xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprCXX.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29   RequiredArgs ReqArgs;
30   // Number of prefix arguments for the call. Ignores the `this` pointer.
31   unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
37                                   llvm::Value *This, llvm::Value *ImplicitParam,
38                                   QualType ImplicitParamTy, const CallExpr *CE,
39                                   CallArgList &Args, CallArgList *RtlArgs) {
40   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
41 
42   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
43          isa<CXXOperatorCallExpr>(CE));
44   assert(MD->isInstance() &&
45          "Trying to emit a member or operator call expr on a static method!");
46 
47   // Push the this ptr.
48   const CXXRecordDecl *RD =
49       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
50   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
51 
52   // If there is an implicit parameter (e.g. VTT), emit it.
53   if (ImplicitParam) {
54     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55   }
56 
57   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
59   unsigned PrefixSize = Args.size() - 1;
60 
61   // And the rest of the call args.
62   if (RtlArgs) {
63     // Special case: if the caller emitted the arguments right-to-left already
64     // (prior to emitting the *this argument), we're done. This happens for
65     // assignment operators.
66     Args.addFrom(*RtlArgs);
67   } else if (CE) {
68     // Special case: skip first argument of CXXOperatorCall (it is "this").
69     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
70     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
71                      CE->getDirectCallee());
72   } else {
73     assert(
74         FPT->getNumParams() == 0 &&
75         "No CallExpr specified for function with non-zero number of arguments");
76   }
77   return {required, PrefixSize};
78 }
79 
80 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
81     const CXXMethodDecl *MD, const CGCallee &Callee,
82     ReturnValueSlot ReturnValue,
83     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
84     const CallExpr *CE, CallArgList *RtlArgs) {
85   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
86   CallArgList Args;
87   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
88       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
89   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
90       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
91   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
92                   CE && CE == MustTailCall,
93                   CE ? CE->getExprLoc() : SourceLocation());
94 }
95 
96 RValue CodeGenFunction::EmitCXXDestructorCall(
97     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
98     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
99   const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
100 
101   assert(!ThisTy.isNull());
102   assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
103          "Pointer/Object mixup");
104 
105   LangAS SrcAS = ThisTy.getAddressSpace();
106   LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
107   if (SrcAS != DstAS) {
108     QualType DstTy = DtorDecl->getThisType();
109     llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
110     This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
111                                                  NewType);
112   }
113 
114   CallArgList Args;
115   commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam,
116                                     ImplicitParamTy, CE, Args, nullptr);
117   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
118                   ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
119                   CE ? CE->getExprLoc() : SourceLocation{});
120 }
121 
122 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
123                                             const CXXPseudoDestructorExpr *E) {
124   QualType DestroyedType = E->getDestroyedType();
125   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
126     // Automatic Reference Counting:
127     //   If the pseudo-expression names a retainable object with weak or
128     //   strong lifetime, the object shall be released.
129     Expr *BaseExpr = E->getBase();
130     Address BaseValue = Address::invalid();
131     Qualifiers BaseQuals;
132 
133     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
134     if (E->isArrow()) {
135       BaseValue = EmitPointerWithAlignment(BaseExpr);
136       const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
137       BaseQuals = PTy->getPointeeType().getQualifiers();
138     } else {
139       LValue BaseLV = EmitLValue(BaseExpr);
140       BaseValue = BaseLV.getAddress(*this);
141       QualType BaseTy = BaseExpr->getType();
142       BaseQuals = BaseTy.getQualifiers();
143     }
144 
145     switch (DestroyedType.getObjCLifetime()) {
146     case Qualifiers::OCL_None:
147     case Qualifiers::OCL_ExplicitNone:
148     case Qualifiers::OCL_Autoreleasing:
149       break;
150 
151     case Qualifiers::OCL_Strong:
152       EmitARCRelease(Builder.CreateLoad(BaseValue,
153                         DestroyedType.isVolatileQualified()),
154                      ARCPreciseLifetime);
155       break;
156 
157     case Qualifiers::OCL_Weak:
158       EmitARCDestroyWeak(BaseValue);
159       break;
160     }
161   } else {
162     // C++ [expr.pseudo]p1:
163     //   The result shall only be used as the operand for the function call
164     //   operator (), and the result of such a call has type void. The only
165     //   effect is the evaluation of the postfix-expression before the dot or
166     //   arrow.
167     EmitIgnoredExpr(E->getBase());
168   }
169 
170   return RValue::get(nullptr);
171 }
172 
173 static CXXRecordDecl *getCXXRecord(const Expr *E) {
174   QualType T = E->getType();
175   if (const PointerType *PTy = T->getAs<PointerType>())
176     T = PTy->getPointeeType();
177   const RecordType *Ty = T->castAs<RecordType>();
178   return cast<CXXRecordDecl>(Ty->getDecl());
179 }
180 
181 // Note: This function also emit constructor calls to support a MSVC
182 // extensions allowing explicit constructor function call.
183 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
184                                               ReturnValueSlot ReturnValue) {
185   const Expr *callee = CE->getCallee()->IgnoreParens();
186 
187   if (isa<BinaryOperator>(callee))
188     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
189 
190   const MemberExpr *ME = cast<MemberExpr>(callee);
191   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
192 
193   if (MD->isStatic()) {
194     // The method is static, emit it as we would a regular call.
195     CGCallee callee =
196         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
197     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
198                     ReturnValue);
199   }
200 
201   bool HasQualifier = ME->hasQualifier();
202   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
203   bool IsArrow = ME->isArrow();
204   const Expr *Base = ME->getBase();
205 
206   return EmitCXXMemberOrOperatorMemberCallExpr(
207       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
208 }
209 
210 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
211     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
212     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
213     const Expr *Base) {
214   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
215 
216   // Compute the object pointer.
217   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
218 
219   const CXXMethodDecl *DevirtualizedMethod = nullptr;
220   if (CanUseVirtualCall &&
221       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
222     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
223     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
224     assert(DevirtualizedMethod);
225     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
226     const Expr *Inner = Base->IgnoreParenBaseCasts();
227     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
228         MD->getReturnType().getCanonicalType())
229       // If the return types are not the same, this might be a case where more
230       // code needs to run to compensate for it. For example, the derived
231       // method might return a type that inherits form from the return
232       // type of MD and has a prefix.
233       // For now we just avoid devirtualizing these covariant cases.
234       DevirtualizedMethod = nullptr;
235     else if (getCXXRecord(Inner) == DevirtualizedClass)
236       // If the class of the Inner expression is where the dynamic method
237       // is defined, build the this pointer from it.
238       Base = Inner;
239     else if (getCXXRecord(Base) != DevirtualizedClass) {
240       // If the method is defined in a class that is not the best dynamic
241       // one or the one of the full expression, we would have to build
242       // a derived-to-base cast to compute the correct this pointer, but
243       // we don't have support for that yet, so do a virtual call.
244       DevirtualizedMethod = nullptr;
245     }
246   }
247 
248   bool TrivialForCodegen =
249       MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
250   bool TrivialAssignment =
251       TrivialForCodegen &&
252       (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
253       !MD->getParent()->mayInsertExtraPadding();
254 
255   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
256   // operator before the LHS.
257   CallArgList RtlArgStorage;
258   CallArgList *RtlArgs = nullptr;
259   LValue TrivialAssignmentRHS;
260   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
261     if (OCE->isAssignmentOp()) {
262       if (TrivialAssignment) {
263         TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
264       } else {
265         RtlArgs = &RtlArgStorage;
266         EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
267                      drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
268                      /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
269       }
270     }
271   }
272 
273   LValue This;
274   if (IsArrow) {
275     LValueBaseInfo BaseInfo;
276     TBAAAccessInfo TBAAInfo;
277     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
278     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
279   } else {
280     This = EmitLValue(Base);
281   }
282 
283   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
284     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
285     // constructing a new complete object of type Ctor.
286     assert(!RtlArgs);
287     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
288     CallArgList Args;
289     commonEmitCXXMemberOrOperatorCall(
290         *this, {Ctor, Ctor_Complete}, This.getPointer(*this),
291         /*ImplicitParam=*/nullptr,
292         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
293 
294     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
295                            /*Delegating=*/false, This.getAddress(*this), Args,
296                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
297                            /*NewPointerIsChecked=*/false);
298     return RValue::get(nullptr);
299   }
300 
301   if (TrivialForCodegen) {
302     if (isa<CXXDestructorDecl>(MD))
303       return RValue::get(nullptr);
304 
305     if (TrivialAssignment) {
306       // We don't like to generate the trivial copy/move assignment operator
307       // when it isn't necessary; just produce the proper effect here.
308       // It's important that we use the result of EmitLValue here rather than
309       // emitting call arguments, in order to preserve TBAA information from
310       // the RHS.
311       LValue RHS = isa<CXXOperatorCallExpr>(CE)
312                        ? TrivialAssignmentRHS
313                        : EmitLValue(*CE->arg_begin());
314       EmitAggregateAssign(This, RHS, CE->getType());
315       return RValue::get(This.getPointer(*this));
316     }
317 
318     assert(MD->getParent()->mayInsertExtraPadding() &&
319            "unknown trivial member function");
320   }
321 
322   // Compute the function type we're calling.
323   const CXXMethodDecl *CalleeDecl =
324       DevirtualizedMethod ? DevirtualizedMethod : MD;
325   const CGFunctionInfo *FInfo = nullptr;
326   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
327     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
328         GlobalDecl(Dtor, Dtor_Complete));
329   else
330     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
331 
332   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
333 
334   // C++11 [class.mfct.non-static]p2:
335   //   If a non-static member function of a class X is called for an object that
336   //   is not of type X, or of a type derived from X, the behavior is undefined.
337   SourceLocation CallLoc;
338   ASTContext &C = getContext();
339   if (CE)
340     CallLoc = CE->getExprLoc();
341 
342   SanitizerSet SkippedChecks;
343   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
344     auto *IOA = CMCE->getImplicitObjectArgument();
345     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
346     if (IsImplicitObjectCXXThis)
347       SkippedChecks.set(SanitizerKind::Alignment, true);
348     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
349       SkippedChecks.set(SanitizerKind::Null, true);
350   }
351   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
352                 This.getPointer(*this),
353                 C.getRecordType(CalleeDecl->getParent()),
354                 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
355 
356   // C++ [class.virtual]p12:
357   //   Explicit qualification with the scope operator (5.1) suppresses the
358   //   virtual call mechanism.
359   //
360   // We also don't emit a virtual call if the base expression has a record type
361   // because then we know what the type is.
362   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
363 
364   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
365     assert(CE->arg_begin() == CE->arg_end() &&
366            "Destructor shouldn't have explicit parameters");
367     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
368     if (UseVirtualCall) {
369       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
370                                                 This.getAddress(*this),
371                                                 cast<CXXMemberCallExpr>(CE));
372     } else {
373       GlobalDecl GD(Dtor, Dtor_Complete);
374       CGCallee Callee;
375       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
376         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
377       else if (!DevirtualizedMethod)
378         Callee =
379             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
380       else {
381         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
382       }
383 
384       QualType ThisTy =
385           IsArrow ? Base->getType()->getPointeeType() : Base->getType();
386       EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
387                             /*ImplicitParam=*/nullptr,
388                             /*ImplicitParamTy=*/QualType(), CE);
389     }
390     return RValue::get(nullptr);
391   }
392 
393   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
394   // 'CalleeDecl' instead.
395 
396   CGCallee Callee;
397   if (UseVirtualCall) {
398     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
399   } else {
400     if (SanOpts.has(SanitizerKind::CFINVCall) &&
401         MD->getParent()->isDynamicClass()) {
402       llvm::Value *VTable;
403       const CXXRecordDecl *RD;
404       std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
405           *this, This.getAddress(*this), CalleeDecl->getParent());
406       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
407     }
408 
409     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
410       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
411     else if (!DevirtualizedMethod)
412       Callee =
413           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
414     else {
415       Callee =
416           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
417                               GlobalDecl(DevirtualizedMethod));
418     }
419   }
420 
421   if (MD->isVirtual()) {
422     Address NewThisAddr =
423         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
424             *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
425     This.setAddress(NewThisAddr);
426   }
427 
428   return EmitCXXMemberOrOperatorCall(
429       CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
430       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
431 }
432 
433 RValue
434 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
435                                               ReturnValueSlot ReturnValue) {
436   const BinaryOperator *BO =
437       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
438   const Expr *BaseExpr = BO->getLHS();
439   const Expr *MemFnExpr = BO->getRHS();
440 
441   const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
442   const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
443   const auto *RD =
444       cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
445 
446   // Emit the 'this' pointer.
447   Address This = Address::invalid();
448   if (BO->getOpcode() == BO_PtrMemI)
449     This = EmitPointerWithAlignment(BaseExpr);
450   else
451     This = EmitLValue(BaseExpr).getAddress(*this);
452 
453   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
454                 QualType(MPT->getClass(), 0));
455 
456   // Get the member function pointer.
457   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
458 
459   // Ask the ABI to load the callee.  Note that This is modified.
460   llvm::Value *ThisPtrForCall = nullptr;
461   CGCallee Callee =
462     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
463                                              ThisPtrForCall, MemFnPtr, MPT);
464 
465   CallArgList Args;
466 
467   QualType ThisType =
468     getContext().getPointerType(getContext().getTagDeclType(RD));
469 
470   // Push the this ptr.
471   Args.add(RValue::get(ThisPtrForCall), ThisType);
472 
473   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
474 
475   // And the rest of the call args
476   EmitCallArgs(Args, FPT, E->arguments());
477   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
478                                                       /*PrefixSize=*/0),
479                   Callee, ReturnValue, Args, nullptr, E == MustTailCall,
480                   E->getExprLoc());
481 }
482 
483 RValue
484 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
485                                                const CXXMethodDecl *MD,
486                                                ReturnValueSlot ReturnValue) {
487   assert(MD->isInstance() &&
488          "Trying to emit a member call expr on a static method!");
489   return EmitCXXMemberOrOperatorMemberCallExpr(
490       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
491       /*IsArrow=*/false, E->getArg(0));
492 }
493 
494 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
495                                                ReturnValueSlot ReturnValue) {
496   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
497 }
498 
499 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
500                                             Address DestPtr,
501                                             const CXXRecordDecl *Base) {
502   if (Base->isEmpty())
503     return;
504 
505   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
506 
507   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
508   CharUnits NVSize = Layout.getNonVirtualSize();
509 
510   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
511   // present, they are initialized by the most derived class before calling the
512   // constructor.
513   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
514   Stores.emplace_back(CharUnits::Zero(), NVSize);
515 
516   // Each store is split by the existence of a vbptr.
517   CharUnits VBPtrWidth = CGF.getPointerSize();
518   std::vector<CharUnits> VBPtrOffsets =
519       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
520   for (CharUnits VBPtrOffset : VBPtrOffsets) {
521     // Stop before we hit any virtual base pointers located in virtual bases.
522     if (VBPtrOffset >= NVSize)
523       break;
524     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
525     CharUnits LastStoreOffset = LastStore.first;
526     CharUnits LastStoreSize = LastStore.second;
527 
528     CharUnits SplitBeforeOffset = LastStoreOffset;
529     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
530     assert(!SplitBeforeSize.isNegative() && "negative store size!");
531     if (!SplitBeforeSize.isZero())
532       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
533 
534     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
535     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
536     assert(!SplitAfterSize.isNegative() && "negative store size!");
537     if (!SplitAfterSize.isZero())
538       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
539   }
540 
541   // If the type contains a pointer to data member we can't memset it to zero.
542   // Instead, create a null constant and copy it to the destination.
543   // TODO: there are other patterns besides zero that we can usefully memset,
544   // like -1, which happens to be the pattern used by member-pointers.
545   // TODO: isZeroInitializable can be over-conservative in the case where a
546   // virtual base contains a member pointer.
547   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
548   if (!NullConstantForBase->isNullValue()) {
549     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
550         CGF.CGM.getModule(), NullConstantForBase->getType(),
551         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
552         NullConstantForBase, Twine());
553 
554     CharUnits Align =
555         std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
556     NullVariable->setAlignment(Align.getAsAlign());
557 
558     Address SrcPtr =
559         Address(CGF.EmitCastToVoidPtr(NullVariable), CGF.Int8Ty, Align);
560 
561     // Get and call the appropriate llvm.memcpy overload.
562     for (std::pair<CharUnits, CharUnits> Store : Stores) {
563       CharUnits StoreOffset = Store.first;
564       CharUnits StoreSize = Store.second;
565       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
566       CGF.Builder.CreateMemCpy(
567           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
568           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
569           StoreSizeVal);
570     }
571 
572   // Otherwise, just memset the whole thing to zero.  This is legal
573   // because in LLVM, all default initializers (other than the ones we just
574   // handled above) are guaranteed to have a bit pattern of all zeros.
575   } else {
576     for (std::pair<CharUnits, CharUnits> Store : Stores) {
577       CharUnits StoreOffset = Store.first;
578       CharUnits StoreSize = Store.second;
579       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
580       CGF.Builder.CreateMemSet(
581           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
582           CGF.Builder.getInt8(0), StoreSizeVal);
583     }
584   }
585 }
586 
587 void
588 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
589                                       AggValueSlot Dest) {
590   assert(!Dest.isIgnored() && "Must have a destination!");
591   const CXXConstructorDecl *CD = E->getConstructor();
592 
593   // If we require zero initialization before (or instead of) calling the
594   // constructor, as can be the case with a non-user-provided default
595   // constructor, emit the zero initialization now, unless destination is
596   // already zeroed.
597   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
598     switch (E->getConstructionKind()) {
599     case CXXConstructExpr::CK_Delegating:
600     case CXXConstructExpr::CK_Complete:
601       EmitNullInitialization(Dest.getAddress(), E->getType());
602       break;
603     case CXXConstructExpr::CK_VirtualBase:
604     case CXXConstructExpr::CK_NonVirtualBase:
605       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
606                                       CD->getParent());
607       break;
608     }
609   }
610 
611   // If this is a call to a trivial default constructor, do nothing.
612   if (CD->isTrivial() && CD->isDefaultConstructor())
613     return;
614 
615   // Elide the constructor if we're constructing from a temporary.
616   if (getLangOpts().ElideConstructors && E->isElidable()) {
617     // FIXME: This only handles the simplest case, where the source object
618     //        is passed directly as the first argument to the constructor.
619     //        This should also handle stepping though implicit casts and
620     //        conversion sequences which involve two steps, with a
621     //        conversion operator followed by a converting constructor.
622     const Expr *SrcObj = E->getArg(0);
623     assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
624     assert(
625         getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
626     EmitAggExpr(SrcObj, Dest);
627     return;
628   }
629 
630   if (const ArrayType *arrayType
631         = getContext().getAsArrayType(E->getType())) {
632     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
633                                Dest.isSanitizerChecked());
634   } else {
635     CXXCtorType Type = Ctor_Complete;
636     bool ForVirtualBase = false;
637     bool Delegating = false;
638 
639     switch (E->getConstructionKind()) {
640      case CXXConstructExpr::CK_Delegating:
641       // We should be emitting a constructor; GlobalDecl will assert this
642       Type = CurGD.getCtorType();
643       Delegating = true;
644       break;
645 
646      case CXXConstructExpr::CK_Complete:
647       Type = Ctor_Complete;
648       break;
649 
650      case CXXConstructExpr::CK_VirtualBase:
651       ForVirtualBase = true;
652       [[fallthrough]];
653 
654      case CXXConstructExpr::CK_NonVirtualBase:
655       Type = Ctor_Base;
656      }
657 
658      // Call the constructor.
659      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
660   }
661 }
662 
663 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
664                                                  const Expr *Exp) {
665   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
666     Exp = E->getSubExpr();
667   assert(isa<CXXConstructExpr>(Exp) &&
668          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
669   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
670   const CXXConstructorDecl *CD = E->getConstructor();
671   RunCleanupsScope Scope(*this);
672 
673   // If we require zero initialization before (or instead of) calling the
674   // constructor, as can be the case with a non-user-provided default
675   // constructor, emit the zero initialization now.
676   // FIXME. Do I still need this for a copy ctor synthesis?
677   if (E->requiresZeroInitialization())
678     EmitNullInitialization(Dest, E->getType());
679 
680   assert(!getContext().getAsConstantArrayType(E->getType())
681          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
682   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
683 }
684 
685 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
686                                         const CXXNewExpr *E) {
687   if (!E->isArray())
688     return CharUnits::Zero();
689 
690   // No cookie is required if the operator new[] being used is the
691   // reserved placement operator new[].
692   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
693     return CharUnits::Zero();
694 
695   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
696 }
697 
698 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
699                                         const CXXNewExpr *e,
700                                         unsigned minElements,
701                                         llvm::Value *&numElements,
702                                         llvm::Value *&sizeWithoutCookie) {
703   QualType type = e->getAllocatedType();
704 
705   if (!e->isArray()) {
706     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
707     sizeWithoutCookie
708       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
709     return sizeWithoutCookie;
710   }
711 
712   // The width of size_t.
713   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
714 
715   // Figure out the cookie size.
716   llvm::APInt cookieSize(sizeWidth,
717                          CalculateCookiePadding(CGF, e).getQuantity());
718 
719   // Emit the array size expression.
720   // We multiply the size of all dimensions for NumElements.
721   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
722   numElements =
723     ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
724   if (!numElements)
725     numElements = CGF.EmitScalarExpr(*e->getArraySize());
726   assert(isa<llvm::IntegerType>(numElements->getType()));
727 
728   // The number of elements can be have an arbitrary integer type;
729   // essentially, we need to multiply it by a constant factor, add a
730   // cookie size, and verify that the result is representable as a
731   // size_t.  That's just a gloss, though, and it's wrong in one
732   // important way: if the count is negative, it's an error even if
733   // the cookie size would bring the total size >= 0.
734   bool isSigned
735     = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
736   llvm::IntegerType *numElementsType
737     = cast<llvm::IntegerType>(numElements->getType());
738   unsigned numElementsWidth = numElementsType->getBitWidth();
739 
740   // Compute the constant factor.
741   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
742   while (const ConstantArrayType *CAT
743              = CGF.getContext().getAsConstantArrayType(type)) {
744     type = CAT->getElementType();
745     arraySizeMultiplier *= CAT->getSize();
746   }
747 
748   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
749   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
750   typeSizeMultiplier *= arraySizeMultiplier;
751 
752   // This will be a size_t.
753   llvm::Value *size;
754 
755   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
756   // Don't bloat the -O0 code.
757   if (llvm::ConstantInt *numElementsC =
758         dyn_cast<llvm::ConstantInt>(numElements)) {
759     const llvm::APInt &count = numElementsC->getValue();
760 
761     bool hasAnyOverflow = false;
762 
763     // If 'count' was a negative number, it's an overflow.
764     if (isSigned && count.isNegative())
765       hasAnyOverflow = true;
766 
767     // We want to do all this arithmetic in size_t.  If numElements is
768     // wider than that, check whether it's already too big, and if so,
769     // overflow.
770     else if (numElementsWidth > sizeWidth &&
771              numElementsWidth - sizeWidth > count.countLeadingZeros())
772       hasAnyOverflow = true;
773 
774     // Okay, compute a count at the right width.
775     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
776 
777     // If there is a brace-initializer, we cannot allocate fewer elements than
778     // there are initializers. If we do, that's treated like an overflow.
779     if (adjustedCount.ult(minElements))
780       hasAnyOverflow = true;
781 
782     // Scale numElements by that.  This might overflow, but we don't
783     // care because it only overflows if allocationSize does, too, and
784     // if that overflows then we shouldn't use this.
785     numElements = llvm::ConstantInt::get(CGF.SizeTy,
786                                          adjustedCount * arraySizeMultiplier);
787 
788     // Compute the size before cookie, and track whether it overflowed.
789     bool overflow;
790     llvm::APInt allocationSize
791       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
792     hasAnyOverflow |= overflow;
793 
794     // Add in the cookie, and check whether it's overflowed.
795     if (cookieSize != 0) {
796       // Save the current size without a cookie.  This shouldn't be
797       // used if there was overflow.
798       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
799 
800       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
801       hasAnyOverflow |= overflow;
802     }
803 
804     // On overflow, produce a -1 so operator new will fail.
805     if (hasAnyOverflow) {
806       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
807     } else {
808       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
809     }
810 
811   // Otherwise, we might need to use the overflow intrinsics.
812   } else {
813     // There are up to five conditions we need to test for:
814     // 1) if isSigned, we need to check whether numElements is negative;
815     // 2) if numElementsWidth > sizeWidth, we need to check whether
816     //   numElements is larger than something representable in size_t;
817     // 3) if minElements > 0, we need to check whether numElements is smaller
818     //    than that.
819     // 4) we need to compute
820     //      sizeWithoutCookie := numElements * typeSizeMultiplier
821     //    and check whether it overflows; and
822     // 5) if we need a cookie, we need to compute
823     //      size := sizeWithoutCookie + cookieSize
824     //    and check whether it overflows.
825 
826     llvm::Value *hasOverflow = nullptr;
827 
828     // If numElementsWidth > sizeWidth, then one way or another, we're
829     // going to have to do a comparison for (2), and this happens to
830     // take care of (1), too.
831     if (numElementsWidth > sizeWidth) {
832       llvm::APInt threshold(numElementsWidth, 1);
833       threshold <<= sizeWidth;
834 
835       llvm::Value *thresholdV
836         = llvm::ConstantInt::get(numElementsType, threshold);
837 
838       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
839       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
840 
841     // Otherwise, if we're signed, we want to sext up to size_t.
842     } else if (isSigned) {
843       if (numElementsWidth < sizeWidth)
844         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
845 
846       // If there's a non-1 type size multiplier, then we can do the
847       // signedness check at the same time as we do the multiply
848       // because a negative number times anything will cause an
849       // unsigned overflow.  Otherwise, we have to do it here. But at least
850       // in this case, we can subsume the >= minElements check.
851       if (typeSizeMultiplier == 1)
852         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
853                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
854 
855     // Otherwise, zext up to size_t if necessary.
856     } else if (numElementsWidth < sizeWidth) {
857       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
858     }
859 
860     assert(numElements->getType() == CGF.SizeTy);
861 
862     if (minElements) {
863       // Don't allow allocation of fewer elements than we have initializers.
864       if (!hasOverflow) {
865         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
866                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
867       } else if (numElementsWidth > sizeWidth) {
868         // The other existing overflow subsumes this check.
869         // We do an unsigned comparison, since any signed value < -1 is
870         // taken care of either above or below.
871         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
872                           CGF.Builder.CreateICmpULT(numElements,
873                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
874       }
875     }
876 
877     size = numElements;
878 
879     // Multiply by the type size if necessary.  This multiplier
880     // includes all the factors for nested arrays.
881     //
882     // This step also causes numElements to be scaled up by the
883     // nested-array factor if necessary.  Overflow on this computation
884     // can be ignored because the result shouldn't be used if
885     // allocation fails.
886     if (typeSizeMultiplier != 1) {
887       llvm::Function *umul_with_overflow
888         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
889 
890       llvm::Value *tsmV =
891         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
892       llvm::Value *result =
893           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
894 
895       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
896       if (hasOverflow)
897         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
898       else
899         hasOverflow = overflowed;
900 
901       size = CGF.Builder.CreateExtractValue(result, 0);
902 
903       // Also scale up numElements by the array size multiplier.
904       if (arraySizeMultiplier != 1) {
905         // If the base element type size is 1, then we can re-use the
906         // multiply we just did.
907         if (typeSize.isOne()) {
908           assert(arraySizeMultiplier == typeSizeMultiplier);
909           numElements = size;
910 
911         // Otherwise we need a separate multiply.
912         } else {
913           llvm::Value *asmV =
914             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
915           numElements = CGF.Builder.CreateMul(numElements, asmV);
916         }
917       }
918     } else {
919       // numElements doesn't need to be scaled.
920       assert(arraySizeMultiplier == 1);
921     }
922 
923     // Add in the cookie size if necessary.
924     if (cookieSize != 0) {
925       sizeWithoutCookie = size;
926 
927       llvm::Function *uadd_with_overflow
928         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
929 
930       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
931       llvm::Value *result =
932           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
933 
934       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
935       if (hasOverflow)
936         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
937       else
938         hasOverflow = overflowed;
939 
940       size = CGF.Builder.CreateExtractValue(result, 0);
941     }
942 
943     // If we had any possibility of dynamic overflow, make a select to
944     // overwrite 'size' with an all-ones value, which should cause
945     // operator new to throw.
946     if (hasOverflow)
947       size = CGF.Builder.CreateSelect(hasOverflow,
948                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
949                                       size);
950   }
951 
952   if (cookieSize == 0)
953     sizeWithoutCookie = size;
954   else
955     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
956 
957   return size;
958 }
959 
960 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
961                                     QualType AllocType, Address NewPtr,
962                                     AggValueSlot::Overlap_t MayOverlap) {
963   // FIXME: Refactor with EmitExprAsInit.
964   switch (CGF.getEvaluationKind(AllocType)) {
965   case TEK_Scalar:
966     CGF.EmitScalarInit(Init, nullptr,
967                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
968     return;
969   case TEK_Complex:
970     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
971                                   /*isInit*/ true);
972     return;
973   case TEK_Aggregate: {
974     AggValueSlot Slot
975       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
976                               AggValueSlot::IsDestructed,
977                               AggValueSlot::DoesNotNeedGCBarriers,
978                               AggValueSlot::IsNotAliased,
979                               MayOverlap, AggValueSlot::IsNotZeroed,
980                               AggValueSlot::IsSanitizerChecked);
981     CGF.EmitAggExpr(Init, Slot);
982     return;
983   }
984   }
985   llvm_unreachable("bad evaluation kind");
986 }
987 
988 void CodeGenFunction::EmitNewArrayInitializer(
989     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
990     Address BeginPtr, llvm::Value *NumElements,
991     llvm::Value *AllocSizeWithoutCookie) {
992   // If we have a type with trivial initialization and no initializer,
993   // there's nothing to do.
994   if (!E->hasInitializer())
995     return;
996 
997   Address CurPtr = BeginPtr;
998 
999   unsigned InitListElements = 0;
1000 
1001   const Expr *Init = E->getInitializer();
1002   Address EndOfInit = Address::invalid();
1003   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1004   EHScopeStack::stable_iterator Cleanup;
1005   llvm::Instruction *CleanupDominator = nullptr;
1006 
1007   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1008   CharUnits ElementAlign =
1009     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1010 
1011   // Attempt to perform zero-initialization using memset.
1012   auto TryMemsetInitialization = [&]() -> bool {
1013     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1014     // we can initialize with a memset to -1.
1015     if (!CGM.getTypes().isZeroInitializable(ElementType))
1016       return false;
1017 
1018     // Optimization: since zero initialization will just set the memory
1019     // to all zeroes, generate a single memset to do it in one shot.
1020 
1021     // Subtract out the size of any elements we've already initialized.
1022     auto *RemainingSize = AllocSizeWithoutCookie;
1023     if (InitListElements) {
1024       // We know this can't overflow; we check this when doing the allocation.
1025       auto *InitializedSize = llvm::ConstantInt::get(
1026           RemainingSize->getType(),
1027           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1028               InitListElements);
1029       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1030     }
1031 
1032     // Create the memset.
1033     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1034     return true;
1035   };
1036 
1037   // If the initializer is an initializer list, first do the explicit elements.
1038   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1039     // Initializing from a (braced) string literal is a special case; the init
1040     // list element does not initialize a (single) array element.
1041     if (ILE->isStringLiteralInit()) {
1042       // Initialize the initial portion of length equal to that of the string
1043       // literal. The allocation must be for at least this much; we emitted a
1044       // check for that earlier.
1045       AggValueSlot Slot =
1046           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1047                                 AggValueSlot::IsDestructed,
1048                                 AggValueSlot::DoesNotNeedGCBarriers,
1049                                 AggValueSlot::IsNotAliased,
1050                                 AggValueSlot::DoesNotOverlap,
1051                                 AggValueSlot::IsNotZeroed,
1052                                 AggValueSlot::IsSanitizerChecked);
1053       EmitAggExpr(ILE->getInit(0), Slot);
1054 
1055       // Move past these elements.
1056       InitListElements =
1057           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1058               ->getSize().getZExtValue();
1059       CurPtr = Builder.CreateConstInBoundsGEP(
1060           CurPtr, InitListElements, "string.init.end");
1061 
1062       // Zero out the rest, if any remain.
1063       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1064       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1065         bool OK = TryMemsetInitialization();
1066         (void)OK;
1067         assert(OK && "couldn't memset character type?");
1068       }
1069       return;
1070     }
1071 
1072     InitListElements = ILE->getNumInits();
1073 
1074     // If this is a multi-dimensional array new, we will initialize multiple
1075     // elements with each init list element.
1076     QualType AllocType = E->getAllocatedType();
1077     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1078             AllocType->getAsArrayTypeUnsafe())) {
1079       ElementTy = ConvertTypeForMem(AllocType);
1080       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1081       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1082     }
1083 
1084     // Enter a partial-destruction Cleanup if necessary.
1085     if (needsEHCleanup(DtorKind)) {
1086       // In principle we could tell the Cleanup where we are more
1087       // directly, but the control flow can get so varied here that it
1088       // would actually be quite complex.  Therefore we go through an
1089       // alloca.
1090       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1091                                    "array.init.end");
1092       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1093       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1094                                        ElementType, ElementAlign,
1095                                        getDestroyer(DtorKind));
1096       Cleanup = EHStack.stable_begin();
1097     }
1098 
1099     CharUnits StartAlign = CurPtr.getAlignment();
1100     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1101       // Tell the cleanup that it needs to destroy up to this
1102       // element.  TODO: some of these stores can be trivially
1103       // observed to be unnecessary.
1104       if (EndOfInit.isValid()) {
1105         auto FinishedPtr =
1106           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1107         Builder.CreateStore(FinishedPtr, EndOfInit);
1108       }
1109       // FIXME: If the last initializer is an incomplete initializer list for
1110       // an array, and we have an array filler, we can fold together the two
1111       // initialization loops.
1112       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1113                               ILE->getInit(i)->getType(), CurPtr,
1114                               AggValueSlot::DoesNotOverlap);
1115       CurPtr = Address(Builder.CreateInBoundsGEP(
1116                            CurPtr.getElementType(), CurPtr.getPointer(),
1117                            Builder.getSize(1), "array.exp.next"),
1118                        CurPtr.getElementType(),
1119                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1120     }
1121 
1122     // The remaining elements are filled with the array filler expression.
1123     Init = ILE->getArrayFiller();
1124 
1125     // Extract the initializer for the individual array elements by pulling
1126     // out the array filler from all the nested initializer lists. This avoids
1127     // generating a nested loop for the initialization.
1128     while (Init && Init->getType()->isConstantArrayType()) {
1129       auto *SubILE = dyn_cast<InitListExpr>(Init);
1130       if (!SubILE)
1131         break;
1132       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1133       Init = SubILE->getArrayFiller();
1134     }
1135 
1136     // Switch back to initializing one base element at a time.
1137     CurPtr = Builder.CreateElementBitCast(CurPtr, BeginPtr.getElementType());
1138   }
1139 
1140   // If all elements have already been initialized, skip any further
1141   // initialization.
1142   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1143   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1144     // If there was a Cleanup, deactivate it.
1145     if (CleanupDominator)
1146       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1147     return;
1148   }
1149 
1150   assert(Init && "have trailing elements to initialize but no initializer");
1151 
1152   // If this is a constructor call, try to optimize it out, and failing that
1153   // emit a single loop to initialize all remaining elements.
1154   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1155     CXXConstructorDecl *Ctor = CCE->getConstructor();
1156     if (Ctor->isTrivial()) {
1157       // If new expression did not specify value-initialization, then there
1158       // is no initialization.
1159       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1160         return;
1161 
1162       if (TryMemsetInitialization())
1163         return;
1164     }
1165 
1166     // Store the new Cleanup position for irregular Cleanups.
1167     //
1168     // FIXME: Share this cleanup with the constructor call emission rather than
1169     // having it create a cleanup of its own.
1170     if (EndOfInit.isValid())
1171       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1172 
1173     // Emit a constructor call loop to initialize the remaining elements.
1174     if (InitListElements)
1175       NumElements = Builder.CreateSub(
1176           NumElements,
1177           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1178     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1179                                /*NewPointerIsChecked*/true,
1180                                CCE->requiresZeroInitialization());
1181     return;
1182   }
1183 
1184   // If this is value-initialization, we can usually use memset.
1185   ImplicitValueInitExpr IVIE(ElementType);
1186   if (isa<ImplicitValueInitExpr>(Init)) {
1187     if (TryMemsetInitialization())
1188       return;
1189 
1190     // Switch to an ImplicitValueInitExpr for the element type. This handles
1191     // only one case: multidimensional array new of pointers to members. In
1192     // all other cases, we already have an initializer for the array element.
1193     Init = &IVIE;
1194   }
1195 
1196   // At this point we should have found an initializer for the individual
1197   // elements of the array.
1198   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1199          "got wrong type of element to initialize");
1200 
1201   // If we have an empty initializer list, we can usually use memset.
1202   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1203     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1204       return;
1205 
1206   // If we have a struct whose every field is value-initialized, we can
1207   // usually use memset.
1208   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1209     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1210       if (RType->getDecl()->isStruct()) {
1211         unsigned NumElements = 0;
1212         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1213           NumElements = CXXRD->getNumBases();
1214         for (auto *Field : RType->getDecl()->fields())
1215           if (!Field->isUnnamedBitfield())
1216             ++NumElements;
1217         // FIXME: Recurse into nested InitListExprs.
1218         if (ILE->getNumInits() == NumElements)
1219           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1220             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1221               --NumElements;
1222         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1223           return;
1224       }
1225     }
1226   }
1227 
1228   // Create the loop blocks.
1229   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1230   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1231   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1232 
1233   // Find the end of the array, hoisted out of the loop.
1234   llvm::Value *EndPtr =
1235     Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
1236                               NumElements, "array.end");
1237 
1238   // If the number of elements isn't constant, we have to now check if there is
1239   // anything left to initialize.
1240   if (!ConstNum) {
1241     llvm::Value *IsEmpty =
1242       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1243     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1244   }
1245 
1246   // Enter the loop.
1247   EmitBlock(LoopBB);
1248 
1249   // Set up the current-element phi.
1250   llvm::PHINode *CurPtrPhi =
1251       Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1252   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1253 
1254   CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1255 
1256   // Store the new Cleanup position for irregular Cleanups.
1257   if (EndOfInit.isValid())
1258     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1259 
1260   // Enter a partial-destruction Cleanup if necessary.
1261   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1262     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1263                                    ElementType, ElementAlign,
1264                                    getDestroyer(DtorKind));
1265     Cleanup = EHStack.stable_begin();
1266     CleanupDominator = Builder.CreateUnreachable();
1267   }
1268 
1269   // Emit the initializer into this element.
1270   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1271                           AggValueSlot::DoesNotOverlap);
1272 
1273   // Leave the Cleanup if we entered one.
1274   if (CleanupDominator) {
1275     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1276     CleanupDominator->eraseFromParent();
1277   }
1278 
1279   // Advance to the next element by adjusting the pointer type as necessary.
1280   llvm::Value *NextPtr =
1281     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1282                                        "array.next");
1283 
1284   // Check whether we've gotten to the end of the array and, if so,
1285   // exit the loop.
1286   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1287   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1288   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1289 
1290   EmitBlock(ContBB);
1291 }
1292 
1293 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1294                                QualType ElementType, llvm::Type *ElementTy,
1295                                Address NewPtr, llvm::Value *NumElements,
1296                                llvm::Value *AllocSizeWithoutCookie) {
1297   ApplyDebugLocation DL(CGF, E);
1298   if (E->isArray())
1299     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1300                                 AllocSizeWithoutCookie);
1301   else if (const Expr *Init = E->getInitializer())
1302     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1303                             AggValueSlot::DoesNotOverlap);
1304 }
1305 
1306 /// Emit a call to an operator new or operator delete function, as implicitly
1307 /// created by new-expressions and delete-expressions.
1308 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1309                                 const FunctionDecl *CalleeDecl,
1310                                 const FunctionProtoType *CalleeType,
1311                                 const CallArgList &Args) {
1312   llvm::CallBase *CallOrInvoke;
1313   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1314   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1315   RValue RV =
1316       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1317                        Args, CalleeType, /*ChainCall=*/false),
1318                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1319 
1320   /// C++1y [expr.new]p10:
1321   ///   [In a new-expression,] an implementation is allowed to omit a call
1322   ///   to a replaceable global allocation function.
1323   ///
1324   /// We model such elidable calls with the 'builtin' attribute.
1325   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1326   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1327       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1328     CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1329   }
1330 
1331   return RV;
1332 }
1333 
1334 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1335                                                  const CallExpr *TheCall,
1336                                                  bool IsDelete) {
1337   CallArgList Args;
1338   EmitCallArgs(Args, Type, TheCall->arguments());
1339   // Find the allocation or deallocation function that we're calling.
1340   ASTContext &Ctx = getContext();
1341   DeclarationName Name = Ctx.DeclarationNames
1342       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1343 
1344   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1345     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1346       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1347         return EmitNewDeleteCall(*this, FD, Type, Args);
1348   llvm_unreachable("predeclared global operator new/delete is missing");
1349 }
1350 
1351 namespace {
1352 /// The parameters to pass to a usual operator delete.
1353 struct UsualDeleteParams {
1354   bool DestroyingDelete = false;
1355   bool Size = false;
1356   bool Alignment = false;
1357 };
1358 }
1359 
1360 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1361   UsualDeleteParams Params;
1362 
1363   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1364   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1365 
1366   // The first argument is always a void*.
1367   ++AI;
1368 
1369   // The next parameter may be a std::destroying_delete_t.
1370   if (FD->isDestroyingOperatorDelete()) {
1371     Params.DestroyingDelete = true;
1372     assert(AI != AE);
1373     ++AI;
1374   }
1375 
1376   // Figure out what other parameters we should be implicitly passing.
1377   if (AI != AE && (*AI)->isIntegerType()) {
1378     Params.Size = true;
1379     ++AI;
1380   }
1381 
1382   if (AI != AE && (*AI)->isAlignValT()) {
1383     Params.Alignment = true;
1384     ++AI;
1385   }
1386 
1387   assert(AI == AE && "unexpected usual deallocation function parameter");
1388   return Params;
1389 }
1390 
1391 namespace {
1392   /// A cleanup to call the given 'operator delete' function upon abnormal
1393   /// exit from a new expression. Templated on a traits type that deals with
1394   /// ensuring that the arguments dominate the cleanup if necessary.
1395   template<typename Traits>
1396   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1397     /// Type used to hold llvm::Value*s.
1398     typedef typename Traits::ValueTy ValueTy;
1399     /// Type used to hold RValues.
1400     typedef typename Traits::RValueTy RValueTy;
1401     struct PlacementArg {
1402       RValueTy ArgValue;
1403       QualType ArgType;
1404     };
1405 
1406     unsigned NumPlacementArgs : 31;
1407     unsigned PassAlignmentToPlacementDelete : 1;
1408     const FunctionDecl *OperatorDelete;
1409     ValueTy Ptr;
1410     ValueTy AllocSize;
1411     CharUnits AllocAlign;
1412 
1413     PlacementArg *getPlacementArgs() {
1414       return reinterpret_cast<PlacementArg *>(this + 1);
1415     }
1416 
1417   public:
1418     static size_t getExtraSize(size_t NumPlacementArgs) {
1419       return NumPlacementArgs * sizeof(PlacementArg);
1420     }
1421 
1422     CallDeleteDuringNew(size_t NumPlacementArgs,
1423                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1424                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1425                         CharUnits AllocAlign)
1426       : NumPlacementArgs(NumPlacementArgs),
1427         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1428         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1429         AllocAlign(AllocAlign) {}
1430 
1431     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1432       assert(I < NumPlacementArgs && "index out of range");
1433       getPlacementArgs()[I] = {Arg, Type};
1434     }
1435 
1436     void Emit(CodeGenFunction &CGF, Flags flags) override {
1437       const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1438       CallArgList DeleteArgs;
1439 
1440       // The first argument is always a void* (or C* for a destroying operator
1441       // delete for class type C).
1442       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1443 
1444       // Figure out what other parameters we should be implicitly passing.
1445       UsualDeleteParams Params;
1446       if (NumPlacementArgs) {
1447         // A placement deallocation function is implicitly passed an alignment
1448         // if the placement allocation function was, but is never passed a size.
1449         Params.Alignment = PassAlignmentToPlacementDelete;
1450       } else {
1451         // For a non-placement new-expression, 'operator delete' can take a
1452         // size and/or an alignment if it has the right parameters.
1453         Params = getUsualDeleteParams(OperatorDelete);
1454       }
1455 
1456       assert(!Params.DestroyingDelete &&
1457              "should not call destroying delete in a new-expression");
1458 
1459       // The second argument can be a std::size_t (for non-placement delete).
1460       if (Params.Size)
1461         DeleteArgs.add(Traits::get(CGF, AllocSize),
1462                        CGF.getContext().getSizeType());
1463 
1464       // The next (second or third) argument can be a std::align_val_t, which
1465       // is an enum whose underlying type is std::size_t.
1466       // FIXME: Use the right type as the parameter type. Note that in a call
1467       // to operator delete(size_t, ...), we may not have it available.
1468       if (Params.Alignment)
1469         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1470                            CGF.SizeTy, AllocAlign.getQuantity())),
1471                        CGF.getContext().getSizeType());
1472 
1473       // Pass the rest of the arguments, which must match exactly.
1474       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1475         auto Arg = getPlacementArgs()[I];
1476         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1477       }
1478 
1479       // Call 'operator delete'.
1480       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1481     }
1482   };
1483 }
1484 
1485 /// Enter a cleanup to call 'operator delete' if the initializer in a
1486 /// new-expression throws.
1487 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1488                                   const CXXNewExpr *E,
1489                                   Address NewPtr,
1490                                   llvm::Value *AllocSize,
1491                                   CharUnits AllocAlign,
1492                                   const CallArgList &NewArgs) {
1493   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1494 
1495   // If we're not inside a conditional branch, then the cleanup will
1496   // dominate and we can do the easier (and more efficient) thing.
1497   if (!CGF.isInConditionalBranch()) {
1498     struct DirectCleanupTraits {
1499       typedef llvm::Value *ValueTy;
1500       typedef RValue RValueTy;
1501       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1502       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1503     };
1504 
1505     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1506 
1507     DirectCleanup *Cleanup = CGF.EHStack
1508       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1509                                            E->getNumPlacementArgs(),
1510                                            E->getOperatorDelete(),
1511                                            NewPtr.getPointer(),
1512                                            AllocSize,
1513                                            E->passAlignment(),
1514                                            AllocAlign);
1515     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1516       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1517       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1518     }
1519 
1520     return;
1521   }
1522 
1523   // Otherwise, we need to save all this stuff.
1524   DominatingValue<RValue>::saved_type SavedNewPtr =
1525     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1526   DominatingValue<RValue>::saved_type SavedAllocSize =
1527     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1528 
1529   struct ConditionalCleanupTraits {
1530     typedef DominatingValue<RValue>::saved_type ValueTy;
1531     typedef DominatingValue<RValue>::saved_type RValueTy;
1532     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1533       return V.restore(CGF);
1534     }
1535   };
1536   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1537 
1538   ConditionalCleanup *Cleanup = CGF.EHStack
1539     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1540                                               E->getNumPlacementArgs(),
1541                                               E->getOperatorDelete(),
1542                                               SavedNewPtr,
1543                                               SavedAllocSize,
1544                                               E->passAlignment(),
1545                                               AllocAlign);
1546   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1547     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1548     Cleanup->setPlacementArg(
1549         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1550   }
1551 
1552   CGF.initFullExprCleanup();
1553 }
1554 
1555 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1556   // The element type being allocated.
1557   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1558 
1559   // 1. Build a call to the allocation function.
1560   FunctionDecl *allocator = E->getOperatorNew();
1561 
1562   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1563   unsigned minElements = 0;
1564   if (E->isArray() && E->hasInitializer()) {
1565     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1566     if (ILE && ILE->isStringLiteralInit())
1567       minElements =
1568           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1569               ->getSize().getZExtValue();
1570     else if (ILE)
1571       minElements = ILE->getNumInits();
1572   }
1573 
1574   llvm::Value *numElements = nullptr;
1575   llvm::Value *allocSizeWithoutCookie = nullptr;
1576   llvm::Value *allocSize =
1577     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1578                         allocSizeWithoutCookie);
1579   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1580 
1581   // Emit the allocation call.  If the allocator is a global placement
1582   // operator, just "inline" it directly.
1583   Address allocation = Address::invalid();
1584   CallArgList allocatorArgs;
1585   if (allocator->isReservedGlobalPlacementOperator()) {
1586     assert(E->getNumPlacementArgs() == 1);
1587     const Expr *arg = *E->placement_arguments().begin();
1588 
1589     LValueBaseInfo BaseInfo;
1590     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1591 
1592     // The pointer expression will, in many cases, be an opaque void*.
1593     // In these cases, discard the computed alignment and use the
1594     // formal alignment of the allocated type.
1595     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1596       allocation = allocation.withAlignment(allocAlign);
1597 
1598     // Set up allocatorArgs for the call to operator delete if it's not
1599     // the reserved global operator.
1600     if (E->getOperatorDelete() &&
1601         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1602       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1603       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1604     }
1605 
1606   } else {
1607     const FunctionProtoType *allocatorType =
1608       allocator->getType()->castAs<FunctionProtoType>();
1609     unsigned ParamsToSkip = 0;
1610 
1611     // The allocation size is the first argument.
1612     QualType sizeType = getContext().getSizeType();
1613     allocatorArgs.add(RValue::get(allocSize), sizeType);
1614     ++ParamsToSkip;
1615 
1616     if (allocSize != allocSizeWithoutCookie) {
1617       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1618       allocAlign = std::max(allocAlign, cookieAlign);
1619     }
1620 
1621     // The allocation alignment may be passed as the second argument.
1622     if (E->passAlignment()) {
1623       QualType AlignValT = sizeType;
1624       if (allocatorType->getNumParams() > 1) {
1625         AlignValT = allocatorType->getParamType(1);
1626         assert(getContext().hasSameUnqualifiedType(
1627                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1628                    sizeType) &&
1629                "wrong type for alignment parameter");
1630         ++ParamsToSkip;
1631       } else {
1632         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1633         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1634       }
1635       allocatorArgs.add(
1636           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1637           AlignValT);
1638     }
1639 
1640     // FIXME: Why do we not pass a CalleeDecl here?
1641     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1642                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1643 
1644     RValue RV =
1645       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1646 
1647     // Set !heapallocsite metadata on the call to operator new.
1648     if (getDebugInfo())
1649       if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1650         getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1651                                                  E->getExprLoc());
1652 
1653     // If this was a call to a global replaceable allocation function that does
1654     // not take an alignment argument, the allocator is known to produce
1655     // storage that's suitably aligned for any object that fits, up to a known
1656     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1657     CharUnits allocationAlign = allocAlign;
1658     if (!E->passAlignment() &&
1659         allocator->isReplaceableGlobalAllocationFunction()) {
1660       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1661           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1662       allocationAlign = std::max(
1663           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1664     }
1665 
1666     allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1667   }
1668 
1669   // Emit a null check on the allocation result if the allocation
1670   // function is allowed to return null (because it has a non-throwing
1671   // exception spec or is the reserved placement new) and we have an
1672   // interesting initializer will be running sanitizers on the initialization.
1673   bool nullCheck = E->shouldNullCheckAllocation() &&
1674                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1675                     sanitizePerformTypeCheck());
1676 
1677   llvm::BasicBlock *nullCheckBB = nullptr;
1678   llvm::BasicBlock *contBB = nullptr;
1679 
1680   // The null-check means that the initializer is conditionally
1681   // evaluated.
1682   ConditionalEvaluation conditional(*this);
1683 
1684   if (nullCheck) {
1685     conditional.begin(*this);
1686 
1687     nullCheckBB = Builder.GetInsertBlock();
1688     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1689     contBB = createBasicBlock("new.cont");
1690 
1691     llvm::Value *isNull =
1692       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1693     Builder.CreateCondBr(isNull, contBB, notNullBB);
1694     EmitBlock(notNullBB);
1695   }
1696 
1697   // If there's an operator delete, enter a cleanup to call it if an
1698   // exception is thrown.
1699   EHScopeStack::stable_iterator operatorDeleteCleanup;
1700   llvm::Instruction *cleanupDominator = nullptr;
1701   if (E->getOperatorDelete() &&
1702       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1703     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1704                           allocatorArgs);
1705     operatorDeleteCleanup = EHStack.stable_begin();
1706     cleanupDominator = Builder.CreateUnreachable();
1707   }
1708 
1709   assert((allocSize == allocSizeWithoutCookie) ==
1710          CalculateCookiePadding(*this, E).isZero());
1711   if (allocSize != allocSizeWithoutCookie) {
1712     assert(E->isArray());
1713     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1714                                                        numElements,
1715                                                        E, allocType);
1716   }
1717 
1718   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1719   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1720 
1721   // Passing pointer through launder.invariant.group to avoid propagation of
1722   // vptrs information which may be included in previous type.
1723   // To not break LTO with different optimizations levels, we do it regardless
1724   // of optimization level.
1725   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1726       allocator->isReservedGlobalPlacementOperator())
1727     result = Builder.CreateLaunderInvariantGroup(result);
1728 
1729   // Emit sanitizer checks for pointer value now, so that in the case of an
1730   // array it was checked only once and not at each constructor call. We may
1731   // have already checked that the pointer is non-null.
1732   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1733   // we'll null check the wrong pointer here.
1734   SanitizerSet SkippedChecks;
1735   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1736   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1737                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1738                 result.getPointer(), allocType, result.getAlignment(),
1739                 SkippedChecks, numElements);
1740 
1741   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1742                      allocSizeWithoutCookie);
1743   llvm::Value *resultPtr = result.getPointer();
1744   if (E->isArray()) {
1745     // NewPtr is a pointer to the base element type.  If we're
1746     // allocating an array of arrays, we'll need to cast back to the
1747     // array pointer type.
1748     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1749     if (resultPtr->getType() != resultType)
1750       resultPtr = Builder.CreateBitCast(resultPtr, resultType);
1751   }
1752 
1753   // Deactivate the 'operator delete' cleanup if we finished
1754   // initialization.
1755   if (operatorDeleteCleanup.isValid()) {
1756     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1757     cleanupDominator->eraseFromParent();
1758   }
1759 
1760   if (nullCheck) {
1761     conditional.end(*this);
1762 
1763     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1764     EmitBlock(contBB);
1765 
1766     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1767     PHI->addIncoming(resultPtr, notNullBB);
1768     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1769                      nullCheckBB);
1770 
1771     resultPtr = PHI;
1772   }
1773 
1774   return resultPtr;
1775 }
1776 
1777 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1778                                      llvm::Value *Ptr, QualType DeleteTy,
1779                                      llvm::Value *NumElements,
1780                                      CharUnits CookieSize) {
1781   assert((!NumElements && CookieSize.isZero()) ||
1782          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1783 
1784   const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1785   CallArgList DeleteArgs;
1786 
1787   auto Params = getUsualDeleteParams(DeleteFD);
1788   auto ParamTypeIt = DeleteFTy->param_type_begin();
1789 
1790   // Pass the pointer itself.
1791   QualType ArgTy = *ParamTypeIt++;
1792   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1793   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1794 
1795   // Pass the std::destroying_delete tag if present.
1796   llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1797   if (Params.DestroyingDelete) {
1798     QualType DDTag = *ParamTypeIt++;
1799     llvm::Type *Ty = getTypes().ConvertType(DDTag);
1800     CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1801     DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1802     DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1803     DeleteArgs.add(
1804         RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
1805   }
1806 
1807   // Pass the size if the delete function has a size_t parameter.
1808   if (Params.Size) {
1809     QualType SizeType = *ParamTypeIt++;
1810     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1811     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1812                                                DeleteTypeSize.getQuantity());
1813 
1814     // For array new, multiply by the number of elements.
1815     if (NumElements)
1816       Size = Builder.CreateMul(Size, NumElements);
1817 
1818     // If there is a cookie, add the cookie size.
1819     if (!CookieSize.isZero())
1820       Size = Builder.CreateAdd(
1821           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1822 
1823     DeleteArgs.add(RValue::get(Size), SizeType);
1824   }
1825 
1826   // Pass the alignment if the delete function has an align_val_t parameter.
1827   if (Params.Alignment) {
1828     QualType AlignValType = *ParamTypeIt++;
1829     CharUnits DeleteTypeAlign =
1830         getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1831             DeleteTy, true /* NeedsPreferredAlignment */));
1832     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1833                                                 DeleteTypeAlign.getQuantity());
1834     DeleteArgs.add(RValue::get(Align), AlignValType);
1835   }
1836 
1837   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1838          "unknown parameter to usual delete function");
1839 
1840   // Emit the call to delete.
1841   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1842 
1843   // If call argument lowering didn't use the destroying_delete_t alloca,
1844   // remove it again.
1845   if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1846     DestroyingDeleteTag->eraseFromParent();
1847 }
1848 
1849 namespace {
1850   /// Calls the given 'operator delete' on a single object.
1851   struct CallObjectDelete final : EHScopeStack::Cleanup {
1852     llvm::Value *Ptr;
1853     const FunctionDecl *OperatorDelete;
1854     QualType ElementType;
1855 
1856     CallObjectDelete(llvm::Value *Ptr,
1857                      const FunctionDecl *OperatorDelete,
1858                      QualType ElementType)
1859       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1860 
1861     void Emit(CodeGenFunction &CGF, Flags flags) override {
1862       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1863     }
1864   };
1865 }
1866 
1867 void
1868 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1869                                              llvm::Value *CompletePtr,
1870                                              QualType ElementType) {
1871   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1872                                         OperatorDelete, ElementType);
1873 }
1874 
1875 /// Emit the code for deleting a single object with a destroying operator
1876 /// delete. If the element type has a non-virtual destructor, Ptr has already
1877 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1878 /// Ptr points to an object of the static type.
1879 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1880                                        const CXXDeleteExpr *DE, Address Ptr,
1881                                        QualType ElementType) {
1882   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1883   if (Dtor && Dtor->isVirtual())
1884     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1885                                                 Dtor);
1886   else
1887     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1888 }
1889 
1890 /// Emit the code for deleting a single object.
1891 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1892 /// if not.
1893 static bool EmitObjectDelete(CodeGenFunction &CGF,
1894                              const CXXDeleteExpr *DE,
1895                              Address Ptr,
1896                              QualType ElementType,
1897                              llvm::BasicBlock *UnconditionalDeleteBlock) {
1898   // C++11 [expr.delete]p3:
1899   //   If the static type of the object to be deleted is different from its
1900   //   dynamic type, the static type shall be a base class of the dynamic type
1901   //   of the object to be deleted and the static type shall have a virtual
1902   //   destructor or the behavior is undefined.
1903   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1904                     DE->getExprLoc(), Ptr.getPointer(),
1905                     ElementType);
1906 
1907   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1908   assert(!OperatorDelete->isDestroyingOperatorDelete());
1909 
1910   // Find the destructor for the type, if applicable.  If the
1911   // destructor is virtual, we'll just emit the vcall and return.
1912   const CXXDestructorDecl *Dtor = nullptr;
1913   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1914     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1915     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1916       Dtor = RD->getDestructor();
1917 
1918       if (Dtor->isVirtual()) {
1919         bool UseVirtualCall = true;
1920         const Expr *Base = DE->getArgument();
1921         if (auto *DevirtualizedDtor =
1922                 dyn_cast_or_null<const CXXDestructorDecl>(
1923                     Dtor->getDevirtualizedMethod(
1924                         Base, CGF.CGM.getLangOpts().AppleKext))) {
1925           UseVirtualCall = false;
1926           const CXXRecordDecl *DevirtualizedClass =
1927               DevirtualizedDtor->getParent();
1928           if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1929             // Devirtualized to the class of the base type (the type of the
1930             // whole expression).
1931             Dtor = DevirtualizedDtor;
1932           } else {
1933             // Devirtualized to some other type. Would need to cast the this
1934             // pointer to that type but we don't have support for that yet, so
1935             // do a virtual call. FIXME: handle the case where it is
1936             // devirtualized to the derived type (the type of the inner
1937             // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1938             UseVirtualCall = true;
1939           }
1940         }
1941         if (UseVirtualCall) {
1942           CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1943                                                       Dtor);
1944           return false;
1945         }
1946       }
1947     }
1948   }
1949 
1950   // Make sure that we call delete even if the dtor throws.
1951   // This doesn't have to a conditional cleanup because we're going
1952   // to pop it off in a second.
1953   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1954                                             Ptr.getPointer(),
1955                                             OperatorDelete, ElementType);
1956 
1957   if (Dtor)
1958     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1959                               /*ForVirtualBase=*/false,
1960                               /*Delegating=*/false,
1961                               Ptr, ElementType);
1962   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1963     switch (Lifetime) {
1964     case Qualifiers::OCL_None:
1965     case Qualifiers::OCL_ExplicitNone:
1966     case Qualifiers::OCL_Autoreleasing:
1967       break;
1968 
1969     case Qualifiers::OCL_Strong:
1970       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1971       break;
1972 
1973     case Qualifiers::OCL_Weak:
1974       CGF.EmitARCDestroyWeak(Ptr);
1975       break;
1976     }
1977   }
1978 
1979   // When optimizing for size, call 'operator delete' unconditionally.
1980   if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
1981     CGF.EmitBlock(UnconditionalDeleteBlock);
1982     CGF.PopCleanupBlock();
1983     return true;
1984   }
1985 
1986   CGF.PopCleanupBlock();
1987   return false;
1988 }
1989 
1990 namespace {
1991   /// Calls the given 'operator delete' on an array of objects.
1992   struct CallArrayDelete final : EHScopeStack::Cleanup {
1993     llvm::Value *Ptr;
1994     const FunctionDecl *OperatorDelete;
1995     llvm::Value *NumElements;
1996     QualType ElementType;
1997     CharUnits CookieSize;
1998 
1999     CallArrayDelete(llvm::Value *Ptr,
2000                     const FunctionDecl *OperatorDelete,
2001                     llvm::Value *NumElements,
2002                     QualType ElementType,
2003                     CharUnits CookieSize)
2004       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2005         ElementType(ElementType), CookieSize(CookieSize) {}
2006 
2007     void Emit(CodeGenFunction &CGF, Flags flags) override {
2008       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2009                          CookieSize);
2010     }
2011   };
2012 }
2013 
2014 /// Emit the code for deleting an array of objects.
2015 static void EmitArrayDelete(CodeGenFunction &CGF,
2016                             const CXXDeleteExpr *E,
2017                             Address deletedPtr,
2018                             QualType elementType) {
2019   llvm::Value *numElements = nullptr;
2020   llvm::Value *allocatedPtr = nullptr;
2021   CharUnits cookieSize;
2022   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2023                                       numElements, allocatedPtr, cookieSize);
2024 
2025   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2026 
2027   // Make sure that we call delete even if one of the dtors throws.
2028   const FunctionDecl *operatorDelete = E->getOperatorDelete();
2029   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2030                                            allocatedPtr, operatorDelete,
2031                                            numElements, elementType,
2032                                            cookieSize);
2033 
2034   // Destroy the elements.
2035   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2036     assert(numElements && "no element count for a type with a destructor!");
2037 
2038     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2039     CharUnits elementAlign =
2040       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2041 
2042     llvm::Value *arrayBegin = deletedPtr.getPointer();
2043     llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2044       deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2045 
2046     // Note that it is legal to allocate a zero-length array, and we
2047     // can never fold the check away because the length should always
2048     // come from a cookie.
2049     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2050                          CGF.getDestroyer(dtorKind),
2051                          /*checkZeroLength*/ true,
2052                          CGF.needsEHCleanup(dtorKind));
2053   }
2054 
2055   // Pop the cleanup block.
2056   CGF.PopCleanupBlock();
2057 }
2058 
2059 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2060   const Expr *Arg = E->getArgument();
2061   Address Ptr = EmitPointerWithAlignment(Arg);
2062 
2063   // Null check the pointer.
2064   //
2065   // We could avoid this null check if we can determine that the object
2066   // destruction is trivial and doesn't require an array cookie; we can
2067   // unconditionally perform the operator delete call in that case. For now, we
2068   // assume that deleted pointers are null rarely enough that it's better to
2069   // keep the branch. This might be worth revisiting for a -O0 code size win.
2070   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2071   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2072 
2073   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2074 
2075   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2076   EmitBlock(DeleteNotNull);
2077 
2078   QualType DeleteTy = E->getDestroyedType();
2079 
2080   // A destroying operator delete overrides the entire operation of the
2081   // delete expression.
2082   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2083     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2084     EmitBlock(DeleteEnd);
2085     return;
2086   }
2087 
2088   // We might be deleting a pointer to array.  If so, GEP down to the
2089   // first non-array element.
2090   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2091   if (DeleteTy->isConstantArrayType()) {
2092     llvm::Value *Zero = Builder.getInt32(0);
2093     SmallVector<llvm::Value*,8> GEP;
2094 
2095     GEP.push_back(Zero); // point at the outermost array
2096 
2097     // For each layer of array type we're pointing at:
2098     while (const ConstantArrayType *Arr
2099              = getContext().getAsConstantArrayType(DeleteTy)) {
2100       // 1. Unpeel the array type.
2101       DeleteTy = Arr->getElementType();
2102 
2103       // 2. GEP to the first element of the array.
2104       GEP.push_back(Zero);
2105     }
2106 
2107     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
2108                                             Ptr.getPointer(), GEP, "del.first"),
2109                   ConvertTypeForMem(DeleteTy), Ptr.getAlignment());
2110   }
2111 
2112   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2113 
2114   if (E->isArrayForm()) {
2115     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2116     EmitBlock(DeleteEnd);
2117   } else {
2118     if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2119       EmitBlock(DeleteEnd);
2120   }
2121 }
2122 
2123 static bool isGLValueFromPointerDeref(const Expr *E) {
2124   E = E->IgnoreParens();
2125 
2126   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2127     if (!CE->getSubExpr()->isGLValue())
2128       return false;
2129     return isGLValueFromPointerDeref(CE->getSubExpr());
2130   }
2131 
2132   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2133     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2134 
2135   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2136     if (BO->getOpcode() == BO_Comma)
2137       return isGLValueFromPointerDeref(BO->getRHS());
2138 
2139   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2140     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2141            isGLValueFromPointerDeref(ACO->getFalseExpr());
2142 
2143   // C++11 [expr.sub]p1:
2144   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2145   if (isa<ArraySubscriptExpr>(E))
2146     return true;
2147 
2148   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2149     if (UO->getOpcode() == UO_Deref)
2150       return true;
2151 
2152   return false;
2153 }
2154 
2155 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2156                                          llvm::Type *StdTypeInfoPtrTy) {
2157   // Get the vtable pointer.
2158   Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2159 
2160   QualType SrcRecordTy = E->getType();
2161 
2162   // C++ [class.cdtor]p4:
2163   //   If the operand of typeid refers to the object under construction or
2164   //   destruction and the static type of the operand is neither the constructor
2165   //   or destructor’s class nor one of its bases, the behavior is undefined.
2166   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2167                     ThisPtr.getPointer(), SrcRecordTy);
2168 
2169   // C++ [expr.typeid]p2:
2170   //   If the glvalue expression is obtained by applying the unary * operator to
2171   //   a pointer and the pointer is a null pointer value, the typeid expression
2172   //   throws the std::bad_typeid exception.
2173   //
2174   // However, this paragraph's intent is not clear.  We choose a very generous
2175   // interpretation which implores us to consider comma operators, conditional
2176   // operators, parentheses and other such constructs.
2177   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2178           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2179     llvm::BasicBlock *BadTypeidBlock =
2180         CGF.createBasicBlock("typeid.bad_typeid");
2181     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2182 
2183     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2184     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2185 
2186     CGF.EmitBlock(BadTypeidBlock);
2187     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2188     CGF.EmitBlock(EndBlock);
2189   }
2190 
2191   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2192                                         StdTypeInfoPtrTy);
2193 }
2194 
2195 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2196   llvm::Type *StdTypeInfoPtrTy =
2197     ConvertType(E->getType())->getPointerTo();
2198 
2199   if (E->isTypeOperand()) {
2200     llvm::Constant *TypeInfo =
2201         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2202     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2203   }
2204 
2205   // C++ [expr.typeid]p2:
2206   //   When typeid is applied to a glvalue expression whose type is a
2207   //   polymorphic class type, the result refers to a std::type_info object
2208   //   representing the type of the most derived object (that is, the dynamic
2209   //   type) to which the glvalue refers.
2210   // If the operand is already most derived object, no need to look up vtable.
2211   if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2212     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2213                                 StdTypeInfoPtrTy);
2214 
2215   QualType OperandTy = E->getExprOperand()->getType();
2216   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2217                                StdTypeInfoPtrTy);
2218 }
2219 
2220 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2221                                           QualType DestTy) {
2222   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2223   if (DestTy->isPointerType())
2224     return llvm::Constant::getNullValue(DestLTy);
2225 
2226   /// C++ [expr.dynamic.cast]p9:
2227   ///   A failed cast to reference type throws std::bad_cast
2228   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2229     return nullptr;
2230 
2231   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2232   return llvm::UndefValue::get(DestLTy);
2233 }
2234 
2235 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2236                                               const CXXDynamicCastExpr *DCE) {
2237   CGM.EmitExplicitCastExprType(DCE, this);
2238   QualType DestTy = DCE->getTypeAsWritten();
2239 
2240   QualType SrcTy = DCE->getSubExpr()->getType();
2241 
2242   // C++ [expr.dynamic.cast]p7:
2243   //   If T is "pointer to cv void," then the result is a pointer to the most
2244   //   derived object pointed to by v.
2245   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2246 
2247   bool isDynamicCastToVoid;
2248   QualType SrcRecordTy;
2249   QualType DestRecordTy;
2250   if (DestPTy) {
2251     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2252     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2253     DestRecordTy = DestPTy->getPointeeType();
2254   } else {
2255     isDynamicCastToVoid = false;
2256     SrcRecordTy = SrcTy;
2257     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2258   }
2259 
2260   // C++ [class.cdtor]p5:
2261   //   If the operand of the dynamic_cast refers to the object under
2262   //   construction or destruction and the static type of the operand is not a
2263   //   pointer to or object of the constructor or destructor’s own class or one
2264   //   of its bases, the dynamic_cast results in undefined behavior.
2265   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2266                 SrcRecordTy);
2267 
2268   if (DCE->isAlwaysNull())
2269     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2270       return T;
2271 
2272   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2273 
2274   // C++ [expr.dynamic.cast]p4:
2275   //   If the value of v is a null pointer value in the pointer case, the result
2276   //   is the null pointer value of type T.
2277   bool ShouldNullCheckSrcValue =
2278       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2279                                                          SrcRecordTy);
2280 
2281   llvm::BasicBlock *CastNull = nullptr;
2282   llvm::BasicBlock *CastNotNull = nullptr;
2283   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2284 
2285   if (ShouldNullCheckSrcValue) {
2286     CastNull = createBasicBlock("dynamic_cast.null");
2287     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2288 
2289     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2290     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2291     EmitBlock(CastNotNull);
2292   }
2293 
2294   llvm::Value *Value;
2295   if (isDynamicCastToVoid) {
2296     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2297                                                   DestTy);
2298   } else {
2299     assert(DestRecordTy->isRecordType() &&
2300            "destination type must be a record type!");
2301     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2302                                                 DestTy, DestRecordTy, CastEnd);
2303     CastNotNull = Builder.GetInsertBlock();
2304   }
2305 
2306   if (ShouldNullCheckSrcValue) {
2307     EmitBranch(CastEnd);
2308 
2309     EmitBlock(CastNull);
2310     EmitBranch(CastEnd);
2311   }
2312 
2313   EmitBlock(CastEnd);
2314 
2315   if (ShouldNullCheckSrcValue) {
2316     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2317     PHI->addIncoming(Value, CastNotNull);
2318     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2319 
2320     Value = PHI;
2321   }
2322 
2323   return Value;
2324 }
2325