 // array pointer type. 1721 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1722 if (result.getType() != resultType) 1723 result = Builder.CreateBitCast(result, resultType); 1724 } 1725 1726 // Deactivate the 'operator delete' cleanup if we finished 1727 // initialization. 1728 if (operatorDeleteCleanup.isValid()) { 1729 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1730 cleanupDominator->eraseFromParent(); 1731 } 1732 1733 llvm::Value *resultPtr = result.getPointer(); 1734 if (nullCheck) { 1735 conditional.end(*this); 1736 1737 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1738 EmitBlock(contBB); 1739 1740 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1741 PHI->addIncoming(resultPtr, notNullBB); 1742 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1743 nullCheckBB); 1744 1745 resultPtr = PHI; 1746 } 1747 1748 return resultPtr; 1749 } 1750 1751 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1752 llvm::Value *Ptr, QualType DeleteTy, 1753 llvm::Value *NumElements, 1754 CharUnits CookieSize) { 1755 assert((!NumElements && CookieSize.isZero()) || 1756 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1757 1758 const FunctionProtoType *DeleteFTy = 1759 DeleteFD->getType()->getAs<FunctionProtoType>(); 1760 1761 CallArgList DeleteArgs; 1762 1763 auto Params = getUsualDeleteParams(DeleteFD); 1764 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1765 1766 // Pass the pointer itself. 1767 QualType ArgTy = *ParamTypeIt++; 1768 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1769 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1770 1771 // Pass the std::destroying_delete tag if present. 1772 if (Params.DestroyingDelete) { 1773 QualType DDTag = *ParamTypeIt++; 1774 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1775 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1776 DeleteArgs.add(RValue::get(V), DDTag); 1777 } 1778 1779 // Pass the size if the delete function has a size_t parameter. 1780 if (Params.Size) { 1781 QualType SizeType = *ParamTypeIt++; 1782 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1783 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1784 DeleteTypeSize.getQuantity()); 1785 1786 // For array new, multiply by the number of elements. 1787 if (NumElements) 1788 Size = Builder.CreateMul(Size, NumElements); 1789 1790 // If there is a cookie, add the cookie size. 1791 if (!CookieSize.isZero()) 1792 Size = Builder.CreateAdd( 1793 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1794 1795 DeleteArgs.add(RValue::get(Size), SizeType); 1796 } 1797 1798 // Pass the alignment if the delete function has an align_val_t parameter. 1799 if (Params.Alignment) { 1800 QualType AlignValType = *ParamTypeIt++; 1801 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1802 getContext().getTypeAlignIfKnown(DeleteTy)); 1803 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1804 DeleteTypeAlign.getQuantity()); 1805 DeleteArgs.add(RValue::get(Align), AlignValType); 1806 } 1807 1808 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1809 "unknown parameter to usual delete function"); 1810 1811 // Emit the call to delete. 1812 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1813 } 1814 1815 namespace { 1816 /// Calls the given 'operator delete' on a single object. 1817 struct CallObjectDelete final : EHScopeStack::Cleanup { 1818 llvm::Value *Ptr; 1819 const FunctionDecl *OperatorDelete; 1820 QualType ElementType; 1821 1822 CallObjectDelete(llvm::Value *Ptr, 1823 const FunctionDecl *OperatorDelete, 1824 QualType ElementType) 1825 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1826 1827 void Emit(CodeGenFunction &CGF, Flags flags) override { 1828 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1829 } 1830 }; 1831 } 1832 1833 void 1834 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1835 llvm::Value *CompletePtr, 1836 QualType ElementType) { 1837 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1838 OperatorDelete, ElementType); 1839 } 1840 1841 /// Emit the code for deleting a single object with a destroying operator 1842 /// delete. If the element type has a non-virtual destructor, Ptr has already 1843 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1844 /// Ptr points to an object of the static type. 1845 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1846 const CXXDeleteExpr *DE, Address Ptr, 1847 QualType ElementType) { 1848 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1849 if (Dtor && Dtor->isVirtual()) 1850 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1851 Dtor); 1852 else 1853 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1854 } 1855 1856 /// Emit the code for deleting a single object. 1857 static void EmitObjectDelete(CodeGenFunction &CGF, 1858 const CXXDeleteExpr *DE, 1859 Address Ptr, 1860 QualType ElementType) { 1861 // C++11 [expr.delete]p3: 1862 // If the static type of the object to be deleted is different from its 1863 // dynamic type, the static type shall be a base class of the dynamic type 1864 // of the object to be deleted and the static type shall have a virtual 1865 // destructor or the behavior is undefined. 1866 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1867 DE->getExprLoc(), Ptr.getPointer(), 1868 ElementType); 1869 1870 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1871 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1872 1873 // Find the destructor for the type, if applicable. If the 1874 // destructor is virtual, we'll just emit the vcall and return. 1875 const CXXDestructorDecl *Dtor = nullptr; 1876 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1877 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1878 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1879 Dtor = RD->getDestructor(); 1880 1881 if (Dtor->isVirtual()) { 1882 bool UseVirtualCall = true; 1883 const Expr *Base = DE->getArgument(); 1884 if (auto *DevirtualizedDtor = 1885 dyn_cast_or_null<const CXXDestructorDecl>( 1886 Dtor->getDevirtualizedMethod( 1887 Base, CGF.CGM.getLangOpts().AppleKext))) { 1888 UseVirtualCall = false; 1889 const CXXRecordDecl *DevirtualizedClass = 1890 DevirtualizedDtor->getParent(); 1891 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1892 // Devirtualized to the class of the base type (the type of the 1893 // whole expression). 1894 Dtor = DevirtualizedDtor; 1895 } else { 1896 // Devirtualized to some other type. Would need to cast the this 1897 // pointer to that type but we don't have support for that yet, so 1898 // do a virtual call. FIXME: handle the case where it is 1899 // devirtualized to the derived type (the type of the inner 1900 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1901 UseVirtualCall = true; 1902 } 1903 } 1904 if (UseVirtualCall) { 1905 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1906 Dtor); 1907 return; 1908 } 1909 } 1910 } 1911 } 1912 1913 // Make sure that we call delete even if the dtor throws. 1914 // This doesn't have to a conditional cleanup because we're going 1915 // to pop it off in a second. 1916 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1917 Ptr.getPointer(), 1918 OperatorDelete, ElementType); 1919 1920 if (Dtor) 1921 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1922 /*ForVirtualBase=*/false, 1923 /*Delegating=*/false, 1924 Ptr, ElementType); 1925 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1926 switch (Lifetime) { 1927 case Qualifiers::OCL_None: 1928 case Qualifiers::OCL_ExplicitNone: 1929 case Qualifiers::OCL_Autoreleasing: 1930 break; 1931 1932 case Qualifiers::OCL_Strong: 1933 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1934 break; 1935 1936 case Qualifiers::OCL_Weak: 1937 CGF.EmitARCDestroyWeak(Ptr); 1938 break; 1939 } 1940 } 1941 1942 CGF.PopCleanupBlock(); 1943 } 1944 1945 namespace { 1946 /// Calls the given 'operator delete' on an array of objects. 1947 struct CallArrayDelete final : EHScopeStack::Cleanup { 1948 llvm::Value *Ptr; 1949 const FunctionDecl *OperatorDelete; 1950 llvm::Value *NumElements; 1951 QualType ElementType; 1952 CharUnits CookieSize; 1953 1954 CallArrayDelete(llvm::Value *Ptr, 1955 const FunctionDecl *OperatorDelete, 1956 llvm::Value *NumElements, 1957 QualType ElementType, 1958 CharUnits CookieSize) 1959 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1960 ElementType(ElementType), CookieSize(CookieSize) {} 1961 1962 void Emit(CodeGenFunction &CGF, Flags flags) override { 1963 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1964 CookieSize); 1965 } 1966 }; 1967 } 1968 1969 /// Emit the code for deleting an array of objects. 1970 static void EmitArrayDelete(CodeGenFunction &CGF, 1971 const CXXDeleteExpr *E, 1972 Address deletedPtr, 1973 QualType elementType) { 1974 llvm::Value *numElements = nullptr; 1975 llvm::Value *allocatedPtr = nullptr; 1976 CharUnits cookieSize; 1977 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1978 numElements, allocatedPtr, cookieSize); 1979 1980 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1981 1982 // Make sure that we call delete even if one of the dtors throws. 1983 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1984 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1985 allocatedPtr, operatorDelete, 1986 numElements, elementType, 1987 cookieSize); 1988 1989 // Destroy the elements. 1990 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1991 assert(numElements && "no element count for a type with a destructor!"); 1992 1993 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1994 CharUnits elementAlign = 1995 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1996 1997 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1998 llvm::Value *arrayEnd = 1999 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 2000 2001 // Note that it is legal to allocate a zero-length array, and we 2002 // can never fold the check away because the length should always 2003 // come from a cookie. 2004 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 2005 CGF.getDestroyer(dtorKind), 2006 /*checkZeroLength*/ true, 2007 CGF.needsEHCleanup(dtorKind)); 2008 } 2009 2010 // Pop the cleanup block. 2011 CGF.PopCleanupBlock(); 2012 } 2013 2014 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 2015 const Expr *Arg = E->getArgument(); 2016 Address Ptr = EmitPointerWithAlignment(Arg); 2017 2018 // Null check the pointer. 2019 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2020 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2021 2022 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2023 2024 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2025 EmitBlock(DeleteNotNull); 2026 2027 QualType DeleteTy = E->getDestroyedType(); 2028 2029 // A destroying operator delete overrides the entire operation of the 2030 // delete expression. 2031 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2032 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2033 EmitBlock(DeleteEnd); 2034 return; 2035 } 2036 2037 // We might be deleting a pointer to array. If so, GEP down to the 2038 // first non-array element. 2039 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2040 if (DeleteTy->isConstantArrayType()) { 2041 llvm::Value *Zero = Builder.getInt32(0); 2042 SmallVector<llvm::Value*,8> GEP; 2043 2044 GEP.push_back(Zero); // point at the outermost array 2045 2046 // For each layer of array type we're pointing at: 2047 while (const ConstantArrayType *Arr 2048 = getContext().getAsConstantArrayType(DeleteTy)) { 2049 // 1. Unpeel the array type. 2050 DeleteTy = Arr->getElementType(); 2051 2052 // 2. GEP to the first element of the array. 2053 GEP.push_back(Zero); 2054 } 2055 2056 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2057 Ptr.getAlignment()); 2058 } 2059 2060 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2061 2062 if (E->isArrayForm()) { 2063 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2064 } else { 2065 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2066 } 2067 2068 EmitBlock(DeleteEnd); 2069 } 2070 2071 static bool isGLValueFromPointerDeref(const Expr *E) { 2072 E = E->IgnoreParens(); 2073 2074 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2075 if (!CE->getSubExpr()->isGLValue()) 2076 return false; 2077 return isGLValueFromPointerDeref(CE->getSubExpr()); 2078 } 2079 2080 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2081 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2082 2083 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2084 if (BO->getOpcode() == BO_Comma) 2085 return isGLValueFromPointerDeref(BO->getRHS()); 2086 2087 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2088 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2089 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2090 2091 // C++11 [expr.sub]p1: 2092 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2093 if (isa<ArraySubscriptExpr>(E)) 2094 return true; 2095 2096 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2097 if (UO->getOpcode() == UO_Deref) 2098 return true; 2099 2100 return false; 2101 } 2102 2103 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2104 llvm::Type *StdTypeInfoPtrTy) { 2105 // Get the vtable pointer. 2106 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 2107 2108 QualType SrcRecordTy = E->getType(); 2109 2110 // C++ [class.cdtor]p4: 2111 // If the operand of typeid refers to the object under construction or 2112 // destruction and the static type of the operand is neither the constructor 2113 // or destructor’s class nor one of its bases, the behavior is undefined. 2114 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2115 ThisPtr.getPointer(), SrcRecordTy); 2116 2117 // C++ [expr.typeid]p2: 2118 // If the glvalue expression is obtained by applying the unary * operator to 2119 // a pointer and the pointer is a null pointer value, the typeid expression 2120 // throws the std::bad_typeid exception. 2121 // 2122 // However, this paragraph's intent is not clear. We choose a very generous 2123 // interpretation which implores us to consider comma operators, conditional 2124 // operators, parentheses and other such constructs. 2125 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2126 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2127 llvm::BasicBlock *BadTypeidBlock = 2128 CGF.createBasicBlock("typeid.bad_typeid"); 2129 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2130 2131 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2132 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2133 2134 CGF.EmitBlock(BadTypeidBlock); 2135 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2136 CGF.EmitBlock(EndBlock); 2137 } 2138 2139 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2140 StdTypeInfoPtrTy); 2141 } 2142 2143 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2144 llvm::Type *StdTypeInfoPtrTy = 2145 ConvertType(E->getType())->getPointerTo(); 2146 2147 if (E->isTypeOperand()) { 2148 llvm::Constant *TypeInfo = 2149 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2150 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2151 } 2152 2153 // C++ [expr.typeid]p2: 2154 // When typeid is applied to a glvalue expression whose type is a 2155 // polymorphic class type, the result refers to a std::type_info object 2156 // representing the type of the most derived object (that is, the dynamic 2157 // type) to which the glvalue refers. 2158 if (E->isPotentiallyEvaluated()) 2159 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2160 StdTypeInfoPtrTy); 2161 2162 QualType OperandTy = E->getExprOperand()->getType(); 2163 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2164 StdTypeInfoPtrTy); 2165 } 2166 2167 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2168 QualType DestTy) { 2169 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2170 if (DestTy->isPointerType()) 2171 return llvm::Constant::getNullValue(DestLTy); 2172 2173 /// C++ [expr.dynamic.cast]p9: 2174 /// A failed cast to reference type throws std::bad_cast 2175 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2176 return nullptr; 2177 2178 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2179 return llvm::UndefValue::get(DestLTy); 2180 } 2181 2182 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2183 const CXXDynamicCastExpr *DCE) { 2184 CGM.EmitExplicitCastExprType(DCE, this); 2185 QualType DestTy = DCE->getTypeAsWritten(); 2186 2187 QualType SrcTy = DCE->getSubExpr()->getType(); 2188 2189 // C++ [expr.dynamic.cast]p7: 2190 // If T is "pointer to cv void," then the result is a pointer to the most 2191 // derived object pointed to by v. 2192 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2193 2194 bool isDynamicCastToVoid; 2195 QualType SrcRecordTy; 2196 QualType DestRecordTy; 2197 if (DestPTy) { 2198 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2199 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2200 DestRecordTy = DestPTy->getPointeeType(); 2201 } else { 2202 isDynamicCastToVoid = false; 2203 SrcRecordTy = SrcTy; 2204 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2205 } 2206 2207 // C++ [class.cdtor]p5: 2208 // If the operand of the dynamic_cast refers to the object under 2209 // construction or destruction and the static type of the operand is not a 2210 // pointer to or object of the constructor or destructor’s own class or one 2211 // of its bases, the dynamic_cast results in undefined behavior. 2212 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2213 SrcRecordTy); 2214 2215 if (DCE->isAlwaysNull()) 2216 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2217 return T; 2218 2219 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2220 2221 // C++ [expr.dynamic.cast]p4: 2222 // If the value of v is a null pointer value in the pointer case, the result 2223 // is the null pointer value of type T. 2224 bool ShouldNullCheckSrcValue = 2225 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2226 SrcRecordTy); 2227 2228 llvm::BasicBlock *CastNull = nullptr; 2229 llvm::BasicBlock *CastNotNull = nullptr; 2230 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2231 2232 if (ShouldNullCheckSrcValue) { 2233 CastNull = createBasicBlock("dynamic_cast.null"); 2234 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2235 2236 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2237 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2238 EmitBlock(CastNotNull); 2239 } 2240 2241 llvm::Value *Value; 2242 if (isDynamicCastToVoid) { 2243 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2244 DestTy); 2245 } else { 2246 assert(DestRecordTy->isRecordType() && 2247 "destination type must be a record type!"); 2248 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2249 DestTy, DestRecordTy, CastEnd); 2250 CastNotNull = Builder.GetInsertBlock(); 2251 } 2252 2253 if (ShouldNullCheckSrcValue) { 2254 EmitBranch(CastEnd); 2255 2256 EmitBlock(CastNull); 2257 EmitBranch(CastEnd); 2258 } 2259 2260 EmitBlock(CastEnd); 2261 2262 if (ShouldNullCheckSrcValue) { 2263 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2264 PHI->addIncoming(Value, CastNotNull); 2265 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2266 2267 Value = PHI; 2268 } 2269 2270 return Value; 2271 } 2272