xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGExprCXX.cpp (revision 0b37c1590418417c894529d371800dfac71ef887)
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29   RequiredArgs ReqArgs;
30   // Number of prefix arguments for the call. Ignores the `this` pointer.
31   unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37                                   llvm::Value *This, llvm::Value *ImplicitParam,
38                                   QualType ImplicitParamTy, const CallExpr *CE,
39                                   CallArgList &Args, CallArgList *RtlArgs) {
40   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41          isa<CXXOperatorCallExpr>(CE));
42   assert(MD->isInstance() &&
43          "Trying to emit a member or operator call expr on a static method!");
44 
45   // Push the this ptr.
46   const CXXRecordDecl *RD =
47       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49 
50   // If there is an implicit parameter (e.g. VTT), emit it.
51   if (ImplicitParam) {
52     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53   }
54 
55   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57   unsigned PrefixSize = Args.size() - 1;
58 
59   // And the rest of the call args.
60   if (RtlArgs) {
61     // Special case: if the caller emitted the arguments right-to-left already
62     // (prior to emitting the *this argument), we're done. This happens for
63     // assignment operators.
64     Args.addFrom(*RtlArgs);
65   } else if (CE) {
66     // Special case: skip first argument of CXXOperatorCall (it is "this").
67     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69                      CE->getDirectCallee());
70   } else {
71     assert(
72         FPT->getNumParams() == 0 &&
73         "No CallExpr specified for function with non-zero number of arguments");
74   }
75   return {required, PrefixSize};
76 }
77 
78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79     const CXXMethodDecl *MD, const CGCallee &Callee,
80     ReturnValueSlot ReturnValue,
81     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82     const CallExpr *CE, CallArgList *RtlArgs) {
83   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84   CallArgList Args;
85   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90                   CE ? CE->getExprLoc() : SourceLocation());
91 }
92 
93 RValue CodeGenFunction::EmitCXXDestructorCall(
94     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96   const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97 
98   assert(!ThisTy.isNull());
99   assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
100          "Pointer/Object mixup");
101 
102   LangAS SrcAS = ThisTy.getAddressSpace();
103   LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104   if (SrcAS != DstAS) {
105     QualType DstTy = DtorDecl->getThisType();
106     llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107     This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108                                                  NewType);
109   }
110 
111   CallArgList Args;
112   commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113                                     ImplicitParamTy, CE, Args, nullptr);
114   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115                   ReturnValueSlot(), Args);
116 }
117 
118 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
119                                             const CXXPseudoDestructorExpr *E) {
120   QualType DestroyedType = E->getDestroyedType();
121   if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
122     // Automatic Reference Counting:
123     //   If the pseudo-expression names a retainable object with weak or
124     //   strong lifetime, the object shall be released.
125     Expr *BaseExpr = E->getBase();
126     Address BaseValue = Address::invalid();
127     Qualifiers BaseQuals;
128 
129     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
130     if (E->isArrow()) {
131       BaseValue = EmitPointerWithAlignment(BaseExpr);
132       const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
133       BaseQuals = PTy->getPointeeType().getQualifiers();
134     } else {
135       LValue BaseLV = EmitLValue(BaseExpr);
136       BaseValue = BaseLV.getAddress(*this);
137       QualType BaseTy = BaseExpr->getType();
138       BaseQuals = BaseTy.getQualifiers();
139     }
140 
141     switch (DestroyedType.getObjCLifetime()) {
142     case Qualifiers::OCL_None:
143     case Qualifiers::OCL_ExplicitNone:
144     case Qualifiers::OCL_Autoreleasing:
145       break;
146 
147     case Qualifiers::OCL_Strong:
148       EmitARCRelease(Builder.CreateLoad(BaseValue,
149                         DestroyedType.isVolatileQualified()),
150                      ARCPreciseLifetime);
151       break;
152 
153     case Qualifiers::OCL_Weak:
154       EmitARCDestroyWeak(BaseValue);
155       break;
156     }
157   } else {
158     // C++ [expr.pseudo]p1:
159     //   The result shall only be used as the operand for the function call
160     //   operator (), and the result of such a call has type void. The only
161     //   effect is the evaluation of the postfix-expression before the dot or
162     //   arrow.
163     EmitIgnoredExpr(E->getBase());
164   }
165 
166   return RValue::get(nullptr);
167 }
168 
169 static CXXRecordDecl *getCXXRecord(const Expr *E) {
170   QualType T = E->getType();
171   if (const PointerType *PTy = T->getAs<PointerType>())
172     T = PTy->getPointeeType();
173   const RecordType *Ty = T->castAs<RecordType>();
174   return cast<CXXRecordDecl>(Ty->getDecl());
175 }
176 
177 // Note: This function also emit constructor calls to support a MSVC
178 // extensions allowing explicit constructor function call.
179 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
180                                               ReturnValueSlot ReturnValue) {
181   const Expr *callee = CE->getCallee()->IgnoreParens();
182 
183   if (isa<BinaryOperator>(callee))
184     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
185 
186   const MemberExpr *ME = cast<MemberExpr>(callee);
187   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
188 
189   if (MD->isStatic()) {
190     // The method is static, emit it as we would a regular call.
191     CGCallee callee =
192         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
193     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
194                     ReturnValue);
195   }
196 
197   bool HasQualifier = ME->hasQualifier();
198   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
199   bool IsArrow = ME->isArrow();
200   const Expr *Base = ME->getBase();
201 
202   return EmitCXXMemberOrOperatorMemberCallExpr(
203       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
204 }
205 
206 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
207     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
208     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
209     const Expr *Base) {
210   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
211 
212   // Compute the object pointer.
213   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
214 
215   const CXXMethodDecl *DevirtualizedMethod = nullptr;
216   if (CanUseVirtualCall &&
217       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
218     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
219     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
220     assert(DevirtualizedMethod);
221     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
222     const Expr *Inner = Base->ignoreParenBaseCasts();
223     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
224         MD->getReturnType().getCanonicalType())
225       // If the return types are not the same, this might be a case where more
226       // code needs to run to compensate for it. For example, the derived
227       // method might return a type that inherits form from the return
228       // type of MD and has a prefix.
229       // For now we just avoid devirtualizing these covariant cases.
230       DevirtualizedMethod = nullptr;
231     else if (getCXXRecord(Inner) == DevirtualizedClass)
232       // If the class of the Inner expression is where the dynamic method
233       // is defined, build the this pointer from it.
234       Base = Inner;
235     else if (getCXXRecord(Base) != DevirtualizedClass) {
236       // If the method is defined in a class that is not the best dynamic
237       // one or the one of the full expression, we would have to build
238       // a derived-to-base cast to compute the correct this pointer, but
239       // we don't have support for that yet, so do a virtual call.
240       DevirtualizedMethod = nullptr;
241     }
242   }
243 
244   bool TrivialForCodegen =
245       MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
246   bool TrivialAssignment =
247       TrivialForCodegen &&
248       (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
249       !MD->getParent()->mayInsertExtraPadding();
250 
251   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
252   // operator before the LHS.
253   CallArgList RtlArgStorage;
254   CallArgList *RtlArgs = nullptr;
255   LValue TrivialAssignmentRHS;
256   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
257     if (OCE->isAssignmentOp()) {
258       if (TrivialAssignment) {
259         TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
260       } else {
261         RtlArgs = &RtlArgStorage;
262         EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
263                      drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
264                      /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
265       }
266     }
267   }
268 
269   LValue This;
270   if (IsArrow) {
271     LValueBaseInfo BaseInfo;
272     TBAAAccessInfo TBAAInfo;
273     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
274     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
275   } else {
276     This = EmitLValue(Base);
277   }
278 
279   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
280     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
281     // constructing a new complete object of type Ctor.
282     assert(!RtlArgs);
283     assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
284     CallArgList Args;
285     commonEmitCXXMemberOrOperatorCall(
286         *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr,
287         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
288 
289     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
290                            /*Delegating=*/false, This.getAddress(*this), Args,
291                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
292                            /*NewPointerIsChecked=*/false);
293     return RValue::get(nullptr);
294   }
295 
296   if (TrivialForCodegen) {
297     if (isa<CXXDestructorDecl>(MD))
298       return RValue::get(nullptr);
299 
300     if (TrivialAssignment) {
301       // We don't like to generate the trivial copy/move assignment operator
302       // when it isn't necessary; just produce the proper effect here.
303       // It's important that we use the result of EmitLValue here rather than
304       // emitting call arguments, in order to preserve TBAA information from
305       // the RHS.
306       LValue RHS = isa<CXXOperatorCallExpr>(CE)
307                        ? TrivialAssignmentRHS
308                        : EmitLValue(*CE->arg_begin());
309       EmitAggregateAssign(This, RHS, CE->getType());
310       return RValue::get(This.getPointer(*this));
311     }
312 
313     assert(MD->getParent()->mayInsertExtraPadding() &&
314            "unknown trivial member function");
315   }
316 
317   // Compute the function type we're calling.
318   const CXXMethodDecl *CalleeDecl =
319       DevirtualizedMethod ? DevirtualizedMethod : MD;
320   const CGFunctionInfo *FInfo = nullptr;
321   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
322     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
323         GlobalDecl(Dtor, Dtor_Complete));
324   else
325     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
326 
327   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
328 
329   // C++11 [class.mfct.non-static]p2:
330   //   If a non-static member function of a class X is called for an object that
331   //   is not of type X, or of a type derived from X, the behavior is undefined.
332   SourceLocation CallLoc;
333   ASTContext &C = getContext();
334   if (CE)
335     CallLoc = CE->getExprLoc();
336 
337   SanitizerSet SkippedChecks;
338   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
339     auto *IOA = CMCE->getImplicitObjectArgument();
340     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
341     if (IsImplicitObjectCXXThis)
342       SkippedChecks.set(SanitizerKind::Alignment, true);
343     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
344       SkippedChecks.set(SanitizerKind::Null, true);
345   }
346   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
347                 This.getPointer(*this),
348                 C.getRecordType(CalleeDecl->getParent()),
349                 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
350 
351   // C++ [class.virtual]p12:
352   //   Explicit qualification with the scope operator (5.1) suppresses the
353   //   virtual call mechanism.
354   //
355   // We also don't emit a virtual call if the base expression has a record type
356   // because then we know what the type is.
357   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
358 
359   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
360     assert(CE->arg_begin() == CE->arg_end() &&
361            "Destructor shouldn't have explicit parameters");
362     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
363     if (UseVirtualCall) {
364       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
365                                                 This.getAddress(*this),
366                                                 cast<CXXMemberCallExpr>(CE));
367     } else {
368       GlobalDecl GD(Dtor, Dtor_Complete);
369       CGCallee Callee;
370       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
371         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
372       else if (!DevirtualizedMethod)
373         Callee =
374             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
375       else {
376         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
377       }
378 
379       QualType ThisTy =
380           IsArrow ? Base->getType()->getPointeeType() : Base->getType();
381       EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
382                             /*ImplicitParam=*/nullptr,
383                             /*ImplicitParamTy=*/QualType(), nullptr);
384     }
385     return RValue::get(nullptr);
386   }
387 
388   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
389   // 'CalleeDecl' instead.
390 
391   CGCallee Callee;
392   if (UseVirtualCall) {
393     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
394   } else {
395     if (SanOpts.has(SanitizerKind::CFINVCall) &&
396         MD->getParent()->isDynamicClass()) {
397       llvm::Value *VTable;
398       const CXXRecordDecl *RD;
399       std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
400           *this, This.getAddress(*this), CalleeDecl->getParent());
401       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
402     }
403 
404     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
405       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
406     else if (!DevirtualizedMethod)
407       Callee =
408           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
409     else {
410       Callee =
411           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
412                               GlobalDecl(DevirtualizedMethod));
413     }
414   }
415 
416   if (MD->isVirtual()) {
417     Address NewThisAddr =
418         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
419             *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
420     This.setAddress(NewThisAddr);
421   }
422 
423   return EmitCXXMemberOrOperatorCall(
424       CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
425       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
426 }
427 
428 RValue
429 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
430                                               ReturnValueSlot ReturnValue) {
431   const BinaryOperator *BO =
432       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
433   const Expr *BaseExpr = BO->getLHS();
434   const Expr *MemFnExpr = BO->getRHS();
435 
436   const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
437   const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
438   const auto *RD =
439       cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
440 
441   // Emit the 'this' pointer.
442   Address This = Address::invalid();
443   if (BO->getOpcode() == BO_PtrMemI)
444     This = EmitPointerWithAlignment(BaseExpr);
445   else
446     This = EmitLValue(BaseExpr).getAddress(*this);
447 
448   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
449                 QualType(MPT->getClass(), 0));
450 
451   // Get the member function pointer.
452   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
453 
454   // Ask the ABI to load the callee.  Note that This is modified.
455   llvm::Value *ThisPtrForCall = nullptr;
456   CGCallee Callee =
457     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
458                                              ThisPtrForCall, MemFnPtr, MPT);
459 
460   CallArgList Args;
461 
462   QualType ThisType =
463     getContext().getPointerType(getContext().getTagDeclType(RD));
464 
465   // Push the this ptr.
466   Args.add(RValue::get(ThisPtrForCall), ThisType);
467 
468   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
469 
470   // And the rest of the call args
471   EmitCallArgs(Args, FPT, E->arguments());
472   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
473                                                       /*PrefixSize=*/0),
474                   Callee, ReturnValue, Args, nullptr, E->getExprLoc());
475 }
476 
477 RValue
478 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
479                                                const CXXMethodDecl *MD,
480                                                ReturnValueSlot ReturnValue) {
481   assert(MD->isInstance() &&
482          "Trying to emit a member call expr on a static method!");
483   return EmitCXXMemberOrOperatorMemberCallExpr(
484       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
485       /*IsArrow=*/false, E->getArg(0));
486 }
487 
488 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
489                                                ReturnValueSlot ReturnValue) {
490   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
491 }
492 
493 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
494                                             Address DestPtr,
495                                             const CXXRecordDecl *Base) {
496   if (Base->isEmpty())
497     return;
498 
499   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
500 
501   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
502   CharUnits NVSize = Layout.getNonVirtualSize();
503 
504   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
505   // present, they are initialized by the most derived class before calling the
506   // constructor.
507   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
508   Stores.emplace_back(CharUnits::Zero(), NVSize);
509 
510   // Each store is split by the existence of a vbptr.
511   CharUnits VBPtrWidth = CGF.getPointerSize();
512   std::vector<CharUnits> VBPtrOffsets =
513       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
514   for (CharUnits VBPtrOffset : VBPtrOffsets) {
515     // Stop before we hit any virtual base pointers located in virtual bases.
516     if (VBPtrOffset >= NVSize)
517       break;
518     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
519     CharUnits LastStoreOffset = LastStore.first;
520     CharUnits LastStoreSize = LastStore.second;
521 
522     CharUnits SplitBeforeOffset = LastStoreOffset;
523     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
524     assert(!SplitBeforeSize.isNegative() && "negative store size!");
525     if (!SplitBeforeSize.isZero())
526       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
527 
528     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
529     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
530     assert(!SplitAfterSize.isNegative() && "negative store size!");
531     if (!SplitAfterSize.isZero())
532       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
533   }
534 
535   // If the type contains a pointer to data member we can't memset it to zero.
536   // Instead, create a null constant and copy it to the destination.
537   // TODO: there are other patterns besides zero that we can usefully memset,
538   // like -1, which happens to be the pattern used by member-pointers.
539   // TODO: isZeroInitializable can be over-conservative in the case where a
540   // virtual base contains a member pointer.
541   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
542   if (!NullConstantForBase->isNullValue()) {
543     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
544         CGF.CGM.getModule(), NullConstantForBase->getType(),
545         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
546         NullConstantForBase, Twine());
547 
548     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
549                                DestPtr.getAlignment());
550     NullVariable->setAlignment(Align.getAsAlign());
551 
552     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
553 
554     // Get and call the appropriate llvm.memcpy overload.
555     for (std::pair<CharUnits, CharUnits> Store : Stores) {
556       CharUnits StoreOffset = Store.first;
557       CharUnits StoreSize = Store.second;
558       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
559       CGF.Builder.CreateMemCpy(
560           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
561           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
562           StoreSizeVal);
563     }
564 
565   // Otherwise, just memset the whole thing to zero.  This is legal
566   // because in LLVM, all default initializers (other than the ones we just
567   // handled above) are guaranteed to have a bit pattern of all zeros.
568   } else {
569     for (std::pair<CharUnits, CharUnits> Store : Stores) {
570       CharUnits StoreOffset = Store.first;
571       CharUnits StoreSize = Store.second;
572       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
573       CGF.Builder.CreateMemSet(
574           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
575           CGF.Builder.getInt8(0), StoreSizeVal);
576     }
577   }
578 }
579 
580 void
581 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
582                                       AggValueSlot Dest) {
583   assert(!Dest.isIgnored() && "Must have a destination!");
584   const CXXConstructorDecl *CD = E->getConstructor();
585 
586   // If we require zero initialization before (or instead of) calling the
587   // constructor, as can be the case with a non-user-provided default
588   // constructor, emit the zero initialization now, unless destination is
589   // already zeroed.
590   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
591     switch (E->getConstructionKind()) {
592     case CXXConstructExpr::CK_Delegating:
593     case CXXConstructExpr::CK_Complete:
594       EmitNullInitialization(Dest.getAddress(), E->getType());
595       break;
596     case CXXConstructExpr::CK_VirtualBase:
597     case CXXConstructExpr::CK_NonVirtualBase:
598       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
599                                       CD->getParent());
600       break;
601     }
602   }
603 
604   // If this is a call to a trivial default constructor, do nothing.
605   if (CD->isTrivial() && CD->isDefaultConstructor())
606     return;
607 
608   // Elide the constructor if we're constructing from a temporary.
609   // The temporary check is required because Sema sets this on NRVO
610   // returns.
611   if (getLangOpts().ElideConstructors && E->isElidable()) {
612     assert(getContext().hasSameUnqualifiedType(E->getType(),
613                                                E->getArg(0)->getType()));
614     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
615       EmitAggExpr(E->getArg(0), Dest);
616       return;
617     }
618   }
619 
620   if (const ArrayType *arrayType
621         = getContext().getAsArrayType(E->getType())) {
622     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
623                                Dest.isSanitizerChecked());
624   } else {
625     CXXCtorType Type = Ctor_Complete;
626     bool ForVirtualBase = false;
627     bool Delegating = false;
628 
629     switch (E->getConstructionKind()) {
630      case CXXConstructExpr::CK_Delegating:
631       // We should be emitting a constructor; GlobalDecl will assert this
632       Type = CurGD.getCtorType();
633       Delegating = true;
634       break;
635 
636      case CXXConstructExpr::CK_Complete:
637       Type = Ctor_Complete;
638       break;
639 
640      case CXXConstructExpr::CK_VirtualBase:
641       ForVirtualBase = true;
642       LLVM_FALLTHROUGH;
643 
644      case CXXConstructExpr::CK_NonVirtualBase:
645       Type = Ctor_Base;
646      }
647 
648      // Call the constructor.
649      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
650   }
651 }
652 
653 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
654                                                  const Expr *Exp) {
655   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
656     Exp = E->getSubExpr();
657   assert(isa<CXXConstructExpr>(Exp) &&
658          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
659   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
660   const CXXConstructorDecl *CD = E->getConstructor();
661   RunCleanupsScope Scope(*this);
662 
663   // If we require zero initialization before (or instead of) calling the
664   // constructor, as can be the case with a non-user-provided default
665   // constructor, emit the zero initialization now.
666   // FIXME. Do I still need this for a copy ctor synthesis?
667   if (E->requiresZeroInitialization())
668     EmitNullInitialization(Dest, E->getType());
669 
670   assert(!getContext().getAsConstantArrayType(E->getType())
671          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
672   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
673 }
674 
675 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
676                                         const CXXNewExpr *E) {
677   if (!E->isArray())
678     return CharUnits::Zero();
679 
680   // No cookie is required if the operator new[] being used is the
681   // reserved placement operator new[].
682   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
683     return CharUnits::Zero();
684 
685   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
686 }
687 
688 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
689                                         const CXXNewExpr *e,
690                                         unsigned minElements,
691                                         llvm::Value *&numElements,
692                                         llvm::Value *&sizeWithoutCookie) {
693   QualType type = e->getAllocatedType();
694 
695   if (!e->isArray()) {
696     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
697     sizeWithoutCookie
698       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
699     return sizeWithoutCookie;
700   }
701 
702   // The width of size_t.
703   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
704 
705   // Figure out the cookie size.
706   llvm::APInt cookieSize(sizeWidth,
707                          CalculateCookiePadding(CGF, e).getQuantity());
708 
709   // Emit the array size expression.
710   // We multiply the size of all dimensions for NumElements.
711   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
712   numElements =
713     ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
714   if (!numElements)
715     numElements = CGF.EmitScalarExpr(*e->getArraySize());
716   assert(isa<llvm::IntegerType>(numElements->getType()));
717 
718   // The number of elements can be have an arbitrary integer type;
719   // essentially, we need to multiply it by a constant factor, add a
720   // cookie size, and verify that the result is representable as a
721   // size_t.  That's just a gloss, though, and it's wrong in one
722   // important way: if the count is negative, it's an error even if
723   // the cookie size would bring the total size >= 0.
724   bool isSigned
725     = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
726   llvm::IntegerType *numElementsType
727     = cast<llvm::IntegerType>(numElements->getType());
728   unsigned numElementsWidth = numElementsType->getBitWidth();
729 
730   // Compute the constant factor.
731   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
732   while (const ConstantArrayType *CAT
733              = CGF.getContext().getAsConstantArrayType(type)) {
734     type = CAT->getElementType();
735     arraySizeMultiplier *= CAT->getSize();
736   }
737 
738   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
739   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
740   typeSizeMultiplier *= arraySizeMultiplier;
741 
742   // This will be a size_t.
743   llvm::Value *size;
744 
745   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
746   // Don't bloat the -O0 code.
747   if (llvm::ConstantInt *numElementsC =
748         dyn_cast<llvm::ConstantInt>(numElements)) {
749     const llvm::APInt &count = numElementsC->getValue();
750 
751     bool hasAnyOverflow = false;
752 
753     // If 'count' was a negative number, it's an overflow.
754     if (isSigned && count.isNegative())
755       hasAnyOverflow = true;
756 
757     // We want to do all this arithmetic in size_t.  If numElements is
758     // wider than that, check whether it's already too big, and if so,
759     // overflow.
760     else if (numElementsWidth > sizeWidth &&
761              numElementsWidth - sizeWidth > count.countLeadingZeros())
762       hasAnyOverflow = true;
763 
764     // Okay, compute a count at the right width.
765     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
766 
767     // If there is a brace-initializer, we cannot allocate fewer elements than
768     // there are initializers. If we do, that's treated like an overflow.
769     if (adjustedCount.ult(minElements))
770       hasAnyOverflow = true;
771 
772     // Scale numElements by that.  This might overflow, but we don't
773     // care because it only overflows if allocationSize does, too, and
774     // if that overflows then we shouldn't use this.
775     numElements = llvm::ConstantInt::get(CGF.SizeTy,
776                                          adjustedCount * arraySizeMultiplier);
777 
778     // Compute the size before cookie, and track whether it overflowed.
779     bool overflow;
780     llvm::APInt allocationSize
781       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
782     hasAnyOverflow |= overflow;
783 
784     // Add in the cookie, and check whether it's overflowed.
785     if (cookieSize != 0) {
786       // Save the current size without a cookie.  This shouldn't be
787       // used if there was overflow.
788       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
789 
790       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
791       hasAnyOverflow |= overflow;
792     }
793 
794     // On overflow, produce a -1 so operator new will fail.
795     if (hasAnyOverflow) {
796       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
797     } else {
798       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
799     }
800 
801   // Otherwise, we might need to use the overflow intrinsics.
802   } else {
803     // There are up to five conditions we need to test for:
804     // 1) if isSigned, we need to check whether numElements is negative;
805     // 2) if numElementsWidth > sizeWidth, we need to check whether
806     //   numElements is larger than something representable in size_t;
807     // 3) if minElements > 0, we need to check whether numElements is smaller
808     //    than that.
809     // 4) we need to compute
810     //      sizeWithoutCookie := numElements * typeSizeMultiplier
811     //    and check whether it overflows; and
812     // 5) if we need a cookie, we need to compute
813     //      size := sizeWithoutCookie + cookieSize
814     //    and check whether it overflows.
815 
816     llvm::Value *hasOverflow = nullptr;
817 
818     // If numElementsWidth > sizeWidth, then one way or another, we're
819     // going to have to do a comparison for (2), and this happens to
820     // take care of (1), too.
821     if (numElementsWidth > sizeWidth) {
822       llvm::APInt threshold(numElementsWidth, 1);
823       threshold <<= sizeWidth;
824 
825       llvm::Value *thresholdV
826         = llvm::ConstantInt::get(numElementsType, threshold);
827 
828       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
829       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
830 
831     // Otherwise, if we're signed, we want to sext up to size_t.
832     } else if (isSigned) {
833       if (numElementsWidth < sizeWidth)
834         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
835 
836       // If there's a non-1 type size multiplier, then we can do the
837       // signedness check at the same time as we do the multiply
838       // because a negative number times anything will cause an
839       // unsigned overflow.  Otherwise, we have to do it here. But at least
840       // in this case, we can subsume the >= minElements check.
841       if (typeSizeMultiplier == 1)
842         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
843                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
844 
845     // Otherwise, zext up to size_t if necessary.
846     } else if (numElementsWidth < sizeWidth) {
847       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
848     }
849 
850     assert(numElements->getType() == CGF.SizeTy);
851 
852     if (minElements) {
853       // Don't allow allocation of fewer elements than we have initializers.
854       if (!hasOverflow) {
855         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
856                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
857       } else if (numElementsWidth > sizeWidth) {
858         // The other existing overflow subsumes this check.
859         // We do an unsigned comparison, since any signed value < -1 is
860         // taken care of either above or below.
861         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
862                           CGF.Builder.CreateICmpULT(numElements,
863                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
864       }
865     }
866 
867     size = numElements;
868 
869     // Multiply by the type size if necessary.  This multiplier
870     // includes all the factors for nested arrays.
871     //
872     // This step also causes numElements to be scaled up by the
873     // nested-array factor if necessary.  Overflow on this computation
874     // can be ignored because the result shouldn't be used if
875     // allocation fails.
876     if (typeSizeMultiplier != 1) {
877       llvm::Function *umul_with_overflow
878         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
879 
880       llvm::Value *tsmV =
881         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
882       llvm::Value *result =
883           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
884 
885       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
886       if (hasOverflow)
887         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
888       else
889         hasOverflow = overflowed;
890 
891       size = CGF.Builder.CreateExtractValue(result, 0);
892 
893       // Also scale up numElements by the array size multiplier.
894       if (arraySizeMultiplier != 1) {
895         // If the base element type size is 1, then we can re-use the
896         // multiply we just did.
897         if (typeSize.isOne()) {
898           assert(arraySizeMultiplier == typeSizeMultiplier);
899           numElements = size;
900 
901         // Otherwise we need a separate multiply.
902         } else {
903           llvm::Value *asmV =
904             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
905           numElements = CGF.Builder.CreateMul(numElements, asmV);
906         }
907       }
908     } else {
909       // numElements doesn't need to be scaled.
910       assert(arraySizeMultiplier == 1);
911     }
912 
913     // Add in the cookie size if necessary.
914     if (cookieSize != 0) {
915       sizeWithoutCookie = size;
916 
917       llvm::Function *uadd_with_overflow
918         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
919 
920       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
921       llvm::Value *result =
922           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
923 
924       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
925       if (hasOverflow)
926         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
927       else
928         hasOverflow = overflowed;
929 
930       size = CGF.Builder.CreateExtractValue(result, 0);
931     }
932 
933     // If we had any possibility of dynamic overflow, make a select to
934     // overwrite 'size' with an all-ones value, which should cause
935     // operator new to throw.
936     if (hasOverflow)
937       size = CGF.Builder.CreateSelect(hasOverflow,
938                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
939                                       size);
940   }
941 
942   if (cookieSize == 0)
943     sizeWithoutCookie = size;
944   else
945     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
946 
947   return size;
948 }
949 
950 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
951                                     QualType AllocType, Address NewPtr,
952                                     AggValueSlot::Overlap_t MayOverlap) {
953   // FIXME: Refactor with EmitExprAsInit.
954   switch (CGF.getEvaluationKind(AllocType)) {
955   case TEK_Scalar:
956     CGF.EmitScalarInit(Init, nullptr,
957                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
958     return;
959   case TEK_Complex:
960     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
961                                   /*isInit*/ true);
962     return;
963   case TEK_Aggregate: {
964     AggValueSlot Slot
965       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
966                               AggValueSlot::IsDestructed,
967                               AggValueSlot::DoesNotNeedGCBarriers,
968                               AggValueSlot::IsNotAliased,
969                               MayOverlap, AggValueSlot::IsNotZeroed,
970                               AggValueSlot::IsSanitizerChecked);
971     CGF.EmitAggExpr(Init, Slot);
972     return;
973   }
974   }
975   llvm_unreachable("bad evaluation kind");
976 }
977 
978 void CodeGenFunction::EmitNewArrayInitializer(
979     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
980     Address BeginPtr, llvm::Value *NumElements,
981     llvm::Value *AllocSizeWithoutCookie) {
982   // If we have a type with trivial initialization and no initializer,
983   // there's nothing to do.
984   if (!E->hasInitializer())
985     return;
986 
987   Address CurPtr = BeginPtr;
988 
989   unsigned InitListElements = 0;
990 
991   const Expr *Init = E->getInitializer();
992   Address EndOfInit = Address::invalid();
993   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
994   EHScopeStack::stable_iterator Cleanup;
995   llvm::Instruction *CleanupDominator = nullptr;
996 
997   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
998   CharUnits ElementAlign =
999     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1000 
1001   // Attempt to perform zero-initialization using memset.
1002   auto TryMemsetInitialization = [&]() -> bool {
1003     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1004     // we can initialize with a memset to -1.
1005     if (!CGM.getTypes().isZeroInitializable(ElementType))
1006       return false;
1007 
1008     // Optimization: since zero initialization will just set the memory
1009     // to all zeroes, generate a single memset to do it in one shot.
1010 
1011     // Subtract out the size of any elements we've already initialized.
1012     auto *RemainingSize = AllocSizeWithoutCookie;
1013     if (InitListElements) {
1014       // We know this can't overflow; we check this when doing the allocation.
1015       auto *InitializedSize = llvm::ConstantInt::get(
1016           RemainingSize->getType(),
1017           getContext().getTypeSizeInChars(ElementType).getQuantity() *
1018               InitListElements);
1019       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1020     }
1021 
1022     // Create the memset.
1023     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1024     return true;
1025   };
1026 
1027   // If the initializer is an initializer list, first do the explicit elements.
1028   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1029     // Initializing from a (braced) string literal is a special case; the init
1030     // list element does not initialize a (single) array element.
1031     if (ILE->isStringLiteralInit()) {
1032       // Initialize the initial portion of length equal to that of the string
1033       // literal. The allocation must be for at least this much; we emitted a
1034       // check for that earlier.
1035       AggValueSlot Slot =
1036           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1037                                 AggValueSlot::IsDestructed,
1038                                 AggValueSlot::DoesNotNeedGCBarriers,
1039                                 AggValueSlot::IsNotAliased,
1040                                 AggValueSlot::DoesNotOverlap,
1041                                 AggValueSlot::IsNotZeroed,
1042                                 AggValueSlot::IsSanitizerChecked);
1043       EmitAggExpr(ILE->getInit(0), Slot);
1044 
1045       // Move past these elements.
1046       InitListElements =
1047           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1048               ->getSize().getZExtValue();
1049       CurPtr =
1050           Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1051                                             Builder.getSize(InitListElements),
1052                                             "string.init.end"),
1053                   CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1054                                                           ElementSize));
1055 
1056       // Zero out the rest, if any remain.
1057       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1058       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1059         bool OK = TryMemsetInitialization();
1060         (void)OK;
1061         assert(OK && "couldn't memset character type?");
1062       }
1063       return;
1064     }
1065 
1066     InitListElements = ILE->getNumInits();
1067 
1068     // If this is a multi-dimensional array new, we will initialize multiple
1069     // elements with each init list element.
1070     QualType AllocType = E->getAllocatedType();
1071     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1072             AllocType->getAsArrayTypeUnsafe())) {
1073       ElementTy = ConvertTypeForMem(AllocType);
1074       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1075       InitListElements *= getContext().getConstantArrayElementCount(CAT);
1076     }
1077 
1078     // Enter a partial-destruction Cleanup if necessary.
1079     if (needsEHCleanup(DtorKind)) {
1080       // In principle we could tell the Cleanup where we are more
1081       // directly, but the control flow can get so varied here that it
1082       // would actually be quite complex.  Therefore we go through an
1083       // alloca.
1084       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1085                                    "array.init.end");
1086       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1087       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1088                                        ElementType, ElementAlign,
1089                                        getDestroyer(DtorKind));
1090       Cleanup = EHStack.stable_begin();
1091     }
1092 
1093     CharUnits StartAlign = CurPtr.getAlignment();
1094     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1095       // Tell the cleanup that it needs to destroy up to this
1096       // element.  TODO: some of these stores can be trivially
1097       // observed to be unnecessary.
1098       if (EndOfInit.isValid()) {
1099         auto FinishedPtr =
1100           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1101         Builder.CreateStore(FinishedPtr, EndOfInit);
1102       }
1103       // FIXME: If the last initializer is an incomplete initializer list for
1104       // an array, and we have an array filler, we can fold together the two
1105       // initialization loops.
1106       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1107                               ILE->getInit(i)->getType(), CurPtr,
1108                               AggValueSlot::DoesNotOverlap);
1109       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1110                                                  Builder.getSize(1),
1111                                                  "array.exp.next"),
1112                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1113     }
1114 
1115     // The remaining elements are filled with the array filler expression.
1116     Init = ILE->getArrayFiller();
1117 
1118     // Extract the initializer for the individual array elements by pulling
1119     // out the array filler from all the nested initializer lists. This avoids
1120     // generating a nested loop for the initialization.
1121     while (Init && Init->getType()->isConstantArrayType()) {
1122       auto *SubILE = dyn_cast<InitListExpr>(Init);
1123       if (!SubILE)
1124         break;
1125       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1126       Init = SubILE->getArrayFiller();
1127     }
1128 
1129     // Switch back to initializing one base element at a time.
1130     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1131   }
1132 
1133   // If all elements have already been initialized, skip any further
1134   // initialization.
1135   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1136   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1137     // If there was a Cleanup, deactivate it.
1138     if (CleanupDominator)
1139       DeactivateCleanupBlock(Cleanup, CleanupDominator);
1140     return;
1141   }
1142 
1143   assert(Init && "have trailing elements to initialize but no initializer");
1144 
1145   // If this is a constructor call, try to optimize it out, and failing that
1146   // emit a single loop to initialize all remaining elements.
1147   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1148     CXXConstructorDecl *Ctor = CCE->getConstructor();
1149     if (Ctor->isTrivial()) {
1150       // If new expression did not specify value-initialization, then there
1151       // is no initialization.
1152       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1153         return;
1154 
1155       if (TryMemsetInitialization())
1156         return;
1157     }
1158 
1159     // Store the new Cleanup position for irregular Cleanups.
1160     //
1161     // FIXME: Share this cleanup with the constructor call emission rather than
1162     // having it create a cleanup of its own.
1163     if (EndOfInit.isValid())
1164       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1165 
1166     // Emit a constructor call loop to initialize the remaining elements.
1167     if (InitListElements)
1168       NumElements = Builder.CreateSub(
1169           NumElements,
1170           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1171     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1172                                /*NewPointerIsChecked*/true,
1173                                CCE->requiresZeroInitialization());
1174     return;
1175   }
1176 
1177   // If this is value-initialization, we can usually use memset.
1178   ImplicitValueInitExpr IVIE(ElementType);
1179   if (isa<ImplicitValueInitExpr>(Init)) {
1180     if (TryMemsetInitialization())
1181       return;
1182 
1183     // Switch to an ImplicitValueInitExpr for the element type. This handles
1184     // only one case: multidimensional array new of pointers to members. In
1185     // all other cases, we already have an initializer for the array element.
1186     Init = &IVIE;
1187   }
1188 
1189   // At this point we should have found an initializer for the individual
1190   // elements of the array.
1191   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1192          "got wrong type of element to initialize");
1193 
1194   // If we have an empty initializer list, we can usually use memset.
1195   if (auto *ILE = dyn_cast<InitListExpr>(Init))
1196     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1197       return;
1198 
1199   // If we have a struct whose every field is value-initialized, we can
1200   // usually use memset.
1201   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1202     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1203       if (RType->getDecl()->isStruct()) {
1204         unsigned NumElements = 0;
1205         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1206           NumElements = CXXRD->getNumBases();
1207         for (auto *Field : RType->getDecl()->fields())
1208           if (!Field->isUnnamedBitfield())
1209             ++NumElements;
1210         // FIXME: Recurse into nested InitListExprs.
1211         if (ILE->getNumInits() == NumElements)
1212           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1213             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1214               --NumElements;
1215         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1216           return;
1217       }
1218     }
1219   }
1220 
1221   // Create the loop blocks.
1222   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1223   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1224   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1225 
1226   // Find the end of the array, hoisted out of the loop.
1227   llvm::Value *EndPtr =
1228     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1229 
1230   // If the number of elements isn't constant, we have to now check if there is
1231   // anything left to initialize.
1232   if (!ConstNum) {
1233     llvm::Value *IsEmpty =
1234       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1235     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1236   }
1237 
1238   // Enter the loop.
1239   EmitBlock(LoopBB);
1240 
1241   // Set up the current-element phi.
1242   llvm::PHINode *CurPtrPhi =
1243     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1244   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1245 
1246   CurPtr = Address(CurPtrPhi, ElementAlign);
1247 
1248   // Store the new Cleanup position for irregular Cleanups.
1249   if (EndOfInit.isValid())
1250     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1251 
1252   // Enter a partial-destruction Cleanup if necessary.
1253   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1254     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1255                                    ElementType, ElementAlign,
1256                                    getDestroyer(DtorKind));
1257     Cleanup = EHStack.stable_begin();
1258     CleanupDominator = Builder.CreateUnreachable();
1259   }
1260 
1261   // Emit the initializer into this element.
1262   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1263                           AggValueSlot::DoesNotOverlap);
1264 
1265   // Leave the Cleanup if we entered one.
1266   if (CleanupDominator) {
1267     DeactivateCleanupBlock(Cleanup, CleanupDominator);
1268     CleanupDominator->eraseFromParent();
1269   }
1270 
1271   // Advance to the next element by adjusting the pointer type as necessary.
1272   llvm::Value *NextPtr =
1273     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1274                                        "array.next");
1275 
1276   // Check whether we've gotten to the end of the array and, if so,
1277   // exit the loop.
1278   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1279   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1280   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1281 
1282   EmitBlock(ContBB);
1283 }
1284 
1285 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1286                                QualType ElementType, llvm::Type *ElementTy,
1287                                Address NewPtr, llvm::Value *NumElements,
1288                                llvm::Value *AllocSizeWithoutCookie) {
1289   ApplyDebugLocation DL(CGF, E);
1290   if (E->isArray())
1291     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1292                                 AllocSizeWithoutCookie);
1293   else if (const Expr *Init = E->getInitializer())
1294     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1295                             AggValueSlot::DoesNotOverlap);
1296 }
1297 
1298 /// Emit a call to an operator new or operator delete function, as implicitly
1299 /// created by new-expressions and delete-expressions.
1300 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1301                                 const FunctionDecl *CalleeDecl,
1302                                 const FunctionProtoType *CalleeType,
1303                                 const CallArgList &Args) {
1304   llvm::CallBase *CallOrInvoke;
1305   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1306   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1307   RValue RV =
1308       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1309                        Args, CalleeType, /*ChainCall=*/false),
1310                    Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1311 
1312   /// C++1y [expr.new]p10:
1313   ///   [In a new-expression,] an implementation is allowed to omit a call
1314   ///   to a replaceable global allocation function.
1315   ///
1316   /// We model such elidable calls with the 'builtin' attribute.
1317   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1318   if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1319       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1320     CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1321                                llvm::Attribute::Builtin);
1322   }
1323 
1324   return RV;
1325 }
1326 
1327 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1328                                                  const CallExpr *TheCall,
1329                                                  bool IsDelete) {
1330   CallArgList Args;
1331   EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1332   // Find the allocation or deallocation function that we're calling.
1333   ASTContext &Ctx = getContext();
1334   DeclarationName Name = Ctx.DeclarationNames
1335       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1336 
1337   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1338     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1339       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1340         return EmitNewDeleteCall(*this, FD, Type, Args);
1341   llvm_unreachable("predeclared global operator new/delete is missing");
1342 }
1343 
1344 namespace {
1345 /// The parameters to pass to a usual operator delete.
1346 struct UsualDeleteParams {
1347   bool DestroyingDelete = false;
1348   bool Size = false;
1349   bool Alignment = false;
1350 };
1351 }
1352 
1353 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1354   UsualDeleteParams Params;
1355 
1356   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1357   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1358 
1359   // The first argument is always a void*.
1360   ++AI;
1361 
1362   // The next parameter may be a std::destroying_delete_t.
1363   if (FD->isDestroyingOperatorDelete()) {
1364     Params.DestroyingDelete = true;
1365     assert(AI != AE);
1366     ++AI;
1367   }
1368 
1369   // Figure out what other parameters we should be implicitly passing.
1370   if (AI != AE && (*AI)->isIntegerType()) {
1371     Params.Size = true;
1372     ++AI;
1373   }
1374 
1375   if (AI != AE && (*AI)->isAlignValT()) {
1376     Params.Alignment = true;
1377     ++AI;
1378   }
1379 
1380   assert(AI == AE && "unexpected usual deallocation function parameter");
1381   return Params;
1382 }
1383 
1384 namespace {
1385   /// A cleanup to call the given 'operator delete' function upon abnormal
1386   /// exit from a new expression. Templated on a traits type that deals with
1387   /// ensuring that the arguments dominate the cleanup if necessary.
1388   template<typename Traits>
1389   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1390     /// Type used to hold llvm::Value*s.
1391     typedef typename Traits::ValueTy ValueTy;
1392     /// Type used to hold RValues.
1393     typedef typename Traits::RValueTy RValueTy;
1394     struct PlacementArg {
1395       RValueTy ArgValue;
1396       QualType ArgType;
1397     };
1398 
1399     unsigned NumPlacementArgs : 31;
1400     unsigned PassAlignmentToPlacementDelete : 1;
1401     const FunctionDecl *OperatorDelete;
1402     ValueTy Ptr;
1403     ValueTy AllocSize;
1404     CharUnits AllocAlign;
1405 
1406     PlacementArg *getPlacementArgs() {
1407       return reinterpret_cast<PlacementArg *>(this + 1);
1408     }
1409 
1410   public:
1411     static size_t getExtraSize(size_t NumPlacementArgs) {
1412       return NumPlacementArgs * sizeof(PlacementArg);
1413     }
1414 
1415     CallDeleteDuringNew(size_t NumPlacementArgs,
1416                         const FunctionDecl *OperatorDelete, ValueTy Ptr,
1417                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1418                         CharUnits AllocAlign)
1419       : NumPlacementArgs(NumPlacementArgs),
1420         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1421         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1422         AllocAlign(AllocAlign) {}
1423 
1424     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1425       assert(I < NumPlacementArgs && "index out of range");
1426       getPlacementArgs()[I] = {Arg, Type};
1427     }
1428 
1429     void Emit(CodeGenFunction &CGF, Flags flags) override {
1430       const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1431       CallArgList DeleteArgs;
1432 
1433       // The first argument is always a void* (or C* for a destroying operator
1434       // delete for class type C).
1435       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1436 
1437       // Figure out what other parameters we should be implicitly passing.
1438       UsualDeleteParams Params;
1439       if (NumPlacementArgs) {
1440         // A placement deallocation function is implicitly passed an alignment
1441         // if the placement allocation function was, but is never passed a size.
1442         Params.Alignment = PassAlignmentToPlacementDelete;
1443       } else {
1444         // For a non-placement new-expression, 'operator delete' can take a
1445         // size and/or an alignment if it has the right parameters.
1446         Params = getUsualDeleteParams(OperatorDelete);
1447       }
1448 
1449       assert(!Params.DestroyingDelete &&
1450              "should not call destroying delete in a new-expression");
1451 
1452       // The second argument can be a std::size_t (for non-placement delete).
1453       if (Params.Size)
1454         DeleteArgs.add(Traits::get(CGF, AllocSize),
1455                        CGF.getContext().getSizeType());
1456 
1457       // The next (second or third) argument can be a std::align_val_t, which
1458       // is an enum whose underlying type is std::size_t.
1459       // FIXME: Use the right type as the parameter type. Note that in a call
1460       // to operator delete(size_t, ...), we may not have it available.
1461       if (Params.Alignment)
1462         DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1463                            CGF.SizeTy, AllocAlign.getQuantity())),
1464                        CGF.getContext().getSizeType());
1465 
1466       // Pass the rest of the arguments, which must match exactly.
1467       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1468         auto Arg = getPlacementArgs()[I];
1469         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1470       }
1471 
1472       // Call 'operator delete'.
1473       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1474     }
1475   };
1476 }
1477 
1478 /// Enter a cleanup to call 'operator delete' if the initializer in a
1479 /// new-expression throws.
1480 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1481                                   const CXXNewExpr *E,
1482                                   Address NewPtr,
1483                                   llvm::Value *AllocSize,
1484                                   CharUnits AllocAlign,
1485                                   const CallArgList &NewArgs) {
1486   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1487 
1488   // If we're not inside a conditional branch, then the cleanup will
1489   // dominate and we can do the easier (and more efficient) thing.
1490   if (!CGF.isInConditionalBranch()) {
1491     struct DirectCleanupTraits {
1492       typedef llvm::Value *ValueTy;
1493       typedef RValue RValueTy;
1494       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1495       static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1496     };
1497 
1498     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1499 
1500     DirectCleanup *Cleanup = CGF.EHStack
1501       .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1502                                            E->getNumPlacementArgs(),
1503                                            E->getOperatorDelete(),
1504                                            NewPtr.getPointer(),
1505                                            AllocSize,
1506                                            E->passAlignment(),
1507                                            AllocAlign);
1508     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1509       auto &Arg = NewArgs[I + NumNonPlacementArgs];
1510       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1511     }
1512 
1513     return;
1514   }
1515 
1516   // Otherwise, we need to save all this stuff.
1517   DominatingValue<RValue>::saved_type SavedNewPtr =
1518     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1519   DominatingValue<RValue>::saved_type SavedAllocSize =
1520     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1521 
1522   struct ConditionalCleanupTraits {
1523     typedef DominatingValue<RValue>::saved_type ValueTy;
1524     typedef DominatingValue<RValue>::saved_type RValueTy;
1525     static RValue get(CodeGenFunction &CGF, ValueTy V) {
1526       return V.restore(CGF);
1527     }
1528   };
1529   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1530 
1531   ConditionalCleanup *Cleanup = CGF.EHStack
1532     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1533                                               E->getNumPlacementArgs(),
1534                                               E->getOperatorDelete(),
1535                                               SavedNewPtr,
1536                                               SavedAllocSize,
1537                                               E->passAlignment(),
1538                                               AllocAlign);
1539   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1540     auto &Arg = NewArgs[I + NumNonPlacementArgs];
1541     Cleanup->setPlacementArg(
1542         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1543   }
1544 
1545   CGF.initFullExprCleanup();
1546 }
1547 
1548 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1549   // The element type being allocated.
1550   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1551 
1552   // 1. Build a call to the allocation function.
1553   FunctionDecl *allocator = E->getOperatorNew();
1554 
1555   // If there is a brace-initializer, cannot allocate fewer elements than inits.
1556   unsigned minElements = 0;
1557   if (E->isArray() && E->hasInitializer()) {
1558     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1559     if (ILE && ILE->isStringLiteralInit())
1560       minElements =
1561           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1562               ->getSize().getZExtValue();
1563     else if (ILE)
1564       minElements = ILE->getNumInits();
1565   }
1566 
1567   llvm::Value *numElements = nullptr;
1568   llvm::Value *allocSizeWithoutCookie = nullptr;
1569   llvm::Value *allocSize =
1570     EmitCXXNewAllocSize(*this, E, minElements, numElements,
1571                         allocSizeWithoutCookie);
1572   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1573 
1574   // Emit the allocation call.  If the allocator is a global placement
1575   // operator, just "inline" it directly.
1576   Address allocation = Address::invalid();
1577   CallArgList allocatorArgs;
1578   if (allocator->isReservedGlobalPlacementOperator()) {
1579     assert(E->getNumPlacementArgs() == 1);
1580     const Expr *arg = *E->placement_arguments().begin();
1581 
1582     LValueBaseInfo BaseInfo;
1583     allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1584 
1585     // The pointer expression will, in many cases, be an opaque void*.
1586     // In these cases, discard the computed alignment and use the
1587     // formal alignment of the allocated type.
1588     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1589       allocation = Address(allocation.getPointer(), allocAlign);
1590 
1591     // Set up allocatorArgs for the call to operator delete if it's not
1592     // the reserved global operator.
1593     if (E->getOperatorDelete() &&
1594         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1595       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1596       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1597     }
1598 
1599   } else {
1600     const FunctionProtoType *allocatorType =
1601       allocator->getType()->castAs<FunctionProtoType>();
1602     unsigned ParamsToSkip = 0;
1603 
1604     // The allocation size is the first argument.
1605     QualType sizeType = getContext().getSizeType();
1606     allocatorArgs.add(RValue::get(allocSize), sizeType);
1607     ++ParamsToSkip;
1608 
1609     if (allocSize != allocSizeWithoutCookie) {
1610       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1611       allocAlign = std::max(allocAlign, cookieAlign);
1612     }
1613 
1614     // The allocation alignment may be passed as the second argument.
1615     if (E->passAlignment()) {
1616       QualType AlignValT = sizeType;
1617       if (allocatorType->getNumParams() > 1) {
1618         AlignValT = allocatorType->getParamType(1);
1619         assert(getContext().hasSameUnqualifiedType(
1620                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1621                    sizeType) &&
1622                "wrong type for alignment parameter");
1623         ++ParamsToSkip;
1624       } else {
1625         // Corner case, passing alignment to 'operator new(size_t, ...)'.
1626         assert(allocator->isVariadic() && "can't pass alignment to allocator");
1627       }
1628       allocatorArgs.add(
1629           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1630           AlignValT);
1631     }
1632 
1633     // FIXME: Why do we not pass a CalleeDecl here?
1634     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1635                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1636 
1637     RValue RV =
1638       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1639 
1640     // If this was a call to a global replaceable allocation function that does
1641     // not take an alignment argument, the allocator is known to produce
1642     // storage that's suitably aligned for any object that fits, up to a known
1643     // threshold. Otherwise assume it's suitably aligned for the allocated type.
1644     CharUnits allocationAlign = allocAlign;
1645     if (!E->passAlignment() &&
1646         allocator->isReplaceableGlobalAllocationFunction()) {
1647       unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1648           Target.getNewAlign(), getContext().getTypeSize(allocType)));
1649       allocationAlign = std::max(
1650           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1651     }
1652 
1653     allocation = Address(RV.getScalarVal(), allocationAlign);
1654   }
1655 
1656   // Emit a null check on the allocation result if the allocation
1657   // function is allowed to return null (because it has a non-throwing
1658   // exception spec or is the reserved placement new) and we have an
1659   // interesting initializer will be running sanitizers on the initialization.
1660   bool nullCheck = E->shouldNullCheckAllocation() &&
1661                    (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1662                     sanitizePerformTypeCheck());
1663 
1664   llvm::BasicBlock *nullCheckBB = nullptr;
1665   llvm::BasicBlock *contBB = nullptr;
1666 
1667   // The null-check means that the initializer is conditionally
1668   // evaluated.
1669   ConditionalEvaluation conditional(*this);
1670 
1671   if (nullCheck) {
1672     conditional.begin(*this);
1673 
1674     nullCheckBB = Builder.GetInsertBlock();
1675     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1676     contBB = createBasicBlock("new.cont");
1677 
1678     llvm::Value *isNull =
1679       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1680     Builder.CreateCondBr(isNull, contBB, notNullBB);
1681     EmitBlock(notNullBB);
1682   }
1683 
1684   // If there's an operator delete, enter a cleanup to call it if an
1685   // exception is thrown.
1686   EHScopeStack::stable_iterator operatorDeleteCleanup;
1687   llvm::Instruction *cleanupDominator = nullptr;
1688   if (E->getOperatorDelete() &&
1689       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1690     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1691                           allocatorArgs);
1692     operatorDeleteCleanup = EHStack.stable_begin();
1693     cleanupDominator = Builder.CreateUnreachable();
1694   }
1695 
1696   assert((allocSize == allocSizeWithoutCookie) ==
1697          CalculateCookiePadding(*this, E).isZero());
1698   if (allocSize != allocSizeWithoutCookie) {
1699     assert(E->isArray());
1700     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1701                                                        numElements,
1702                                                        E, allocType);
1703   }
1704 
1705   llvm::Type *elementTy = ConvertTypeForMem(allocType);
1706   Address result = Builder.CreateElementBitCast(allocation, elementTy);
1707 
1708   // Passing pointer through launder.invariant.group to avoid propagation of
1709   // vptrs information which may be included in previous type.
1710   // To not break LTO with different optimizations levels, we do it regardless
1711   // of optimization level.
1712   if (CGM.getCodeGenOpts().StrictVTablePointers &&
1713       allocator->isReservedGlobalPlacementOperator())
1714     result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1715                      result.getAlignment());
1716 
1717   // Emit sanitizer checks for pointer value now, so that in the case of an
1718   // array it was checked only once and not at each constructor call. We may
1719   // have already checked that the pointer is non-null.
1720   // FIXME: If we have an array cookie and a potentially-throwing allocator,
1721   // we'll null check the wrong pointer here.
1722   SanitizerSet SkippedChecks;
1723   SkippedChecks.set(SanitizerKind::Null, nullCheck);
1724   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1725                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1726                 result.getPointer(), allocType, result.getAlignment(),
1727                 SkippedChecks, numElements);
1728 
1729   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1730                      allocSizeWithoutCookie);
1731   if (E->isArray()) {
1732     // NewPtr is a pointer to the base element type.  If we're
1733     // allocating an array of arrays, we'll need to cast back to the
1734     // array pointer type.
1735     llvm::Type *resultType = ConvertTypeForMem(E->getType());
1736     if (result.getType() != resultType)
1737       result = Builder.CreateBitCast(result, resultType);
1738   }
1739 
1740   // Deactivate the 'operator delete' cleanup if we finished
1741   // initialization.
1742   if (operatorDeleteCleanup.isValid()) {
1743     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1744     cleanupDominator->eraseFromParent();
1745   }
1746 
1747   llvm::Value *resultPtr = result.getPointer();
1748   if (nullCheck) {
1749     conditional.end(*this);
1750 
1751     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1752     EmitBlock(contBB);
1753 
1754     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1755     PHI->addIncoming(resultPtr, notNullBB);
1756     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1757                      nullCheckBB);
1758 
1759     resultPtr = PHI;
1760   }
1761 
1762   return resultPtr;
1763 }
1764 
1765 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1766                                      llvm::Value *Ptr, QualType DeleteTy,
1767                                      llvm::Value *NumElements,
1768                                      CharUnits CookieSize) {
1769   assert((!NumElements && CookieSize.isZero()) ||
1770          DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1771 
1772   const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1773   CallArgList DeleteArgs;
1774 
1775   auto Params = getUsualDeleteParams(DeleteFD);
1776   auto ParamTypeIt = DeleteFTy->param_type_begin();
1777 
1778   // Pass the pointer itself.
1779   QualType ArgTy = *ParamTypeIt++;
1780   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1781   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1782 
1783   // Pass the std::destroying_delete tag if present.
1784   if (Params.DestroyingDelete) {
1785     QualType DDTag = *ParamTypeIt++;
1786     // Just pass an 'undef'. We expect the tag type to be an empty struct.
1787     auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1788     DeleteArgs.add(RValue::get(V), DDTag);
1789   }
1790 
1791   // Pass the size if the delete function has a size_t parameter.
1792   if (Params.Size) {
1793     QualType SizeType = *ParamTypeIt++;
1794     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1795     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1796                                                DeleteTypeSize.getQuantity());
1797 
1798     // For array new, multiply by the number of elements.
1799     if (NumElements)
1800       Size = Builder.CreateMul(Size, NumElements);
1801 
1802     // If there is a cookie, add the cookie size.
1803     if (!CookieSize.isZero())
1804       Size = Builder.CreateAdd(
1805           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1806 
1807     DeleteArgs.add(RValue::get(Size), SizeType);
1808   }
1809 
1810   // Pass the alignment if the delete function has an align_val_t parameter.
1811   if (Params.Alignment) {
1812     QualType AlignValType = *ParamTypeIt++;
1813     CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1814         getContext().getTypeAlignIfKnown(DeleteTy));
1815     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1816                                                 DeleteTypeAlign.getQuantity());
1817     DeleteArgs.add(RValue::get(Align), AlignValType);
1818   }
1819 
1820   assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1821          "unknown parameter to usual delete function");
1822 
1823   // Emit the call to delete.
1824   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1825 }
1826 
1827 namespace {
1828   /// Calls the given 'operator delete' on a single object.
1829   struct CallObjectDelete final : EHScopeStack::Cleanup {
1830     llvm::Value *Ptr;
1831     const FunctionDecl *OperatorDelete;
1832     QualType ElementType;
1833 
1834     CallObjectDelete(llvm::Value *Ptr,
1835                      const FunctionDecl *OperatorDelete,
1836                      QualType ElementType)
1837       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1838 
1839     void Emit(CodeGenFunction &CGF, Flags flags) override {
1840       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1841     }
1842   };
1843 }
1844 
1845 void
1846 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1847                                              llvm::Value *CompletePtr,
1848                                              QualType ElementType) {
1849   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1850                                         OperatorDelete, ElementType);
1851 }
1852 
1853 /// Emit the code for deleting a single object with a destroying operator
1854 /// delete. If the element type has a non-virtual destructor, Ptr has already
1855 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1856 /// Ptr points to an object of the static type.
1857 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1858                                        const CXXDeleteExpr *DE, Address Ptr,
1859                                        QualType ElementType) {
1860   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1861   if (Dtor && Dtor->isVirtual())
1862     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1863                                                 Dtor);
1864   else
1865     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1866 }
1867 
1868 /// Emit the code for deleting a single object.
1869 static void EmitObjectDelete(CodeGenFunction &CGF,
1870                              const CXXDeleteExpr *DE,
1871                              Address Ptr,
1872                              QualType ElementType) {
1873   // C++11 [expr.delete]p3:
1874   //   If the static type of the object to be deleted is different from its
1875   //   dynamic type, the static type shall be a base class of the dynamic type
1876   //   of the object to be deleted and the static type shall have a virtual
1877   //   destructor or the behavior is undefined.
1878   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1879                     DE->getExprLoc(), Ptr.getPointer(),
1880                     ElementType);
1881 
1882   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1883   assert(!OperatorDelete->isDestroyingOperatorDelete());
1884 
1885   // Find the destructor for the type, if applicable.  If the
1886   // destructor is virtual, we'll just emit the vcall and return.
1887   const CXXDestructorDecl *Dtor = nullptr;
1888   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1889     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1890     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1891       Dtor = RD->getDestructor();
1892 
1893       if (Dtor->isVirtual()) {
1894         bool UseVirtualCall = true;
1895         const Expr *Base = DE->getArgument();
1896         if (auto *DevirtualizedDtor =
1897                 dyn_cast_or_null<const CXXDestructorDecl>(
1898                     Dtor->getDevirtualizedMethod(
1899                         Base, CGF.CGM.getLangOpts().AppleKext))) {
1900           UseVirtualCall = false;
1901           const CXXRecordDecl *DevirtualizedClass =
1902               DevirtualizedDtor->getParent();
1903           if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1904             // Devirtualized to the class of the base type (the type of the
1905             // whole expression).
1906             Dtor = DevirtualizedDtor;
1907           } else {
1908             // Devirtualized to some other type. Would need to cast the this
1909             // pointer to that type but we don't have support for that yet, so
1910             // do a virtual call. FIXME: handle the case where it is
1911             // devirtualized to the derived type (the type of the inner
1912             // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1913             UseVirtualCall = true;
1914           }
1915         }
1916         if (UseVirtualCall) {
1917           CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1918                                                       Dtor);
1919           return;
1920         }
1921       }
1922     }
1923   }
1924 
1925   // Make sure that we call delete even if the dtor throws.
1926   // This doesn't have to a conditional cleanup because we're going
1927   // to pop it off in a second.
1928   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1929                                             Ptr.getPointer(),
1930                                             OperatorDelete, ElementType);
1931 
1932   if (Dtor)
1933     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1934                               /*ForVirtualBase=*/false,
1935                               /*Delegating=*/false,
1936                               Ptr, ElementType);
1937   else if (auto Lifetime = ElementType.getObjCLifetime()) {
1938     switch (Lifetime) {
1939     case Qualifiers::OCL_None:
1940     case Qualifiers::OCL_ExplicitNone:
1941     case Qualifiers::OCL_Autoreleasing:
1942       break;
1943 
1944     case Qualifiers::OCL_Strong:
1945       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1946       break;
1947 
1948     case Qualifiers::OCL_Weak:
1949       CGF.EmitARCDestroyWeak(Ptr);
1950       break;
1951     }
1952   }
1953 
1954   CGF.PopCleanupBlock();
1955 }
1956 
1957 namespace {
1958   /// Calls the given 'operator delete' on an array of objects.
1959   struct CallArrayDelete final : EHScopeStack::Cleanup {
1960     llvm::Value *Ptr;
1961     const FunctionDecl *OperatorDelete;
1962     llvm::Value *NumElements;
1963     QualType ElementType;
1964     CharUnits CookieSize;
1965 
1966     CallArrayDelete(llvm::Value *Ptr,
1967                     const FunctionDecl *OperatorDelete,
1968                     llvm::Value *NumElements,
1969                     QualType ElementType,
1970                     CharUnits CookieSize)
1971       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1972         ElementType(ElementType), CookieSize(CookieSize) {}
1973 
1974     void Emit(CodeGenFunction &CGF, Flags flags) override {
1975       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1976                          CookieSize);
1977     }
1978   };
1979 }
1980 
1981 /// Emit the code for deleting an array of objects.
1982 static void EmitArrayDelete(CodeGenFunction &CGF,
1983                             const CXXDeleteExpr *E,
1984                             Address deletedPtr,
1985                             QualType elementType) {
1986   llvm::Value *numElements = nullptr;
1987   llvm::Value *allocatedPtr = nullptr;
1988   CharUnits cookieSize;
1989   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1990                                       numElements, allocatedPtr, cookieSize);
1991 
1992   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1993 
1994   // Make sure that we call delete even if one of the dtors throws.
1995   const FunctionDecl *operatorDelete = E->getOperatorDelete();
1996   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1997                                            allocatedPtr, operatorDelete,
1998                                            numElements, elementType,
1999                                            cookieSize);
2000 
2001   // Destroy the elements.
2002   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2003     assert(numElements && "no element count for a type with a destructor!");
2004 
2005     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2006     CharUnits elementAlign =
2007       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2008 
2009     llvm::Value *arrayBegin = deletedPtr.getPointer();
2010     llvm::Value *arrayEnd =
2011       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
2012 
2013     // Note that it is legal to allocate a zero-length array, and we
2014     // can never fold the check away because the length should always
2015     // come from a cookie.
2016     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2017                          CGF.getDestroyer(dtorKind),
2018                          /*checkZeroLength*/ true,
2019                          CGF.needsEHCleanup(dtorKind));
2020   }
2021 
2022   // Pop the cleanup block.
2023   CGF.PopCleanupBlock();
2024 }
2025 
2026 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2027   const Expr *Arg = E->getArgument();
2028   Address Ptr = EmitPointerWithAlignment(Arg);
2029 
2030   // Null check the pointer.
2031   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2032   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2033 
2034   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2035 
2036   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2037   EmitBlock(DeleteNotNull);
2038 
2039   QualType DeleteTy = E->getDestroyedType();
2040 
2041   // A destroying operator delete overrides the entire operation of the
2042   // delete expression.
2043   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2044     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2045     EmitBlock(DeleteEnd);
2046     return;
2047   }
2048 
2049   // We might be deleting a pointer to array.  If so, GEP down to the
2050   // first non-array element.
2051   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2052   if (DeleteTy->isConstantArrayType()) {
2053     llvm::Value *Zero = Builder.getInt32(0);
2054     SmallVector<llvm::Value*,8> GEP;
2055 
2056     GEP.push_back(Zero); // point at the outermost array
2057 
2058     // For each layer of array type we're pointing at:
2059     while (const ConstantArrayType *Arr
2060              = getContext().getAsConstantArrayType(DeleteTy)) {
2061       // 1. Unpeel the array type.
2062       DeleteTy = Arr->getElementType();
2063 
2064       // 2. GEP to the first element of the array.
2065       GEP.push_back(Zero);
2066     }
2067 
2068     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2069                   Ptr.getAlignment());
2070   }
2071 
2072   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2073 
2074   if (E->isArrayForm()) {
2075     EmitArrayDelete(*this, E, Ptr, DeleteTy);
2076   } else {
2077     EmitObjectDelete(*this, E, Ptr, DeleteTy);
2078   }
2079 
2080   EmitBlock(DeleteEnd);
2081 }
2082 
2083 static bool isGLValueFromPointerDeref(const Expr *E) {
2084   E = E->IgnoreParens();
2085 
2086   if (const auto *CE = dyn_cast<CastExpr>(E)) {
2087     if (!CE->getSubExpr()->isGLValue())
2088       return false;
2089     return isGLValueFromPointerDeref(CE->getSubExpr());
2090   }
2091 
2092   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2093     return isGLValueFromPointerDeref(OVE->getSourceExpr());
2094 
2095   if (const auto *BO = dyn_cast<BinaryOperator>(E))
2096     if (BO->getOpcode() == BO_Comma)
2097       return isGLValueFromPointerDeref(BO->getRHS());
2098 
2099   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2100     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2101            isGLValueFromPointerDeref(ACO->getFalseExpr());
2102 
2103   // C++11 [expr.sub]p1:
2104   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2105   if (isa<ArraySubscriptExpr>(E))
2106     return true;
2107 
2108   if (const auto *UO = dyn_cast<UnaryOperator>(E))
2109     if (UO->getOpcode() == UO_Deref)
2110       return true;
2111 
2112   return false;
2113 }
2114 
2115 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2116                                          llvm::Type *StdTypeInfoPtrTy) {
2117   // Get the vtable pointer.
2118   Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2119 
2120   QualType SrcRecordTy = E->getType();
2121 
2122   // C++ [class.cdtor]p4:
2123   //   If the operand of typeid refers to the object under construction or
2124   //   destruction and the static type of the operand is neither the constructor
2125   //   or destructor’s class nor one of its bases, the behavior is undefined.
2126   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2127                     ThisPtr.getPointer(), SrcRecordTy);
2128 
2129   // C++ [expr.typeid]p2:
2130   //   If the glvalue expression is obtained by applying the unary * operator to
2131   //   a pointer and the pointer is a null pointer value, the typeid expression
2132   //   throws the std::bad_typeid exception.
2133   //
2134   // However, this paragraph's intent is not clear.  We choose a very generous
2135   // interpretation which implores us to consider comma operators, conditional
2136   // operators, parentheses and other such constructs.
2137   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2138           isGLValueFromPointerDeref(E), SrcRecordTy)) {
2139     llvm::BasicBlock *BadTypeidBlock =
2140         CGF.createBasicBlock("typeid.bad_typeid");
2141     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2142 
2143     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2144     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2145 
2146     CGF.EmitBlock(BadTypeidBlock);
2147     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2148     CGF.EmitBlock(EndBlock);
2149   }
2150 
2151   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2152                                         StdTypeInfoPtrTy);
2153 }
2154 
2155 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2156   llvm::Type *StdTypeInfoPtrTy =
2157     ConvertType(E->getType())->getPointerTo();
2158 
2159   if (E->isTypeOperand()) {
2160     llvm::Constant *TypeInfo =
2161         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2162     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2163   }
2164 
2165   // C++ [expr.typeid]p2:
2166   //   When typeid is applied to a glvalue expression whose type is a
2167   //   polymorphic class type, the result refers to a std::type_info object
2168   //   representing the type of the most derived object (that is, the dynamic
2169   //   type) to which the glvalue refers.
2170   if (E->isPotentiallyEvaluated())
2171     return EmitTypeidFromVTable(*this, E->getExprOperand(),
2172                                 StdTypeInfoPtrTy);
2173 
2174   QualType OperandTy = E->getExprOperand()->getType();
2175   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2176                                StdTypeInfoPtrTy);
2177 }
2178 
2179 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2180                                           QualType DestTy) {
2181   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2182   if (DestTy->isPointerType())
2183     return llvm::Constant::getNullValue(DestLTy);
2184 
2185   /// C++ [expr.dynamic.cast]p9:
2186   ///   A failed cast to reference type throws std::bad_cast
2187   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2188     return nullptr;
2189 
2190   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2191   return llvm::UndefValue::get(DestLTy);
2192 }
2193 
2194 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2195                                               const CXXDynamicCastExpr *DCE) {
2196   CGM.EmitExplicitCastExprType(DCE, this);
2197   QualType DestTy = DCE->getTypeAsWritten();
2198 
2199   QualType SrcTy = DCE->getSubExpr()->getType();
2200 
2201   // C++ [expr.dynamic.cast]p7:
2202   //   If T is "pointer to cv void," then the result is a pointer to the most
2203   //   derived object pointed to by v.
2204   const PointerType *DestPTy = DestTy->getAs<PointerType>();
2205 
2206   bool isDynamicCastToVoid;
2207   QualType SrcRecordTy;
2208   QualType DestRecordTy;
2209   if (DestPTy) {
2210     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2211     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2212     DestRecordTy = DestPTy->getPointeeType();
2213   } else {
2214     isDynamicCastToVoid = false;
2215     SrcRecordTy = SrcTy;
2216     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2217   }
2218 
2219   // C++ [class.cdtor]p5:
2220   //   If the operand of the dynamic_cast refers to the object under
2221   //   construction or destruction and the static type of the operand is not a
2222   //   pointer to or object of the constructor or destructor’s own class or one
2223   //   of its bases, the dynamic_cast results in undefined behavior.
2224   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2225                 SrcRecordTy);
2226 
2227   if (DCE->isAlwaysNull())
2228     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2229       return T;
2230 
2231   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2232 
2233   // C++ [expr.dynamic.cast]p4:
2234   //   If the value of v is a null pointer value in the pointer case, the result
2235   //   is the null pointer value of type T.
2236   bool ShouldNullCheckSrcValue =
2237       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2238                                                          SrcRecordTy);
2239 
2240   llvm::BasicBlock *CastNull = nullptr;
2241   llvm::BasicBlock *CastNotNull = nullptr;
2242   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2243 
2244   if (ShouldNullCheckSrcValue) {
2245     CastNull = createBasicBlock("dynamic_cast.null");
2246     CastNotNull = createBasicBlock("dynamic_cast.notnull");
2247 
2248     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2249     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2250     EmitBlock(CastNotNull);
2251   }
2252 
2253   llvm::Value *Value;
2254   if (isDynamicCastToVoid) {
2255     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2256                                                   DestTy);
2257   } else {
2258     assert(DestRecordTy->isRecordType() &&
2259            "destination type must be a record type!");
2260     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2261                                                 DestTy, DestRecordTy, CastEnd);
2262     CastNotNull = Builder.GetInsertBlock();
2263   }
2264 
2265   if (ShouldNullCheckSrcValue) {
2266     EmitBranch(CastEnd);
2267 
2268     EmitBlock(CastNull);
2269     EmitBranch(CastEnd);
2270   }
2271 
2272   EmitBlock(CastEnd);
2273 
2274   if (ShouldNullCheckSrcValue) {
2275     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2276     PHI->addIncoming(Value, CastNotNull);
2277     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2278 
2279     Value = PHI;
2280   }
2281 
2282   return Value;
2283 }
2284