1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/Basic/CodeGenOptions.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 41 42 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 43 isa<CXXOperatorCallExpr>(CE)); 44 assert(MD->isInstance() && 45 "Trying to emit a member or operator call expr on a static method!"); 46 47 // Push the this ptr. 48 const CXXRecordDecl *RD = 49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD); 50 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 51 52 // If there is an implicit parameter (e.g. VTT), emit it. 53 if (ImplicitParam) { 54 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 55 } 56 57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 58 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 59 unsigned PrefixSize = Args.size() - 1; 60 61 // And the rest of the call args. 62 if (RtlArgs) { 63 // Special case: if the caller emitted the arguments right-to-left already 64 // (prior to emitting the *this argument), we're done. This happens for 65 // assignment operators. 66 Args.addFrom(*RtlArgs); 67 } else if (CE) { 68 // Special case: skip first argument of CXXOperatorCall (it is "this"). 69 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 70 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 71 CE->getDirectCallee()); 72 } else { 73 assert( 74 FPT->getNumParams() == 0 && 75 "No CallExpr specified for function with non-zero number of arguments"); 76 } 77 return {required, PrefixSize}; 78 } 79 80 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 81 const CXXMethodDecl *MD, const CGCallee &Callee, 82 ReturnValueSlot ReturnValue, 83 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 84 const CallExpr *CE, CallArgList *RtlArgs) { 85 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 86 CallArgList Args; 87 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 88 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 89 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 90 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 91 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 92 CE && CE == MustTailCall, 93 CE ? CE->getExprLoc() : SourceLocation()); 94 } 95 96 RValue CodeGenFunction::EmitCXXDestructorCall( 97 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 98 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 99 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 100 101 assert(!ThisTy.isNull()); 102 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 103 "Pointer/Object mixup"); 104 105 LangAS SrcAS = ThisTy.getAddressSpace(); 106 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 107 if (SrcAS != DstAS) { 108 QualType DstTy = DtorDecl->getThisType(); 109 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 110 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 111 NewType); 112 } 113 114 CallArgList Args; 115 commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam, 116 ImplicitParamTy, CE, Args, nullptr); 117 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 118 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall, 119 CE ? CE->getExprLoc() : SourceLocation{}); 120 } 121 122 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 123 const CXXPseudoDestructorExpr *E) { 124 QualType DestroyedType = E->getDestroyedType(); 125 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 126 // Automatic Reference Counting: 127 // If the pseudo-expression names a retainable object with weak or 128 // strong lifetime, the object shall be released. 129 Expr *BaseExpr = E->getBase(); 130 Address BaseValue = Address::invalid(); 131 Qualifiers BaseQuals; 132 133 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 134 if (E->isArrow()) { 135 BaseValue = EmitPointerWithAlignment(BaseExpr); 136 const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); 137 BaseQuals = PTy->getPointeeType().getQualifiers(); 138 } else { 139 LValue BaseLV = EmitLValue(BaseExpr); 140 BaseValue = BaseLV.getAddress(*this); 141 QualType BaseTy = BaseExpr->getType(); 142 BaseQuals = BaseTy.getQualifiers(); 143 } 144 145 switch (DestroyedType.getObjCLifetime()) { 146 case Qualifiers::OCL_None: 147 case Qualifiers::OCL_ExplicitNone: 148 case Qualifiers::OCL_Autoreleasing: 149 break; 150 151 case Qualifiers::OCL_Strong: 152 EmitARCRelease(Builder.CreateLoad(BaseValue, 153 DestroyedType.isVolatileQualified()), 154 ARCPreciseLifetime); 155 break; 156 157 case Qualifiers::OCL_Weak: 158 EmitARCDestroyWeak(BaseValue); 159 break; 160 } 161 } else { 162 // C++ [expr.pseudo]p1: 163 // The result shall only be used as the operand for the function call 164 // operator (), and the result of such a call has type void. The only 165 // effect is the evaluation of the postfix-expression before the dot or 166 // arrow. 167 EmitIgnoredExpr(E->getBase()); 168 } 169 170 return RValue::get(nullptr); 171 } 172 173 static CXXRecordDecl *getCXXRecord(const Expr *E) { 174 QualType T = E->getType(); 175 if (const PointerType *PTy = T->getAs<PointerType>()) 176 T = PTy->getPointeeType(); 177 const RecordType *Ty = T->castAs<RecordType>(); 178 return cast<CXXRecordDecl>(Ty->getDecl()); 179 } 180 181 // Note: This function also emit constructor calls to support a MSVC 182 // extensions allowing explicit constructor function call. 183 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 184 ReturnValueSlot ReturnValue) { 185 const Expr *callee = CE->getCallee()->IgnoreParens(); 186 187 if (isa<BinaryOperator>(callee)) 188 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 189 190 const MemberExpr *ME = cast<MemberExpr>(callee); 191 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 192 193 if (MD->isStatic()) { 194 // The method is static, emit it as we would a regular call. 195 CGCallee callee = 196 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 197 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 198 ReturnValue); 199 } 200 201 bool HasQualifier = ME->hasQualifier(); 202 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 203 bool IsArrow = ME->isArrow(); 204 const Expr *Base = ME->getBase(); 205 206 return EmitCXXMemberOrOperatorMemberCallExpr( 207 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 208 } 209 210 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 211 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 212 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 213 const Expr *Base) { 214 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 215 216 // Compute the object pointer. 217 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 218 219 const CXXMethodDecl *DevirtualizedMethod = nullptr; 220 if (CanUseVirtualCall && 221 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 222 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 223 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 224 assert(DevirtualizedMethod); 225 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 226 const Expr *Inner = Base->IgnoreParenBaseCasts(); 227 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 228 MD->getReturnType().getCanonicalType()) 229 // If the return types are not the same, this might be a case where more 230 // code needs to run to compensate for it. For example, the derived 231 // method might return a type that inherits form from the return 232 // type of MD and has a prefix. 233 // For now we just avoid devirtualizing these covariant cases. 234 DevirtualizedMethod = nullptr; 235 else if (getCXXRecord(Inner) == DevirtualizedClass) 236 // If the class of the Inner expression is where the dynamic method 237 // is defined, build the this pointer from it. 238 Base = Inner; 239 else if (getCXXRecord(Base) != DevirtualizedClass) { 240 // If the method is defined in a class that is not the best dynamic 241 // one or the one of the full expression, we would have to build 242 // a derived-to-base cast to compute the correct this pointer, but 243 // we don't have support for that yet, so do a virtual call. 244 DevirtualizedMethod = nullptr; 245 } 246 } 247 248 bool TrivialForCodegen = 249 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); 250 bool TrivialAssignment = 251 TrivialForCodegen && 252 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 253 !MD->getParent()->mayInsertExtraPadding(); 254 255 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 256 // operator before the LHS. 257 CallArgList RtlArgStorage; 258 CallArgList *RtlArgs = nullptr; 259 LValue TrivialAssignmentRHS; 260 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 261 if (OCE->isAssignmentOp()) { 262 if (TrivialAssignment) { 263 TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); 264 } else { 265 RtlArgs = &RtlArgStorage; 266 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 267 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 268 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 269 } 270 } 271 } 272 273 LValue This; 274 if (IsArrow) { 275 LValueBaseInfo BaseInfo; 276 TBAAAccessInfo TBAAInfo; 277 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 278 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 279 } else { 280 This = EmitLValue(Base); 281 } 282 283 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 284 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 285 // constructing a new complete object of type Ctor. 286 assert(!RtlArgs); 287 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 288 CallArgList Args; 289 commonEmitCXXMemberOrOperatorCall( 290 *this, {Ctor, Ctor_Complete}, This.getPointer(*this), 291 /*ImplicitParam=*/nullptr, 292 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 293 294 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 295 /*Delegating=*/false, This.getAddress(*this), Args, 296 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 297 /*NewPointerIsChecked=*/false); 298 return RValue::get(nullptr); 299 } 300 301 if (TrivialForCodegen) { 302 if (isa<CXXDestructorDecl>(MD)) 303 return RValue::get(nullptr); 304 305 if (TrivialAssignment) { 306 // We don't like to generate the trivial copy/move assignment operator 307 // when it isn't necessary; just produce the proper effect here. 308 // It's important that we use the result of EmitLValue here rather than 309 // emitting call arguments, in order to preserve TBAA information from 310 // the RHS. 311 LValue RHS = isa<CXXOperatorCallExpr>(CE) 312 ? TrivialAssignmentRHS 313 : EmitLValue(*CE->arg_begin()); 314 EmitAggregateAssign(This, RHS, CE->getType()); 315 return RValue::get(This.getPointer(*this)); 316 } 317 318 assert(MD->getParent()->mayInsertExtraPadding() && 319 "unknown trivial member function"); 320 } 321 322 // Compute the function type we're calling. 323 const CXXMethodDecl *CalleeDecl = 324 DevirtualizedMethod ? DevirtualizedMethod : MD; 325 const CGFunctionInfo *FInfo = nullptr; 326 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 327 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 328 GlobalDecl(Dtor, Dtor_Complete)); 329 else 330 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 331 332 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 333 334 // C++11 [class.mfct.non-static]p2: 335 // If a non-static member function of a class X is called for an object that 336 // is not of type X, or of a type derived from X, the behavior is undefined. 337 SourceLocation CallLoc; 338 ASTContext &C = getContext(); 339 if (CE) 340 CallLoc = CE->getExprLoc(); 341 342 SanitizerSet SkippedChecks; 343 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 344 auto *IOA = CMCE->getImplicitObjectArgument(); 345 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 346 if (IsImplicitObjectCXXThis) 347 SkippedChecks.set(SanitizerKind::Alignment, true); 348 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 349 SkippedChecks.set(SanitizerKind::Null, true); 350 } 351 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, 352 This.getPointer(*this), 353 C.getRecordType(CalleeDecl->getParent()), 354 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 355 356 // C++ [class.virtual]p12: 357 // Explicit qualification with the scope operator (5.1) suppresses the 358 // virtual call mechanism. 359 // 360 // We also don't emit a virtual call if the base expression has a record type 361 // because then we know what the type is. 362 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 363 364 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 365 assert(CE->arg_begin() == CE->arg_end() && 366 "Destructor shouldn't have explicit parameters"); 367 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 368 if (UseVirtualCall) { 369 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 370 This.getAddress(*this), 371 cast<CXXMemberCallExpr>(CE)); 372 } else { 373 GlobalDecl GD(Dtor, Dtor_Complete); 374 CGCallee Callee; 375 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 376 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 377 else if (!DevirtualizedMethod) 378 Callee = 379 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 380 else { 381 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 382 } 383 384 QualType ThisTy = 385 IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 386 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, 387 /*ImplicitParam=*/nullptr, 388 /*ImplicitParamTy=*/QualType(), CE); 389 } 390 return RValue::get(nullptr); 391 } 392 393 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 394 // 'CalleeDecl' instead. 395 396 CGCallee Callee; 397 if (UseVirtualCall) { 398 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty); 399 } else { 400 if (SanOpts.has(SanitizerKind::CFINVCall) && 401 MD->getParent()->isDynamicClass()) { 402 llvm::Value *VTable; 403 const CXXRecordDecl *RD; 404 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( 405 *this, This.getAddress(*this), CalleeDecl->getParent()); 406 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 407 } 408 409 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 410 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 411 else if (!DevirtualizedMethod) 412 Callee = 413 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 414 else { 415 Callee = 416 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 417 GlobalDecl(DevirtualizedMethod)); 418 } 419 } 420 421 if (MD->isVirtual()) { 422 Address NewThisAddr = 423 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 424 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall); 425 This.setAddress(NewThisAddr); 426 } 427 428 return EmitCXXMemberOrOperatorCall( 429 CalleeDecl, Callee, ReturnValue, This.getPointer(*this), 430 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 431 } 432 433 RValue 434 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 435 ReturnValueSlot ReturnValue) { 436 const BinaryOperator *BO = 437 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 438 const Expr *BaseExpr = BO->getLHS(); 439 const Expr *MemFnExpr = BO->getRHS(); 440 441 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 442 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 443 const auto *RD = 444 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 445 446 // Emit the 'this' pointer. 447 Address This = Address::invalid(); 448 if (BO->getOpcode() == BO_PtrMemI) 449 This = EmitPointerWithAlignment(BaseExpr); 450 else 451 This = EmitLValue(BaseExpr).getAddress(*this); 452 453 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 454 QualType(MPT->getClass(), 0)); 455 456 // Get the member function pointer. 457 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 458 459 // Ask the ABI to load the callee. Note that This is modified. 460 llvm::Value *ThisPtrForCall = nullptr; 461 CGCallee Callee = 462 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 463 ThisPtrForCall, MemFnPtr, MPT); 464 465 CallArgList Args; 466 467 QualType ThisType = 468 getContext().getPointerType(getContext().getTagDeclType(RD)); 469 470 // Push the this ptr. 471 Args.add(RValue::get(ThisPtrForCall), ThisType); 472 473 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 474 475 // And the rest of the call args 476 EmitCallArgs(Args, FPT, E->arguments()); 477 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 478 /*PrefixSize=*/0), 479 Callee, ReturnValue, Args, nullptr, E == MustTailCall, 480 E->getExprLoc()); 481 } 482 483 RValue 484 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 485 const CXXMethodDecl *MD, 486 ReturnValueSlot ReturnValue) { 487 assert(MD->isInstance() && 488 "Trying to emit a member call expr on a static method!"); 489 return EmitCXXMemberOrOperatorMemberCallExpr( 490 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 491 /*IsArrow=*/false, E->getArg(0)); 492 } 493 494 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 495 ReturnValueSlot ReturnValue) { 496 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 497 } 498 499 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 500 Address DestPtr, 501 const CXXRecordDecl *Base) { 502 if (Base->isEmpty()) 503 return; 504 505 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 506 507 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 508 CharUnits NVSize = Layout.getNonVirtualSize(); 509 510 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 511 // present, they are initialized by the most derived class before calling the 512 // constructor. 513 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 514 Stores.emplace_back(CharUnits::Zero(), NVSize); 515 516 // Each store is split by the existence of a vbptr. 517 CharUnits VBPtrWidth = CGF.getPointerSize(); 518 std::vector<CharUnits> VBPtrOffsets = 519 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 520 for (CharUnits VBPtrOffset : VBPtrOffsets) { 521 // Stop before we hit any virtual base pointers located in virtual bases. 522 if (VBPtrOffset >= NVSize) 523 break; 524 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 525 CharUnits LastStoreOffset = LastStore.first; 526 CharUnits LastStoreSize = LastStore.second; 527 528 CharUnits SplitBeforeOffset = LastStoreOffset; 529 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 530 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 531 if (!SplitBeforeSize.isZero()) 532 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 533 534 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 535 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 536 assert(!SplitAfterSize.isNegative() && "negative store size!"); 537 if (!SplitAfterSize.isZero()) 538 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 539 } 540 541 // If the type contains a pointer to data member we can't memset it to zero. 542 // Instead, create a null constant and copy it to the destination. 543 // TODO: there are other patterns besides zero that we can usefully memset, 544 // like -1, which happens to be the pattern used by member-pointers. 545 // TODO: isZeroInitializable can be over-conservative in the case where a 546 // virtual base contains a member pointer. 547 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 548 if (!NullConstantForBase->isNullValue()) { 549 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 550 CGF.CGM.getModule(), NullConstantForBase->getType(), 551 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 552 NullConstantForBase, Twine()); 553 554 CharUnits Align = 555 std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment()); 556 NullVariable->setAlignment(Align.getAsAlign()); 557 558 Address SrcPtr = 559 Address(CGF.EmitCastToVoidPtr(NullVariable), CGF.Int8Ty, Align); 560 561 // Get and call the appropriate llvm.memcpy overload. 562 for (std::pair<CharUnits, CharUnits> Store : Stores) { 563 CharUnits StoreOffset = Store.first; 564 CharUnits StoreSize = Store.second; 565 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 566 CGF.Builder.CreateMemCpy( 567 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 568 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 569 StoreSizeVal); 570 } 571 572 // Otherwise, just memset the whole thing to zero. This is legal 573 // because in LLVM, all default initializers (other than the ones we just 574 // handled above) are guaranteed to have a bit pattern of all zeros. 575 } else { 576 for (std::pair<CharUnits, CharUnits> Store : Stores) { 577 CharUnits StoreOffset = Store.first; 578 CharUnits StoreSize = Store.second; 579 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 580 CGF.Builder.CreateMemSet( 581 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 582 CGF.Builder.getInt8(0), StoreSizeVal); 583 } 584 } 585 } 586 587 void 588 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 589 AggValueSlot Dest) { 590 assert(!Dest.isIgnored() && "Must have a destination!"); 591 const CXXConstructorDecl *CD = E->getConstructor(); 592 593 // If we require zero initialization before (or instead of) calling the 594 // constructor, as can be the case with a non-user-provided default 595 // constructor, emit the zero initialization now, unless destination is 596 // already zeroed. 597 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 598 switch (E->getConstructionKind()) { 599 case CXXConstructExpr::CK_Delegating: 600 case CXXConstructExpr::CK_Complete: 601 EmitNullInitialization(Dest.getAddress(), E->getType()); 602 break; 603 case CXXConstructExpr::CK_VirtualBase: 604 case CXXConstructExpr::CK_NonVirtualBase: 605 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 606 CD->getParent()); 607 break; 608 } 609 } 610 611 // If this is a call to a trivial default constructor, do nothing. 612 if (CD->isTrivial() && CD->isDefaultConstructor()) 613 return; 614 615 // Elide the constructor if we're constructing from a temporary. 616 if (getLangOpts().ElideConstructors && E->isElidable()) { 617 // FIXME: This only handles the simplest case, where the source object 618 // is passed directly as the first argument to the constructor. 619 // This should also handle stepping though implicit casts and 620 // conversion sequences which involve two steps, with a 621 // conversion operator followed by a converting constructor. 622 const Expr *SrcObj = E->getArg(0); 623 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent())); 624 assert( 625 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 626 EmitAggExpr(SrcObj, Dest); 627 return; 628 } 629 630 if (const ArrayType *arrayType 631 = getContext().getAsArrayType(E->getType())) { 632 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 633 Dest.isSanitizerChecked()); 634 } else { 635 CXXCtorType Type = Ctor_Complete; 636 bool ForVirtualBase = false; 637 bool Delegating = false; 638 639 switch (E->getConstructionKind()) { 640 case CXXConstructExpr::CK_Delegating: 641 // We should be emitting a constructor; GlobalDecl will assert this 642 Type = CurGD.getCtorType(); 643 Delegating = true; 644 break; 645 646 case CXXConstructExpr::CK_Complete: 647 Type = Ctor_Complete; 648 break; 649 650 case CXXConstructExpr::CK_VirtualBase: 651 ForVirtualBase = true; 652 [[fallthrough]]; 653 654 case CXXConstructExpr::CK_NonVirtualBase: 655 Type = Ctor_Base; 656 } 657 658 // Call the constructor. 659 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 660 } 661 } 662 663 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 664 const Expr *Exp) { 665 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 666 Exp = E->getSubExpr(); 667 assert(isa<CXXConstructExpr>(Exp) && 668 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 669 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 670 const CXXConstructorDecl *CD = E->getConstructor(); 671 RunCleanupsScope Scope(*this); 672 673 // If we require zero initialization before (or instead of) calling the 674 // constructor, as can be the case with a non-user-provided default 675 // constructor, emit the zero initialization now. 676 // FIXME. Do I still need this for a copy ctor synthesis? 677 if (E->requiresZeroInitialization()) 678 EmitNullInitialization(Dest, E->getType()); 679 680 assert(!getContext().getAsConstantArrayType(E->getType()) 681 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 682 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 683 } 684 685 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 686 const CXXNewExpr *E) { 687 if (!E->isArray()) 688 return CharUnits::Zero(); 689 690 // No cookie is required if the operator new[] being used is the 691 // reserved placement operator new[]. 692 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 693 return CharUnits::Zero(); 694 695 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 696 } 697 698 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 699 const CXXNewExpr *e, 700 unsigned minElements, 701 llvm::Value *&numElements, 702 llvm::Value *&sizeWithoutCookie) { 703 QualType type = e->getAllocatedType(); 704 705 if (!e->isArray()) { 706 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 707 sizeWithoutCookie 708 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 709 return sizeWithoutCookie; 710 } 711 712 // The width of size_t. 713 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 714 715 // Figure out the cookie size. 716 llvm::APInt cookieSize(sizeWidth, 717 CalculateCookiePadding(CGF, e).getQuantity()); 718 719 // Emit the array size expression. 720 // We multiply the size of all dimensions for NumElements. 721 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 722 numElements = 723 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 724 if (!numElements) 725 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 726 assert(isa<llvm::IntegerType>(numElements->getType())); 727 728 // The number of elements can be have an arbitrary integer type; 729 // essentially, we need to multiply it by a constant factor, add a 730 // cookie size, and verify that the result is representable as a 731 // size_t. That's just a gloss, though, and it's wrong in one 732 // important way: if the count is negative, it's an error even if 733 // the cookie size would bring the total size >= 0. 734 bool isSigned 735 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 736 llvm::IntegerType *numElementsType 737 = cast<llvm::IntegerType>(numElements->getType()); 738 unsigned numElementsWidth = numElementsType->getBitWidth(); 739 740 // Compute the constant factor. 741 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 742 while (const ConstantArrayType *CAT 743 = CGF.getContext().getAsConstantArrayType(type)) { 744 type = CAT->getElementType(); 745 arraySizeMultiplier *= CAT->getSize(); 746 } 747 748 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 749 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 750 typeSizeMultiplier *= arraySizeMultiplier; 751 752 // This will be a size_t. 753 llvm::Value *size; 754 755 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 756 // Don't bloat the -O0 code. 757 if (llvm::ConstantInt *numElementsC = 758 dyn_cast<llvm::ConstantInt>(numElements)) { 759 const llvm::APInt &count = numElementsC->getValue(); 760 761 bool hasAnyOverflow = false; 762 763 // If 'count' was a negative number, it's an overflow. 764 if (isSigned && count.isNegative()) 765 hasAnyOverflow = true; 766 767 // We want to do all this arithmetic in size_t. If numElements is 768 // wider than that, check whether it's already too big, and if so, 769 // overflow. 770 else if (numElementsWidth > sizeWidth && 771 numElementsWidth - sizeWidth > count.countLeadingZeros()) 772 hasAnyOverflow = true; 773 774 // Okay, compute a count at the right width. 775 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 776 777 // If there is a brace-initializer, we cannot allocate fewer elements than 778 // there are initializers. If we do, that's treated like an overflow. 779 if (adjustedCount.ult(minElements)) 780 hasAnyOverflow = true; 781 782 // Scale numElements by that. This might overflow, but we don't 783 // care because it only overflows if allocationSize does, too, and 784 // if that overflows then we shouldn't use this. 785 numElements = llvm::ConstantInt::get(CGF.SizeTy, 786 adjustedCount * arraySizeMultiplier); 787 788 // Compute the size before cookie, and track whether it overflowed. 789 bool overflow; 790 llvm::APInt allocationSize 791 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 792 hasAnyOverflow |= overflow; 793 794 // Add in the cookie, and check whether it's overflowed. 795 if (cookieSize != 0) { 796 // Save the current size without a cookie. This shouldn't be 797 // used if there was overflow. 798 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 799 800 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 801 hasAnyOverflow |= overflow; 802 } 803 804 // On overflow, produce a -1 so operator new will fail. 805 if (hasAnyOverflow) { 806 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 807 } else { 808 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 809 } 810 811 // Otherwise, we might need to use the overflow intrinsics. 812 } else { 813 // There are up to five conditions we need to test for: 814 // 1) if isSigned, we need to check whether numElements is negative; 815 // 2) if numElementsWidth > sizeWidth, we need to check whether 816 // numElements is larger than something representable in size_t; 817 // 3) if minElements > 0, we need to check whether numElements is smaller 818 // than that. 819 // 4) we need to compute 820 // sizeWithoutCookie := numElements * typeSizeMultiplier 821 // and check whether it overflows; and 822 // 5) if we need a cookie, we need to compute 823 // size := sizeWithoutCookie + cookieSize 824 // and check whether it overflows. 825 826 llvm::Value *hasOverflow = nullptr; 827 828 // If numElementsWidth > sizeWidth, then one way or another, we're 829 // going to have to do a comparison for (2), and this happens to 830 // take care of (1), too. 831 if (numElementsWidth > sizeWidth) { 832 llvm::APInt threshold(numElementsWidth, 1); 833 threshold <<= sizeWidth; 834 835 llvm::Value *thresholdV 836 = llvm::ConstantInt::get(numElementsType, threshold); 837 838 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 839 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 840 841 // Otherwise, if we're signed, we want to sext up to size_t. 842 } else if (isSigned) { 843 if (numElementsWidth < sizeWidth) 844 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 845 846 // If there's a non-1 type size multiplier, then we can do the 847 // signedness check at the same time as we do the multiply 848 // because a negative number times anything will cause an 849 // unsigned overflow. Otherwise, we have to do it here. But at least 850 // in this case, we can subsume the >= minElements check. 851 if (typeSizeMultiplier == 1) 852 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 853 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 854 855 // Otherwise, zext up to size_t if necessary. 856 } else if (numElementsWidth < sizeWidth) { 857 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 858 } 859 860 assert(numElements->getType() == CGF.SizeTy); 861 862 if (minElements) { 863 // Don't allow allocation of fewer elements than we have initializers. 864 if (!hasOverflow) { 865 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 866 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 867 } else if (numElementsWidth > sizeWidth) { 868 // The other existing overflow subsumes this check. 869 // We do an unsigned comparison, since any signed value < -1 is 870 // taken care of either above or below. 871 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 872 CGF.Builder.CreateICmpULT(numElements, 873 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 874 } 875 } 876 877 size = numElements; 878 879 // Multiply by the type size if necessary. This multiplier 880 // includes all the factors for nested arrays. 881 // 882 // This step also causes numElements to be scaled up by the 883 // nested-array factor if necessary. Overflow on this computation 884 // can be ignored because the result shouldn't be used if 885 // allocation fails. 886 if (typeSizeMultiplier != 1) { 887 llvm::Function *umul_with_overflow 888 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 889 890 llvm::Value *tsmV = 891 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 892 llvm::Value *result = 893 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 894 895 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 896 if (hasOverflow) 897 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 898 else 899 hasOverflow = overflowed; 900 901 size = CGF.Builder.CreateExtractValue(result, 0); 902 903 // Also scale up numElements by the array size multiplier. 904 if (arraySizeMultiplier != 1) { 905 // If the base element type size is 1, then we can re-use the 906 // multiply we just did. 907 if (typeSize.isOne()) { 908 assert(arraySizeMultiplier == typeSizeMultiplier); 909 numElements = size; 910 911 // Otherwise we need a separate multiply. 912 } else { 913 llvm::Value *asmV = 914 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 915 numElements = CGF.Builder.CreateMul(numElements, asmV); 916 } 917 } 918 } else { 919 // numElements doesn't need to be scaled. 920 assert(arraySizeMultiplier == 1); 921 } 922 923 // Add in the cookie size if necessary. 924 if (cookieSize != 0) { 925 sizeWithoutCookie = size; 926 927 llvm::Function *uadd_with_overflow 928 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 929 930 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 931 llvm::Value *result = 932 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 933 934 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 935 if (hasOverflow) 936 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 937 else 938 hasOverflow = overflowed; 939 940 size = CGF.Builder.CreateExtractValue(result, 0); 941 } 942 943 // If we had any possibility of dynamic overflow, make a select to 944 // overwrite 'size' with an all-ones value, which should cause 945 // operator new to throw. 946 if (hasOverflow) 947 size = CGF.Builder.CreateSelect(hasOverflow, 948 llvm::Constant::getAllOnesValue(CGF.SizeTy), 949 size); 950 } 951 952 if (cookieSize == 0) 953 sizeWithoutCookie = size; 954 else 955 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 956 957 return size; 958 } 959 960 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 961 QualType AllocType, Address NewPtr, 962 AggValueSlot::Overlap_t MayOverlap) { 963 // FIXME: Refactor with EmitExprAsInit. 964 switch (CGF.getEvaluationKind(AllocType)) { 965 case TEK_Scalar: 966 CGF.EmitScalarInit(Init, nullptr, 967 CGF.MakeAddrLValue(NewPtr, AllocType), false); 968 return; 969 case TEK_Complex: 970 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 971 /*isInit*/ true); 972 return; 973 case TEK_Aggregate: { 974 AggValueSlot Slot 975 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 976 AggValueSlot::IsDestructed, 977 AggValueSlot::DoesNotNeedGCBarriers, 978 AggValueSlot::IsNotAliased, 979 MayOverlap, AggValueSlot::IsNotZeroed, 980 AggValueSlot::IsSanitizerChecked); 981 CGF.EmitAggExpr(Init, Slot); 982 return; 983 } 984 } 985 llvm_unreachable("bad evaluation kind"); 986 } 987 988 void CodeGenFunction::EmitNewArrayInitializer( 989 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 990 Address BeginPtr, llvm::Value *NumElements, 991 llvm::Value *AllocSizeWithoutCookie) { 992 // If we have a type with trivial initialization and no initializer, 993 // there's nothing to do. 994 if (!E->hasInitializer()) 995 return; 996 997 Address CurPtr = BeginPtr; 998 999 unsigned InitListElements = 0; 1000 1001 const Expr *Init = E->getInitializer(); 1002 Address EndOfInit = Address::invalid(); 1003 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 1004 EHScopeStack::stable_iterator Cleanup; 1005 llvm::Instruction *CleanupDominator = nullptr; 1006 1007 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 1008 CharUnits ElementAlign = 1009 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 1010 1011 // Attempt to perform zero-initialization using memset. 1012 auto TryMemsetInitialization = [&]() -> bool { 1013 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 1014 // we can initialize with a memset to -1. 1015 if (!CGM.getTypes().isZeroInitializable(ElementType)) 1016 return false; 1017 1018 // Optimization: since zero initialization will just set the memory 1019 // to all zeroes, generate a single memset to do it in one shot. 1020 1021 // Subtract out the size of any elements we've already initialized. 1022 auto *RemainingSize = AllocSizeWithoutCookie; 1023 if (InitListElements) { 1024 // We know this can't overflow; we check this when doing the allocation. 1025 auto *InitializedSize = llvm::ConstantInt::get( 1026 RemainingSize->getType(), 1027 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1028 InitListElements); 1029 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1030 } 1031 1032 // Create the memset. 1033 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1034 return true; 1035 }; 1036 1037 // If the initializer is an initializer list, first do the explicit elements. 1038 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1039 // Initializing from a (braced) string literal is a special case; the init 1040 // list element does not initialize a (single) array element. 1041 if (ILE->isStringLiteralInit()) { 1042 // Initialize the initial portion of length equal to that of the string 1043 // literal. The allocation must be for at least this much; we emitted a 1044 // check for that earlier. 1045 AggValueSlot Slot = 1046 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1047 AggValueSlot::IsDestructed, 1048 AggValueSlot::DoesNotNeedGCBarriers, 1049 AggValueSlot::IsNotAliased, 1050 AggValueSlot::DoesNotOverlap, 1051 AggValueSlot::IsNotZeroed, 1052 AggValueSlot::IsSanitizerChecked); 1053 EmitAggExpr(ILE->getInit(0), Slot); 1054 1055 // Move past these elements. 1056 InitListElements = 1057 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1058 ->getSize().getZExtValue(); 1059 CurPtr = Builder.CreateConstInBoundsGEP( 1060 CurPtr, InitListElements, "string.init.end"); 1061 1062 // Zero out the rest, if any remain. 1063 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1064 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1065 bool OK = TryMemsetInitialization(); 1066 (void)OK; 1067 assert(OK && "couldn't memset character type?"); 1068 } 1069 return; 1070 } 1071 1072 InitListElements = ILE->getNumInits(); 1073 1074 // If this is a multi-dimensional array new, we will initialize multiple 1075 // elements with each init list element. 1076 QualType AllocType = E->getAllocatedType(); 1077 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1078 AllocType->getAsArrayTypeUnsafe())) { 1079 ElementTy = ConvertTypeForMem(AllocType); 1080 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1081 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1082 } 1083 1084 // Enter a partial-destruction Cleanup if necessary. 1085 if (needsEHCleanup(DtorKind)) { 1086 // In principle we could tell the Cleanup where we are more 1087 // directly, but the control flow can get so varied here that it 1088 // would actually be quite complex. Therefore we go through an 1089 // alloca. 1090 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1091 "array.init.end"); 1092 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1093 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1094 ElementType, ElementAlign, 1095 getDestroyer(DtorKind)); 1096 Cleanup = EHStack.stable_begin(); 1097 } 1098 1099 CharUnits StartAlign = CurPtr.getAlignment(); 1100 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1101 // Tell the cleanup that it needs to destroy up to this 1102 // element. TODO: some of these stores can be trivially 1103 // observed to be unnecessary. 1104 if (EndOfInit.isValid()) { 1105 auto FinishedPtr = 1106 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1107 Builder.CreateStore(FinishedPtr, EndOfInit); 1108 } 1109 // FIXME: If the last initializer is an incomplete initializer list for 1110 // an array, and we have an array filler, we can fold together the two 1111 // initialization loops. 1112 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1113 ILE->getInit(i)->getType(), CurPtr, 1114 AggValueSlot::DoesNotOverlap); 1115 CurPtr = Address(Builder.CreateInBoundsGEP( 1116 CurPtr.getElementType(), CurPtr.getPointer(), 1117 Builder.getSize(1), "array.exp.next"), 1118 CurPtr.getElementType(), 1119 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1120 } 1121 1122 // The remaining elements are filled with the array filler expression. 1123 Init = ILE->getArrayFiller(); 1124 1125 // Extract the initializer for the individual array elements by pulling 1126 // out the array filler from all the nested initializer lists. This avoids 1127 // generating a nested loop for the initialization. 1128 while (Init && Init->getType()->isConstantArrayType()) { 1129 auto *SubILE = dyn_cast<InitListExpr>(Init); 1130 if (!SubILE) 1131 break; 1132 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1133 Init = SubILE->getArrayFiller(); 1134 } 1135 1136 // Switch back to initializing one base element at a time. 1137 CurPtr = Builder.CreateElementBitCast(CurPtr, BeginPtr.getElementType()); 1138 } 1139 1140 // If all elements have already been initialized, skip any further 1141 // initialization. 1142 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1143 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1144 // If there was a Cleanup, deactivate it. 1145 if (CleanupDominator) 1146 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1147 return; 1148 } 1149 1150 assert(Init && "have trailing elements to initialize but no initializer"); 1151 1152 // If this is a constructor call, try to optimize it out, and failing that 1153 // emit a single loop to initialize all remaining elements. 1154 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1155 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1156 if (Ctor->isTrivial()) { 1157 // If new expression did not specify value-initialization, then there 1158 // is no initialization. 1159 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1160 return; 1161 1162 if (TryMemsetInitialization()) 1163 return; 1164 } 1165 1166 // Store the new Cleanup position for irregular Cleanups. 1167 // 1168 // FIXME: Share this cleanup with the constructor call emission rather than 1169 // having it create a cleanup of its own. 1170 if (EndOfInit.isValid()) 1171 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1172 1173 // Emit a constructor call loop to initialize the remaining elements. 1174 if (InitListElements) 1175 NumElements = Builder.CreateSub( 1176 NumElements, 1177 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1178 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1179 /*NewPointerIsChecked*/true, 1180 CCE->requiresZeroInitialization()); 1181 return; 1182 } 1183 1184 // If this is value-initialization, we can usually use memset. 1185 ImplicitValueInitExpr IVIE(ElementType); 1186 if (isa<ImplicitValueInitExpr>(Init)) { 1187 if (TryMemsetInitialization()) 1188 return; 1189 1190 // Switch to an ImplicitValueInitExpr for the element type. This handles 1191 // only one case: multidimensional array new of pointers to members. In 1192 // all other cases, we already have an initializer for the array element. 1193 Init = &IVIE; 1194 } 1195 1196 // At this point we should have found an initializer for the individual 1197 // elements of the array. 1198 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1199 "got wrong type of element to initialize"); 1200 1201 // If we have an empty initializer list, we can usually use memset. 1202 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1203 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1204 return; 1205 1206 // If we have a struct whose every field is value-initialized, we can 1207 // usually use memset. 1208 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1209 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1210 if (RType->getDecl()->isStruct()) { 1211 unsigned NumElements = 0; 1212 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1213 NumElements = CXXRD->getNumBases(); 1214 for (auto *Field : RType->getDecl()->fields()) 1215 if (!Field->isUnnamedBitfield()) 1216 ++NumElements; 1217 // FIXME: Recurse into nested InitListExprs. 1218 if (ILE->getNumInits() == NumElements) 1219 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1220 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1221 --NumElements; 1222 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1223 return; 1224 } 1225 } 1226 } 1227 1228 // Create the loop blocks. 1229 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1230 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1231 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1232 1233 // Find the end of the array, hoisted out of the loop. 1234 llvm::Value *EndPtr = 1235 Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(), 1236 NumElements, "array.end"); 1237 1238 // If the number of elements isn't constant, we have to now check if there is 1239 // anything left to initialize. 1240 if (!ConstNum) { 1241 llvm::Value *IsEmpty = 1242 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1243 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1244 } 1245 1246 // Enter the loop. 1247 EmitBlock(LoopBB); 1248 1249 // Set up the current-element phi. 1250 llvm::PHINode *CurPtrPhi = 1251 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1252 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1253 1254 CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign); 1255 1256 // Store the new Cleanup position for irregular Cleanups. 1257 if (EndOfInit.isValid()) 1258 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1259 1260 // Enter a partial-destruction Cleanup if necessary. 1261 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1262 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1263 ElementType, ElementAlign, 1264 getDestroyer(DtorKind)); 1265 Cleanup = EHStack.stable_begin(); 1266 CleanupDominator = Builder.CreateUnreachable(); 1267 } 1268 1269 // Emit the initializer into this element. 1270 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1271 AggValueSlot::DoesNotOverlap); 1272 1273 // Leave the Cleanup if we entered one. 1274 if (CleanupDominator) { 1275 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1276 CleanupDominator->eraseFromParent(); 1277 } 1278 1279 // Advance to the next element by adjusting the pointer type as necessary. 1280 llvm::Value *NextPtr = 1281 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1282 "array.next"); 1283 1284 // Check whether we've gotten to the end of the array and, if so, 1285 // exit the loop. 1286 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1287 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1288 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1289 1290 EmitBlock(ContBB); 1291 } 1292 1293 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1294 QualType ElementType, llvm::Type *ElementTy, 1295 Address NewPtr, llvm::Value *NumElements, 1296 llvm::Value *AllocSizeWithoutCookie) { 1297 ApplyDebugLocation DL(CGF, E); 1298 if (E->isArray()) 1299 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1300 AllocSizeWithoutCookie); 1301 else if (const Expr *Init = E->getInitializer()) 1302 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1303 AggValueSlot::DoesNotOverlap); 1304 } 1305 1306 /// Emit a call to an operator new or operator delete function, as implicitly 1307 /// created by new-expressions and delete-expressions. 1308 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1309 const FunctionDecl *CalleeDecl, 1310 const FunctionProtoType *CalleeType, 1311 const CallArgList &Args) { 1312 llvm::CallBase *CallOrInvoke; 1313 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1314 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1315 RValue RV = 1316 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1317 Args, CalleeType, /*ChainCall=*/false), 1318 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1319 1320 /// C++1y [expr.new]p10: 1321 /// [In a new-expression,] an implementation is allowed to omit a call 1322 /// to a replaceable global allocation function. 1323 /// 1324 /// We model such elidable calls with the 'builtin' attribute. 1325 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1326 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1327 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1328 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin); 1329 } 1330 1331 return RV; 1332 } 1333 1334 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1335 const CallExpr *TheCall, 1336 bool IsDelete) { 1337 CallArgList Args; 1338 EmitCallArgs(Args, Type, TheCall->arguments()); 1339 // Find the allocation or deallocation function that we're calling. 1340 ASTContext &Ctx = getContext(); 1341 DeclarationName Name = Ctx.DeclarationNames 1342 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1343 1344 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1345 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1346 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1347 return EmitNewDeleteCall(*this, FD, Type, Args); 1348 llvm_unreachable("predeclared global operator new/delete is missing"); 1349 } 1350 1351 namespace { 1352 /// The parameters to pass to a usual operator delete. 1353 struct UsualDeleteParams { 1354 bool DestroyingDelete = false; 1355 bool Size = false; 1356 bool Alignment = false; 1357 }; 1358 } 1359 1360 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1361 UsualDeleteParams Params; 1362 1363 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1364 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1365 1366 // The first argument is always a void*. 1367 ++AI; 1368 1369 // The next parameter may be a std::destroying_delete_t. 1370 if (FD->isDestroyingOperatorDelete()) { 1371 Params.DestroyingDelete = true; 1372 assert(AI != AE); 1373 ++AI; 1374 } 1375 1376 // Figure out what other parameters we should be implicitly passing. 1377 if (AI != AE && (*AI)->isIntegerType()) { 1378 Params.Size = true; 1379 ++AI; 1380 } 1381 1382 if (AI != AE && (*AI)->isAlignValT()) { 1383 Params.Alignment = true; 1384 ++AI; 1385 } 1386 1387 assert(AI == AE && "unexpected usual deallocation function parameter"); 1388 return Params; 1389 } 1390 1391 namespace { 1392 /// A cleanup to call the given 'operator delete' function upon abnormal 1393 /// exit from a new expression. Templated on a traits type that deals with 1394 /// ensuring that the arguments dominate the cleanup if necessary. 1395 template<typename Traits> 1396 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1397 /// Type used to hold llvm::Value*s. 1398 typedef typename Traits::ValueTy ValueTy; 1399 /// Type used to hold RValues. 1400 typedef typename Traits::RValueTy RValueTy; 1401 struct PlacementArg { 1402 RValueTy ArgValue; 1403 QualType ArgType; 1404 }; 1405 1406 unsigned NumPlacementArgs : 31; 1407 unsigned PassAlignmentToPlacementDelete : 1; 1408 const FunctionDecl *OperatorDelete; 1409 ValueTy Ptr; 1410 ValueTy AllocSize; 1411 CharUnits AllocAlign; 1412 1413 PlacementArg *getPlacementArgs() { 1414 return reinterpret_cast<PlacementArg *>(this + 1); 1415 } 1416 1417 public: 1418 static size_t getExtraSize(size_t NumPlacementArgs) { 1419 return NumPlacementArgs * sizeof(PlacementArg); 1420 } 1421 1422 CallDeleteDuringNew(size_t NumPlacementArgs, 1423 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1424 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1425 CharUnits AllocAlign) 1426 : NumPlacementArgs(NumPlacementArgs), 1427 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1428 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1429 AllocAlign(AllocAlign) {} 1430 1431 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1432 assert(I < NumPlacementArgs && "index out of range"); 1433 getPlacementArgs()[I] = {Arg, Type}; 1434 } 1435 1436 void Emit(CodeGenFunction &CGF, Flags flags) override { 1437 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); 1438 CallArgList DeleteArgs; 1439 1440 // The first argument is always a void* (or C* for a destroying operator 1441 // delete for class type C). 1442 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1443 1444 // Figure out what other parameters we should be implicitly passing. 1445 UsualDeleteParams Params; 1446 if (NumPlacementArgs) { 1447 // A placement deallocation function is implicitly passed an alignment 1448 // if the placement allocation function was, but is never passed a size. 1449 Params.Alignment = PassAlignmentToPlacementDelete; 1450 } else { 1451 // For a non-placement new-expression, 'operator delete' can take a 1452 // size and/or an alignment if it has the right parameters. 1453 Params = getUsualDeleteParams(OperatorDelete); 1454 } 1455 1456 assert(!Params.DestroyingDelete && 1457 "should not call destroying delete in a new-expression"); 1458 1459 // The second argument can be a std::size_t (for non-placement delete). 1460 if (Params.Size) 1461 DeleteArgs.add(Traits::get(CGF, AllocSize), 1462 CGF.getContext().getSizeType()); 1463 1464 // The next (second or third) argument can be a std::align_val_t, which 1465 // is an enum whose underlying type is std::size_t. 1466 // FIXME: Use the right type as the parameter type. Note that in a call 1467 // to operator delete(size_t, ...), we may not have it available. 1468 if (Params.Alignment) 1469 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1470 CGF.SizeTy, AllocAlign.getQuantity())), 1471 CGF.getContext().getSizeType()); 1472 1473 // Pass the rest of the arguments, which must match exactly. 1474 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1475 auto Arg = getPlacementArgs()[I]; 1476 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1477 } 1478 1479 // Call 'operator delete'. 1480 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1481 } 1482 }; 1483 } 1484 1485 /// Enter a cleanup to call 'operator delete' if the initializer in a 1486 /// new-expression throws. 1487 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1488 const CXXNewExpr *E, 1489 Address NewPtr, 1490 llvm::Value *AllocSize, 1491 CharUnits AllocAlign, 1492 const CallArgList &NewArgs) { 1493 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1494 1495 // If we're not inside a conditional branch, then the cleanup will 1496 // dominate and we can do the easier (and more efficient) thing. 1497 if (!CGF.isInConditionalBranch()) { 1498 struct DirectCleanupTraits { 1499 typedef llvm::Value *ValueTy; 1500 typedef RValue RValueTy; 1501 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1502 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1503 }; 1504 1505 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1506 1507 DirectCleanup *Cleanup = CGF.EHStack 1508 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1509 E->getNumPlacementArgs(), 1510 E->getOperatorDelete(), 1511 NewPtr.getPointer(), 1512 AllocSize, 1513 E->passAlignment(), 1514 AllocAlign); 1515 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1516 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1517 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1518 } 1519 1520 return; 1521 } 1522 1523 // Otherwise, we need to save all this stuff. 1524 DominatingValue<RValue>::saved_type SavedNewPtr = 1525 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1526 DominatingValue<RValue>::saved_type SavedAllocSize = 1527 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1528 1529 struct ConditionalCleanupTraits { 1530 typedef DominatingValue<RValue>::saved_type ValueTy; 1531 typedef DominatingValue<RValue>::saved_type RValueTy; 1532 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1533 return V.restore(CGF); 1534 } 1535 }; 1536 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1537 1538 ConditionalCleanup *Cleanup = CGF.EHStack 1539 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1540 E->getNumPlacementArgs(), 1541 E->getOperatorDelete(), 1542 SavedNewPtr, 1543 SavedAllocSize, 1544 E->passAlignment(), 1545 AllocAlign); 1546 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1547 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1548 Cleanup->setPlacementArg( 1549 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1550 } 1551 1552 CGF.initFullExprCleanup(); 1553 } 1554 1555 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1556 // The element type being allocated. 1557 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1558 1559 // 1. Build a call to the allocation function. 1560 FunctionDecl *allocator = E->getOperatorNew(); 1561 1562 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1563 unsigned minElements = 0; 1564 if (E->isArray() && E->hasInitializer()) { 1565 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1566 if (ILE && ILE->isStringLiteralInit()) 1567 minElements = 1568 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1569 ->getSize().getZExtValue(); 1570 else if (ILE) 1571 minElements = ILE->getNumInits(); 1572 } 1573 1574 llvm::Value *numElements = nullptr; 1575 llvm::Value *allocSizeWithoutCookie = nullptr; 1576 llvm::Value *allocSize = 1577 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1578 allocSizeWithoutCookie); 1579 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1580 1581 // Emit the allocation call. If the allocator is a global placement 1582 // operator, just "inline" it directly. 1583 Address allocation = Address::invalid(); 1584 CallArgList allocatorArgs; 1585 if (allocator->isReservedGlobalPlacementOperator()) { 1586 assert(E->getNumPlacementArgs() == 1); 1587 const Expr *arg = *E->placement_arguments().begin(); 1588 1589 LValueBaseInfo BaseInfo; 1590 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1591 1592 // The pointer expression will, in many cases, be an opaque void*. 1593 // In these cases, discard the computed alignment and use the 1594 // formal alignment of the allocated type. 1595 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1596 allocation = allocation.withAlignment(allocAlign); 1597 1598 // Set up allocatorArgs for the call to operator delete if it's not 1599 // the reserved global operator. 1600 if (E->getOperatorDelete() && 1601 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1602 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1603 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1604 } 1605 1606 } else { 1607 const FunctionProtoType *allocatorType = 1608 allocator->getType()->castAs<FunctionProtoType>(); 1609 unsigned ParamsToSkip = 0; 1610 1611 // The allocation size is the first argument. 1612 QualType sizeType = getContext().getSizeType(); 1613 allocatorArgs.add(RValue::get(allocSize), sizeType); 1614 ++ParamsToSkip; 1615 1616 if (allocSize != allocSizeWithoutCookie) { 1617 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1618 allocAlign = std::max(allocAlign, cookieAlign); 1619 } 1620 1621 // The allocation alignment may be passed as the second argument. 1622 if (E->passAlignment()) { 1623 QualType AlignValT = sizeType; 1624 if (allocatorType->getNumParams() > 1) { 1625 AlignValT = allocatorType->getParamType(1); 1626 assert(getContext().hasSameUnqualifiedType( 1627 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1628 sizeType) && 1629 "wrong type for alignment parameter"); 1630 ++ParamsToSkip; 1631 } else { 1632 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1633 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1634 } 1635 allocatorArgs.add( 1636 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1637 AlignValT); 1638 } 1639 1640 // FIXME: Why do we not pass a CalleeDecl here? 1641 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1642 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1643 1644 RValue RV = 1645 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1646 1647 // Set !heapallocsite metadata on the call to operator new. 1648 if (getDebugInfo()) 1649 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal())) 1650 getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType, 1651 E->getExprLoc()); 1652 1653 // If this was a call to a global replaceable allocation function that does 1654 // not take an alignment argument, the allocator is known to produce 1655 // storage that's suitably aligned for any object that fits, up to a known 1656 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1657 CharUnits allocationAlign = allocAlign; 1658 if (!E->passAlignment() && 1659 allocator->isReplaceableGlobalAllocationFunction()) { 1660 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1661 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1662 allocationAlign = std::max( 1663 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1664 } 1665 1666 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign); 1667 } 1668 1669 // Emit a null check on the allocation result if the allocation 1670 // function is allowed to return null (because it has a non-throwing 1671 // exception spec or is the reserved placement new) and we have an 1672 // interesting initializer will be running sanitizers on the initialization. 1673 bool nullCheck = E->shouldNullCheckAllocation() && 1674 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1675 sanitizePerformTypeCheck()); 1676 1677 llvm::BasicBlock *nullCheckBB = nullptr; 1678 llvm::BasicBlock *contBB = nullptr; 1679 1680 // The null-check means that the initializer is conditionally 1681 // evaluated. 1682 ConditionalEvaluation conditional(*this); 1683 1684 if (nullCheck) { 1685 conditional.begin(*this); 1686 1687 nullCheckBB = Builder.GetInsertBlock(); 1688 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1689 contBB = createBasicBlock("new.cont"); 1690 1691 llvm::Value *isNull = 1692 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1693 Builder.CreateCondBr(isNull, contBB, notNullBB); 1694 EmitBlock(notNullBB); 1695 } 1696 1697 // If there's an operator delete, enter a cleanup to call it if an 1698 // exception is thrown. 1699 EHScopeStack::stable_iterator operatorDeleteCleanup; 1700 llvm::Instruction *cleanupDominator = nullptr; 1701 if (E->getOperatorDelete() && 1702 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1703 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1704 allocatorArgs); 1705 operatorDeleteCleanup = EHStack.stable_begin(); 1706 cleanupDominator = Builder.CreateUnreachable(); 1707 } 1708 1709 assert((allocSize == allocSizeWithoutCookie) == 1710 CalculateCookiePadding(*this, E).isZero()); 1711 if (allocSize != allocSizeWithoutCookie) { 1712 assert(E->isArray()); 1713 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1714 numElements, 1715 E, allocType); 1716 } 1717 1718 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1719 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1720 1721 // Passing pointer through launder.invariant.group to avoid propagation of 1722 // vptrs information which may be included in previous type. 1723 // To not break LTO with different optimizations levels, we do it regardless 1724 // of optimization level. 1725 if (CGM.getCodeGenOpts().StrictVTablePointers && 1726 allocator->isReservedGlobalPlacementOperator()) 1727 result = Builder.CreateLaunderInvariantGroup(result); 1728 1729 // Emit sanitizer checks for pointer value now, so that in the case of an 1730 // array it was checked only once and not at each constructor call. We may 1731 // have already checked that the pointer is non-null. 1732 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1733 // we'll null check the wrong pointer here. 1734 SanitizerSet SkippedChecks; 1735 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1736 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1737 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1738 result.getPointer(), allocType, result.getAlignment(), 1739 SkippedChecks, numElements); 1740 1741 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1742 allocSizeWithoutCookie); 1743 llvm::Value *resultPtr = result.getPointer(); 1744 if (E->isArray()) { 1745 // NewPtr is a pointer to the base element type. If we're 1746 // allocating an array of arrays, we'll need to cast back to the 1747 // array pointer type. 1748 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1749 if (resultPtr->getType() != resultType) 1750 resultPtr = Builder.CreateBitCast(resultPtr, resultType); 1751 } 1752 1753 // Deactivate the 'operator delete' cleanup if we finished 1754 // initialization. 1755 if (operatorDeleteCleanup.isValid()) { 1756 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1757 cleanupDominator->eraseFromParent(); 1758 } 1759 1760 if (nullCheck) { 1761 conditional.end(*this); 1762 1763 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1764 EmitBlock(contBB); 1765 1766 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1767 PHI->addIncoming(resultPtr, notNullBB); 1768 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1769 nullCheckBB); 1770 1771 resultPtr = PHI; 1772 } 1773 1774 return resultPtr; 1775 } 1776 1777 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1778 llvm::Value *Ptr, QualType DeleteTy, 1779 llvm::Value *NumElements, 1780 CharUnits CookieSize) { 1781 assert((!NumElements && CookieSize.isZero()) || 1782 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1783 1784 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); 1785 CallArgList DeleteArgs; 1786 1787 auto Params = getUsualDeleteParams(DeleteFD); 1788 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1789 1790 // Pass the pointer itself. 1791 QualType ArgTy = *ParamTypeIt++; 1792 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1793 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1794 1795 // Pass the std::destroying_delete tag if present. 1796 llvm::AllocaInst *DestroyingDeleteTag = nullptr; 1797 if (Params.DestroyingDelete) { 1798 QualType DDTag = *ParamTypeIt++; 1799 llvm::Type *Ty = getTypes().ConvertType(DDTag); 1800 CharUnits Align = CGM.getNaturalTypeAlignment(DDTag); 1801 DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag"); 1802 DestroyingDeleteTag->setAlignment(Align.getAsAlign()); 1803 DeleteArgs.add( 1804 RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag); 1805 } 1806 1807 // Pass the size if the delete function has a size_t parameter. 1808 if (Params.Size) { 1809 QualType SizeType = *ParamTypeIt++; 1810 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1811 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1812 DeleteTypeSize.getQuantity()); 1813 1814 // For array new, multiply by the number of elements. 1815 if (NumElements) 1816 Size = Builder.CreateMul(Size, NumElements); 1817 1818 // If there is a cookie, add the cookie size. 1819 if (!CookieSize.isZero()) 1820 Size = Builder.CreateAdd( 1821 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1822 1823 DeleteArgs.add(RValue::get(Size), SizeType); 1824 } 1825 1826 // Pass the alignment if the delete function has an align_val_t parameter. 1827 if (Params.Alignment) { 1828 QualType AlignValType = *ParamTypeIt++; 1829 CharUnits DeleteTypeAlign = 1830 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown( 1831 DeleteTy, true /* NeedsPreferredAlignment */)); 1832 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1833 DeleteTypeAlign.getQuantity()); 1834 DeleteArgs.add(RValue::get(Align), AlignValType); 1835 } 1836 1837 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1838 "unknown parameter to usual delete function"); 1839 1840 // Emit the call to delete. 1841 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1842 1843 // If call argument lowering didn't use the destroying_delete_t alloca, 1844 // remove it again. 1845 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty()) 1846 DestroyingDeleteTag->eraseFromParent(); 1847 } 1848 1849 namespace { 1850 /// Calls the given 'operator delete' on a single object. 1851 struct CallObjectDelete final : EHScopeStack::Cleanup { 1852 llvm::Value *Ptr; 1853 const FunctionDecl *OperatorDelete; 1854 QualType ElementType; 1855 1856 CallObjectDelete(llvm::Value *Ptr, 1857 const FunctionDecl *OperatorDelete, 1858 QualType ElementType) 1859 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1860 1861 void Emit(CodeGenFunction &CGF, Flags flags) override { 1862 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1863 } 1864 }; 1865 } 1866 1867 void 1868 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1869 llvm::Value *CompletePtr, 1870 QualType ElementType) { 1871 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1872 OperatorDelete, ElementType); 1873 } 1874 1875 /// Emit the code for deleting a single object with a destroying operator 1876 /// delete. If the element type has a non-virtual destructor, Ptr has already 1877 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1878 /// Ptr points to an object of the static type. 1879 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1880 const CXXDeleteExpr *DE, Address Ptr, 1881 QualType ElementType) { 1882 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1883 if (Dtor && Dtor->isVirtual()) 1884 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1885 Dtor); 1886 else 1887 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1888 } 1889 1890 /// Emit the code for deleting a single object. 1891 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false 1892 /// if not. 1893 static bool EmitObjectDelete(CodeGenFunction &CGF, 1894 const CXXDeleteExpr *DE, 1895 Address Ptr, 1896 QualType ElementType, 1897 llvm::BasicBlock *UnconditionalDeleteBlock) { 1898 // C++11 [expr.delete]p3: 1899 // If the static type of the object to be deleted is different from its 1900 // dynamic type, the static type shall be a base class of the dynamic type 1901 // of the object to be deleted and the static type shall have a virtual 1902 // destructor or the behavior is undefined. 1903 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1904 DE->getExprLoc(), Ptr.getPointer(), 1905 ElementType); 1906 1907 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1908 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1909 1910 // Find the destructor for the type, if applicable. If the 1911 // destructor is virtual, we'll just emit the vcall and return. 1912 const CXXDestructorDecl *Dtor = nullptr; 1913 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1914 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1915 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1916 Dtor = RD->getDestructor(); 1917 1918 if (Dtor->isVirtual()) { 1919 bool UseVirtualCall = true; 1920 const Expr *Base = DE->getArgument(); 1921 if (auto *DevirtualizedDtor = 1922 dyn_cast_or_null<const CXXDestructorDecl>( 1923 Dtor->getDevirtualizedMethod( 1924 Base, CGF.CGM.getLangOpts().AppleKext))) { 1925 UseVirtualCall = false; 1926 const CXXRecordDecl *DevirtualizedClass = 1927 DevirtualizedDtor->getParent(); 1928 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1929 // Devirtualized to the class of the base type (the type of the 1930 // whole expression). 1931 Dtor = DevirtualizedDtor; 1932 } else { 1933 // Devirtualized to some other type. Would need to cast the this 1934 // pointer to that type but we don't have support for that yet, so 1935 // do a virtual call. FIXME: handle the case where it is 1936 // devirtualized to the derived type (the type of the inner 1937 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1938 UseVirtualCall = true; 1939 } 1940 } 1941 if (UseVirtualCall) { 1942 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1943 Dtor); 1944 return false; 1945 } 1946 } 1947 } 1948 } 1949 1950 // Make sure that we call delete even if the dtor throws. 1951 // This doesn't have to a conditional cleanup because we're going 1952 // to pop it off in a second. 1953 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1954 Ptr.getPointer(), 1955 OperatorDelete, ElementType); 1956 1957 if (Dtor) 1958 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1959 /*ForVirtualBase=*/false, 1960 /*Delegating=*/false, 1961 Ptr, ElementType); 1962 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1963 switch (Lifetime) { 1964 case Qualifiers::OCL_None: 1965 case Qualifiers::OCL_ExplicitNone: 1966 case Qualifiers::OCL_Autoreleasing: 1967 break; 1968 1969 case Qualifiers::OCL_Strong: 1970 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1971 break; 1972 1973 case Qualifiers::OCL_Weak: 1974 CGF.EmitARCDestroyWeak(Ptr); 1975 break; 1976 } 1977 } 1978 1979 // When optimizing for size, call 'operator delete' unconditionally. 1980 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) { 1981 CGF.EmitBlock(UnconditionalDeleteBlock); 1982 CGF.PopCleanupBlock(); 1983 return true; 1984 } 1985 1986 CGF.PopCleanupBlock(); 1987 return false; 1988 } 1989 1990 namespace { 1991 /// Calls the given 'operator delete' on an array of objects. 1992 struct CallArrayDelete final : EHScopeStack::Cleanup { 1993 llvm::Value *Ptr; 1994 const FunctionDecl *OperatorDelete; 1995 llvm::Value *NumElements; 1996 QualType ElementType; 1997 CharUnits CookieSize; 1998 1999 CallArrayDelete(llvm::Value *Ptr, 2000 const FunctionDecl *OperatorDelete, 2001 llvm::Value *NumElements, 2002 QualType ElementType, 2003 CharUnits CookieSize) 2004 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 2005 ElementType(ElementType), CookieSize(CookieSize) {} 2006 2007 void Emit(CodeGenFunction &CGF, Flags flags) override { 2008 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 2009 CookieSize); 2010 } 2011 }; 2012 } 2013 2014 /// Emit the code for deleting an array of objects. 2015 static void EmitArrayDelete(CodeGenFunction &CGF, 2016 const CXXDeleteExpr *E, 2017 Address deletedPtr, 2018 QualType elementType) { 2019 llvm::Value *numElements = nullptr; 2020 llvm::Value *allocatedPtr = nullptr; 2021 CharUnits cookieSize; 2022 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 2023 numElements, allocatedPtr, cookieSize); 2024 2025 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 2026 2027 // Make sure that we call delete even if one of the dtors throws. 2028 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 2029 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 2030 allocatedPtr, operatorDelete, 2031 numElements, elementType, 2032 cookieSize); 2033 2034 // Destroy the elements. 2035 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 2036 assert(numElements && "no element count for a type with a destructor!"); 2037 2038 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2039 CharUnits elementAlign = 2040 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 2041 2042 llvm::Value *arrayBegin = deletedPtr.getPointer(); 2043 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP( 2044 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end"); 2045 2046 // Note that it is legal to allocate a zero-length array, and we 2047 // can never fold the check away because the length should always 2048 // come from a cookie. 2049 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 2050 CGF.getDestroyer(dtorKind), 2051 /*checkZeroLength*/ true, 2052 CGF.needsEHCleanup(dtorKind)); 2053 } 2054 2055 // Pop the cleanup block. 2056 CGF.PopCleanupBlock(); 2057 } 2058 2059 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 2060 const Expr *Arg = E->getArgument(); 2061 Address Ptr = EmitPointerWithAlignment(Arg); 2062 2063 // Null check the pointer. 2064 // 2065 // We could avoid this null check if we can determine that the object 2066 // destruction is trivial and doesn't require an array cookie; we can 2067 // unconditionally perform the operator delete call in that case. For now, we 2068 // assume that deleted pointers are null rarely enough that it's better to 2069 // keep the branch. This might be worth revisiting for a -O0 code size win. 2070 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2071 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2072 2073 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2074 2075 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2076 EmitBlock(DeleteNotNull); 2077 2078 QualType DeleteTy = E->getDestroyedType(); 2079 2080 // A destroying operator delete overrides the entire operation of the 2081 // delete expression. 2082 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2083 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2084 EmitBlock(DeleteEnd); 2085 return; 2086 } 2087 2088 // We might be deleting a pointer to array. If so, GEP down to the 2089 // first non-array element. 2090 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2091 if (DeleteTy->isConstantArrayType()) { 2092 llvm::Value *Zero = Builder.getInt32(0); 2093 SmallVector<llvm::Value*,8> GEP; 2094 2095 GEP.push_back(Zero); // point at the outermost array 2096 2097 // For each layer of array type we're pointing at: 2098 while (const ConstantArrayType *Arr 2099 = getContext().getAsConstantArrayType(DeleteTy)) { 2100 // 1. Unpeel the array type. 2101 DeleteTy = Arr->getElementType(); 2102 2103 // 2. GEP to the first element of the array. 2104 GEP.push_back(Zero); 2105 } 2106 2107 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(), 2108 Ptr.getPointer(), GEP, "del.first"), 2109 ConvertTypeForMem(DeleteTy), Ptr.getAlignment()); 2110 } 2111 2112 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2113 2114 if (E->isArrayForm()) { 2115 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2116 EmitBlock(DeleteEnd); 2117 } else { 2118 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd)) 2119 EmitBlock(DeleteEnd); 2120 } 2121 } 2122 2123 static bool isGLValueFromPointerDeref(const Expr *E) { 2124 E = E->IgnoreParens(); 2125 2126 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2127 if (!CE->getSubExpr()->isGLValue()) 2128 return false; 2129 return isGLValueFromPointerDeref(CE->getSubExpr()); 2130 } 2131 2132 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2133 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2134 2135 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2136 if (BO->getOpcode() == BO_Comma) 2137 return isGLValueFromPointerDeref(BO->getRHS()); 2138 2139 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2140 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2141 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2142 2143 // C++11 [expr.sub]p1: 2144 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2145 if (isa<ArraySubscriptExpr>(E)) 2146 return true; 2147 2148 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2149 if (UO->getOpcode() == UO_Deref) 2150 return true; 2151 2152 return false; 2153 } 2154 2155 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2156 llvm::Type *StdTypeInfoPtrTy) { 2157 // Get the vtable pointer. 2158 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF); 2159 2160 QualType SrcRecordTy = E->getType(); 2161 2162 // C++ [class.cdtor]p4: 2163 // If the operand of typeid refers to the object under construction or 2164 // destruction and the static type of the operand is neither the constructor 2165 // or destructor’s class nor one of its bases, the behavior is undefined. 2166 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2167 ThisPtr.getPointer(), SrcRecordTy); 2168 2169 // C++ [expr.typeid]p2: 2170 // If the glvalue expression is obtained by applying the unary * operator to 2171 // a pointer and the pointer is a null pointer value, the typeid expression 2172 // throws the std::bad_typeid exception. 2173 // 2174 // However, this paragraph's intent is not clear. We choose a very generous 2175 // interpretation which implores us to consider comma operators, conditional 2176 // operators, parentheses and other such constructs. 2177 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2178 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2179 llvm::BasicBlock *BadTypeidBlock = 2180 CGF.createBasicBlock("typeid.bad_typeid"); 2181 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2182 2183 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2184 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2185 2186 CGF.EmitBlock(BadTypeidBlock); 2187 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2188 CGF.EmitBlock(EndBlock); 2189 } 2190 2191 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2192 StdTypeInfoPtrTy); 2193 } 2194 2195 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2196 llvm::Type *StdTypeInfoPtrTy = 2197 ConvertType(E->getType())->getPointerTo(); 2198 2199 if (E->isTypeOperand()) { 2200 llvm::Constant *TypeInfo = 2201 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2202 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2203 } 2204 2205 // C++ [expr.typeid]p2: 2206 // When typeid is applied to a glvalue expression whose type is a 2207 // polymorphic class type, the result refers to a std::type_info object 2208 // representing the type of the most derived object (that is, the dynamic 2209 // type) to which the glvalue refers. 2210 // If the operand is already most derived object, no need to look up vtable. 2211 if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext())) 2212 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2213 StdTypeInfoPtrTy); 2214 2215 QualType OperandTy = E->getExprOperand()->getType(); 2216 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2217 StdTypeInfoPtrTy); 2218 } 2219 2220 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2221 QualType DestTy) { 2222 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2223 if (DestTy->isPointerType()) 2224 return llvm::Constant::getNullValue(DestLTy); 2225 2226 /// C++ [expr.dynamic.cast]p9: 2227 /// A failed cast to reference type throws std::bad_cast 2228 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2229 return nullptr; 2230 2231 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2232 return llvm::UndefValue::get(DestLTy); 2233 } 2234 2235 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2236 const CXXDynamicCastExpr *DCE) { 2237 CGM.EmitExplicitCastExprType(DCE, this); 2238 QualType DestTy = DCE->getTypeAsWritten(); 2239 2240 QualType SrcTy = DCE->getSubExpr()->getType(); 2241 2242 // C++ [expr.dynamic.cast]p7: 2243 // If T is "pointer to cv void," then the result is a pointer to the most 2244 // derived object pointed to by v. 2245 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2246 2247 bool isDynamicCastToVoid; 2248 QualType SrcRecordTy; 2249 QualType DestRecordTy; 2250 if (DestPTy) { 2251 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2252 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2253 DestRecordTy = DestPTy->getPointeeType(); 2254 } else { 2255 isDynamicCastToVoid = false; 2256 SrcRecordTy = SrcTy; 2257 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2258 } 2259 2260 // C++ [class.cdtor]p5: 2261 // If the operand of the dynamic_cast refers to the object under 2262 // construction or destruction and the static type of the operand is not a 2263 // pointer to or object of the constructor or destructor’s own class or one 2264 // of its bases, the dynamic_cast results in undefined behavior. 2265 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2266 SrcRecordTy); 2267 2268 if (DCE->isAlwaysNull()) 2269 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2270 return T; 2271 2272 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2273 2274 // C++ [expr.dynamic.cast]p4: 2275 // If the value of v is a null pointer value in the pointer case, the result 2276 // is the null pointer value of type T. 2277 bool ShouldNullCheckSrcValue = 2278 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2279 SrcRecordTy); 2280 2281 llvm::BasicBlock *CastNull = nullptr; 2282 llvm::BasicBlock *CastNotNull = nullptr; 2283 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2284 2285 if (ShouldNullCheckSrcValue) { 2286 CastNull = createBasicBlock("dynamic_cast.null"); 2287 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2288 2289 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2290 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2291 EmitBlock(CastNotNull); 2292 } 2293 2294 llvm::Value *Value; 2295 if (isDynamicCastToVoid) { 2296 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2297 DestTy); 2298 } else { 2299 assert(DestRecordTy->isRecordType() && 2300 "destination type must be a record type!"); 2301 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2302 DestTy, DestRecordTy, CastEnd); 2303 CastNotNull = Builder.GetInsertBlock(); 2304 } 2305 2306 if (ShouldNullCheckSrcValue) { 2307 EmitBranch(CastEnd); 2308 2309 EmitBlock(CastNull); 2310 EmitBranch(CastEnd); 2311 } 2312 2313 EmitBlock(CastEnd); 2314 2315 if (ShouldNullCheckSrcValue) { 2316 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2317 PHI->addIncoming(Value, CastNotNull); 2318 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2319 2320 Value = PHI; 2321 } 2322 2323 return Value; 2324 } 2325