1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/Basic/CodeGenOptions.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 41 isa<CXXOperatorCallExpr>(CE)); 42 assert(MD->isInstance() && 43 "Trying to emit a member or operator call expr on a static method!"); 44 45 // Push the this ptr. 46 const CXXRecordDecl *RD = 47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 unsigned PrefixSize = Args.size() - 1; 58 59 // And the rest of the call args. 60 if (RtlArgs) { 61 // Special case: if the caller emitted the arguments right-to-left already 62 // (prior to emitting the *this argument), we're done. This happens for 63 // assignment operators. 64 Args.addFrom(*RtlArgs); 65 } else if (CE) { 66 // Special case: skip first argument of CXXOperatorCall (it is "this"). 67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 69 CE->getDirectCallee()); 70 } else { 71 assert( 72 FPT->getNumParams() == 0 && 73 "No CallExpr specified for function with non-zero number of arguments"); 74 } 75 return {required, PrefixSize}; 76 } 77 78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 79 const CXXMethodDecl *MD, const CGCallee &Callee, 80 ReturnValueSlot ReturnValue, 81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 82 const CallExpr *CE, CallArgList *RtlArgs) { 83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 84 CallArgList Args; 85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 90 CE ? CE->getExprLoc() : SourceLocation()); 91 } 92 93 RValue CodeGenFunction::EmitCXXDestructorCall( 94 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 95 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 96 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 97 98 assert(!ThisTy.isNull()); 99 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 100 "Pointer/Object mixup"); 101 102 LangAS SrcAS = ThisTy.getAddressSpace(); 103 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 104 if (SrcAS != DstAS) { 105 QualType DstTy = DtorDecl->getThisType(); 106 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 107 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 108 NewType); 109 } 110 111 CallArgList Args; 112 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam, 113 ImplicitParamTy, CE, Args, nullptr); 114 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 115 ReturnValueSlot(), Args); 116 } 117 118 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 119 const CXXPseudoDestructorExpr *E) { 120 QualType DestroyedType = E->getDestroyedType(); 121 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 122 // Automatic Reference Counting: 123 // If the pseudo-expression names a retainable object with weak or 124 // strong lifetime, the object shall be released. 125 Expr *BaseExpr = E->getBase(); 126 Address BaseValue = Address::invalid(); 127 Qualifiers BaseQuals; 128 129 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 130 if (E->isArrow()) { 131 BaseValue = EmitPointerWithAlignment(BaseExpr); 132 const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); 133 BaseQuals = PTy->getPointeeType().getQualifiers(); 134 } else { 135 LValue BaseLV = EmitLValue(BaseExpr); 136 BaseValue = BaseLV.getAddress(*this); 137 QualType BaseTy = BaseExpr->getType(); 138 BaseQuals = BaseTy.getQualifiers(); 139 } 140 141 switch (DestroyedType.getObjCLifetime()) { 142 case Qualifiers::OCL_None: 143 case Qualifiers::OCL_ExplicitNone: 144 case Qualifiers::OCL_Autoreleasing: 145 break; 146 147 case Qualifiers::OCL_Strong: 148 EmitARCRelease(Builder.CreateLoad(BaseValue, 149 DestroyedType.isVolatileQualified()), 150 ARCPreciseLifetime); 151 break; 152 153 case Qualifiers::OCL_Weak: 154 EmitARCDestroyWeak(BaseValue); 155 break; 156 } 157 } else { 158 // C++ [expr.pseudo]p1: 159 // The result shall only be used as the operand for the function call 160 // operator (), and the result of such a call has type void. The only 161 // effect is the evaluation of the postfix-expression before the dot or 162 // arrow. 163 EmitIgnoredExpr(E->getBase()); 164 } 165 166 return RValue::get(nullptr); 167 } 168 169 static CXXRecordDecl *getCXXRecord(const Expr *E) { 170 QualType T = E->getType(); 171 if (const PointerType *PTy = T->getAs<PointerType>()) 172 T = PTy->getPointeeType(); 173 const RecordType *Ty = T->castAs<RecordType>(); 174 return cast<CXXRecordDecl>(Ty->getDecl()); 175 } 176 177 // Note: This function also emit constructor calls to support a MSVC 178 // extensions allowing explicit constructor function call. 179 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 180 ReturnValueSlot ReturnValue) { 181 const Expr *callee = CE->getCallee()->IgnoreParens(); 182 183 if (isa<BinaryOperator>(callee)) 184 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 185 186 const MemberExpr *ME = cast<MemberExpr>(callee); 187 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 188 189 if (MD->isStatic()) { 190 // The method is static, emit it as we would a regular call. 191 CGCallee callee = 192 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 193 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 194 ReturnValue); 195 } 196 197 bool HasQualifier = ME->hasQualifier(); 198 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 199 bool IsArrow = ME->isArrow(); 200 const Expr *Base = ME->getBase(); 201 202 return EmitCXXMemberOrOperatorMemberCallExpr( 203 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 204 } 205 206 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 207 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 208 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 209 const Expr *Base) { 210 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 211 212 // Compute the object pointer. 213 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 214 215 const CXXMethodDecl *DevirtualizedMethod = nullptr; 216 if (CanUseVirtualCall && 217 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 218 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 219 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 220 assert(DevirtualizedMethod); 221 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 222 const Expr *Inner = Base->ignoreParenBaseCasts(); 223 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 224 MD->getReturnType().getCanonicalType()) 225 // If the return types are not the same, this might be a case where more 226 // code needs to run to compensate for it. For example, the derived 227 // method might return a type that inherits form from the return 228 // type of MD and has a prefix. 229 // For now we just avoid devirtualizing these covariant cases. 230 DevirtualizedMethod = nullptr; 231 else if (getCXXRecord(Inner) == DevirtualizedClass) 232 // If the class of the Inner expression is where the dynamic method 233 // is defined, build the this pointer from it. 234 Base = Inner; 235 else if (getCXXRecord(Base) != DevirtualizedClass) { 236 // If the method is defined in a class that is not the best dynamic 237 // one or the one of the full expression, we would have to build 238 // a derived-to-base cast to compute the correct this pointer, but 239 // we don't have support for that yet, so do a virtual call. 240 DevirtualizedMethod = nullptr; 241 } 242 } 243 244 bool TrivialForCodegen = 245 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); 246 bool TrivialAssignment = 247 TrivialForCodegen && 248 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 249 !MD->getParent()->mayInsertExtraPadding(); 250 251 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 252 // operator before the LHS. 253 CallArgList RtlArgStorage; 254 CallArgList *RtlArgs = nullptr; 255 LValue TrivialAssignmentRHS; 256 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 257 if (OCE->isAssignmentOp()) { 258 if (TrivialAssignment) { 259 TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); 260 } else { 261 RtlArgs = &RtlArgStorage; 262 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 263 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 264 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 265 } 266 } 267 } 268 269 LValue This; 270 if (IsArrow) { 271 LValueBaseInfo BaseInfo; 272 TBAAAccessInfo TBAAInfo; 273 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 274 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 275 } else { 276 This = EmitLValue(Base); 277 } 278 279 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 280 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 281 // constructing a new complete object of type Ctor. 282 assert(!RtlArgs); 283 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 284 CallArgList Args; 285 commonEmitCXXMemberOrOperatorCall( 286 *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr, 287 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 288 289 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 290 /*Delegating=*/false, This.getAddress(*this), Args, 291 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 292 /*NewPointerIsChecked=*/false); 293 return RValue::get(nullptr); 294 } 295 296 if (TrivialForCodegen) { 297 if (isa<CXXDestructorDecl>(MD)) 298 return RValue::get(nullptr); 299 300 if (TrivialAssignment) { 301 // We don't like to generate the trivial copy/move assignment operator 302 // when it isn't necessary; just produce the proper effect here. 303 // It's important that we use the result of EmitLValue here rather than 304 // emitting call arguments, in order to preserve TBAA information from 305 // the RHS. 306 LValue RHS = isa<CXXOperatorCallExpr>(CE) 307 ? TrivialAssignmentRHS 308 : EmitLValue(*CE->arg_begin()); 309 EmitAggregateAssign(This, RHS, CE->getType()); 310 return RValue::get(This.getPointer(*this)); 311 } 312 313 assert(MD->getParent()->mayInsertExtraPadding() && 314 "unknown trivial member function"); 315 } 316 317 // Compute the function type we're calling. 318 const CXXMethodDecl *CalleeDecl = 319 DevirtualizedMethod ? DevirtualizedMethod : MD; 320 const CGFunctionInfo *FInfo = nullptr; 321 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 322 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 323 GlobalDecl(Dtor, Dtor_Complete)); 324 else 325 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 326 327 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 328 329 // C++11 [class.mfct.non-static]p2: 330 // If a non-static member function of a class X is called for an object that 331 // is not of type X, or of a type derived from X, the behavior is undefined. 332 SourceLocation CallLoc; 333 ASTContext &C = getContext(); 334 if (CE) 335 CallLoc = CE->getExprLoc(); 336 337 SanitizerSet SkippedChecks; 338 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 339 auto *IOA = CMCE->getImplicitObjectArgument(); 340 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 341 if (IsImplicitObjectCXXThis) 342 SkippedChecks.set(SanitizerKind::Alignment, true); 343 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 344 SkippedChecks.set(SanitizerKind::Null, true); 345 } 346 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, 347 This.getPointer(*this), 348 C.getRecordType(CalleeDecl->getParent()), 349 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 350 351 // C++ [class.virtual]p12: 352 // Explicit qualification with the scope operator (5.1) suppresses the 353 // virtual call mechanism. 354 // 355 // We also don't emit a virtual call if the base expression has a record type 356 // because then we know what the type is. 357 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 358 359 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 360 assert(CE->arg_begin() == CE->arg_end() && 361 "Destructor shouldn't have explicit parameters"); 362 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 363 if (UseVirtualCall) { 364 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 365 This.getAddress(*this), 366 cast<CXXMemberCallExpr>(CE)); 367 } else { 368 GlobalDecl GD(Dtor, Dtor_Complete); 369 CGCallee Callee; 370 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 371 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 372 else if (!DevirtualizedMethod) 373 Callee = 374 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 375 else { 376 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 377 } 378 379 QualType ThisTy = 380 IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 381 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, 382 /*ImplicitParam=*/nullptr, 383 /*ImplicitParamTy=*/QualType(), nullptr); 384 } 385 return RValue::get(nullptr); 386 } 387 388 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 389 // 'CalleeDecl' instead. 390 391 CGCallee Callee; 392 if (UseVirtualCall) { 393 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty); 394 } else { 395 if (SanOpts.has(SanitizerKind::CFINVCall) && 396 MD->getParent()->isDynamicClass()) { 397 llvm::Value *VTable; 398 const CXXRecordDecl *RD; 399 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( 400 *this, This.getAddress(*this), CalleeDecl->getParent()); 401 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 402 } 403 404 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 405 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 406 else if (!DevirtualizedMethod) 407 Callee = 408 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 409 else { 410 Callee = 411 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 412 GlobalDecl(DevirtualizedMethod)); 413 } 414 } 415 416 if (MD->isVirtual()) { 417 Address NewThisAddr = 418 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 419 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall); 420 This.setAddress(NewThisAddr); 421 } 422 423 return EmitCXXMemberOrOperatorCall( 424 CalleeDecl, Callee, ReturnValue, This.getPointer(*this), 425 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 426 } 427 428 RValue 429 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 430 ReturnValueSlot ReturnValue) { 431 const BinaryOperator *BO = 432 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 433 const Expr *BaseExpr = BO->getLHS(); 434 const Expr *MemFnExpr = BO->getRHS(); 435 436 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 437 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 438 const auto *RD = 439 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 440 441 // Emit the 'this' pointer. 442 Address This = Address::invalid(); 443 if (BO->getOpcode() == BO_PtrMemI) 444 This = EmitPointerWithAlignment(BaseExpr); 445 else 446 This = EmitLValue(BaseExpr).getAddress(*this); 447 448 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 449 QualType(MPT->getClass(), 0)); 450 451 // Get the member function pointer. 452 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 453 454 // Ask the ABI to load the callee. Note that This is modified. 455 llvm::Value *ThisPtrForCall = nullptr; 456 CGCallee Callee = 457 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 458 ThisPtrForCall, MemFnPtr, MPT); 459 460 CallArgList Args; 461 462 QualType ThisType = 463 getContext().getPointerType(getContext().getTagDeclType(RD)); 464 465 // Push the this ptr. 466 Args.add(RValue::get(ThisPtrForCall), ThisType); 467 468 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 469 470 // And the rest of the call args 471 EmitCallArgs(Args, FPT, E->arguments()); 472 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 473 /*PrefixSize=*/0), 474 Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 475 } 476 477 RValue 478 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 479 const CXXMethodDecl *MD, 480 ReturnValueSlot ReturnValue) { 481 assert(MD->isInstance() && 482 "Trying to emit a member call expr on a static method!"); 483 return EmitCXXMemberOrOperatorMemberCallExpr( 484 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 485 /*IsArrow=*/false, E->getArg(0)); 486 } 487 488 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 489 ReturnValueSlot ReturnValue) { 490 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 491 } 492 493 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 494 Address DestPtr, 495 const CXXRecordDecl *Base) { 496 if (Base->isEmpty()) 497 return; 498 499 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 500 501 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 502 CharUnits NVSize = Layout.getNonVirtualSize(); 503 504 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 505 // present, they are initialized by the most derived class before calling the 506 // constructor. 507 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 508 Stores.emplace_back(CharUnits::Zero(), NVSize); 509 510 // Each store is split by the existence of a vbptr. 511 CharUnits VBPtrWidth = CGF.getPointerSize(); 512 std::vector<CharUnits> VBPtrOffsets = 513 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 514 for (CharUnits VBPtrOffset : VBPtrOffsets) { 515 // Stop before we hit any virtual base pointers located in virtual bases. 516 if (VBPtrOffset >= NVSize) 517 break; 518 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 519 CharUnits LastStoreOffset = LastStore.first; 520 CharUnits LastStoreSize = LastStore.second; 521 522 CharUnits SplitBeforeOffset = LastStoreOffset; 523 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 524 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 525 if (!SplitBeforeSize.isZero()) 526 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 527 528 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 529 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 530 assert(!SplitAfterSize.isNegative() && "negative store size!"); 531 if (!SplitAfterSize.isZero()) 532 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 533 } 534 535 // If the type contains a pointer to data member we can't memset it to zero. 536 // Instead, create a null constant and copy it to the destination. 537 // TODO: there are other patterns besides zero that we can usefully memset, 538 // like -1, which happens to be the pattern used by member-pointers. 539 // TODO: isZeroInitializable can be over-conservative in the case where a 540 // virtual base contains a member pointer. 541 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 542 if (!NullConstantForBase->isNullValue()) { 543 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 544 CGF.CGM.getModule(), NullConstantForBase->getType(), 545 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 546 NullConstantForBase, Twine()); 547 548 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 549 DestPtr.getAlignment()); 550 NullVariable->setAlignment(Align.getAsAlign()); 551 552 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 553 554 // Get and call the appropriate llvm.memcpy overload. 555 for (std::pair<CharUnits, CharUnits> Store : Stores) { 556 CharUnits StoreOffset = Store.first; 557 CharUnits StoreSize = Store.second; 558 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 559 CGF.Builder.CreateMemCpy( 560 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 561 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 562 StoreSizeVal); 563 } 564 565 // Otherwise, just memset the whole thing to zero. This is legal 566 // because in LLVM, all default initializers (other than the ones we just 567 // handled above) are guaranteed to have a bit pattern of all zeros. 568 } else { 569 for (std::pair<CharUnits, CharUnits> Store : Stores) { 570 CharUnits StoreOffset = Store.first; 571 CharUnits StoreSize = Store.second; 572 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 573 CGF.Builder.CreateMemSet( 574 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 575 CGF.Builder.getInt8(0), StoreSizeVal); 576 } 577 } 578 } 579 580 void 581 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 582 AggValueSlot Dest) { 583 assert(!Dest.isIgnored() && "Must have a destination!"); 584 const CXXConstructorDecl *CD = E->getConstructor(); 585 586 // If we require zero initialization before (or instead of) calling the 587 // constructor, as can be the case with a non-user-provided default 588 // constructor, emit the zero initialization now, unless destination is 589 // already zeroed. 590 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 591 switch (E->getConstructionKind()) { 592 case CXXConstructExpr::CK_Delegating: 593 case CXXConstructExpr::CK_Complete: 594 EmitNullInitialization(Dest.getAddress(), E->getType()); 595 break; 596 case CXXConstructExpr::CK_VirtualBase: 597 case CXXConstructExpr::CK_NonVirtualBase: 598 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 599 CD->getParent()); 600 break; 601 } 602 } 603 604 // If this is a call to a trivial default constructor, do nothing. 605 if (CD->isTrivial() && CD->isDefaultConstructor()) 606 return; 607 608 // Elide the constructor if we're constructing from a temporary. 609 // The temporary check is required because Sema sets this on NRVO 610 // returns. 611 if (getLangOpts().ElideConstructors && E->isElidable()) { 612 assert(getContext().hasSameUnqualifiedType(E->getType(), 613 E->getArg(0)->getType())); 614 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 615 EmitAggExpr(E->getArg(0), Dest); 616 return; 617 } 618 } 619 620 if (const ArrayType *arrayType 621 = getContext().getAsArrayType(E->getType())) { 622 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 623 Dest.isSanitizerChecked()); 624 } else { 625 CXXCtorType Type = Ctor_Complete; 626 bool ForVirtualBase = false; 627 bool Delegating = false; 628 629 switch (E->getConstructionKind()) { 630 case CXXConstructExpr::CK_Delegating: 631 // We should be emitting a constructor; GlobalDecl will assert this 632 Type = CurGD.getCtorType(); 633 Delegating = true; 634 break; 635 636 case CXXConstructExpr::CK_Complete: 637 Type = Ctor_Complete; 638 break; 639 640 case CXXConstructExpr::CK_VirtualBase: 641 ForVirtualBase = true; 642 LLVM_FALLTHROUGH; 643 644 case CXXConstructExpr::CK_NonVirtualBase: 645 Type = Ctor_Base; 646 } 647 648 // Call the constructor. 649 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 650 } 651 } 652 653 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 654 const Expr *Exp) { 655 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 656 Exp = E->getSubExpr(); 657 assert(isa<CXXConstructExpr>(Exp) && 658 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 659 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 660 const CXXConstructorDecl *CD = E->getConstructor(); 661 RunCleanupsScope Scope(*this); 662 663 // If we require zero initialization before (or instead of) calling the 664 // constructor, as can be the case with a non-user-provided default 665 // constructor, emit the zero initialization now. 666 // FIXME. Do I still need this for a copy ctor synthesis? 667 if (E->requiresZeroInitialization()) 668 EmitNullInitialization(Dest, E->getType()); 669 670 assert(!getContext().getAsConstantArrayType(E->getType()) 671 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 672 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 673 } 674 675 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 676 const CXXNewExpr *E) { 677 if (!E->isArray()) 678 return CharUnits::Zero(); 679 680 // No cookie is required if the operator new[] being used is the 681 // reserved placement operator new[]. 682 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 683 return CharUnits::Zero(); 684 685 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 686 } 687 688 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 689 const CXXNewExpr *e, 690 unsigned minElements, 691 llvm::Value *&numElements, 692 llvm::Value *&sizeWithoutCookie) { 693 QualType type = e->getAllocatedType(); 694 695 if (!e->isArray()) { 696 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 697 sizeWithoutCookie 698 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 699 return sizeWithoutCookie; 700 } 701 702 // The width of size_t. 703 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 704 705 // Figure out the cookie size. 706 llvm::APInt cookieSize(sizeWidth, 707 CalculateCookiePadding(CGF, e).getQuantity()); 708 709 // Emit the array size expression. 710 // We multiply the size of all dimensions for NumElements. 711 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 712 numElements = 713 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 714 if (!numElements) 715 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 716 assert(isa<llvm::IntegerType>(numElements->getType())); 717 718 // The number of elements can be have an arbitrary integer type; 719 // essentially, we need to multiply it by a constant factor, add a 720 // cookie size, and verify that the result is representable as a 721 // size_t. That's just a gloss, though, and it's wrong in one 722 // important way: if the count is negative, it's an error even if 723 // the cookie size would bring the total size >= 0. 724 bool isSigned 725 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 726 llvm::IntegerType *numElementsType 727 = cast<llvm::IntegerType>(numElements->getType()); 728 unsigned numElementsWidth = numElementsType->getBitWidth(); 729 730 // Compute the constant factor. 731 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 732 while (const ConstantArrayType *CAT 733 = CGF.getContext().getAsConstantArrayType(type)) { 734 type = CAT->getElementType(); 735 arraySizeMultiplier *= CAT->getSize(); 736 } 737 738 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 739 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 740 typeSizeMultiplier *= arraySizeMultiplier; 741 742 // This will be a size_t. 743 llvm::Value *size; 744 745 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 746 // Don't bloat the -O0 code. 747 if (llvm::ConstantInt *numElementsC = 748 dyn_cast<llvm::ConstantInt>(numElements)) { 749 const llvm::APInt &count = numElementsC->getValue(); 750 751 bool hasAnyOverflow = false; 752 753 // If 'count' was a negative number, it's an overflow. 754 if (isSigned && count.isNegative()) 755 hasAnyOverflow = true; 756 757 // We want to do all this arithmetic in size_t. If numElements is 758 // wider than that, check whether it's already too big, and if so, 759 // overflow. 760 else if (numElementsWidth > sizeWidth && 761 numElementsWidth - sizeWidth > count.countLeadingZeros()) 762 hasAnyOverflow = true; 763 764 // Okay, compute a count at the right width. 765 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 766 767 // If there is a brace-initializer, we cannot allocate fewer elements than 768 // there are initializers. If we do, that's treated like an overflow. 769 if (adjustedCount.ult(minElements)) 770 hasAnyOverflow = true; 771 772 // Scale numElements by that. This might overflow, but we don't 773 // care because it only overflows if allocationSize does, too, and 774 // if that overflows then we shouldn't use this. 775 numElements = llvm::ConstantInt::get(CGF.SizeTy, 776 adjustedCount * arraySizeMultiplier); 777 778 // Compute the size before cookie, and track whether it overflowed. 779 bool overflow; 780 llvm::APInt allocationSize 781 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 782 hasAnyOverflow |= overflow; 783 784 // Add in the cookie, and check whether it's overflowed. 785 if (cookieSize != 0) { 786 // Save the current size without a cookie. This shouldn't be 787 // used if there was overflow. 788 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 789 790 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 791 hasAnyOverflow |= overflow; 792 } 793 794 // On overflow, produce a -1 so operator new will fail. 795 if (hasAnyOverflow) { 796 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 797 } else { 798 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 799 } 800 801 // Otherwise, we might need to use the overflow intrinsics. 802 } else { 803 // There are up to five conditions we need to test for: 804 // 1) if isSigned, we need to check whether numElements is negative; 805 // 2) if numElementsWidth > sizeWidth, we need to check whether 806 // numElements is larger than something representable in size_t; 807 // 3) if minElements > 0, we need to check whether numElements is smaller 808 // than that. 809 // 4) we need to compute 810 // sizeWithoutCookie := numElements * typeSizeMultiplier 811 // and check whether it overflows; and 812 // 5) if we need a cookie, we need to compute 813 // size := sizeWithoutCookie + cookieSize 814 // and check whether it overflows. 815 816 llvm::Value *hasOverflow = nullptr; 817 818 // If numElementsWidth > sizeWidth, then one way or another, we're 819 // going to have to do a comparison for (2), and this happens to 820 // take care of (1), too. 821 if (numElementsWidth > sizeWidth) { 822 llvm::APInt threshold(numElementsWidth, 1); 823 threshold <<= sizeWidth; 824 825 llvm::Value *thresholdV 826 = llvm::ConstantInt::get(numElementsType, threshold); 827 828 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 829 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 830 831 // Otherwise, if we're signed, we want to sext up to size_t. 832 } else if (isSigned) { 833 if (numElementsWidth < sizeWidth) 834 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 835 836 // If there's a non-1 type size multiplier, then we can do the 837 // signedness check at the same time as we do the multiply 838 // because a negative number times anything will cause an 839 // unsigned overflow. Otherwise, we have to do it here. But at least 840 // in this case, we can subsume the >= minElements check. 841 if (typeSizeMultiplier == 1) 842 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 843 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 844 845 // Otherwise, zext up to size_t if necessary. 846 } else if (numElementsWidth < sizeWidth) { 847 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 848 } 849 850 assert(numElements->getType() == CGF.SizeTy); 851 852 if (minElements) { 853 // Don't allow allocation of fewer elements than we have initializers. 854 if (!hasOverflow) { 855 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 856 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 857 } else if (numElementsWidth > sizeWidth) { 858 // The other existing overflow subsumes this check. 859 // We do an unsigned comparison, since any signed value < -1 is 860 // taken care of either above or below. 861 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 862 CGF.Builder.CreateICmpULT(numElements, 863 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 864 } 865 } 866 867 size = numElements; 868 869 // Multiply by the type size if necessary. This multiplier 870 // includes all the factors for nested arrays. 871 // 872 // This step also causes numElements to be scaled up by the 873 // nested-array factor if necessary. Overflow on this computation 874 // can be ignored because the result shouldn't be used if 875 // allocation fails. 876 if (typeSizeMultiplier != 1) { 877 llvm::Function *umul_with_overflow 878 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 879 880 llvm::Value *tsmV = 881 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 882 llvm::Value *result = 883 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 884 885 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 886 if (hasOverflow) 887 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 888 else 889 hasOverflow = overflowed; 890 891 size = CGF.Builder.CreateExtractValue(result, 0); 892 893 // Also scale up numElements by the array size multiplier. 894 if (arraySizeMultiplier != 1) { 895 // If the base element type size is 1, then we can re-use the 896 // multiply we just did. 897 if (typeSize.isOne()) { 898 assert(arraySizeMultiplier == typeSizeMultiplier); 899 numElements = size; 900 901 // Otherwise we need a separate multiply. 902 } else { 903 llvm::Value *asmV = 904 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 905 numElements = CGF.Builder.CreateMul(numElements, asmV); 906 } 907 } 908 } else { 909 // numElements doesn't need to be scaled. 910 assert(arraySizeMultiplier == 1); 911 } 912 913 // Add in the cookie size if necessary. 914 if (cookieSize != 0) { 915 sizeWithoutCookie = size; 916 917 llvm::Function *uadd_with_overflow 918 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 919 920 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 921 llvm::Value *result = 922 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 923 924 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 925 if (hasOverflow) 926 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 927 else 928 hasOverflow = overflowed; 929 930 size = CGF.Builder.CreateExtractValue(result, 0); 931 } 932 933 // If we had any possibility of dynamic overflow, make a select to 934 // overwrite 'size' with an all-ones value, which should cause 935 // operator new to throw. 936 if (hasOverflow) 937 size = CGF.Builder.CreateSelect(hasOverflow, 938 llvm::Constant::getAllOnesValue(CGF.SizeTy), 939 size); 940 } 941 942 if (cookieSize == 0) 943 sizeWithoutCookie = size; 944 else 945 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 946 947 return size; 948 } 949 950 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 951 QualType AllocType, Address NewPtr, 952 AggValueSlot::Overlap_t MayOverlap) { 953 // FIXME: Refactor with EmitExprAsInit. 954 switch (CGF.getEvaluationKind(AllocType)) { 955 case TEK_Scalar: 956 CGF.EmitScalarInit(Init, nullptr, 957 CGF.MakeAddrLValue(NewPtr, AllocType), false); 958 return; 959 case TEK_Complex: 960 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 961 /*isInit*/ true); 962 return; 963 case TEK_Aggregate: { 964 AggValueSlot Slot 965 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 966 AggValueSlot::IsDestructed, 967 AggValueSlot::DoesNotNeedGCBarriers, 968 AggValueSlot::IsNotAliased, 969 MayOverlap, AggValueSlot::IsNotZeroed, 970 AggValueSlot::IsSanitizerChecked); 971 CGF.EmitAggExpr(Init, Slot); 972 return; 973 } 974 } 975 llvm_unreachable("bad evaluation kind"); 976 } 977 978 void CodeGenFunction::EmitNewArrayInitializer( 979 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 980 Address BeginPtr, llvm::Value *NumElements, 981 llvm::Value *AllocSizeWithoutCookie) { 982 // If we have a type with trivial initialization and no initializer, 983 // there's nothing to do. 984 if (!E->hasInitializer()) 985 return; 986 987 Address CurPtr = BeginPtr; 988 989 unsigned InitListElements = 0; 990 991 const Expr *Init = E->getInitializer(); 992 Address EndOfInit = Address::invalid(); 993 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 994 EHScopeStack::stable_iterator Cleanup; 995 llvm::Instruction *CleanupDominator = nullptr; 996 997 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 998 CharUnits ElementAlign = 999 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 1000 1001 // Attempt to perform zero-initialization using memset. 1002 auto TryMemsetInitialization = [&]() -> bool { 1003 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 1004 // we can initialize with a memset to -1. 1005 if (!CGM.getTypes().isZeroInitializable(ElementType)) 1006 return false; 1007 1008 // Optimization: since zero initialization will just set the memory 1009 // to all zeroes, generate a single memset to do it in one shot. 1010 1011 // Subtract out the size of any elements we've already initialized. 1012 auto *RemainingSize = AllocSizeWithoutCookie; 1013 if (InitListElements) { 1014 // We know this can't overflow; we check this when doing the allocation. 1015 auto *InitializedSize = llvm::ConstantInt::get( 1016 RemainingSize->getType(), 1017 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1018 InitListElements); 1019 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1020 } 1021 1022 // Create the memset. 1023 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1024 return true; 1025 }; 1026 1027 // If the initializer is an initializer list, first do the explicit elements. 1028 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1029 // Initializing from a (braced) string literal is a special case; the init 1030 // list element does not initialize a (single) array element. 1031 if (ILE->isStringLiteralInit()) { 1032 // Initialize the initial portion of length equal to that of the string 1033 // literal. The allocation must be for at least this much; we emitted a 1034 // check for that earlier. 1035 AggValueSlot Slot = 1036 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1037 AggValueSlot::IsDestructed, 1038 AggValueSlot::DoesNotNeedGCBarriers, 1039 AggValueSlot::IsNotAliased, 1040 AggValueSlot::DoesNotOverlap, 1041 AggValueSlot::IsNotZeroed, 1042 AggValueSlot::IsSanitizerChecked); 1043 EmitAggExpr(ILE->getInit(0), Slot); 1044 1045 // Move past these elements. 1046 InitListElements = 1047 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1048 ->getSize().getZExtValue(); 1049 CurPtr = 1050 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1051 Builder.getSize(InitListElements), 1052 "string.init.end"), 1053 CurPtr.getAlignment().alignmentAtOffset(InitListElements * 1054 ElementSize)); 1055 1056 // Zero out the rest, if any remain. 1057 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1058 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1059 bool OK = TryMemsetInitialization(); 1060 (void)OK; 1061 assert(OK && "couldn't memset character type?"); 1062 } 1063 return; 1064 } 1065 1066 InitListElements = ILE->getNumInits(); 1067 1068 // If this is a multi-dimensional array new, we will initialize multiple 1069 // elements with each init list element. 1070 QualType AllocType = E->getAllocatedType(); 1071 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1072 AllocType->getAsArrayTypeUnsafe())) { 1073 ElementTy = ConvertTypeForMem(AllocType); 1074 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1075 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1076 } 1077 1078 // Enter a partial-destruction Cleanup if necessary. 1079 if (needsEHCleanup(DtorKind)) { 1080 // In principle we could tell the Cleanup where we are more 1081 // directly, but the control flow can get so varied here that it 1082 // would actually be quite complex. Therefore we go through an 1083 // alloca. 1084 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1085 "array.init.end"); 1086 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1087 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1088 ElementType, ElementAlign, 1089 getDestroyer(DtorKind)); 1090 Cleanup = EHStack.stable_begin(); 1091 } 1092 1093 CharUnits StartAlign = CurPtr.getAlignment(); 1094 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1095 // Tell the cleanup that it needs to destroy up to this 1096 // element. TODO: some of these stores can be trivially 1097 // observed to be unnecessary. 1098 if (EndOfInit.isValid()) { 1099 auto FinishedPtr = 1100 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1101 Builder.CreateStore(FinishedPtr, EndOfInit); 1102 } 1103 // FIXME: If the last initializer is an incomplete initializer list for 1104 // an array, and we have an array filler, we can fold together the two 1105 // initialization loops. 1106 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1107 ILE->getInit(i)->getType(), CurPtr, 1108 AggValueSlot::DoesNotOverlap); 1109 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 1110 Builder.getSize(1), 1111 "array.exp.next"), 1112 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1113 } 1114 1115 // The remaining elements are filled with the array filler expression. 1116 Init = ILE->getArrayFiller(); 1117 1118 // Extract the initializer for the individual array elements by pulling 1119 // out the array filler from all the nested initializer lists. This avoids 1120 // generating a nested loop for the initialization. 1121 while (Init && Init->getType()->isConstantArrayType()) { 1122 auto *SubILE = dyn_cast<InitListExpr>(Init); 1123 if (!SubILE) 1124 break; 1125 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1126 Init = SubILE->getArrayFiller(); 1127 } 1128 1129 // Switch back to initializing one base element at a time. 1130 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 1131 } 1132 1133 // If all elements have already been initialized, skip any further 1134 // initialization. 1135 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1136 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1137 // If there was a Cleanup, deactivate it. 1138 if (CleanupDominator) 1139 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1140 return; 1141 } 1142 1143 assert(Init && "have trailing elements to initialize but no initializer"); 1144 1145 // If this is a constructor call, try to optimize it out, and failing that 1146 // emit a single loop to initialize all remaining elements. 1147 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1148 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1149 if (Ctor->isTrivial()) { 1150 // If new expression did not specify value-initialization, then there 1151 // is no initialization. 1152 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1153 return; 1154 1155 if (TryMemsetInitialization()) 1156 return; 1157 } 1158 1159 // Store the new Cleanup position for irregular Cleanups. 1160 // 1161 // FIXME: Share this cleanup with the constructor call emission rather than 1162 // having it create a cleanup of its own. 1163 if (EndOfInit.isValid()) 1164 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1165 1166 // Emit a constructor call loop to initialize the remaining elements. 1167 if (InitListElements) 1168 NumElements = Builder.CreateSub( 1169 NumElements, 1170 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1171 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1172 /*NewPointerIsChecked*/true, 1173 CCE->requiresZeroInitialization()); 1174 return; 1175 } 1176 1177 // If this is value-initialization, we can usually use memset. 1178 ImplicitValueInitExpr IVIE(ElementType); 1179 if (isa<ImplicitValueInitExpr>(Init)) { 1180 if (TryMemsetInitialization()) 1181 return; 1182 1183 // Switch to an ImplicitValueInitExpr for the element type. This handles 1184 // only one case: multidimensional array new of pointers to members. In 1185 // all other cases, we already have an initializer for the array element. 1186 Init = &IVIE; 1187 } 1188 1189 // At this point we should have found an initializer for the individual 1190 // elements of the array. 1191 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1192 "got wrong type of element to initialize"); 1193 1194 // If we have an empty initializer list, we can usually use memset. 1195 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1196 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1197 return; 1198 1199 // If we have a struct whose every field is value-initialized, we can 1200 // usually use memset. 1201 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1202 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1203 if (RType->getDecl()->isStruct()) { 1204 unsigned NumElements = 0; 1205 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1206 NumElements = CXXRD->getNumBases(); 1207 for (auto *Field : RType->getDecl()->fields()) 1208 if (!Field->isUnnamedBitfield()) 1209 ++NumElements; 1210 // FIXME: Recurse into nested InitListExprs. 1211 if (ILE->getNumInits() == NumElements) 1212 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1213 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1214 --NumElements; 1215 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1216 return; 1217 } 1218 } 1219 } 1220 1221 // Create the loop blocks. 1222 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1223 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1224 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1225 1226 // Find the end of the array, hoisted out of the loop. 1227 llvm::Value *EndPtr = 1228 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1229 1230 // If the number of elements isn't constant, we have to now check if there is 1231 // anything left to initialize. 1232 if (!ConstNum) { 1233 llvm::Value *IsEmpty = 1234 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1235 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1236 } 1237 1238 // Enter the loop. 1239 EmitBlock(LoopBB); 1240 1241 // Set up the current-element phi. 1242 llvm::PHINode *CurPtrPhi = 1243 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1244 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1245 1246 CurPtr = Address(CurPtrPhi, ElementAlign); 1247 1248 // Store the new Cleanup position for irregular Cleanups. 1249 if (EndOfInit.isValid()) 1250 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1251 1252 // Enter a partial-destruction Cleanup if necessary. 1253 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1254 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1255 ElementType, ElementAlign, 1256 getDestroyer(DtorKind)); 1257 Cleanup = EHStack.stable_begin(); 1258 CleanupDominator = Builder.CreateUnreachable(); 1259 } 1260 1261 // Emit the initializer into this element. 1262 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1263 AggValueSlot::DoesNotOverlap); 1264 1265 // Leave the Cleanup if we entered one. 1266 if (CleanupDominator) { 1267 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1268 CleanupDominator->eraseFromParent(); 1269 } 1270 1271 // Advance to the next element by adjusting the pointer type as necessary. 1272 llvm::Value *NextPtr = 1273 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1274 "array.next"); 1275 1276 // Check whether we've gotten to the end of the array and, if so, 1277 // exit the loop. 1278 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1279 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1280 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1281 1282 EmitBlock(ContBB); 1283 } 1284 1285 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1286 QualType ElementType, llvm::Type *ElementTy, 1287 Address NewPtr, llvm::Value *NumElements, 1288 llvm::Value *AllocSizeWithoutCookie) { 1289 ApplyDebugLocation DL(CGF, E); 1290 if (E->isArray()) 1291 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1292 AllocSizeWithoutCookie); 1293 else if (const Expr *Init = E->getInitializer()) 1294 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1295 AggValueSlot::DoesNotOverlap); 1296 } 1297 1298 /// Emit a call to an operator new or operator delete function, as implicitly 1299 /// created by new-expressions and delete-expressions. 1300 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1301 const FunctionDecl *CalleeDecl, 1302 const FunctionProtoType *CalleeType, 1303 const CallArgList &Args) { 1304 llvm::CallBase *CallOrInvoke; 1305 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1306 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1307 RValue RV = 1308 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1309 Args, CalleeType, /*ChainCall=*/false), 1310 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1311 1312 /// C++1y [expr.new]p10: 1313 /// [In a new-expression,] an implementation is allowed to omit a call 1314 /// to a replaceable global allocation function. 1315 /// 1316 /// We model such elidable calls with the 'builtin' attribute. 1317 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1318 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1319 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1320 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex, 1321 llvm::Attribute::Builtin); 1322 } 1323 1324 return RV; 1325 } 1326 1327 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1328 const CallExpr *TheCall, 1329 bool IsDelete) { 1330 CallArgList Args; 1331 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); 1332 // Find the allocation or deallocation function that we're calling. 1333 ASTContext &Ctx = getContext(); 1334 DeclarationName Name = Ctx.DeclarationNames 1335 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1336 1337 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1338 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1339 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1340 return EmitNewDeleteCall(*this, FD, Type, Args); 1341 llvm_unreachable("predeclared global operator new/delete is missing"); 1342 } 1343 1344 namespace { 1345 /// The parameters to pass to a usual operator delete. 1346 struct UsualDeleteParams { 1347 bool DestroyingDelete = false; 1348 bool Size = false; 1349 bool Alignment = false; 1350 }; 1351 } 1352 1353 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1354 UsualDeleteParams Params; 1355 1356 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1357 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1358 1359 // The first argument is always a void*. 1360 ++AI; 1361 1362 // The next parameter may be a std::destroying_delete_t. 1363 if (FD->isDestroyingOperatorDelete()) { 1364 Params.DestroyingDelete = true; 1365 assert(AI != AE); 1366 ++AI; 1367 } 1368 1369 // Figure out what other parameters we should be implicitly passing. 1370 if (AI != AE && (*AI)->isIntegerType()) { 1371 Params.Size = true; 1372 ++AI; 1373 } 1374 1375 if (AI != AE && (*AI)->isAlignValT()) { 1376 Params.Alignment = true; 1377 ++AI; 1378 } 1379 1380 assert(AI == AE && "unexpected usual deallocation function parameter"); 1381 return Params; 1382 } 1383 1384 namespace { 1385 /// A cleanup to call the given 'operator delete' function upon abnormal 1386 /// exit from a new expression. Templated on a traits type that deals with 1387 /// ensuring that the arguments dominate the cleanup if necessary. 1388 template<typename Traits> 1389 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1390 /// Type used to hold llvm::Value*s. 1391 typedef typename Traits::ValueTy ValueTy; 1392 /// Type used to hold RValues. 1393 typedef typename Traits::RValueTy RValueTy; 1394 struct PlacementArg { 1395 RValueTy ArgValue; 1396 QualType ArgType; 1397 }; 1398 1399 unsigned NumPlacementArgs : 31; 1400 unsigned PassAlignmentToPlacementDelete : 1; 1401 const FunctionDecl *OperatorDelete; 1402 ValueTy Ptr; 1403 ValueTy AllocSize; 1404 CharUnits AllocAlign; 1405 1406 PlacementArg *getPlacementArgs() { 1407 return reinterpret_cast<PlacementArg *>(this + 1); 1408 } 1409 1410 public: 1411 static size_t getExtraSize(size_t NumPlacementArgs) { 1412 return NumPlacementArgs * sizeof(PlacementArg); 1413 } 1414 1415 CallDeleteDuringNew(size_t NumPlacementArgs, 1416 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1417 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1418 CharUnits AllocAlign) 1419 : NumPlacementArgs(NumPlacementArgs), 1420 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1421 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1422 AllocAlign(AllocAlign) {} 1423 1424 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1425 assert(I < NumPlacementArgs && "index out of range"); 1426 getPlacementArgs()[I] = {Arg, Type}; 1427 } 1428 1429 void Emit(CodeGenFunction &CGF, Flags flags) override { 1430 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); 1431 CallArgList DeleteArgs; 1432 1433 // The first argument is always a void* (or C* for a destroying operator 1434 // delete for class type C). 1435 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1436 1437 // Figure out what other parameters we should be implicitly passing. 1438 UsualDeleteParams Params; 1439 if (NumPlacementArgs) { 1440 // A placement deallocation function is implicitly passed an alignment 1441 // if the placement allocation function was, but is never passed a size. 1442 Params.Alignment = PassAlignmentToPlacementDelete; 1443 } else { 1444 // For a non-placement new-expression, 'operator delete' can take a 1445 // size and/or an alignment if it has the right parameters. 1446 Params = getUsualDeleteParams(OperatorDelete); 1447 } 1448 1449 assert(!Params.DestroyingDelete && 1450 "should not call destroying delete in a new-expression"); 1451 1452 // The second argument can be a std::size_t (for non-placement delete). 1453 if (Params.Size) 1454 DeleteArgs.add(Traits::get(CGF, AllocSize), 1455 CGF.getContext().getSizeType()); 1456 1457 // The next (second or third) argument can be a std::align_val_t, which 1458 // is an enum whose underlying type is std::size_t. 1459 // FIXME: Use the right type as the parameter type. Note that in a call 1460 // to operator delete(size_t, ...), we may not have it available. 1461 if (Params.Alignment) 1462 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1463 CGF.SizeTy, AllocAlign.getQuantity())), 1464 CGF.getContext().getSizeType()); 1465 1466 // Pass the rest of the arguments, which must match exactly. 1467 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1468 auto Arg = getPlacementArgs()[I]; 1469 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1470 } 1471 1472 // Call 'operator delete'. 1473 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1474 } 1475 }; 1476 } 1477 1478 /// Enter a cleanup to call 'operator delete' if the initializer in a 1479 /// new-expression throws. 1480 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1481 const CXXNewExpr *E, 1482 Address NewPtr, 1483 llvm::Value *AllocSize, 1484 CharUnits AllocAlign, 1485 const CallArgList &NewArgs) { 1486 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1487 1488 // If we're not inside a conditional branch, then the cleanup will 1489 // dominate and we can do the easier (and more efficient) thing. 1490 if (!CGF.isInConditionalBranch()) { 1491 struct DirectCleanupTraits { 1492 typedef llvm::Value *ValueTy; 1493 typedef RValue RValueTy; 1494 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1495 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1496 }; 1497 1498 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1499 1500 DirectCleanup *Cleanup = CGF.EHStack 1501 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1502 E->getNumPlacementArgs(), 1503 E->getOperatorDelete(), 1504 NewPtr.getPointer(), 1505 AllocSize, 1506 E->passAlignment(), 1507 AllocAlign); 1508 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1509 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1510 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1511 } 1512 1513 return; 1514 } 1515 1516 // Otherwise, we need to save all this stuff. 1517 DominatingValue<RValue>::saved_type SavedNewPtr = 1518 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1519 DominatingValue<RValue>::saved_type SavedAllocSize = 1520 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1521 1522 struct ConditionalCleanupTraits { 1523 typedef DominatingValue<RValue>::saved_type ValueTy; 1524 typedef DominatingValue<RValue>::saved_type RValueTy; 1525 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1526 return V.restore(CGF); 1527 } 1528 }; 1529 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1530 1531 ConditionalCleanup *Cleanup = CGF.EHStack 1532 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1533 E->getNumPlacementArgs(), 1534 E->getOperatorDelete(), 1535 SavedNewPtr, 1536 SavedAllocSize, 1537 E->passAlignment(), 1538 AllocAlign); 1539 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1540 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1541 Cleanup->setPlacementArg( 1542 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1543 } 1544 1545 CGF.initFullExprCleanup(); 1546 } 1547 1548 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1549 // The element type being allocated. 1550 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1551 1552 // 1. Build a call to the allocation function. 1553 FunctionDecl *allocator = E->getOperatorNew(); 1554 1555 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1556 unsigned minElements = 0; 1557 if (E->isArray() && E->hasInitializer()) { 1558 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1559 if (ILE && ILE->isStringLiteralInit()) 1560 minElements = 1561 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1562 ->getSize().getZExtValue(); 1563 else if (ILE) 1564 minElements = ILE->getNumInits(); 1565 } 1566 1567 llvm::Value *numElements = nullptr; 1568 llvm::Value *allocSizeWithoutCookie = nullptr; 1569 llvm::Value *allocSize = 1570 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1571 allocSizeWithoutCookie); 1572 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1573 1574 // Emit the allocation call. If the allocator is a global placement 1575 // operator, just "inline" it directly. 1576 Address allocation = Address::invalid(); 1577 CallArgList allocatorArgs; 1578 if (allocator->isReservedGlobalPlacementOperator()) { 1579 assert(E->getNumPlacementArgs() == 1); 1580 const Expr *arg = *E->placement_arguments().begin(); 1581 1582 LValueBaseInfo BaseInfo; 1583 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1584 1585 // The pointer expression will, in many cases, be an opaque void*. 1586 // In these cases, discard the computed alignment and use the 1587 // formal alignment of the allocated type. 1588 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1589 allocation = Address(allocation.getPointer(), allocAlign); 1590 1591 // Set up allocatorArgs for the call to operator delete if it's not 1592 // the reserved global operator. 1593 if (E->getOperatorDelete() && 1594 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1595 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1596 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1597 } 1598 1599 } else { 1600 const FunctionProtoType *allocatorType = 1601 allocator->getType()->castAs<FunctionProtoType>(); 1602 unsigned ParamsToSkip = 0; 1603 1604 // The allocation size is the first argument. 1605 QualType sizeType = getContext().getSizeType(); 1606 allocatorArgs.add(RValue::get(allocSize), sizeType); 1607 ++ParamsToSkip; 1608 1609 if (allocSize != allocSizeWithoutCookie) { 1610 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1611 allocAlign = std::max(allocAlign, cookieAlign); 1612 } 1613 1614 // The allocation alignment may be passed as the second argument. 1615 if (E->passAlignment()) { 1616 QualType AlignValT = sizeType; 1617 if (allocatorType->getNumParams() > 1) { 1618 AlignValT = allocatorType->getParamType(1); 1619 assert(getContext().hasSameUnqualifiedType( 1620 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1621 sizeType) && 1622 "wrong type for alignment parameter"); 1623 ++ParamsToSkip; 1624 } else { 1625 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1626 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1627 } 1628 allocatorArgs.add( 1629 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1630 AlignValT); 1631 } 1632 1633 // FIXME: Why do we not pass a CalleeDecl here? 1634 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1635 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1636 1637 RValue RV = 1638 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1639 1640 // If this was a call to a global replaceable allocation function that does 1641 // not take an alignment argument, the allocator is known to produce 1642 // storage that's suitably aligned for any object that fits, up to a known 1643 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1644 CharUnits allocationAlign = allocAlign; 1645 if (!E->passAlignment() && 1646 allocator->isReplaceableGlobalAllocationFunction()) { 1647 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1648 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1649 allocationAlign = std::max( 1650 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1651 } 1652 1653 allocation = Address(RV.getScalarVal(), allocationAlign); 1654 } 1655 1656 // Emit a null check on the allocation result if the allocation 1657 // function is allowed to return null (because it has a non-throwing 1658 // exception spec or is the reserved placement new) and we have an 1659 // interesting initializer will be running sanitizers on the initialization. 1660 bool nullCheck = E->shouldNullCheckAllocation() && 1661 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1662 sanitizePerformTypeCheck()); 1663 1664 llvm::BasicBlock *nullCheckBB = nullptr; 1665 llvm::BasicBlock *contBB = nullptr; 1666 1667 // The null-check means that the initializer is conditionally 1668 // evaluated. 1669 ConditionalEvaluation conditional(*this); 1670 1671 if (nullCheck) { 1672 conditional.begin(*this); 1673 1674 nullCheckBB = Builder.GetInsertBlock(); 1675 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1676 contBB = createBasicBlock("new.cont"); 1677 1678 llvm::Value *isNull = 1679 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1680 Builder.CreateCondBr(isNull, contBB, notNullBB); 1681 EmitBlock(notNullBB); 1682 } 1683 1684 // If there's an operator delete, enter a cleanup to call it if an 1685 // exception is thrown. 1686 EHScopeStack::stable_iterator operatorDeleteCleanup; 1687 llvm::Instruction *cleanupDominator = nullptr; 1688 if (E->getOperatorDelete() && 1689 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1690 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1691 allocatorArgs); 1692 operatorDeleteCleanup = EHStack.stable_begin(); 1693 cleanupDominator = Builder.CreateUnreachable(); 1694 } 1695 1696 assert((allocSize == allocSizeWithoutCookie) == 1697 CalculateCookiePadding(*this, E).isZero()); 1698 if (allocSize != allocSizeWithoutCookie) { 1699 assert(E->isArray()); 1700 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1701 numElements, 1702 E, allocType); 1703 } 1704 1705 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1706 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1707 1708 // Passing pointer through launder.invariant.group to avoid propagation of 1709 // vptrs information which may be included in previous type. 1710 // To not break LTO with different optimizations levels, we do it regardless 1711 // of optimization level. 1712 if (CGM.getCodeGenOpts().StrictVTablePointers && 1713 allocator->isReservedGlobalPlacementOperator()) 1714 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), 1715 result.getAlignment()); 1716 1717 // Emit sanitizer checks for pointer value now, so that in the case of an 1718 // array it was checked only once and not at each constructor call. We may 1719 // have already checked that the pointer is non-null. 1720 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1721 // we'll null check the wrong pointer here. 1722 SanitizerSet SkippedChecks; 1723 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1724 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1725 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1726 result.getPointer(), allocType, result.getAlignment(), 1727 SkippedChecks, numElements); 1728 1729 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1730 allocSizeWithoutCookie); 1731 if (E->isArray()) { 1732 // NewPtr is a pointer to the base element type. If we're 1733 // allocating an array of arrays, we'll need to cast back to the 1734 // array pointer type. 1735 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1736 if (result.getType() != resultType) 1737 result = Builder.CreateBitCast(result, resultType); 1738 } 1739 1740 // Deactivate the 'operator delete' cleanup if we finished 1741 // initialization. 1742 if (operatorDeleteCleanup.isValid()) { 1743 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1744 cleanupDominator->eraseFromParent(); 1745 } 1746 1747 llvm::Value *resultPtr = result.getPointer(); 1748 if (nullCheck) { 1749 conditional.end(*this); 1750 1751 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1752 EmitBlock(contBB); 1753 1754 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1755 PHI->addIncoming(resultPtr, notNullBB); 1756 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1757 nullCheckBB); 1758 1759 resultPtr = PHI; 1760 } 1761 1762 return resultPtr; 1763 } 1764 1765 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1766 llvm::Value *Ptr, QualType DeleteTy, 1767 llvm::Value *NumElements, 1768 CharUnits CookieSize) { 1769 assert((!NumElements && CookieSize.isZero()) || 1770 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1771 1772 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); 1773 CallArgList DeleteArgs; 1774 1775 auto Params = getUsualDeleteParams(DeleteFD); 1776 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1777 1778 // Pass the pointer itself. 1779 QualType ArgTy = *ParamTypeIt++; 1780 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1781 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1782 1783 // Pass the std::destroying_delete tag if present. 1784 if (Params.DestroyingDelete) { 1785 QualType DDTag = *ParamTypeIt++; 1786 // Just pass an 'undef'. We expect the tag type to be an empty struct. 1787 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); 1788 DeleteArgs.add(RValue::get(V), DDTag); 1789 } 1790 1791 // Pass the size if the delete function has a size_t parameter. 1792 if (Params.Size) { 1793 QualType SizeType = *ParamTypeIt++; 1794 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1795 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1796 DeleteTypeSize.getQuantity()); 1797 1798 // For array new, multiply by the number of elements. 1799 if (NumElements) 1800 Size = Builder.CreateMul(Size, NumElements); 1801 1802 // If there is a cookie, add the cookie size. 1803 if (!CookieSize.isZero()) 1804 Size = Builder.CreateAdd( 1805 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1806 1807 DeleteArgs.add(RValue::get(Size), SizeType); 1808 } 1809 1810 // Pass the alignment if the delete function has an align_val_t parameter. 1811 if (Params.Alignment) { 1812 QualType AlignValType = *ParamTypeIt++; 1813 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( 1814 getContext().getTypeAlignIfKnown(DeleteTy)); 1815 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1816 DeleteTypeAlign.getQuantity()); 1817 DeleteArgs.add(RValue::get(Align), AlignValType); 1818 } 1819 1820 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1821 "unknown parameter to usual delete function"); 1822 1823 // Emit the call to delete. 1824 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1825 } 1826 1827 namespace { 1828 /// Calls the given 'operator delete' on a single object. 1829 struct CallObjectDelete final : EHScopeStack::Cleanup { 1830 llvm::Value *Ptr; 1831 const FunctionDecl *OperatorDelete; 1832 QualType ElementType; 1833 1834 CallObjectDelete(llvm::Value *Ptr, 1835 const FunctionDecl *OperatorDelete, 1836 QualType ElementType) 1837 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1838 1839 void Emit(CodeGenFunction &CGF, Flags flags) override { 1840 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1841 } 1842 }; 1843 } 1844 1845 void 1846 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1847 llvm::Value *CompletePtr, 1848 QualType ElementType) { 1849 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1850 OperatorDelete, ElementType); 1851 } 1852 1853 /// Emit the code for deleting a single object with a destroying operator 1854 /// delete. If the element type has a non-virtual destructor, Ptr has already 1855 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1856 /// Ptr points to an object of the static type. 1857 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1858 const CXXDeleteExpr *DE, Address Ptr, 1859 QualType ElementType) { 1860 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1861 if (Dtor && Dtor->isVirtual()) 1862 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1863 Dtor); 1864 else 1865 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1866 } 1867 1868 /// Emit the code for deleting a single object. 1869 static void EmitObjectDelete(CodeGenFunction &CGF, 1870 const CXXDeleteExpr *DE, 1871 Address Ptr, 1872 QualType ElementType) { 1873 // C++11 [expr.delete]p3: 1874 // If the static type of the object to be deleted is different from its 1875 // dynamic type, the static type shall be a base class of the dynamic type 1876 // of the object to be deleted and the static type shall have a virtual 1877 // destructor or the behavior is undefined. 1878 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1879 DE->getExprLoc(), Ptr.getPointer(), 1880 ElementType); 1881 1882 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1883 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1884 1885 // Find the destructor for the type, if applicable. If the 1886 // destructor is virtual, we'll just emit the vcall and return. 1887 const CXXDestructorDecl *Dtor = nullptr; 1888 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1889 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1890 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1891 Dtor = RD->getDestructor(); 1892 1893 if (Dtor->isVirtual()) { 1894 bool UseVirtualCall = true; 1895 const Expr *Base = DE->getArgument(); 1896 if (auto *DevirtualizedDtor = 1897 dyn_cast_or_null<const CXXDestructorDecl>( 1898 Dtor->getDevirtualizedMethod( 1899 Base, CGF.CGM.getLangOpts().AppleKext))) { 1900 UseVirtualCall = false; 1901 const CXXRecordDecl *DevirtualizedClass = 1902 DevirtualizedDtor->getParent(); 1903 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1904 // Devirtualized to the class of the base type (the type of the 1905 // whole expression). 1906 Dtor = DevirtualizedDtor; 1907 } else { 1908 // Devirtualized to some other type. Would need to cast the this 1909 // pointer to that type but we don't have support for that yet, so 1910 // do a virtual call. FIXME: handle the case where it is 1911 // devirtualized to the derived type (the type of the inner 1912 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1913 UseVirtualCall = true; 1914 } 1915 } 1916 if (UseVirtualCall) { 1917 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1918 Dtor); 1919 return; 1920 } 1921 } 1922 } 1923 } 1924 1925 // Make sure that we call delete even if the dtor throws. 1926 // This doesn't have to a conditional cleanup because we're going 1927 // to pop it off in a second. 1928 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1929 Ptr.getPointer(), 1930 OperatorDelete, ElementType); 1931 1932 if (Dtor) 1933 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1934 /*ForVirtualBase=*/false, 1935 /*Delegating=*/false, 1936 Ptr, ElementType); 1937 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1938 switch (Lifetime) { 1939 case Qualifiers::OCL_None: 1940 case Qualifiers::OCL_ExplicitNone: 1941 case Qualifiers::OCL_Autoreleasing: 1942 break; 1943 1944 case Qualifiers::OCL_Strong: 1945 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1946 break; 1947 1948 case Qualifiers::OCL_Weak: 1949 CGF.EmitARCDestroyWeak(Ptr); 1950 break; 1951 } 1952 } 1953 1954 CGF.PopCleanupBlock(); 1955 } 1956 1957 namespace { 1958 /// Calls the given 'operator delete' on an array of objects. 1959 struct CallArrayDelete final : EHScopeStack::Cleanup { 1960 llvm::Value *Ptr; 1961 const FunctionDecl *OperatorDelete; 1962 llvm::Value *NumElements; 1963 QualType ElementType; 1964 CharUnits CookieSize; 1965 1966 CallArrayDelete(llvm::Value *Ptr, 1967 const FunctionDecl *OperatorDelete, 1968 llvm::Value *NumElements, 1969 QualType ElementType, 1970 CharUnits CookieSize) 1971 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1972 ElementType(ElementType), CookieSize(CookieSize) {} 1973 1974 void Emit(CodeGenFunction &CGF, Flags flags) override { 1975 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 1976 CookieSize); 1977 } 1978 }; 1979 } 1980 1981 /// Emit the code for deleting an array of objects. 1982 static void EmitArrayDelete(CodeGenFunction &CGF, 1983 const CXXDeleteExpr *E, 1984 Address deletedPtr, 1985 QualType elementType) { 1986 llvm::Value *numElements = nullptr; 1987 llvm::Value *allocatedPtr = nullptr; 1988 CharUnits cookieSize; 1989 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1990 numElements, allocatedPtr, cookieSize); 1991 1992 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1993 1994 // Make sure that we call delete even if one of the dtors throws. 1995 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1996 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1997 allocatedPtr, operatorDelete, 1998 numElements, elementType, 1999 cookieSize); 2000 2001 // Destroy the elements. 2002 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 2003 assert(numElements && "no element count for a type with a destructor!"); 2004 2005 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2006 CharUnits elementAlign = 2007 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 2008 2009 llvm::Value *arrayBegin = deletedPtr.getPointer(); 2010 llvm::Value *arrayEnd = 2011 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 2012 2013 // Note that it is legal to allocate a zero-length array, and we 2014 // can never fold the check away because the length should always 2015 // come from a cookie. 2016 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 2017 CGF.getDestroyer(dtorKind), 2018 /*checkZeroLength*/ true, 2019 CGF.needsEHCleanup(dtorKind)); 2020 } 2021 2022 // Pop the cleanup block. 2023 CGF.PopCleanupBlock(); 2024 } 2025 2026 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 2027 const Expr *Arg = E->getArgument(); 2028 Address Ptr = EmitPointerWithAlignment(Arg); 2029 2030 // Null check the pointer. 2031 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2032 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2033 2034 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2035 2036 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2037 EmitBlock(DeleteNotNull); 2038 2039 QualType DeleteTy = E->getDestroyedType(); 2040 2041 // A destroying operator delete overrides the entire operation of the 2042 // delete expression. 2043 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2044 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2045 EmitBlock(DeleteEnd); 2046 return; 2047 } 2048 2049 // We might be deleting a pointer to array. If so, GEP down to the 2050 // first non-array element. 2051 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2052 if (DeleteTy->isConstantArrayType()) { 2053 llvm::Value *Zero = Builder.getInt32(0); 2054 SmallVector<llvm::Value*,8> GEP; 2055 2056 GEP.push_back(Zero); // point at the outermost array 2057 2058 // For each layer of array type we're pointing at: 2059 while (const ConstantArrayType *Arr 2060 = getContext().getAsConstantArrayType(DeleteTy)) { 2061 // 1. Unpeel the array type. 2062 DeleteTy = Arr->getElementType(); 2063 2064 // 2. GEP to the first element of the array. 2065 GEP.push_back(Zero); 2066 } 2067 2068 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 2069 Ptr.getAlignment()); 2070 } 2071 2072 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2073 2074 if (E->isArrayForm()) { 2075 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2076 } else { 2077 EmitObjectDelete(*this, E, Ptr, DeleteTy); 2078 } 2079 2080 EmitBlock(DeleteEnd); 2081 } 2082 2083 static bool isGLValueFromPointerDeref(const Expr *E) { 2084 E = E->IgnoreParens(); 2085 2086 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2087 if (!CE->getSubExpr()->isGLValue()) 2088 return false; 2089 return isGLValueFromPointerDeref(CE->getSubExpr()); 2090 } 2091 2092 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2093 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2094 2095 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2096 if (BO->getOpcode() == BO_Comma) 2097 return isGLValueFromPointerDeref(BO->getRHS()); 2098 2099 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2100 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2101 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2102 2103 // C++11 [expr.sub]p1: 2104 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2105 if (isa<ArraySubscriptExpr>(E)) 2106 return true; 2107 2108 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2109 if (UO->getOpcode() == UO_Deref) 2110 return true; 2111 2112 return false; 2113 } 2114 2115 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2116 llvm::Type *StdTypeInfoPtrTy) { 2117 // Get the vtable pointer. 2118 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF); 2119 2120 QualType SrcRecordTy = E->getType(); 2121 2122 // C++ [class.cdtor]p4: 2123 // If the operand of typeid refers to the object under construction or 2124 // destruction and the static type of the operand is neither the constructor 2125 // or destructor’s class nor one of its bases, the behavior is undefined. 2126 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2127 ThisPtr.getPointer(), SrcRecordTy); 2128 2129 // C++ [expr.typeid]p2: 2130 // If the glvalue expression is obtained by applying the unary * operator to 2131 // a pointer and the pointer is a null pointer value, the typeid expression 2132 // throws the std::bad_typeid exception. 2133 // 2134 // However, this paragraph's intent is not clear. We choose a very generous 2135 // interpretation which implores us to consider comma operators, conditional 2136 // operators, parentheses and other such constructs. 2137 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2138 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2139 llvm::BasicBlock *BadTypeidBlock = 2140 CGF.createBasicBlock("typeid.bad_typeid"); 2141 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2142 2143 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2144 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2145 2146 CGF.EmitBlock(BadTypeidBlock); 2147 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2148 CGF.EmitBlock(EndBlock); 2149 } 2150 2151 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2152 StdTypeInfoPtrTy); 2153 } 2154 2155 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2156 llvm::Type *StdTypeInfoPtrTy = 2157 ConvertType(E->getType())->getPointerTo(); 2158 2159 if (E->isTypeOperand()) { 2160 llvm::Constant *TypeInfo = 2161 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2162 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2163 } 2164 2165 // C++ [expr.typeid]p2: 2166 // When typeid is applied to a glvalue expression whose type is a 2167 // polymorphic class type, the result refers to a std::type_info object 2168 // representing the type of the most derived object (that is, the dynamic 2169 // type) to which the glvalue refers. 2170 if (E->isPotentiallyEvaluated()) 2171 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2172 StdTypeInfoPtrTy); 2173 2174 QualType OperandTy = E->getExprOperand()->getType(); 2175 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2176 StdTypeInfoPtrTy); 2177 } 2178 2179 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2180 QualType DestTy) { 2181 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2182 if (DestTy->isPointerType()) 2183 return llvm::Constant::getNullValue(DestLTy); 2184 2185 /// C++ [expr.dynamic.cast]p9: 2186 /// A failed cast to reference type throws std::bad_cast 2187 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2188 return nullptr; 2189 2190 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2191 return llvm::UndefValue::get(DestLTy); 2192 } 2193 2194 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2195 const CXXDynamicCastExpr *DCE) { 2196 CGM.EmitExplicitCastExprType(DCE, this); 2197 QualType DestTy = DCE->getTypeAsWritten(); 2198 2199 QualType SrcTy = DCE->getSubExpr()->getType(); 2200 2201 // C++ [expr.dynamic.cast]p7: 2202 // If T is "pointer to cv void," then the result is a pointer to the most 2203 // derived object pointed to by v. 2204 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2205 2206 bool isDynamicCastToVoid; 2207 QualType SrcRecordTy; 2208 QualType DestRecordTy; 2209 if (DestPTy) { 2210 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2211 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2212 DestRecordTy = DestPTy->getPointeeType(); 2213 } else { 2214 isDynamicCastToVoid = false; 2215 SrcRecordTy = SrcTy; 2216 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2217 } 2218 2219 // C++ [class.cdtor]p5: 2220 // If the operand of the dynamic_cast refers to the object under 2221 // construction or destruction and the static type of the operand is not a 2222 // pointer to or object of the constructor or destructor’s own class or one 2223 // of its bases, the dynamic_cast results in undefined behavior. 2224 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2225 SrcRecordTy); 2226 2227 if (DCE->isAlwaysNull()) 2228 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2229 return T; 2230 2231 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2232 2233 // C++ [expr.dynamic.cast]p4: 2234 // If the value of v is a null pointer value in the pointer case, the result 2235 // is the null pointer value of type T. 2236 bool ShouldNullCheckSrcValue = 2237 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2238 SrcRecordTy); 2239 2240 llvm::BasicBlock *CastNull = nullptr; 2241 llvm::BasicBlock *CastNotNull = nullptr; 2242 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2243 2244 if (ShouldNullCheckSrcValue) { 2245 CastNull = createBasicBlock("dynamic_cast.null"); 2246 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2247 2248 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2249 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2250 EmitBlock(CastNotNull); 2251 } 2252 2253 llvm::Value *Value; 2254 if (isDynamicCastToVoid) { 2255 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2256 DestTy); 2257 } else { 2258 assert(DestRecordTy->isRecordType() && 2259 "destination type must be a record type!"); 2260 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2261 DestTy, DestRecordTy, CastEnd); 2262 CastNotNull = Builder.GetInsertBlock(); 2263 } 2264 2265 if (ShouldNullCheckSrcValue) { 2266 EmitBranch(CastEnd); 2267 2268 EmitBlock(CastNull); 2269 EmitBranch(CastEnd); 2270 } 2271 2272 EmitBlock(CastEnd); 2273 2274 if (ShouldNullCheckSrcValue) { 2275 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2276 PHI->addIncoming(Value, CastNotNull); 2277 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2278 2279 Value = PHI; 2280 } 2281 2282 return Value; 2283 } 2284