1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/Basic/CodeGenOptions.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 41 isa<CXXOperatorCallExpr>(CE)); 42 assert(MD->isInstance() && 43 "Trying to emit a member or operator call expr on a static method!"); 44 45 // Push the this ptr. 46 const CXXRecordDecl *RD = 47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 unsigned PrefixSize = Args.size() - 1; 58 59 // And the rest of the call args. 60 if (RtlArgs) { 61 // Special case: if the caller emitted the arguments right-to-left already 62 // (prior to emitting the *this argument), we're done. This happens for 63 // assignment operators. 64 Args.addFrom(*RtlArgs); 65 } else if (CE) { 66 // Special case: skip first argument of CXXOperatorCall (it is "this"). 67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 69 CE->getDirectCallee()); 70 } else { 71 assert( 72 FPT->getNumParams() == 0 && 73 "No CallExpr specified for function with non-zero number of arguments"); 74 } 75 return {required, PrefixSize}; 76 } 77 78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 79 const CXXMethodDecl *MD, const CGCallee &Callee, 80 ReturnValueSlot ReturnValue, 81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 82 const CallExpr *CE, CallArgList *RtlArgs) { 83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 84 CallArgList Args; 85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 90 CE ? CE->getExprLoc() : SourceLocation()); 91 } 92 93 RValue CodeGenFunction::EmitCXXDestructorCall( 94 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 95 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 96 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 97 98 assert(!ThisTy.isNull()); 99 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 100 "Pointer/Object mixup"); 101 102 LangAS SrcAS = ThisTy.getAddressSpace(); 103 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 104 if (SrcAS != DstAS) { 105 QualType DstTy = DtorDecl->getThisType(); 106 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 107 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 108 NewType); 109 } 110 111 CallArgList Args; 112 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam, 113 ImplicitParamTy, CE, Args, nullptr); 114 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 115 ReturnValueSlot(), Args, nullptr, 116 CE ? CE->getExprLoc() : SourceLocation{}); 117 } 118 119 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 120 const CXXPseudoDestructorExpr *E) { 121 QualType DestroyedType = E->getDestroyedType(); 122 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 123 // Automatic Reference Counting: 124 // If the pseudo-expression names a retainable object with weak or 125 // strong lifetime, the object shall be released. 126 Expr *BaseExpr = E->getBase(); 127 Address BaseValue = Address::invalid(); 128 Qualifiers BaseQuals; 129 130 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 131 if (E->isArrow()) { 132 BaseValue = EmitPointerWithAlignment(BaseExpr); 133 const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); 134 BaseQuals = PTy->getPointeeType().getQualifiers(); 135 } else { 136 LValue BaseLV = EmitLValue(BaseExpr); 137 BaseValue = BaseLV.getAddress(*this); 138 QualType BaseTy = BaseExpr->getType(); 139 BaseQuals = BaseTy.getQualifiers(); 140 } 141 142 switch (DestroyedType.getObjCLifetime()) { 143 case Qualifiers::OCL_None: 144 case Qualifiers::OCL_ExplicitNone: 145 case Qualifiers::OCL_Autoreleasing: 146 break; 147 148 case Qualifiers::OCL_Strong: 149 EmitARCRelease(Builder.CreateLoad(BaseValue, 150 DestroyedType.isVolatileQualified()), 151 ARCPreciseLifetime); 152 break; 153 154 case Qualifiers::OCL_Weak: 155 EmitARCDestroyWeak(BaseValue); 156 break; 157 } 158 } else { 159 // C++ [expr.pseudo]p1: 160 // The result shall only be used as the operand for the function call 161 // operator (), and the result of such a call has type void. The only 162 // effect is the evaluation of the postfix-expression before the dot or 163 // arrow. 164 EmitIgnoredExpr(E->getBase()); 165 } 166 167 return RValue::get(nullptr); 168 } 169 170 static CXXRecordDecl *getCXXRecord(const Expr *E) { 171 QualType T = E->getType(); 172 if (const PointerType *PTy = T->getAs<PointerType>()) 173 T = PTy->getPointeeType(); 174 const RecordType *Ty = T->castAs<RecordType>(); 175 return cast<CXXRecordDecl>(Ty->getDecl()); 176 } 177 178 // Note: This function also emit constructor calls to support a MSVC 179 // extensions allowing explicit constructor function call. 180 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 181 ReturnValueSlot ReturnValue) { 182 const Expr *callee = CE->getCallee()->IgnoreParens(); 183 184 if (isa<BinaryOperator>(callee)) 185 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 186 187 const MemberExpr *ME = cast<MemberExpr>(callee); 188 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 189 190 if (MD->isStatic()) { 191 // The method is static, emit it as we would a regular call. 192 CGCallee callee = 193 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 194 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 195 ReturnValue); 196 } 197 198 bool HasQualifier = ME->hasQualifier(); 199 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 200 bool IsArrow = ME->isArrow(); 201 const Expr *Base = ME->getBase(); 202 203 return EmitCXXMemberOrOperatorMemberCallExpr( 204 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 205 } 206 207 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 208 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 209 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 210 const Expr *Base) { 211 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 212 213 // Compute the object pointer. 214 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 215 216 const CXXMethodDecl *DevirtualizedMethod = nullptr; 217 if (CanUseVirtualCall && 218 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 219 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 220 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 221 assert(DevirtualizedMethod); 222 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 223 const Expr *Inner = Base->ignoreParenBaseCasts(); 224 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 225 MD->getReturnType().getCanonicalType()) 226 // If the return types are not the same, this might be a case where more 227 // code needs to run to compensate for it. For example, the derived 228 // method might return a type that inherits form from the return 229 // type of MD and has a prefix. 230 // For now we just avoid devirtualizing these covariant cases. 231 DevirtualizedMethod = nullptr; 232 else if (getCXXRecord(Inner) == DevirtualizedClass) 233 // If the class of the Inner expression is where the dynamic method 234 // is defined, build the this pointer from it. 235 Base = Inner; 236 else if (getCXXRecord(Base) != DevirtualizedClass) { 237 // If the method is defined in a class that is not the best dynamic 238 // one or the one of the full expression, we would have to build 239 // a derived-to-base cast to compute the correct this pointer, but 240 // we don't have support for that yet, so do a virtual call. 241 DevirtualizedMethod = nullptr; 242 } 243 } 244 245 bool TrivialForCodegen = 246 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); 247 bool TrivialAssignment = 248 TrivialForCodegen && 249 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 250 !MD->getParent()->mayInsertExtraPadding(); 251 252 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 253 // operator before the LHS. 254 CallArgList RtlArgStorage; 255 CallArgList *RtlArgs = nullptr; 256 LValue TrivialAssignmentRHS; 257 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 258 if (OCE->isAssignmentOp()) { 259 if (TrivialAssignment) { 260 TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); 261 } else { 262 RtlArgs = &RtlArgStorage; 263 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 264 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 265 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 266 } 267 } 268 } 269 270 LValue This; 271 if (IsArrow) { 272 LValueBaseInfo BaseInfo; 273 TBAAAccessInfo TBAAInfo; 274 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 275 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 276 } else { 277 This = EmitLValue(Base); 278 } 279 280 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 281 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 282 // constructing a new complete object of type Ctor. 283 assert(!RtlArgs); 284 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 285 CallArgList Args; 286 commonEmitCXXMemberOrOperatorCall( 287 *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr, 288 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 289 290 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 291 /*Delegating=*/false, This.getAddress(*this), Args, 292 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 293 /*NewPointerIsChecked=*/false); 294 return RValue::get(nullptr); 295 } 296 297 if (TrivialForCodegen) { 298 if (isa<CXXDestructorDecl>(MD)) 299 return RValue::get(nullptr); 300 301 if (TrivialAssignment) { 302 // We don't like to generate the trivial copy/move assignment operator 303 // when it isn't necessary; just produce the proper effect here. 304 // It's important that we use the result of EmitLValue here rather than 305 // emitting call arguments, in order to preserve TBAA information from 306 // the RHS. 307 LValue RHS = isa<CXXOperatorCallExpr>(CE) 308 ? TrivialAssignmentRHS 309 : EmitLValue(*CE->arg_begin()); 310 EmitAggregateAssign(This, RHS, CE->getType()); 311 return RValue::get(This.getPointer(*this)); 312 } 313 314 assert(MD->getParent()->mayInsertExtraPadding() && 315 "unknown trivial member function"); 316 } 317 318 // Compute the function type we're calling. 319 const CXXMethodDecl *CalleeDecl = 320 DevirtualizedMethod ? DevirtualizedMethod : MD; 321 const CGFunctionInfo *FInfo = nullptr; 322 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 323 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 324 GlobalDecl(Dtor, Dtor_Complete)); 325 else 326 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 327 328 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 329 330 // C++11 [class.mfct.non-static]p2: 331 // If a non-static member function of a class X is called for an object that 332 // is not of type X, or of a type derived from X, the behavior is undefined. 333 SourceLocation CallLoc; 334 ASTContext &C = getContext(); 335 if (CE) 336 CallLoc = CE->getExprLoc(); 337 338 SanitizerSet SkippedChecks; 339 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 340 auto *IOA = CMCE->getImplicitObjectArgument(); 341 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 342 if (IsImplicitObjectCXXThis) 343 SkippedChecks.set(SanitizerKind::Alignment, true); 344 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 345 SkippedChecks.set(SanitizerKind::Null, true); 346 } 347 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, 348 This.getPointer(*this), 349 C.getRecordType(CalleeDecl->getParent()), 350 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 351 352 // C++ [class.virtual]p12: 353 // Explicit qualification with the scope operator (5.1) suppresses the 354 // virtual call mechanism. 355 // 356 // We also don't emit a virtual call if the base expression has a record type 357 // because then we know what the type is. 358 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 359 360 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 361 assert(CE->arg_begin() == CE->arg_end() && 362 "Destructor shouldn't have explicit parameters"); 363 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 364 if (UseVirtualCall) { 365 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 366 This.getAddress(*this), 367 cast<CXXMemberCallExpr>(CE)); 368 } else { 369 GlobalDecl GD(Dtor, Dtor_Complete); 370 CGCallee Callee; 371 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 372 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 373 else if (!DevirtualizedMethod) 374 Callee = 375 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 376 else { 377 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 378 } 379 380 QualType ThisTy = 381 IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 382 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, 383 /*ImplicitParam=*/nullptr, 384 /*ImplicitParamTy=*/QualType(), CE); 385 } 386 return RValue::get(nullptr); 387 } 388 389 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 390 // 'CalleeDecl' instead. 391 392 CGCallee Callee; 393 if (UseVirtualCall) { 394 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty); 395 } else { 396 if (SanOpts.has(SanitizerKind::CFINVCall) && 397 MD->getParent()->isDynamicClass()) { 398 llvm::Value *VTable; 399 const CXXRecordDecl *RD; 400 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( 401 *this, This.getAddress(*this), CalleeDecl->getParent()); 402 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 403 } 404 405 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 406 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 407 else if (!DevirtualizedMethod) 408 Callee = 409 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 410 else { 411 Callee = 412 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 413 GlobalDecl(DevirtualizedMethod)); 414 } 415 } 416 417 if (MD->isVirtual()) { 418 Address NewThisAddr = 419 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 420 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall); 421 This.setAddress(NewThisAddr); 422 } 423 424 return EmitCXXMemberOrOperatorCall( 425 CalleeDecl, Callee, ReturnValue, This.getPointer(*this), 426 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 427 } 428 429 RValue 430 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 431 ReturnValueSlot ReturnValue) { 432 const BinaryOperator *BO = 433 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 434 const Expr *BaseExpr = BO->getLHS(); 435 const Expr *MemFnExpr = BO->getRHS(); 436 437 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 438 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 439 const auto *RD = 440 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 441 442 // Emit the 'this' pointer. 443 Address This = Address::invalid(); 444 if (BO->getOpcode() == BO_PtrMemI) 445 This = EmitPointerWithAlignment(BaseExpr); 446 else 447 This = EmitLValue(BaseExpr).getAddress(*this); 448 449 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 450 QualType(MPT->getClass(), 0)); 451 452 // Get the member function pointer. 453 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 454 455 // Ask the ABI to load the callee. Note that This is modified. 456 llvm::Value *ThisPtrForCall = nullptr; 457 CGCallee Callee = 458 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 459 ThisPtrForCall, MemFnPtr, MPT); 460 461 CallArgList Args; 462 463 QualType ThisType = 464 getContext().getPointerType(getContext().getTagDeclType(RD)); 465 466 // Push the this ptr. 467 Args.add(RValue::get(ThisPtrForCall), ThisType); 468 469 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 470 471 // And the rest of the call args 472 EmitCallArgs(Args, FPT, E->arguments()); 473 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 474 /*PrefixSize=*/0), 475 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 476 } 477 478 RValue 479 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 480 const CXXMethodDecl *MD, 481 ReturnValueSlot ReturnValue) { 482 assert(MD->isInstance() && 483 "Trying to emit a member call expr on a static method!"); 484 return EmitCXXMemberOrOperatorMemberCallExpr( 485 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 486 /*IsArrow=*/false, E->getArg(0)); 487 } 488 489 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 490 ReturnValueSlot ReturnValue) { 491 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 492 } 493 494 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 495 Address DestPtr, 496 const CXXRecordDecl *Base) { 497 if (Base->isEmpty()) 498 return; 499 500 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 501 502 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 503 CharUnits NVSize = Layout.getNonVirtualSize(); 504 505 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 506 // present, they are initialized by the most derived class before calling the 507 // constructor. 508 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 509 Stores.emplace_back(CharUnits::Zero(), NVSize); 510 511 // Each store is split by the existence of a vbptr. 512 CharUnits VBPtrWidth = CGF.getPointerSize(); 513 std::vector<CharUnits> VBPtrOffsets = 514 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 515 for (CharUnits VBPtrOffset : VBPtrOffsets) { 516 // Stop before we hit any virtual base pointers located in virtual bases. 517 if (VBPtrOffset >= NVSize) 518 break; 519 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 520 CharUnits LastStoreOffset = LastStore.first; 521 CharUnits LastStoreSize = LastStore.second; 522 523 CharUnits SplitBeforeOffset = LastStoreOffset; 524 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 525 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 526 if (!SplitBeforeSize.isZero()) 527 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 528 529 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 530 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 531 assert(!SplitAfterSize.isNegative() && "negative store size!"); 532 if (!SplitAfterSize.isZero()) 533 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 534 } 535 536 // If the type contains a pointer to data member we can't memset it to zero. 537 // Instead, create a null constant and copy it to the destination. 538 // TODO: there are other patterns besides zero that we can usefully memset, 539 // like -1, which happens to be the pattern used by member-pointers. 540 // TODO: isZeroInitializable can be over-conservative in the case where a 541 // virtual base contains a member pointer. 542 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 543 if (!NullConstantForBase->isNullValue()) { 544 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 545 CGF.CGM.getModule(), NullConstantForBase->getType(), 546 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 547 NullConstantForBase, Twine()); 548 549 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 550 DestPtr.getAlignment()); 551 NullVariable->setAlignment(Align.getAsAlign()); 552 553 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 554 555 // Get and call the appropriate llvm.memcpy overload. 556 for (std::pair<CharUnits, CharUnits> Store : Stores) { 557 CharUnits StoreOffset = Store.first; 558 CharUnits StoreSize = Store.second; 559 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 560 CGF.Builder.CreateMemCpy( 561 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 562 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 563 StoreSizeVal); 564 } 565 566 // Otherwise, just memset the whole thing to zero. This is legal 567 // because in LLVM, all default initializers (other than the ones we just 568 // handled above) are guaranteed to have a bit pattern of all zeros. 569 } else { 570 for (std::pair<CharUnits, CharUnits> Store : Stores) { 571 CharUnits StoreOffset = Store.first; 572 CharUnits StoreSize = Store.second; 573 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 574 CGF.Builder.CreateMemSet( 575 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 576 CGF.Builder.getInt8(0), StoreSizeVal); 577 } 578 } 579 } 580 581 void 582 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 583 AggValueSlot Dest) { 584 assert(!Dest.isIgnored() && "Must have a destination!"); 585 const CXXConstructorDecl *CD = E->getConstructor(); 586 587 // If we require zero initialization before (or instead of) calling the 588 // constructor, as can be the case with a non-user-provided default 589 // constructor, emit the zero initialization now, unless destination is 590 // already zeroed. 591 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 592 switch (E->getConstructionKind()) { 593 case CXXConstructExpr::CK_Delegating: 594 case CXXConstructExpr::CK_Complete: 595 EmitNullInitialization(Dest.getAddress(), E->getType()); 596 break; 597 case CXXConstructExpr::CK_VirtualBase: 598 case CXXConstructExpr::CK_NonVirtualBase: 599 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 600 CD->getParent()); 601 break; 602 } 603 } 604 605 // If this is a call to a trivial default constructor, do nothing. 606 if (CD->isTrivial() && CD->isDefaultConstructor()) 607 return; 608 609 // Elide the constructor if we're constructing from a temporary. 610 // The temporary check is required because Sema sets this on NRVO 611 // returns. 612 if (getLangOpts().ElideConstructors && E->isElidable()) { 613 assert(getContext().hasSameUnqualifiedType(E->getType(), 614 E->getArg(0)->getType())); 615 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 616 EmitAggExpr(E->getArg(0), Dest); 617 return; 618 } 619 } 620 621 if (const ArrayType *arrayType 622 = getContext().getAsArrayType(E->getType())) { 623 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 624 Dest.isSanitizerChecked()); 625 } else { 626 CXXCtorType Type = Ctor_Complete; 627 bool ForVirtualBase = false; 628 bool Delegating = false; 629 630 switch (E->getConstructionKind()) { 631 case CXXConstructExpr::CK_Delegating: 632 // We should be emitting a constructor; GlobalDecl will assert this 633 Type = CurGD.getCtorType(); 634 Delegating = true; 635 break; 636 637 case CXXConstructExpr::CK_Complete: 638 Type = Ctor_Complete; 639 break; 640 641 case CXXConstructExpr::CK_VirtualBase: 642 ForVirtualBase = true; 643 LLVM_FALLTHROUGH; 644 645 case CXXConstructExpr::CK_NonVirtualBase: 646 Type = Ctor_Base; 647 } 648 649 // Call the constructor. 650 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 651 } 652 } 653 654 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 655 const Expr *Exp) { 656 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 657 Exp = E->getSubExpr(); 658 assert(isa<CXXConstructExpr>(Exp) && 659 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 660 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 661 const CXXConstructorDecl *CD = E->getConstructor(); 662 RunCleanupsScope Scope(*this); 663 664 // If we require zero initialization before (or instead of) calling the 665 // constructor, as can be the case with a non-user-provided default 666 // constructor, emit the zero initialization now. 667 // FIXME. Do I still need this for a copy ctor synthesis? 668 if (E->requiresZeroInitialization()) 669 EmitNullInitialization(Dest, E->getType()); 670 671 assert(!getContext().getAsConstantArrayType(E->getType()) 672 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 673 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 674 } 675 676 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 677 const CXXNewExpr *E) { 678 if (!E->isArray()) 679 return CharUnits::Zero(); 680 681 // No cookie is required if the operator new[] being used is the 682 // reserved placement operator new[]. 683 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 684 return CharUnits::Zero(); 685 686 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 687 } 688 689 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 690 const CXXNewExpr *e, 691 unsigned minElements, 692 llvm::Value *&numElements, 693 llvm::Value *&sizeWithoutCookie) { 694 QualType type = e->getAllocatedType(); 695 696 if (!e->isArray()) { 697 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 698 sizeWithoutCookie 699 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 700 return sizeWithoutCookie; 701 } 702 703 // The width of size_t. 704 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 705 706 // Figure out the cookie size. 707 llvm::APInt cookieSize(sizeWidth, 708 CalculateCookiePadding(CGF, e).getQuantity()); 709 710 // Emit the array size expression. 711 // We multiply the size of all dimensions for NumElements. 712 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 713 numElements = 714 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 715 if (!numElements) 716 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 717 assert(isa<llvm::IntegerType>(numElements->getType())); 718 719 // The number of elements can be have an arbitrary integer type; 720 // essentially, we need to multiply it by a constant factor, add a 721 // cookie size, and verify that the result is representable as a 722 // size_t. That's just a gloss, though, and it's wrong in one 723 // important way: if the count is negative, it's an error even if 724 // the cookie size would bring the total size >= 0. 725 bool isSigned 726 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 727 llvm::IntegerType *numElementsType 728 = cast<llvm::IntegerType>(numElements->getType()); 729 unsigned numElementsWidth = numElementsType->getBitWidth(); 730 731 // Compute the constant factor. 732 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 733 while (const ConstantArrayType *CAT 734 = CGF.getContext().getAsConstantArrayType(type)) { 735 type = CAT->getElementType(); 736 arraySizeMultiplier *= CAT->getSize(); 737 } 738 739 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 740 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 741 typeSizeMultiplier *= arraySizeMultiplier; 742 743 // This will be a size_t. 744 llvm::Value *size; 745 746 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 747 // Don't bloat the -O0 code. 748 if (llvm::ConstantInt *numElementsC = 749 dyn_cast<llvm::ConstantInt>(numElements)) { 750 const llvm::APInt &count = numElementsC->getValue(); 751 752 bool hasAnyOverflow = false; 753 754 // If 'count' was a negative number, it's an overflow. 755 if (isSigned && count.isNegative()) 756 hasAnyOverflow = true; 757 758 // We want to do all this arithmetic in size_t. If numElements is 759 // wider than that, check whether it's already too big, and if so, 760 // overflow. 761 else if (numElementsWidth > sizeWidth && 762 numElementsWidth - sizeWidth > count.countLeadingZeros()) 763 hasAnyOverflow = true; 764 765 // Okay, compute a count at the right width. 766 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 767 768 // If there is a brace-initializer, we cannot allocate fewer elements than 769 // there are initializers. If we do, that's treated like an overflow. 770 if (adjustedCount.ult(minElements)) 771 hasAnyOverflow = true; 772 773 // Scale numElements by that. This might overflow, but we don't 774 // care because it only overflows if allocationSize does, too, and 775 // if that overflows then we shouldn't use this. 776 numElements = llvm::ConstantInt::get(CGF.SizeTy, 777 adjustedCount * arraySizeMultiplier); 778 779 // Compute the size before cookie, and track whether it overflowed. 780 bool overflow; 781 llvm::APInt allocationSize 782 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 783 hasAnyOverflow |= overflow; 784 785 // Add in the cookie, and check whether it's overflowed. 786 if (cookieSize != 0) { 787 // Save the current size without a cookie. This shouldn't be 788 // used if there was overflow. 789 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 790 791 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 792 hasAnyOverflow |= overflow; 793 } 794 795 // On overflow, produce a -1 so operator new will fail. 796 if (hasAnyOverflow) { 797 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 798 } else { 799 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 800 } 801 802 // Otherwise, we might need to use the overflow intrinsics. 803 } else { 804 // There are up to five conditions we need to test for: 805 // 1) if isSigned, we need to check whether numElements is negative; 806 // 2) if numElementsWidth > sizeWidth, we need to check whether 807 // numElements is larger than something representable in size_t; 808 // 3) if minElements > 0, we need to check whether numElements is smaller 809 // than that. 810 // 4) we need to compute 811 // sizeWithoutCookie := numElements * typeSizeMultiplier 812 // and check whether it overflows; and 813 // 5) if we need a cookie, we need to compute 814 // size := sizeWithoutCookie + cookieSize 815 // and check whether it overflows. 816 817 llvm::Value *hasOverflow = nullptr; 818 819 // If numElementsWidth > sizeWidth, then one way or another, we're 820 // going to have to do a comparison for (2), and this happens to 821 // take care of (1), too. 822 if (numElementsWidth > sizeWidth) { 823 llvm::APInt threshold(numElementsWidth, 1); 824 threshold <<= sizeWidth; 825 826 llvm::Value *thresholdV 827 = llvm::ConstantInt::get(numElementsType, threshold); 828 829 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 830 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 831 832 // Otherwise, if we're signed, we want to sext up to size_t. 833 } else if (isSigned) { 834 if (numElementsWidth < sizeWidth) 835 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 836 837 // If there's a non-1 type size multiplier, then we can do the 838 // signedness check at the same time as we do the multiply 839 // because a negative number times anything will cause an 840 // unsigned overflow. Otherwise, we have to do it here. But at least 841 // in this case, we can subsume the >= minElements check. 842 if (typeSizeMultiplier == 1) 843 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 844 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 845 846 // Otherwise, zext up to size_t if necessary. 847 } else if (numElementsWidth < sizeWidth) { 848 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 849 } 850 851 assert(numElements->getType() == CGF.SizeTy); 852 853 if (minElements) { 854 // Don't allow allocation of fewer elements than we have initializers. 855 if (!hasOverflow) { 856 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 857 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 858 } else if (numElementsWidth > sizeWidth) { 859 // The other existing overflow subsumes this check. 860 // We do an unsigned comparison, since any signed value < -1 is 861 // taken care of either above or below. 862 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 863 CGF.Builder.CreateICmpULT(numElements, 864 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 865 } 866 } 867 868 size = numElements; 869 870 // Multiply by the type size if necessary. This multiplier 871 // includes all the factors for nested arrays. 872 // 873 // This step also causes numElements to be scaled up by the 874 // nested-array factor if necessary. Overflow on this computation 875 // can be ignored because the result shouldn't be used if 876 // allocation fails. 877 if (typeSizeMultiplier != 1) { 878 llvm::Function *umul_with_overflow 879 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 880 881 llvm::Value *tsmV = 882 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 883 llvm::Value *result = 884 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 885 886 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 887 if (hasOverflow) 888 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 889 else 890 hasOverflow = overflowed; 891 892 size = CGF.Builder.CreateExtractValue(result, 0); 893 894 // Also scale up numElements by the array size multiplier. 895 if (arraySizeMultiplier != 1) { 896 // If the base element type size is 1, then we can re-use the 897 // multiply we just did. 898 if (typeSize.isOne()) { 899 assert(arraySizeMultiplier == typeSizeMultiplier); 900 numElements = size; 901 902 // Otherwise we need a separate multiply. 903 } else { 904 llvm::Value *asmV = 905 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 906 numElements = CGF.Builder.CreateMul(numElements, asmV); 907 } 908 } 909 } else { 910 // numElements doesn't need to be scaled. 911 assert(arraySizeMultiplier == 1); 912 } 913 914 // Add in the cookie size if necessary. 915 if (cookieSize != 0) { 916 sizeWithoutCookie = size; 917 918 llvm::Function *uadd_with_overflow 919 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 920 921 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 922 llvm::Value *result = 923 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 924 925 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 926 if (hasOverflow) 927 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 928 else 929 hasOverflow = overflowed; 930 931 size = CGF.Builder.CreateExtractValue(result, 0); 932 } 933 934 // If we had any possibility of dynamic overflow, make a select to 935 // overwrite 'size' with an all-ones value, which should cause 936 // operator new to throw. 937 if (hasOverflow) 938 size = CGF.Builder.CreateSelect(hasOverflow, 939 llvm::Constant::getAllOnesValue(CGF.SizeTy), 940 size); 941 } 942 943 if (cookieSize == 0) 944 sizeWithoutCookie = size; 945 else 946 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 947 948 return size; 949 } 950 951 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 952 QualType AllocType, Address NewPtr, 953 AggValueSlot::Overlap_t MayOverlap) { 954 // FIXME: Refactor with EmitExprAsInit. 955 switch (CGF.getEvaluationKind(AllocType)) { 956 case TEK_Scalar: 957 CGF.EmitScalarInit(Init, nullptr, 958 CGF.MakeAddrLValue(NewPtr, AllocType), false); 959 return; 960 case TEK_Complex: 961 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 962 /*isInit*/ true); 963 return; 964 case TEK_Aggregate: { 965 AggValueSlot Slot 966 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 967 AggValueSlot::IsDestructed, 968 AggValueSlot::DoesNotNeedGCBarriers, 969 AggValueSlot::IsNotAliased, 970 MayOverlap, AggValueSlot::IsNotZeroed, 971 AggValueSlot::IsSanitizerChecked); 972 CGF.EmitAggExpr(Init, Slot); 973 return; 974 } 975 } 976 llvm_unreachable("bad evaluation kind"); 977 } 978 979 void CodeGenFunction::EmitNewArrayInitializer( 980 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 981 Address BeginPtr, llvm::Value *NumElements, 982 llvm::Value *AllocSizeWithoutCookie) { 983 // If we have a type with trivial initialization and no initializer, 984 // there's nothing to do. 985 if (!E->hasInitializer()) 986 return; 987 988 Address CurPtr = BeginPtr; 989 990 unsigned InitListElements = 0; 991 992 const Expr *Init = E->getInitializer(); 993 Address EndOfInit = Address::invalid(); 994 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 995 EHScopeStack::stable_iterator Cleanup; 996 llvm::Instruction *CleanupDominator = nullptr; 997 998 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 999 CharUnits ElementAlign = 1000 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 1001 1002 // Attempt to perform zero-initialization using memset. 1003 auto TryMemsetInitialization = [&]() -> bool { 1004 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 1005 // we can initialize with a memset to -1. 1006 if (!CGM.getTypes().isZeroInitializable(ElementType)) 1007 return false; 1008 1009 // Optimization: since zero initialization will just set the memory 1010 // to all zeroes, generate a single memset to do it in one shot. 1011 1012 // Subtract out the size of any elements we've already initialized. 1013 auto *RemainingSize = AllocSizeWithoutCookie; 1014 if (InitListElements) { 1015 // We know this can't overflow; we check this when doing the allocation. 1016 auto *InitializedSize = llvm::ConstantInt::get( 1017 RemainingSize->getType(), 1018 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1019 InitListElements); 1020 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1021 } 1022 1023 // Create the memset. 1024 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1025 return true; 1026 }; 1027 1028 // If the initializer is an initializer list, first do the explicit elements. 1029 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1030 // Initializing from a (braced) string literal is a special case; the init 1031 // list element does not initialize a (single) array element. 1032 if (ILE->isStringLiteralInit()) { 1033 // Initialize the initial portion of length equal to that of the string 1034 // literal. The allocation must be for at least this much; we emitted a 1035 // check for that earlier. 1036 AggValueSlot Slot = 1037 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1038 AggValueSlot::IsDestructed, 1039 AggValueSlot::DoesNotNeedGCBarriers, 1040 AggValueSlot::IsNotAliased, 1041 AggValueSlot::DoesNotOverlap, 1042 AggValueSlot::IsNotZeroed, 1043 AggValueSlot::IsSanitizerChecked); 1044 EmitAggExpr(ILE->getInit(0), Slot); 1045 1046 // Move past these elements. 1047 InitListElements = 1048 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1049 ->getSize().getZExtValue(); 1050 CurPtr = 1051 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1052 Builder.getSize(InitListElements), 1053 "string.init.end"), 1054 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1055 ElementSize)); 1056 1057 // Zero out the rest, if any remain. 1058 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1059 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1060 bool OK = TryMemsetInitialization(); 1061 (void)OK; 1062 assert(OK && "couldn't memset character type?"); 1063 } 1064 return; 1065 } 1066 1067 InitListElements = ILE->getNumInits(); 1068 1069 // If this is a multi-dimensional array new, we will initialize multiple 1070 // elements with each init list element. 1071 QualType AllocType = E->getAllocatedType(); 1072 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1073 AllocType->getAsArrayTypeUnsafe())) { 1074 ElementTy = ConvertTypeForMem(AllocType); 1075 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1076 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1077 } 1078 1079 // Enter a partial-destruction Cleanup if necessary. 1080 if (needsEHCleanup(DtorKind)) { 1081 // In principle we could tell the Cleanup where we are more 1082 // directly, but the control flow can get so varied here that it 1083 // would actually be quite complex. Therefore we go through an 1084 // alloca. 1085 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1086 "array.init.end"); 1087 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1088 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1089 ElementType, ElementAlign, 1090 getDestroyer(DtorKind)); 1091 Cleanup = EHStack.stable_begin(); 1092 } 1093 1094 CharUnits StartAlign = CurPtr.getAlignment(); 1095 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1096 // Tell the cleanup that it needs to destroy up to this 1097 // element. TODO: some of these stores can be trivially 1098 // observed to be unnecessary. 1099 if (EndOfInit.isValid()) { 1100 auto FinishedPtr = 1101 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1102 Builder.CreateStore(FinishedPtr, EndOfInit); 1103 } 1104 // FIXME: If the last initializer is an incomplete initializer list for 1105 // an array, and we have an array filler, we can fold together the two 1106 // initialization loops. 1107 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1108 ILE->getInit(i)->getType(), CurPtr, 1109 AggValueSlot::DoesNotOverlap); 1110 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1111 Builder.getSize(1), 1112 "array.exp.next"), 1113 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1114 } 1115 1116 // The remaining elements are filled with the array filler expression. 1117 Init = ILE->getArrayFiller(); 1118 1119 // Extract the initializer for the individual array elements by pulling 1120 // out the array filler from all the nested initializer lists. This avoids 1121 // generating a nested loop for the initialization. 1122 while (Init && Init->getType()->isConstantArrayType()) { 1123 auto *SubILE = dyn_cast<InitListExpr>(Init); 1124 if (!SubILE) 1125 break; 1126 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1127 Init = SubILE->getArrayFiller(); 1128 } 1129 1130 // Switch back to initializing one base element at a time. 1131 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1132 } 1133 1134 // If all elements have already been initialized, skip any further 1135 // initialization. 1136 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1137 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1138 // If there was a Cleanup, deactivate it. 1139 if (CleanupDominator) 1140 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1141 return; 1142 } 1143 1144 assert(Init && "have trailing elements to initialize but no initializer"); 1145 1146 // If this is a constructor call, try to optimize it out, and failing that 1147 // emit a single loop to initialize all remaining elements. 1148 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1149 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1150 if (Ctor->isTrivial()) { 1151 // If new expression did not specify value-initialization, then there 1152 // is no initialization. 1153 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1154 return; 1155 1156 if (TryMemsetInitialization()) 1157 return; 1158 } 1159 1160 // Store the new Cleanup position for irregular Cleanups. 1161 // 1162 // FIXME: Share this cleanup with the constructor call emission rather than 1163 // having it create a cleanup of its own. 1164 if (EndOfInit.isValid()) 1165 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1166 1167 // Emit a constructor call loop to initialize the remaining elements. 1168 if (InitListElements) 1169 NumElements = Builder.CreateSub( 1170 NumElements, 1171 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1172 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1173 /*NewPointerIsChecked*/true, 1174 CCE->requiresZeroInitialization()); 1175 return; 1176 } 1177 1178 // If this is value-initialization, we can usually use memset. 1179 ImplicitValueInitExpr IVIE(ElementType); 1180 if (isa<ImplicitValueInitExpr>(Init)) { 1181 if (TryMemsetInitialization()) 1182 return; 1183 1184 // Switch to an ImplicitValueInitExpr for the element type. This handles 1185 // only one case: multidimensional array new of pointers to members. In 1186 // all other cases, we already have an initializer for the array element. 1187 Init = &IVIE; 1188 } 1189 1190 // At this point we should have found an initializer for the individual 1191 // elements of the array. 1192 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1193 "got wrong type of element to initialize"); 1194 1195 // If we have an empty initializer list, we can usually use memset. 1196 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1197 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1198 return; 1199 1200 // If we have a struct whose every field is value-initialized, we can 1201 // usually use memset. 1202 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1203 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1204 if (RType->getDecl()->isStruct()) { 1205 unsigned NumElements = 0; 1206 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1207 NumElements = CXXRD->getNumBases(); 1208 for (auto *Field : RType->getDecl()->fields()) 1209 if (!Field->isUnnamedBitfield()) 1210 ++NumElements; 1211 // FIXME: Recurse into nested InitListExprs. 1212 if (ILE->getNumInits() == NumElements) 1213 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1214 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1215 --NumElements; 1216 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1217 return; 1218 } 1219 } 1220 } 1221 1222 // Create the loop blocks. 1223 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1224 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1225 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1226 1227 // Find the end of the array, hoisted out of the loop. 1228 llvm::Value *EndPtr = 1229 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1230 1231 // If the number of elements isn't constant, we have to now check if there is 1232 // anything left to initialize. 1233 if (!ConstNum) { 1234 llvm::Value *IsEmpty = 1235 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1236 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1237 } 1238 1239 // Enter the loop. 1240 EmitBlock(LoopBB); 1241 1242 // Set up the current-element phi. 1243 llvm::PHINode *CurPtrPhi = 1244 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1245 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1246 1247 CurPtr = Address(CurPtrPhi, ElementAlign); 1248 1249 // Store the new Cleanup position for irregular Cleanups. 1250 if (EndOfInit.isValid()) 1251 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1252 1253 // Enter a partial-destruction Cleanup if necessary. 1254 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1255 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1256 ElementType, ElementAlign, 1257 getDestroyer(DtorKind)); 1258 Cleanup = EHStack.stable_begin(); 1259 CleanupDominator = Builder.CreateUnreachable(); 1260 } 1261 1262 // Emit the initializer into this element. 1263 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1264 AggValueSlot::DoesNotOverlap); 1265 1266 // Leave the Cleanup if we entered one. 1267 if (CleanupDominator) { 1268 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1269 CleanupDominator->eraseFromParent(); 1270 } 1271 1272 // Advance to the next element by adjusting the pointer type as necessary. 1273 llvm::Value *NextPtr = 1274 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1275 "array.next"); 1276 1277 // Check whether we've gotten to the end of the array and, if so, 1278 // exit the loop. 1279 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1280 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1281 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1282 1283 EmitBlock(ContBB); 1284 } 1285 1286 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1287 QualType ElementType, llvm::Type *ElementTy, 1288 Address NewPtr, llvm::Value *NumElements, 1289 llvm::Value *AllocSizeWithoutCookie) { 1290 ApplyDebugLocation DL(CGF, E); 1291 if (E->isArray()) 1292 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1293 AllocSizeWithoutCookie); 1294 else if (const Expr *Init = E->getInitializer()) 1295 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1296 AggValueSlot::DoesNotOverlap); 1297 } 1298 1299 /// Emit a call to an operator new or operator delete function, as implicitly 1300 /// created by new-expressions and delete-expressions. 1301 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1302 const FunctionDecl *CalleeDecl, 1303 const FunctionProtoType *CalleeType, 1304 const CallArgList &Args) { 1305 llvm::CallBase *CallOrInvoke; 1306 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1307 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1308 RValue RV = 1309 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1310 Args, CalleeType, /*ChainCall=*/false), 1311 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1312 1313 /// C++1y [expr.new]p10: 1314 /// [In a new-expression,] an implementation is allowed to omit a call 1315 /// to a replaceable global allocation function. 1316 /// 1317 /// We model such elidable calls with the 'builtin' attribute. 1318 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1319 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1320 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1321 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex, 1322 llvm::Attribute::Builtin); 1323 } 1324 1325 return RV; 1326 } 1327 1328 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1329 const CallExpr *TheCall, 1330 bool IsDelete) { 1331 CallArgList Args; 1332 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1333 // Find the allocation or deallocation function that we're calling. 1334 ASTContext &Ctx = getContext(); 1335 DeclarationName Name = Ctx.DeclarationNames 1336 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1337 1338 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1339 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1340 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1341 return EmitNewDeleteCall(*this, FD, Type, Args); 1342 llvm_unreachable("predeclared global operator new/delete is missing"); 1343 } 1344 1345 namespace { 1346 /// The parameters to pass to a usual operator delete. 1347 struct UsualDeleteParams { 1348 bool DestroyingDelete = false; 1349 bool Size = false; 1350 bool Alignment = false; 1351 }; 1352 } 1353 1354 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1355 UsualDeleteParams Params; 1356 1357 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1358 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1359 1360 // The first argument is always a void*. 1361 ++AI; 1362 1363 // The next parameter may be a std::destroying_delete_t. 1364 if (FD->isDestroyingOperatorDelete()) { 1365 Params.DestroyingDelete = true; 1366 assert(AI != AE); 1367 ++AI; 1368 } 1369 1370 // Figure out what other parameters we should be implicitly passing. 1371 if (AI != AE && (*AI)->isIntegerType()) { 1372 Params.Size = true; 1373 ++AI; 1374 } 1375 1376 if (AI != AE && (*AI)->isAlignValT()) { 1377 Params.Alignment = true; 1378 ++AI; 1379 } 1380 1381 assert(AI == AE && "unexpected usual deallocation function parameter"); 1382 return Params; 1383 } 1384 1385 namespace { 1386 /// A cleanup to call the given 'operator delete' function upon abnormal 1387 /// exit from a new expression. Templated on a traits type that deals with 1388 /// ensuring that the arguments dominate the cleanup if necessary. 1389 template<typename Traits> 1390 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1391 /// Type used to hold llvm::Value*s. 1392 typedef typename Traits::ValueTy ValueTy; 1393 /// Type used to hold RValues. 1394 typedef typename Traits::RValueTy RValueTy; 1395 struct PlacementArg { 1396 RValueTy ArgValue; 1397 QualType ArgType; 1398 }; 1399 1400 unsigned NumPlacementArgs : 31; 1401 unsigned PassAlignmentToPlacementDelete : 1; 1402 const FunctionDecl *OperatorDelete; 1403 ValueTy Ptr; 1404 ValueTy AllocSize; 1405 CharUnits AllocAlign; 1406 1407 PlacementArg *getPlacementArgs() { 1408 return reinterpret_cast<PlacementArg *>(this + 1); 1409 } 1410 1411 public: 1412 static size_t getExtraSize(size_t NumPlacementArgs) { 1413 return NumPlacementArgs * sizeof(PlacementArg); 1414 } 1415 1416 CallDeleteDuringNew(size_t NumPlacementArgs, 1417 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1418 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1419 CharUnits AllocAlign) 1420 : NumPlacementArgs(NumPlacementArgs), 1421 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1422 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1423 AllocAlign(AllocAlign) {} 1424 1425 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1426 assert(I < NumPlacementArgs && "index out of range"); 1427 getPlacementArgs()[I] = {Arg, Type}; 1428 } 1429 1430 void Emit(CodeGenFunction &CGF, Flags flags) override { 1431 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); 1432 CallArgList DeleteArgs; 1433 1434 // The first argument is always a void* (or C* for a destroying operator 1435 // delete for class type C). 1436 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1437 1438 // Figure out what other parameters we should be implicitly passing. 1439 UsualDeleteParams Params; 1440 if (NumPlacementArgs) { 1441 // A placement deallocation function is implicitly passed an alignment 1442 // if the placement allocation function was, but is never passed a size. 1443 Params.Alignment = PassAlignmentToPlacementDelete; 1444 } else { 1445 // For a non-placement new-expression, 'operator delete' can take a 1446 // size and/or an alignment if it has the right parameters. 1447 Params = getUsualDeleteParams(OperatorDelete); 1448 } 1449 1450 assert(!Params.DestroyingDelete && 1451 "should not call destroying delete in a new-expression"); 1452 1453 // The second argument can be a std::size_t (for non-placement delete). 1454 if (Params.Size) 1455 DeleteArgs.add(Traits::get(CGF, AllocSize), 1456 CGF.getContext().getSizeType()); 1457 1458 // The next (second or third) argument can be a std::align_val_t, which 1459 // is an enum whose underlying type is std::size_t. 1460 // FIXME: Use the right type as the parameter type. Note that in a call 1461 // to operator delete(size_t, ...), we may not have it available. 1462 if (Params.Alignment) 1463 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1464 CGF.SizeTy, AllocAlign.getQuantity())), 1465 CGF.getContext().getSizeType()); 1466 1467 // Pass the rest of the arguments, which must match exactly. 1468 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1469 auto Arg = getPlacementArgs()[I]; 1470 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1471 } 1472 1473 // Call 'operator delete'. 1474 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1475 } 1476 }; 1477 } 1478 1479 /// Enter a cleanup to call 'operator delete' if the initializer in a 1480 /// new-expression throws. 1481 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1482 const CXXNewExpr *E, 1483 Address NewPtr, 1484 llvm::Value *AllocSize, 1485 CharUnits AllocAlign, 1486 const CallArgList &NewArgs) { 1487 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1488 1489 // If we're not inside a conditional branch, then the cleanup will 1490 // dominate and we can do the easier (and more efficient) thing. 1491 if (!CGF.isInConditionalBranch()) { 1492 struct DirectCleanupTraits { 1493 typedef llvm::Value *ValueTy; 1494 typedef RValue RValueTy; 1495 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1496 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1497 }; 1498 1499 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1500 1501 DirectCleanup *Cleanup = CGF.EHStack 1502 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1503 E->getNumPlacementArgs(), 1504 E->getOperatorDelete(), 1505 NewPtr.getPointer(), 1506 AllocSize, 1507 E->passAlignment(), 1508 AllocAlign); 1509 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1510 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1511 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1512 } 1513 1514 return; 1515 } 1516 1517 // Otherwise, we need to save all this stuff. 1518 DominatingValue<RValue>::saved_type SavedNewPtr = 1519 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1520 DominatingValue<RValue>::saved_type SavedAllocSize = 1521 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1522 1523 struct ConditionalCleanupTraits { 1524 typedef DominatingValue<RValue>::saved_type ValueTy; 1525 typedef DominatingValue<RValue>::saved_type RValueTy; 1526 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1527 return V.restore(CGF); 1528 } 1529 }; 1530 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1531 1532 ConditionalCleanup *Cleanup = CGF.EHStack 1533 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1534 E->getNumPlacementArgs(), 1535 E->getOperatorDelete(), 1536 SavedNewPtr, 1537 SavedAllocSize, 1538 E->passAlignment(), 1539 AllocAlign); 1540 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1541 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1542 Cleanup->setPlacementArg( 1543 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1544 } 1545 1546 CGF.initFullExprCleanup(); 1547 } 1548 1549 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1550 // The element type being allocated. 1551 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1552 1553 // 1. Build a call to the allocation function. 1554 FunctionDecl *allocator = E->getOperatorNew(); 1555 1556 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1557 unsigned minElements = 0; 1558 if (E->isArray() && E->hasInitializer()) { 1559 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1560 if (ILE && ILE->isStringLiteralInit()) 1561 minElements = 1562 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1563 ->getSize().getZExtValue(); 1564 else if (ILE) 1565 minElements = ILE->getNumInits(); 1566 } 1567 1568 llvm::Value *numElements = nullptr; 1569 llvm::Value *allocSizeWithoutCookie = nullptr; 1570 llvm::Value *allocSize = 1571 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1572 allocSizeWithoutCookie); 1573 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1574 1575 // Emit the allocation call. If the allocator is a global placement 1576 // operator, just "inline" it directly. 1577 Address allocation = Address::invalid(); 1578 CallArgList allocatorArgs; 1579 if (allocator->isReservedGlobalPlacementOperator()) { 1580 assert(E->getNumPlacementArgs() == 1); 1581 const Expr *arg = *E->placement_arguments().begin(); 1582 1583 LValueBaseInfo BaseInfo; 1584 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1585 1586 // The pointer expression will, in many cases, be an opaque void*. 1587 // In these cases, discard the computed alignment and use the 1588 // formal alignment of the allocated type. 1589 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1590 allocation = Address(allocation.getPointer(), allocAlign); 1591 1592 // Set up allocatorArgs for the call to operator delete if it's not 1593 // the reserved global operator. 1594 if (E->getOperatorDelete() && 1595 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1596 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1597 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1598 } 1599 1600 } else { 1601 const FunctionProtoType *allocatorType = 1602 allocator->getType()->castAs<FunctionProtoType>(); 1603 unsigned ParamsToSkip = 0; 1604 1605 // The allocation size is the first argument. 1606 QualType sizeType = getContext().getSizeType(); 1607 allocatorArgs.add(RValue::get(allocSize), sizeType); 1608 ++ParamsToSkip; 1609 1610 if (allocSize != allocSizeWithoutCookie) { 1611 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1612 allocAlign = std::max(allocAlign, cookieAlign); 1613 } 1614 1615 // The allocation alignment may be passed as the second argument. 1616 if (E->passAlignment()) { 1617 QualType AlignValT = sizeType; 1618 if (allocatorType->getNumParams() > 1) { 1619 AlignValT = allocatorType->getParamType(1); 1620 assert(getContext().hasSameUnqualifiedType( 1621 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1622 sizeType) && 1623 "wrong type for alignment parameter"); 1624 ++ParamsToSkip; 1625 } else { 1626 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1627 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1628 } 1629 allocatorArgs.add( 1630 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1631 AlignValT); 1632 } 1633 1634 // FIXME: Why do we not pass a CalleeDecl here? 1635 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1636 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1637 1638 RValue RV = 1639 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1640 1641 // If this was a call to a global replaceable allocation function that does 1642 // not take an alignment argument, the allocator is known to produce 1643 // storage that's suitably aligned for any object that fits, up to a known 1644 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1645 CharUnits allocationAlign = allocAlign; 1646 if (!E->passAlignment() && 1647 allocator->isReplaceableGlobalAllocationFunction()) { 1648 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1649 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1650 allocationAlign = std::max( 1651 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1652 } 1653 1654 allocation = Address(RV.getScalarVal(), allocationAlign); 1655 } 1656 1657 // Emit a null check on the allocation result if the allocation 1658 // function is allowed to return null (because it has a non-throwing 1659 // exception spec or is the reserved placement new) and we have an 1660 // interesting initializer will be running sanitizers on the initialization. 1661 bool nullCheck = E->shouldNullCheckAllocation() && 1662 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1663 sanitizePerformTypeCheck()); 1664 1665 llvm::BasicBlock *nullCheckBB = nullptr; 1666 llvm::BasicBlock *contBB = nullptr; 1667 1668 // The null-check means that the initializer is conditionally 1669 // evaluated. 1670 ConditionalEvaluation conditional(*this); 1671 1672 if (nullCheck) { 1673 conditional.begin(*this); 1674 1675 nullCheckBB = Builder.GetInsertBlock(); 1676 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1677 contBB = createBasicBlock("new.cont"); 1678 1679 llvm::Value *isNull = 1680 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1681 Builder.CreateCondBr(isNull, contBB, notNullBB); 1682 EmitBlock(notNullBB); 1683 } 1684 1685 // If there's an operator delete, enter a cleanup to call it if an 1686 // exception is thrown. 1687 EHScopeStack::stable_iterator operatorDeleteCleanup; 1688 llvm::Instruction *cleanupDominator = nullptr; 1689 if (E->getOperatorDelete() && 1690 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1691 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1692 allocatorArgs); 1693 operatorDeleteCleanup = EHStack.stable_begin(); 1694 cleanupDominator = Builder.CreateUnreachable(); 1695 } 1696 1697 assert((allocSize == allocSizeWithoutCookie) == 1698 CalculateCookiePadding(*this, E).isZero()); 1699 if (allocSize != allocSizeWithoutCookie) { 1700 assert(E->isArray()); 1701 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1702 numElements, 1703 E, allocType); 1704 } 1705 1706 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1707 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1708 1709 // Passing pointer through launder.invariant.group to avoid propagation of 1710 // vptrs information which may be included in previous type. 1711 // To not break LTO with different optimizations levels, we do it regardless 1712 // of optimization level. 1713 if (CGM.getCodeGenOpts().StrictVTablePointers && 1714 allocator->isReservedGlobalPlacementOperator()) 1715 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1716 result.getAlignment()); 1717 1718 // Emit sanitizer checks for pointer value now, so that in the case of an 1719 // array it was checked only once and not at each constructor call. We may 1720 // have already checked that the pointer is non-null. 1721 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1722 // we'll null check the wrong pointer here. 1723 SanitizerSet SkippedChecks; 1724 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1725 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1726 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1727 result.getPointer(), allocType, result.getAlignment(), 1728 SkippedChecks, numElements); 1729 1730 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1731 allocSizeWithoutCookie); 1732 if (E->isArray()) { 1733 // NewPtr is a pointer to the base element type. If we're 1734 // allocating an array of arrays, we'll need to cast back to the 1735 // array pointer type. 1736 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1737 if (result.getType() != resultType) 1738 result = Builder.CreateBitCast(result, resultType); 1739 } 1740 1741 // Deactivate the 'operator delete' cleanup if we finished 1742 // initialization. 1743 if (operatorDeleteCleanup.isValid()) { 1744 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1745 cleanupDominator->eraseFromParent(); 1746 } 1747 1748 llvm::Value *resultPtr = result.getPointer(); 1749 if (nullCheck) { 1750 conditional.end(*this); 1751 1752 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1753 EmitBlock(contBB); 1754 1755 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1756 PHI->addIncoming(resultPtr, notNullBB); 1757 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1758 nullCheckBB); 1759 1760 resultPtr = PHI; 1761 } 1762 1763 return resultPtr; 1764 } 1765 1766 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1767 llvm::Value *Ptr, QualType DeleteTy, 1768 llvm::Value *NumElements, 1769 CharUnits CookieSize) { 1770 assert((!NumElements && CookieSize.isZero()) || 1771 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1772 1773 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); 1774 CallArgList DeleteArgs; 1775 1776 auto Params = getUsualDeleteParams(DeleteFD); 1777 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1778 1779 // Pass the pointer itself. 1780 QualType ArgTy = *ParamTypeIt++; 1781 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1782 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1783 1784 // Pass the std::destroying_delete tag if present. 1785 if (Params.DestroyingDelete) { 1786 QualType DDTag = *ParamTypeIt++; 1787 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1788 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1789 DeleteArgs.add(RValue::get(V), DDTag); 1790 } 1791 1792 // Pass the size if the delete function has a size_t parameter. 1793 if (Params.Size) { 1794 QualType SizeType = *ParamTypeIt++; 1795 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1796 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1797 DeleteTypeSize.getQuantity()); 1798 1799 // For array new, multiply by the number of elements. 1800 if (NumElements) 1801 Size = Builder.CreateMul(Size, NumElements); 1802 1803 // If there is a cookie, add the cookie size. 1804 if (!CookieSize.isZero()) 1805 Size = Builder.CreateAdd( 1806 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1807 1808 DeleteArgs.add(RValue::get(Size), SizeType); 1809 } 1810 1811 // Pass the alignment if the delete function has an align_val_t parameter. 1812 if (Params.Alignment) { 1813 QualType AlignValType = *ParamTypeIt++; 1814 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1815 getContext().getTypeAlignIfKnown(DeleteTy)); 1816 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1817 DeleteTypeAlign.getQuantity()); 1818 DeleteArgs.add(RValue::get(Align), AlignValType); 1819 } 1820 1821 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1822 "unknown parameter to usual delete function"); 1823 1824 // Emit the call to delete. 1825 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1826 } 1827 1828 namespace { 1829 /// Calls the given 'operator delete' on a single object. 1830 struct CallObjectDelete final : EHScopeStack::Cleanup { 1831 llvm::Value *Ptr; 1832 const FunctionDecl *OperatorDelete; 1833 QualType ElementType; 1834 1835 CallObjectDelete(llvm::Value *Ptr, 1836 const FunctionDecl *OperatorDelete, 1837 QualType ElementType) 1838 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1839 1840 void Emit(CodeGenFunction &CGF, Flags flags) override { 1841 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1842 } 1843 }; 1844 } 1845 1846 void 1847 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1848 llvm::Value *CompletePtr, 1849 QualType ElementType) { 1850 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1851 OperatorDelete, ElementType); 1852 } 1853 1854 /// Emit the code for deleting a single object with a destroying operator 1855 /// delete. If the element type has a non-virtual destructor, Ptr has already 1856 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1857 /// Ptr points to an object of the static type. 1858 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1859 const CXXDeleteExpr *DE, Address Ptr, 1860 QualType ElementType) { 1861 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1862 if (Dtor && Dtor->isVirtual()) 1863 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1864 Dtor); 1865 else 1866 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1867 } 1868 1869 /// Emit the code for deleting a single object. 1870 static void EmitObjectDelete(CodeGenFunction &CGF, 1871 const CXXDeleteExpr *DE, 1872 Address Ptr, 1873 QualType ElementType) { 1874 // C++11 [expr.delete]p3: 1875 // If the static type of the object to be deleted is different from its 1876 // dynamic type, the static type shall be a base class of the dynamic type 1877 // of the object to be deleted and the static type shall have a virtual 1878 // destructor or the behavior is undefined. 1879 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1880 DE->getExprLoc(), Ptr.getPointer(), 1881 ElementType); 1882 1883 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1884 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1885 1886 // Find the destructor for the type, if applicable. If the 1887 // destructor is virtual, we'll just emit the vcall and return. 1888 const CXXDestructorDecl *Dtor = nullptr; 1889 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1890 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1891 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1892 Dtor = RD->getDestructor(); 1893 1894 if (Dtor->isVirtual()) { 1895 bool UseVirtualCall = true; 1896 const Expr *Base = DE->getArgument(); 1897 if (auto *DevirtualizedDtor = 1898 dyn_cast_or_null<const CXXDestructorDecl>( 1899 Dtor->getDevirtualizedMethod( 1900 Base, CGF.CGM.getLangOpts().AppleKext))) { 1901 UseVirtualCall = false; 1902 const CXXRecordDecl *DevirtualizedClass = 1903 DevirtualizedDtor->getParent(); 1904 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1905 // Devirtualized to the class of the base type (the type of the 1906 // whole expression). 1907 Dtor = DevirtualizedDtor; 1908 } else { 1909 // Devirtualized to some other type. Would need to cast the this 1910 // pointer to that type but we don't have support for that yet, so 1911 // do a virtual call. FIXME: handle the case where it is 1912 // devirtualized to the derived type (the type of the inner 1913 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1914 UseVirtualCall = true; 1915 } 1916 } 1917 if (UseVirtualCall) { 1918 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1919 Dtor); 1920 return; 1921 } 1922 } 1923 } 1924 } 1925 1926 // Make sure that we call delete even if the dtor throws. 1927 // This doesn't have to a conditional cleanup because we're going 1928 // to pop it off in a second. 1929 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1930 Ptr.getPointer(), 1931 OperatorDelete, ElementType); 1932 1933 if (Dtor) 1934 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1935 /*ForVirtualBase=*/false, 1936 /*Delegating=*/false, 1937 Ptr, ElementType); 1938 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1939 switch (Lifetime) { 1940 case Qualifiers::OCL_None: 1941 case Qualifiers::OCL_ExplicitNone: 1942 case Qualifiers::OCL_Autoreleasing: 1943 break; 1944 1945 case Qualifiers::OCL_Strong: 1946 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1947 break; 1948 1949 case Qualifiers::OCL_Weak: 1950 CGF.EmitARCDestroyWeak(Ptr); 1951 break; 1952 } 1953 } 1954 1955 CGF.PopCleanupBlock(); 1956 } 1957 1958 namespace { 1959 /// Calls the given 'operator delete' on an array of objects. 1960 struct CallArrayDelete final : EHScopeStack::Cleanup { 1961 llvm::Value *Ptr; 1962 const FunctionDecl *OperatorDelete; 1963 llvm::Value *NumElements; 1964 QualType ElementType; 1965 CharUnits CookieSize; 1966 1967 CallArrayDelete(llvm::Value *Ptr, 1968 const FunctionDecl *OperatorDelete, 1969 llvm::Value *NumElements, 1970 QualType ElementType, 1971 CharUnits CookieSize) 1972 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1973 ElementType(ElementType), CookieSize(CookieSize) {} 1974 1975 void Emit(CodeGenFunction &CGF, Flags flags) override { 1976 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1977 CookieSize); 1978 } 1979 }; 1980 } 1981 1982 /// Emit the code for deleting an array of objects. 1983 static void EmitArrayDelete(CodeGenFunction &CGF, 1984 const CXXDeleteExpr *E, 1985 Address deletedPtr, 1986 QualType elementType) { 1987 llvm::Value *numElements = nullptr; 1988 llvm::Value *allocatedPtr = nullptr; 1989 CharUnits cookieSize; 1990 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1991 numElements, allocatedPtr, cookieSize); 1992 1993 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1994 1995 // Make sure that we call delete even if one of the dtors throws. 1996 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1997 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1998 allocatedPtr, operatorDelete, 1999 numElements, elementType, 2000 cookieSize); 2001 2002 // Destroy the elements. 2003 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 2004 assert(numElements && "no element count for a type with a destructor!"); 2005 2006 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2007 CharUnits elementAlign = 2008 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 2009 2010 llvm::Value *arrayBegin = deletedPtr.getPointer(); 2011 llvm::Value *arrayEnd = 2012 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 2013 2014 // Note that it is legal to allocate a zero-length array, and we 2015 // can never fold the check away because the length should always 2016 // come from a cookie. 2017 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 2018 CGF.getDestroyer(dtorKind), 2019 /*checkZeroLength*/ true, 2020 CGF.needsEHCleanup(dtorKind)); 2021 } 2022 2023 // Pop the cleanup block. 2024 CGF.PopCleanupBlock(); 2025 } 2026 2027 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 2028 const Expr *Arg = E->getArgument(); 2029 Address Ptr = EmitPointerWithAlignment(Arg); 2030 2031 // Null check the pointer. 2032 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2033 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2034 2035 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2036 2037 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2038 EmitBlock(DeleteNotNull); 2039 2040 QualType DeleteTy = E->getDestroyedType(); 2041 2042 // A destroying operator delete overrides the entire operation of the 2043 // delete expression. 2044 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2045 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2046 EmitBlock(DeleteEnd); 2047 return; 2048 } 2049 2050 // We might be deleting a pointer to array. If so, GEP down to the 2051 // first non-array element. 2052 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2053 if (DeleteTy->isConstantArrayType()) { 2054 llvm::Value *Zero = Builder.getInt32(0); 2055 SmallVector<llvm::Value*,8> GEP; 2056 2057 GEP.push_back(Zero); // point at the outermost array 2058 2059 // For each layer of array type we're pointing at: 2060 while (const ConstantArrayType *Arr 2061 = getContext().getAsConstantArrayType(DeleteTy)) { 2062 // 1. Unpeel the array type. 2063 DeleteTy = Arr->getElementType(); 2064 2065 // 2. GEP to the first element of the array. 2066 GEP.push_back(Zero); 2067 } 2068 2069 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2070 Ptr.getAlignment()); 2071 } 2072 2073 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2074 2075 if (E->isArrayForm()) { 2076 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2077 } else { 2078 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2079 } 2080 2081 EmitBlock(DeleteEnd); 2082 } 2083 2084 static bool isGLValueFromPointerDeref(const Expr *E) { 2085 E = E->IgnoreParens(); 2086 2087 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2088 if (!CE->getSubExpr()->isGLValue()) 2089 return false; 2090 return isGLValueFromPointerDeref(CE->getSubExpr()); 2091 } 2092 2093 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2094 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2095 2096 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2097 if (BO->getOpcode() == BO_Comma) 2098 return isGLValueFromPointerDeref(BO->getRHS()); 2099 2100 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2101 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2102 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2103 2104 // C++11 [expr.sub]p1: 2105 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2106 if (isa<ArraySubscriptExpr>(E)) 2107 return true; 2108 2109 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2110 if (UO->getOpcode() == UO_Deref) 2111 return true; 2112 2113 return false; 2114 } 2115 2116 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2117 llvm::Type *StdTypeInfoPtrTy) { 2118 // Get the vtable pointer. 2119 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF); 2120 2121 QualType SrcRecordTy = E->getType(); 2122 2123 // C++ [class.cdtor]p4: 2124 // If the operand of typeid refers to the object under construction or 2125 // destruction and the static type of the operand is neither the constructor 2126 // or destructor’s class nor one of its bases, the behavior is undefined. 2127 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2128 ThisPtr.getPointer(), SrcRecordTy); 2129 2130 // C++ [expr.typeid]p2: 2131 // If the glvalue expression is obtained by applying the unary * operator to 2132 // a pointer and the pointer is a null pointer value, the typeid expression 2133 // throws the std::bad_typeid exception. 2134 // 2135 // However, this paragraph's intent is not clear. We choose a very generous 2136 // interpretation which implores us to consider comma operators, conditional 2137 // operators, parentheses and other such constructs. 2138 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2139 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2140 llvm::BasicBlock *BadTypeidBlock = 2141 CGF.createBasicBlock("typeid.bad_typeid"); 2142 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2143 2144 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2145 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2146 2147 CGF.EmitBlock(BadTypeidBlock); 2148 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2149 CGF.EmitBlock(EndBlock); 2150 } 2151 2152 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2153 StdTypeInfoPtrTy); 2154 } 2155 2156 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2157 llvm::Type *StdTypeInfoPtrTy = 2158 ConvertType(E->getType())->getPointerTo(); 2159 2160 if (E->isTypeOperand()) { 2161 llvm::Constant *TypeInfo = 2162 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2163 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2164 } 2165 2166 // C++ [expr.typeid]p2: 2167 // When typeid is applied to a glvalue expression whose type is a 2168 // polymorphic class type, the result refers to a std::type_info object 2169 // representing the type of the most derived object (that is, the dynamic 2170 // type) to which the glvalue refers. 2171 if (E->isPotentiallyEvaluated()) 2172 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2173 StdTypeInfoPtrTy); 2174 2175 QualType OperandTy = E->getExprOperand()->getType(); 2176 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2177 StdTypeInfoPtrTy); 2178 } 2179 2180 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2181 QualType DestTy) { 2182 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2183 if (DestTy->isPointerType()) 2184 return llvm::Constant::getNullValue(DestLTy); 2185 2186 /// C++ [expr.dynamic.cast]p9: 2187 /// A failed cast to reference type throws std::bad_cast 2188 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2189 return nullptr; 2190 2191 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2192 return llvm::UndefValue::get(DestLTy); 2193 } 2194 2195 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2196 const CXXDynamicCastExpr *DCE) { 2197 CGM.EmitExplicitCastExprType(DCE, this); 2198 QualType DestTy = DCE->getTypeAsWritten(); 2199 2200 QualType SrcTy = DCE->getSubExpr()->getType(); 2201 2202 // C++ [expr.dynamic.cast]p7: 2203 // If T is "pointer to cv void," then the result is a pointer to the most 2204 // derived object pointed to by v. 2205 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2206 2207 bool isDynamicCastToVoid; 2208 QualType SrcRecordTy; 2209 QualType DestRecordTy; 2210 if (DestPTy) { 2211 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2212 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2213 DestRecordTy = DestPTy->getPointeeType(); 2214 } else { 2215 isDynamicCastToVoid = false; 2216 SrcRecordTy = SrcTy; 2217 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2218 } 2219 2220 // C++ [class.cdtor]p5: 2221 // If the operand of the dynamic_cast refers to the object under 2222 // construction or destruction and the static type of the operand is not a 2223 // pointer to or object of the constructor or destructor’s own class or one 2224 // of its bases, the dynamic_cast results in undefined behavior. 2225 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2226 SrcRecordTy); 2227 2228 if (DCE->isAlwaysNull()) 2229 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2230 return T; 2231 2232 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2233 2234 // C++ [expr.dynamic.cast]p4: 2235 // If the value of v is a null pointer value in the pointer case, the result 2236 // is the null pointer value of type T. 2237 bool ShouldNullCheckSrcValue = 2238 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2239 SrcRecordTy); 2240 2241 llvm::BasicBlock *CastNull = nullptr; 2242 llvm::BasicBlock *CastNotNull = nullptr; 2243 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2244 2245 if (ShouldNullCheckSrcValue) { 2246 CastNull = createBasicBlock("dynamic_cast.null"); 2247 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2248 2249 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2250 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2251 EmitBlock(CastNotNull); 2252 } 2253 2254 llvm::Value *Value; 2255 if (isDynamicCastToVoid) { 2256 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2257 DestTy); 2258 } else { 2259 assert(DestRecordTy->isRecordType() && 2260 "destination type must be a record type!"); 2261 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2262 DestTy, DestRecordTy, CastEnd); 2263 CastNotNull = Builder.GetInsertBlock(); 2264 } 2265 2266 if (ShouldNullCheckSrcValue) { 2267 EmitBranch(CastEnd); 2268 2269 EmitBlock(CastNull); 2270 EmitBranch(CastEnd); 2271 } 2272 2273 EmitBlock(CastEnd); 2274 2275 if (ShouldNullCheckSrcValue) { 2276 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2277 PHI->addIncoming(Value, CastNotNull); 2278 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2279 2280 Value = PHI; 2281 } 2282 2283 return Value; 2284 } 2285