xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprCXX.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29   RequiredArgs ReqArgs;
30   // Number of prefix arguments for the call. Ignores the `this` pointer.
31   unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
37                                   llvm::Value *This, llvm::Value *ImplicitParam,
38                                   QualType ImplicitParamTy, const CallExpr *CE,
39                                   CallArgList &Args, CallArgList *RtlArgs) {
40   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
41 
42   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
43          isa<CXXOperatorCallExpr>(CE));
44   assert(MD->isImplicitObjectMemberFunction() &&
45          "Trying to emit a member or operator call expr on a static method!");
46 
47   // Push the this ptr.
48   const CXXRecordDecl *RD =
49       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
50   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
51 
52   // If there is an implicit parameter (e.g. VTT), emit it.
53   if (ImplicitParam) {
54     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55   }
56 
57   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
59   unsigned PrefixSize = Args.size() - 1;
60 
61   // And the rest of the call args.
62   if (RtlArgs) {
63     // Special case: if the caller emitted the arguments right-to-left already
64     // (prior to emitting the *this argument), we're done. This happens for
65     // assignment operators.
66     Args.addFrom(*RtlArgs);
67   } else if (CE) {
68     // Special case: skip first argument of CXXOperatorCall (it is "this").
69     unsigned ArgsToSkip = 0;
70     if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(CE)) {
71       if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl()))
72         ArgsToSkip =
73             static_cast<unsigned>(!M->isExplicitObjectMemberFunction());
74     }
75     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
76                      CE->getDirectCallee());
77   } else {
78     assert(
79         FPT->getNumParams() == 0 &&
80         "No CallExpr specified for function with non-zero number of arguments");
81   }
82   return {required, PrefixSize};
83 }
84 
85 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
86     const CXXMethodDecl *MD, const CGCallee &Callee,
87     ReturnValueSlot ReturnValue,
88     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
89     const CallExpr *CE, CallArgList *RtlArgs) {
90   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
91   CallArgList Args;
92   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
93       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
94   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
95       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
96   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
97                   CE && CE == MustTailCall,
98                   CE ? CE->getExprLoc() : SourceLocation());
99 }
100 
101 RValue CodeGenFunction::EmitCXXDestructorCall(
102     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
103     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
104   const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
105 
106   assert(!ThisTy.isNull());
107   assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
108          "Pointer/Object mixup");
109 
110   LangAS SrcAS = ThisTy.getAddressSpace();
111   LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
112   if (SrcAS != DstAS) {
113     QualType DstTy = DtorDecl->getThisType();
114     llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
115     This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
116                                                  NewType);
117   }
118 
119   CallArgList Args;
120   commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam,
121                                     ImplicitParamTy, CE, Args, nullptr);
122   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
123                   ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
124                   CE ? CE->getExprLoc() : SourceLocation{});
125 }
126 
127 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
128                                             const CXXPseudoDestructorExpr *E) {
129   QualType DestroyedType = E->getDestroyedType();
130   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
131     // Automatic Reference Counting:
132     //   If the pseudo-expression names a retainable object with weak or
133     //   strong lifetime, the object shall be released.
134     Expr *BaseExpr = E->getBase();
135     Address BaseValue = Address::invalid();
136     Qualifiers BaseQuals;
137 
138     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
139     if (E->isArrow()) {
140       BaseValue = EmitPointerWithAlignment(BaseExpr);
141       const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
142       BaseQuals = PTy->getPointeeType().getQualifiers();
143     } else {
144       LValue BaseLV = EmitLValue(BaseExpr);
145       BaseValue = BaseLV.getAddress();
146       QualType BaseTy = BaseExpr->getType();
147       BaseQuals = BaseTy.getQualifiers();
148     }
149 
150     switch (DestroyedType.getObjCLifetime()) {
151     case Qualifiers::OCL_None:
152     case Qualifiers::OCL_ExplicitNone:
153     case Qualifiers::OCL_Autoreleasing:
154       break;
155 
156     case Qualifiers::OCL_Strong:
157       EmitARCRelease(Builder.CreateLoad(BaseValue,
158                         DestroyedType.isVolatileQualified()),
159                      ARCPreciseLifetime);
160       break;
161 
162     case Qualifiers::OCL_Weak:
163       EmitARCDestroyWeak(BaseValue);
164       break;
165     }
166   } else {
167     // C++ [expr.pseudo]p1:
168     //   The result shall only be used as the operand for the function call
169     //   operator (), and the result of such a call has type void. The only
170     //   effect is the evaluation of the postfix-expression before the dot or
171     //   arrow.
172     EmitIgnoredExpr(E->getBase());
173   }
174 
175   return RValue::get(nullptr);
176 }
177 
178 static CXXRecordDecl *getCXXRecord(const Expr *E) {
179   QualType T = E->getType();
180   if (const PointerType *PTy = T->getAs<PointerType>())
181     T = PTy->getPointeeType();
182   const RecordType *Ty = T->castAs<RecordType>();
183   return cast<CXXRecordDecl>(Ty->getDecl());
184 }
185 
186 // Note: This function also emit constructor calls to support a MSVC
187 // extensions allowing explicit constructor function call.
188 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
189                                               ReturnValueSlot ReturnValue) {
190   const Expr *callee = CE->getCallee()->IgnoreParens();
191 
192   if (isa<BinaryOperator>(callee))
193     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
194 
195   const MemberExpr *ME = cast<MemberExpr>(callee);
196   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
197 
198   if (MD->isStatic()) {
199     // The method is static, emit it as we would a regular call.
200     CGCallee callee =
201         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
202     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
203                     ReturnValue);
204   }
205 
206   bool HasQualifier = ME->hasQualifier();
207   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
208   bool IsArrow = ME->isArrow();
209   const Expr *Base = ME->getBase();
210 
211   return EmitCXXMemberOrOperatorMemberCallExpr(
212       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
213 }
214 
215 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
216     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
217     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
218     const Expr *Base) {
219   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
220 
221   // Compute the object pointer.
222   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
223 
224   const CXXMethodDecl *DevirtualizedMethod = nullptr;
225   if (CanUseVirtualCall &&
226       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
227     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
228     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
229     assert(DevirtualizedMethod);
230     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
231     const Expr *Inner = Base->IgnoreParenBaseCasts();
232     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
233         MD->getReturnType().getCanonicalType())
234       // If the return types are not the same, this might be a case where more
235       // code needs to run to compensate for it. For example, the derived
236       // method might return a type that inherits form from the return
237       // type of MD and has a prefix.
238       // For now we just avoid devirtualizing these covariant cases.
239       DevirtualizedMethod = nullptr;
240     else if (getCXXRecord(Inner) == DevirtualizedClass)
241       // If the class of the Inner expression is where the dynamic method
242       // is defined, build the this pointer from it.
243       Base = Inner;
244     else if (getCXXRecord(Base) != DevirtualizedClass) {
245       // If the method is defined in a class that is not the best dynamic
246       // one or the one of the full expression, we would have to build
247       // a derived-to-base cast to compute the correct this pointer, but
248       // we don't have support for that yet, so do a virtual call.
249       DevirtualizedMethod = nullptr;
250     }
251   }
252 
253   bool TrivialForCodegen =
254       MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
255   bool TrivialAssignment =
256       TrivialForCodegen &&
257       (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
258       !MD->getParent()->mayInsertExtraPadding();
259 
260   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
261   // operator before the LHS.
262   CallArgList RtlArgStorage;
263   CallArgList *RtlArgs = nullptr;
264   LValue TrivialAssignmentRHS;
265   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
266     if (OCE->isAssignmentOp()) {
267       if (TrivialAssignment) {
268         TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
269       } else {
270         RtlArgs = &RtlArgStorage;
271         EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
272                      drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
273                      /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
274       }
275     }
276   }
277 
278   LValue This;
279   if (IsArrow) {
280     LValueBaseInfo BaseInfo;
281     TBAAAccessInfo TBAAInfo;
282     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
283     This = MakeAddrLValue(ThisValue, Base->getType()->getPointeeType(),
284                           BaseInfo, TBAAInfo);
285   } else {
286     This = EmitLValue(Base);
287   }
288 
289   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
290     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
291     // constructing a new complete object of type Ctor.
292     assert(!RtlArgs);
293     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
294     CallArgList Args;
295     commonEmitCXXMemberOrOperatorCall(
296         *this, {Ctor, Ctor_Complete}, This.getPointer(*this),
297         /*ImplicitParam=*/nullptr,
298         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
299 
300     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
301                            /*Delegating=*/false, This.getAddress(), Args,
302                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
303                            /*NewPointerIsChecked=*/false);
304     return RValue::get(nullptr);
305   }
306 
307   if (TrivialForCodegen) {
308     if (isa<CXXDestructorDecl>(MD))
309       return RValue::get(nullptr);
310 
311     if (TrivialAssignment) {
312       // We don't like to generate the trivial copy/move assignment operator
313       // when it isn't necessary; just produce the proper effect here.
314       // It's important that we use the result of EmitLValue here rather than
315       // emitting call arguments, in order to preserve TBAA information from
316       // the RHS.
317       LValue RHS = isa<CXXOperatorCallExpr>(CE)
318                        ? TrivialAssignmentRHS
319                        : EmitLValue(*CE->arg_begin());
320       EmitAggregateAssign(This, RHS, CE->getType());
321       return RValue::get(This.getPointer(*this));
322     }
323 
324     assert(MD->getParent()->mayInsertExtraPadding() &&
325            "unknown trivial member function");
326   }
327 
328   // Compute the function type we're calling.
329   const CXXMethodDecl *CalleeDecl =
330       DevirtualizedMethod ? DevirtualizedMethod : MD;
331   const CGFunctionInfo *FInfo = nullptr;
332   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
333     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
334         GlobalDecl(Dtor, Dtor_Complete));
335   else
336     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
337 
338   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
339 
340   // C++11 [class.mfct.non-static]p2:
341   //   If a non-static member function of a class X is called for an object that
342   //   is not of type X, or of a type derived from X, the behavior is undefined.
343   SourceLocation CallLoc;
344   ASTContext &C = getContext();
345   if (CE)
346     CallLoc = CE->getExprLoc();
347 
348   SanitizerSet SkippedChecks;
349   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
350     auto *IOA = CMCE->getImplicitObjectArgument();
351     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
352     if (IsImplicitObjectCXXThis)
353       SkippedChecks.set(SanitizerKind::Alignment, true);
354     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
355       SkippedChecks.set(SanitizerKind::Null, true);
356   }
357 
358   if (sanitizePerformTypeCheck())
359     EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
360                   This.emitRawPointer(*this),
361                   C.getRecordType(CalleeDecl->getParent()),
362                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
363 
364   // C++ [class.virtual]p12:
365   //   Explicit qualification with the scope operator (5.1) suppresses the
366   //   virtual call mechanism.
367   //
368   // We also don't emit a virtual call if the base expression has a record type
369   // because then we know what the type is.
370   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
371 
372   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
373     assert(CE->arg_begin() == CE->arg_end() &&
374            "Destructor shouldn't have explicit parameters");
375     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
376     if (UseVirtualCall) {
377       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
378                                                 This.getAddress(),
379                                                 cast<CXXMemberCallExpr>(CE));
380     } else {
381       GlobalDecl GD(Dtor, Dtor_Complete);
382       CGCallee Callee;
383       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
384         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
385       else if (!DevirtualizedMethod)
386         Callee =
387             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
388       else {
389         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
390       }
391 
392       QualType ThisTy =
393           IsArrow ? Base->getType()->getPointeeType() : Base->getType();
394       EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
395                             /*ImplicitParam=*/nullptr,
396                             /*ImplicitParamTy=*/QualType(), CE);
397     }
398     return RValue::get(nullptr);
399   }
400 
401   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
402   // 'CalleeDecl' instead.
403 
404   CGCallee Callee;
405   if (UseVirtualCall) {
406     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
407   } else {
408     if (SanOpts.has(SanitizerKind::CFINVCall) &&
409         MD->getParent()->isDynamicClass()) {
410       llvm::Value *VTable;
411       const CXXRecordDecl *RD;
412       std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
413           *this, This.getAddress(), CalleeDecl->getParent());
414       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
415     }
416 
417     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
418       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
419     else if (!DevirtualizedMethod)
420       Callee =
421           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
422     else {
423       Callee =
424           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
425                               GlobalDecl(DevirtualizedMethod));
426     }
427   }
428 
429   if (MD->isVirtual()) {
430     Address NewThisAddr =
431         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
432             *this, CalleeDecl, This.getAddress(), UseVirtualCall);
433     This.setAddress(NewThisAddr);
434   }
435 
436   return EmitCXXMemberOrOperatorCall(
437       CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
438       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
439 }
440 
441 RValue
442 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
443                                               ReturnValueSlot ReturnValue) {
444   const BinaryOperator *BO =
445       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
446   const Expr *BaseExpr = BO->getLHS();
447   const Expr *MemFnExpr = BO->getRHS();
448 
449   const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
450   const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
451   const auto *RD =
452       cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
453 
454   // Emit the 'this' pointer.
455   Address This = Address::invalid();
456   if (BO->getOpcode() == BO_PtrMemI)
457     This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull);
458   else
459     This = EmitLValue(BaseExpr, KnownNonNull).getAddress();
460 
461   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.emitRawPointer(*this),
462                 QualType(MPT->getClass(), 0));
463 
464   // Get the member function pointer.
465   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
466 
467   // Ask the ABI to load the callee.  Note that This is modified.
468   llvm::Value *ThisPtrForCall = nullptr;
469   CGCallee Callee =
470     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
471                                              ThisPtrForCall, MemFnPtr, MPT);
472 
473   CallArgList Args;
474 
475   QualType ThisType =
476     getContext().getPointerType(getContext().getTagDeclType(RD));
477 
478   // Push the this ptr.
479   Args.add(RValue::get(ThisPtrForCall), ThisType);
480 
481   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
482 
483   // And the rest of the call args
484   EmitCallArgs(Args, FPT, E->arguments());
485   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
486                                                       /*PrefixSize=*/0),
487                   Callee, ReturnValue, Args, nullptr, E == MustTailCall,
488                   E->getExprLoc());
489 }
490 
491 RValue
492 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
493                                                const CXXMethodDecl *MD,
494                                                ReturnValueSlot ReturnValue) {
495   assert(MD->isImplicitObjectMemberFunction() &&
496          "Trying to emit a member call expr on a static method!");
497   return EmitCXXMemberOrOperatorMemberCallExpr(
498       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
499       /*IsArrow=*/false, E->getArg(0));
500 }
501 
502 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
503                                                ReturnValueSlot ReturnValue) {
504   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
505 }
506 
507 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
508                                             Address DestPtr,
509                                             const CXXRecordDecl *Base) {
510   if (Base->isEmpty())
511     return;
512 
513   DestPtr = DestPtr.withElementType(CGF.Int8Ty);
514 
515   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
516   CharUnits NVSize = Layout.getNonVirtualSize();
517 
518   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
519   // present, they are initialized by the most derived class before calling the
520   // constructor.
521   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
522   Stores.emplace_back(CharUnits::Zero(), NVSize);
523 
524   // Each store is split by the existence of a vbptr.
525   CharUnits VBPtrWidth = CGF.getPointerSize();
526   std::vector<CharUnits> VBPtrOffsets =
527       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
528   for (CharUnits VBPtrOffset : VBPtrOffsets) {
529     // Stop before we hit any virtual base pointers located in virtual bases.
530     if (VBPtrOffset >= NVSize)
531       break;
532     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
533     CharUnits LastStoreOffset = LastStore.first;
534     CharUnits LastStoreSize = LastStore.second;
535 
536     CharUnits SplitBeforeOffset = LastStoreOffset;
537     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
538     assert(!SplitBeforeSize.isNegative() && "negative store size!");
539     if (!SplitBeforeSize.isZero())
540       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
541 
542     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
543     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
544     assert(!SplitAfterSize.isNegative() && "negative store size!");
545     if (!SplitAfterSize.isZero())
546       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
547   }
548 
549   // If the type contains a pointer to data member we can't memset it to zero.
550   // Instead, create a null constant and copy it to the destination.
551   // TODO: there are other patterns besides zero that we can usefully memset,
552   // like -1, which happens to be the pattern used by member-pointers.
553   // TODO: isZeroInitializable can be over-conservative in the case where a
554   // virtual base contains a member pointer.
555   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
556   if (!NullConstantForBase->isNullValue()) {
557     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
558         CGF.CGM.getModule(), NullConstantForBase->getType(),
559         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
560         NullConstantForBase, Twine());
561 
562     CharUnits Align =
563         std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
564     NullVariable->setAlignment(Align.getAsAlign());
565 
566     Address SrcPtr(NullVariable, CGF.Int8Ty, Align);
567 
568     // Get and call the appropriate llvm.memcpy overload.
569     for (std::pair<CharUnits, CharUnits> Store : Stores) {
570       CharUnits StoreOffset = Store.first;
571       CharUnits StoreSize = Store.second;
572       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
573       CGF.Builder.CreateMemCpy(
574           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
575           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
576           StoreSizeVal);
577     }
578 
579   // Otherwise, just memset the whole thing to zero.  This is legal
580   // because in LLVM, all default initializers (other than the ones we just
581   // handled above) are guaranteed to have a bit pattern of all zeros.
582   } else {
583     for (std::pair<CharUnits, CharUnits> Store : Stores) {
584       CharUnits StoreOffset = Store.first;
585       CharUnits StoreSize = Store.second;
586       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
587       CGF.Builder.CreateMemSet(
588           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
589           CGF.Builder.getInt8(0), StoreSizeVal);
590     }
591   }
592 }
593 
594 void
595 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
596                                       AggValueSlot Dest) {
597   assert(!Dest.isIgnored() && "Must have a destination!");
598   const CXXConstructorDecl *CD = E->getConstructor();
599 
600   // If we require zero initialization before (or instead of) calling the
601   // constructor, as can be the case with a non-user-provided default
602   // constructor, emit the zero initialization now, unless destination is
603   // already zeroed.
604   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
605     switch (E->getConstructionKind()) {
606     case CXXConstructionKind::Delegating:
607     case CXXConstructionKind::Complete:
608       EmitNullInitialization(Dest.getAddress(), E->getType());
609       break;
610     case CXXConstructionKind::VirtualBase:
611     case CXXConstructionKind::NonVirtualBase:
612       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
613                                       CD->getParent());
614       break;
615     }
616   }
617 
618   // If this is a call to a trivial default constructor, do nothing.
619   if (CD->isTrivial() && CD->isDefaultConstructor())
620     return;
621 
622   // Elide the constructor if we're constructing from a temporary.
623   if (getLangOpts().ElideConstructors && E->isElidable()) {
624     // FIXME: This only handles the simplest case, where the source object
625     //        is passed directly as the first argument to the constructor.
626     //        This should also handle stepping though implicit casts and
627     //        conversion sequences which involve two steps, with a
628     //        conversion operator followed by a converting constructor.
629     const Expr *SrcObj = E->getArg(0);
630     assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
631     assert(
632         getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
633     EmitAggExpr(SrcObj, Dest);
634     return;
635   }
636 
637   if (const ArrayType *arrayType
638         = getContext().getAsArrayType(E->getType())) {
639     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
640                                Dest.isSanitizerChecked());
641   } else {
642     CXXCtorType Type = Ctor_Complete;
643     bool ForVirtualBase = false;
644     bool Delegating = false;
645 
646     switch (E->getConstructionKind()) {
647     case CXXConstructionKind::Delegating:
648       // We should be emitting a constructor; GlobalDecl will assert this
649       Type = CurGD.getCtorType();
650       Delegating = true;
651       break;
652 
653     case CXXConstructionKind::Complete:
654       Type = Ctor_Complete;
655       break;
656 
657     case CXXConstructionKind::VirtualBase:
658       ForVirtualBase = true;
659       [[fallthrough]];
660 
661     case CXXConstructionKind::NonVirtualBase:
662       Type = Ctor_Base;
663      }
664 
665      // Call the constructor.
666      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
667   }
668 }
669 
670 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
671                                                  const Expr *Exp) {
672   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
673     Exp = E->getSubExpr();
674   assert(isa<CXXConstructExpr>(Exp) &&
675          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
676   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
677   const CXXConstructorDecl *CD = E->getConstructor();
678   RunCleanupsScope Scope(*this);
679 
680   // If we require zero initialization before (or instead of) calling the
681   // constructor, as can be the case with a non-user-provided default
682   // constructor, emit the zero initialization now.
683   // FIXME. Do I still need this for a copy ctor synthesis?
684   if (E->requiresZeroInitialization())
685     EmitNullInitialization(Dest, E->getType());
686 
687   assert(!getContext().getAsConstantArrayType(E->getType())
688          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
689   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
690 }
691 
692 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
693                                         const CXXNewExpr *E) {
694   if (!E->isArray())
695     return CharUnits::Zero();
696 
697   // No cookie is required if the operator new[] being used is the
698   // reserved placement operator new[].
699   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
700     return CharUnits::Zero();
701 
702   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
703 }
704 
705 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
706                                         const CXXNewExpr *e,
707                                         unsigned minElements,
708                                         llvm::Value *&numElements,
709                                         llvm::Value *&sizeWithoutCookie) {
710   QualType type = e->getAllocatedType();
711 
712   if (!e->isArray()) {
713     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
714     sizeWithoutCookie
715       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
716     return sizeWithoutCookie;
717   }
718 
719   // The width of size_t.
720   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
721 
722   // Figure out the cookie size.
723   llvm::APInt cookieSize(sizeWidth,
724                          CalculateCookiePadding(CGF, e).getQuantity());
725 
726   // Emit the array size expression.
727   // We multiply the size of all dimensions for NumElements.
728   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
729   numElements =
730     ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
731   if (!numElements)
732     numElements = CGF.EmitScalarExpr(*e->getArraySize());
733   assert(isa<llvm::IntegerType>(numElements->getType()));
734 
735   // The number of elements can be have an arbitrary integer type;
736   // essentially, we need to multiply it by a constant factor, add a
737   // cookie size, and verify that the result is representable as a
738   // size_t.  That's just a gloss, though, and it's wrong in one
739   // important way: if the count is negative, it's an error even if
740   // the cookie size would bring the total size >= 0.
741   bool isSigned
742     = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
743   llvm::IntegerType *numElementsType
744     = cast<llvm::IntegerType>(numElements->getType());
745   unsigned numElementsWidth = numElementsType->getBitWidth();
746 
747   // Compute the constant factor.
748   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
749   while (const ConstantArrayType *CAT
750              = CGF.getContext().getAsConstantArrayType(type)) {
751     type = CAT->getElementType();
752     arraySizeMultiplier *= CAT->getSize();
753   }
754 
755   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
756   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
757   typeSizeMultiplier *= arraySizeMultiplier;
758 
759   // This will be a size_t.
760   llvm::Value *size;
761 
762   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
763   // Don't bloat the -O0 code.
764   if (llvm::ConstantInt *numElementsC =
765         dyn_cast<llvm::ConstantInt>(numElements)) {
766     const llvm::APInt &count = numElementsC->getValue();
767 
768     bool hasAnyOverflow = false;
769 
770     // If 'count' was a negative number, it's an overflow.
771     if (isSigned && count.isNegative())
772       hasAnyOverflow = true;
773 
774     // We want to do all this arithmetic in size_t.  If numElements is
775     // wider than that, check whether it's already too big, and if so,
776     // overflow.
777     else if (numElementsWidth > sizeWidth &&
778              numElementsWidth - sizeWidth > count.countl_zero())
779       hasAnyOverflow = true;
780 
781     // Okay, compute a count at the right width.
782     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
783 
784     // If there is a brace-initializer, we cannot allocate fewer elements than
785     // there are initializers. If we do, that's treated like an overflow.
786     if (adjustedCount.ult(minElements))
787       hasAnyOverflow = true;
788 
789     // Scale numElements by that.  This might overflow, but we don't
790     // care because it only overflows if allocationSize does, too, and
791     // if that overflows then we shouldn't use this.
792     numElements = llvm::ConstantInt::get(CGF.SizeTy,
793                                          adjustedCount * arraySizeMultiplier);
794 
795     // Compute the size before cookie, and track whether it overflowed.
796     bool overflow;
797     llvm::APInt allocationSize
798       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
799     hasAnyOverflow |= overflow;
800 
801     // Add in the cookie, and check whether it's overflowed.
802     if (cookieSize != 0) {
803       // Save the current size without a cookie.  This shouldn't be
804       // used if there was overflow.
805       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
806 
807       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
808       hasAnyOverflow |= overflow;
809     }
810 
811     // On overflow, produce a -1 so operator new will fail.
812     if (hasAnyOverflow) {
813       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
814     } else {
815       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
816     }
817 
818   // Otherwise, we might need to use the overflow intrinsics.
819   } else {
820     // There are up to five conditions we need to test for:
821     // 1) if isSigned, we need to check whether numElements is negative;
822     // 2) if numElementsWidth > sizeWidth, we need to check whether
823     //   numElements is larger than something representable in size_t;
824     // 3) if minElements > 0, we need to check whether numElements is smaller
825     //    than that.
826     // 4) we need to compute
827     //      sizeWithoutCookie := numElements * typeSizeMultiplier
828     //    and check whether it overflows; and
829     // 5) if we need a cookie, we need to compute
830     //      size := sizeWithoutCookie + cookieSize
831     //    and check whether it overflows.
832 
833     llvm::Value *hasOverflow = nullptr;
834 
835     // If numElementsWidth > sizeWidth, then one way or another, we're
836     // going to have to do a comparison for (2), and this happens to
837     // take care of (1), too.
838     if (numElementsWidth > sizeWidth) {
839       llvm::APInt threshold =
840           llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth);
841 
842       llvm::Value *thresholdV
843         = llvm::ConstantInt::get(numElementsType, threshold);
844 
845       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
846       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
847 
848     // Otherwise, if we're signed, we want to sext up to size_t.
849     } else if (isSigned) {
850       if (numElementsWidth < sizeWidth)
851         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
852 
853       // If there's a non-1 type size multiplier, then we can do the
854       // signedness check at the same time as we do the multiply
855       // because a negative number times anything will cause an
856       // unsigned overflow.  Otherwise, we have to do it here. But at least
857       // in this case, we can subsume the >= minElements check.
858       if (typeSizeMultiplier == 1)
859         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
860                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
861 
862     // Otherwise, zext up to size_t if necessary.
863     } else if (numElementsWidth < sizeWidth) {
864       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
865     }
866 
867     assert(numElements->getType() == CGF.SizeTy);
868 
869     if (minElements) {
870       // Don't allow allocation of fewer elements than we have initializers.
871       if (!hasOverflow) {
872         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
873                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
874       } else if (numElementsWidth > sizeWidth) {
875         // The other existing overflow subsumes this check.
876         // We do an unsigned comparison, since any signed value < -1 is
877         // taken care of either above or below.
878         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
879                           CGF.Builder.CreateICmpULT(numElements,
880                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
881       }
882     }
883 
884     size = numElements;
885 
886     // Multiply by the type size if necessary.  This multiplier
887     // includes all the factors for nested arrays.
888     //
889     // This step also causes numElements to be scaled up by the
890     // nested-array factor if necessary.  Overflow on this computation
891     // can be ignored because the result shouldn't be used if
892     // allocation fails.
893     if (typeSizeMultiplier != 1) {
894       llvm::Function *umul_with_overflow
895         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
896 
897       llvm::Value *tsmV =
898         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
899       llvm::Value *result =
900           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
901 
902       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
903       if (hasOverflow)
904         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
905       else
906         hasOverflow = overflowed;
907 
908       size = CGF.Builder.CreateExtractValue(result, 0);
909 
910       // Also scale up numElements by the array size multiplier.
911       if (arraySizeMultiplier != 1) {
912         // If the base element type size is 1, then we can re-use the
913         // multiply we just did.
914         if (typeSize.isOne()) {
915           assert(arraySizeMultiplier == typeSizeMultiplier);
916           numElements = size;
917 
918         // Otherwise we need a separate multiply.
919         } else {
920           llvm::Value *asmV =
921             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
922           numElements = CGF.Builder.CreateMul(numElements, asmV);
923         }
924       }
925     } else {
926       // numElements doesn't need to be scaled.
927       assert(arraySizeMultiplier == 1);
928     }
929 
930     // Add in the cookie size if necessary.
931     if (cookieSize != 0) {
932       sizeWithoutCookie = size;
933 
934       llvm::Function *uadd_with_overflow
935         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
936 
937       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
938       llvm::Value *result =
939           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
940 
941       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
942       if (hasOverflow)
943         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
944       else
945         hasOverflow = overflowed;
946 
947       size = CGF.Builder.CreateExtractValue(result, 0);
948     }
949 
950     // If we had any possibility of dynamic overflow, make a select to
951     // overwrite 'size' with an all-ones value, which should cause
952     // operator new to throw.
953     if (hasOverflow)
954       size = CGF.Builder.CreateSelect(hasOverflow,
955                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
956                                       size);
957   }
958 
959   if (cookieSize == 0)
960     sizeWithoutCookie = size;
961   else
962     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
963 
964   return size;
965 }
966 
967 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
968                                     QualType AllocType, Address NewPtr,
969                                     AggValueSlot::Overlap_t MayOverlap) {
970   // FIXME: Refactor with EmitExprAsInit.
971   switch (CGF.getEvaluationKind(AllocType)) {
972   case TEK_Scalar:
973     CGF.EmitScalarInit(Init, nullptr,
974                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
975     return;
976   case TEK_Complex:
977     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
978                                   /*isInit*/ true);
979     return;
980   case TEK_Aggregate: {
981     AggValueSlot Slot
982       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
983                               AggValueSlot::IsDestructed,
984                               AggValueSlot::DoesNotNeedGCBarriers,
985                               AggValueSlot::IsNotAliased,
986                               MayOverlap, AggValueSlot::IsNotZeroed,
987                               AggValueSlot::IsSanitizerChecked);
988     CGF.EmitAggExpr(Init, Slot);
989     return;
990   }
991   }
992   llvm_unreachable("bad evaluation kind");
993 }
994 
995 void CodeGenFunction::EmitNewArrayInitializer(
996     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
997     Address BeginPtr, llvm::Value *NumElements,
998     llvm::Value *AllocSizeWithoutCookie) {
999   // If we have a type with trivial initialization and no initializer,
1000   // there's nothing to do.
1001   if (!E->hasInitializer())
1002     return;
1003 
1004   Address CurPtr = BeginPtr;
1005 
1006   unsigned InitListElements = 0;
1007 
1008   const Expr *Init = E->getInitializer();
1009   Address EndOfInit = Address::invalid();
1010   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1011   CleanupDeactivationScope deactivation(*this);
1012   bool pushedCleanup = false;
1013 
1014   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1015   CharUnits ElementAlign =
1016     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1017 
1018   // Attempt to perform zero-initialization using memset.
1019   auto TryMemsetInitialization = [&]() -> bool {
1020     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1021     // we can initialize with a memset to -1.
1022     if (!CGM.getTypes().isZeroInitializable(ElementType))
1023       return false;
1024 
1025     // Optimization: since zero initialization will just set the memory
1026     // to all zeroes, generate a single memset to do it in one shot.
1027 
1028     // Subtract out the size of any elements we've already initialized.
1029     auto *RemainingSize = AllocSizeWithoutCookie;
1030     if (InitListElements) {
1031       // We know this can't overflow; we check this when doing the allocation.
1032       auto *InitializedSize = llvm::ConstantInt::get(
1033           RemainingSize->getType(),
1034           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1035               InitListElements);
1036       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1037     }
1038 
1039     // Create the memset.
1040     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1041     return true;
1042   };
1043 
1044   const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1045   const CXXParenListInitExpr *CPLIE = nullptr;
1046   const StringLiteral *SL = nullptr;
1047   const ObjCEncodeExpr *OCEE = nullptr;
1048   const Expr *IgnoreParen = nullptr;
1049   if (!ILE) {
1050     IgnoreParen = Init->IgnoreParenImpCasts();
1051     CPLIE = dyn_cast<CXXParenListInitExpr>(IgnoreParen);
1052     SL = dyn_cast<StringLiteral>(IgnoreParen);
1053     OCEE = dyn_cast<ObjCEncodeExpr>(IgnoreParen);
1054   }
1055 
1056   // If the initializer is an initializer list, first do the explicit elements.
1057   if (ILE || CPLIE || SL || OCEE) {
1058     // Initializing from a (braced) string literal is a special case; the init
1059     // list element does not initialize a (single) array element.
1060     if ((ILE && ILE->isStringLiteralInit()) || SL || OCEE) {
1061       if (!ILE)
1062         Init = IgnoreParen;
1063       // Initialize the initial portion of length equal to that of the string
1064       // literal. The allocation must be for at least this much; we emitted a
1065       // check for that earlier.
1066       AggValueSlot Slot =
1067           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1068                                 AggValueSlot::IsDestructed,
1069                                 AggValueSlot::DoesNotNeedGCBarriers,
1070                                 AggValueSlot::IsNotAliased,
1071                                 AggValueSlot::DoesNotOverlap,
1072                                 AggValueSlot::IsNotZeroed,
1073                                 AggValueSlot::IsSanitizerChecked);
1074       EmitAggExpr(ILE ? ILE->getInit(0) : Init, Slot);
1075 
1076       // Move past these elements.
1077       InitListElements =
1078           cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1079               ->getZExtSize();
1080       CurPtr = Builder.CreateConstInBoundsGEP(
1081           CurPtr, InitListElements, "string.init.end");
1082 
1083       // Zero out the rest, if any remain.
1084       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1085       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1086         bool OK = TryMemsetInitialization();
1087         (void)OK;
1088         assert(OK && "couldn't memset character type?");
1089       }
1090       return;
1091     }
1092 
1093     ArrayRef<const Expr *> InitExprs =
1094         ILE ? ILE->inits() : CPLIE->getInitExprs();
1095     InitListElements = InitExprs.size();
1096 
1097     // If this is a multi-dimensional array new, we will initialize multiple
1098     // elements with each init list element.
1099     QualType AllocType = E->getAllocatedType();
1100     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1101             AllocType->getAsArrayTypeUnsafe())) {
1102       ElementTy = ConvertTypeForMem(AllocType);
1103       CurPtr = CurPtr.withElementType(ElementTy);
1104       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1105     }
1106 
1107     // Enter a partial-destruction Cleanup if necessary.
1108     if (DtorKind) {
1109       AllocaTrackerRAII AllocaTracker(*this);
1110       // In principle we could tell the Cleanup where we are more
1111       // directly, but the control flow can get so varied here that it
1112       // would actually be quite complex.  Therefore we go through an
1113       // alloca.
1114       llvm::Instruction *DominatingIP =
1115           Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy));
1116       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1117                                    "array.init.end");
1118       pushIrregularPartialArrayCleanup(BeginPtr.emitRawPointer(*this),
1119                                        EndOfInit, ElementType, ElementAlign,
1120                                        getDestroyer(DtorKind));
1121       cast<EHCleanupScope>(*EHStack.find(EHStack.stable_begin()))
1122           .AddAuxAllocas(AllocaTracker.Take());
1123       DeferredDeactivationCleanupStack.push_back(
1124           {EHStack.stable_begin(), DominatingIP});
1125       pushedCleanup = true;
1126     }
1127 
1128     CharUnits StartAlign = CurPtr.getAlignment();
1129     unsigned i = 0;
1130     for (const Expr *IE : InitExprs) {
1131       // Tell the cleanup that it needs to destroy up to this
1132       // element.  TODO: some of these stores can be trivially
1133       // observed to be unnecessary.
1134       if (EndOfInit.isValid()) {
1135         Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1136       }
1137       // FIXME: If the last initializer is an incomplete initializer list for
1138       // an array, and we have an array filler, we can fold together the two
1139       // initialization loops.
1140       StoreAnyExprIntoOneUnit(*this, IE, IE->getType(), CurPtr,
1141                               AggValueSlot::DoesNotOverlap);
1142       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(),
1143                                                  CurPtr.emitRawPointer(*this),
1144                                                  Builder.getSize(1),
1145                                                  "array.exp.next"),
1146                        CurPtr.getElementType(),
1147                        StartAlign.alignmentAtOffset((++i) * ElementSize));
1148     }
1149 
1150     // The remaining elements are filled with the array filler expression.
1151     Init = ILE ? ILE->getArrayFiller() : CPLIE->getArrayFiller();
1152 
1153     // Extract the initializer for the individual array elements by pulling
1154     // out the array filler from all the nested initializer lists. This avoids
1155     // generating a nested loop for the initialization.
1156     while (Init && Init->getType()->isConstantArrayType()) {
1157       auto *SubILE = dyn_cast<InitListExpr>(Init);
1158       if (!SubILE)
1159         break;
1160       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1161       Init = SubILE->getArrayFiller();
1162     }
1163 
1164     // Switch back to initializing one base element at a time.
1165     CurPtr = CurPtr.withElementType(BeginPtr.getElementType());
1166   }
1167 
1168   // If all elements have already been initialized, skip any further
1169   // initialization.
1170   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1171   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1172     return;
1173   }
1174 
1175   assert(Init && "have trailing elements to initialize but no initializer");
1176 
1177   // If this is a constructor call, try to optimize it out, and failing that
1178   // emit a single loop to initialize all remaining elements.
1179   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1180     CXXConstructorDecl *Ctor = CCE->getConstructor();
1181     if (Ctor->isTrivial()) {
1182       // If new expression did not specify value-initialization, then there
1183       // is no initialization.
1184       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1185         return;
1186 
1187       if (TryMemsetInitialization())
1188         return;
1189     }
1190 
1191     // Store the new Cleanup position for irregular Cleanups.
1192     //
1193     // FIXME: Share this cleanup with the constructor call emission rather than
1194     // having it create a cleanup of its own.
1195     if (EndOfInit.isValid())
1196       Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1197 
1198     // Emit a constructor call loop to initialize the remaining elements.
1199     if (InitListElements)
1200       NumElements = Builder.CreateSub(
1201           NumElements,
1202           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1203     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1204                                /*NewPointerIsChecked*/true,
1205                                CCE->requiresZeroInitialization());
1206     return;
1207   }
1208 
1209   // If this is value-initialization, we can usually use memset.
1210   ImplicitValueInitExpr IVIE(ElementType);
1211   if (isa<ImplicitValueInitExpr>(Init)) {
1212     if (TryMemsetInitialization())
1213       return;
1214 
1215     // Switch to an ImplicitValueInitExpr for the element type. This handles
1216     // only one case: multidimensional array new of pointers to members. In
1217     // all other cases, we already have an initializer for the array element.
1218     Init = &IVIE;
1219   }
1220 
1221   // At this point we should have found an initializer for the individual
1222   // elements of the array.
1223   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1224          "got wrong type of element to initialize");
1225 
1226   // If we have an empty initializer list, we can usually use memset.
1227   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1228     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1229       return;
1230 
1231   // If we have a struct whose every field is value-initialized, we can
1232   // usually use memset.
1233   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1234     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1235       if (RType->getDecl()->isStruct()) {
1236         unsigned NumElements = 0;
1237         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1238           NumElements = CXXRD->getNumBases();
1239         for (auto *Field : RType->getDecl()->fields())
1240           if (!Field->isUnnamedBitField())
1241             ++NumElements;
1242         // FIXME: Recurse into nested InitListExprs.
1243         if (ILE->getNumInits() == NumElements)
1244           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1245             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1246               --NumElements;
1247         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1248           return;
1249       }
1250     }
1251   }
1252 
1253   // Create the loop blocks.
1254   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1255   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1256   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1257 
1258   // Find the end of the array, hoisted out of the loop.
1259   llvm::Value *EndPtr = Builder.CreateInBoundsGEP(
1260       BeginPtr.getElementType(), BeginPtr.emitRawPointer(*this), NumElements,
1261       "array.end");
1262 
1263   // If the number of elements isn't constant, we have to now check if there is
1264   // anything left to initialize.
1265   if (!ConstNum) {
1266     llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr.emitRawPointer(*this),
1267                                                 EndPtr, "array.isempty");
1268     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1269   }
1270 
1271   // Enter the loop.
1272   EmitBlock(LoopBB);
1273 
1274   // Set up the current-element phi.
1275   llvm::PHINode *CurPtrPhi =
1276       Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1277   CurPtrPhi->addIncoming(CurPtr.emitRawPointer(*this), EntryBB);
1278 
1279   CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1280 
1281   // Store the new Cleanup position for irregular Cleanups.
1282   if (EndOfInit.isValid())
1283     Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1284 
1285   // Enter a partial-destruction Cleanup if necessary.
1286   if (!pushedCleanup && needsEHCleanup(DtorKind)) {
1287     llvm::Instruction *DominatingIP =
1288         Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy));
1289     pushRegularPartialArrayCleanup(BeginPtr.emitRawPointer(*this),
1290                                    CurPtr.emitRawPointer(*this), ElementType,
1291                                    ElementAlign, getDestroyer(DtorKind));
1292     DeferredDeactivationCleanupStack.push_back(
1293         {EHStack.stable_begin(), DominatingIP});
1294   }
1295 
1296   // Emit the initializer into this element.
1297   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1298                           AggValueSlot::DoesNotOverlap);
1299 
1300   // Leave the Cleanup if we entered one.
1301   deactivation.ForceDeactivate();
1302 
1303   // Advance to the next element by adjusting the pointer type as necessary.
1304   llvm::Value *NextPtr = Builder.CreateConstInBoundsGEP1_32(
1305       ElementTy, CurPtr.emitRawPointer(*this), 1, "array.next");
1306 
1307   // Check whether we've gotten to the end of the array and, if so,
1308   // exit the loop.
1309   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1310   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1311   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1312 
1313   EmitBlock(ContBB);
1314 }
1315 
1316 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1317                                QualType ElementType, llvm::Type *ElementTy,
1318                                Address NewPtr, llvm::Value *NumElements,
1319                                llvm::Value *AllocSizeWithoutCookie) {
1320   ApplyDebugLocation DL(CGF, E);
1321   if (E->isArray())
1322     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1323                                 AllocSizeWithoutCookie);
1324   else if (const Expr *Init = E->getInitializer())
1325     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1326                             AggValueSlot::DoesNotOverlap);
1327 }
1328 
1329 /// Emit a call to an operator new or operator delete function, as implicitly
1330 /// created by new-expressions and delete-expressions.
1331 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1332                                 const FunctionDecl *CalleeDecl,
1333                                 const FunctionProtoType *CalleeType,
1334                                 const CallArgList &Args) {
1335   llvm::CallBase *CallOrInvoke;
1336   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1337   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1338   RValue RV =
1339       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1340                        Args, CalleeType, /*ChainCall=*/false),
1341                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1342 
1343   /// C++1y [expr.new]p10:
1344   ///   [In a new-expression,] an implementation is allowed to omit a call
1345   ///   to a replaceable global allocation function.
1346   ///
1347   /// We model such elidable calls with the 'builtin' attribute.
1348   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1349   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1350       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1351     CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1352   }
1353 
1354   return RV;
1355 }
1356 
1357 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1358                                                  const CallExpr *TheCall,
1359                                                  bool IsDelete) {
1360   CallArgList Args;
1361   EmitCallArgs(Args, Type, TheCall->arguments());
1362   // Find the allocation or deallocation function that we're calling.
1363   ASTContext &Ctx = getContext();
1364   DeclarationName Name = Ctx.DeclarationNames
1365       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1366 
1367   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1368     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1369       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1370         return EmitNewDeleteCall(*this, FD, Type, Args);
1371   llvm_unreachable("predeclared global operator new/delete is missing");
1372 }
1373 
1374 namespace {
1375 /// The parameters to pass to a usual operator delete.
1376 struct UsualDeleteParams {
1377   bool DestroyingDelete = false;
1378   bool Size = false;
1379   bool Alignment = false;
1380 };
1381 }
1382 
1383 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1384   UsualDeleteParams Params;
1385 
1386   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1387   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1388 
1389   // The first argument is always a void*.
1390   ++AI;
1391 
1392   // The next parameter may be a std::destroying_delete_t.
1393   if (FD->isDestroyingOperatorDelete()) {
1394     Params.DestroyingDelete = true;
1395     assert(AI != AE);
1396     ++AI;
1397   }
1398 
1399   // Figure out what other parameters we should be implicitly passing.
1400   if (AI != AE && (*AI)->isIntegerType()) {
1401     Params.Size = true;
1402     ++AI;
1403   }
1404 
1405   if (AI != AE && (*AI)->isAlignValT()) {
1406     Params.Alignment = true;
1407     ++AI;
1408   }
1409 
1410   assert(AI == AE && "unexpected usual deallocation function parameter");
1411   return Params;
1412 }
1413 
1414 namespace {
1415   /// A cleanup to call the given 'operator delete' function upon abnormal
1416   /// exit from a new expression. Templated on a traits type that deals with
1417   /// ensuring that the arguments dominate the cleanup if necessary.
1418   template<typename Traits>
1419   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1420     /// Type used to hold llvm::Value*s.
1421     typedef typename Traits::ValueTy ValueTy;
1422     /// Type used to hold RValues.
1423     typedef typename Traits::RValueTy RValueTy;
1424     struct PlacementArg {
1425       RValueTy ArgValue;
1426       QualType ArgType;
1427     };
1428 
1429     unsigned NumPlacementArgs : 31;
1430     LLVM_PREFERRED_TYPE(bool)
1431     unsigned PassAlignmentToPlacementDelete : 1;
1432     const FunctionDecl *OperatorDelete;
1433     ValueTy Ptr;
1434     ValueTy AllocSize;
1435     CharUnits AllocAlign;
1436 
1437     PlacementArg *getPlacementArgs() {
1438       return reinterpret_cast<PlacementArg *>(this + 1);
1439     }
1440 
1441   public:
1442     static size_t getExtraSize(size_t NumPlacementArgs) {
1443       return NumPlacementArgs * sizeof(PlacementArg);
1444     }
1445 
1446     CallDeleteDuringNew(size_t NumPlacementArgs,
1447                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1448                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1449                         CharUnits AllocAlign)
1450       : NumPlacementArgs(NumPlacementArgs),
1451         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1452         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1453         AllocAlign(AllocAlign) {}
1454 
1455     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1456       assert(I < NumPlacementArgs && "index out of range");
1457       getPlacementArgs()[I] = {Arg, Type};
1458     }
1459 
1460     void Emit(CodeGenFunction &CGF, Flags flags) override {
1461       const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1462       CallArgList DeleteArgs;
1463 
1464       // The first argument is always a void* (or C* for a destroying operator
1465       // delete for class type C).
1466       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1467 
1468       // Figure out what other parameters we should be implicitly passing.
1469       UsualDeleteParams Params;
1470       if (NumPlacementArgs) {
1471         // A placement deallocation function is implicitly passed an alignment
1472         // if the placement allocation function was, but is never passed a size.
1473         Params.Alignment = PassAlignmentToPlacementDelete;
1474       } else {
1475         // For a non-placement new-expression, 'operator delete' can take a
1476         // size and/or an alignment if it has the right parameters.
1477         Params = getUsualDeleteParams(OperatorDelete);
1478       }
1479 
1480       assert(!Params.DestroyingDelete &&
1481              "should not call destroying delete in a new-expression");
1482 
1483       // The second argument can be a std::size_t (for non-placement delete).
1484       if (Params.Size)
1485         DeleteArgs.add(Traits::get(CGF, AllocSize),
1486                        CGF.getContext().getSizeType());
1487 
1488       // The next (second or third) argument can be a std::align_val_t, which
1489       // is an enum whose underlying type is std::size_t.
1490       // FIXME: Use the right type as the parameter type. Note that in a call
1491       // to operator delete(size_t, ...), we may not have it available.
1492       if (Params.Alignment)
1493         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1494                            CGF.SizeTy, AllocAlign.getQuantity())),
1495                        CGF.getContext().getSizeType());
1496 
1497       // Pass the rest of the arguments, which must match exactly.
1498       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1499         auto Arg = getPlacementArgs()[I];
1500         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1501       }
1502 
1503       // Call 'operator delete'.
1504       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1505     }
1506   };
1507 }
1508 
1509 /// Enter a cleanup to call 'operator delete' if the initializer in a
1510 /// new-expression throws.
1511 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1512                                   const CXXNewExpr *E,
1513                                   Address NewPtr,
1514                                   llvm::Value *AllocSize,
1515                                   CharUnits AllocAlign,
1516                                   const CallArgList &NewArgs) {
1517   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1518 
1519   // If we're not inside a conditional branch, then the cleanup will
1520   // dominate and we can do the easier (and more efficient) thing.
1521   if (!CGF.isInConditionalBranch()) {
1522     struct DirectCleanupTraits {
1523       typedef llvm::Value *ValueTy;
1524       typedef RValue RValueTy;
1525       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1526       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1527     };
1528 
1529     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1530 
1531     DirectCleanup *Cleanup = CGF.EHStack.pushCleanupWithExtra<DirectCleanup>(
1532         EHCleanup, E->getNumPlacementArgs(), E->getOperatorDelete(),
1533         NewPtr.emitRawPointer(CGF), AllocSize, E->passAlignment(), AllocAlign);
1534     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1535       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1536       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1537     }
1538 
1539     return;
1540   }
1541 
1542   // Otherwise, we need to save all this stuff.
1543   DominatingValue<RValue>::saved_type SavedNewPtr =
1544       DominatingValue<RValue>::save(CGF, RValue::get(NewPtr, CGF));
1545   DominatingValue<RValue>::saved_type SavedAllocSize =
1546     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1547 
1548   struct ConditionalCleanupTraits {
1549     typedef DominatingValue<RValue>::saved_type ValueTy;
1550     typedef DominatingValue<RValue>::saved_type RValueTy;
1551     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1552       return V.restore(CGF);
1553     }
1554   };
1555   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1556 
1557   ConditionalCleanup *Cleanup = CGF.EHStack
1558     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1559                                               E->getNumPlacementArgs(),
1560                                               E->getOperatorDelete(),
1561                                               SavedNewPtr,
1562                                               SavedAllocSize,
1563                                               E->passAlignment(),
1564                                               AllocAlign);
1565   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1566     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1567     Cleanup->setPlacementArg(
1568         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1569   }
1570 
1571   CGF.initFullExprCleanup();
1572 }
1573 
1574 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1575   // The element type being allocated.
1576   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1577 
1578   // 1. Build a call to the allocation function.
1579   FunctionDecl *allocator = E->getOperatorNew();
1580 
1581   // If there is a brace-initializer or C++20 parenthesized initializer, cannot
1582   // allocate fewer elements than inits.
1583   unsigned minElements = 0;
1584   if (E->isArray() && E->hasInitializer()) {
1585     const Expr *Init = E->getInitializer();
1586     const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1587     const CXXParenListInitExpr *CPLIE = dyn_cast<CXXParenListInitExpr>(Init);
1588     const Expr *IgnoreParen = Init->IgnoreParenImpCasts();
1589     if ((ILE && ILE->isStringLiteralInit()) ||
1590         isa<StringLiteral>(IgnoreParen) || isa<ObjCEncodeExpr>(IgnoreParen)) {
1591       minElements =
1592           cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1593               ->getZExtSize();
1594     } else if (ILE || CPLIE) {
1595       minElements = ILE ? ILE->getNumInits() : CPLIE->getInitExprs().size();
1596     }
1597   }
1598 
1599   llvm::Value *numElements = nullptr;
1600   llvm::Value *allocSizeWithoutCookie = nullptr;
1601   llvm::Value *allocSize =
1602     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1603                         allocSizeWithoutCookie);
1604   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1605 
1606   // Emit the allocation call.  If the allocator is a global placement
1607   // operator, just "inline" it directly.
1608   Address allocation = Address::invalid();
1609   CallArgList allocatorArgs;
1610   if (allocator->isReservedGlobalPlacementOperator()) {
1611     assert(E->getNumPlacementArgs() == 1);
1612     const Expr *arg = *E->placement_arguments().begin();
1613 
1614     LValueBaseInfo BaseInfo;
1615     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1616 
1617     // The pointer expression will, in many cases, be an opaque void*.
1618     // In these cases, discard the computed alignment and use the
1619     // formal alignment of the allocated type.
1620     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1621       allocation.setAlignment(allocAlign);
1622 
1623     // Set up allocatorArgs for the call to operator delete if it's not
1624     // the reserved global operator.
1625     if (E->getOperatorDelete() &&
1626         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1627       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1628       allocatorArgs.add(RValue::get(allocation, *this), arg->getType());
1629     }
1630 
1631   } else {
1632     const FunctionProtoType *allocatorType =
1633       allocator->getType()->castAs<FunctionProtoType>();
1634     unsigned ParamsToSkip = 0;
1635 
1636     // The allocation size is the first argument.
1637     QualType sizeType = getContext().getSizeType();
1638     allocatorArgs.add(RValue::get(allocSize), sizeType);
1639     ++ParamsToSkip;
1640 
1641     if (allocSize != allocSizeWithoutCookie) {
1642       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1643       allocAlign = std::max(allocAlign, cookieAlign);
1644     }
1645 
1646     // The allocation alignment may be passed as the second argument.
1647     if (E->passAlignment()) {
1648       QualType AlignValT = sizeType;
1649       if (allocatorType->getNumParams() > 1) {
1650         AlignValT = allocatorType->getParamType(1);
1651         assert(getContext().hasSameUnqualifiedType(
1652                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1653                    sizeType) &&
1654                "wrong type for alignment parameter");
1655         ++ParamsToSkip;
1656       } else {
1657         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1658         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1659       }
1660       allocatorArgs.add(
1661           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1662           AlignValT);
1663     }
1664 
1665     // FIXME: Why do we not pass a CalleeDecl here?
1666     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1667                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1668 
1669     RValue RV =
1670       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1671 
1672     // Set !heapallocsite metadata on the call to operator new.
1673     if (getDebugInfo())
1674       if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1675         getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1676                                                  E->getExprLoc());
1677 
1678     // If this was a call to a global replaceable allocation function that does
1679     // not take an alignment argument, the allocator is known to produce
1680     // storage that's suitably aligned for any object that fits, up to a known
1681     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1682     CharUnits allocationAlign = allocAlign;
1683     if (!E->passAlignment() &&
1684         allocator->isReplaceableGlobalAllocationFunction()) {
1685       unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>(
1686           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1687       allocationAlign = std::max(
1688           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1689     }
1690 
1691     allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1692   }
1693 
1694   // Emit a null check on the allocation result if the allocation
1695   // function is allowed to return null (because it has a non-throwing
1696   // exception spec or is the reserved placement new) and we have an
1697   // interesting initializer will be running sanitizers on the initialization.
1698   bool nullCheck = E->shouldNullCheckAllocation() &&
1699                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1700                     sanitizePerformTypeCheck());
1701 
1702   llvm::BasicBlock *nullCheckBB = nullptr;
1703   llvm::BasicBlock *contBB = nullptr;
1704 
1705   // The null-check means that the initializer is conditionally
1706   // evaluated.
1707   ConditionalEvaluation conditional(*this);
1708 
1709   if (nullCheck) {
1710     conditional.begin(*this);
1711 
1712     nullCheckBB = Builder.GetInsertBlock();
1713     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1714     contBB = createBasicBlock("new.cont");
1715 
1716     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1717     Builder.CreateCondBr(isNull, contBB, notNullBB);
1718     EmitBlock(notNullBB);
1719   }
1720 
1721   // If there's an operator delete, enter a cleanup to call it if an
1722   // exception is thrown.
1723   EHScopeStack::stable_iterator operatorDeleteCleanup;
1724   llvm::Instruction *cleanupDominator = nullptr;
1725   if (E->getOperatorDelete() &&
1726       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1727     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1728                           allocatorArgs);
1729     operatorDeleteCleanup = EHStack.stable_begin();
1730     cleanupDominator = Builder.CreateUnreachable();
1731   }
1732 
1733   assert((allocSize == allocSizeWithoutCookie) ==
1734          CalculateCookiePadding(*this, E).isZero());
1735   if (allocSize != allocSizeWithoutCookie) {
1736     assert(E->isArray());
1737     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1738                                                        numElements,
1739                                                        E, allocType);
1740   }
1741 
1742   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1743   Address result = allocation.withElementType(elementTy);
1744 
1745   // Passing pointer through launder.invariant.group to avoid propagation of
1746   // vptrs information which may be included in previous type.
1747   // To not break LTO with different optimizations levels, we do it regardless
1748   // of optimization level.
1749   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1750       allocator->isReservedGlobalPlacementOperator())
1751     result = Builder.CreateLaunderInvariantGroup(result);
1752 
1753   // Emit sanitizer checks for pointer value now, so that in the case of an
1754   // array it was checked only once and not at each constructor call. We may
1755   // have already checked that the pointer is non-null.
1756   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1757   // we'll null check the wrong pointer here.
1758   SanitizerSet SkippedChecks;
1759   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1760   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1761                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1762                 result, allocType, result.getAlignment(), SkippedChecks,
1763                 numElements);
1764 
1765   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1766                      allocSizeWithoutCookie);
1767   llvm::Value *resultPtr = result.emitRawPointer(*this);
1768   if (E->isArray()) {
1769     // NewPtr is a pointer to the base element type.  If we're
1770     // allocating an array of arrays, we'll need to cast back to the
1771     // array pointer type.
1772     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1773     if (resultPtr->getType() != resultType)
1774       resultPtr = Builder.CreateBitCast(resultPtr, resultType);
1775   }
1776 
1777   // Deactivate the 'operator delete' cleanup if we finished
1778   // initialization.
1779   if (operatorDeleteCleanup.isValid()) {
1780     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1781     cleanupDominator->eraseFromParent();
1782   }
1783 
1784   if (nullCheck) {
1785     conditional.end(*this);
1786 
1787     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1788     EmitBlock(contBB);
1789 
1790     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1791     PHI->addIncoming(resultPtr, notNullBB);
1792     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1793                      nullCheckBB);
1794 
1795     resultPtr = PHI;
1796   }
1797 
1798   return resultPtr;
1799 }
1800 
1801 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1802                                      llvm::Value *Ptr, QualType DeleteTy,
1803                                      llvm::Value *NumElements,
1804                                      CharUnits CookieSize) {
1805   assert((!NumElements && CookieSize.isZero()) ||
1806          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1807 
1808   const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1809   CallArgList DeleteArgs;
1810 
1811   auto Params = getUsualDeleteParams(DeleteFD);
1812   auto ParamTypeIt = DeleteFTy->param_type_begin();
1813 
1814   // Pass the pointer itself.
1815   QualType ArgTy = *ParamTypeIt++;
1816   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1817   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1818 
1819   // Pass the std::destroying_delete tag if present.
1820   llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1821   if (Params.DestroyingDelete) {
1822     QualType DDTag = *ParamTypeIt++;
1823     llvm::Type *Ty = getTypes().ConvertType(DDTag);
1824     CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1825     DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1826     DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1827     DeleteArgs.add(
1828         RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
1829   }
1830 
1831   // Pass the size if the delete function has a size_t parameter.
1832   if (Params.Size) {
1833     QualType SizeType = *ParamTypeIt++;
1834     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1835     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1836                                                DeleteTypeSize.getQuantity());
1837 
1838     // For array new, multiply by the number of elements.
1839     if (NumElements)
1840       Size = Builder.CreateMul(Size, NumElements);
1841 
1842     // If there is a cookie, add the cookie size.
1843     if (!CookieSize.isZero())
1844       Size = Builder.CreateAdd(
1845           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1846 
1847     DeleteArgs.add(RValue::get(Size), SizeType);
1848   }
1849 
1850   // Pass the alignment if the delete function has an align_val_t parameter.
1851   if (Params.Alignment) {
1852     QualType AlignValType = *ParamTypeIt++;
1853     CharUnits DeleteTypeAlign =
1854         getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1855             DeleteTy, true /* NeedsPreferredAlignment */));
1856     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1857                                                 DeleteTypeAlign.getQuantity());
1858     DeleteArgs.add(RValue::get(Align), AlignValType);
1859   }
1860 
1861   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1862          "unknown parameter to usual delete function");
1863 
1864   // Emit the call to delete.
1865   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1866 
1867   // If call argument lowering didn't use the destroying_delete_t alloca,
1868   // remove it again.
1869   if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1870     DestroyingDeleteTag->eraseFromParent();
1871 }
1872 
1873 namespace {
1874   /// Calls the given 'operator delete' on a single object.
1875   struct CallObjectDelete final : EHScopeStack::Cleanup {
1876     llvm::Value *Ptr;
1877     const FunctionDecl *OperatorDelete;
1878     QualType ElementType;
1879 
1880     CallObjectDelete(llvm::Value *Ptr,
1881                      const FunctionDecl *OperatorDelete,
1882                      QualType ElementType)
1883       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1884 
1885     void Emit(CodeGenFunction &CGF, Flags flags) override {
1886       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1887     }
1888   };
1889 }
1890 
1891 void
1892 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1893                                              llvm::Value *CompletePtr,
1894                                              QualType ElementType) {
1895   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1896                                         OperatorDelete, ElementType);
1897 }
1898 
1899 /// Emit the code for deleting a single object with a destroying operator
1900 /// delete. If the element type has a non-virtual destructor, Ptr has already
1901 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1902 /// Ptr points to an object of the static type.
1903 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1904                                        const CXXDeleteExpr *DE, Address Ptr,
1905                                        QualType ElementType) {
1906   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1907   if (Dtor && Dtor->isVirtual())
1908     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1909                                                 Dtor);
1910   else
1911     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.emitRawPointer(CGF),
1912                        ElementType);
1913 }
1914 
1915 /// Emit the code for deleting a single object.
1916 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1917 /// if not.
1918 static bool EmitObjectDelete(CodeGenFunction &CGF,
1919                              const CXXDeleteExpr *DE,
1920                              Address Ptr,
1921                              QualType ElementType,
1922                              llvm::BasicBlock *UnconditionalDeleteBlock) {
1923   // C++11 [expr.delete]p3:
1924   //   If the static type of the object to be deleted is different from its
1925   //   dynamic type, the static type shall be a base class of the dynamic type
1926   //   of the object to be deleted and the static type shall have a virtual
1927   //   destructor or the behavior is undefined.
1928   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, DE->getExprLoc(), Ptr,
1929                     ElementType);
1930 
1931   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1932   assert(!OperatorDelete->isDestroyingOperatorDelete());
1933 
1934   // Find the destructor for the type, if applicable.  If the
1935   // destructor is virtual, we'll just emit the vcall and return.
1936   const CXXDestructorDecl *Dtor = nullptr;
1937   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1938     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1939     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1940       Dtor = RD->getDestructor();
1941 
1942       if (Dtor->isVirtual()) {
1943         bool UseVirtualCall = true;
1944         const Expr *Base = DE->getArgument();
1945         if (auto *DevirtualizedDtor =
1946                 dyn_cast_or_null<const CXXDestructorDecl>(
1947                     Dtor->getDevirtualizedMethod(
1948                         Base, CGF.CGM.getLangOpts().AppleKext))) {
1949           UseVirtualCall = false;
1950           const CXXRecordDecl *DevirtualizedClass =
1951               DevirtualizedDtor->getParent();
1952           if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1953             // Devirtualized to the class of the base type (the type of the
1954             // whole expression).
1955             Dtor = DevirtualizedDtor;
1956           } else {
1957             // Devirtualized to some other type. Would need to cast the this
1958             // pointer to that type but we don't have support for that yet, so
1959             // do a virtual call. FIXME: handle the case where it is
1960             // devirtualized to the derived type (the type of the inner
1961             // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1962             UseVirtualCall = true;
1963           }
1964         }
1965         if (UseVirtualCall) {
1966           CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1967                                                       Dtor);
1968           return false;
1969         }
1970       }
1971     }
1972   }
1973 
1974   // Make sure that we call delete even if the dtor throws.
1975   // This doesn't have to a conditional cleanup because we're going
1976   // to pop it off in a second.
1977   CGF.EHStack.pushCleanup<CallObjectDelete>(
1978       NormalAndEHCleanup, Ptr.emitRawPointer(CGF), OperatorDelete, ElementType);
1979 
1980   if (Dtor)
1981     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1982                               /*ForVirtualBase=*/false,
1983                               /*Delegating=*/false,
1984                               Ptr, ElementType);
1985   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1986     switch (Lifetime) {
1987     case Qualifiers::OCL_None:
1988     case Qualifiers::OCL_ExplicitNone:
1989     case Qualifiers::OCL_Autoreleasing:
1990       break;
1991 
1992     case Qualifiers::OCL_Strong:
1993       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1994       break;
1995 
1996     case Qualifiers::OCL_Weak:
1997       CGF.EmitARCDestroyWeak(Ptr);
1998       break;
1999     }
2000   }
2001 
2002   // When optimizing for size, call 'operator delete' unconditionally.
2003   if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
2004     CGF.EmitBlock(UnconditionalDeleteBlock);
2005     CGF.PopCleanupBlock();
2006     return true;
2007   }
2008 
2009   CGF.PopCleanupBlock();
2010   return false;
2011 }
2012 
2013 namespace {
2014   /// Calls the given 'operator delete' on an array of objects.
2015   struct CallArrayDelete final : EHScopeStack::Cleanup {
2016     llvm::Value *Ptr;
2017     const FunctionDecl *OperatorDelete;
2018     llvm::Value *NumElements;
2019     QualType ElementType;
2020     CharUnits CookieSize;
2021 
2022     CallArrayDelete(llvm::Value *Ptr,
2023                     const FunctionDecl *OperatorDelete,
2024                     llvm::Value *NumElements,
2025                     QualType ElementType,
2026                     CharUnits CookieSize)
2027       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2028         ElementType(ElementType), CookieSize(CookieSize) {}
2029 
2030     void Emit(CodeGenFunction &CGF, Flags flags) override {
2031       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2032                          CookieSize);
2033     }
2034   };
2035 }
2036 
2037 /// Emit the code for deleting an array of objects.
2038 static void EmitArrayDelete(CodeGenFunction &CGF,
2039                             const CXXDeleteExpr *E,
2040                             Address deletedPtr,
2041                             QualType elementType) {
2042   llvm::Value *numElements = nullptr;
2043   llvm::Value *allocatedPtr = nullptr;
2044   CharUnits cookieSize;
2045   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2046                                       numElements, allocatedPtr, cookieSize);
2047 
2048   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2049 
2050   // Make sure that we call delete even if one of the dtors throws.
2051   const FunctionDecl *operatorDelete = E->getOperatorDelete();
2052   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2053                                            allocatedPtr, operatorDelete,
2054                                            numElements, elementType,
2055                                            cookieSize);
2056 
2057   // Destroy the elements.
2058   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2059     assert(numElements && "no element count for a type with a destructor!");
2060 
2061     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2062     CharUnits elementAlign =
2063       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2064 
2065     llvm::Value *arrayBegin = deletedPtr.emitRawPointer(CGF);
2066     llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2067       deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2068 
2069     // Note that it is legal to allocate a zero-length array, and we
2070     // can never fold the check away because the length should always
2071     // come from a cookie.
2072     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2073                          CGF.getDestroyer(dtorKind),
2074                          /*checkZeroLength*/ true,
2075                          CGF.needsEHCleanup(dtorKind));
2076   }
2077 
2078   // Pop the cleanup block.
2079   CGF.PopCleanupBlock();
2080 }
2081 
2082 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2083   const Expr *Arg = E->getArgument();
2084   Address Ptr = EmitPointerWithAlignment(Arg);
2085 
2086   // Null check the pointer.
2087   //
2088   // We could avoid this null check if we can determine that the object
2089   // destruction is trivial and doesn't require an array cookie; we can
2090   // unconditionally perform the operator delete call in that case. For now, we
2091   // assume that deleted pointers are null rarely enough that it's better to
2092   // keep the branch. This might be worth revisiting for a -O0 code size win.
2093   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2094   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2095 
2096   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
2097 
2098   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2099   EmitBlock(DeleteNotNull);
2100   Ptr.setKnownNonNull();
2101 
2102   QualType DeleteTy = E->getDestroyedType();
2103 
2104   // A destroying operator delete overrides the entire operation of the
2105   // delete expression.
2106   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2107     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2108     EmitBlock(DeleteEnd);
2109     return;
2110   }
2111 
2112   // We might be deleting a pointer to array.  If so, GEP down to the
2113   // first non-array element.
2114   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2115   if (DeleteTy->isConstantArrayType()) {
2116     llvm::Value *Zero = Builder.getInt32(0);
2117     SmallVector<llvm::Value*,8> GEP;
2118 
2119     GEP.push_back(Zero); // point at the outermost array
2120 
2121     // For each layer of array type we're pointing at:
2122     while (const ConstantArrayType *Arr
2123              = getContext().getAsConstantArrayType(DeleteTy)) {
2124       // 1. Unpeel the array type.
2125       DeleteTy = Arr->getElementType();
2126 
2127       // 2. GEP to the first element of the array.
2128       GEP.push_back(Zero);
2129     }
2130 
2131     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, ConvertTypeForMem(DeleteTy),
2132                                     Ptr.getAlignment(), "del.first");
2133   }
2134 
2135   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2136 
2137   if (E->isArrayForm()) {
2138     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2139     EmitBlock(DeleteEnd);
2140   } else {
2141     if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2142       EmitBlock(DeleteEnd);
2143   }
2144 }
2145 
2146 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2147                                          llvm::Type *StdTypeInfoPtrTy,
2148                                          bool HasNullCheck) {
2149   // Get the vtable pointer.
2150   Address ThisPtr = CGF.EmitLValue(E).getAddress();
2151 
2152   QualType SrcRecordTy = E->getType();
2153 
2154   // C++ [class.cdtor]p4:
2155   //   If the operand of typeid refers to the object under construction or
2156   //   destruction and the static type of the operand is neither the constructor
2157   //   or destructor’s class nor one of its bases, the behavior is undefined.
2158   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2159                     ThisPtr, SrcRecordTy);
2160 
2161   // Whether we need an explicit null pointer check. For example, with the
2162   // Microsoft ABI, if this is a call to __RTtypeid, the null pointer check and
2163   // exception throw is inside the __RTtypeid(nullptr) call
2164   if (HasNullCheck &&
2165       CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(SrcRecordTy)) {
2166     llvm::BasicBlock *BadTypeidBlock =
2167         CGF.createBasicBlock("typeid.bad_typeid");
2168     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2169 
2170     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
2171     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2172 
2173     CGF.EmitBlock(BadTypeidBlock);
2174     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2175     CGF.EmitBlock(EndBlock);
2176   }
2177 
2178   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2179                                         StdTypeInfoPtrTy);
2180 }
2181 
2182 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2183   // Ideally, we would like to use GlobalsInt8PtrTy here, however, we cannot,
2184   // primarily because the result of applying typeid is a value of type
2185   // type_info, which is declared & defined by the standard library
2186   // implementation and expects to operate on the generic (default) AS.
2187   // https://reviews.llvm.org/D157452 has more context, and a possible solution.
2188   llvm::Type *PtrTy = Int8PtrTy;
2189   LangAS GlobAS = CGM.GetGlobalVarAddressSpace(nullptr);
2190 
2191   auto MaybeASCast = [=](auto &&TypeInfo) {
2192     if (GlobAS == LangAS::Default)
2193       return TypeInfo;
2194     return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS,
2195                                                  LangAS::Default, PtrTy);
2196   };
2197 
2198   if (E->isTypeOperand()) {
2199     llvm::Constant *TypeInfo =
2200         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2201     return MaybeASCast(TypeInfo);
2202   }
2203 
2204   // C++ [expr.typeid]p2:
2205   //   When typeid is applied to a glvalue expression whose type is a
2206   //   polymorphic class type, the result refers to a std::type_info object
2207   //   representing the type of the most derived object (that is, the dynamic
2208   //   type) to which the glvalue refers.
2209   // If the operand is already most derived object, no need to look up vtable.
2210   if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2211     return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy,
2212                                 E->hasNullCheck());
2213 
2214   QualType OperandTy = E->getExprOperand()->getType();
2215   return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(OperandTy));
2216 }
2217 
2218 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2219                                           QualType DestTy) {
2220   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2221   if (DestTy->isPointerType())
2222     return llvm::Constant::getNullValue(DestLTy);
2223 
2224   /// C++ [expr.dynamic.cast]p9:
2225   ///   A failed cast to reference type throws std::bad_cast
2226   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2227     return nullptr;
2228 
2229   CGF.Builder.ClearInsertionPoint();
2230   return llvm::PoisonValue::get(DestLTy);
2231 }
2232 
2233 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2234                                               const CXXDynamicCastExpr *DCE) {
2235   CGM.EmitExplicitCastExprType(DCE, this);
2236   QualType DestTy = DCE->getTypeAsWritten();
2237 
2238   QualType SrcTy = DCE->getSubExpr()->getType();
2239 
2240   // C++ [expr.dynamic.cast]p7:
2241   //   If T is "pointer to cv void," then the result is a pointer to the most
2242   //   derived object pointed to by v.
2243   bool IsDynamicCastToVoid = DestTy->isVoidPointerType();
2244   QualType SrcRecordTy;
2245   QualType DestRecordTy;
2246   if (IsDynamicCastToVoid) {
2247     SrcRecordTy = SrcTy->getPointeeType();
2248     // No DestRecordTy.
2249   } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
2250     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2251     DestRecordTy = DestPTy->getPointeeType();
2252   } else {
2253     SrcRecordTy = SrcTy;
2254     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2255   }
2256 
2257   // C++ [class.cdtor]p5:
2258   //   If the operand of the dynamic_cast refers to the object under
2259   //   construction or destruction and the static type of the operand is not a
2260   //   pointer to or object of the constructor or destructor’s own class or one
2261   //   of its bases, the dynamic_cast results in undefined behavior.
2262   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr, SrcRecordTy);
2263 
2264   if (DCE->isAlwaysNull()) {
2265     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) {
2266       // Expression emission is expected to retain a valid insertion point.
2267       if (!Builder.GetInsertBlock())
2268         EmitBlock(createBasicBlock("dynamic_cast.unreachable"));
2269       return T;
2270     }
2271   }
2272 
2273   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2274 
2275   // If the destination is effectively final, the cast succeeds if and only
2276   // if the dynamic type of the pointer is exactly the destination type.
2277   bool IsExact = !IsDynamicCastToVoid &&
2278                  CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2279                  DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() &&
2280                  CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy);
2281 
2282   // C++ [expr.dynamic.cast]p4:
2283   //   If the value of v is a null pointer value in the pointer case, the result
2284   //   is the null pointer value of type T.
2285   bool ShouldNullCheckSrcValue =
2286       IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(
2287                      SrcTy->isPointerType(), SrcRecordTy);
2288 
2289   llvm::BasicBlock *CastNull = nullptr;
2290   llvm::BasicBlock *CastNotNull = nullptr;
2291   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2292 
2293   if (ShouldNullCheckSrcValue) {
2294     CastNull = createBasicBlock("dynamic_cast.null");
2295     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2296 
2297     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr);
2298     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2299     EmitBlock(CastNotNull);
2300   }
2301 
2302   llvm::Value *Value;
2303   if (IsDynamicCastToVoid) {
2304     Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy);
2305   } else if (IsExact) {
2306     // If the destination type is effectively final, this pointer points to the
2307     // right type if and only if its vptr has the right value.
2308     Value = CGM.getCXXABI().emitExactDynamicCast(
2309         *this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastEnd, CastNull);
2310   } else {
2311     assert(DestRecordTy->isRecordType() &&
2312            "destination type must be a record type!");
2313     Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2314                                                 DestTy, DestRecordTy, CastEnd);
2315   }
2316   CastNotNull = Builder.GetInsertBlock();
2317 
2318   llvm::Value *NullValue = nullptr;
2319   if (ShouldNullCheckSrcValue) {
2320     EmitBranch(CastEnd);
2321 
2322     EmitBlock(CastNull);
2323     NullValue = EmitDynamicCastToNull(*this, DestTy);
2324     CastNull = Builder.GetInsertBlock();
2325 
2326     EmitBranch(CastEnd);
2327   }
2328 
2329   EmitBlock(CastEnd);
2330 
2331   if (CastNull) {
2332     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2333     PHI->addIncoming(Value, CastNotNull);
2334     PHI->addIncoming(NullValue, CastNull);
2335 
2336     Value = PHI;
2337   }
2338 
2339   return Value;
2340 }
2341